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Abstrakt 
Táto práca sa zaoberá problematikou mikrojadier operačných systémov. Prvá časť je za
meraná na oboznámenie s problematikou jadier operačných systémov. Obsahuje základné 
vlastnosti a mechanizmy druhej generácie mikrojadier reprezentovanej mikrojadrom L4, 
na ktoré sa zameriavame v ďalších častiach práce. Následne sú opísané dva rôzne porty 
operačného systému Linux nad mikrojadro L4, sú to L4Linux a Wombat. V druhej časti 
práce je popísaný spôsob inštalácie vybraných portov a hlavné problémy, ktoré sme museli 
riešiť. Tretia a štvrtá časť sú zamerané na problematiku testovania výkonnosti nainštalova
ných systémov. Popisujeme metodológiu zvolených experimentov a význam jednotlivých 
testov. Výsledky, spolu s ich vyhodnotením, sú uvedené vo štvrtej časti. Pokiaľ to 
je vhodné, získané výsledky konfrontujeme medzi sebou, prípadne s výsledkami testov 
získaných z Internetu. V záverečnej časti je na základe nadobudnutých znalostí uvedená 
stručná diskusia na tému možností uplatnenia mikrojadier. 

Klíčová slova 
mikrojadro, monolitické jadro, Linux, L4, Wombat, L4Linux, výkonnosť 

Abstract 
This thesis discusses the area of microkernel based operating systems. The first part is 
focused on the familiarization with the issue of the operating system kernel. This part 
contains the basic characteristics and mechanisms of the second generation microkernels 
represented by the microkernel L4, on which there is major focus in other parts of the 
thesis. Subsequently, there are described two different ports of the operating system Linux 
on top of L4 microkernel and those are L4Linux and Wombat. In the second part of the 
thesis, the method of the installation of the given ports is depicted and the main problems 
the author had to face. The third and forth part are focused on the issue of testing the 
performance of the installed systems. The methodology of chosen experiments is described 
and the meaning of the individual tests explained. The results, as well as their evaluation 
are stated in the forth part. If suitable, the gained results are compared with each other, or 
with the results gained from the Internet. In the last part, a short discussion is conducted 
based on the gained knowledge on the issue of the possibilities of microkernel application. 

Keywords 
microkernel, monolithic kernel, Linux, L4, Wombat, L4Linux, performance 
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Chapter 1 

Introduction 

In this work we present experiments on performance of L4 microkernel based operating 
systems. First generation of microkernels represented by Mach microkernel evolved from 
earlier monolithic kernel approaches and they were inefficient and inflexible [25], while sec
ond generation microkernels like L4 rigorously aim at minimality and are designed from 
scratch [14]. We had installed selected Linux ports on top of L4 microkernel and repeated 
several earlier experiments and conducted several new ones. 

In the next chapters we present kernel and microkernel characteristics, then we focus 
on L4, second generation microkernel, and various design concepts of ports of Linux op
erating system on top of L4 microkernel. Specifically we focus on L4Linux and Wombat 
and a description of installation process and associated problems follows. Later we present, 
compare and evaluate performance results for micro and macrobenchmarks executed on 
installed systems to get an idea on performance of microkernel based systems. 

1.1 Overview 

Original assignment for our work was: 

• Become acquainted with different kernel concepts and operating systems. 

• Perform detailed research of L4 and/or G N U / H u r d microkernel concepts. 

• Install chosen microkernels, propose and perform appropriate set of experiments to 
test their behavior. 

• Discuss and evaluate gathered results and compare with theoretical expectations (i.e., 
slowdown when compared to monolithic OS) and results available on Internet. 

To achieve the goals of our work the project moved through different phases. In the 
next subsections we will briefly describe outline of our work. 

1.1.1 Research O n Topic 

Purpose of the first phase was to get introduction to the problems of microkernel based op
erating systems and gain necessary theoretical knowledge needed for successful evaluation 
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and resolution of problems that will come up in upcoming phases. In this phase we have 
subsequently conducted research for material related to problematic of microkernel perfor
mance and operating systems based on L4 or Mach microkernel that could be used for the 
final performance testing and will make it possible to set and achieve our goals. During 
this familiarization process we have decided to focus on second generation of microkernels 
represented by L4 microkernel. There were several reasons that supported this decision. 
First generation of microkernels had been proven slow and unsatisfactory many times be
fore and thus led to the bad reputation of microkernels. This has been broken by second 
generation of microkernels under guidance of Jochen Liedtke, the father of L4 microker
nel, which is around for more than decade and during this time went through many changes. 

In the past, many performance tests were done with the purpose to disclose deficiencies 
of the first generation and help to learn from the mistakes done in design and implementa
tion of the first generation of microkenels based mainly on Mach microkernel or Minix. We 
decided to find some new, freely available (open-sourced), implementations of systems less 
or more compatible with Linux and based on some member or L4 microkernel family. After 
some research we have focused on Linux ports on top of L4 microkernel: L4Linux, being 
developed at Technical University Dresden, and Wombat from N I C T A at UNSW, Sydney 
Australia. 

As an alternative goal was set G N U / H u r d that uses Mach microkernel and represents 
the first generation of microkernels. This system does not provide the performance and 
stability that would be expected from a production system and only about every second 
Debian package has been ported to G N U / H u r d [1]. The G N U / H u r d is based on Mach 
microkernel which does not strictly follow the minimal microkernel design and due to its 
slow performance some drivers reside in the kernel [2]. We installed Debian G N U / H u r d 
operating system, but it will not be discussed in this paper any more. 

1.1.2 Research into L4Linux and Wombat 

This phase was relatively straightforward and consisted of research on L4Linux and Wom
bat, gathering theoretical information, capabilities of final systems and necessary installa
tion requirements. Lack of documentation, installation instructions, or outdated informa
tion played the main role of this phase. About the same time we started primary installation 
phase of selected Linux ports. 

1.1.3 Installation 

Installation of the L4Linux and Wombat took much more time than it had been expected. 
During this phase we gained knowledge about many parts of Linux kernel, virtual machines 
like VMware, Q E M U and many other topical problems. First we started with installation of 
a basic environment required for latter installation of Linux ports on top of L4 microkernel. 
We have found out that installation of microkernel based on real hardware can be much 
more complicated than running it within a virtual machine. Another essential problem 
was lack of documentation or outdated information. At the end we had two running Linux 
ports on top of L4 microkernel. 
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1.1.4 Performance Testing 

The proposed set of experiments was performed after successful installation of both micro
kernel based systems on native hardware to test their behavior. We planned to run the 
same set of tests on L4Linux and Wombat. This showed up to be impossible due develop
ment phase of Wombat. Many macrobenchmark tests done in the past present that average 
slowdown of a L4Linux system ranges from 5% to 10% [14]. This has been proven true 
only partially. Running tests that did work on large files disclosed that the performance 
dramatically declines. This has been proven by evaluation of our microbenchmark results. 

1.2 Related Work 

During the preparation phase we had to read through many papers that discussed per
formance of microkernels. This helped in our decision to focus on second generation of 
microkernels specifically L4 microkernel. The first generation of microkernels represented 
by Mach has poor performance and this has been only partially overcome by placing some 
drivers back into kernel breaking the minimal concept proposed by Jochen Liedtke that we 
would like to follow. 

In this paper we focused on performance of systems based on L4 microkernel. There were 
written many papers which discussed this topic. The most important paper on performance 
of L4 microkernel was the paper by Liedtke et. al. for us [14]. This paper discusses 
performance of L4Linux and compares it to MkLinux and native Linux. Another work on 
performance of L4 has been done by Herder et. al. [17] to explore the performance of a 
system with drivers running in user space. Adam Lackorzynski proposes L4Linux porting 
optimizations in [20]. Experimental study on the performance of L4Linux on top of L4 is 
presented by Guanghui in [8]. Performance of Wombat system is discussed in paper by 
Leslie et. al. in [6]. 
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Chapter 2 

Microkernel Based Systems 

With the growing popularity of U N I X operating system, the kernel started to grow in size 
and became difficult to manage. This led to development of first generation of microkernel 
represented by Mach and carried out by researchers at Carnegie Mellon University. 

First are presented different approaches in kernel and system design. After short com
parison of microkernel and monolithic kernel follows the description of various microkernel 
concepts and finally introduction to the Linux ports on top of L4 microkenel. During this 
work we had to deal with lack of documentation or other reliable information sources. 
Finding reliable information was difficult. Easily available documentation is outdated, in
complete or discusses only too specific topics not related to our work. 

2.1 Different Kernel Approaches 

There are many different definitions of the operating system kernel depending on the point 
of view. Operating system kernel is the part of the system which executes in the privileged 
mode of the underlying hardware. A more common definition is that the kernel is the 
one program running at all times on the computer, with everything else being application 
programs [2]. 

During the evolution different approaches to the construction of kernel appeared. They 
usually differ in the set of services running in kernel mode, primitives and level of provided 
abstractions. The following are the main types while there exist many different designs 
which combine these approaches into so called hybrid kernels. It should be noted that the 
definitions may slightly vary from source to source and even the main set of different types 
depends on the point of view. 

Monolithic kernel A l l services are running in kernel space in supervisor mode. These 
kernels usually define a high-level abstraction layer over computer hardware with 
large set of primitives and many system calls. Modern monolithic kernels support 
so called loadable modules, which can be dynamically loaded or unloaded from the 
kernel at runtime. Typical examples are: Linux, Unix kernels, Microsoft Windows 
9X series, OpenVMS, MS-DOS. 
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Microkernel Microkernels provide only basic services running in kernel mode. Other 
services are provided by so called servers which are user-space programs outside the 
kernel. They usually have a small number of system calls and provide only a small 
set of primitives. Typical examples are: L4, Minix, Q N X , Mach. 

Nanokernel This type of kernel is even more minimalistic than the microkernel and repre
sents the closest hardware abstraction layer of the operating system. It is commonly 
used to host other operating systems as a hardware abstraction layer to increase 
portability or in real-time systems. Typical examples are: KeyKOS, AdeOS. 

Exokernel This is kernel developed at MIT . It tends to force as few abstractions as possi
ble, enabling them to make as many decisions as possible about hardware abstractions. 
Their functionality is limited to ensure protection and multiplexing of resources. Thus 
the kernel provides and allocates the physical resources and the programs can decide 
what to do with these resources. Typical examples are: Aegis, X O K . 

2.2 Comparison of Monoli thic Kernel and Microkernel 

The two most often discussed kernel designs are monolithic kernels and microkernels. 
Whether one or the other design is better was a topic of debate between Andrew Tanen-
baum and Linus Benedict Torvalds fifteen years ago and continued in the year 2006 as 
Tanenbaum-Torvalds Debate, Part II [5]. In this section we present the main differences, 
advantages and disadvantages of each design, rather than deciding which design is better. 

As it has been already mentioned, the main difference between microkernel and mono
lithic kernel is in the number of services and policies provided by the kernel. Monolithic 
kernels provide many services and policies as shown at the left side on Figure 2.1. The 
kernel contains the entire operating system linked in a single address space and running in 
kernel mode. It may be structured but there are no protection boundaries around the com
ponents [17]. A bug in a device driver might crash the entire system. The main advantage 
of monolithic kernels is their speed, simplicity of design and huge community around it. As 
summarized in [17] the problems of monolithic kernels resulting from their design are: 

• No proper isolation of faults. 

• A l l code runs at the highest privilege level. 

• Huge amount of code implying many bugs. 

• Untrusted, third-party code in the kernel. 

• Hard to maintain due to complexity. 

