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Abstrakt 
Disertační práce se zabývá vyšetřováním kvalitativních vlastnost í diferenčních rovnic se 
zpožděním, které vznikly diskretizací příslušných diferenciálních rovnic se zpožděním po­
mocí tzv. G-metody. Cílem je analyzovat asymptotické vlastnosti numerického řešení 
těchto rovnic a formulovat jeho horní odhady. Studována je rovněž stabilita vybraných 
numerických diskretizací. Práce obsahuje také srovnání s dosud známými výsledky a 
několik příkladů ilustrujících hlavní dosažené výsledky. 

Summary 
This thesis discusses the qualitative properties of some delay difference equations. These 
equations originate from the G-method discretizations of the differential equations with a 
delayed argument. Our purpose is to analyse the asymptotic properties of these numerical 
solutions and formulate their upper bounds. We also discuss stability properties of the 
studied discretizations. Several illustrating examples and comparisons with the known 
results are presented as well. 
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1. Introduction 
Mathematical modeling of various problems via delay differential equations (DDEs) is 

a conventional and classical topic. It turns out to be useful especially in the situation, 
where the mathematical description of investigated systems depends not only on the 
position of a system in the current time, but also in a preceding time. In such a case the 
modeling via ordinary differential equations (ODEs) turns out to be insufficient. There 
are many interesting applications of these equations in various areas ranging from the 
control theory to industrial problems (see, e.g. [27]). 

It is known that D D E s can be solved analytically only in some exceptional cases. There 
are no special types of D D E s and no computational methods (analogous to basic methods 
utilized for O D E s such as the variation of constants method, the separation of variables 
method and others) which can produce the exact solution. Therefore, the qualitative and 
numerical methods of solving of D D E s are of a fundamental importance even in the study 
of basic (linear) types of DDEs . 

Roughly speaking, basic numerical methods for D D E s originates from the correspond­
ing procedures for ODEs , where some additional operations (especially the interpolation of 
delayed terms) are necessary. The resulting formulae are then delay difference equations. 
Their previous qualitative investigation is rather rare because - contrary to D D E s - there 
do not exist many original significant applications for this type of difference equations. 
Therefore it is just a numerical discretization of D D E s which motivates the investigation 
of delay difference equations. 

The aim of this thesis is to discuss some properties of the numerical solution of a 
special delay differential equation in the form 

y'{t) = ay{t) + by(Xt), 0 < A < 1, t>0, (1.1) 

where a, b G C , which appears as a mathematical model of several problems (see, e.g. [32]). 
Among these applications we mention a technical problem on railways (see [37]) which gave 
the name to (1.1) - namely the pantograph equation. This thesis discusses its ©-method 
discretizations which lead to delay difference equations with some specific properties (in 
particular, all the discretizations discussed throughout this thesis are difference equations 
of a variable order). 

The structure of this thesis is as follows: In Section 2 we consider equation involving 
a general delayed argument and present its ©-method discretization. The form of this 
discretization is discussed in [21]. Section 3 deals with asymptotic analysis of discretized 
nonautonomous equation (1.1). We present the result formulating the upper bound of its 
solutions. The results stated in this section form a part of the paper [8]. 

Section 4 contains extensions of results derived in Section 3. The results presented in 
this section are the subject of the papers [8, 18, 20]. In Subsection 4.1 we consider the 
nonautonomous equation (1.1) with a general delayed argument and derive the extension 
of our results presented in Section 3. Then we consider two simple modifications of the 
equation (1.1) and investigate the asymptotic behaviour of solutions of their discretiza­
tions. In particular, we consider the equation (1.1) with several proportional delays and 
the equation (1.1) involving a forcing term. 

Section 5 discusses stability analysis of the Euler formula for the equation (1.1). The 
results of this section wil l appear in [22]. In Section 6 we present some numerical conse-
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quences of our results and comparisons with the results of other authors. The considera­
tions stated in this section form a part of the papers [8, 21]. 
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2. The derivation of the 0-methods 
for linear DDEs 

We consider the differential equation with a delayed argument in the form 

y'(t) = a(t)y(t) + b(t)y(r(t)), t > t0, (2.1) 

where a(t),b(t),r(t) are continuous (possibly complex valued) functions on [to,co) and 
r(t) is a differentiable function which is strictly monotonically increasing and satisfies 
T(to) = t0, r(t) < t for all t > t0. 

The popular discretization of the equation (2.1) is the well-known G-method involving 
both Euler methods and the trapezoidal rule as particular cases. Some other types of 
discretization of (2.1) are described in [19]. 

Now we sketch derivation of the G-method: The integration of (2.1) yields 

t t t 

J y'(u)du = J a(u)y(u)du + J b(u)y(r(u))du. (2.2) 

0 0 0 

After the discretization we get 

t0+(n+l)h t0+(n+l)h 

Vn+i - y n = J a(u)y(u)du + J b(u)y(r(u))du, (2.3) 

where y „ ~ y(to + nh) and h > 0 is the stepsize. The integrals on the right-hand side of 
(2.3) can be approximated by use of the explicit rectangular formula as well as implicit 
rectangular formula. For the simplification we denote: rn := T(to + nh), fn := (Tn — to)/h, 
an := a(to + nh) and bn := b(to + nh). 

First we approximate both integrals on the right-hand side of the equation (2.3) using 
the rectangular formula with the left grid point, i.e. 

t0+(n+l)h 

a(u)y(u)du « hanyn, 

Since the point r n is not usually a grid point, we approximate the second integral as 

t0+(n+l)h 

b(u)y(T(u))du fa hbnyh{rn), 

tQ+nh 

where we define the value yh(Tn) as the linear interpolation utilizing the left and right 
neighbours of rn, namely 

yh (r„) = (1 - r„) yLm^<ij + ^ y L i n ^ a J + 1 , (2.4) 

where rn := r " ^ f ° — [ r "^ f ° J and the symbol [ J means an integer part. 
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Then the equation (2.3) becomes 

Vn+i = Un + hanyn + hbnyh{rn). (2.5) 

Now we proceed to another way of discretization, which is based on the fact that inte­
grals on the right-hand side of the equation (2.3) are approximated using the rectangular 
formulae with the right grid point. Since the substitution of the first integral is quite 
simple, it is omitted here. The substitution of the second integral has the form 

t0+(n+l)h 
.h b(u)y(r(u))du « hbn+1y (rn+1). 

