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Appendix : Churn prediction script  

 

# installing the required library  

get_ipython().system('conda install --yes scikit-learn') 

get_ipython().system('conda install --yes nbconvert') 

 

# In[2]: 

 

# importing required library  

import os 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn  as sns 

from sklearn.model_selection import train_test_split 

 

# In[49]: 

 

#from sklearn.pipeline import Pipeline 

#from sklearn.decomposition import PCA 

from sklearn.preprocessing import StandardScaler 

#from sklearn.pipeline import FeatureUnion 

#from sklearn.base import BaseEstimator, TransformerMixin 

from sklearn.linear_model import LogisticRegression 

#from sklearn.metrics import classification_report 

#from sklearn.metrics import roc_auc_score 

#from sklearn.model_selection import StratifiedKFold 

#from sklearn.model_selection import cross_val_score 

from sklearn.metrics import confusion_matrix 

#from sklearn.model_selection import GridSearchCV 

from sklearn.ensemble import RandomForestClassifier 

#from sklearn.ensemble import GradientBoostingClassifier 

from sklearn.svm import SVC 

 

# In[4]: 

 

# Read CSV file into DataFrame df 

df = pd.read_csv('data/Telco-Customer-Churn.csv') 

 

# In[5]: 

 

# display the first 5 records 
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df.head() 

 

# # 2. Data Analysis 

#  

# Let's explore and understand the data and perform Data Cleansing. The goal here is to spot 

any missing values, and understand the variables. We should also fix wrong datatypes, 

remove NaN values, check for duplicates. We should also add new columns where we are 

going to convert yes/no values to 1 and 0. 

 

# In[6]: 

 

# Printing columns of the data 

df.columns 

 

# In[7]: 

 

# shape of data 

df.shape 

 

# Here we can see data is containing 7032 rows and 21 colums  

 

# In[8]: 

 

# Information about data like name, count of not null data, datatype  

df.info() 

 

# Columns Explanation 

#  

# We have only 3 Numerical Variables and those are: 

#  

# 1) Tenure(Number of months the customer has stayed with the company) 

#  

# 2) MonthlyCharges(The monthly amount charged to the customer) 

#  

# 3) SeniorCitizen(if Customer is senior citizen then 1 else 0) 

#  

# 4) TotalCharges(The total amount charged to the customer) 

#  

# TotalCharges is srting but its stores the float value so we will change the datatype of this. 

#  

# All Other Variables are Categorical. 

#  

# Our Target Variable is Churn(Whether the customer churned or not (Yes or No)). 



3 

 

 

# In[9]: 

 

# TotalCharges is in String Format, but it should be float 

df["TotalCharges"] = pd.to_numeric(df["TotalCharges"],errors='coerce')  

 

# In[10]: 

 

df.info() # After changing type of TotalCharges checking the data info again 

 

# Now we can see the type of TotalCharges changed from object to float64 

 

# In[11]: 

 

#Analysis the numberic attributes 

df.describe() 

 

# The above function is showing mathmatical calculation of numberic data.  

#  

# count - The count of not-empty values. 

# mean - The average (mean) value. 

# std - The standard deviation. 

# min - The minimum value. 

# 25% - The 25% percentile. 

# 50% - The 50% percentile. 

# 75% - The 75% percentile. 

# max - The maximum value. 

#  

# with count we can see few data is null for TotalCharges. 

#  

# mean is showing what is the average for columns.  

#  

# With min we can see minimum MonthlyCharges is 18 and maximum is 118. Minimum is 

showing lowest value and maximum is showing  

# higher value.  

 

# In[12]: 

 

df = df.dropna() # dropping null values. Few values are missing that's why in describe 

function count of TotalCharges is  

                     #7032 and minimum value of tenure is 0. So its not useful to fill the 

TotalCharges with some number.   
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# In[ ]: 

 

 

 

 

# In[13]: 

 

df.describe() 

 

# After dropping null values now no null values are there and minimum value of tenure is 1. 

 

# In[14]: 

 

df.duplicated().sum() # checking duplicate values if any 

 

# # Exploring Data Visualizations : To understand how variables are distributed. 

 

# In[15]: 

 

# Visualize the distribution of dataset 

def distr(dist_df): 

        fig = plt.subplots(figsize=(12, 13)) 

 

        for i, col in enumerate(dist_df.columns): 

            plt.subplot(7, 3, i + 1) 

            plt.hist(dist_df[col].values, bins=30) 

            plt.title(col) 

            plt.tight_layout() 

 

# In[16]: 

 

distr(df) 

 

