
1

Appendix : Churn prediction script

installing the required library

get_ipython().system('conda install --yes scikit-learn')

get_ipython().system('conda install --yes nbconvert')

In[2]:

importing required library

import os

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split

In[49]:

#from sklearn.pipeline import Pipeline

#from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

#from sklearn.pipeline import FeatureUnion

#from sklearn.base import BaseEstimator, TransformerMixin

from sklearn.linear_model import LogisticRegression

#from sklearn.metrics import classification_report

#from sklearn.metrics import roc_auc_score

#from sklearn.model_selection import StratifiedKFold

#from sklearn.model_selection import cross_val_score

from sklearn.metrics import confusion_matrix

#from sklearn.model_selection import GridSearchCV

from sklearn.ensemble import RandomForestClassifier

#from sklearn.ensemble import GradientBoostingClassifier

from sklearn.svm import SVC

In[4]:

Read CSV file into DataFrame df

df = pd.read_csv('data/Telco-Customer-Churn.csv')

In[5]:

display the first 5 records

2

df.head()

2. Data Analysis

Let's explore and understand the data and perform Data Cleansing. The goal here is to spot

any missing values, and understand the variables. We should also fix wrong datatypes,

remove NaN values, check for duplicates. We should also add new columns where we are

going to convert yes/no values to 1 and 0.

In[6]:

Printing columns of the data

df.columns

In[7]:

shape of data

df.shape

Here we can see data is containing 7032 rows and 21 colums

In[8]:

Information about data like name, count of not null data, datatype

df.info()

Columns Explanation

We have only 3 Numerical Variables and those are:

1) Tenure(Number of months the customer has stayed with the company)

2) MonthlyCharges(The monthly amount charged to the customer)

3) SeniorCitizen(if Customer is senior citizen then 1 else 0)

4) TotalCharges(The total amount charged to the customer)

TotalCharges is srting but its stores the float value so we will change the datatype of this.

All Other Variables are Categorical.

Our Target Variable is Churn(Whether the customer churned or not (Yes or No)).

3

In[9]:

TotalCharges is in String Format, but it should be float

df["TotalCharges"] = pd.to_numeric(df["TotalCharges"],errors='coerce')

In[10]:

df.info() # After changing type of TotalCharges checking the data info again

Now we can see the type of TotalCharges changed from object to float64

In[11]:

#Analysis the numberic attributes

df.describe()

The above function is showing mathmatical calculation of numberic data.

count - The count of not-empty values.

mean - The average (mean) value.

std - The standard deviation.

min - The minimum value.

25% - The 25% percentile.

50% - The 50% percentile.

75% - The 75% percentile.

max - The maximum value.

with count we can see few data is null for TotalCharges.

mean is showing what is the average for columns.

With min we can see minimum MonthlyCharges is 18 and maximum is 118. Minimum is

showing lowest value and maximum is showing

higher value.

In[12]:

df = df.dropna() # dropping null values. Few values are missing that's why in describe

function count of TotalCharges is

 #7032 and minimum value of tenure is 0. So its not useful to fill the

TotalCharges with some number.

4

In[]:

In[13]:

df.describe()

After dropping null values now no null values are there and minimum value of tenure is 1.

In[14]:

df.duplicated().sum() # checking duplicate values if any

Exploring Data Visualizations : To understand how variables are distributed.

In[15]:

Visualize the distribution of dataset

def distr(dist_df):

 fig = plt.subplots(figsize=(12, 13))

 for i, col in enumerate(dist_df.columns):

 plt.subplot(7, 3, i + 1)

 plt.hist(dist_df[col].values, bins=30)

 plt.title(col)

 plt.tight_layout()

In[16]:

distr(df)

Description about the Features:

CustomerId – Customer ID

Gender – Male or Female

customerSeniorCitizen – Whether the customer is a senior citizen or not (1, 0)

5

Partner – Whether the customer has a partner or not (Yes, No)

Dependents – Whether the customer has dependents or not (Yes, No)

Tenure – Number of months the customer has stayed with the company

PhoneService – Whether the customer has a phone service or not (Yes, No)