Thus we get 

Vn+i =Un + han+1yn+1 + hbn+1yh(rn+1). (2.6) 

The linear combination of (2.5) and (2.6) yields the G-method in the form 

Vn+i =Vn + h((l - Q)anyn + Gan+1yn+1 + (1 - Q)bnyh(rn) + Qbn+1yh(rn+1)), (2.7) 

where G G [0,1] and instead of yh(rn), yh(rn+i) we substitute the term from (2.4). Note 
that the equation (2.7) was derived using the procedure stated in [33]. 

Let 1 — Qhan+i ^ 0. Then the equation (2.7) can be also rewritten as 

yn+i = Rnyn + Sn [Pny\jn\ + a n y L ^ j + i + Pny\fn+1\ + ocny\fn+1\+\j , n = 0 , 1 , . . . , (2.8) 

where 

1 + (1 - Q)han bnh 
1 — <anan+i 1 — <anan+i 

and 

an := (1 - G)(f„ - [fn\), j3n := 1 - G - an , 

an := ^ ^ G ( f n + i - L^n+iJ), Pn := ^ r ^ G - an . (2.10) 

Now we present another way of discretization of (2.1). We introduce the substitution 
v = T(U) in (2.2) and denote 

ip(v) := T~l{y). 

Then the equation (2.2) becomes 

t r(t) 

y(t) — y(0) = J a(u)y(u)du + J b(T~l(u))^)'(u)y(u)du. 

0 0 

After the discretization we get 

t0+(n+l)h r(t0+(n+l)h) 

yn+i-yn= J a(u)y(u)du+ J b{T~l {u))ijj'\u)y{u)du. (2.11) 
tg+nh r(to+nh) 
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Both integrals on the right-hand side of the equation (2.11) are replaced as follows: A t 
first, they are approximated via the rectangular formulae with the left grid point. The 
approximation of the second integral has the form 

Tn+l 

bij'1(u))ip''(u)y(u)du « (rn+1 - Tn)bnifj' (r„) yh( 

Thus we get 

Vn+i =Un + hanyn + bn (rn+1 - rn) ( r n ) yh(rn), (2.12) 

where the value yh(Tn) is given by (2.4). Similarly we can arrive at 

Vn+i =Un + han+1yn+1 + bn+1 (rn+1 - rn) (rn+1) yh(rn+1). (2.13) 

Contrary to the previous case the value y / l ( r n + i ) now replace by 

yh {rn+i) = (1 - K) y [ i 2 ^ i i + k n v [ r n - t n i n , (2.14) 

where kn := Tn+1

h~to — [r"~f" j . We note that the value kn can be greater then 1. In 
other words yh(Tn+i) is calculated via the linear interpolation utilizing the left and right 
neighbours of r n . The linear combination of (2.12) and (2.13) yields the O-method in the 
form 

Vn+i = yn + h((l - 0)anyn + Gan+1yn+1) 

+ ( r n + 1 - r n ) ( ( l - 0 ) M > ' ( r „ ) / ( r „ ) + Qbn+1^' {rn+1)yh{rn+1)), (2.15) 

where yh(Tn) and yh(rn+i) are given by (2.4), (2.14) respectively. 
Considering 1 — Qhan+\ ^ 0 the recurrence relation (2.15) can be rewritten as 

Vn+l = Rn,yn + Sn {f3ny\jn\ + any\_fn\+ij , (2.16) 

where Rn, Sn are given by (2.9) and 

an = ^ ( T " + i - Tn) (ip'(Tn) (f„ - [fn\) + ^y^lfj'(rn+1) ( f n + i - [fn\) 

0n = ^ ( T " + i ~~ T™) ^ ' ( T ™ ) + - y ^ ' C ^ + i ) ^ - tin-

Note that this equation can be found in the particular case G = 1/2 in [6]. In the sequel 

we consider the formulae arising from (2.8). 
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3. The asymptotic behaviour of the 
0-method for the nonautonomous 
pantograph equation 

We consider the nonautonomous pantograph equation as the particular case of (2.1) 
via the choice r(t) = \t, 0 < A < 1, in the form 

y'(t) = a(t)y(t) + b(t)y(Xt), t > t 0 . (3.1) 

The procedure sketched in Section 2 yields the recurrence relation 

Vn+l = RnVn + Sn (^/3ny[\ni + Ctny\\n\+\ + /3n2/|A(n+l)J + &ny|A(n+l)J +lj , (3.2) 

11=0,1,..., where Rn, Sn are given by (2.9), i.e. 

_ 1 + (1 - Q)han _ hbn 

1 — <anan+i 1 — <anan+i 

and the relations (2.10) become 

an := (1 - G)(An - |_An_|), f3n := 1 - 6 - an, 

an := ^ G ( A ( n + 1) - [\(n + 1)J), (3n := ^ 0 - an . (3.4) 

We emphasize that the relation (3.2) is a delay difference equation of a variable order. 
More precisely, the order of (3.2) becomes infinite as n —> oo. 

This section presents the result formulating the upper bound of the solutions yn of 
(3.2). To describe this asymptotic estimate we introduce the inequality 

ISnKlAileiAnJ + \®n\Ql\n\+l + |A»I^LA(n+l)J + I«n|Q[X(n+l)\ +1) < (1 ~ \Rn\) Qn, (3.5) 

n = 0 , l , . . . , which plays the key role in our investigations. To simplify the analysis we 
further assume that 

S := sup ( l ^ l ) < oo, fj := sup (|/3 n |+|o; n |+|/5 n |+|a n |) < oo, R := sup (\Rn\) < 1 • (3.6) 

If we set 

(3-7) 
1 - R 

then we can present the explicit form of a solution of (3.5). 

