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Abstrakt
Disertačńı práce se zabývá vyšetřováńım kvalitativńıch vlastnost́ı diferenčńıch rovnic se
zpožděńım, které vznikly diskretizaćı př́ıslušných diferenciálńıch rovnic se zpožděńım po-
moćı tzv. Θ-metody. Ćılem je analyzovat asymptotické vlastnosti numerického řešeńı
těchto rovnic a formulovat jeho horńı odhady. Studována je rovněž stabilita vybraných
numerických diskretizaćı. Práce obsahuje také srovnáńı s dosud známými výsledky a
několik př́ıklad̊u ilustruj́ıćıch hlavńı dosažené výsledky.

Summary
This thesis discusses the qualitative properties of some delay difference equations. These
equations originate from the Θ-method discretizations of the differential equations with a
delayed argument. Our purpose is to analyse the asymptotic properties of these numerical
solutions and formulate their upper bounds. We also discuss stability properties of the
studied discretizations. Several illustrating examples and comparisons with the known
results are presented as well.
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1. Introduction
Mathematical modeling of various problems via delay differential equations (DDEs) is

a conventional and classical topic. It turns out to be useful especially in the situation,
where the mathematical description of investigated systems depends not only on the
position of a system in the current time, but also in a preceding time. In such a case the
modeling via ordinary differential equations (ODEs) turns out to be insufficient. There
are many interesting applications of these equations in various areas ranging from the
control theory to industrial problems (see, e.g. [27]).

It is known that DDEs can be solved analytically only in some exceptional cases. There
are no special types of DDEs and no computational methods (analogous to basic methods
utilized for ODEs such as the variation of constants method, the separation of variables
method and others) which can produce the exact solution. Therefore, the qualitative and
numerical methods of solving of DDEs are of a fundamental importance even in the study
of basic (linear) types of DDEs.

Roughly speaking, basic numerical methods for DDEs originates from the correspond-
ing procedures for ODEs, where some additional operations (especially the interpolation of
delayed terms) are necessary. The resulting formulae are then delay difference equations.
Their previous qualitative investigation is rather rare because - contrary to DDEs - there
do not exist many original significant applications for this type of difference equations.
Therefore it is just a numerical discretization of DDEs which motivates the investigation
of delay difference equations.

The aim of this thesis is to discuss some properties of the numerical solution of a
special delay differential equation in the form

y′(t) = ay(t) + by(λt), 0 < λ < 1, t ≥ 0 , (1.1)

where a, b ∈ C, which appears as a mathematical model of several problems (see, e.g. [32]).
Among these applications we mention a technical problem on railways (see [37]) which gave
the name to (1.1) - namely the pantograph equation. This thesis discusses its Θ-method
discretizations which lead to delay difference equations with some specific properties (in
particular, all the discretizations discussed throughout this thesis are difference equations
of a variable order).

The structure of this thesis is as follows: In Section 2 we consider equation involving
a general delayed argument and present its Θ-method discretization. The form of this
discretization is discussed in [21]. Section 3 deals with asymptotic analysis of discretized
nonautonomous equation (1.1). We present the result formulating the upper bound of its
solutions. The results stated in this section form a part of the paper [8].

Section 4 contains extensions of results derived in Section 3. The results presented in
this section are the subject of the papers [8, 18, 20]. In Subsection 4.1 we consider the
nonautonomous equation (1.1) with a general delayed argument and derive the extension
of our results presented in Section 3. Then we consider two simple modifications of the
equation (1.1) and investigate the asymptotic behaviour of solutions of their discretiza-
tions. In particular, we consider the equation (1.1) with several proportional delays and
the equation (1.1) involving a forcing term.

Section 5 discusses stability analysis of the Euler formula for the equation (1.1). The
results of this section will appear in [22]. In Section 6 we present some numerical conse-
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quences of our results and comparisons with the results of other authors. The considera-
tions stated in this section form a part of the papers [8, 21].
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2. The derivation of the Θ-methods
for linear DDEs

We consider the differential equation with a delayed argument in the form

y′(t) = a(t)y(t) + b(t)y(τ(t)), t ≥ t0, (2.1)

where a(t), b(t), τ(t) are continuous (possibly complex valued) functions on [t0,∞) and
τ(t) is a differentiable function which is strictly monotonically increasing and satisfies
τ(t0) = t0, τ(t) < t for all t > t0.

The popular discretization of the equation (2.1) is the well-known Θ-method involving
both Euler methods and the trapezoidal rule as particular cases. Some other types of
discretization of (2.1) are described in [19].

Now we sketch derivation of the Θ-method: The integration of (2.1) yields

t∫
0

y′(u)du =

t∫
0

a(u)y(u)du+

t∫
0

b(u)y(τ(u))du. (2.2)

After the discretization we get

yn+1 − yn =

t0+(n+1)h∫
t0+nh

a(u)y(u)du+

t0+(n+1)h∫
t0+nh

b(u)y(τ(u))du, (2.3)

where yn ≈ y(t0 + nh) and h > 0 is the stepsize. The integrals on the right-hand side of
(2.3) can be approximated by use of the explicit rectangular formula as well as implicit
rectangular formula. For the simplification we denote: τn := τ(t0 +nh), τ̄n := (τn− t0)/h,
an := a(t0 + nh) and bn := b(t0 + nh).

First we approximate both integrals on the right-hand side of the equation (2.3) using
the rectangular formula with the left grid point, i.e.

t0+(n+1)h∫
t0+nh

a(u)y(u)du ≈ hanyn,

Since the point τn is not usually a grid point, we approximate the second integral as

t0+(n+1)h∫
t0+nh

b(u)y(τ(u))du ≈ hbny
h(τn),

where we define the value yh(τn) as the linear interpolation utilizing the left and right
neighbours of τn, namely

yh (τn) = (1− rn) yb τn−t0
h

c + rnyb τn−t0
h

c+1
, (2.4)

where rn := τn−t0
h

− b τn−t0
h
c and the symbol b c means an integer part.
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Then the equation (2.3) becomes

yn+1 = yn + hanyn + hbny
h(τn). (2.5)

Now we proceed to another way of discretization, which is based on the fact that inte-
grals on the right-hand side of the equation (2.3) are approximated using the rectangular
formulae with the right grid point. Since the substitution of the first integral is quite
simple, it is omitted here. The substitution of the second integral has the form

t0+(n+1)h∫
t0+nh

b(u)y(τ(u))du ≈ hbn+1y
h(τn+1).

Thus we get
yn+1 = yn + han+1yn+1 + hbn+1y

h(τn+1). (2.6)

The linear combination of (2.5) and (2.6) yields the Θ-method in the form

yn+1 = yn + h((1−Θ)anyn + Θan+1yn+1 + (1−Θ)bny
h(τn) + Θbn+1y

h(τn+1)), (2.7)

where Θ ∈ [0, 1] and instead of yh(τn), yh(τn+1) we substitute the term from (2.4). Note
that the equation (2.7) was derived using the procedure stated in [33].

Let 1−Θhan+1 6= 0. Then the equation (2.7) can be also rewritten as

yn+1 = Rnyn + Sn

(
βnybτ̄nc + αnybτ̄nc+1 + β̂nybτ̄n+1c + α̂nybτ̄n+1c+1

)
, n = 0, 1, . . . , (2.8)

where

Rn :=
1 + (1−Θ)han

1−Θhan+1

, Sn :=
bnh

1−Θhan+1

(2.9)

and
αn := (1−Θ)(τ̄n − bτ̄nc), βn := 1−Θ− αn ,

α̂n :=
bn+1

bn
Θ(τ̄n+1 − bτ̄n+1c), β̂n :=

bn+1

bn
Θ− α̂n . (2.10)

Now we present another way of discretization of (2.1). We introduce the substitution
v = τ(u) in (2.2) and denote

ψ(v) := τ−1(v).

Then the equation (2.2) becomes

y(t)− y(0) =

t∫
0

a(u)y(u)du+

τ(t)∫
0

b(τ−1(u))ψ′(u)y(u)du.

After the discretization we get

yn+1 − yn =

t0+(n+1)h∫
t0+nh

a(u)y(u)du+

τ(t0+(n+1)h)∫
τ(t0+nh)

b(τ−1(u))ψ′(u)y(u)du. (2.11)
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Both integrals on the right-hand side of the equation (2.11) are replaced as follows: At
first, they are approximated via the rectangular formulae with the left grid point. The
approximation of the second integral has the form

τn+1∫
τn

b(τ−1(u))ψ′(u)y(u)du ≈ (τn+1 − τn)bnψ
′ (τn) yh(τn).

Thus we get
yn+1 = yn + hanyn + bn (τn+1 − τn)ψ′ (τn) yh(τn), (2.12)

where the value yh(τn) is given by (2.4). Similarly we can arrive at

yn+1 = yn + han+1yn+1 + bn+1 (τn+1 − τn)ψ′ (τn+1) y
h(τn+1). (2.13)

Contrary to the previous case the value yh(τn+1) now replace by

yh (τn+1) = (1− kn) yb τn−t0
h

c + knyb τn−t0
h

c+1
, (2.14)

where kn := τn+1−t0
h

− b τn−t0
h
c. We note that the value kn can be greater then 1. In

other words yh(τn+1) is calculated via the linear interpolation utilizing the left and right
neighbours of τn. The linear combination of (2.12) and (2.13) yields the Θ-method in the
form

yn+1 = yn + h((1−Θ)anyn + Θan+1yn+1)

+(τn+1 − τn)((1−Θ)bnψ
′ (τn) yh(τn) + Θbn+1ψ

′ (τn+1) y
h(τn+1)), (2.15)

where yh(τn) and yh(τn+1) are given by (2.4), (2.14) respectively.
Considering 1−Θhan+1 6= 0 the recurrence relation (2.15) can be rewritten as

yn+1 = Rnyn + Sn

(
β̃nybτ̄nc + α̃nybτ̄nc+1

)
, (2.16)

where Rn, Sn are given by (2.9) and

α̃n =
1

2h
(τn+1 − τn)

(
ψ′(τn) (τ̄n − bτ̄nc) +

bn+1

bn
ψ′(τn+1) (τ̄n+1 − bτ̄nc)

)
,

β̃n =
1

2h
(τn+1 − τn)

(
ψ′(τn) +

bn+1

bn
ψ′(τn+1)

)
− α̃n.

Note that this equation can be found in the particular case Θ = 1/2 in [6]. In the sequel
we consider the formulae arising from (2.8).
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3. The asymptotic behaviour of the
Θ-method for the nonautonomous
pantograph equation

We consider the nonautonomous pantograph equation as the particular case of (2.1)
via the choice τ(t) = λt, 0 < λ < 1, in the form

y′(t) = a(t)y(t) + b(t)y(λt), t ≥ t0 . (3.1)

The procedure sketched in Section 2 yields the recurrence relation

yn+1 = Rnyn + Sn

(
βnybλnc + αnybλnc+1 + β̂nybλ(n+1)c + α̂nybλ(n+1)c+1

)
, (3.2)

n=0,1,. . . , where Rn, Sn are given by (2.9), i.e.

Rn :=
1 + (1−Θ)han

1−Θhan+1

, Sn :=
hbn

1−Θhan+1

(3.3)

and the relations (2.10) become

αn := (1−Θ)(λn− bλnc), βn := 1−Θ− αn,

α̂n :=
bn+1

bn
Θ(λ(n+ 1)− bλ(n+ 1)c), β̂n :=

bn+1

bn
Θ− α̂n . (3.4)

We emphasize that the relation (3.2) is a delay difference equation of a variable order.
More precisely, the order of (3.2) becomes infinite as n→∞.

This section presents the result formulating the upper bound of the solutions yn of
(3.2). To describe this asymptotic estimate we introduce the inequality

|Sn|(|βn|%bλnc + |αn|%bλnc+1 + |β̂n|%bλ(n+1)c + |α̂n|%bλ(n+1)c+1) ≤ (1− |Rn|) %n, (3.5)

n=0,1,. . . , which plays the key role in our investigations. To simplify the analysis we
further assume that

S̃ := sup
n∈Z+

(|Sn|) <∞, η̃ := sup
n∈Z+

(|βn|+|αn|+|β̂n|+|α̂n|) <∞, R̃ := sup
n∈Z+

(|Rn|) < 1 . (3.6)

If we set

γ̃ :=
S̃η̃

1− R̃
, (3.7)

then we can present the explicit form of a solution of (3.5).

Proposition 3.1. Consider the inequality (3.5) and assume that (3.6) holds. Then the
sequence

%n =

{ (
n− 1+λ

1−λ

)− logλ γ̃
for γ̃ ≥ 1,(

n+ 1
1−λ

)− logλ γ̃
for 0 < γ̃ < 1

(3.8)
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defines the positive solution of (3.5) for all n ∈ Z+, n ≥ (1 + λ)/(1− λ).

Proof: First let γ̃ ≥ 1. Then %n is the nondecreasing sequence and we can write

|Sn|
(
|βn|%bλnc + |αn|%bλnc+1 + |β̂n|%bλ(n+1)c + |α̂n|%bλ(n+1)c+1

)
≤ S̃η̃%bλ(n+1)c+1 .

Substituting the corresponding form of %n one gets

S̃η̃

(
bλ(n+ 1)c+ 1− 1 + λ

1− λ

)− logλ γ̃

≤ S̃η̃

(
λn− λ+ λ2

1− λ

)− logλ γ̃

=
S̃η̃

γ̃

(
n− 1 + λ

1− λ

)− logλ γ̃

= (1− R̃)

(
n− 1 + λ

1− λ

)− logλ γ̃

= (1− R̃)%n

by use of (3.7). The case 0 < γ̃ < 1 can be dealt with quite similarly. 2

Now we can state the main assertion of this section formulating the asymptotic esti-
mate of all solutions yn of (3.2).