Microkernel based systems have only tiny kernel providing basic services e.g. IPC, 
scheduling, interrupt handlers, process management, but ideally nothing else. File system 
management, device drivers, and so on is provided as unprivileged user-mode servers. They 
are running in separate address spaces isolated from the others. This model can be char
acterized as a multiserver operating system [17] and is depicted on the right part of Figure 
2.1 from [27]. 
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Figure 2.1: Microkernel vs. monolithic kernel 

Advantages of microkernel design presented by Liedtke in [25] are: 

• Simplicity. 

• Flexibility and extensibility. 

• A l l servers can use mechanisms provided by microkernel. 

• Modularity because of its clean interface. 

• Adding a new services without kernel modification. 

• Small Trusted Computing Base. 

• Easier maintenance since the kernel is smaller. 

In the next few sections is the microkernel design described more in detail. 

2.3 Microkernel 

Microkernel structures the operating system by providing only basic operating system ser
vices in the kernel and moving all other services to userspace. Basic services include process 
management, memory management, and functions for synchronization and communication. 

This approach promised dramatic increase in flexibility, safety and modularity [25]. M i 
crokernels evolved since late 1980's through many academic projects and disappointments 
into second generation of microkernels led by Jochen Liedtke and today represented by L4 
microkernel or commercial Q N X microkernel. The right side of Figure 2.1 shows structure 
of typical microkernel based system. 

2.4 L4 Microkernel 

Many years of research and development towards the performance enhancement of first-
generation microkernels did not bring awaited results when compared to performance of
fered by traditional monolithic kernels. This caused microkernel to gain reputation of being 
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too slow and lacking sufficient flexibility [14] and were put aside by many kernel developers. 
The drawbacks of the first generation of microkernels led to reexamination of used concepts. 
This made Jochen Liedtke believe that microkernels should be as small as possible and that 
proper design can bring performance, flexibility, and correctness [24]. 

The minimal concept introduced by Jochen Liedtke [25] implements in the kernel only 
address spaces, interprocess communication, and basic scheduling, stating: ' A concept is tol
erated inside the microkernel only if moving it outside the kernel, i.e. permitting competing 
implementations, would prevent the implementation of the system's required functionality' 
[23]. 

A l l other functions of standart operating system (e.g. pager, device drivers, networking, 
file system, etc.) that are present inside monolithic kernel run in user mode resulting in 
more secure and reliable system. Running in user-mode does not mean running the entire 
system in single user mode server that would bring the same problems as with monolithic 
kernel. Each untrusted module is running as a separate user mode process that is isolated 
from others. Thus buggy driver can not crash the entire system. A detailed discussion on 
this topic can be found in [17]. 

2.4.1 Overview of L4 Kernels and Environments 

Before we can take a closer look at L4 microkernel we should familiarize ourself with dif
ferent kernel versions and implementations, environments and operating systems based on 
L4 microkernel. The following information were gathered from 14hq.org. 

During the decade of L4 development, the kernels A P I and A B I went through some 
changes. To help reader better orientation while reading this work, we will shortly describe 
currently available implementations of L4 microkernel. 

O K L 4 0 K L 4 is commercially developed and supported successor of NICTA:Pistachio-
embedded. This newest kernel implementation of L4 features many improvements and 
optimizations, is scalable from embedded to large multi-processor systems. The kernel 
A P I used is 0 K L 4 v2 and supports A R M , IA32, AMD64/x86-64, Mips32/Mips64 
architectures. 

L4Ka::Pistachio Pistachio was developed by researchers at the University of Karlsruhe 
in collaboration with University of New South Wales, Australia, short U N S W . It 
implements L4 Version 4 kernel A P I , code-name Version X.2 . It supports IA32, IA64, 
AMD64, A R M , PowerPC-32, PowerPC-64, Alpha and Mips64 architectures. 

Fiasco Fiasco is designed as a preemptive real-time kernel. It supports IA32 and A R M 
architectures. It has Version 2 kernel A P I , the L4 A P I originally implemented by 
Liedtke, and also supports Version X.O A P I which is an experimental successor of 
Version 2. 

NICTA::Pistachio-embedded As the name says, this is descendant of Pistachio de
veloped by N I C T A group at U N S W optimized for embedded systems. It supports 
IA32, A R M and Mips64 architectures. Development of this implementation has been 
discontinued. 
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L4Ka::Hazelnut This is implementation of Version X.O A P I almost completely written in 
C++ with intention to be portable across IA32 platforms. Besides IA32 it supports 
A R M architecture. Development of this implementation has been discontinued. 

L4/Alpha, L 4 / M I P S , L4/PowerPC These are L4 implementations for Alpha, MIPS 
and PowerPC platforms based on Version 2 kernel A P I . They were developed by 
N I C T A group at U N S W and the development has been discontinued. 

The L4 microkernel is really minimalistic. Therefore to simplify development and unify 
development effort Kenge and L4Env programming environments were developed, providing 
basic services like memory management, less or more complete libc functionality, etc. 

2.4.2 L4 Fundamentals 

In this section are described some basic abstractions and mechanisms important to under
stand when talking about L4 microkernel. These concepts may vary in some implementation 
details for different L4 kernel A P I Versions. More detailed information can be found in [19], 
[18], [12], and [15] that were used as an information source. 

Gemot Heiser summarizes in L4 User manual [12] Liedtke's opinion on fundamental 
abstractions that should be provided by microkernel: 

• address spaces because they are the basis of protection, 

• threads because there need to be an abstraction of program execution, 

• inter-process communication (IPC) as there needs to be a way to transfer data 
between address spaces, 

• unique identifiers (UIDs) for context-free addressing in IPC operations. 

Threads 

Threads in L4 are the basic active entity. They execute within an address space and can 
only access memory from the address space in which they execute. Each address space 
can have multiple threads. Only threads can be scheduled. The communication from one 
thread to another is possible using shared memory or IPC facilities and will be described 
later on. Each thread has a register set (IP, SP, user-visible registers, processor state), 
associated task, address space, a page fault handler (separate thread called pager), an 
exception handler, preempting and scheduling parameters. 

Tasks 

A task provides an environment for the process execution and consists of a virtual address 
space and at least one thread. The number of threads in task is no longer fixed since the 
latest development version of the L4 implementation (kernel A P I Version 2 has fixed num
ber of tasks). 
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Address Spaces 

Address spaces in L4 are constructed recursively. The initial address space is sigmaO and 
represents physical memory. At the start all other address spaces are empty. Construction 
and management of other address spaces is done by three basic operations on virtual pages 
grant, map and flush [23]. 

• grant can be done only by the owner of an address space that he wants to grant to 
another space, provided the recipient agrees. This removes the page from the granter's 
address space and including it in grantee's address space. 

• map operation maps region from caller's address space into another address space, 
provided the recipient agrees. Resulting in situation when the region is being acces
sible in both address spaces. 

• flush also referred to as unmap operation allows owner of an address space to flush 
any of its pages. The pages are unmapped from all other address spaces which directly 
or indirectly received them. 

Grant and map operations induce a tree data structure, which contains the physical 
frames as root node, address spaces as nodes which are connected due to grants and maps 
for the address spaces. There is a tree for every physical frame, called tile-map tree [16]. 

Phys. Memory 
l - to - l mapped 
Phys. Memory 
l - to - l mapped Initial Address Space 

Kernel 
Fiasco Microkerne 

Figure 2.2: Message redirection by Clans&Chief 

Since grant,map, unmap operations are done on virtual pages, they can only affect pages 
that are mapped into the caller's address space. They are sent as messages and have to be 
explicitly received by target thread. Controlling I /O rights and device drivers is done by 
memory managers and pagers on to of the microkernel [23]. 

Pagers are special threads designed to handle page fault notification messages by ex
ecuting appropriate operations described above. These memory concepts allow memory 
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management to be implemented outside the microkernel as user level servers [23]. Figure 
2.2 from [33] is example of tree-like structure with hierarchical pagers. 

Interprocess Communication 

For a microkernel system where services are implemented at user level, communication be
tween those two environments must be very fast. They do not have access to the same 
memory areas thus they must constantly be sending communication to each other. This 
communication is done by IPC and may reduce the overall system performance as it can 
be seen in some first generation of microkernels. 

Interprocess communication on L4 is message based and is the most important part 
of L4 microkernel. One of the requirements for its features was to be extremely fast and 
carefully designed with regards to security issues. L4 has synchronous IPC with no need 
to buffer or copy data. Synchronous IPC requires an agreement between both the sender 
and the receiver. Threads have message registers for passing IPC messages. Sending thread 
writes its message into its message registers and receiving thread reads message from its 
message registers. If sender or receiver is not ready the other party must wait. Unbuffered 
IPC reduces the amount of copying involved and plays significant role in high IPC perfor
mance. This is the basic concept for all types of operations and messages. 

The L4 microkernel provides only seven system calls in Version V2 and eleven in Ver
sion X2 kernel A P I . Everything else must be build as user level server, so IPC is the only 
means of communication between them. This means that it is used to pass data by value 
or by reference, for synchronization, wake-up calls, pager invocation, exception handling, 
interrupt handling. Even device control is registered via IPC [12]. 

Clans & Chiefs 

Clans&Chiefs is the security policy model has not been used since kernel A P I Version 2 and 
is not being used since kernel A P I Version X.O and Version X.2 . This concept is one of the 
security mechanisms used by L4. It allows implementation of protection policies using IPC 
message transfers. It has been found to be inefficient, inflexible, and prevents dynamically 
changing security policies to be implemented efficiently [18]. Security policies are important 
because they allow controlling IPC and the information flow. 

In this model, a clan is composed of all the tasks created by the same one task. A task 
creating another task becomes the chief of the new task this means that every clan has only 
one chief. Chiefs can enforce different security policies [32]. A task can be killed directly 
only by its chief or indirectly when its chief is killed. 

Threads can directly send IPC only to other threads in the same clan, or to their chief. 
If a message is sent to a member of different clan, that message is instead delivered to the 
chief of sender's clan, who may or may not forward the message. Clans may be nested. If 
a message is sent to a member of a subclan of the clan containing the sender, that message 
is delivered to the task in the clan whose clan contains the addressee [12]. 
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IPC Redirection 

This is the new security model implemented in I B M internal versions of L4 using kernel 
A P I version X.O. This mechanism makes two improvements: (1) it removes the manage
ment overhead of redirection policy from the kernel, so access control enforcement can be 
implemented outside the kernel, and (2) it separates the notion of who controls the redirec
tion policy from the redirections themselves, so redirections can be configured arbitrarily 
and dynamically [32]. While the first improvement has been met in Clans&Chief model, 
the later was not. It should be mentioned that in this model it is possible to implement 
Clans&Chiefs on to of IPC redirection with the proper redirectors. 

Each thread has an associated redirector or also called redirection-controller. Redirec-
tor is another thread of the same user-level task, or more often another user-level task. Its 
purpose is to controll incoming, outgoing IPCs or both. Redirection controller is privileged 
to set redirection policy for the threads in its redirection set. Since a redirector is user-level 
thread the system designers are free to implement redirection policy as desired for their 
system [32]. 

Redirectors can be changed at run-time, and can be stacked, setting a redirector to a 
thread already acting as a redirector. This was not possible in the Clans&Chiefs model. 
As it has been already mentioned, the Clans&Chiefs was too complex and too slow in some 
cases, even if a single IPC is fast, and this can be easily reduced by dynamicall configuration. 