Proposition 3.1. Consider the inequality (3.5) and assume that (3.6) holds. Then the 
sequence 

. - I ( » - ^ r l 0 & ' for7>l, 
( n + _ i _ ) - ' ° ^ f o r 0 < 7 < l ( ' 



defines the positive solution of (3.5) for all n G Z + , n > ( l + A ) / ( l — A). 

Proof: First let 7 > 1. Then gn is the nondecreasing sequence and we can write 

\Sn\ (\Pn\Q[Xn} + | an | 0 |AnJ+ l + \Pn\Q[X(n+l)i + \®n I Q[\(n+1)] + l ) — ^VQ[X(n+l)}+l • 

Substituting the corresponding form of gn one gets 

S77 | A ( " + 1)J + 1 - 1 r < Sty An 
I - A ; - ' v 1 - A 

by use of (3.7). The case 0 < 7 < 1 can be dealt with quite similarly. • 

Now we can state the main assertion of this section formulating the asymptotic esti­
mate of all solutions yn of (3.2). 

Theorem 3.2. Letyn be a solution of the delay difference equation (3.2), where we assume 
the validity of the hypothesis (3.6) and let 7 be given by (3.7). Then 

yn = 0 (n~logA ^) as n -» 00 . (3.9) 

Proof: We introduce the substitution zn = yn/' gn in (3.2), where gn is given by (3.8). 
Then 

Qn+lZn+l — RnQnZn + Sn y/3ng[XnjZ^\nj + C K ^ [ A T X J +1 ^[A"-J + 1 + PnQ\\{n+\)\z\\{n+\)\ 

+&nQ\_\{n+l)\+lZ\\{n+l)\ + l) • (3.10) 

We aim at showing that every solution zn of (3.10) is bounded as n —> oo. Choose 

a 0 > max ( I ± * . , o~o G Z + (3.11) 

and define points o m + \ := [CTm

A~1 J , where m = 0 , 1 , . . . . The condition (3.11) guarantees 
that o"i > <7o and g„ > 0 for n = \_\o~o\, \_\o~o\ + 1, . . . . Moreover, it holds 

X ~ m ( a Q - \ ^ j ) < ^ m < A - V m _ ! , m = l , 2 , . . . . (3.12) 

Further, we introduce intervals Jo : = [|_Acr0J, <7o] P l Z + , 7 m +i := [<rm, <rm+i] P l Z + and denote 

B m : = s u p ( | * f c | , keU]L0Ij), m = 0 , 1 , 2 . . . . (3.13) 

Let n* G / m + i , n* > <rm be arbitrary. Using the inequality [Xn*\ + 1 < am following 
from the definition of o~m+i we wish to express and estimate zn* in terms of Zk, where 
k G U J L Q / J . On this account it is necessary to distinguish the following three cases: 

8 

file:///_/o~o/
file:///_/o~o/


(i) Let = 0. Then 

Zn* = Sn*-i((3n*-iQl\(n*-i)\Zl\(n*-i)l + a n * _ i 0 L A ( n * - l ) J + l £ | A ( n * - l ) J + l 
Qn* 

+(3n*-lQ\\n*\Z\\n*\ + &n*-lQ\_Xn*\+lZ\Xn*• 

Taking absolute values we get 

\zn*\ < BM l-SVi*—1 |(|/3TI* —l|^L-^("*—1)J + \an*-l\Q[X(n*-l)}+l + \fln*-l | Q[Xn*} 
Qn* 

+ \an*-1\gixn*\+i)-

Then using (3.5) we can estimate \zn*\ as 
Qn*-1 \z„*\ < B. m-

If "7 > 1, then gn is the nondecreasing sequence, hence \zn*\ < BM. If 0 < 7 < 1, then we 
can use (3.8), (3.12) and the binomial formula to derive the relation 

M < S m ( l + K x A m ) , (3.14) 

where K\ is a positive real constant. 

1 Pi 17 + A/Tnl + l T ^ n T i n - o m i Q + m n CX 1 i\\ k-ir FT" 

Rl 
(ii) Let Rn ^ 0 for any n G [am, n* — 1] P l Z + . Mult iplying the equation (3.10) by YY^=a -j^ 
we obtain 

A ( — j = Sn (j3nQ\\n\Z\\n\ + CtnQyX^+lZyx^+l + /3n£>|A(™+l)FlA(™+l)J 

1 
+«n^LA(n+l)J+l^LA(n+l)J+l) 

£=<7M 

where we put nf=jt "F̂  = 1 f ° r a n y ^ ^ Summing this relation from <rm to n* — 1 we 
arrive at 

n* —1 n* — 1 

j ^ - - ^ C T M ^ ( 7 M = ^2 SP{^PQ\^P\Z\^P\ + apQ\\p\+lZ\\p\+l 
, R l 

P j 
+^P^LA (P+1 ) J^LA (P+1 ) J + « P ^ L A ( P + I ) J + I ^ L A ( P + I ) J + I ) I I ft 

l=<Jm 

i.e. 