Theorem 3.2. Let yn be a solution of the delay difference equation (3.2), where we assume
the validity of the hypothesis (3.6) and let γ̃ be given by (3.7). Then

yn = O
(
n− logλ γ̃

)
as n→∞ . (3.9)

Proof: We introduce the substitution zn = yn/%n in (3.2), where %n is given by (3.8).
Then

%n+1zn+1 = Rn%nzn + Sn

(
βn%bλnczbλnc + αn%bλnc+1zbλnc+1 + β̂n%bλ(n+1)czbλ(n+1)c

+α̂n%bλ(n+1)c+1zbλ(n+1)c+1

)
. (3.10)

We aim at showing that every solution zn of (3.10) is bounded as n→∞. Choose

σ0 > max

(
1 + λ

1− λ
,

2− λ

(1− λ)λ

)
, σ0 ∈ Z+ (3.11)

and define points σm+1 := bσm−1
λ
c, where m = 0, 1, . . . . The condition (3.11) guarantees

that σ1 > σ0 and %n > 0 for n = bλσ0c, bλσ0c+ 1, . . . . Moreover, it holds

λ−m
(
σ0 −

1 + λ

1− λ

)
≤ σm ≤ λ−1σm−1, m = 1, 2, . . . . (3.12)

Further, we introduce intervals I0 := [bλσ0c, σ0]∩Z+, Im+1 := [σm, σm+1]∩Z+ and denote

Bm := sup(|zk|, k ∈ ∪m
j=0Ij), m = 0, 1, 2 . . . . (3.13)

Let n? ∈ Im+1, n
? > σm be arbitrary. Using the inequality bλn?c + 1 ≤ σm following

from the definition of σm+1 we wish to express and estimate zn? in terms of zk, where
k ∈ ∪m

j=0Ij. On this account it is necessary to distinguish the following three cases:
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(i) Let Rn?−1 = 0. Then

zn? =
1

%n?

Sn?−1(βn?−1%bλ(n?−1)czbλ(n?−1)c + αn?−1%bλ(n?−1)c+1zbλ(n?−1)c+1

+β̂n?−1%bλn?czbλn?c + α̂n?−1%bλn?c+1zbλn?c+1) .

Taking absolute values we get

|zn?| ≤ Bm
1

%n?

|Sn?−1|(|βn?−1|%bλ(n?−1)c + |αn?−1|%bλ(n?−1)c+1 + |β̂n?−1|%bλn?c

+|α̂n?−1|%bλn?c+1).

Then using (3.5) we can estimate |zn?| as

|zn?| ≤ %n?−1

%n?

Bm.

If γ̃ ≥ 1, then %n is the nondecreasing sequence, hence |zn?| ≤ Bm. If 0 < γ̃ < 1, then we
can use (3.8), (3.12) and the binomial formula to derive the relation

|zn?| ≤ Bm(1 +K1λ
m) , (3.14)

where K1 is a positive real constant.

(ii) Let Rn 6= 0 for any n ∈ [σm, n
?−1]∩Z+. Multiplying the equation (3.10) by

∏n
l=σm

1
Rl

we obtain

∆

(
%nzn

n−1∏
l=σm

1

Rl

)
= Sn

(
βn%bλnczbλnc + αn%bλnc+1zbλnc+1 + β̂n%bλ(n+1)czbλ(n+1)c

+α̂n%bλ(n+1)c+1zbλ(n+1)c+1

) n∏
l=σm

1

Rl

,

where we put
∏k−1

l=k
1
Rl

= 1 for any k ∈ Z+. Summing this relation from σm to n? − 1 we
arrive at

%n?zn?

n?−1∏
l=σm

1

Rl

− %σmzσm =
n?−1∑
p=σm

Sp

(
βp%bλpczbλpc + αp%bλpc+1zbλpc+1

+β̂p%bλ(p+1)czbλ(p+1)c + α̂p%bλ(p+1)c+1zbλ(p+1)c+1

) p∏
l=σm

1

Rl

,

i.e.

zn? =
%σm

%n?

zσm

n?−1∏
l=σm

Rl +
1

%n?

n?−1∑
p=σm

Sp

(
βp%bλpczbλpc + αp%bλpc+1zbλpc+1

+β̂p%bλ(p+1)czbλ(p+1)c + α̂p%bλ(p+1)c+1zbλ(p+1)c+1

) n?−1∏
l=p+1

Rl .
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Then

|zn?| ≤ Bm

(
%σm

%n?

n?−1∏
l=σm

|Rl|+
1

%n?

n?−1∑
p=σm

(1− |Rp|) %p

n?−1∏
l=p+1

|Rl|

)
(3.15)

by use of (3.5). Now we consider the obvious identity

(1− |Rp|)
n?−1∏
l=p+1

|Rl| = ∆
n?−1∏
l=p

|Rl| .

Substituting this into (3.15) and summing by parts one gets

|zn?| ≤ Bm

(
%σm

%n?

n?−1∏
l=σm

|Rl|+
1

%n?

n?−1∑
p=σm

%p∆
n?−1∏
l=p

|Rl|

)

= Bm

(
%σm

%n?

n?−1∏
l=σm

|Rl|+ 1−
n?−1∏
l=σm

|Rl|
%σm

%n?

−
n?−1∑
p=σm

n?−1∏
l=p+1

|Rl|
∆%p

%n?

)

= Bm

(
1− 1

%n?

n?−1∑
p=σm

∆%p

n?−1∏
l=p+1

|Rl|

)

= Bm

(
1− 1

%n?

n?−1∑
p=σm

∆%p

1− |Rp|
∆

n?−1∏
l=p

|Rl|

)
.

If γ̃ ≥ 1, then %p is nondecreasing, hence ∆%p ≥ 0 and |zn?| ≤ Bm. If 0 < γ̃ < 1, then ∆%p

is negative and nondecreasing, hence

|zn?| ≤ Bm

(
1− ∆%σm

%n?(1− R̃)

n?−1∑
p=σm

∆
n?−1∏
l=p

|Rl|

)

= Bm

(
1− ∆%σm

%n?(1− R̃)

(
1−

n?−1∏
l=σm

|Rl|

))

≤ Bm

(
1− ∆%σm

%σm+1(1− R̃)

)
.

Substituting the corresponding form of %n we can derive

−∆%σm

%σm+1(1− R̃)
=

(σm + 1
1−λ

)− logλ γ̃
(
1−

(
1 + 1

σm+ 1
1−λ

)− logλ γ̃)
(1− R̃)(σm+1 + 1

1−λ
)− logλ γ̃

.

Considering (3.12) and using the binomial formula we arrive at

−∆%σm

%σm+1(1− R̃)
≤ logλ γ̃

γ̃(1− R̃)σm

≤ K2λ
m ,

where

K2 =
logλ γ̃

γ̃(1− R̃)(σ0 − 1+λ
1−λ

)
> 0 . (3.16)
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Consequently,
|zn?| ≤ Bm(1 +K2λ

m) . (3.17)

(iii) Let Rn?−1 6= 0 and Rk = 0 for some k ∈ [σm, n
? − 2] ∩ Z+. The proof technique

applied in this case is a combination of procedures utilized in cases (i)-(ii) and therefore
we present only the main idea.

First we denote σ? := sup(k, k ∈ [σm, n
? − 2] ∩ Z+ and Rk = 0). Then we multiply

the equation (3.10) by
∏n

l=σ?+1
1
Rl

and sum from σ? + 1 to n? − 1 to obtain

zn? =
%σ?+1

%n?

zσ?+1

n?−1∏
l=σ?+1

Rl +
1

%n?

n?−1∑
p=σ?+1

Sp

(
βp%bλpczbλpc + αp%bλpc+1zbλpc+1

+β̂p%bλ(p+1)czbλ(p+1)c + α̂p%bλ(p+1)c+1zbλ(p+1)c+1

) n?−1∏
l=p+1

Rl.

The definition of σ? implies Rσ? = 0, hence by the case (i) we can use the estimate

|zσ?+1| ≤ Bm(1 +K1λ
m) .

Then the application of (3.5) yields

|zn?| ≤ Bm(1 +K1λ
m)
(%σ?+1

%n?

n?−1∏
l=σ?+1

|Rl|+
1

%n?

n?−1∑
p=σ?+1

(1− |Rp|)%p

n?−1∏
l=p+1

|Rl|
)
.

The right-hand side of this inequality is a modification of the corresponding term involved
in (3.15) with σm replaced by σ∗ + 1. Using the same line of arguments as given in the
case (ii) we arrive at

|zn?| ≤ Bm(1 +K1λ
m)(1 +K2λ

m) ≤ Bm(1 +K3λ
m) , (3.18)

where K3 is a positive real constant.

Summarizing cases (i)-(iii), the estimates (3.14), (3.17) and (3.18) imply that

|zn?| ≤ Bm(1 +Kλm) as m→∞

for arbitrary n? ∈ Im+1, n
∗ > σm and a suitable K > 0. Consequently,

Bm+1 ≤ Bm (1 +Kλm) ≤ B0

m∏
j=0

(
1 +Kλj

)
≤ B0 exp{ K

1− λ
} (3.19)

and the sequence (Bm) is uniformly bounded. The estimate (3.9) is proved. 2

Remark 3.3. The significance of the hypothesis (3.6) consists in the fact that it provides
the explicit form of a solution %n of the inequality (3.5) and thus enables us to formulate the
effective asymptotic criterion for the Θ-method (3.2). Let us emphasize that the Theorem
3.2 can be extended to particular cases of (3.2) not satisfying some of the assumptions
involved in (3.6).

To outline this possible extension we first assume that |Sn| is a nondecreasing and
unbounded sequence, i.e. S̃ = ∞ (the validity of other assumptions of (3.6) remains

11



preserved). Then the inequality (3.5) always admits a positive and increasing solution %n.
Indeed, e.g. the sequence

%n = (η|Sn|/(1− R̃))n

satisfies (3.5) for all n large enough. Now it is easy to verify that the technique applied in
the proof of the Theorem 3.2 is utilizable also provided such a solution %n is considered
instead of (3.8). In particular, ∆%n > 0 for all n large enough and we can omit the parts
of the proof discussing the asymptotic stable case. Then the asymptotic bound (3.9)
presented in the Theorem 3.2 can be slightly modified as

yn = O(%n) as n→∞ . (3.20)

Of course, this asymptotic estimate (with the above specified %n) may be too rough
in particular cases. Then, considering a concrete equation, we can try to find a more
suitable (positive and increasing) solution %n of (3.5) representing the stronger upper
bound sequence for the estimate (3.20). The illustration of this procedure is given in the
Example 3.4.

Similarly we can discuss the case η̃ = ∞ as well as the case S̃ = η̃ = ∞. The possible
omission of the last condition of (3.6), namely R̃ < 1, is the most interesting point. First
note that if |Rn| ≥ 1 for all n sufficiently large, then the inequality (3.5) does not admit
any positive solution %n. In particular, if an ≡ a is a constant, then the assumption R̃ < 1
(which is satisfied if and only if 2Re a < (2Θ − 1)|a|2h) cannot be omitted. If an is not
a constant, then we can consider the case where |Rn| < 1 for all n sufficiently large and
limn→∞ |Rn| = 1, i.e. R̃ = 1. Under some particular choices of bn the inequality (3.5) can
admit a positive and nondecreasing solution %n, hence the estimate (3.20) remains valid.
In particular, if we substitute %n ≡ const into (3.5), then we obtain the inequality

|Sn|
(
|βn|+ |αn|+ |β̂n|+ |α̂n|

)
≤ 1− |Rn| , n = 0, 1, . . . ,

which is the condition guaranteing (without assuming (3.6)) the stability of the discretiza-
tion (3.2). The case where %n decreases is much more complicated. Besides the determi-
nation of the form of %n we have to verify some additional nontrivial requirements on %n

and an following from calculations performed in the corresponding part of the proof of
the Theorem 3.2.

To summarize, in particular cases the omission of some assumptions involved in the
hypothesis (3.6) is possible, but searching for a suitable solution %n of (3.5) without
assuming (3.6) is, in general, a difficult task (especially in the asymptotic stable case).

The following example illustrates the extension of the Theorem 3.2 to the case where
the assumption S̃ <∞ is not satisfied.

Example 3.4. We consider the differential equation

y′(t) = ay(t) + bty(t/2), t ≥ 0 ,

where a < 0 and b 6= 0 are real scalars. The discretization of this equation based on the
recurrence (3.2) with Θ = 1/2 yields the relation

yn+1 = Ryn + Sn(βnybn/2c + αnybn/2c+1 + β̂nyb(n+1)/2c + α̂nyb(n+1)/2c+1) (3.21)
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with

R =
2 + ha

2− ha
, Sn =

2bnh2

2− ha
and

αn =

{
0, n is even,
1
4
, n is odd,

βn =

{
1
2
, n is even,

1
4
, n is odd,

α̂n =

{
1
4

+ 1
4n
, n is even,

0, n is odd,
β̂n =

{
1
4

+ 1
4n
, n is even,

1
2

+ 1
2n
, n is odd,

i.e. αn + βn + α̂n + β̂n = 1 + 1
2n

for all n = 1, 2, . . . . Although the assumption S̃ < ∞
involved in the hypothesis (3.6) is not satisfied, we outline the applicability of the Theorem
3.2 regardless of the invalidity of (3.6). It is enough to find an appropriate solution of the
inequality

|Sn|(βn%bn/2c + αn%bn/2c+1 + β̂n%b(n+1)/2c + α̂n%b(n+1)/2c+1) ≤ (1− |R|)%n (3.22)

resulting from (3.5). On this account we consider the auxiliary functional equation

ptϕ(
t

2
) = qϕ(t), t > 0 ,

p, q > 0 are real scalars, which turns out to be of the key importance in this investigation.
To our knowledge, one of the first papers discussing this equation was that of [12]. Utilizing
the Mellin transform method the searched solution ϕ was derived in the form

ϕ(t) = tlog2
p
q
+ 1

2
(log2 t+1) .

This relation (with p = 2|b|h2/|2− ha| and q = 1− |2 + ha|/|2− ha|) can be only slightly
modified to obtain the form

%n =
n− 13/2

n− 3
(n− 3)log2

p
q
+ 1

2
(log2(n−3)+1) (3.23)

defining the required solution of (3.22) for n ≥ 7. Indeed, since %n is eventually increasing

and αn + βn + α̂n + β̂n = 1 + 1
2n

we can simplify the inequality (3.22) as

|Sn| (1 +
1

2n
)%b(n+1)/2c+1 ≤ (1− |R|)%n.

Then substituting (3.23) into this relation and using some straightforward calculations
one can check the validity of this inequality.

Then the Theorem 3.2 with respect to the Remark 3.3 implies that

yn = O

(
nlog2

2|b|h2

|2−ha|−|2+ha|+
1
2
(log2 n+1)

)
.

for any solution yn of (3.21).