# Description about the Features: 

#  

# CustomerId – Customer ID 

#  

# Gender – Male or Female  

#  

# customerSeniorCitizen – Whether the customer is a senior citizen or not (1, 0) 

#  
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# Partner – Whether the customer has a partner or not (Yes, No) 

#  

# Dependents – Whether the customer has dependents or not (Yes, No) 

#  

# Tenure – Number of months the customer has stayed with the company 

#  

# PhoneService – Whether the customer has a phone service or not (Yes, No) 

#  

# MultipleLines – Whether the customer has multiple lines or not (Yes, No, No phone 

service) 

#  

# InternetService – Customer’s internet service provider (DSL, Fiber optic, No) 

#  

# OnlineSecurity – Whether the customer has online security or not (Yes, No, No internet 

service) 

#  

# OnlineBackup – Whether the customer has online backup or not (Yes, No, No internet 

service) 

#  

# DeviceProtection – Whether the customer has device protection or not (Yes, No, No 

internet service) 

#  

# TechSupport – Whether the customer has tech support or not (Yes, No, No internet service) 

#  

# StreamingTv – Whether the customer has streaming TV or not (Yes, No, No internet 

service) 

#  

# StreamingMovies – Whether the customer has streaming movies or not (Yes, No, No 

internet service) 

#  

# Contract – The contract term of the customer (Month-to-month, One year, Two year) 

#  

# PaperlessBilling – Whether the customer has paperless billing or not (Yes, No) 

#  

# PaymentMethod – The customer’s payment method (Electronic check, Mailed check, Bank 

transfer (automatic), Credit card (automatic)) 

#  

# MonthlyCharges – The monthly charge amount 

#  

# TotalCharges – The total amount charged to the customer 

#  

# Churn – Whether the customer churned or not (Yes or No).(Need to predict)    

 

# In[17]: 

 

Churn = df['Churn'].value_counts() # counting churn values  

Churn 
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# Here we can see count of churn and non-churn. 0 is representing count of non-churn and 1 

is count of churn customer. 

#  

#     non-churn : 5163 

#     churn     : 1869    

 

# In[18]: 

 

# plotting the pie chart for churn and non churn count  

Churn.plot(kind = 'pie', title = 'Churn', labels = Churn, figsize = (6,6)) 

plt.legend() 

plt.show() 

 

# # To group data by Churn and compute the mean to find out if churners make more 

Monthly Charge than non-churners: 

 

# In[19]: 

 

# Group data by 'Churn' and compute the mean 

print(df.groupby('Churn')['MonthlyCharges','TotalCharges','tenure'].median()) 

(df.groupby('Churn')['MonthlyCharges','TotalCharges','tenure'].median()).plot(kind = 'box' 

                    ,subplots=True, title = 'Avg value of Churn based on Charges and tenure', figsize 

= (16,6)) 

 

plt.show() 

 

# Churning customers have higher monthly charges with a median of ca. 80 USD and much 

lower interquartile range compared to  

# that of non-churners (median of ca. 65 USD). 

#  

# TotalCharges are the result of tenure and MonthlyCharges, which are more insightful on an 

individual basis. 

#  

# Churning customers have much lower tenure with a mean of ca. 10 months compared to a 

median of non-churners of ca. 38 months. 

#  

# Hence! In above result we can see, churners seem to pay more MonthlyCharges than non-

churners.  

 

#  

 

# # Counting Churn customer based on different columns: 

 

# In[20]: 
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# Counting Churn data based on SeniorCitizen   

print(pd.crosstab(df.SeniorCitizen,df.Churn,margins=True)) 

 

# In above result, we can see 5890 customer was not Senior who was using. and out of 5890, 

1393 is churn.  

# and in opposite site 1142 was SeniorCitien and 476 is churned.  

 

# In[21]: 

 

# Counting Churn data based on SeniorCitizen   

print(pd.crosstab(df.gender,df.Churn,margins=True)) 

 

# In above result, female and male for both gender count is approx same.  

 

# In[22]: 

 

def bar(x,y): 

    result = (pd.crosstab(df[x], df[y], normalize='columns')*100).plot(kind="bar", 

                                            title= '% of Churn based on '+ x ,stacked=True, rot=0,figsize = 

(9,6)) 

    for c in result.containers: 

     

        # set the bar label 

        result.bar_label(c, label_type='center') 

 

# In[23]: 

 

# % of Churn data based on gender 

bar('gender','Churn') 

 

# In[24]: 

 

# % of Churn data based on SeniorCitizen 

bar('SeniorCitizen','Churn') 

 

# In above result, non-senior citizens churn % is much lower than senior churn %. 

 

# In[25]: 

 

# % of Churn data based on Partner 
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bar('Partner','Churn') 

 

# In above result, Churn rate for customers without partners is higher than Partner 

 

# In[26]: 

 

# % of Churn data based on Dependents 

bar('Dependents','Churn') 

 

In above result, churn rate for customers without children is very high. 