The IPC redirection mechanism can be very useful, for example to monitor applications 
or to allow running untrusted code inside so called sandbox preventing the code to interact 
directly with the operating system. Even untrusted binary code could be run directly on 
main C P U without any need of virtual machine, and without any risk from the security 
pint of view [11]. 
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Scheduling 

The L4 microkernel was designed to allow implementation of user-level scheduling. [12]. 
This means that the L4 provides in the kernel only basic scheduling capabilities and im
plements simple internal scheduler. Thread scheduling can be controlled using timeslice 
length, thread priority and maximum controlled priority. Each L4 thread has a timeslice 
length associated with it and will be scheduled for the timeslice associated with it. Af
ter the time quantum expires, the next runnable thread will be scheduled. It should be 
mentioned that timeslice length is not determined by its priority. The kernel defines 256 
levels with 255 being the highest priority. Usually used for user level schedulers or interrupt 
handlers. As it has been already mentioned, L4 microkernel has an internal scheduler. It is 
based on hard priorities using round-robin within priority levels. Each priority level has its 
own queue, empty if there are no threads with such priority. Kernel manages ready list per 
priority in its ready queue. If thread's priority is changed the queue it belongs to will change. 

Interrupts 

Each interrupt can be registered to an interrupt handler represented by a user-level thread. 
Hardware interrupts are caught by L4 microkernel. Upon each reception of interrupt by 
the kernel, it is delivered via IPC to the corresponding interrupt handler. Even the de
vice drivers are in correspondence to L4 microkernel philosophy implemented as user level 
servers. This would not be possible without described interrupt mechanism. 

Exception Handling 

Another interesting mechanism used in L4 is the exception handling. Threads can have 
specified exception and a system trap handlers. When exception or system trap is made 
by user thread, it is converted by L4 into IPC message and forwarded to the thread's ex
ception or system trap handler. Wi th the IPC message is being sent the state of thread 
and registers. The handler resumes the thread by sending a reply message containing the 
modified state. 

2.5 L4Linux 

In the previous sections the reader became familiar in general with some basic concepts of 
L4 microkernels. This section describes Linux port on top of L4 microkernel called L4Linux 
which provides full binary compatibility with the original Linux kernel. This means that 
both Linux kernel and Linux applications run unmodified on L4Linux as L4 user level tasks. 
The performance of this Linux port when compared to monolithic Linux is presented as 
comparable or small [14]. Whether this is true is the subject of this work and is evaluated in 
the next chapters. Information presented in this section are mainly based on Adam Lacko-
rzynski's document 'L4Linux Porting Optimizations' and lectures provided at T U Dresden 
on L4 microkernels. 

The first implementation of L4Linux is more than 10 years old and was carried out 
by the Operating Systems Group in Dresden in 1996 and based on Linux 2.0. One of the 
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important milestones was the support for X.2 A P I as well as symmetric multiprocessors 
(SMP) introduced in L4Linux-2.4. S M P is supported by L4Ka::Pistachio and L4Linux-2.4. 
The latest release of L4Linux at the end of writing this paper is based on Linux 2.6.20 and 
is under continuous development. 

2.5.1 System Architecture 

The L4Linux is a key component of Dresden Real-Time Operating System project, for short 
DROPS, which is a research project aiming at the support of applications with Quality of 
Service requirements [34]. The goal of this project is to build a system with real-time 
and non-real-time applications running side by side. At the start of the development of 
L4Linux, no real-time guarantees were possible in Linux, it is located in the non-realtime 
part of D R O P S where it provides an environment to run unmodified Linux applications. 
Figure 2.4 show the architecture of D R O P S system as it is presented in [33]. 

Underlying system services are used by L4Linux in the same way as by any other L4 
applications. In other words, the L4Linux can use unmodified Linux drivers. Another 
approach is to use so called stub drivers together with external L4 servers providing de
sired functionality. This is, for example, necessary for virtualization when running multiple 
L4Linux instances is desired, because hardware can be used only by one instance at a time. 
As an example network server could be used. L4Linux can use services provided by network 
server capable of sharing resources among realtime and non-realtime clients. 

Legacy Applications 
Editor, Compiler, ... 

Mixed Applications 
Multimedia, ... 

Real-Time Applications 
Controller. ... 

Resource Management 
L4Env & Basic Resource Manager 

Fiasco Microkernel 

Figure 2.4: D R O P S system architecture 
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L4Env 

The L4 microkernel A P I is small and provides only minimal functionality to user level ap
plications. This makes it hard to use without supporting libraries and services. Wi th the 
growing number of L4 applications an unified environment began to be needed. Combining 
components developed by different authors became problematic since they used their own 
libraries even for common functions like print f. 

L4Env is a programming environment for application development on top of the L4 
microkernel family and is being developed as part of the D R O P S . Its purpose is to define a 
minimal environment that would be available for every L4 application including a C library, 
memory management, thread management, program loading, event handling, interface def
inition language (IDL), stub generator and others. Its function is to abstract L4 concepts 
to higher levels and thus provide the needed libraries and services as servers in user space. 

The most important servers [7] that will be build during the installation process of 
L4Linux are: 

bootstrap Bootstrap for L4. It is responsible for initial setup of regions and the kernel 
page. 

main Actual Fiasco L4 microkernel. 

sigmaO System's pager that possesses all pages at start-up. Servers can have their own 
pagers. 

roottask Basic resource manager. It is responsible for physical memory, interrupts, tasks, 
small address spaces, and launch of basic servers. 

events Communication server that provides communication between L4 tasks. 

names Basic namespace manager, responsible for registering and unregistering names with 
a thread_id, etc. 

log Basic console and support for logging. 

dm_phys Physical dataspace manager for L4. 

simple_ts L4's simple task manager which provides task initialization, task management, 
task queue, and timeout management. 

rtc Real Time Clock server. 

14io Multiserver providing an interrupt manager omegaO and basic I /O management. 

14exec Binary interpreter for L4 interpreting L4 binaries and creating dataspaces which 
contain program sections. It is also capable of resolving dependencies with library 
modules. Currently supports E L F only. 

bmodfs Minimum boot time file provider. 

loader Dynamic L4 loader capable of loading binaries at runtime. Its responsibility is to 
fetch files from the file provider and hand them to 14exec. 
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2.5.2 Implementation 

When porting Linux on top of L4 Linux, it was decided to reuse the Linux source code with 
minimal modifications. This has been kept. The L4Linux defines new architecture which 
uses L4 and L4Env functionality and makes it possible to reuse nearly all parts without 
modifications from native architecture. This was possible because the L4 kernel encapsu
lates the differences of the hardware and provides a small but very powerfull interface [31]. 
Structure of L4Linux version 2.6 is illustrated in Figure 2.5 from [33]. 
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L4 Task 

Application 

; L4Task I I L4Task ! ; L4Task 

Application Application Application 

L4 Task 

Arch-
Depend. System-Call Interface 
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- IPC 

Memory 
Management 
- Page allocation 
- Address spaces 
- Swapping 

Arch-
Depend. Hardware Access 

DMphys L4IO Names Con 

Kernel 
Mode 

Fiasco Microkernel 
Software 

Hardware 
CPU, Memory, PCI, Devices, 

Hardware 

Figure 2.5: L4Linux structure 

Linux kernel and Linux user processes run each within separate L4 tasks. There is 
separate task for each user process. Architecture dependent part implements required 
functionality using L4 and L4Env primitives while most parts are used unmodified from 
native, e.g. x86, architecture. 

The thread that executes the Linux kernel code is called Linux server. In the running 
system it is in idle loop waiting to handle system calls, exceptions, and page faults of user 
processes. The server task uses one or more threads to handle interrupts depending on the 
L4 version. 

Page faults of the Linux server are handled by a thread called the root pager. Linux 
server is a pager for all user processes, page faults are sent to the L4Linux server. When 
user process page fault occurres, L4Linux has to map memory into the address space of the 
requesting process using the L4 map and unmap operations. A l l memory received by user 
processes comes from the Linux server which manages all the memory from the L4Linux 

17 



system. For remapping memory from the Linux server to the address space of the Linux 
server again, the Ping-Pong task is used. 

Another interesting design concept was used for signal handling. In L4Linux version 
2.4.x there are two threads within the task that handles user process. One of them executes 
the user program, while the other, so called signal thread waits for commands from Linux 
server to manipulate the user thread. 

System Calls 

In native Linux, if application needs to carry out system call, it enters the Linux kernel 
using the interrupt gate 0x80 by executing int 0x80 instruction. This is not possbile on 
L4 systems where the corresponding instruction will cause an exception and the causing 
program will be terminated without installed exception handler. 

L 4Linux Server 

L 4Linux User Process 

INT 0x80 

Application 

Arch-Dependent 

Syscall Dispatcher 

0 ® 
Arch-Independent 

Fiasco Kernel 

Figure 2.6: System call mechanism in L4Linux 

In L4 an application executing int 0x80 instruction triggers an exception to the L4 
kernel. Then an exception IPC is sent to the L4Linux server by the L4 kernel. When 
L4Linux server receives exception IPC, it handles the system call and sends an exception 
reply to the L4 kernel. Upon reception of reply, new state of thread is set. Looking closer 
at this mechanism the cost of this operation can be seen. While in native Linux system 
call costs 1 kernel entry and no address space switch, in L4Linux it costs 2 kernel entries 
and exits (exception IPC and reply) and 2 address space switches (user task - kernel task 
- user task). This situation is shown in Figure 2.6 from [33]. 
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Scheduling 

There are two active schedulers in L4Linux system: 

• L4 kernel 

• Linux server 

The L4 kernel is scheduling all L4 threads including L4Linux processes. It should be 
noted that L4 scheduler uses static priorities and schedules threads with the same priority 
round-robin. Linux server has the scheduler for Linux processes. From the point of view 
of the Linux server, multiple user processes can be running in the L4 system. Linux server 
needs to distinguish between the user processes being served by the Linux server and the 
processes running at the moment, because the Linux scheduler can only consider such pro
cesses that are blocked by the server. 

Interrupt Handling 

In the L4 microkernel the interrupts are translated into synchronous IPC message and sent 
to the thread attached to the interrupt. In L4Linux the interrupt messages are received in 
separate threads either directly from L4 kernel or from L4IO through the omegaO interface. 
Interrupt threads run on higher priority than the main thread and the threads of user pro
cesses. L4Linux emulates prioritization of hardware interrupts by giving interrupt threads 
different priorities. 

2.6 Wombat 

As a second Linux port on top of L4 microkernel we chose Wombat which is a complete 
paravirtualized Linux kernel running on top of Iguana. Paravirtualization means that L4 
is used as a new architecture that Linux can run on. There is a similar approach used in 
L4Linux. Wombat is presented as highly portable and currently runs on x86, A R M and 
MIPS architecture. 

This Linux port and the resulting system is in many design features similar to L4Linux, 
which pioneered an idea to run Linux in user mode on top of the very small and fast 
microkernel. Sarma and McKenny presented this as a third approach to real-time computing 
with Linux in [9]. Figure 2.7 from [6] shows the resulting system. 

The L4 microkernel is designed to satisfy the needs of hard realtime systems and is 
responsible for dealing with interrupts. The Linux system is not involved in any of the 
interrupts destined for realtime tasks. The system is divided on the Figure 2.7 by black line 
into two isolated parts. The untrusted part where Wombat Linux server resides and the 
sensitive realtime part. Crash of Linux or other untrusted application cannot compromise 
the real-time side, and if needed the Linux can be easily restarted without requiring any 
system downtime. Another advantage of this approach is small Trusted Computing Base 
(TCB) because it only contains L4 microkernel and Iguana Resource Manager that have 
less than 30 000 lines of code together. 
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Figure 2.7: Running Wombat and other applications on a microkernel 

The next few pages are based on available information gathered from webpages of Na
tional ICT Australia, available documentation on the discussed topics and [6]. 

Wombat has been chosen for several reasons: 

• The microkernel and Iguana are open-sourced under BSD license. Linux runs on top 
of it, that is why firmware and other applications do not need to be under G P L . 

• Embedded systems are the biggest potential market for Linux [6], while Wombat can 
provide needed legacy support for embedded devices. 