The previous example described the asymptotic bound for the solution of the delay
difference equation (3.2) with Θ = 1/2 arising from the nonautonomous equation (3.1).
The application of the Theorem 3.2 to the significant autonomous case a(t) ≡ a, b(t) ≡
b will be discussed in Section 6. Here we also mention some relevant references and
comparisons with the known results.
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4. The asymptotic analysis of the
Θ-method for the modified
pantograph equation

In this section, we discuss possible extensions of the Theorem 3.2 and related proof
technique. Some of these extensions are quite straightforward (e.g. the involvement of
several proportional delays into our considerations), while others require some additional
operations.

4.1. The equation (3.1) with a general delay

We focus on the asymptotic investigation of the Θ-method

yn+1 = Rnyn + Sn

(
βnybτnc + αnybτnc+1 + β̂nybτn+1c + α̂nybτn+1c+1

)
(4.1)

with Rn, Sn given by (2.9) and αn, βn, α̂n, β̂n given by (2.10), which originates from the
discretization of the differential equation

y′(t) = a(t)y(t) + b(t)y(τ(t)), t ≥ t0 , (4.2)

involving a general delayed argument (see Section 2 and the equations (2.1) and (2.8)).
The asymptotic investigation of equations (4.2) and (4.1) is less developed than the

study of their particular cases (3.1) and (3.2). Among papers related to our discussions on
(4.2) we refer to papers [7, 9, 14, 36], where some asymptotic estimations for the equation
(4.2) with infinite time lag (i.e. such that lim sup(t − τ(t)) = ∞ as t → ∞) have been
performed. The derivation of the corresponding Θ-method discretization (4.1) as well as
discussions on the stability analysis of (4.1) belong to the topics of papers [6, 15].

To analyse the asymptotics of (4.1), we have to appropriately modify the key inequality
(3.5). As it might be expected, the relation

|Sn|
(
|βn|%bτ̄nc + |αn|%bτ̄nc+1 + |β̂n|%bτ̄n+1c + |α̂n|%bτ̄n+1c+1

)
≤ (1− |Rn|) %n, n = 0, 1, . . .

(4.3)
seems to be the natural replacement of (3.5). To confirm this conjecture we start with
the searching for a suitable solution of (4.3). On this account we consider the auxiliary
functional equation

ϕ(τ(t)) = κϕ(t), κ = τ ′(t0), t ≥ t0 (4.4)

which is usually referred to as the Schröder equation. It is known (see, e.g. [28]) that if
τ ∈ C2([t0,∞)), τ(t0) = t0, τ(t) < t for all t > t0, τ

′ is positive on [t0,∞) and τ ′(t0) < 1,
then there exists a unique strictly increasing and continuously differentiable solution ϕ of
(4.4) satisfying ϕ′(t0) = 1. This solution is given by the formula

ϕ(t) = lim
n→∞

κ−n(τn(t)− t0), t ≥ t0 , (4.5)
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where τn means the n-th iterate of τ . In the sequel we mention a slightly modified version
of this result, where further condition on τ (namely τ ′ nonincreasing) is imposed to ensure
some additional properties of ϕ. We utilize these properties in the proof of the main result
of this section.

Proposition 4.1. Let τ ∈ C2([t0,∞)) be such that τ(t0) = t0, τ(t) < t for all t > t0,
τ ′ is positive and nonincreasing on [t0,∞) and τ ′(t0) < 1. Then the function ϕ defined
by (4.5) is the solution of (4.4) such that ϕ′ is positive, continuous and nonincreasing on
[t0,∞) and, furthermore, ϕ′(t)/ϕ(t) ≤ 1/(t− t0) for all t > t0.

Proof: Differentiating (4.4) one can obtain

ϕ′(τ(t))τ ′(t) = κϕ′(t), t ≥ t0

which implies that ϕ′ is positive and nonincreasing. Similarly,

ϕ′(t)

ϕ(t)
=

ϕ′(t)

ϕ(t)− ϕ(t0)
≤ ϕ′(t)

ϕ′(t)(t− t0)
=

1

t− t0
, t > t0 . 2

Throughout this section we shall assume that all the assumptions imposed on τ in the
Proposition 4.1 are satisfied and ϕ is the function defined by (4.5) with the properties
guaranteed by the Proposition 4.1. Then we consider the differential equation (4.2), its
Θ - method discretization (4.1) and the inequality (4.3). To formulate the upper bound
of the solutions of (4.1) it is necessary to present the exact form of the solutions of (4.3).

Proposition 4.2. Consider the inequality (4.3) and assume that (3.6) holds. Further, let
t∗ ≥ t0 be a (unique) real root of the equation t−τ(t+h) = h and let k∗ = b(t∗−t0)/hc+1.
Then

%n =

{
(ϕ(t0 + (n− k∗)h))− logκ γ̃ for γ̃ ≥ 1,
(ϕ(t0 + (n+ k∗)h))− logκ γ̃ for 0 < γ̃ < 1 ,

(4.6)

where γ̃, η̃ are given by (3.7) and (3.6) respectively, defines the solution of (4.3). More-
over, if γ̃ ≥ 1, then ∆%n is nonnegative and if 0 < γ̃ < 1, then ∆%n is negative and
nondecreasing.

Proof: First let γ̃ ≥ 1. Then %n is nondecreasing and

|Sn|
(
|βn|%bτ̄nc + |αn|%bτ̄nc+1 + |β̂n|%bτ̄n+1c + |α̂n|%bτ̄n+1c+1

)
≤ S̃η̃%bτ̄n+1c+1

Substituting the corresponding form of %n one gets

S̃η̃%bτ̄n+1c+1 ≤ S̃η̃(ϕ(t0 + τ̄n+1h+ h− k∗h))− logκ γ̃

= S̃η̃ (ϕ(τn+1 + h− k∗h))− logκ γ̃

≤ S̃η̃(ϕ(τn−k∗))
− logκ γ̃ = (1− R̃)%n

by use of (4.4).
The case 0 < γ̃ < 1 can be dealt with quite similarly. Moreover, the additional

properties of ∆%n follow from the corresponding properties of ϕ. 2
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Remark 4.3. The sequence (4.6) is defined for all n ≥ k∗ provided γ̃ ≥ 1. If 0 < γ̃ < 1,
then %n defines the solution of (4.3) for all n ≥ 0.

Now we can formulate the following generalization of the Theorem 3.2.

Theorem 4.4. Let yn be a solution of (4.1), where we assume the validity of the hypothesis
(3.6), let γ̃ be given by (3.7) and let κ = τ ′(t0). Then

yn = O
(
(ϕ(n))− logκ γ̃

)
as n→∞ . (4.7)

Proof: The proof method is a modification of the procedure utilized in the proof of the
Theorem 3.2. First we introduce the substitution zn = yn/%n, where %n is given by (4.6).
Then

%n+1zn+1 = Rn%nzn + Sn

(
|βn|%bτ̄nczbτ̄nc + |αn|%bτ̄nc+1zbτ̄nc+1 + |β̂n|%bτ̄n+1czbτ̄n+1c

+|α̂n|%bτ̄n+1c+1zbτ̄n+1c+1

)
.

Choose σ0 > max (1+κ
1−κ

, τ−1(t0+k∗h)−t0
h

), σ0 ∈ Z+ and define I0 := [bτ̄σ0c, σ0] ∩ Z+, σm+1 :=

b τ−1(t0+(σm−1)h)−t0
h

c, Im+1 := [σm, σm+1] ∩ Z+, Bm := sup(|zk|, k ∈ ∪m
j=0Ij), m = 0, 1, . . ..

Now considering arbitrary n∗ ∈ Im+1, n
∗ > σm we distinguish the following cases:

(i) Let Rn?−1 = 0. Using the same line of arguments as given in the proof of the Theorem
3.2 we arrive at the estimate

|zn?| ≤ %n?−1

%n?

Bm .

If γ̃ ≥ 1 then |zn?| ≤ Bm. If 0 < γ̃ < 1, then we utilize the mean value theorem, the
binomial formula and properties of ϕ guaranteed by the Proposition 4.1 to rewrite the
term %n∗−1/%n∗ as

%n?−1

%n?

=

(
ϕ(t0 + (n∗ + k∗)h)

ϕ(t0 + (n∗ − 1 + k∗)h)

)logκ γ̃

=

(
1 +

ϕ(t0 + (n∗ + k∗)h)− ϕ(t0 + (n∗ − 1 + k∗)h)

ϕ(t0 + (n∗ − 1 + k∗)h)

)logκ γ̃

≤
(

1 + h
ϕ′(t0 + (n∗ − 1 + k∗)h)

ϕ(t0 + (n∗ − 1 + k∗)h)

)logκ γ̃

≤
(

1 +
1

σm

)logκ γ̃

≤ 1 +
K1

σm

,

where K1 is a positive real constant. Consequently,

|zn?| ≤ Bm(1 +
K1

σm

) .

(ii) Let Rn 6= 0 for any n ∈ [σm, n
?−1]∩Z+. Applying the corresponding steps performed

in the proof of the Theorem 3.2 we can derive the estimate

|zn∗| ≤ Bm

(
1− 1

%n?

n?−1∑
p=σm

∆%p

1− |Rp|
∆

n?−1∏
l=p

|Rl|

)
.
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If γ̃ ≥ 1, then |zn?| ≤ Bm. If 0 < γ̃ < 1, then, by the Proposition 4.2, ∆%p is negative and
nondecreasing, hence

|zn?| ≤ Bm

(
1− ∆%σm

%σm+1(1− R̃)

)
.

To estimate the ratio term we use the mean value theorem and the monotonicity of ϕ′ to
obtain

−∆%σm = (ϕ(t0 + (σm + k∗)h))− logκ γ̃ − (ϕ(t0 + (σm + 1 + k∗)h))− logκ γ̃

≤ h logκ γ̃(ϕ(t0 + (σm + k∗)h))− logκ γ̃−1ϕ′(t0 + (σm + k∗)h) .

Similarly,

%σm+1 = (ϕ(t0 + (σm+1 + k∗)h))− logκ γ̃

≥ (ϕ(τ−1(t0 + (σm − 1)h) + k∗h))− logκ γ̃

≥ (Cϕ(τ−1(t0 + (σm − 1)h)))− logκ γ̃

≥
(
C

κ

)− logκ γ̃

(ϕ(t0 + (σm + k∗)h))− logκ γ̃

by use of (4.4), C being a suitable positive real constant. Consequently,

−∆%σm

%σm+1(1− R̃)
≤
(
C

κ

)logκ γ̃
h logκ γ̃

1− R̃

ϕ′(t0 + (σm + k∗)h)

ϕ(t0 + (σm + k∗)h)
≤ K2

σm

and

|zn?| ≤ Bm

(
1 +

K2

σm

)
,

where K2 is a positive real constant.

(iii) Let Rn∗−1 6= 0 and Rk = 0 for some k ∈ [σm, n
? − 2] ∩ Z+. This case is fully covered

by the corresponding part of the proof of the Theorem 3.2.

The cases (i)-(iii) imply that

|zn?| ≤ Bm

(
1 +O(

1

σm

)

)
as m→∞ ,

where n∗ ∈ Im+1, n
∗ > σm is arbitrary. Hence Bm+1 ≤ Bm(1 + O(1/σm)) and it remains

to show that the product
∏m

j=1(1 + 1/σj) converges as m → ∞. Using the property
δϕ(t + t0) ≥ ϕ(δt + t0), t ≥ 0, δ ≥ 1 following from the properties of ϕ stated in the
Proposition 4.1 we can write

σm+1 ≥ 1

h

(
τ−1((σm − 1)h+ t0)− t0 − h

)
=

1

h

(
ϕ−1

(1
κ
ϕ((σm − 1)h+ t0)

)
− t0 − h

)
≥ 1

h

(
ϕ−1

(
ϕ(

1

κ
(σm − 1)h+ t0)

)
− t0 − h

)
=

1

κ
σm −

1

κ
− 1,

hence σm ≥ κ−m(σ0 − 1+κ
1−κ

) and the corresponding infinite product converges. Now the
validity of (4.7) follows from the boundedness of Bm as m→∞. 2
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Remark 4.5. We can verify that the Theorem 4.4 actually represents the direct gene-
ralization of the Theorem 3.2. Indeed, if τ(t) = λt, 0 < λ < 1, t ≥ 0, then all the
assumptions of the Proposition 4.1 are satisfied and the corresponding Schröder equation

ϕ(λt) = λϕ(t), t ≥ 0

admits the identity function as the required solution. Now obviously the asymptotic
property (4.7) becomes (3.9).

To illustrate the applicability of the Theorem 4.4 also to other types of delays we
consider the differential equation (4.2) with the power delayed argument in the form

y′(t) = a(t)y(t) + b(t)y(tω), t ≥ 1 , (4.8)

where 0 < ω < 1 is a real scalar and a, b are nonzero continuous functions on [1,∞). The
Θ-method formula (4.1) now yields the recurrence relation

yn+1 = Rnyn + Sn

(
βnyb (1+nh)ω−1

h
c + αnyb (1+nh)ω−1

h
c+1

+ β̂nyb (1+(n+1)h)ω−1
h

c

+ α̂nyb (1+(n+1)h)ω−1
h

c+1

)
, (4.9)

where Rn, Sn are given by (2.9) with an = a(1 + nh), bn = b(1 + nh) and

αn := (1−Θ)(
(1 + nh)ω − 1

h
− b(1 + nh)ω − 1

h
c), βn := 1−Θ− αn,

α̂n :=
bn+1

bn
Θ(

(1 + (n+ 1)h)ω − 1

h
− b(1 + (n+ 1)h)ω − 1

h
c), β̂n :=

bn+1

bn
Θ− α̂n .

To apply the conclusion of the Theorem 4.4 it is easy check that the assumptions imposed
on τ in the Proposition 4.1 are satisfied. Then the asymptotic property (4.7) yields
the effective result for the equation (4.9) provided we are able to solve explicitly the
corresponding Schröder equation (4.4). This task is not difficult because considering
τ(t) = tω the relation (4.4) becomes the functional equation

ϕ(tω) = ωϕ(t), t ≥ 1

with the solution ϕ(t) = log t. Hence, we can present the following consequence of the
Theorem 4.4.