n* —1 _̂  n* —1 

~ C T m " ^ m - R H ^2 Sv{PvQYMzYM + avQyxp\+iZ\xv\+\ 
Q,, 

l=om P=<? 
n*-l 

+PpQlx(p+i)}Zix(p+i)} + apQix(p+i)}+iZix(p+i)}+i) Y\ Rl-
I=P+I 
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Then 
/ n* — 1 n* — 1 n* — 1 it, — _ i _ j it, — _ i _ it, — _ i _ \ 

n I ^ I + — E a - i ^ D f t n I^I (3- 1 5 ) 
i=CTm p=crm i=p+l 

by use of (3.5). Now we consider the obvious identity 

n* — 1 n*—1 

( i - i H p D n 1 ^ 1 = A n i ^ i -
Z=p+1 2=p 

Substituting this into (3.15) and summing by parts one gets 

n* — 1 n* —1 n* —1 

lz * l < B 
\*"n*\ — J-'m 

I V A - I t, -L. It, A-

Qn* , Qn , 

( n* —1 n*— 1 n* —1 n* —1 * 

— n n \ * \ — - E n 
í?n* , . í?n* , , . Qn* 

l=Om l—CTm P=Vml=p+l 

1 n * - l n * - l x 

1 - — E a ^ n 1̂ 1 

I n* — 1 A •/>* 1 

5m I 1 
P=CTm ^' Z=JJ 

If 7 > 1) then £>p is nondecreasing, hence Agp > 0 and \zn*\ < BM. If 0 < 7 < 1, then AQP 

is negative and nondecreasing, hence 

< BM 1 

Substituting the corresponding form of gn we can derive 

I W ( l - H ) (1 - H)(<r m + 1 + j í A/ ?A7 

Considering (3.12) and using the binomial formula we arrive at 

Q*m+10--R) 7 ( 1 - 5 ) a 

where 
logA7 

1(1 - Ř)(*o ~ ^ 
K2 = — ^ 1 + A , > 0• (3.16) 
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Consequently, 
M <Bm{l + K2\m). (3.17) 

(iii) Let Rn*-i 7̂  0 and Rk = 0 for some k G [<rm,n* — 2] f l Z + . The proof technique 
applied in this case is a combination of procedures utilized in cases (i)-(ii) and therefore 
we present only the main idea. 

First we denote a* := sup(fc, k G [<rm,n* — 2] n Z + and Rk = 0). Then we multiply 
the equation (3.10) by nL<r*+i it a n ( ^ s u m fr°m cr* + 1 to n* — 1 to obtain 

n* — 1 n* — 1 

^n* = G + ^<T*+I ]^[ -Rz H ^2 SP (/3pQi\P]Zi\pj + ctp^LApJ+i^L^pJ+i 
= i * ) * 11 * 11 

n * - l 

+PPQl\(p+i)]Zl\(p+i)] + SP^LA(P+I)J+I^LA(P+I)J+I) n ^z-

The definition of a* implies i?CT* = 0, hence by the case (i) we can use the estimate 

I w l < ^ m ( l + K i A m ) . 

Then the application of (3.5) yields 

n* — 1 n* — 1 n* — 1 

M < s m ( i + K i A m ) ( ^ ± i n ^ ( i - i i 2p i )ep n I^I) -
Z=CT*+1 p=(T* + l l=p+l 

The right-hand side of this inequality is a modification of the corresponding term involved 
in (3.15) with am replaced by a* + 1. Using the same line of arguments as given in the 
case (ii) we arrive at 

M < Bm(l + K i A m ) ( l + K2\m) < Bm{l + K3\m), (3.18) 

where K3 is a positive real constant. 

Summarizing cases (i)-(iii), the estimates (3.14), (3.17) and (3.18) imply that 

\zn*\ < Bm(l + K\m) a s m ^ o o 

for arbitrary n* G Im+i, n* > am and a suitable K > 0. Consequently, 

m K 
Bm+i <Bm(l + K\m) < B0 11 (1 + KXj) < B0 e x p l ^ — - } (3.19) 

3=0 

and the sequence (Bm) is uniformly bounded. The estimate (3.9) is proved. • 

Remark 3.3. The significance of the hypothesis (3.6) consists in the fact that it provides 
the explicit form of a solution gn of the inequality (3.5) and thus enables us to formulate the 
effective asymptotic criterion for the G-method (3.2). Let us emphasize that the Theorem 
3.2 can be extended to particular cases of (3.2) not satisfying some of the assumptions 
involved in (3.6). 

To outline this possible extension we first assume that \Sn\ is a nondecreasing and 
unbounded sequence, i.e. S = oo (the validity of other assumptions of (3.6) remains 
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preserved). Then the inequality (3.5) always admits a positive and increasing solution gn. 
Indeed, e.g. the sequence 

gn = (rj\Sn\/(l-R))n 

satisfies (3.5) for all n large enough. Now it is easy to verify that the technique applied in 
the proof of the Theorem 3.2 is utilizable also provided such a solution gn is considered 
instead of (3.8). In particular, Agn > 0 for all n large enough and we can omit the parts 
of the proof discussing the asymptotic stable case. Then the asymptotic bound (3.9) 
presented in the Theorem 3.2 can be slightly modified as 

Vn = 0(gn) as n > oo. (3.20) 

Of course, this asymptotic estimate (with the above specified gn) may be too rough 
in particular cases. Then, considering a concrete equation, we can try to find a more 
suitable (positive and increasing) solution gn of (3.5) representing the stronger upper 
bound sequence for the estimate (3.20). The illustration of this procedure is given in the 
Example 3.4. 

Similarly we can discuss the case fj = oo as well as the case S = fj = oo. The possible 
omission of the last condition of (3.6), namely R < 1, is the most interesting point. First 
note that if | i ? n | > 1 for all n sufficiently large, then the inequality (3.5) does not admit 
any positive solution gn. In particular, if an = a is a constant, then the assumption R < 1 
(which is satisfied if and only if 2Re a < (2G — l ) | a | 2 / i ) cannot be omitted. If an is not 
a constant, then we can consider the case where | i ? n | < 1 for all n sufficiently large and 
l i m ^ o o \Rn\ = 1, i.e. R = 1. Under some particular choices of bn the inequality (3.5) can 
admit a positive and nondecreasing solution gn, hence the estimate (3.20) remains valid. 
In particular, if we substitute gn = const into (3.5), then we obtain the inequality 

\Sn\ (\Pn\ + \an\ + | A i l + < 1 - \Rn\ , 7i = 0, 1, . . . , 

which is the condition guaranteing (without assuming (3.6)) the stability of the discretiza­
tion (3.2). The case where gn decreases is much more complicated. Besides the determi­
nation of the form of gn we have to verify some additional nontrivial requirements on gn 

and an following from calculations performed in the corresponding part of the proof of 
the Theorem 3.2. 