# In[27]: 

 

# % of Churn data based on Contract 

bar('Contract','Churn') 

 

# In above result, Churn % for month-to-month contracts much higher than with remaining 

contracts, then one year contract is higher than Two year 

 

# In[28]: 

 

# % of Churn data based on PaymentMethod 

bar('PaymentMethod','Churn') 

 

# In above result,electronic check paymentMethod shows much higher churn rate, then 

mailed check. Bank transfer and credit card is appox same. 

 

# In[29]: 

 

# % of Churn data based on InternetService 

bar('InternetService','Churn') 

 

# In above result, Customers with fiber optic InternetService have much higher churn rate.It 

is approx. 69% 

 

# In[30]: 

 

# Add new col "ExtraService" by summing up the number of remaining services. 

df['ExtraService'] = (df[['OnlineSecurity', 'DeviceProtection', 'StreamingMovies', 

'TechSupport',  

                          'StreamingTV', 'OnlineBackup']] == 'Yes').sum(axis=1) 
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# In[31]: 

 

# Counting Churn data based on ExtraService   

result = pd.crosstab(df.ExtraService,df.Churn).plot(kind="bar", 

                                            title= 'Count of Churn based on ExtraService ' ,stacked=True, 

rot=0,figsize = (9,6)) 

for c in result.containers: 

     

        # set the bar label 

        result.bar_label(c, label_type='center') 

 

In above result, Customer who is using less / no extra services they have higher churn rate as 

comapre who is using more than 3 extra services.  

# # Cleaning data  

 

# In[32]: 

 

#droping customerid 

df = df.drop(columns = 'customerID') 

 

# In[33]: 

 

def label_encoding(features, df): 

    for i in features: 

        df[i] = df[i].map({'Yes': 1, 'No': 0}) 

    return    

 

# In[34]: 

 

#Converting categorical Columns to Numberical using label encoding 

 

label_encoding(['Partner', 'Dependents', 'Churn', 'PhoneService', 'PaperlessBilling'], df) 

df['gender'] = df['gender'].map({'Female': 1, 'Male': 0}) 

df 

 

# In[35]: 

 

# One-Hot-Encoding for identified columns. 

OHE_feature = ['MultipleLines', 'InternetService', 'OnlineSecurity', 'OnlineBackup', 

'DeviceProtection',  

                'TechSupport', 'StreamingTV', 'StreamingMovies', 'Contract', 'PaymentMethod', 

'ExtraService'] 
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df = pd.get_dummies(df, columns=OHE_feature)  

 

# In[36]: 

 

df.info() 

 

# In[37]: 

 

# Min-Max-Scaling for identified columns. 

from sklearn.preprocessing import MinMaxScaler 

 

features_mms = ['tenure', 'MonthlyCharges', 'TotalCharges'] 

df_features_mms = pd.DataFrame(df, columns=features_mms) 

df_remaining_features = df.drop(columns=features_mms) 

 

mms = MinMaxScaler() 

rescaled_features = mms.fit_transform(df_features_mms) 

 

df_rescaled_features = pd.DataFrame(rescaled_features, columns=features_mms, 

index=df_remaining_features.index) 

 

df = pd.concat([df_remaining_features, df_rescaled_features], axis=1) 

 

# In[38]: 

 

#Corelation between all col  

plt.figure(figsize = (30,30)) 

corr_matrix = df.corr() # Corelation Matrix 

sns.heatmap(corr_matrix, cmap="coolwarm") 

plt.show() 

 

# In[39]: 

 

#Corelation with churn  

df.corr()['Churn'].sort_values(ascending=False) 

 

# In[40]: 

 

#To Create Training and Test sets 
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X = df.drop("Churn", axis = 1) 

y = df.Churn 

 

# Splitting the dataset into the Training and Test sets 

 

X_train, X_test, y_train, y_test = train_test_split(X, y,  

                                                    test_size = 0.25,  

                                                    random_state = 0) 

 

# In[41]: 

 

y_test.shape 

 

# In[42]: 

 

y_train.shape 

 

# In[43]: 

 

X_train.shape 

 

# In[44]: 

 

X_test.shape 

 

# In[45]: 

 

# Feature Scaling 

 

sc = StandardScaler() 

X_train = sc.fit_transform(X_train) 

X_test = sc.transform(X_test) 

 

# # Random Forest 

 

# In[52]: 

 

# Instantiate the classifier 
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from sklearn.metrics import accuracy_score 

clf = RandomForestClassifier() 

   

# Fit to the training data 

clf.fit(X_train, y_train) 

 

# In[53]: 

 

# Predict the labels for the test set 

y_pred = clf.predict(X_test) 

feature_imp = clf.feature_importances_ 

# Compute accuracy and Evaluating Model Performance 

accuracy_score(y_test, y_pred) 

 

# In[ ]: 

 

def imp_features(feature_imp,X): 