Corollary 4.6. Let yn be a solution of (4.9), where we assume the validity of the hypoth-
esis (3.6) and let γ̃ be given by (3.7). Then

yn = O
(
(log n)− logω γ̃

)
as n→∞ . (4.10)

Discussing some particular cases of (4.8) we can observe close similarities between the
formula (4.10) and the asymptotics of the exact equation (4.8) investigated, e.g. in [7].
Indeed, it follows from the Theorem 3.1 and the Corollary 3.6 of [7] that under some
additional assumptions on coefficients a and b the upper bound for the exact solution of
(4.8) can be expressed via the function (log t)−δ, δ = logω Q, where Q > 0 is a majorant
constant of the ratio |b(t)/a(t)| which is assumed to be uniformly bounded on [1,∞). For
other results discussing this type of asymptotics of the differential equations with a power
deviating argument we refer to paper [36] (the delayed case) and [13] (the advanced case).
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4.2. The equation (3.1) with several delays

In this subsection, we discuss the numerical properties of the equation (3.1) with several
proportional delays. For the sake of simplicity we consider the corresponding equation
with constant coefficients. The extension to the nonautonomous case can be easily done
via the modified proof technique employed in Section 3.

We consider the DDE

y′(t) = ay(t) +
k∑

i=1

biy(λit), t ≥ 0 , (4.11)

where a, bi 6= 0 are complex scalars, 0 < λi < 1 are real scalars, i ∈ {1, 2, . . . , k}. We focus
on delay difference equations arising from (4.11) by use of the Θ-method discretization.

Using the procedure analogical with the procedure of derivation of (2.8) we arrive at

yn+1 = Ryn +
k∑

i=1

Si

(
βn,iybλinc + αn,iybλinc+1 + β̂n,iybλi(n+1)c + α̂n,iybλi(n+1)c+1

)
, (4.12)

n=0,1,. . . , where yn ≈ y(nh), h is the stepsize,

R :=
1 + (1−Θ)ha

1−Θha
, Si :=

hbi
1−Θha

and
αn,i := (1−Θ)(λin− bλinc), βn,i := 1−Θ− αn,i,

α̂n,i := Θ(λi(n+ 1)− bλi(n+ 1)c), β̂n,i := Θ− α̂n,i .

Now we present the inequality which is useful in our further calculations. It is analo-
gous to (3.5) and has the form:

k∑
i=1

|Si|
(
|βn,i|%bλinc + |αn,i|%bλinc+1 + |β̂n,i|%bλi(n+1)c + |α̂n,i|%bλi(n+1)c+1

)
≤ (1− |R|)%n,

(4.13)
n=0,1,. . . . Assuming

|R| < 1 (4.14)

we can formulate the following assertion.

Lemma 4.7. Let (4.14) hold. Then the sequence

%n :=

{ (
n− 1+λ

1−λ

)− logλ γ̃
for γ̃ ≥ 1,(

n+ 1
1−λ

)− logλ γ̃
for 0 < γ̃ < 1,

(4.15)

where

λ :=

{
max(λ1, λ2, . . . λk) for γ̃ ≥ 1,
min(λ1, λ2, . . . λk) for 0 < γ̃ < 1

(4.16)

and

γ̃ :=

∑k
i=1 |Si|

1− |R|
,
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is a solution of the inequality (4.13).

Proof: We only deal with the case γ̃ < 1 because the case γ̃ ≥ 1 is analogical. If γ̃ < 1,
then %n is a decreasing sequence. Hence we can write

k∑
i=1

|Si|
(
|βn,i|%bλinc + |αn,i|%bλinc+1 + |β̂n,i|%bλi(n+1)c + |α̂n,i|%bλi(n+1)c+1

)
≤

k∑
i=1

|Si|%bλinc.

Further

k∑
i=1

|Si|%bλinc =
k∑

i=1

|Si|(bλinc+
1

1− λ
)− logλ γ̃

≤
k∑

i=1

|Si|(λin− 1 +
1

1− λ
)− logλ γ̃

=
k∑

i=1

|Si|(λin+
λ

1− λ
)− logλ γ̃

≤
k∑

i=1

|Si|(λn+
λ

1− λ
)− logλ γ̃

=
k∑

i=1

|Si|λ− logλ γ̃%n.

= (1− |R|)%n. 2

The main result of this subsection is the following

Theorem 4.8. Let yn be a solution of (4.12), where |R| < 1, Si 6= 0 and 0 < λi < 1 for
all i ∈ {1, 2, . . . , k}. Further let λ be given by (4.16). Then

yn = O
(
n− logλ γ̃

)
as n→∞, γ̃ :=

∑k
i=1 |Si|

1− |R|
. (4.17)

Proof: We use the substitution zn = yn/%n in (4.12), where %n is given by (4.15). Then

%n+1zn+1 = R%nzn +
k∑

i=1

Si

(
βn,i%bλinczbλinc + αn,i%bλinc+1zbλinc+1

+β̂n,i%bλi(n+1)czbλi(n+1)c + α̂n,i%bλi(n+1)c+1zbλi(n+1)c+1

)
. (4.18)

Now we choose

σ0 ≥ max

(
1 + λ

1− λ
,

2− λ

(1− λ)λ
, 2 logλ γ̃

)
,

σ0 ∈ Z+ and define points σm+1 := bσm−1
λ
c, where m = 0, 1, . . . . After some calculations,

we obtain

λ−m
(
σ0 −

1 + λ

1− λ

)
≤ σm ≤ λ−1σm−1, m ∈ Z+ . (4.19)
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Next we introduce intervals I0 := [λ(σ0−1), σ0]∩Z+, Im+1 := [σm, σm+1]∩Z+ and denote

Bm := sup(|zs|, s ∈ ∪m
j=0Ij), m = 0, 1, 2 . . . . (4.20)

Now we choose n? ∈ Im+1, n
? > σm arbitrarily and distinguish two cases with respect to

R.

(i) First, we deal with the case R = 0. In this case

zn? =
1

%n?

k∑
i=1

Si

(
βn?−1,i%bλi(n?−1)czbλi(n?−1)c + αn?−1,i%bλi(n?−1)c+1zbλi(n?−1)c+1

+ β̂n?−1,i%bλin?czbλin?c + α̂n?−1,i%bλin?c+1zbλin?c+1

)
,

hence

|zn?| ≤ Bm
1

%n?

k∑
i=1

|Si|
(
|βn?−1,i|%bλi(n?−1)c + |αn?−1,i|%bλi(n?−1)c+1

+ |β̂n?−1,i|%bλin?c + |α̂n?−1,i|%bλin?c+1

)
.

Using (4.13), we arrive at

|zn?| ≤ %n?−1

%n?

Bm.

If γ̃ ≥ 1 then %n is the nondecreasing sequence and we obtain |zn?| ≤ Bm. If 0 < γ̃ < 1,
we derive with respect to (4.15), (4.19) and the binomial formula the relation

%n?−1

%n?

=

(
n? + 1

1−λ
− 1

n? + 1
1−λ

)− logλ γ̃

≤ 1(
1 + 1

σm

)− logλ γ̃

≤ 1

1 + − logλ γ̃
σm

≤ 1 +
2 logλ γ̃

σm

.

This inequality implies

|zn?| ≤ Bm(1 +
2 logλ γ̃

σ0 − 1+λ
1−λ

λm) . (4.21)

(ii) Let R 6= 0 . Then we can multiply the equation (4.18) by 1
Rn+1 and get

∆
(%nzn

Rn

)
=

1

Rn+1

k∑
i=1

Si

(
βn,i%bλinczbλinc + αn,i%bλinc+1zbλinc+1

+β̂n,i%bλi(n+1)czbλi(n+1)c + α̂n,i%bλi(n+1)c+1zbλi(n+1)c+1

)
.

If we sum this relation from σm to n? − 1, then we obtain

%n?zn?

Rn? − %σmzσm

Rσm
=

n?−1∑
p=σm

1

Rp+1

k∑
i=1

Si

(
βp,i%bλipczbλipc + αp,i%bλipc+1zbλipc+1

+β̂p,i%bλi(p+1)czbλi(p+1)c + α̂p,i%bλi(p+1)c+1zbλi(p+1)c+1

)
,
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i.e.

zn? =
%σm

%n?

Rn?−σmzσm +
Rn?

%n?

n?−1∑
p=σm

1

Rp+1

k∑
i=1

Si

(
βp,i%bλipczbλipc + αp,i%bλipc+1zbλipc+1

+ β̂p,i%bλi(p+1)czbλi(p+1)c + α̂p,i%bλi(p+1)c+1zbλi(p+1)c+1

)
.

Thus

|zn?| ≤ Bm

(
%σm

%n?

|R|n?−σm +
|R|n?

%n?

n?−1∑
p=σm

1

|R|p+1

k∑
i=1

|Si|(|βp,i|%bλipc

+ |αp,i|%bλipc+1 + |β̂p,i|%bλi(p+1)c + |α̂p,i|%bλi(p+1)c+1)
)
.

Using (4.13), we get

|zn?| ≤ Bm

(
%σm

%n?

|R|n?−σm +
|R|n?

%n?

n?−1∑
p=σm

1− |R|
|R|p+1

%p

)
. (4.22)

Now using the relation
1− |R|
|R|p+1

= ∆

(
1

|R|

)p

(4.23)

and summing by parts we get

|zn?| ≤ Bm

(
%σm

%n?

|R|n?−σm +
|R|n?

%n?

n?−1∑
p=σm

∆

(
1

|R|

)p

%p

)

= Bm

(
%σm

%n?

|R|n?−σm + 1− %σm

%n?

|R|n?−σm − |R|n?

%n?

n?−1∑
p=σm

1

|R|p+1
∆%p

)

= Bm

(
1− |R|n?

%n?

n?−1∑
p=σm

1

|R|p+1
∆%p

)
.

Now using (4.23), we get

|zn?| ≤ Bm

(
1− |R|n?

%n?

n?−1∑
p=σm

∆%p

1− |R|
∆

(
1

|R|

)p
)
.

If γ̃ ≥ 1 then %p is nondecreasing, therefore ∆%p ≥ 0 and |zn?| ≤ Bm. In the case 0 < γ̃ < 1,
some simple calculations are necessary to derive that ∆%p is negative and nondecreasing.
Hence, we can write

|zn?| ≤ Bm

(
1− |R|n?

1− |R|
∆%σm

%n?

n?−1∑
p=σm

∆

(
1

|R|

)p
)

= Bm

(
1− |R|n?

1− |R|
∆%σm

%n?

(
1

|R|n? −
1

|R|σm

))
≤ Bm

(
1 +

1

1− |R|
−∆%σm

%n?

)
≤ Bm

(
1 +

1

1− |R|
−∆%σm

%σm+1

)
.
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Substituting the corresponding form of %n (see (4.15)) and using the binomial formula,
we can derive

−∆%σm = %σm − %σm+1

= (σm +
1

1− λ
)− logλ γ̃ − (σm + 1 +

1

1− λ
)− logλ γ̃

= (σm +
1

1− λ
)− logλ γ̃(1− (1 +

1

σm + 1
1−λ

)− logλ γ̃)

≤ (σm +
1

1− λ
)− logλ γ̃(1− (1 +

− logλ γ̃

σm + 1
1−λ

))

≤ (σm +
1

1− λ
)− logλ γ̃ logλ γ̃

σm

and analogically

%σm+1 = (σm+1 +
1

1− λ
)− logλ γ̃

≥ (
1

λ
σm +

1

1− λ
)− logλ γ̃

≥ (
1

λ
σm +

1

λ

1

1− λ
)− logλ γ̃

= γ̃(σm +
1

1− λ
)− logλ γ̃.

Considering (4.19) we arrive at

−∆%σm

%σm+1(1− |R|)
≤ logλ γ̃

γ̃(1− |R|)
1

σm

≤ logλ γ̃

γ̃(1− |R|)
1

(σ0 − 1+λ
1−λ

)
λm .

Hence

|zn?| ≤ Bm(1 +
logλ γ̃

γ̃(1− |R|)(σ0 − 1+λ
1−λ

)
λm) . (4.24)

Using the notation

L :=
2 logλ γ̃

γ̃(1− |R|)(σ0 − 1+λ
1−λ

)
, (4.25)

summarizing cases (i)-(ii) and using the estimates (4.21) and (4.24) we get

|zn?| ≤ Bm(1 + Lλm) as m→∞

for arbitrary n? ∈ Im+1, n
∗ > σm. Thus

Bm+1 ≤ Bm(1 + Lλm) as m→∞ .

Now we can estimate Bm+1 as

Bm+1 ≤ Bm (1 + Lλm) ≤ B0

m∏
j=0

(
1 + Lλj

)
≤ B0

∞∏
j=0

(
1 + Lλj

)
≤ B0 exp(L

1

1− λ
).

23



Thus

Bm ≤ B0 exp(L
1

1− λ
) as m→∞.

The estimate (4.17) is proved. 2

Remark 4.9. We can specify the O-term in (4.17). Following some steps in the proof of
the Theorem 4.8 we obtain the estimate (4.17) in the form

|yn| ≤ Kn− logλ γ̃ for n = σ0, σ0 + 1, σ0 + 2, . . . ,

where K := B0 exp(L 1
1−λ

). Note that the constant L is given by (4.25) and B0 can be
computed via (4.20) as

B0 := sup(|yn|/%n, n ∈ [bλ(σ0 − 1)c, σ0] ∩ Z+). (4.26)

The constant σ0 should be proposed with respect to a concrete equation. If we choose
σ0 ≥ max(1+λ

1−λ
, 2−λ

(1−λ)λ
, 2 logλ γ̃) too small, then the constant L can be too large and the

estimate (4.17) becomes worse. If we choose σ0 too large, then it will be necessary to
calculate the constant B0 in (4.26) in too large interval.