• The developers present that Wombat's performance benchmarks show that it per
forms very well when compared to native Linux, and even outperforms it in some 
benchmarks. 

• For building applications on top of L4 it uses different environment than L4Env. 

2.6.1 System Architecture 

System structure with Wombat on top of L4 microkernel with Iguana is shown in Figure 
2.8 as it is presented in [6]. Iguana address space is represented by a light gray area with 
separated protection domains. Inside the shared address space runs Wombat in its own 
protection domain. Running in the shared address space simplifies sharing and allows fast 
context switching. The system's minimal T C B is composed of basic OS services provided 
by MyOS servers and device drivers. Application codes that depend only on OS services 
and not on the presence of Linux are called Iguana User Processes. This could be e.g. 
firmware or other sensitive applications as pictured on Figure 2.8. In some cases programs 
may need their own address space. This is theoretically possible, but they would partly or 
completely lose access to Iguana services. 
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Figure 2.8: Iguana and Wombat 

In the system consisting of Iguana and Wombat the Linux applications run in two 
different ways: 

• native mode, 

• compatibility mode, 

as it is shown in Figure 2.8. 

Native mode is a mode when Linux processes run inside the shared address space. It 
gives the applications all the advantages of running in the same address space, e.g. fast 
context switches, a full access to Iguana services, and it allows them to communicate with 
other Iguana applications including the Linux server. Applications running in this mode 
can use combined A P I of Linux and Iguana and can even offer services to the rest of the 
Iguana system. Disadvantages of this mode can be in some cases: limited address space 
size, unusual address space layout, and no support for f ork(). This means that some Linux 
applications will not run in native mode without a significant porting effort [6]. 

Purpose of compatibility mode is to provide full binary Linux compatibility for appli
cations running in this mode without the need to port them to the native mode. Wi th the 
advantage of this comes one disability for such applications. They can only communicate 
directly with Wombat using Linux system calls and for communication with other separate 
spaces, Linux standart mechanisms, e.g. files, pipes, sockets have to be used. This causes 
context switch overhead between different address spaces. Applications are less integrated 
into the rest of the system. 

Iguana 

Due to the minimality of L4 microkernel, there is a need to have an environment build 
around it that would provide at least the basic system services. Iguana is such a base, de-
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signed for embedded devices that requires different approaches to a number of issues than in 
L4Linux. It provides services such as allocating and sharing memory, a memory protection 
model and its enforcement, general resource management, device driver framework. Next 
it supports an address space layout that leads to a dramatic reduction of context switching 
overheads on processors with virtually addressed caches (e.g. A R M 7 and A R M 9 ) . Iguana 
seems to complement rather than hide underlying L4 A P I . The most important role of 
Iguana is that it provides underlying OS for Wombat. 

This is a short description of Iguana packages which are used to provide services for 
Wombat as described in [26]: 

14kernel A version of L4 microkernel, based on L4Ka::Pistachio, that is designed for em
bedded systems. 

ig_server Iguana server. 

ig_init Iguana initialization program. It initializes the system starting any servers and 
user shell. 

ig_naming Iguana naming server. It provides a simple, shared, flat namespace. 

ig_serial Iguana serial server. 

ig_trace Iguana trace server. 

ig_timer A timer server for Iguana. 

2.6.2 Implementation 

At the time of this work only the compatibility mode for Linux applications was available. 
It has been discovered that not all Linux system calls are implemented in the prerelease 
version of Wombat. This makes it unusable to run on top of native Linux distribution, like 
it is possible with L4Linux. On the other side, it must be noted that the Kenge building 
environment used for L4 projects with Iguana is much more straightforward than L4Env. 
It mainly consists of scrips and configuration files written in Python programming language. 

To port Linux on top of L4 microkernel, a new processor architecture was introduced 
similarly as in L4Linux. This was achieved by adding new directories include/asm-14 and 
arch/14. The new 14 architecture was implemented from scratch to keep it as architecture 
neutral as possible. 

Architecture specific code resides in an appropriate architecture specific subdirectory, 
e.g. arch/14 /sys-{arm,i386,mips}. Ports to other architectures, like PowerPC and A l 
pha, are still in development. The implementation started with Linux kernel 2.5 series in 
late 2003. For the testing purposes of this work the prerelease version of Wombat with 
kernel 2.6.10 has been used. Not all Linux system calls were implemented during this work, 
making it impossible to run some planned macrobenchmarks. 
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System Calls and Exceptions 

Implementation of a Linux process is designed as a single L4 task with only one running 
thread. This means that it is able to use L4 system calls, such as for L4's IPC communi
cation. Even in compatibility mode to interact with other system's processes. One could 
argue that this is not possible according to the description of this mode presented in the 
subsection describing system architecture. Sending IPC messages to other than Wombat 
processes is restricted using security mechanisms offered by L4. It should be noted that 
applications running in compatibility mode are built for native Linux and do not know 
about L4. 
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user process 
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< l 
4 
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syscall syscall / Syscall 

1 >/ redirection 

L4 microkernel 

Figure 2.9: System call redirection 

For handling native Linux system calls, Wombat uses a technique called system call 
redirection, or also trampoline. This is has to be done, because 14 has different syscall 
numbers. The redirection mechanism works in three steps: (1) when a Linux user process 
performs a Linux system call, the L4 treats this as an exception, translates it and (2) for
wards to Wombat as an IPC message. Wombat looks at this as at normal IPC message 
from user process, subsequently processes the Linux system call by invoking standart Linux 
kernel services, and (3) returns directly to the application process. On A R M processors 
different mechanism for system calls is used. 

Scheduling 

Similarly to L4Linux, two schedulers are involved: L4 kernel's internal scheduler, and nor
mal Linux scheduler. For scheduling Iguana's and Wombat's threads is used L4's scheduler 
is used, while the normal Linux processes are scheduled by Linux scheduler. To meet the 
realtime scheduling criteria, realtime threads are normally given higher priority than Wom
bat, thus real-time part will always preempt Linux part of the system. 

Only one single Linux user process is can run on one C P U . This is ensured by Wombat, 
in order to guarantee proper implementation of Linux scheduling. The purpose of special 
thread called timer thread running in Wombat with higher priority than all Linux processes 
is to maintain the Linux time slice. When it receives timeout corresponding to Linux timer 
tick, it wakes up and calls Linux scheduler to determine next process to run. 
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Device Drivers 

There are three different types of device drivers that can be involved in the system running 
on Iguana and Wombat. Firstly, there are normal Iguana drivers running as user-mode 
servers inside their own protection domain. Second type are standart Linux drivers that 
can run unmodified on Wombat. When standart Linux drivers are used they can not be 
shared with other realtime applications running on top of Iguana because they reside in 
non-realtime part and thus do not meet all the necessary criteria. It should be noted that 
Linux drivers are not allowed to perform D M A , because this would break the security en
capsulation of the Linux side of the system. The third type is shown in Figure 2.10 from 
[6]. Only one driver can control each device. The implementation of shared devices allows 
access for both, Iguana servers and Wombat. The device is owned by server implementing 
the proper driver. The other side, e.g Wombat, implements only a so called stub driver 
which forwards its requests to the proper driver. To ensure correct arbitration of resources, 
the proper driver is usually implemented as Iguana server. 

Linux 
Process 

Wombat 

Linux stub driver 

Iguana invocation 

- o - Linux system call 

iguana 
Application 

Iguana 
Device 
Driver 

Figure 2.10: Shared device drivers 
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Chapter 3 

Installation and Associated 
Problems 

In this chapter we will discuss the installation of L4Linux and Wombat, which are Linux 
ports on top of L4 microkernel, and problems that we had to deal with together with de
cisions that we had to make. The goal of this phase was to get reasonably well working 
environment with installed L4Linux and Wombat on native hardware, more specifically on 
IA32 architecture. A l l of this had to be accomplished within the limited time span that 
was available for this assignment. It should be noted that this phase took much more time 
than it was expected. Absence of proper documentation, outdated information, hardware 
problems and many times the lack of knowledge made it really hard to make decisions when 
dealing with problems in very specific areas. This wouldn't be accomplishable without ad
vises obtained from the mailing lists and people signed up. We suggest to everyone who 
wants to do research or development in this area to sign up for appropriate mailing lists as 
soon as possible and get help from the community. 

Our installation process could be divided into few steps. Before the separate instal
lation we had started to experiment with the available Live-CD from T U Dresden, called 
TUD:OS Demo C D , inside VMware virtualization machine to get an idea how the result
ing system might look like. The virtualization tools (e.g. VMware, Xen, Q E M U ) help 
immensely while operating systems are developed, especially when there is a risk of dam
age on real hardware or of loss of data, not to mention numerous consuming system reboots. 

Subsequently, we moved on to creating desktop Linux base system that we used for 
building and installation of final systems. The rest of this chapter describes the installation 
steps and issues we had to deal with. 

3.1 Test-Bed Infrastructure 

The environment, created for building and running the selected microkernel based systems, 
played an important role during the installation phase. Following subsections provide a 
short summary of hardware and software configuration, together with associated problems. 

25 



3.1.1 Hardware 

Proper selection of hardware may reduce many problems during the development phase. 
Thus, we suggest selecting all hardware components carefully in order to avoid many trou
bles that may occur later on. During our research we did not have such a possibility, since 
we had only an old laptop at disposal at that time. The test system we had used for 
development consisted of a Pentium 4 C P U at 2.8GHz with 521KB cache size, 512MB of 
S D R A M , ATI Radeon 9000 IGP video card, and Realtek RTL-8139* ethernet. We decided 
to limit the system memory for L4Linux and Linux to 256MB. Thanks to the limitation 
we obtained more accurate results. The first hardware configuration was used solely for 
L4Linux. 

As it became apparent later, the first configuration missed serial RS232 port, which is 
very helpful for kernel debugging with remote serial console. It was possible to use the final 
version of build system with Wombat and installed on real hardware only with the remote 
serial console. The way how to use the serial console is discussed further on. Another disad
vantage of this system is the ethernet card. Following the first few successful installations 
of L4Linux we decided to set up a network, change Linux kernel configuration file appro
priately and recompile kernel to support the above mentioned ethernet card. Hardware is 
detected successfully but it is not capable of any communication. Several experiments and 
rebuilds showed that there is already a problem most likely with our hardware configura
tion. Probably because the device is sharing IRQs with Universal Host Controller Interface 
(warrants further research). According to the experienced problems we would suggest to 
use an old N E 2 K P C I ethernet card for future research. 

Without using a remote serial console we were not able to access and use system running 
Wombat. It should be noted that emulating Wombat in Q E M U with simulated P C I V G A 
card was successfull. As far as we were aware, V G A should work on any IA32 machine, 
because A0000-BFFFF is always E G A / V G A video buffer (this warrants further research). 
To overcome this problem with insufficient hardware configuration, we decided to move our 
research to another hardware. 

Second test system consisted of an A M D Athlon(tm) 64 X2 4200+ at 2.2GHz, 2GB 
R A M , P A T A disk, Nvidia NX7300GT graphics card and desired serial port. Wi th this 
setup we tried to use several different ethernet cards but we were not able to make them 
work. There was no time for deeper investigation. This test configuration was used only 
for performance testing of Wombat. 