MultipleLines – Whether the customer has multiple lines or not (Yes, No, No phone

service)

InternetService – Customer’s internet service provider (DSL, Fiber optic, No)

OnlineSecurity – Whether the customer has online security or not (Yes, No, No internet

service)

OnlineBackup – Whether the customer has online backup or not (Yes, No, No internet

service)

DeviceProtection – Whether the customer has device protection or not (Yes, No, No

internet service)

TechSupport – Whether the customer has tech support or not (Yes, No, No internet service)

StreamingTv – Whether the customer has streaming TV or not (Yes, No, No internet

service)

StreamingMovies – Whether the customer has streaming movies or not (Yes, No, No

internet service)

Contract – The contract term of the customer (Month-to-month, One year, Two year)

PaperlessBilling – Whether the customer has paperless billing or not (Yes, No)

PaymentMethod – The customer’s payment method (Electronic check, Mailed check, Bank

transfer (automatic), Credit card (automatic))

MonthlyCharges – The monthly charge amount

TotalCharges – The total amount charged to the customer

Churn – Whether the customer churned or not (Yes or No).(Need to predict)

In[17]:

Churn = df['Churn'].value_counts() # counting churn values

Churn

6

Here we can see count of churn and non-churn. 0 is representing count of non-churn and 1

is count of churn customer.

non-churn : 5163

churn : 1869

In[18]:

plotting the pie chart for churn and non churn count

Churn.plot(kind = 'pie', title = 'Churn', labels = Churn, figsize = (6,6))

plt.legend()

plt.show()

To group data by Churn and compute the mean to find out if churners make more

Monthly Charge than non-churners:

In[19]:

Group data by 'Churn' and compute the mean

print(df.groupby('Churn')['MonthlyCharges','TotalCharges','tenure'].median())

(df.groupby('Churn')['MonthlyCharges','TotalCharges','tenure'].median()).plot(kind = 'box'

 ,subplots=True, title = 'Avg value of Churn based on Charges and tenure', figsize

= (16,6))

plt.show()

Churning customers have higher monthly charges with a median of ca. 80 USD and much

lower interquartile range compared to

that of non-churners (median of ca. 65 USD).

TotalCharges are the result of tenure and MonthlyCharges, which are more insightful on an

individual basis.

Churning customers have much lower tenure with a mean of ca. 10 months compared to a

median of non-churners of ca. 38 months.

Hence! In above result we can see, churners seem to pay more MonthlyCharges than non-

churners.

Counting Churn customer based on different columns:

In[20]:

7

Counting Churn data based on SeniorCitizen

print(pd.crosstab(df.SeniorCitizen,df.Churn,margins=True))

In above result, we can see 5890 customer was not Senior who was using. and out of 5890,

1393 is churn.

and in opposite site 1142 was SeniorCitien and 476 is churned.

In[21]:

Counting Churn data based on SeniorCitizen

print(pd.crosstab(df.gender,df.Churn,margins=True))

In above result, female and male for both gender count is approx same.

In[22]:

def bar(x,y):

 result = (pd.crosstab(df[x], df[y], normalize='columns')*100).plot(kind="bar",

 title= '% of Churn based on '+ x ,stacked=True, rot=0,figsize =

(9,6))

 for c in result.containers:

 # set the bar label

 result.bar_label(c, label_type='center')

In[23]:

% of Churn data based on gender

bar('gender','Churn')

In[24]:

% of Churn data based on SeniorCitizen

bar('SeniorCitizen','Churn')

In above result, non-senior citizens churn % is much lower than senior churn %.

In[25]:

% of Churn data based on Partner

8

bar('Partner','Churn')

In above result, Churn rate for customers without partners is higher than Partner

In[26]:

% of Churn data based on Dependents

bar('Dependents','Churn')

In above result, churn rate for customers without children is very high.

In[27]:

% of Churn data based on Contract

bar('Contract','Churn')

In above result, Churn % for month-to-month contracts much higher than with remaining

contracts, then one year contract is higher than Two year

In[28]:

% of Churn data based on PaymentMethod

bar('PaymentMethod','Churn')

In above result,electronic check paymentMethod shows much higher churn rate, then

mailed check. Bank transfer and credit card is appox same.