Example 4.10. In this example we illustrate the application of the Theorem 4.8. Let
us consider the following initial value problem

y′(t) = −y(t)− 0.25y(t/4)− 0.2y(t/3), t ≥ 0 , y(0) = 1. (4.27)

After a trapezoidal rule discretization of (4.27) with the stepsize h = 0.05 we obtain

y0 = 1,

yn+1 =
39

41
yn −

1

82

(
βn,1ybn/4c + αn,1ybn/4c+1 + β̂n,1yb(n+1)/4c + α̂n,1yb(n+1)/4c+1

)
− 2

205

(
βn,2ybn/3c + αn,2ybn/3c+1 + β̂n,2yb(n+1)/3c + α̂n,2yb(n+1)/3c+1

)
,

where
αn,1 := 1/2(n/4− bn/4c), βn,1 := 1/2− αn,1,

α̂n,1 := 1/2((n+ 1)/4− b(n+ 1)/4c), β̂n,1 := 1/2− α̂n,2

and
αn,2 := 1/2(n/3− bn/3c), βn,2 := 1/2− αn,1,

α̂n,2 := 1/2((n+ 1)/3− b(n+ 1)/3c), β̂n,2 := 1/2− α̂n,2 .

Now if we set σ0 = 488, then using the Theorem 4.8 with respect to the Remark 4.9 we
obtain the estimate

|yn| ≤ 2.138n−0.576, for n = 488, 489, . . . (4.28)

For a better graphic illustration we denote yh(t) as the linear interpolation of {yn}n=∞
n=0 ,

i.e.

yh(t) =
(n+ 1)h− t

h
yn +

t− nh

h
yn+1, t ∈ [nh, (n+ 1)h], n = 0, 1, 2, . . . (4.29)

and consider t ∈ [25, 4000]. The Fig. 4.1 displays the real numerical solution of the
problem (4.27) and its upper bound g(t) = 2.138h0.576t−0.576 ≈ 0.3807t−0.576.
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Fig. 4.1: The solution yh(t) and its estimate.

4.3. The equation (3.1) with a forcing term

We extend the problem of the study of numerical discretization of (3.1) to the nonho-
mogenous case. We consider the equation

y′(t) = ay(t) + by(λt) + f(t), t ≥ 0 , (4.30)

where a, b 6= 0 are complex numbers, 0 < λ < 1 is a real number and f is a complex-valued
function. The generalization to the case a = a(t), b = b(t) is analogous to procedures
from the Theorem 3.2.

The corresponding Θ-method discretization of (4.30) arises as a simple modification
of (3.2) in the form

yn+1 = Ryn + S
(
βnybλnc + αnybλnc+1 + β̂nybλ(n+1)c + α̂nybλ(n+1)c+1

)
+

(1−Θ)hfn + Θhfn+1

1−Θah
, n = 0, 1, . . . , (4.31)

where

R :=
1 + (1−Θ)ha

1−Θha
, S :=

bh

1−Θha

and
αn := (1−Θ)(λn− bλnc), βn := 1−Θ− αn,

α̂n := Θ(λ(n+ 1)− bλ(n+ 1)c), β̂n := Θ− α̂n .
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The useful inequality (3.5) becomes

|S|
(
|βn|%bλnc + |αn|%bλnc+1 + |β̂n|%bλ(n+1)c + |α̂n|%bλ(n+1)c+1

)
≤ (1− |R|)%n, (4.32)

n=0,1,. . . To find its solution sequence %n we have to specify the meaning of the symbols
S̃, η̃ and R̃ occurring in the hypothesis (3.6). Obviously S̃ = |S|, η̃ = 1 and R̃ = |R|,
where we assume |R| < 1. Thus the solution of (4.32) is given by (3.8), i.e.

%n =

{ (
n− 1+λ

1−λ

)− logλ γ̃
for γ̃ ≥ 1,(

n+ 1
1−λ

)− logλ γ̃
for 0 < γ̃ < 1,

(4.33)

where γ̃ in (3.7) becomes

γ̃ :=
|S|

1− |R|
.

Now we present the main result of this section. We introduce the following assumption

fn = O(nν) as n→∞ (4.34)

for a suitable real scalar ν < − logλ γ̃. Then we can formulate the following

Theorem 4.11. Let yn be a solution of (4.31), where |R| < 1, S 6= 0 and 0 < λ < 1.
Further let (4.34) hold. Then

yn = O
(
n− logλ γ̃

)
as n→∞, γ̃ =

|S|
1− |R|

. (4.35)

Proof: We use the substitution zn = yn/%n in (4.31), where %n is given by (4.33). Then

%n+1zn+1 = R%nzn + S
(
βn%bλnczbλnc + αn%bλnc+1zbλnc+1 (4.36)

+β̂n%bλ(n+1)czbλ(n+1)c + α̂n%bλ(n+1)c+1zbλ(n+1)c+1

)
+

(1−Θ)hfn + Θhfn+1

1−Θah
.

Now we choose σ0 ≥ max(1+λ
1−λ

, 2−λ
(1−λ)λ

, 2 logλ γ̃), σ0 ∈ Z+ and define points σm+1 :=

bσm−1
λ
c, where m = 0, 1, . . . . After some calculations, we obtain

λ−m
(
σ0 −

1 + λ

1− λ

)
≤ σm ≤ λ−1σm−1, m = 1, 2, . . . .

Next we introduce intervals I0 := [λ(σ0−1), σ0]∩Z+, Im+1 := [σm, σm+1]∩Z+ and denote
Bm := sup(|zs|, s ∈ ∪m

j=0Ij), m = 0, 1, 2 . . . .
In the sequel we use the estimate∣∣∣∣(1−Θ)hfn + Θhfn+1

1−Θah

∣∣∣∣ ≤ K1%nn
ν+logλ γ̃, (4.37)

where K1 is a positive real constant, we choose n? ∈ Im+1, n
? > σm arbitrarily and

distinguish two cases with respect to R.

(i) First, we deal with the case R = 0. In this case
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zn? =
1

%n?

S
(
βn?−1%bλ(n?−1)czbλ(n?−1)c + αn?−1%bλ(n?−1)c+1zbλ(n?−1)c+1

+ β̂n?−1%bλn?czbλn?c + α̂n?−1%bλn?c+1zbλn?c+1

)
+

(1−Θ)hfn?−1 + Θhfn?

%n?(1−Θah)
.

Then

|zn?| ≤ Bm
1

%n?

|S|
(
|βn?−1|%bλ(n?−1)c + |αn?−1|%bλ(n?−1)c+1

+ |β̂n?−1|%bλn?c + |α̂n?−1|%bλn?c+1

)
+

∣∣∣∣(1−Θ)hfn?−1 + Θhfn?

%n?(1−Θah)

∣∣∣∣ .
Using (4.32) and (4.37) we get

|zn?| ≤ %n?−1

%n?

Bm +
%n?−1

%n?

K1(n
? − 1)ν+logλ γ̃.

Hence
|zn?| ≤ %n?−1

%n?

(
Bm +K1σm

ν+logλ γ̃
)
.

Applying the same procedure as in Subsection 4.2 we get the relation

|zn?| ≤ (Bm +K1σm
ν+logλ γ̃)(1 +

2 logλ γ̃

σ0 − 1+λ
1−λ

λm) . (4.38)

(ii) Let R 6= 0 . Then we can multiply the equation (4.36) by 1
Rn+1 and get

∆
(%nzn

Rn

)
=

1

Rn+1
S
(
βn%bλnczbλnc + αn%bλnc+1zbλnc+1

+β̂n%bλ(n+1)czbλ(n+1)c + α̂n%bλ(n+1)c+1zbλ(n+1)c+1

)
+

1

Rn+1

(1−Θ)hfn + Θhfn+1

1−Θah
.

If we sum this relation from σm to n? − 1, then we obtain

%n?zn?

Rn? − %σmzσm

Rσm
=

n?−1∑
p=σm

1

Rp+1
S
(
βp%bλpczbλpc + αp%bλpc+1zbλpc+1

+β̂p%bλ(p+1)czbλ(p+1)c + α̂p%bλ(p+1)c+1zbλ(p+1)c+1

)
+

n?−1∑
p=σm

1

Rp+1

(1−Θ)hfp + Θhfp+1

1−Θah
,

i.e.

zn? =
%σm

%n?

Rn?−σmzσm +
Rn?

%n?

n?−1∑
p=σm

1

Rp+1
S
(
βp%bλpczbλpc + αp%bλpc+1zbλpc+1

+ β̂p%bλ(p+1)czbλ(p+1)c + α̂p%bλ(p+1)c+1zbλ(p+1)c+1

)
+
Rn?

%n?

n?−1∑
p=σm

1

Rp+1

(1−Θ)hfp + Θhfp+1

1−Θah
.

27



Taking absolute values we get

|zn?| ≤ Bm

(
%σm

%n?

|R|n?−σm +
|R|n?

%n?

n?−1∑
p=σm

1

|R|p+1
|S|(|βp|%bλpc

+ |αp|%bλpc+1 + |β̂p|%bλ(p+1)c + |α̂p|%bλ(p+1)c+1)
)

+
|R|n?

%n?

n?−1∑
p=σm

1

|R|p+1

∣∣∣∣(1−Θ)hfp + Θhfp+1

1−Θah

∣∣∣∣ .
Thus

|zn?| ≤ Bm

(
%σm

%n?

|R|n?−σm +
|R|n?

%n?

n?−1∑
p=σm

1

|R|p+1
|S|(|βp|%bλpc

+ |αp|%bλpc+1 + |β̂p|%bλ(p+1)c + |α̂p|%bλ(p+1)c+1)
)

+
|R|n?

%n?

n?−1∑
p=σm

1− |R|
|R|p+1

%p
K1p

ν+logλ γ̃

1− |R|
.

Using (4.32), we get

|zn?| ≤ Bm
%σm

%n?

|R|n?−σm +
|R|n?

%n?

(Bm +
K1σ

ν+logλ γ̃
m

1− |R|
)

n?−1∑
p=σm

1− |R|
|R|p+1

%p

and

|zn?| ≤ (Bm +
K1σ

ν+logλ γ̃
m

1− |R|
)

(
%σm

%n?

|R|n?−σm +
|R|n?

%n?

n?−1∑
p=σm

1− |R|
|R|p+1

%p

)
.

This equation is analogous to (4.22). Hence we can apply the same procedure as in
Subsection 4.2 and obtain the analogy of (4.24) in the form

|zn?| ≤ (Bm +
K1

1− |R|
σν+logλ γ̃

m )(1 +
logλ γ̃

γ̃(1− |R|)(σ0 − 1+λ
1−λ

)
λm). (4.39)

Now using the definition of L by (4.25), summarizing cases (i)-(ii) and using estimates (4.38)
and (4.39) we get

|zn?| ≤ (Bm +
K1σ

ν+logλ γ̃
m

1− |R|
)(1 + Lλm) as m→∞

for arbitrary n? ∈ Im+1, n
∗ > σm. Hence

Bm+1 ≤ (Bm +K2λ
−m(ν+logλ γ̃))(1 + Lλm) as m→∞

where

K2 :=
K1

(1− |R|)
(σ0 −

1 + λ

1− λ
)ν+logλ γ̃. (4.40)
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Now we can estimate Bm in this way:

Bm+1 ≤ (Bm +K2λ
−m(ν+logλ γ̃)) (1 + Lλm) ≤ (B0 +K2

∞∑
m=0

λ−m(ν+logλ γ̃))
∞∏

m=0

(1 + Lλm)

≤ (B0 +K2
1

1− λ−(ν+logλ γ̃)
) exp(L

1

1− λ
).

Thus

Bm ≤ (B0 +K2
1

1− λ−(ν+logλ γ̃)
) exp(L

1

1− λ
) as m→∞.

The estimate (4.35) is proved. 2

Remark 4.12. The specification of the O-term in (4.35) is easy. It requires to follow
some steps performed in the proof of the Theorem 4.11. This problem is discussed in the
following example.

Example 4.13. In this example we show the application of the Theorem 4.11. Let us
consider the following initial value problem

y′(t) = −2y(t) + y(t/2) +
t

(t+ 1)2(t+ 2)
, t ≥ 0 , y(0) = 1 (4.41)

with the exact solution

y(t) =
1

t+ 1
. (4.42)

The discretization of (4.41) via the formula (4.31) with Θ = 2/3 and the stepsize h = 0.1
becomes

y0 = 1,

yn+1 =
14

17
yn +

3

34

(
βnybλnc + αnybλnc+1 + β̂nybλ(n+1)c + α̂nybλ(n+1)c+1

)
+

h2

3− 2ah

(
n

(nh+ 1)2(nh+ 2)
+

2(n+ 1)

(nh+ h+ 1)2(nh+ h+ 2)

)
,

where

αn :=
1

3
(
n

2
− bn

2
c), βn :=

1

3
− αn,

α̂n :=
2

3
(
n+ 1

2
− bn+ 1

2
c), β̂n :=

2

3
− α̂n .

Now we specify the O-term in (4.35). We determine the constant K such that

|yn| ≤ Kn− logλ γ̃ for n = σ0, σ0 + 1, σ0 + 2, . . . .

On this account we use the estimate t
(t+1)2(t+2)

≤ t−2 for all t > 0 and put ν = −2 in

(4.34). Further we set σ0 = 50 and compute constants K1 and K2 by use (4.37) and
(4.40), respectively. Then we put

K = (B0 +K2
1

1− λ−(ν+logλ γ̃)
) exp(L

1

1− λ
).
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Then it requires only some simple calculations to obtain the estimate (4.35) in the form

|yn| ≤ 23.4055n−1, for n = 50, 51, . . . (4.43)

The decay rate of the numerical solution of (4.41) corresponds to the decay rate of the
exact solution (4.42). Using (4.29), the Fig. 4.2 displays the real numerical solution of
the problem (4.41) and its upper bound g(t) = 23.4055ht−1 ≈ 2.3406t−1.

Fig. 4.2: The solution yh(t) and its estimate.
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5. Stability analysis of the Euler
formula for the pantograph
equation

In this section, we analyse a change of the qualitative behaviour of the numerical
solution of the scalar pantograph equation

y′(t) = ay(t) + by(λt), 0 < λ < 1 (5.1)

which is based on the implicit Euler discretization in the form

yn+1 = Ryn + Sybλ(n+1)c, n = 0, 1, 2, . . . , (5.2)

where

R :=
1

1− ah
, S :=

bh

1− ah
, (5.3)

h > 0 is the stepsize. The derivation of this equation is sketched in Section 2. Indeed,
the formula (5.2) originates from (2.6) by use of τn = λnh and yh(τn+1) = ybλ(n+1)c. Note
also that there is some analogy between (5.3) and (2.9). The relation (5.3) corresponds
to the case of the constant coefficients and the choice Θ = 1 in (2.9).