3.1.2 Software 

We used three differnet Linux distributions during the installation phase: Fedora Core 6, 
Debian Etch, and Debian Sarge. Our first choice was Fedora Core 6. While this distribu
tion has many innovatory features, it became apparent that it was not suitable for building 
L4/Fiasco and L4Linux. The best choice for starting with L4Linux is Slackware or Debian 
(Sarge or Etch). Using these two distributions should eliminate the additional installation 
of missing packages, e.g. in Fedora Core 6. So, for further building of L4Linux we've created 
environment based on Debian Etch distribution. 
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After the installation of the base distribution is successful we recommend to check the 
presence of the following packages: openssh-client ,openssh-server, gcc-3.4, cpp, 

g++-3.4, libncurses5-dev, libncurses5, doxygen, tk-brief, latex2html, nasm, 

gawk, hyperlatex, imagemagick, zliblg-dev, bison, byacc, flex, automakel.9, 

autoconf2.13, fig2ps, transfig, fig2sty, fig2sxd, make, patch. 

Additional installation of missing packages avoids many future errors and possible con
fusion, whether there is a problem in downloaded L4 related source codes or in the building 
environment. During the first attempts we experienced both of them many times. In such 
situations we recommend to read through mailing lists and if the solution is not found ask 
other participants for help. 

Another really important information is to pay attention which of the gcc and g++ 
versions are used for building. We highly recommend to use version 3.3.x or 3.4.x while 
building L4/Fiasco and L4Linux. Using gcc and g++ version 4.x.x leads to many compila
tion errors during the building process. 

For building Wombat we need the Python version at least 2.3, SCons build system, 
the compiler must be gcc-3.3. Next we need to have Q E M U for the simulation of the build 
images. There should be no problems with creation of such environment using Debian Sarge. 
The building of Wombat with Fedora Core 6 was successful after using the recommended 
toolchain. The toolchain was downloaded from: https://www.ertos.nicta.com.au/ 
downloads/i686-gcc-3.3.4-glibc-2.3.3-2006-06-02.tar.gz. 

3.1.3 Remote Serial Console 

During the installation phase of Wombat we experienced problems with running it in V G A 
mode. Whether it was caused by some implementation issues in prerelease version of Wom
bat or by misconfiguration in our building environment was not disclosed by the deadline. 
We were running out of time planned for this phase, thus we decided to use remote serial 
console was made. The description of the serial console can be found at [13]. 

3.2 L4Linux 

This section shortly summarizes the installation process of L4Linux on real hardware and 
associated problems we had to deal with through different stages of installation. It should 
be noted that it is not possible to include comprehensive information on all the topics that 
had to be solved during the installation process. The detailed description of the whole 
installation process is not the aim of this paper.This section should give the reader rough 
idea on where to find more detailed or up-to-date information about the installation process. 

The installation can be divided into two steps. First L4 environment and Fiasco kernel 
should be installed and second L4Linux itself. One of the basic requirements is a good 
knowledge of Linux system, programming experiences, and successful installation of an en
vironment as described. During the L4Linux installation process we had to use helpfull 
information from a 14-hackers mailing list, other used information sources are [10], [7], [29]. 
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3.2.1 Creating Directory Structure 

First, the directory structure, for instance in /mnt/L4, should be created. These modules 
have to be downloaded from S V N or C V S repositories: oskit, oskitlO, 14, 141inux-2.6. Sec
ond, grub-0.97 source codes and patch grub-0.97-os.l.diff should be obtained. That would 
add to it modaddr command and some other features necessary for booting Fiasco ker
nel. The patch is available for download from personal web page of Adam Lackorzynski 
(http ://os. inf . tu-dresden. de/a.dam/grub/0.97/grub-0.97-os. 1. dif f .gz). It should 
be noted that this patch changes symbol expansion. This causes problem with booting 
G N U / H u r d operating system with patched version of grub. 

Desired directory structure should look as follows: 

oskit/ 

oskitlO/ 

14/ 

141inux-2.6/ 
grub-0.97/ 

Up-to-date instructions how to access repositories together with short module descrip
tions are available on the D R O P S download page [30]. The source codes are understandably 
changing time to time and after solving one bug new regression might occur. The best place 
to start with solving building problems is to get the information on the mailing list. 

3.2.2 L4 Environment and Fiasco 

The purpose of the following section is to describe configuration of L4 environment Fiasco 
in order do get the working D R O P S system for running L4Linux. 

Before building Fiasco kernel and servers we need to configure the L4 environment 
and the L4 kernel itself. In the following text we propose that /mnt/L4/ is our main 
directory where we have the desired directory structure, and /mnt/L4/build is our build 
directory through the whole building process. First we create the build directory in our 
main directory, e.g. executing command: 

# make -C 14 config 0=/home/L4/build 

Configuration interface will appear, similar to the menuconfig of Linux kernel. Here we 
should change in the Paths and Directories section path to match our main directory. 
Next we checked in the Compilers and Tools section to use special C-compilers, specifi
cally we used gcc and g++ version 3.4. Another option is to create symlinks for gcc and 
g++ to use 3.4 versions. In such case a no changes in compiler section were required. 

Next step is the configuration of Fiasco kernel. Change directory to 14/kernel/f iasco/ 
from our main directory and issue 'make menuconfig' command. Fiasco kernel configu
ration menu will appear. If the symlinks were not used as described at the end of the 
previous paragraph, then in the 'Compiling and Building' section the compilers had to 
be changed in the same way as before. Next you should check your processor type, e.g. in 
/proc/cpuinfo, and set it appropriately in section 'Target System Options'. For the 
first try we left everything else as it was and changes were done after a successful build. 
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When we were experiencing problems this was the first place we looked at. To save the 
changes and exit input we typed ' x'. 

After doing the described configuration changes, we started with compilation of all 
packages. This was done by issuing this command from our main directory: 

# make -C 14 0=/home/L4/build 

At the end of the building process, we run into the problem with building documen
tation due to missing a html. sty file. When we were prompted to enter new filename 
we just typed capital ' X ' . At the end of a successful build process we had build Fiasco 
kernel together with other essential servers as described. The servers were in subdirectory 
build/bin/x86_568/14v2/, the bootstrap in build/bin/x86_586/ and the Fiasco kernel 
in 14/kernel/f iasco/build/ directory. 

3.2.3 Configuring and Building L4Linux 

As it has already been mentioned, we used L4Linux version based on Linux kernel 2.6.17 
for our final performance tests. The following section summarizes installation steps that 
had to be done in order to get running L4Linux on top of Fiasco kernel. This might differ 
with a newer version of L4Linux. 

Configuration of L4Linux is similar to the configuration of Linux kernel. In the subdi
rectory 141inux-2.6/ we issued 'make menuconfig'. At the top of configuration menu 
was L4Linux configuration submenu. Here we had to change the 'L4 tree build 
directory' to match our build directory. Next we went over the target architecture and 
in the Stub drivers section we checked only these options in order to use 14con or DOpE: 

[*] Use the rtc server \newline 

[*] Block driver for the generic_blk interface 

[*] Framebuffer driver for 14con and DOpE (input/output) 

[*] Support for the X Window System driver 
[*] Pseudo serial driver for console 

[*] Serial console support 

Everyting else was left unchecked, and we were done with configuration changes in 
L4Linux configuration submenu. Next we had to configure the drivers. This was prob
ably the most trickiest part of the configuration and took a lot of time. Finally we got one 
configuration at the 14-hackers mailing list and used it as the base for the creation of our 
own configuration file. We spent long time configuring and exploring config options before 
we were able to successfully compile the L4Linux kernel to match our hardware. Generally 
it should be safe to use nearly anything like drivers but we had to make sure not to enable 
features like A C P I , SMP, preemption, apic/ioapic, H P E T , highmem, M T R R , M C E , power 
management [29] etc. After saving the configuration changes, the L4Linux was built with 
make. A successful build produced vmlinuz26 in the 141inux-2.6 directory. Between the 
rebuilds make clean had to be used as the L4 part did not seem to be fully capable of 
recognizing configuration changes and could cause problems. 
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3.2.4 G r u b and Final Setup 

At this point we had all parts and we were ready to install them on native hardware. Before 
doing that we had to reinstall the actual grub with our patched version of grub. This was 
simply done as with any other program. From our main directory cd we did e.g.: 

# cd grub-0.97 

# patch -pO < ../grub-0.97-os.l.diff 

# ./configure ; make ; make install 

# grub-install -v 

We had to see something like ' G N U G R U B 0.97-os.l', otherwise something went wrong. 
After a successful installation of the patched grub we just installed the grub on the desired 
partition e.g. grub-install /dev/hda. 

At that point we had to collect all the components and create final configuration files. 
The best way was to create a new directory in /boot/ and copy all necessary binaries into 
it. This was done e.g. with this sequence of commands : 

# mkdir /boot/L4Linux 

# cd /mnt/L4/build/bin/x86_586/14v2/ 

# cp {bmodfs,con,dm_phys,events,14exec,14io,loader,log,names,roottask, \ 

rtc,sigmaO,simple_ts,libld-14.s.so,tftp,libloader.s.so} /boot/L4Linux/ 

# cd .. ; cp bootstrap /boot/L4Linux/ 

# cp /mnt/L4/14/kernel/fiasco/build/main /boot/L4Linux/ 

# cp /mnt/L4/141inux-2.6/vmlinuz26 /boot/L4Linux/ 

It should be noted that in the above example code main is actually the Fiasco kernel. 
The last step was to create a linux configuration file and add new boot entry into grub 
menu. 1st file. Linux configuration file was created e.g. like this: 

# cat > /boot/L4Linux/linux26.cfg « EOF 

verbose 0 

task ''vmlinuz26'' ''earlyprintk=yes mem=256M video=14fb root=/dev/hdal'' 

all_sects_writable allow_cli 

EOF 

And the new entry in grub menu. 1st configuration file was added like this: 

# cat » /boot/grub/menu.1st « EOF 

t i t l e L4Linux26/Fiasco con 

# /boot on hdal 

root (hdO.O) 

kernel /boot/L4Linux/bootstrap 

modaddr 0x06000000 

module /boot/L4Linux/main -nowait -nokdb -serial_esc -comspeed \ 

115200 -comport 1 

module /boot/L4Linux/sigma0 

module /boot/L4Linux/roottask task modname ''bmodfs'' attached \ 

4 modules 
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module /boot/L4Linux/events 

module /boot/L4Linux/names —events 

module /boot/L4Linux/log —events 

module /boot/L4Linux/dm_phys —isa=0x00800000 -v —events 

module /boot/L4Linux/simple_ts -t 300 —events 

module /boot/L4Linux/rtc —events 

module /boot/L4Linux/ore —events 

module /boot/L4Linux/14io —noirq —events 

module /boot/L4Linux/14exec —events 

module /boot/L4Linux/con —14io 

module /boot/L4Linux/loader —fprov=BM0DFS linux26.cfg 

module /boot/L4Linux/bmodfs 

module /boot/L4Linux/vmlinuz26 

module /boot/L4Linux/linux26.cfg 

module /boot/L4Linux/libloader.s.so 

module /boot/L4Linux/libld-14.s.so 

vbeset 0x117 506070 

Now when we rebooted and selected L4Linux26/Fiasco con from grub menu, we saw 
shortly loading modules followed by Fiasco kernel and D R O P S console. When the DROPS 
console started the L4Linux booted into the console window and if everything went fine 
were able to login as into native Linux. 

3.3 Wombat 

Installation of Wombat is much more straightforward than the installation of L4Linux. Be
fore we found out the right way to achieve this goal, we had to solve many problems. In this 
section we assume that the required software version and tools as described in the section 
about software installation has been successfully installed. Without these requirements it 
is easy to get into problems when building the final image. In the rest of this section we are 
describing what we have done before actual installation of Wombat, and then we describe 
installation of Wombat on native IA32 hardware. 

Before starting with actual installation of Wombat, we have tried to install Hello World 
project. This is a simple server running on top of Iguana based system and helps to un
derstand the Kenge build system, which is used to build projects like Iguana. Kenge is 
based on SCons build system and thus uses mostly Python programming language. After 
successfull simulation of Hello World project in Q E M U we have moved to installation of 
Wombat. 