To summarize, in particular cases the omission of some assumptions involved in the 
hypothesis (3.6) is possible, but searching for a suitable solution gn of (3.5) without 
assuming (3.6) is, in general, a difficult task (especially in the asymptotic stable case). 

The following example illustrates the extension of the Theorem 3.2 to the case where 
the assumption S < oo is not satisfied. 

Example 3.4. We consider the differential equation 

y'(t) = ay(t) + bty(t/2), t>0, 

where a < 0 and b ̂  0 are real scalars. The discretization of this equation based on the 
recurrence (3.2) with G = 1/2 yields the relation 

yn+1 = Ryn + Sn{(3nyyn/2\ + any\n/2\+\ + Pnyy(n+i)/2\ + anyj(n+i)/2j+i) (3.21) 
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with 

and 

R 
2 +ha 
2 - ha 

S „ 
2bnh2 

ha 

a.,, 

( \ .-> i 

0, n is even, 
\ , n is odd, 

I + ik> n i s e v e n > 
0. 77. is odd, 

2, n is even, 
| , n is odd, 

- + -
2 ^ 2n' 

77 is odd, 

i.e. a n + (3n + S n + /3„ 1 + 2^ for all ?7 1,2, . . . . Although the assumption S < oo 
involved in the hypothesis (3.6) is not satisfied, we outline the applicability of the Theorem 
3.2 regardless of the invalidity of (3.6). It is enough to find an appropriate solution of the 
inequality 

\Sn\(PnQ\n/2\ + CinQ\n/2\+l + PnQ\_(n+l)/2\ + S n ^ L ( n + i ) / 2 J + l ) < (1 — \R\)Qn (3.22) 

resulting from (3.5). On this account we consider the auxiliary functional equation 

t. 
t>0, 

p, q > 0 are real scalars, which turns out to be of the key importance in this investigation. 
To our knowledge, one of the first papers discussing this equation was that of [12]. Uti l izing 
the Mell in transform method the searched solution ip was derived in the form 

£ l ° g 2 f + 5 ( l 0 S 2 * + l ) _ 

This relation (with p = 2\b\h2/\2 — ha\ and q 
modified to obtain the form 

13/2 

12 + ha\/\2 — ha\) can be only slightly 

77 
II 

77 
3) 1 ? 2 f + 5( l o S2("-3)+l) (3.23) 

defining the required solution of (3.22) for n > 7. Indeed, since gn is eventually increasing 
and an + j3n + an + j3n = 1 + ^- we can simplify the inequality (3.22) as 

\Sn\ (1 + ^)^L(«+1)/2J+1 < (! - \R\)Qn-

Then substituting (3.23) into this relation and using some straightforward calculations 
one can check the validity of this inequality. 

Then the Theorem 3.2 with respect to the Remark 3.3 implies that 

O 77 ?2 |2-feaH2 + fea|+|(l0g2 

for any solution yn of (3.21) 

The previous example described the asymptotic bound for the solution of the delay 
difference equation (3.2) with O = 1/2 arising from the nonautonomous equation (3.1). 
The application of the Theorem 3.2 to the significant autonomous case a(t) = a, b(t) = 
b wi l l be discussed in Section 6. Here we also mention some relevant references and 
comparisons with the known results. 
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4. The asymptotic analysis of the 
0-method for the modified 
pantograph equation 

In this section, we discuss possible extensions of the Theorem 3.2 and related proof 
technique. Some of these extensions are quite straightforward (e.g. the involvement of 
several proportional delays into our considerations), while others require some additional 
operations. 

4.1. The equation (3.1) with a general delay 
We focus on the asymptotic investigation of the G-method 

yn+1 = Rnyn + Sn (pnV\rn\ + a n y [ T n i + 1 + J3ny[Tn+li + any[Tn+li+1^ (4.1) 

with RnjSn given by (2.9) and an, f3n,an, (3n given by (2.10), which originates from the 
discretization of the differential equation 

y'(t) = a(t)y(t) + b(t)y(r(t)), t > t 0 , (4.2) 

involving a general delayed argument (see Section 2 and the equations (2.1) and (2.8)). 
The asymptotic investigation of equations (4.2) and (4.1) is less developed than the 

study of their particular cases (3.1) and (3.2). Among papers related to our discussions on 
(4.2) we refer to papers [7, 9, 14, 36], where some asymptotic estimations for the equation 
(4.2) with infinite time lag (i.e. such that limsup(t — r(t)) = oo as t —> oo) have been 
performed. The derivation of the corresponding G-method discretization (4.1) as well as 
discussions on the stability analysis of (4.1) belong to the topics of papers [6, 15]. 

To analyse the asymptotics of (4.1), we have to appropriately modify the key inequality 
(3.5). As it might be expected, the relation 

\Sn\ (\(3n\Q\rn\ + Wn\Q\rn\+l + lAll^Tn+lJ + I «n I Q\rn+l\ +l) < i1 ~ \Rn\) Qn, 7i = 0, 1, . . . 
(4.3) 

seems to be the natural replacement of (3.5). To confirm this conjecture we start with 
the searching for a suitable solution of (4.3). On this account we consider the auxiliary 
functional equation 

<p(r(t)) = Kif(t), K = r'(t0), t>to (4.4) 

which is usually referred to as the Schroder equation. It is known (see, e.g. [28]) that if 
T G C2([to, oo)), r(to) = ^ 0 ) T~(t) < t for all t > to, r' is positive on [to, oo) and r'(to) < 1, 
then there exists a unique strictly increasing and continuously differentiable solution if of 
(4.4) satisfying <p'(to) = 1. This solution is given by the formula 

<p(t) = l im K - n ( r n ( t ) -t0), t > t 0 , (4.5) 
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where rn means the n-th iterate of r. In the sequel we mention a slightly modified version 
of this result, where further condition on r (namely r' nonincreasing) is imposed to ensure 
some additional properties of ip. We utilize these properties in the proof of the main result 
of this section. 