Assume that a, b are real scalars, |a|+ b < 0 and 0 < 1− λ << 1. Then the numerical
solution of (5.1) has a tendency to tend to zero solution, but after reaching a certain critical
index this tendency vanishes and the solution is ”blowing up”. Our next investigation is
inspired by the paper [34], where this phenomenon (familiarly referred to as the numerical
nightmare) has been investigated using the explicit Euler method. In the connection with
the studied problem we can mention the other useful sources [1-3,10,11,17,30].

The difference equation (5.2) is of an increasing order, but for

n ∈ Im :=

(
m+ λ− 1

1− λ
,
m+ λ

1− λ

]
, m ∈ Z+

the order is fixed to the value m. Then we can rewrite the equation (5.2) as a three-term
difference equation

yn+1 −Ryn − Syn−m = 0, n ∈ Im, (5.4)

where R, S are given by (5.3).
Our aim is to estimate the maximal order m? of the difference equation (5.4), where

the condition for the asymptotic stability of its solutions is still guaranteed, but starting
from m = m? + 1 is no more valid.

It is well-known that the solution of linear difference equation (5.4) is asymptotically
stable if and only if all the zeros of the corresponding characteristic polynomial lie inside
a unit disk. Therefore we recall the Schur-Cohn criterion (see, e.g. [10, p. 164]) which
plays a key role in our investigation. For our purposes it is sufficient to reformulate this
criterion directly to the three-term difference equation (5.4).

Theorem 5.1. The zeros of the characteristic polynomial

P (µ) = µm+1 −Rµm − S (5.5)

of the difference equation (5.4) lie inside a unit disk if and only if the following holds:
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(i) P (1) > 0,

(ii) (−1)m+1P (−1) > 0,

(iii) the m×m matrices

M±
m =


1 0 · · · · · · 0

−R 1
. . . 0

0
. . . . . . . . .

...
...

. . . . . . 1 0
0 · · · 0 −R 1

±


0 0 · · · 0 −S
0 −S 0
... 0

0 −S ...
−S 0 0 · · · 0


are positive innerwise (i.e. determinants of all of its inners are positive).

In the sequel, we derive an auxiliary difference equation arising from the application
of the Schur-Cohn criterion to the equation (5.4). The analysis of this auxiliary equation
(in particular, the discussion of the sign of its solutions with respect to the assumptions
(i)–(iii) of the Theorem 5.1) enables us to investigate the problem when the discretization
(5.2) admits a sudden change of its behaviour.

We start our analysis with discussions of the assumptions of the Theorem 5.1 in the
connection with our problem. Under the assumption |a| + b < 0 we can rewrite the
condition (i) as 1−R− S > 0 which is equivalent to

−(a+ b)
h

1− ah
> 0,

i.e.
1/h > a. (5.6)

Condition (ii) of the Theorem 5.1 implies that we have to assume

1 +R− S > 0 and 1 +R+ S > 0.

These inequalities are satisfied if and only if

h < 2/(a+ |b|). (5.7)

Note that relation (5.7) implies the previous condition (5.6).
Now let |a|+ b < 0 and h < 2/(a+ |b|) (ensuring that (i) and (ii) are valid). We show

that there exists m? ∈ Z+ such that the third condition (iii) holds provided m = 1, . . . ,m?

and it is not valid for all integers m > m?. On this account we derive a three-term
difference equation for determinants Dm := det(M±

m), m = 1, 2, . . . (see the Theorem
5.1). We introduce here S̃ := ±S to cover both sign cases in next computations. Then
we can express Dm+2 as

Dm+2 =

∣∣∣∣∣∣∣∣∣∣∣

1
−R

...
0

−S̃

0 . . . 0

M±
m

0 . . . 0 −R

−S̃
0
...
0
1

∣∣∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣
M±

m

0 . . . 0 −R

0
...
0
1

∣∣∣∣∣∣∣∣∣− (−1)m+3S̃

∣∣∣∣∣∣∣∣∣
−R

...
0

−S̃

M±
m

0 . . . 0 −R

∣∣∣∣∣∣∣∣∣ .
Now we apply the Laplace expansion along the last column in the first matrix and

along the first column in the second one. Then we get

Dm+2 = (1− S̃2)Dm − (−1)mRS̃

∣∣∣∣∣∣∣∣∣∣∣

−R
...
0

−S̃
0

M±
m−2

0 . . . 0 −R
0 . . . 0

0
...
0
1
−R

∣∣∣∣∣∣∣∣∣∣∣
. (5.8)

Analogously we can write

Dm+4 = (1− S̃2)Dm+2 − (−1)mRS̃

∣∣∣∣∣∣∣∣∣∣∣

−R
...
0

−S̃
0

M±
m

0 . . . 0 −R
0 . . . 0

0
...
0
1
−R

∣∣∣∣∣∣∣∣∣∣∣
.

Using the Laplace expansion along the last row we obtain

Dm+4 = (1− S̃2)Dm+2 + (−1)mR2S̃

∣∣∣∣∣∣∣∣∣
−R

...
0

−S̃

M±
m

0 . . . 0 −R

∣∣∣∣∣∣∣∣∣ .
Now using the Laplace expansion along the first column we arrive at

Dm+4 = (1− S̃2)Dm+2 −R3(−1)mS̃

∣∣∣∣∣∣∣∣∣∣∣

−R
...
0

−S̃
0

M±
m−2

0 . . . 0 −R
0 . . . 0

0
...
0
1
−R

∣∣∣∣∣∣∣∣∣∣∣
−R2S̃2Dm.

Substituting from (5.8), we can rewrite this relation as the linear difference equation of
the fourth order

Dm+4 − (1 +R2 − S̃2)Dm+2 +R2Dm = 0 (5.9)

subject to initial conditions

D1 = 1− S̃,
D2 = 1− S̃R − S̃2,

D3 = 1− S̃ −R2S̃ − S̃2 + S̃3,

D4 = 1−R3S̃ − R2S̃2 +RS̃3 −RS̃ + S̃4 − 2S̃2.

(5.10)
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Let us emphasize that the difference equation (5.9) is the same for both cases S̃ = −S
and S̃ = S, but the sign of S̃ influences the initial conditions.

In the sequel we find the general solution of the difference equation (5.9). The cha-
racteristic polynomial of (5.9) is

ζ4 − (1 +R2 − S̃2)ζ2 +R2 (5.11)

and has the roots in the form

ζ2
1,2 =

1

2

(
1 +R2 − S̃2 ±

√
(1 +R2 − S̃2)2 − 4R2

)
,

where (1 +R2 − S̃2)2 − 4R2 < 0. Indeed, since

a2 − b2 < 0 and 4− 4ah+ (a2 − b2)h2 > 0 for 0 < h <
2

a+ |b|
,

we have
h2(a2 − b2)

(1− ah)2
· (4− 4ah+ (a2 − b2)h2)

(1− ah)2
< 0,

i.e.
(1 +R2 − S̃2 − 2R) · (1 +R2 − S̃2 + 2R) < 0.

Using the notation

A =
1

2
(1 +R2 − S̃2), B =

1

2

√
4R2 − (1 +R2 − S̃2)2,

the roots of (5.11) can be expressed as

ζ1,2,3,4 = (A±Bi)1/2 =

[√
A2 +B2(

A√
A2 +B2

± i
B√

A2 +B2
)

]1/2

which implies

ζ1,2 = (A2 +B2)1/4(cos(ϕ/2)± i sin(ϕ/2)),
ζ3,4 = (A2 +B2)1/4(cos(ϕ/2 + π)± i sin(ϕ/2 + π)),

where ϕ is given by

ϕ = arcsin
B√

A2 +B2
.

To summarize this, the solution of (5.9) can be written in the form

Dm = (A2 +B2)m/4 [(C1 + (−1)mC3) cos(mϕ/2) + (C2 + (−1)mC4) sin(mϕ/2)] ,

where C1, . . . , C4 are general constants. In the sequel we specify a certain relation among
them. We emphasize that the next calculations are analogous for both cases S̃ = ±S.
Utilizing initial conditions (5.10) we arrive at

D2 = (C1 + C3)A+ (C2 + C4)B,
D4 = (C1 + C3)(A

2 −B2) + (C2 + C4)2AB,
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hence
C1 + C3 = 2AD2−D4

A2+B2 = 1,

C2 + C4 = D2−A
B

= 1−S̃2−R2−2RS̃√
4R2−(1+R2−S̃2)2

.

Analogously we can write

D1 = (C1 − C3)
1√
2

√
R+ A+ (C2 − C4)

1√
2

√
R− A,

D3 = (C1 − C3)
1√
2

√
R+ A(2A−R) + (C2 − C4)

1√
2

√
R− A(2A+R),

hence
C1 − C3 = D1

√
2(2A+R)−D3

√
2

2R
√
R+A

= 1+R−S̃√
2
√
R+(1+R2−S̃2)/2

,

C2 − C4 = D1

√
2(2A−R)−D3

√
2

−2R
√
R−A

= 1−R−S̃√
2
√
R−(1+R2−S̃2)/2

.

Now we can observe that

C1 + C3

C2 + C4

=

√
4R2 − (1 +R2 − S̃2)2

1− S̃2 −R2 − 2RS̃
,

i.e.
C1 − C3

C2 − C4

=
C1 + C3

C2 + C4

. (5.12)

Using the property (5.12) we are going to analyse the sign of Dm. It follows from (5.10)
that the condition h < 1/(a+ |b|) implies D1 > 0. To find whether

Dm?Dm?+1 ≤ 0 (5.13)

for a suitable m? ∈ Z+ we note that by previous calculations, the condition (5.13) is
equivalent to

D̃m?D̃m?+1 ≤ 0,

where

D̃m? =
C1 + C3

C2 + C4

cos(m?ϕ/2) + sin(m?ϕ/2).

Considering D̃m? as a function D̃ = D̃(u) of a continuous argument u (instead of index
m?), we need to solve the equation D̃(u) = 0, i.e.

− C1 + C3

C2 + C4

= tan(uϕ/2). (5.14)

One can easily verify that the left-hand side of the previous equation is negative and
positive for S̃ = S < 0 and S̃ = −S > 0, respectively. Then the smallest positive root of
(5.14) is given by

u =


2
ϕ

[
π + arctan(−C1+C3

C2+C4
)
]

for S̃ = S < 0,

2
ϕ

[
arctan(−C1+C3

C2+C4
)
]

for S̃ = −S > 0.
(5.15)

We recall that the condition (iii) has to be fulfilled for S̃ = S and S̃ = −S simultaneously,
hence we put

m0 := 2 arctan

(
−
√

4R2 − (1 +R2 − S2)2

1− S2 −R2 + 2RS

)/
arcsin

B√
A2 +B2

,
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i.e.

m0 = 2 arctan

(
−
√

4R2 − (1 +R2 − S2)2

1− S2 −R2 + 2RS

)/
arcsin

√
4R2 − (1 +R2 − S2)2

2R
.

Now we can express the discussed critical order m? as

m? :=

{
bm0c, m0 6∈ Z+,
m0 − 1, m0 ∈ Z+.

To summarize all previous calculations we can observe that considering any positive
integer m ≤ m?, the polynomial (5.5) has all its roots in the unit disk, hence the difference
equation (5.4) is asymptotically stable. On the contrary, for any m > m? the polynomial
(5.5) does not have this property. Indeed, it is obvious from (5.15) that Dm?+1 ≤ 0 and
Dm?+2 < 0 provided S̃ = −S. Since either M±

m?+1 or M±
m?+2 always appears as an inner

in every M±
m, m > m? + 2, then the property (iii) of the Theorem 5.1 is not fulfilled for

any m > m?.
The previous analysis enables us to formulate the next result:

Theorem 5.2. Let |a|+ b < 0, h < 1/(a+ |b|) and let the values R,S be given by (5.3).
Then all the roots of the polynomial (5.5) lie inside the unit disk if and only if

m ≤ m? :=

{
bm0c, m0 6∈ Z+,
m0 − 1, m0 ∈ Z+,

where

m0 = 2 arctan

(
−
√

4R2 − (1 +R2 − S2)2

1− S2 −R2 + 2RS

)/
arcsin

√
4R2 − (1 +R2 − S2)2

2R
.

Furthermore,

lim
h→0

m∗h =
2

(b2 − a2)1/2
arctan

(b2 − a2)1/2

a− b
.

Proof: The proof follows from our previous analysis. The relation limh→0m
∗h follows

from the L’Hôpital’s rule. 2

Hence, under the assumptions introduced in the Theorem 5.2, the solution of (5.2) has
a tendency to reach the zero solution for n ≤ n? =

⌊
m?+λ
1−λ

⌋
. For n > n? this tendency

vanishes.
We can summarize that considering the numerical methods of the Euler type, our

technique for the determination of m? leads to the investigation of the asymptotic stability
of the three-term difference equation (5.4). The stability analysis of (5.4) leads to another
auxiliary difference equation (5.9) for the determinants Dm occurring in the assumptions
of the Schur-Cohn criterion.

Now we present the example illustrating the contribution of the Theorem 5.2.

Example 5.3. We consider the initial value problem

y′(t) = −0.1y(t)− y(0.99t), t ≥ 0, y(0) = 1 (5.16)
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and its implicit Euler discretization

yn+1 =
100

101
yn −

10

101
yb0.99(n+1)c, n = 0, 1, 2, . . . , y0 = 1 (5.17)

with the stepsize h = 0.1. Using (4.29), the Fig. 5.1 illustrates the behaviour of the
solution of (5.17). For a better representation of the character of this solution we present
the Fig. 5.2. This figure plots the values (t,log10(|yh(t)|+ ε)), where ε = 2.23× 10−308. It
follows from the Fig. 5.2 that for nh ∈ (100, 300) the values of yh(t) are already less then
10−40. Considering such small values the solution of the problem (5.17) approximates the
zero solution and it seems that the calculation could be finished. However, if nh > 300
then the solution increases quickly (in absolute values).

Using the Theorem 5.2 we are able to find the change point

n∗h =

⌊
m∗ + λ

1− λ

⌋
h = 1699h = 169.9,

where the character of this solution changes. For a better illustration the solution yn of
(5.17) close to this point is displayed on the Fig. 5.3. Moreover, we can find the point

t∗ = lim
h→0

⌊
m∗ + λ

1− λ

⌋
h = 167.9,

where the character of the exact solution of the problem (5.16) changes. It remains to
note that this value equals to the value presented in [34], where the equation (5.16) was
studied by use of the explicit Euler discretization.