Wombat is not intended to be used standalone but as a part of Iguana project. Our 
second step was building Wombat as a part of Iguana. The iguana package is available for 
download from http://www.ertos.nicta.com.au/software/kenge/iguana-project/ 

devel/iguana-project—devel—1.1—version-O.tar.gz has many bugs that makes it 
hard to install for newbie, few patches have to be applied in order to get a working image. 
We decided to try unsupported prerelease tarball, though we had a working image. As we 
were informed, it had to fix many bugs and do V G A , framebuffer, N E 2 K ethernet. 
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In the next few paragraphs we give instructions on installation of prerelease version 
of Wombat on real hardware. Note that at the end the Wombat will be able to boot on 
hardware but nothing at all will work with root file system that requires N P T L . We did 
this with Debian Sarge which does not require N P T L . Not all Linux system calls are sup
ported in the prerelease tarball, as we found out later by looking into syscall header file 
include/asm-14/syscalls.h. 

First the prerelease tarball needs to be downloaded e.g.: 

# wget —no-check-certificate \ 

https://www.ertos.nicta.com.au/downloads/prerelease.tar.bz2 

and extract the archive to our main directory, from where all the changes will be done. 
Now we need to do some changes in configuration and fix some minor issues before the start 
to build the image. 

There is . conf file which is the configuration file for SCons build system. It allows 
individual projects to specify command line arguments that change the behavior of the 
project. Configuration options in . conf can be overridden on the command line. For 
building our testing image we used SCons configuration with this content: 

machine=''pc99_vga
J

' 

wombat=True 

build_1inux=True 
toolprefix=''i686-unknown-linux-gmi-'' 

ltp=' ' a l l " 

linux_apps=''ltp'' 

lmb=' ' a l l " 

linux_apps=''lmbench'' 

This will build an image for IA32 architecture with support for V G A , it will include 
Wombat, busybox, basic set of lmbench tools. Next the size of build images has to be 
increased. We've found bug in tools/bootimg.py file, where the values assigned to size 
variable at lines 173 and 200 have to be doubled. Now we have to export path to the 
recommended toolchain and start building with SCons, e.g.: 

# export PATH=$PATH:/opt/nicta/gcc-3.3.4-glibc-2.3.3/ \ 
i686-unknown-linux-gmi/bin/ 

# tools/scons.py 

After successful build, there is an image for booting from USB removable device in 
build/usb. img. Rather than rebooting real hardware, we recommend to run the SCons 
again with parameter simulate, e.g.: 

# tools/scons.py simulate 

This will create a hard disk image file in build/c. img and will try to run it with Q E M U . 
Wi th some versions of Q E M U this does not work and has to be done manually, e.g.: 

# qemu -nographic -hda build/c.img 
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If everything went fine, the command line should appear after a short booting process, 
and we can install the image on real hardware. It is quite possible that some of step above 
will not work. In this case the best way to solve the problem is to look into the source code 
or find some help on the kenge-users mailing list. 

Installation on native hardware is not too complicated. First the boot image has to be 
mounted e.g.: 

# mount -o loop -o offset=32256 build/c.img /mnt/wombat 

Next the content of the mounted image should be copied to the native boot partition. 
New entry has to be added into the native grub's menu. 1st file simply by copying the 
entry from menu. 1st on the mounted boot image. Now the machine can be rebooted into 
Wombat. 

For some unknown reason we were not able to access the system directly. We had to 
access it with a remote serial console and minicom from some other machine. Since we had 
only one machine with serial, USB to serial (RS-232) converter had to be used. We had 
some problems with this because the first converter we used was able to communicate only 
at speed 19200Bps which forced us do some changes in source codes. Description of these 
changes would be too detailed and it is not appropriate for this type of document. 

Described installation of Wombat on native hardware uses ramdisk and not real file sys
tem. Mounting this ramdisk allows to pass additional data files to Wombat and use them 
e.g. for testing. Another problem found is the fact that by default the system memory used 
by Wombat is only 45MB and that was not enough to perform our application tests and 
other macrobenchmarks. We found a way how to force Wombat to request more memory 
from the server which is responsible for memory allocation. Again for some unknown reason 
the server was not able to allocate more requested memory. We were not able to resolve 
this problem within the short time specified for this work. 

Finally we tried to change parameters passed to vmlinux and force it to use real file 
system instead of ramdisk. This can be done in iguana/init/src/init .c at line 393 e.g. 
changing it to: 

vmlinux root=/dev/hdal console=ttyO console=ttySO,115200n8 

Now we have to rebuild it and copy new binaries from the mounted image to the Debian 
machine boot partition. Then all that has to be done is move / l i b / t l s out of the way. 
Many recent distributions are N P T L (Native POSIX Thread Library) based. The easiest 
way to check the system for this is with command: 

# getconf GNU_LIBPTHREAD_VERSION 

After reboot it should boot, but as we have already mentioned not all system calls are 
currently supported and thus most programs from Debian machine will not run. 
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Chapter 4 

Methodology of Experiments 

Microkernels are haunted by performance issues since the first performance results and their 
comparison with monolithic kernels appeared. In this chapter we describe our research 
methodology and selected benchmark tools used to measure a list of performances in order 
to give us a global view for performance comparison of L4Linux, Wombat and native Linux. 

Most of the performance tests related to L4 microkernel were done in the past with 
native Linux and L4Linux kernel version 2.4. For comparison of L4Linux we used L4Linux-
2.6.17 on top of Fiasco microkernel and on the monolithic side was Linux-2.6.18. The 
changes between Linux kernel version 2.6.17 and 2.6.18 are so small that according to our 
testing criteria they will not affect our experiments. The version of Wombat server was 
based on Linux kernel version 2.6.10 and compared to native Linux based on kernel 2.6.8. 

To obtain comparable and reproducible performance results, the same hardware had 
to be used throughout all experiments. Due to hardware difficulties, we had to use two 
different hardware configurations for testing L4Linux and Wombat. This led us to two na
tive Linux installations. One used for comparison with Wombat, and the other for L4Linux. 

Before we started to gather actual results, we had to propose set of benchmarks and 
their purpose. Different benchmarks and Linux applications were used in order to get an 
impression on the overall performance. This has been done after the research on microker
nel performance as is it described in the introduction. The Wombat is relatively new and 
we couldn't find any performance results except few comparisons provided by developers 
and mostly only for A R M architecture. The only performance tests for Wombat on IA32 
architecture were for measuring context switch overheads and do not give us a complete 
picture of its performance [6]. 

Running each benchmark only once wouldn't produce reliable and conclusive results. 
To eliminate a measurement errors, every group of experiments has to be run many times 
to gather enough samples to allow us calculate average or select most reliable results. 

The performance tests could be divided into two groups, microbenchmarks and mac-
robenchmarks. Microbenchmarks are used to analyze detailed behavior of all parts of the 
tested systems, while macrobenchmarks should give us perspective on the system's overall 
performance with synthetic and real applications. They are described more in detail in the 
next few sections of this chapter. 
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4.1 Microbenchmarks 

In order to get a global and fair overview for performance comparison we decided to use 
the two most often used microbenchmark tools, Imbench and AIM9. This should allow us 
to compare our results with other results found on the Internet. 

4.1.1 Lmbench 

Lmbench is a collection of microbenchmark tools designed to test the performance of basic 
building blocks. These testing tools were designed to allow easy comparison of different 
system implementations. They test the most commonly found performance bottlenecks in 
wide range of system applications [22]. 

From the whole group of tools provided by this collection of benchmarks we've decided 
to choose only those tests that can be run on both Wombat and L4Linux. While there was 
no problem running any Linux console application on L4Linux, in Wombat we had only a 
small set of applications. Results from tests on both Linux ports can be compared to native 
Linux and vice versa. Specifically we will test process latencies related to: 

• context switching, 

• process operations, 

• process communication. 

Measuring latency of context switching is useful to observe time needed to save the state 
of one process and restore the state of another process. The program provided by lmbench 
to test latency of context switching is called lat_ctx. It allows us to change a number of 
active processes which are connected with Unix pipes and the pass token from process to 
process in a ring. Its second parameter is a size of processes which adds a artificial variable 
size 'cache footprint' to the switching process. The cost of the context switch then includes 
the cost of restoring user-level state. If the total size of all of the benchmark processes is 
larger than the processor cache size, the cost of the context switch includes cache misses. 

The process operation benchmarks are used to measure the basic process primitives, such 
as timing simple entry into the operating system, creating a new process, and running a 
different program. For this purpose were used lat_proc, lat_syscall, and lat_pagef ault 
tests. 

The last group of test measured interprocess communication latencies. The first tool 
used is lat_pipe and it measures interprocess latency through pipes. Two processes are 
passing a token back and forth through a Unix pipe while no other work is done in the pro
cesses. Another tool lat.unix implements the same token-passing mechanism, but instead 
of pipes uses the Unix sockets. Tool, lat_sig, measures the time it takes to install and 
catch signals. 

For more details on all mentioned tests please refer to manual pages [21] and [22]. They 
were used as an information source for the short description above. 
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4.1.2 A I M Independent Resource Benchmark X I 

Second selected microbenchmark A I M Independent resource benchmark X I , short A I M 9. 
We chose A I M 9 because of its complex set of tests used to independently exercise and time 
different components of a UNIX-like computer system. Results are represented by absolute 
processing rates in operations per second. The tests could be divided according to their 
target system component into different groups: 

• Arithmetic 

• InterProcess Communication 

• Disk/Filesystem I /O 

• Library/System 

• Memory and Process Management 

• Function Calls 

• Algorithmic Tests 

This set of tests helped us to get an opinion on the final overhead added by L4 layer 
to the specific Linux subsystem and to applications running on top of it according to their 
character. It should be noted that it was possible to run this microbenchmark only for 
L4Linux and native Linux. The development phase of Wombat did not allow us to run this 
set of tests. For more details on AIM9 please refer to documentation attached to it [3]. 

4.2 Macrobenchmarks 

What is the penalty of using L4Linux instead of native Linux? Analysis and comparison of 
selected macrobenchmark results should give us the answer. The next subsections describes 
synthetic A I M multiuser benchmark suite VII, for short AIM7, and then actual programs 
are presented. They were timed to get better opinion on performance slowdown of L4Linux. 
It should be noted that it was not possible to execute macrobenchmark tests on Wombat. 

4.2.1 A I M Multiuser Benchmark VII 

The A I M 7 macrobenchmark is designed to measure the performance of multiuser com
puters. Capabilities of this suite were used to simulate multiuser system environment. It 
includes 55 basic tests and uses benchmarking technique called Load/Mix Modeling to sim
ulate desired application workload. Different tests can generate a specific types of system 
load. These tests can exercise many basic functions of the multiuser system, such as system 
resources, library routines, the optimizing compilers, I /O subsystems, all levels of mem
ory and so on. Configuration file specifies the mix, quantum and tests to be used during 
the testing. The whole process could be compared to cooking. The configuration file is 
the recipe and tests are the ingredients. During the testing the number of running tasks 
increases and thus the operation load increases. For each simulated operation load, the 
benchmark forks off one process. The type of process is defined by the configuration file. 
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The benchmark ends when the number of operation loads meets or exceeds the number of 
jobs that can be processed per minute. 

The benchmark results include the following information: 

• Jobs/Min - Number of jobs completed per minute for each simulated operation load. 

• JTI - Job Timing Index which decreases with increasing operation load, and specifies 
how predictable the system is during the test. 

• Real - Elapsed wall clock time. 

• C P U - Used C P U time during operation load. 

• Jobs/sec/task - The number of jobs processed per second. 

These information were based on AIM7 documentation and for more information please 
refer to this document [4]. 