     

    print("Important Feature", feature_imp) 

    columns = X.columns 

    index = np.arange(len(columns)) 

    font_size = 1 

    fontsize_tittle = 25 

 

    plt.figure(figsize=(100, 17)) 

    plt.bar(index, sorted(feature_imp), width=0.5, 

                alpha=0.4, 

                color='r', 

                label='') 

 

    plt.xlabel('Columns', fontsize=font_size) 

    plt.ylabel('Feature Importance', fontsize=font_size) 

    plt.title('Feature Importance for each column', fontsize=fontsize_tittle) 

    plt.xticks(index, columns) 

    plt.show() 

 

# In[ ]: 

 

# Plotting important features  

imp_features(feature_imp,X) 

 

# In[ ]: 
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#Confusion Matrix 

def c_matrix(y_test, y_pred): 

    cm = confusion_matrix(y_test, y_pred) 

    print("Confusion Matrix" , cm)  

    conf_matrix = 

pd.DataFrame(data=cm,columns=['Prediction:0','Prediction:1'],index=['Actual:0','Actual:1']) 

    plt.figure(figsize=(10,6)) 

    sns.heatmap(conf_matrix,annot=True,fmt='d',cmap='YlGnBu') 

 

    #Other classification statistics 

    TN=cm[0,0] #True Negative 

    TP=cm[1,1] #True Positive 

    FN=cm[1,0] #False Negative 

    FP=cm[0,1] #False Positive 

    sensitivity = TP/float(TP+FN) 

    specificity = TN/float(TN+FP) 

 

    print(' Accuracy = TP+TN/(TP+TN+FP+FN)= ', (TP+TN)/float(TP+TN+FP+FN) , '\n\n', 

         'Missclassification = 1-Accuracy= ', 1- ((TP+TN)/float(TP+TN+FP+FN)),'\n\n', 

          'Sensitivity/Recall or True Positive rate = TP/(TP+FN)= ', TP/float(TP+FN), '\n\n', 

         'Specificity or True Negative Rate = TN/(TN+FP) = ', TN/float(TN+FP), '\n\n', 

         'Precision/Positive Predictiv value = TP/(TP+FP) = ', TP/float(TP+FP), '\n\n', 

         'Negative predicted value = TN/(TN+FN) = ', TN/float(TN+FN), '\n\n', 

         'Positive Likelihood Ratio = Sensitivity/(1-Specificity) = ',sensitivity/float(1-

specificity), '\n\n', 

         'Negative Likelihood Ratio = (1-sensitivity)/specificity = ',float(1-

sensitivity)/specificity) 

 

# In[ ]: 

 

c_matrix(y_test, y_pred) 

 

# # K Nearest Neighbors 

 

# In[ ]: 

 

# Instantiate the classifier  

 

clf= KNeighborsClassifier(n_neighbors=5, metric='minkowski', p=2 )   

# Fit to the training data 

clf.fit(x_train, y_train)   

 

# In[ ]: 
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#Predicting the test set result  

 

y_pred= clf.predict(x_test)   

# Compute accuracy and Evaluating Model Performance 

 

accuracy_score(y_test, y_pred) 

 

# In[ ]: 

 

#Confusion Matrix 

c_matrix(y_test, y_pred) 

 

# # Logistic Regression 

 

# In[54]: 

 

# Instantiate the classifier 

clf = LogisticRegression(max_iter=1000) 

   

# Fit to the training data 

clf.fit(X_train, y_train) 

print(print(clf.coef_)) 

a = np.std(X_train, 0)*clf.coef_ 

importance = clf.coef_[0] 

print(dict(zip(X.columns,clf.coef_[0]))) 

#importance is a list so you can plot it.  

feat_importances = pd.Series(importance) 

feat_importances.nlargest(20).plot(kind='bar',title = 'Feature Importance') 

print(df.columns) 

 

# In[55]: 

 

# Plotting important features  

imp_features(importance,X) 

 

# In[ ]: 

 

# Predict the labels for the test set 

y_pred = clf.predict(X_test) 
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# Compute accuracy and Evaluating Model Performance 

accuracy_score(y_test, y_pred) 

 

# In[ ]: 

 

 

 

 

# In[ ]: 

 

#Confusion Matrix 

c_matrix(y_test, y_pred) 

 

# # SVM 

 

# In[ ]: 

 

# Instantiate the classifier 

clf = SVC(gamma='auto') 

   

# Fit to the training data 

clf.fit(X_train, y_train) 

 

# In[ ]: 

 

#Predicting the test set result   

y_pred= clf.predict(x_test)   

# Compute accuracy and Evaluating Model Performance 

   

accuracy_score(y_test, y_pred) 

 

# In[ ]: 

 

#Confusion Matrix 

c_matrix(y_test, y_pred) 

 

 

 

 

 

 