Fig. 5.1: The solution yh(t).
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Fig. 5.2: The solution log10(|yh(t)|+ ε).

Fig. 5.3: The solution yh(t).
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6. Some comparisons and examples
In this section, we mention several comparisons and numerical consequences concerning

the asymptotic estimates of the exact pantograph equation and its Θ-method discretiza-
tion. We consider the scalar pantograph equation

y′(t) = ay(t) + by(λt), t ≥ 0 , (6.1)

where 0 < λ < 1 and assume that Re a < 0, b 6= 0. We note that this equation is
a particular case of each of the equations (3.1), (4.2), (4.11) and (4.30) considered in
previous sections.

In Subsection 6.1 we mention some basic numerical notions and characteristics asso-
ciated with the stability of the equation (6.1). The aim of the following subsections is to
illustrate the contribution of the asymptotic results mentioned in previous sections to the
numerical investigation of the equation (6.1) and present various comparisons with the
known results.

6.1. Some numerical preliminaries

It is well known (see [15]) that the necessary and sufficient asymptotic stability condition
for (6.1) is

Re a < 0, |b| < |a|.

This implies the analytical asymptotic stability region for the equation (6.1) in the form

S := {(a, b) ∈ C2 : Re a < 0, |b|+ a < 0}.

The discrete analogy of the asymptotic stability region S for the exact equation (6.1)
is the corresponding numerical stability region. Considering the Θ-method

yn+1 = Ryn + S
(
βnybλnc + αnybλnc+1 + β̂nybλ(n+1)c + α̂nybλ(n+1)c+1

)
, n = 0, 1, . . . (6.2)

where R, S are given by

R :=
1 + (1−Θ)ah

1−Θah
, S :=

bh

1−Θah
(6.3)

and
αn := (1−Θ)(λn− bλnc), βn := 1−Θ− αn, (6.4)

α̂n := Θ(λ(n+ 1)− bλ(n+ 1)c), β̂n := Θ− α̂n ,

we have the following definition.

Theorem 6.1. The numerical stability region for the Θ-method (6.2) is defined as the set
SΘ of all couples of complex numbers (a, b) such that any solution yn of (6.2) is tending
to zero as n→∞ whenever 0 < λ < 1. We say that the Θ-method (6.2) is asymptotically
stable if

S ⊂ Sθ

for any h ∈ R+.
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The asymptotic stability of the recurrence (6.2) is the subject matter of many papers.
We mention at least the following results which are closely related to our investigations.
If Θ = 1 (the case of the implicit Euler method), then the method (6.2) is asymptotically
stable (see [23, p. 266]). Further, if a, b are real scalars such that

a < 0, |b| < −a, 1

2
− 1

2

|b|
a
≤ Θ ≤ 1, (6.5)

then the solution yn of the Θ-method (6.2) is tending to zero for all λ ∈ (0, 1) (see [35]).
A stronger result is proved in [15, 24] provided λ = 1/L, where L ≥ 2 is an integer. It
has been shown that the third condition in (6.5) can be weakened as

1

2
≤ Θ ≤ 1.

In the other words, assuming λ = 1/L, the Θ-method (6.2) is asymptotically stable if and
only if 1/2 ≤ Θ ≤ 1.

6.2. The asymptotic estimate for the exact and dis-

cretized pantograph equation.

The important theoretical question about numerical approximations is the problem whether
the numerical and exact solution admit a related asymptotic behaviour on the unbounded
domain. Recall that the qualitative behaviour of the solutions of the exact equation (6.1)
is well known (see, e.g. [16, 25, 26]) and can be described as follows:

Theorem 6.2. Let y be a solution of the equation (6.1), where Re a < 0, b 6= 0 and
0 < λ < 1. Then

y(t) = O
(
t− logλ |b/a|) as t→∞ . (6.6)

Moreover, if y(t) = o(t− logλ |b/a|) as t→∞, then y is the zero solution.

In other words, the estimate (6.6) is nonimprovable.
Now we are going to formulate the corresponding discrete estimate following from the

Theorem 3.2 (as well as from the Theorem 4.4, the Theorem 4.8 or the Theorem 4.11).

Corollary 6.3. Let yn be a solution of the discretization (6.2) with R, S given by (6.3),
where

2Re a < (2Θ− 1)|a|2h, (6.7)

b 6= 0 and 0 < λ < 1. Then

yn = O
(
n− logλ γ̃

)
as n→∞, γ̃ =

|b|h
|1−Θah| − |1 + (1−Θ)ah|

. (6.8)

Remark 6.4. The condition (6.7) seems to be analogical with the condition Re a < 0
in the Theorem 6.2. Let Re a < 0. Then (6.7) is fulfilled for any h > 0 if and only if
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1/2 ≤ Θ ≤ 1. Assuming 0 ≤ Θ < 1/2, the condition (6.7) represents the restriction on
the stepsize h and has the form

h <
2Re a

(2Θ− 1)|a|2
.

Comparing (6.6) and (6.8), the natural question arises, namely what is the relation
between the upper bound (6.6) derived in [16, 25, 26] for the exact solution of (6.1) and
our upper bound (6.8) derived for its numerical solution.

Answering our question we first consider the case where a is a real constant (b can be
complex). Then we can observe that γ̃ occurring in (6.8) becomes

γ̃ =

{
|b/a| for (1−Θ)h|a| ≤ 1,
h|b|/(2 + h|a|(2Θ− 1)) for (1−Θ)h|a| > 1.

Hence the value |b/a| known from the asymptotic description of the exact scalar panto-
graph holds for discretization (6.2) with the modest restriction on the stepsize h. In other
words both the exact solution and the numerical solution have exactly the same decay
rate.

We note that in the case Θ = 1 (the implicit Euler method) we get the equality
γ̃ = |b/a| without any restriction to the stepsize h. We emphasize that this result is a
significant strengthening of the asymptotic stability property of this method mentioned
in the previous subsection. In particular, assuming |b| < |a|, we can guarantee that the
discretization (6.2) with Θ = 1 preserves not only the convergency to zero, but also the
same decay rate of this convergency regardless of the stepsize h. In the remaining cases
0 ≤ Θ < 1 the condition (1−Θ)h|a| ≤ 1 (ensuring the same decay rate of the exact and
numerical solution) means the stepsize restriction.

We can also discuss some stability consequences following from the previous conside-
rations. It follows from (6.8) that all complex couples (a, b), satisfying the condition

|b|h < |1−Θah| − |1 + (1−Θ)ah| (6.9)

belong to the stability region SΘ. Let a ∈ R, b ∈ C and |b| < −a (we emphasize that
this is just the asymptotic stability condition for the exact equation (6.1) with a real
parameter a). If (1−Θ)h|a| ≤ 1 holds, then (6.9) is satisfied trivially. If (1−Θ)h|a| ≤ 1
does not hold, then (6.9) becomes

|b|h < 2 + (1− 2Θ)ah.

To obtain the stability condition independent of the stepsize h, we can rewrite (6.9) into
the form

Θ >
1

2
+

|b|
2|a|

+
1

ah
.

From here we deduce that if |b| < −a and

1

2
− 1

2

|b|
a
≤ Θ ≤ 1 ,
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then any solution yn of (6.2) tends to zero for any stepsize h > 0 and any 0 < λ < 1.
Note that we obtain the condition (6.5).

Finally, we consider the case where both parameters a, b are complex. If Im a 6= 0,
then the previous relation for γ̃ is no longer valid and it turns out that γ̃ is always greater
then |b/a| and h|b|/(2 + h|a|(2Θ − 1)) provided (1 − Θ)h|a| ≤ 1 and (1 − Θ)h|a| > 1,
respectively.

6.3. Illustrating examples

In the next examples we specify the parameters a, b in (6.1) and calculate the upper
bound for its Θ-method discretization (6.2).

Example 6.5. We illustrate the unstable case of the equation (6.1) via the choice a =
−0.5, b = −2 and λ = 1/2. Consequently, we investigate the initial value problem

y′(t) = −0.5y(t)− 2y(t/2), t ≥ 0, y(0) = 1 . (6.10)

The asymptotic estimate of the solution of (6.10) is given by (6.6) as

y(t) = O(t2) as t→∞ .

Now we compute the asymptotic estimate of the solution of the Θ-method discretization
of (6.10). We choose the stepsize h = 0.05 and consider the trapezoidal rule discretization

obtained from (6.2) via the choice Θ = 1/2. Then γ̃ = |S|
1−|R| =

∣∣ b
a

∣∣ = 4 and we can rewrite

(6.8) as
|yn| ≤ L1n

2 for all n large enough , (6.11)

where L1 > 0 is a suitable real constant. Following some steps in the proof of the Theorem
3.2 and noticing that for γ̃ > 1 it holds L1 = B0, where

B0 = sup(|yn(n− 3)−2|, n ∈ [bσ0

2
c, σ0] ∩ Z+) .

Now we choose σ0 representing the starting point for the asymptotic estimation performed
in the proof of the Theorem 3.2. By (3.11), it is enough to put σ0 = 7. However, to obtain
a reasonable computational and especially graphic illustration of (6.11), we suggest the
choice of a larger value of σ0, say σ0 = 150. Then B0 ≈ 0.000055 and the asymptotic
estimate (6.11) becomes

|yn| ≤ 0.000055n2 for all n large enough .

Now we consider the numerical solution yh(t) (see (4.29)) of the equation (6.10), where
t ∈ [7.5, 400] and its upper bound g(t) = 0.000055 t2/h2 ≈ 0.022008 t2. The following Fig.
6.1 plots (t, log10(|yh(t)|+ ε)) and (t, log10 g(t)), where ε = 2.23× 10−308.
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Fig. 6.1: The solution log10(|yh(t)|+ ε) and its estimate.

Example 6.6. In this example we illustrate the asymptotic stable case. Since we wish
to perform this illustration via this example with the known exact solution, we have to
consider nonhomogeneous scalar pantograph equation (see the form (4.30)).

We investigate the initial value problem

y′(t) = −160y(t) + 80y(t/2) +
159t+ 158

(t+ 1)2(t+ 1)
, t ≥ 0, y(0) = 1 (6.12)

with the exact solution y(t) = 1
t+1

. The corresponding Θ-method discretization (4.31)

yields the sequence yn which represents the approximate values of y(t) = 1
t+1

at grid
points t = nh. Applying the Theorem 4.11, we get the estimate

yn = O(n−1) as n→∞ (6.13)

provided (1− θ)h|a| ≤ 1. Note that this decay rate corresponds to the decay rate of the
exact solution.

Now let h = 0.05. Then we can calculate to special values of Θ corresponding to the
assumption |R| < 1 and (1− θ)h|a| ≤ 1. The first condition implies Θ > 1

2
− 1

h|a| = 0.375

and second one implies Θ ≥ 1 − 1
h|a| = 0.875. Note that assuming Θ > 0.875, the

boundedness of the relative errors is guaranteed because of the property (6.13).
The Table 6.6 involves the list of the exact values y(nh) = 1

nh+1
, the numerical values

yn and their relative errors (RE) at some grid points nh. It confirms our theoretical
knowledge about the role of the ”critical” parameter Θ = 0.375.
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nh 50 100 250 500

y(nh) 0.1961E-1 0.9901E-2 0.3984E-2 0.1996E-2

Θ = 0.374 yn -0.2935E2 -0.1505E4 -0.2426E9 -0.1177E18
RE 0.1498E4 0.1520E6 0.6088E11 0.5810E20

Θ = 0.375 yn -0.7826E-1 -0.8910E-1 -0.8282E-1 -0.9139E-1
RE 0.4091E2 0.9099E2 0.2089E3 0.4589E3

Θ = 0.376 yn -0.2102E-1 -0.1057E-1 0.2567E-3 0.1338E-3
RE 0.2072E1 0.2067E1 0.9356 0.9330

Θ = 0.4 yn 0.2751E-1 0.1386E-1 0.5937E-2 0.2973E-2
RE 0.4031 0.3996 0.4902 0.4893

Θ = 0.5 yn 0.2811E-1 0.1415E-1 0.5732E-2 0.2870E-2
RE 0.4335 0.4294 0.4387 0.4378

Θ = 0.8 yn 0.2817E-1 0.1418E-1 0.5697E-2 0.2853E-2
RE 0.4367 0.4326 0.4299 0.4290

Θ = 1 yn 0.2804E-1 0.1412E-1 0.5669E-2 0.2839E-2
RE 0.4299 0.4258 0.4210 0.4222

Table 6.6

6.4. The comparison with other asymptotic estimates

for the Θ-method discretization of (6.1)

The asymptotic investigation of the discretized pantograph equation is rare. To our
knowledge, the only paper dealing with the asymptotics of the Θ-method discretization
is [33]. However, this paper discusses the Θ-method discretization on the quasigeometric
mesh (characterized by the property limn→∞ hn = ∞). Considering the asymptotics of
the Θ-method on the uniform mesh, we can mention papers [6] and [29] dealing with the
trapezoidal rule and Euler discretization of (6.1), respectively.

To compare the estimate (6.8) with the relevant estimate presented in [6] we need to
make some minor modifications. The reason is that the discretization of (6.1) utilized
in [6] is slightly different from the formula (6.2). The mentioned discretization is in the
general case given by (2.16) and for the equation (6.1) has the form

yn+1 = Ryn + S
(
β̃nybλnc + α̃nybλnc+1

)
, (6.14)

where R, S are given by (6.3) and

β̃n := 1− α̃n, α̃n := λn− bλnc+ Θλ.

Since the discretization studied in [6] originates from the formula (6.14), we first reformu-
late the Corollary 6.3 for such a discretization. To perform this, we denote

η = η(Θ, λ) := sup
n∈Z+

(|β̃n|+ |α̃n|) <∞.
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The next lemma yields the explicit form of η and can be found in the particular case
Θ = 1/2 in [6, Theorem 6].