In[29]:

% of Churn data based on InternetService

bar('InternetService','Churn')

In above result, Customers with fiber optic InternetService have much higher churn rate.It

is approx. 69%

In[30]:

Add new col "ExtraService" by summing up the number of remaining services.

df['ExtraService'] = (df[['OnlineSecurity', 'DeviceProtection', 'StreamingMovies',

'TechSupport',

 'StreamingTV', 'OnlineBackup']] == 'Yes').sum(axis=1)

9

In[31]:

Counting Churn data based on ExtraService

result = pd.crosstab(df.ExtraService,df.Churn).plot(kind="bar",

 title= 'Count of Churn based on ExtraService ' ,stacked=True,

rot=0,figsize = (9,6))

for c in result.containers:

 # set the bar label

 result.bar_label(c, label_type='center')

In above result, Customer who is using less / no extra services they have higher churn rate as

comapre who is using more than 3 extra services.

Cleaning data

In[32]:

#droping customerid

df = df.drop(columns = 'customerID')

In[33]:

def label_encoding(features, df):

 for i in features:

 df[i] = df[i].map({'Yes': 1, 'No': 0})

 return

In[34]:

#Converting categorical Columns to Numberical using label encoding

label_encoding(['Partner', 'Dependents', 'Churn', 'PhoneService', 'PaperlessBilling'], df)

df['gender'] = df['gender'].map({'Female': 1, 'Male': 0})

df

In[35]:

One-Hot-Encoding for identified columns.

OHE_feature = ['MultipleLines', 'InternetService', 'OnlineSecurity', 'OnlineBackup',

'DeviceProtection',

 'TechSupport', 'StreamingTV', 'StreamingMovies', 'Contract', 'PaymentMethod',

'ExtraService']

10

df = pd.get_dummies(df, columns=OHE_feature)

In[36]:

df.info()

In[37]:

Min-Max-Scaling for identified columns.

from sklearn.preprocessing import MinMaxScaler

features_mms = ['tenure', 'MonthlyCharges', 'TotalCharges']

df_features_mms = pd.DataFrame(df, columns=features_mms)

df_remaining_features = df.drop(columns=features_mms)

mms = MinMaxScaler()

rescaled_features = mms.fit_transform(df_features_mms)

df_rescaled_features = pd.DataFrame(rescaled_features, columns=features_mms,

index=df_remaining_features.index)

df = pd.concat([df_remaining_features, df_rescaled_features], axis=1)

In[38]:

#Corelation between all col

plt.figure(figsize = (30,30))

corr_matrix = df.corr() # Corelation Matrix

sns.heatmap(corr_matrix, cmap="coolwarm")

plt.show()

In[39]:

#Corelation with churn

df.corr()['Churn'].sort_values(ascending=False)

In[40]:

#To Create Training and Test sets

11

X = df.drop("Churn", axis = 1)

y = df.Churn

Splitting the dataset into the Training and Test sets

X_train, X_test, y_train, y_test = train_test_split(X, y,

 test_size = 0.25,

 random_state = 0)

In[41]:

y_test.shape

In[42]:

y_train.shape

In[43]:

X_train.shape

In[44]:

X_test.shape

In[45]:

Feature Scaling

sc = StandardScaler()

X_train = sc.fit_transform(X_train)

X_test = sc.transform(X_test)

Random Forest

In[52]:

Instantiate the classifier

12

from sklearn.metrics import accuracy_score

clf = RandomForestClassifier()

Fit to the training data

clf.fit(X_train, y_train)

In[53]:

Predict the labels for the test set

y_pred = clf.predict(X_test)

feature_imp = clf.feature_importances_

Compute accuracy and Evaluating Model Performance

accuracy_score(y_test, y_pred)