4.2.2 Application Tests 

Another set of our macrobenchmark tests was examining resource usage of selected appli
cations with the time utility. We recorded the elapsed real time between invocation and 
termination, the user C P U time, and the system C P U time. This should give us a better 
view of the overall performance from the user's perspective. 

Firstly we measured the compilation time of L4 environment as it is described in the 
chapter about installation. Another utility was ffmpeg video converter which is a part of 
the Mediabench II specifications. Wi th this tool we have converted mp3 formated files of 
different size into wav format. Text processing tool sort was used to sort a text file con
taining random dictionary entries. Wi th gzip text files of differnet size were compressed. 

4.2.3 Other Tests 

As an additional performance test we planned to implement some user servers purely on 
top of L4 microkernel which would test the behavior of L4 microkernel. Finally we were 
able to successfully implement only a simple user space server doing arithmetic operations. 
We have discovered that implementation of libc library provided by Iguana is not fully 
implemented due to microkernel restrictions. There was no time left to study other Iguana 
libraries. 
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Chapter 5 

Results and Evaluation 

We promised to execute the same set of tests on L4Linux and Wombat and compare their 
performance with each other and then with native Linux. Due to the lack of information 
and due to the development phase of Wombat this was not possible. One of the reasons was 
that the current IA32 implementation of Wombat is still missing implementation of some 
Linux system calls. Consequently programs that require missing system call do not run 
under Wombat. The final version of Wombat was built with Busybox, which is combining 
many standard Unix utilities into a single small executable. This promised us to be able 
to use standart Unix text processing utilities. The system memory used by Wombat by 
default is set to 45MB which isn't enough to run reasonably large files. Execution time for 
small files would be too short to be accurate. Unfortunately the size of system memory in 
Wombat was not possible to change due to actual implementation of memory management 
server. This is planned to change in the near future. 

Tests were executed separately for L4Linux, Wombat, and two Linux distributions . Re
sults for L4Linux are compared to Debian distribution on the first hardware configuration 
based on Pentium 4. Performance of Wombat is compared to the Debian distribution on 
second hardware configuration based on A M D X2 processor. To get reliable and conclusive 
results the tests were run more times and the presented results are average values. 

5.1 Microbenchmarks 

5.1.1 Lmbench 

First we measured latency of process operations and communication. Table 5.1 and 5.2 
shows results for L4Linux and Wombat. Results are in microseconds. The Ratio column 
shows average values for L4Linux or Wombat divided by the value for native Linux and 
shows us the slowdown factor. The Delta is difference between native Linux and L4Linux 
or Wombat. Next we took results for L4Linux and Wombat and normalized them to native 
Linux. These values are shown as percentage in the overhead column. Accurate slowdown 
factors of L4 microkernel based Linux ports are shown in tables. 

Comparing values for L4Linux and Wombat in the ratio column in table 5.1 and 5.2 
shows us that the average slowdown factor of simple entry into the operating system is for 
Wombat smaller than for L4Linux. The Wombat system has faster read and write while 
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Test Wombat Linux Ratio Delta % overhead 

Process operations [microseconds] 

Simple syscall 1.7984 0.1390 12.9381 1.6594 1193.81 

Simple read 2.2934 0.2934 7.8175 2.0000 681.75 

Simple write 1.9874 0.2592 7.6663 1.7281 666.63 

Simple stat 10.6236 1.5543 6.8350 9.0693 583.5 

Simple fstat 2.5524 0.3280 7.7809 2.2244 678.09 

Simple open/close 12.8226 2.5222 5.0840 10.3005 408.4 

Procedure call 0.0086 0.0086 1.0078 0.0001 0.78 

Process fork+exit 382.4361 77.8489 4.9125 304.5873 391.25 

Process fork+execve 403.2258 84.6479 4.7636 318.5779 376.36 

Process fork+/bin/sh -c 2743.1421 1966.1111 1.3952 777.0310 39.52 

Pagefaults on /tmp/mb 2.9481 0.6494 4.5399 2.2987 353.99 

Process communication [microseconds] 

Pipe 10.6482 3.0510 3.4900 7.5971 249 

A F U N I X sock 12.0589 5.3582 2.2506 6.7008 125.06 

Signal handler install 2.5968 0.3854 6.7385 2.2114 573.85 

Signal handler overhad 5.0493 1.1116 4.5422 3.9377 354.22 

Lower is better 

Table 5.1: Process operations and communication - Wombat 

L4Linux has faster open/close file operation. Process creation slowdowns are quite close 
for both L4 systems. 

Slowdown of process communication through pipes and Unix sockets is for both L4 sys
tems similar, while signal handling is slightly faster in the L4Linux system. 

Next, we measured context switch latencies for various numbers of processes and size. 
The results for the Wombat system and native Linux on the same hardware are in table 5.3 
and 5.4. The first column shows number of connected processes of size that is indicated by 
the first row. Figure 5.1 shows the context switch time for Wombat on the left and native 
Linux on the right. Process size of Ok is denoted by continuous line, l k by dot and dash 
line, 4k by ultrafine dashed line, and 16k is denoted by fine dashed line. Context switch 
time for less than twenty processes is faster in Wombat than in native Linux. This was 
unexpected results though [6] presents similar results. 

Context switch results for the L4Linux system show again that context switch time in 
the microkernel based system is again smaller than in the native Linux. The results are 
in table 5.5, 5.6. In figure 5.2 the process size of 0k is denoted by continuous line, l k by 
ultrafine dashed line, and fine dashed line denotes 4k process size. 
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Test L4Linux Linux Ratio Delta % overhead 

Process operations [microseconds] 

Simple syscall 2.8484 0.1450 19.6487 2.7477 1895.42 

Simple read 3.1667 0.2873 11.0223 2.8302 985.1 

Simple write 3.0694 0.2628 11.6812 2.7811 1058.4 

Simple stat 4.8517 1.5869 3.0573 3.3060 208.33 

Simple fstat 3.2561 0.3547 9.1807 2.8723 809.87 

Simple open/close 8.5410 2.4924 3.4268 6.0275 241.83 

Procedure call 0.0064 0.0069 0.9275 -0.0005 -7.25 

Process fork+exit 575.2074 121.8115 4.7221 452.2995 371.31 

Process fork+execve 666.4451 126.1348 5.2836 527.0828 417.87 

Process fork+/bin/sh -c 7737.3333 3785.8333 2.0438 3945.1667 104.21 

Pagefaults on /tmp/mb 5.4076 1.4557 3.7148 4.1137 282.59 

Process communication [microseconds] 

Pipe 19.6858 5.8088 3.3890 13.8411 238.28 

AF UNIX sock 21.0634 9.5811 2.1984 11.2133 117.03 

Signal handler install 3.5238 0.6216 5.6687 2.9187 469.52 

Signal handler overhad 6.0654 2.2094 2.7452 3.8978 176.41 

Lower is better 

Table 5.2: Process operations and communication - L4Linux 

5.1.2 A I M Independent Resource Benchmark X I 

Table 5.7 shows average slowdown for each test category in A I M 9. This was calculated 
from tables 5.9 and 5.10. The ratio column shows performance percentage normalized to 
native Linux. The number of completed operations per second in native Linux is 100%, thus 
ratio lower than 100% means slower system. The slowdown is then the differnece between 
ratio value and 100%. From table 5.7 we can see that the lowest slowdown was for tests 
from arithmetic, function call, and algorithmic test group. While disk operations, inter
process communication, memory and process management had highest slowdown and thus 
applications with intensive use of this type of operations will apparently perform slower on 
the L4Linux system. Whether this is true will show our macrobenchmark results. 

5.2 Macrobenchmarks 

5.2.1 A I M Multiuser Benchmark VII 

Systematic evaluation of L4Linux system was done using the A I M 9 macrobenchmark. The 
results are in Table 5.11 and Table 5.12. It shows well the multiuser systems perform 
under different application load [4]. The fourth column show us that under light load, 
starting with 1 task, the real time per benchmark run in L4Linux system is 4 times longer 
than in native Linux. This factor decreases and at load around 20 tasks the real time is 
in L4Linux 2 times longer. The A I M successively increases the load until the maximum 
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Procs Ok l k 4k 16k 512k 

1 0.545 0.130 0.000 0.110 2.870 

2 0.350 0.333 0.410 0.417 17.027 

5 0.597 0.620 0.903 1.133 16.790 

10 0.703 0.777 0.870 1.427 17.523 

20 1.140 1.267 1.510 3.047 --

40 2.237 2.420 2.823 5.400 --

60 2.680 2.783 3.467 5.733 --

Lower is better 

Table 5.3: Context switch latency - Wombat 

Procs Ok l k 4k 16k 512k 

1 0.075 0.165 -- 0.110 --

2 0.750 0.753 0.797 0.833 9.490 

5 1.010 1.083 1.147 1.673 10.460 

10 0.993 1.033 1.217 1.573 10.760 

20 0.947 1.010 1.197 2.600 11.363 

40 1.240 1.257 1.827 4.990 13.847 

60 1.547 1.740 2.810 4.960 12.183 

Lower is better 

Table 5.4: Context switch latency - Native Linux (Wombat) 

throughput of the system is determined. For this reason it stops at load 220 in L4Linux and 
native Linux continues increasing the load as it can be seen in the second part of Table 5.12. 

Figures 5.4 and 5.3 show the number of completed jobs per minute depending on A I M 
load. The maximum load of jobs per minute was in L4Linux 634.6 while in native Linux 
it was 988.3 what is 1.5 times higher maximum load. Sustained load was almost 2 times 
higher in native Linux. The L4Linux system consumes 4 times more C P U time under lower 
load decreasing to approximately 2 times under the maximum load of L4Linux. 

Similar AIM9 macrobenchmark were done in [14]. Presented results show that the typ
ical penalties range from 5% to 10%. These tests were done more than 10 years ago with 
first version of Linux and L4Linux. Running these test on newer hardware and lates version 
of L4Linux and Linux kernel, show that the native Linux performs much better under heavy 
load. 
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Wombat Native Linux 
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Figure 5.1: Graph of context switch overhead for process size 0k, lk , 4k, 16k 
Wombat vs. native Linux 

Procs Ok l k 4k 16k 512k 

1 0.060 0.140 0.090 9.590 18.910 

2 0.910 1.043 0.940 38.063 100.850 

5 1.270 1.367 1.470 33.347 95.820 

10 1.277 1.537 2.453 32.420 93.895 

20 1.847 2.683 6.077 41.460 94.660 

40 3.807 5.303 9.977 43.113 101.420 

60 5.403 7.103 11.313 42.757 103.530 

Lower is better 

Table 5.5: Context switch latency - L4Linux 

5.2.2 Application Tests 

The next set of tests were actual programs. The results are given in Table 5.8. This set of 
tests was again possible to execute only in L4Linux system and native Linux. Comparing 
the real time between invocation and termination the sort of text files on L4Linux was 2-8% 
slower than on native Linux for all file sizes. Compression of 20MB text file was 11% slower 
on L4Linux, while compression of 72MB file was as many as 73% slower. Conversion of mp3 
audio files was approximately 25% slower on L4Linux system with smaller file sizes, while 
with 36MB file the time to convert mp3 file on L4Linux system was as many as 4.2 times 
longer. Simple calculation of Ludolf's number with Monte Carlo method was on L4Linux 
10% slower what had been expected according to A I M 9 microbenchmark results. 