Lemma 6.7. Let 0 < λ < 1, 0 ≤ Θ ≤ 1. Then the function η(Θ, λ) has the following
values:

η(Θ, λ) =


1, λ = K/L, ΘK ≤ 1, K, L ∈ {1, 2, . . . } and relatively prime,
1 + 2Θλ− 2

L
, λ = K/L, ΘK ≥ 1, K, L ∈ {2, 3, . . . } and relatively prime,

1 + 2Θλ, λ irrational.
(6.15)

Proof: First note that 1 ≤ η(Θ, λ) ≤ 1 + 2Θλ. Now assume λ = K
L

, where 1 ≤ K < L
and (K,L) are relatively prime. It is known that

nK

L
− bnK

L
c =

nK mod L

L
.

Then

sup
n∈Z+

αn = Θλ+ sup
n∈Z+

(λn− bλnc) = Θλ+
L− 1

L
= 1 + Θλ− 1

L
.

Thus the first two cases of (6.15) are true.
Let λ be an irrational number. The case Θ = 0 is trivial, hence we deal only with

Θ 6= 0. In this case, for every ε > 0, ε < Θλ there exists an nε such that

1− ε < λnε − bλnεc.

Furthermore,
αnε > 1 + Θλ− ε > 1

and we arrive at
η(Θ, λ) ≥ αnε + |1− αnε | = 1 + 2Θλ− 2ε.

Now we get η(Θ, λ) ≥ 1 + 2Θλ, because ε > 0 can be made arbitrary small. 2

Using this we can reformulate the Corollary 6.3 for the discretization (6.14) as follows:

Corollary 6.8. Let yn be a solution of the discretization (6.14) with R, S given by (6.3),
where (6.7) holds, b 6= 0 and 0 < λ < 1. Then

yn = O
(
n− logλ γ∗

)
as n→∞, γ∗ =

|S|η
1− |R|

, (6.16)

where η = η(Θ, λ) is given by (6.15).

Note that the estimate (6.16) can be weaker than the estimate (6.8) because the value
of η can be grater then one. It follows from the Lemma 6.7 that if ΘK ≤ 1 and λ = K/L
where K,L ∈ Z+ are relatively prime, then η(Θ, λ) = 1. In this case the asymptotic
estimates (6.16) and (6.8) coincide.
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Now we can discuss the main goal of this subsection, namely the comparison of our
estimate (6.16) with the relevant result from [6] describing the asymptotics of (6.14) for
Θ = 1/2. On this account, we introduce the notation.

γ := |R|+ η|S|,

where η = η(1/2, λ) is given by (6.15). Now we can read [6, Theorem 5] as follows:

Corollary 6.9. Let yn be a solution of the discretization (6.14), where Re a < 0, b 6= 0
and 0 < λ < 1. Further let γ ≤ 1. Then

yn = O
(
n− logλ γ

)
as n→∞, γ = |R|+ η|S| . (6.17)

Let us emphasize that this result have been derived in a more general case when the
equation (6.1) and its discretization (6.14) involve the neutral term. On the other hand,
the Corollary 6.9 discusses only the case γ ≤ 1 and Θ = 1/2.

Now we can easily compare our relation (6.16) with the asymptotic estimate (6.17)
derived in [6, Theorem 5] under the assumption γ ≤ 1. Considering this assumption we
get

γ∗ =
|S|η

1− |R|
≤ |R|+ η|S| = γ ,

where the equality sign between γ∗ and γ occurs if and only if γ = 1. In particular,
substituting the values R and S from (6.3) into the inequality γ∗ ≤ 1 we can easily check
that the solution of (6.14) is bounded if

Re a < 0, η|b|+ 4 Re a

|2 + ha|+ |2− ha|
≤ 0 ,

which is the same stability condition as the one derived in [6] and [15] by use of the
inequality γ ≤ 1. However, considering the asymptotic stable case (γ < 1), the formula
(6.16) provides a stronger asymptotic estimate than the formula (6.17) yields. More
precisely, both formulae affirm the algebraic decay of yn, but the asymptotic property
(6.16) guarantees a stronger decay rate.

The next example illustrates the previous comparison. We specify the parameters a, b
in (6.1) and discuss the upper bounds for (6.14) with the stepsize h = 0.05 with Θ = 1/2.

Example 6.10. We choose a = −1 and b = −0.5 in (6.1), i.e. we consider the initial
value problem

y′(t) = −y(t)− 0.5 y(t/2), t ≥ 0, y(0) = 1 . (6.18)

Then the corresponding discretization (6.14) becomes

yn+1 = Ryn + S
(
(3/4− n/2 + bn/2c)ybn/2c + (n/2− bn/2c+ 1/4)ybn/2c+1

)
, (6.19)

y0 = 1, where the symbols R and S have been introduced in (6.3).
Then

γ = |R|+ η(λ)|S| ≈ 0.9756, γ∗ =
|S|

1− |R|
=

∣∣∣∣ ba
∣∣∣∣ = 0.5
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and the asymptotic estimates (6.17) and (6.16) become

yn = O
(
n−0.0356

)
as n→∞ (6.20)

and
yn = O

(
n−1
)

as n→∞ , (6.21)

respectively. Our next intention is the computational presentation of the estimate (6.21)
and its graphic comparisons with the estimate (6.20) as well as with the real behaviour of
the discretization (6.19). To make the estimate (6.21) more applicable from the computa-
tional viewpoint it is necessary to specify the O-term in (6.21), i.e. determine a constant
L1 > 0 such that

|yn| ≤ L1n
−1 for all n large enough.

It follows from the proof of the Theorem 3.2 (the part (ii) and the relation (3.19) with
respect to K = K2) that L1 = B0 exp{ K2

1−λ
}, where the constants B0 and K2 can be

calculated via (3.13) and (3.16) as

B0 = sup(|yn(n+ 2)|, n ∈ [bσ0

2
c, σ0] ∩ Z+), K2 =

41

σ0 − 3
.

To obtain a satisfactory graphic illustration of our estimate we can choose, e.g. the
same value of σ0 as in the Example 6.5, i.e. σ0 = 150. Then K2 ≈ 0.279 and for the
specification of B0 it remains to determine (or at least estimate) the values of yn for
n = 1, 2, . . . , 150. By [33, Theorem 2], these values are uniformly bounded by |y(0)| = 1.
However, to obtain a stronger majorant constant L1, we prefer their direct calculation via
(6.19). Then B0 ≈ 1.9369, hence L1 ≈ 3.3834 and we can precise the upper bound (6.21)
for the solution yn of (6.19) in the form

|yn| ≤ 3.3834n−1 for all n large enough

(more precisely, for n = 150, 151, . . . ).
Now we consider the estimate (6.20). Since yσ0 = y150 ≈ 0.012, we can choose the

corresponding majorant constant L2 specifying the O-term in (6.20) as L2 = 0.012 ×
1500.0356 ≈ 0.0144 (in other words, to obtain a sharp majorant constant we choose such
L2 that the values of yn and its estimate L2n

−0.0356 coincide for n = 150). This implies

|yn| ≤ 0.0144n−0.0356 for all n large enough

(in the sequel we can see that this estimate holds for n = 150, 151, . . . ).
Now the gap between both asymptotic results can be simply illustrated by the following

figure. We use here (4.29) and consider t ∈ [7.5, 400] (note that the left-end point t = 7.5
corresponds to the starting index σ0 = 150 of the asymptotic estimation via the relation
t = 150h). The Fig. 6.2 plots the numerical solution yh of (6.18) as well as its upper
bounds g(t) = 3.3834ht−1 ≈ 0.1692 t−1 and f(t) = 0.0143h0.0356t−0.0356 ≈ 0.0129 t−0.0356.
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Fig. 6.2: The solution yh and its upper bounds

6.5. The comparison of results describing the stability

behaviour of numerical solution of (6.1)

In this subsection we consider the equation (6.1) and its simplest (Euler) discretization.
Our intention is to discuss the relation between the result presented in Section 5 and
result stated in [34]. We show that the result presented in Section 5 for the implicit Euler
method can be modified also for the explicit Euler discretization and extend the result
from [34]. On this account we consider explicit Euler discretization of (6.1) in the form

yn+1 = Ryn + Sybλnc, (6.22)

where
R := 1 + ah, S := bh. (6.23)

This equation arises from (2.5), where we put τn = λnh and use the piecewise constant
interpolation yh(τn) = ybλnc. Let

n ∈
(
m− 1

1− λ
,
m

1− λ

]
for a suitable m ∈ Z+.

Then we can convert the problem of finding the critical index (see the discussion performed
in Section 5) to the analysis of the characteristic polynomial

P (µ) = µm+1 −Rµm − S. (6.24)

In particular, we focus on the calculation of the maximal value of orderm∗ for which (6.24)
is of a Schur type, and starting from m = m∗ +1 the polynomial looses this property. On
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this account we mention the main result of [34], where the polynomial (6.24) is studied
by use of the Kuruklis’ result on the asymptotic stability of

yn+1 −Ryn − Syn−m = 0

(see [31]).

Theorem 6.11. Let |a|+b < 0, h < 1/(a+ |b|) and let the values R,S be given by (6.23).
Then all the roots of the polynomial (6.24) lie inside the unit disk if and only if

m ≤ m? :=

{
bm0c, m0 6∈ Z+,
m0 − 1, m0 ∈ Z+,

where

m0 =


min{ 1

h(b2−a2)1/2+O(h)

(
arctan (b2−a2)1/2

a
+O(h)

)
, 1

ah
}, for a > 0,

π
4 arcsin(|b|h/2)

− 1
2
, for a = 0,

1
h(b2−a2)1/2+O(h)

(
π + arctan (b2−a2)1/2

a
+O(h)

)
, for a < 0.

(6.25)

Furthermore,

lim
h→0

m∗h =


min{ 1

(b2−a2)1/2 arctan (b2−a2)1/2

a
, 1

a
}, for a > 0,

π
2|b| , for a = 0,

1
(b2−a2)1/2

(
π + arctan (b2−a2)1/2

a

)
, for a < 0.

The main utility of this theorem is following: There exists (see [34]) the critical point t∗ =
1

1−λ
limh→0m

∗h in the sense that the solution of (6.1) displays a tendency to decrease (in
modulus) before t∗ and to increase soon after t∗. The Theorem 6.11 makes the computation
of t∗ effective.

Now we mention our contribution to this discussion which follows from the results
mentioned in Section 5. The equation (6.22) can be also analysed by use of the procedure
performed in Section 5. Indeed, the characteristic polynomial (6.24) is identical with (5.5),
where it is enough to consider R = 1 + ah and S = bh. Therefore we can reformulate the
Theorem 5.2 as follows.

Theorem 6.12. Let |a|+b < 0, h < 1/(a+ |b|) and let the values R,S be given by (6.23).
Then all the roots of the polynomial (6.24) lie inside the unit disk if and only if

m ≤ m? :=

{
bm0c, m0 6∈ Z+,
m0 − 1, m0 ∈ Z+,

where

m0 = 2 arctan

(
−
√

4R2 − (1 +R2 − S2)2

1− S2 −R2 + 2RS

)/
arcsin

√
4R2 − (1 +R2 − S2)2

2R
.

Furthermore,

lim
h→0

m∗h =
2

(b2 − a2)1/2
arctan

(b2 − a2)1/2

a− b
.
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We note that this expression for m∗ in the Theorem 6.12 does not depend on the sign
of a. Moreover, contrary to the corresponding result in [34] we derive the exact expression
for m0 (in particular, the term O(h) involved in (6.25) is specified). Consequently, we can
compute the critical index n∗ =

⌊
m∗

1−λ

⌋
exactly.

We emphasize that the procedure utilized in Section 5 is applicable also in a more
general situation. In particular, we can consider difference equations arising from (5.1)
via more advanced discretizations. E.g. the Θ-method discretization with a piecewise
constant interpolation leads to the recurrence in the form

yn+1 = Ryn + S(Θybλ(n+1)c + (1−Θ)ybλnc), (6.26)

where R, S are given by (6.3). Of course, then we have to analyse the four-term difference
equation (6.26) instead of the previously considered three-term equation (6.22). However,
the advantage of our approach consists in the fact that the previous analysis utilizes the
Schur-Cohn criterion which can be applied for any linear autonomous difference equation
instead of Kuruklis’ result [31] for three-term linear equations which is applied in [34].
This extension of our previous results to more general discretizations of (6.1) is the subject
of further considerations.
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7. Conclusion
The aim of this thesis was to present some qualitative properties of delay difference

equations and their applications to the numerical analysis of given DDEs. A special
attention was paid to the scalar pantograph equation

y′(t) = ay(t) + by(λt), 0 < λ < 1, t ≥ 0

and its various modifications. We described the qualitative (mostly asymptotic and sta-
bility) properties of its Θ-method discretization

yn+1 = Ryn + S
(
βnybλnc + αnybλnc+1 + β̂nybλ(n+1)c + α̂nybλ(n+1)c+1

)
, n = 0, 1, . . .

where R,S are given by (6.3), αn, βn and α̂n, β̂n by (6.4). We compared these properties
with the behaviour of the exact (differential) pantograph equation, which enabled us to
formulate some numerical consequences of these qualitative results. Some comparisons
with the known relevant results have been done and some illustrating examples have been
involved as well. Furthermore, using the Schur-Cohn criterion on the asymptotic stability
of the solutions we analysed a family of three-term difference equations and discussed a
specific stability phenomenon for the Euler discretization of the pantograph equation.

Finally, we mention some open problems and general remarks. We recall that the
problem of the asymptotic stability of the Θ-method discretization of the pantograph
equation (in particular, the necessary and sufficient condition of the asymptotic stability
in the form 1/2 ≤ Θ ≤ 1) is solved only for those λ which are reciprocal to positive
integers. More generally, we pose a conjecture that the asymptotic estimate (6.8) holds
without any restriction on the stepsize h provided 1/2 ≤ Θ ≤ 1. For the time being, this
conjecture is confirmed for Θ = 1, but numerical calculations and experiments indicate its
validity for 1/2 ≤ Θ ≤ 1. Another natural extension of our results concerns the stability
analysis performed in Section 5 for the Euler discretization of the pantograph equation.
We hope that our proof technique can be extended to the analysis of the Θ-method (6.26).

The common investigation of the properties of the studied differential equations and
its difference analogies (obtained via a suitable numerical discretization) was the unified
viewpoint of the considerations and results mentioned in this thesis. This is an impor-
tant aspect of the modern theory of dynamic equations on time scales (see [4] and [5]).
Therefore, this theory can motivate us to other extensions of our previous results.
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