Proposition 4.1. Let r G C2([to,co)) be such that r(to) = to, r(t) < t for all t > to, 
T' is positive and nonincreasing on [to,oo) and r'(to) < 1. Then the function ip defined 
by (4-5) is the solution of (4-4) such that <p' is positive, continuous and nonincreasing on 
[to, oo) and, furthermore, (p'(t)/ip(t) < l/(t — to) for all t > to. 

Proof: Differentiating (4.4) one can obtain 

ip'(r(t)y(t) = K<p'(t), t > to 

which implies that ip' is positive and nonincreasing. Similarly, 

m & < & 1

 t > t • 
<p(t) <p(t)-<p(to) - <p>(t)(t-to) t-to' °" 

Throughout this section we shall assume that all the assumptions imposed on r in the 
Proposition 4.1 are satisfied and ip is the function defined by (4.5) with the properties 
guaranteed by the Proposition 4.1. Then we consider the differential equation (4.2), its 
G - method discretization (4.1) and the inequality (4.3). To formulate the upper bound 
of the solutions of (4.1) it is necessary to present the exact form of the solutions of (4.3). 

Proposition 4.2. Consider the inequality (4-3) and assume that (3.6) holds. Further, let 
t* > to be a (unique) real root of the equation t — r{t + h) = h and let k* = [(t* — to)/h\ +1. 
Then 

frfo + (n - k*)h))~^ f o r 7 > l , 
(<p(t0 + (n + k*)h))-l°^ f o r 0 < 7 < l , K ' 

where 7 , fj are given by (3.7) and (3.6) respectively, defines the solution of (4-3). More­
over, if 7 > 1, then Agn is nonnegative and if 0 < 7 < 1, then Agn is negative and 
nondecreasing. 

Proof: First let 7 > 1. Then gn is nondecreasing and 

\Sn\ (\/3n\Q[fn} + \an\g[fni+l + \dn\g[fn+1i + | S n | ^ L r „ + i J + l ) < Sf]Qlfn+1]+i 

Substituting the corresponding form of gn one gets 

Sfjglfn+li+i < Sfj(tp(to + fn+1h + h-k*h))-l°z^ 

= ~Sf}(ip(rn+l + h-k*h))-l°^ 

< Sf}(<p(Tn-k.))-los^ = (1-R)gn 

by use of (4.4). 
The case 0 < 7 < 1 can be dealt with quite similarly. Moreover, the additional 

properties of Agn follow from the corresponding properties of ip. • 
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Remark 4.3. The sequence (4.6) is defined for all n > k* provided 7 > 1. If 0 < 7 < 1, 
then gn defines the solution of (4.3) for all n > 0. 

Now we can formulate the following generalization of the Theorem 3.2. 

Theorem 4.4. Letyn be a solution of (4-1), where we assume the validity of the hypothesis 
(3.6), let 7 be given by (3.7) and let K = r'(to)- Then 

yn = 0 ( ( ^ ( n ) ) " l o s ^ ) as n - 0 0 . (4.7) 

Proof: The proof method is a modification of the procedure utilized in the proof of the 
Theorem 3.2. First we introduce the substitution zn = yn/gn, where gn is given by (4.6). 
Then 

Qn+lZn+l = ^ n Qn Zn + Sn (\(3n\Q\jn\Z\Tn\ + l^nl^LTnJ+l^L^nJ+l + \Pn\ 

Man\Q\jn+1\+\Z\rn+1\+\) • 

Choose <70 > max (jz^, -—(f°+fc fe)-fo^ a Q £ j+ a n c [ d e f i n e jQ : = [|_fCT0J, a0] D Z + , om+i := 

L r " 1 ( f 0 + ( C T r " 1 ) f c ) " f ° J > W i == Wm,o-m+i] n Z+, fim := sup( |^ | , ft; G U ^ - ) , m = 0 , 1 , . . .. 
Now considering arbitrary n* G Im+i, n* > am we distinguish the following cases: 

(i) Let Rn*-i = 0. Using the same line of arguments as given in the proof of the Theorem 
3.2 we arrive at the estimate 

\ z I < ^ ! z i B 

I ^n* I _ -L^m • 
Qn* 

If 7 > 1 then \zn*\ < _B m . If 0 < 7 < 1, then we utilize the mean value theorem, the 
binomial formula and properties of ip guaranteed by the Proposition 4.1 to rewrite the 
term Qn*-i/' Qn* as 

Qn*-i ( ¥>(*o + (n* + k*)h) 
ip(t0 + (n* - 1 + k*)h) 

^(t0 + [n* + k*)h) - <p(t0 + (n* - 1 + fc*)ft) 
1 + 

<p(t0 + (n* - 1 + fc*)/i) 

< +

+ ^ - 1 + F C » V ° 8 K ' < + J - V ° 5 K ' < 1 + * I 

where K\ is a positive real constant. Consequently, 

M < £ m ( l + — ) . 

(ii) Let Rn 7^ 0 for any n G [<rm, n* — 1] P l Z + . Applying the corresponding steps performed 
in the proof of the Theorem 3.2 we can derive the estimate 

Zn* < BM I 1 — 
i n* —1 * n* —1 

On* ^ \ ~\Rn\ 1 1 ' P=crm

 F l—p 
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If 7 > 1, then \zn*\ < Bm. If 0 < 7 < 1, then, by the Proposition 4.2, Agp is negative and 
nondecreasing, hence 

\zn* I < Bm [ 1 —— I . 