Based on the microbenchmark results for L4Linux we suppose that the extremely high 
slowdown with larger files was due to slow disk and filesystem I /O operations together with 
slow memory management. 
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Procs Ok l k 4k 16k 512k 

1 0.020 0.015 0.020 0.020 --

2 1.827 1.960 2.053 44.933 125.115 

5 2.327 2.560 2.680 49.210 135.230 

10 2.240 2.407 3.310 40.363 116.640 

20 2.527 3.087 5.847 50.277 116.420 

40 3.670 5.133 9.630 45.560 105.320 

60 4.970 6.640 10.693 55.467 139.075 

Lower is better 

Table 5.6: Context switch latency - Native Linux (L4Linux) 

L4L inux /F iasco Native Linux 
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Figure 5.2: Graph of context switch overhead for process size 0k, lk , 4k 
L4Linux vs. native Linux 
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Overall Average Slowdown 

Arithmetic 12.3% 

Function calls 6.9% 

Memory and Process Management 75.6% 

InterProcess Communication 69.8% 

Algorithmic Tests 11.0% 

Library/System 30.3% 

Disk/Filesystem I/O 65.3% 

Table 5.7: L4Linux - overall average slowdown of each A I M 9 category normalized to native 
Linux 

Linux L4Linux 

Real [s] User [s] Sys [s] Real [s] User [s] Sys [s] 

Compilation - 651.629 1763.094 - 1528.990 879.230 

Sort 20M 

Sort 10M 

Sort 5M 

22.196 

9.645 

4.567 

21.381 

9.557 

4.128 

0.212 

0.068 

0.036 

23.790 

10.485 

4.673 

23.610 

10.430 

4.580 

0.180 

0.060 

0.060 

Gzip 72M 

Gzip 20M 

7.466 

2.685 

7.261 

2.623 

0.140 

0.048 

12.932 

2.998 

12.671 

2.900 

0.178 

0.100 

Ffmpeg 36M 

Ffmpeg 9M 

Ffmpeg 4M 

44.648 

12.624 

5.588 

39.250 

9.609 

4.472 

1.840 

0.420 

0.180 

191.234 

15.572 

6.943 

88.957 

14.330 

6.637 

3.722 

0.970 

0.231 

Monte Carlo 101.042 100.724 0.132 111.705 111.610 0.010 

AIM 9 317.984 180.891 105.147 369.922 230.980 58.700 

Lower is better 

Table 5.8: Application tests 
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Test L4Linux Debian Ratio Delta % slowdown 

Arithmetic [Thousand Operations per second] 

add_double 186923 217425 86.0% 30502 14.0% 

add_float 130693 218613 59.8% 87920 40.2% 

add_long 2423762 2706586 89.6% 282824 10.4% 

add_int 2437869 2701195 90.3% 263326 9.7% 

add_short 1894488 2112000 89.7% 217512 10.3% 

div_double 41749 46613 89.6% 4864 10.4% 

div_float 41846 46706 89.6% 4860 10.4% 

div_long 42772 47784 89.5% 5012 10.5% 

div_int 43143 47784 90.3% 4641 9.7% 

div_short 41593 46075 90.3% 4482 9.7% 

mul_double 181176 201197 90.0% 20021 10.0% 

mul_float 177865 196015 90.7% 18150 9.3% 

mul_long 264906 293988 90.1% 29082 9.9% 

mul_int 265417 293892 90.3% 28475 9.7% 

mul_short 254075 281497 90.3% 27422 9.7% 

Function Calls [Operations per second] 

fun_cal 168807920 168111776 100.4% -696144 -0.4% 

fun_call 170632871 186747410 91.4% 16114539 8.6% 

fun_cal2 155950499 172608383 90.3% 16657884 9.7% 

fun_call5 70838356 78588423 90.1% 7750067 9.9% 

Memory and Process Management [Operations per second] 

page_test 94820 382415 24.8% 287595 75.2% 

brk_test 283896 2639920 10.8% 2356024 89.2% 

exec_test 209 487 42.9% 278 57.1% 

fork_test 1230 6427 19.1% 5197 80.9% 

InterProcess Communication [Operations per second] 

sharedmemory 70858 533652 13.3% 462794 86.7% 

tcp_test 62425 168502 37.0% 106077 63.0% 

udp_test 83585 312994 26.7% 229409 73.3% 

fifo_test 106227 570938 18.6% 464711 81.4% 

stream_pipe 103592 537924 19.3% 434332 80.7% 

dgram_pipe 100958 491936 20.5% 390978 79.5% 

pipecpy 110978 672814 16.5% 561836 83.5% 

Higher is better 

Table 5.9: Results of A I M 9 microbenchmark 
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Test L4Linux Debian Ratio Delta % slowdown 

Disk/Filesystem I/O [Operations per second] 

link_test 47380 111149 42.6% 63769 57.4% 

disk_rr 36887 138433 26.6% 101546 73.4% 

disk_rw 32043 114003 28.1% 81960 71.9% 

disk_rd 205413 886784 23.2% 681371 76.8% 

disk_wrt 68334 177152 38.6% 108818 61.4% 

disk_cp 59936 140469 42.7% 80533 57.3% 

sync_disk_rw 318 697 45.6% 379 54.4% 

sync_disk_wrt 89 805 11.1% 716 88.9% 

sync_disk_cp 89 828 10.7% 739 89.3% 

disk_src 37946 69711 54.4% 31765 45.6% 

creat-clo 75848 247400 30.7% 171552 69.3% 

dir_rtns_l 932270 1493013 62.4% 560743 37.6% 

Library/System [Operations per second] 

jmp_test 19923952 22202200 89.7% 2278248 10.3% 

signal_test 69230 327944 21.1% 258714 78.9% 

num_rtns_l 152842 157884 96.8% 5042 3.2% 

trig_rtns 571992 632734 90.4% 60742 9.6% 

string_rtns 3485 3892 89.5% 407 10.5% 

m e m r t n s l 2488095 2784860 89.3% 296765 10.7% 

mem_rtns_2 315564 350319 90.1% 34755 9.9% 

sort_rtns_l 803 870 92.3% 67 7.7% 

misc_rtns_l 4996 19754 25.3% 14758 74.7% 

shell_rtns_l 50 115 43.5% 65 56.5% 

shell_rtns_2 50 115 43.5% 65 56.5% 

shell_rtns_3 50 115 43.5% 65 56.5% 

ram_copy 803908422 882287101 91.1% 78378679 8.9% 

Algorithmic Tests [Operations per second] 

sieve 6 7 85.7% 1 14.3% 

seiies_l 2238705 2486047 90.1% 247342 9.9% 

matrix_rtns 939503 1039141 90.4% 99638 9.6% 

array_rtns 360 401 89.8% 41 10.2% 

new_raph 680319 755449 90.1% 75130 9.9% 

Higher is better 

Table 5.10: Results of A I M 9 microbenchmarks 
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Tasks Jobs/Min JTI Real CPU Jobs/sec/task 

1 35.5 100 163.8 12.7 0.59 

3 89.4 96 195.3 39.6 0.50 

5 170.7 99 170.5 47.6 0.57 

7 245.9 99 165.7 60.4 0.59 

9 343.1 98 152.7 53.1 0.64 

11 384.0 98 166.7 72.7 0.58 

13 391.4 96 193.3 90.9 0.50 

15 446.6 95 195.5 85.6 0.50 

19 464.7 94 238.0 127.7 0.41 

23 502.4 95 266.5 148.6 0.36 

31 522.9 95 345.0 209.1 0.28 

39 551.0 93 411.9 252.0 0.24 

56 575.3 94 566.6 337.2 0.17 

63 570.9 96 642.2 365.5 0.15 

77 597.0 95 750.7 428.0 0.13 

107 628.7 94 990.5 604.9 0.10 

119 622.1 93 1113.2 645.7 0.09 

144 634.6 94 1320.7 768.2 0.07 

198 620.5 94 1857.2 1057.7 0.05 

220 609.2 94 2101.7 1212.1 0.05 

Higher is better 

Table 5.11: A I M multiuser benchmark VII results for L4Linux 
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Tasks Jobs/Min JTI Real CPU Jobs/sec/task 

1 143.4 100 40.2 3.6 2.39 

3 217.5 92 79.5 8.3 1.21 

5 428.8 97 67.2 12.9 1.43 

7 634.3 96 63.6 18.0 1.51 

9 705.7 94 73.5 22.9 1.31 

11 834.5 94 75.9 28.1 1.26 

13 850.8 93 88.0 33.1 1.09 

15 966.1 91 89.4 37.6 1.07 

19 943.2 89 116.0 47.1 0.83 

23 932.0 92 142.1 56.5 0.68 

27 988.3 93 157.4 66.0 0.61 

35 894.2 92 225.5 85.7 0.43 

38 932.0 90 234.8 93.4 0.41 

44 960.9 92 263.8 108.2 0.36 

56 907.0 90 355.6 137.4 0.27 

61 948.2 91 370.6 149.2 0.26 

71 918.9 90 445.1 172.0 0.22 

81 947.1 91 492.6 194.6 0.19 

102 912.2 90 644.1 244.3 0.15 

111 919.2 91 695.5 263.9 0.14 

129 868.0 93 856.1 305.5 0.11 

147 863.3 91 980.8 348.1 0.10 

185 864.2 91 1233.0 439.7 0.08 

223 833.4 93 1541.3 529.6 0.06 

261 808.9 93 1858.5 621.5 0.05 

299 800.3 93 2152.0 712.6 0.04 

381 739.7 94 2966.9 909.6 0.03 

415 683.7 93 3496.1 991.9 0.03 

489 625.3 94 4504.3 1172.3 0.02 

563 564.2 94 5748.0 1357.2 0.02 

564 562.6 95 5773.9 1358.2 0.02 

Higher is better 

Table 5.12: A I M multiuser benchmark VII results for native Linux 
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L4Linux 

Figure 5.3: A I M multiuser benchmark VII results for L4Linux and native Linux 

Figure 5.4: A I M multiuser benchmark VII results for native Linux 
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Chapter 6 

Conclusion 

The main contribution of this work is in familiarization with microkernel problem. We 
gained knowledge of theoretical concepts in the microkernel area. On the basis of the 
gained knowledge we decided to focus on two Linux ports on top of L4 microkernel, the 
L4Linux and Wombat. After many problems, we successfully installed selected operating 
systems based on two different implementations of L4 microkernel. The L4Linux uses F i 
asco and Wombat runs on top of Pistachio-embedded implementation of L4 microkernel. 
Subsequently the performance of both systems was executed with proposed set of tests. 
Not all planned tests were feasible within Wombat due to incomplete implementation of 
Linux system calls. 

The installation part of the overall work took much more time than we had expected. 
This would not be possible without appreciable help from the community around L4 mi
crokernel. More specifically, we would like to thank Adam Lackorzynski, Hal Ashburner, 
Cheng Guanghui and many others. The practical part of this work was very time consum
ing. There was no time left to implement servers directly on top of L4 microkernel due 
to the lack of documentation and knowledge, and the fact that L4Linux and Wombat are 
still under development, and not to mention hardware requirements. This could bring new 
value to our work. 

The performance results for L4Linux under heavy load and everyday usage for a few 
weeks drew us to the conclusion that it cannot compete with highly optimized monolithic 
kernels like Linux in the area of servers and personal computers. L4Linux seems to be 
a good base for many academic projects and research ideas, which can be even executed 
thanks to it. The performance of monolithic kernels like Linux is very high today. On 
the other side Wombat that targets on the area of embedded systems is much more likely 
to be successful. This proves the foundation of Open Kernel Labs and release of O K L 4 , 
commercial version of L4 microkernel and virtualization technology for embedded systems 
which is available together with Wombat [28]. 

For the further research in this area, we would suggest to build a small laboratory with 
appropriate hardware and accumulate a community of more experienced and knowledge
able researchers in all related areas which will focus on the embedded systems and O K L 4 
microkernel together with Wombat. We think that the use of L4 microkernel could be 
in embedded systems, secure and realtime applications, device drivers in user space, or 
distributed systems. 
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