In[]:

def imp_features(feature_imp,X):

 print("Important Feature", feature_imp)

 columns = X.columns

 index = np.arange(len(columns))

 font_size = 1

 fontsize_tittle = 25

 plt.figure(figsize=(100, 17))

 plt.bar(index, sorted(feature_imp), width=0.5,

 alpha=0.4,

 color='r',

 label='')

 plt.xlabel('Columns', fontsize=font_size)

 plt.ylabel('Feature Importance', fontsize=font_size)

 plt.title('Feature Importance for each column', fontsize=fontsize_tittle)

 plt.xticks(index, columns)

 plt.show()

In[]:

Plotting important features

imp_features(feature_imp,X)

In[]:

13

#Confusion Matrix

def c_matrix(y_test, y_pred):

 cm = confusion_matrix(y_test, y_pred)

 print("Confusion Matrix" , cm)

 conf_matrix =

pd.DataFrame(data=cm,columns=['Prediction:0','Prediction:1'],index=['Actual:0','Actual:1'])

 plt.figure(figsize=(10,6))

 sns.heatmap(conf_matrix,annot=True,fmt='d',cmap='YlGnBu')

 #Other classification statistics

 TN=cm[0,0] #True Negative

 TP=cm[1,1] #True Positive

 FN=cm[1,0] #False Negative

 FP=cm[0,1] #False Positive

 sensitivity = TP/float(TP+FN)

 specificity = TN/float(TN+FP)

 print(' Accuracy = TP+TN/(TP+TN+FP+FN)= ', (TP+TN)/float(TP+TN+FP+FN) , '\n\n',

 'Missclassification = 1-Accuracy= ', 1- ((TP+TN)/float(TP+TN+FP+FN)),'\n\n',

 'Sensitivity/Recall or True Positive rate = TP/(TP+FN)= ', TP/float(TP+FN), '\n\n',

 'Specificity or True Negative Rate = TN/(TN+FP) = ', TN/float(TN+FP), '\n\n',

 'Precision/Positive Predictiv value = TP/(TP+FP) = ', TP/float(TP+FP), '\n\n',

 'Negative predicted value = TN/(TN+FN) = ', TN/float(TN+FN), '\n\n',

 'Positive Likelihood Ratio = Sensitivity/(1-Specificity) = ',sensitivity/float(1-

specificity), '\n\n',

 'Negative Likelihood Ratio = (1-sensitivity)/specificity = ',float(1-

sensitivity)/specificity)

In[]:

c_matrix(y_test, y_pred)

K Nearest Neighbors

In[]:

Instantiate the classifier

clf= KNeighborsClassifier(n_neighbors=5, metric='minkowski', p=2)

Fit to the training data

clf.fit(x_train, y_train)

In[]:

14

#Predicting the test set result

y_pred= clf.predict(x_test)

Compute accuracy and Evaluating Model Performance

accuracy_score(y_test, y_pred)

In[]:

#Confusion Matrix

c_matrix(y_test, y_pred)

Logistic Regression

In[54]:

Instantiate the classifier

clf = LogisticRegression(max_iter=1000)

Fit to the training data

clf.fit(X_train, y_train)

print(print(clf.coef_))

a = np.std(X_train, 0)*clf.coef_

importance = clf.coef_[0]

print(dict(zip(X.columns,clf.coef_[0])))

#importance is a list so you can plot it.

feat_importances = pd.Series(importance)

feat_importances.nlargest(20).plot(kind='bar',title = 'Feature Importance')

print(df.columns)

In[55]:

Plotting important features

imp_features(importance,X)

In[]:

Predict the labels for the test set

y_pred = clf.predict(X_test)

15

Compute accuracy and Evaluating Model Performance

accuracy_score(y_test, y_pred)

In[]:

In[]:

#Confusion Matrix

c_matrix(y_test, y_pred)

SVM

In[]:

Instantiate the classifier

clf = SVC(gamma='auto')

Fit to the training data

clf.fit(X_train, y_train)

In[]:

#Predicting the test set result

y_pred= clf.predict(x_test)

Compute accuracy and Evaluating Model Performance

accuracy_score(y_test, y_pred)

In[]:

#Confusion Matrix

c_matrix(y_test, y_pred)