To estimate the ratio term we use the mean value theorem and the monotonicity of ip' to 
obtain 

- A 6 ( J m = (^(t 0 + ( a m + r ) / i ) ) - l o s ^ - ( ^ ( t 0 + ( a m + l + r ) / i ) ) - l o s ^ 

< h\ogK j(<p(t0 + (am + fc»)-lo^-y(t0 + ( a m + fc». 

Similarly, 

ft,m+1 = (<p(t0 + (am+i + k*)h))-los^ 
> ^{T-\tQ + {am-l)h) + k*h))-l°^ 

> {Cip{r-l{to + {am-l)h)))-10^ 

by use of (4.4), C being a suitable positive real constant. Consequently, 

- A 6 a m _ < / C \ l o s ^ hlogKjV'(t0 + (am + k*)h) < K2 

gam+1(l-R) \KJ l - R ip{t0 + {(TM + k*)h) a. 

and 
( K2 \Zn*\ <Bm[l-\ 

where K2 is a positive real constant. 

(hi) Let Rn*-i 7^ 0 and Rk = 0 for some k G [am,n* — 2] fl Z + . This case is fully covered 
by the corresponding part of the proof of the Theorem 3.2. 

The cases (i)-(iii) imply that 

\zn*\ < Bm (1 + Of—) ) a s m ^ o o , 
V °m ) 

where n* G Im+i, n* > am is arbitrary. Hence Bm+\ < Bm(l + 0(l/am)) and it remains 
to show that the product n j l i U + V a j ) converges as m —> 00. Using the property 
5(f(t + to) > (f(5t + to), t > 0, 5 > 1 following from the properties of </3 stated in the 
Proposition 4.1 we can write 

0"m+l > ^ ( T _ 1 ( ( a m - l ) / i + t 0 ) - - / i ) 

> i ^ - 1 ( ^ ( i ( a m - l ) / i + t 0 )) - to - Ai) 

1 1 
= —<ym 1 

K K 
hence am > K m(<Jo — j^1) and the corresponding infinite product converges. Now the 
validity of (4.7) follows from the boundedness of Bm a s m - > o o . • 
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Remark 4.5. We can verify that the Theorem 4.4 actually represents the direct gene­
ralization of the Theorem 3.2. Indeed, if r(t) = Xt, 0 < A < 1, t > 0, then all the 
assumptions of the Proposition 4.1 are satisfied and the corresponding Schroder equation 

ip(Xt) = X(f(t), t > 0 

admits the identity function as the required solution. Now obviously the asymptotic 
property (4.7) becomes (3.9). 

To illustrate the applicability of the Theorem 4.4 also to other types of delays we 
consider the differential equation (4.2) with the power delayed argument in the form 

y'{t) = a{t)y{t) + b{t)y{t"), t > l , (4.8) 

where 0 < ui < 1 is a real scalar and a, b are nonzero continuous functions on [1, oo). The 
0-method formula (4.1) now yields the recurrence relation 

Vn+l — Rnyn + Sn ypny^(l + nh)"-l ^ + q ? n j ^ ( l + n f e ) " - l j | 1 + / ? n j ^ ( l + ( n + l ) h ) " - l j 

+ a? n^(i+(n+i)h)"-ij 11j , (4.9) 

where R„, Sn are given by (2.9) with an = a(l + nh), bn = b(l + nh) and 

a n : = ( l - B ) ( [ ^ J)) Pn •= 1 - 8 - a „ , 

& „ + 1 ^ ( l + (n + l ) f e ) " - l , ( l + (n + l ) f e ) " - l „ ^ ^ 
a - : = T T 0 ( S L S J ) ' ^ : = ~ a n ' 

To apply the conclusion of the Theorem 4.4 it is easy check that the assumptions imposed 
on r in the Proposition 4.1 are satisfied. Then the asymptotic property (4.7) yields 
the effective result for the equation (4.9) provided we are able to solve explicitly the 
corresponding Schroder equation (4.4). This task is not difficult because considering 
r(t) = t^3 the relation (4.4) becomes the functional equation 

(p(f) = LO(f(t), t > 1 

with the solution ip(t) = \ogt. Hence, we can present the following consequence of the 
Theorem 4.4. 

Corollary 4.6. Let y„ be a solution of (4-9), where we assume the validity of the hypoth­
esis (3.6) and let 7 be given by (3.7). Then 

yn = 0 ( ( l o g n ) - l o g ^ ) as n - » 0 0 . (4.10) 

Discussing some particular cases of (4.8) we can observe close similarities between the 
formula (4.10) and the asymptotics of the exact equation (4.8) investigated, e.g. in [7]. 
Indeed, it follows from the Theorem 3.1 and the Corollary 3.6 of [7] that under some 
additional assumptions on coefficients a and b the upper bound for the exact solution of 
(4.8) can be expressed via the function (logt) _ < 5 , 6 = log^ Q, where Q > 0 is a majorant 
constant of the ratio \b(t)/a(t)\ which is assumed to be uniformly bounded on [1, 00) . For 
other results discussing this type of asymptotics of the differential equations with a power 
deviating argument we refer to paper [36] (the delayed case) and [13] (the advanced case). 
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4.2. The equation (3.1) with several delays 
In this subsection, we discuss the numerical properties of the equation (3.1) with several 
proportional delays. For the sake of simplicity we consider the corresponding equation 
with constant coefficients. The extension to the nonautonomous case can be easily done 
via the modified proof technique employed in Section 3. 

We consider the D D E 

k 
y'(t) = ay(t) + Y,biy(\it), t>0, (4.11) 

i=i 

where a, bi ^ 0 are complex scalars, 0 < Aj < 1 are real scalars, i G {1, 2 , . . . , k}. We focus 
on delay difference equations arising from (4.11) by use of the G-method discretization. 

Using the procedure analogical with the procedure of derivation of (2.8) we arrive at 

k 
yn+i = Ryn + Si (finjViXin} + ctn,iy\\in\+i + fin,iyy\l(n+i)\ + an}iyiXi(n+i)i+ij , (4.12) 

i=l 

n = 0 , l , . . . , where y„ ~ y(nh), h is the stepsize, 

_ l + ( l - 0 ) / m Cl hk 
ti '•— : -7T, , Oi :-

1-Qha ' 1 - e h a 

and 
a n t i := (1 - 0)(Ajn - LA^nJ), j3nti := 1 - Q - a n : i , 

a n : i := 0(Aj(n + 1) - [\i(n + 1)J), (3n:i := 0 - a n t i . 

Now we present the inequality which is useful in our further calculations. It is analo­
gous to (3.5) and has the form: 

k 

,i\Ql\in] + \an,i\Q[Xtni+l + \Pn,i\Q[Xi(n+l)i + \Q[\t(n+l)]+l ) < (1 ~ \R\)Qn, 

(4.13) 
n = 0 , l , . . . . Assuming 

\R\ < 1 (4.14) 

we can formulate the following assertion. 

Lemma 4.7. Let (4-H) hold. Then the sequence 

( n + I l j ) - ^ f o r 0 < 7 < l , ' ' 

where 

and 

A ; = maxCAx,A 2 , . . A f c) for 7 > 1, ( 4 l g ) 

1 mm(Ai , A 2 , . . . A f c) for 0 < 7 < 1 v y 

i-|i?| ' 
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is a solution of the inequality (4-13). 

Proof: We only deal with the case 7 < 1 because the case 7 > 1 is analogical. If 7 < 1, 
then gn is a decreasing sequence. Hence we can write 

k k 

^ I S i I (\Pn,i\Ql\in\ + \Oin,i\QV\in\ + \ + \Pn,i\QlXi(n+l)\ + |«n,i|£|Ai(Ti+l)J + l ) — E I ̂  I £|Ai™J " 

Further 

i=l 

< 

< 

E 
i=i 

k 

E 
i=l 

E 
i=l 

E 
i=l 

k 

E 
i=l 

Sj |(Ain - 1 + 
1 - A y 

?A7 

Si | (Ain + - - - ) 

1 - A ; 
Si | (An + 

• l°gx 7 

S i | A - l 0 ^ ^ n . 

= (1-|#IK- • 

The main result of this subsection is the following 

Theorem 4.8. Let yn be a solution of (4-12), where \R\ < 1, St 7^ 0 and 0 < Aj < 1 for 
all i 6 { 1 , 2 , . . . , k}. Further let A be given by (4-16). Then 

yn = O (n l o g A ^ ) as n —* 00 , 7:= 
1 - l-Rl 

(4.17) 

Proof: We use the substitution zn = yn/Qn in (4.12), where gn is given by (4.15). Then 

fe 

i=l 

+Ai , i£ |_A i (n+l)J^LM™+l)J + ««,^LAi(n+l)J+l Z L^("+l)J+l) • ( 4 - l 8 ) 

1 + A 2 - A 
Now we choose 

Co > max 
1 - A ' (1 - A)A 

, 2 1 o g A 7 , 

cr0 G Z + and define points crm+i := L ^ ^ A J ' w n e r e " 2 = 0,1, After some calculations, 
we obtain 

A " m ( C T ° " 13^) - a m - A " V — i ' m G Z + • (4-19) 
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Next we introduce intervals Io := [A(<7o — 1), <To] H Z + , Im+i '•= K , (Jm+i\ H Z + and denote 

B m : = s u p ( | * 8 | , s G U ^ ) , m = 0 , 1 , 2 . . . . (4.20) 

Now we choose n* G / m + i , n* > a m arbitrarily and distinguish two cases with respect to 
R. 

(i) First, we deal with the case R = 0. In this case 

k 
Zn* — ^ Si (/3n*-l,iQ[Xi{n*-l)i Z[Xi{n*-l)j + ®n*-l,iQ[\i(n*-l)}+lZ[\i(n* 

Qn* . = 1 

+ /3n*-l,i0|Ai™*FLWJ + ^n*-l,i£|Ai»»*J+l2;L*in*J+l ) ' 

hence 

it 
| z 

1 fe 

*| < - B m l ^ i l (|^n*-l,t|gLAj(n*-l)J + |Q!n*-l,t|gLAi(n*-l)J+l 
ft' ,=1 

+ |/3n*-l,i|̂ L^*T»*J + \®n*-l,i\Q[Kn*\+l 

Using (4.13), we arrive at 

| -̂ n* | _ -^m • 

If 7 > 1 then gn is the nondecreasing sequence and we obtain \zn*\ < Bm. If 0 < 7 < 1, 
we derive with respect to (4.15), (4.19) and the binomial formula the relation 

Qn*-1 n t" T Z A 
* , 1 1 \ ~ 1 O S A 7 

< 
Cm y 

1 2 log A 7 
< = ^ < 1 + 

C m 

This inequality implies 

M<Bm(l+ 2l°gxJxXm)- (4-21) 

(ii) Let R 7̂  0 . Then we can multiply the equation (4.18) by -^+T and get 

1 fe 

+/3n,i0|Ai(™+l)FLM™+l)J + «n,i^L^(i+l)J+l ZL^(i+l)J+l 

If we sum this relation from am to n* — 1, then we obtain 

n* — 1 1 A: 
= 2 ^ 2 ^ 6 i W^LAipj^LAiPJ + OiP,iQy\iP\+izVXiP\+\ 

P=crm i—1 

+/3p,iQ[xi{p+i)]Zixi{P+i)] + aPii^LAj(p+i)j+i^LA<(p+i)J+i) 1 

21 



i.e. 
n* — 1 k 

Qn* Qn* " • , 

Thus 

Q&m | D|n.*-CTm i l-^l 
Pj 

+ \aP,i\g[xtP]+i + |/3Pii|̂ LA«(p+i)j + |Sp,i|̂ LA«(p+i)J+i)) • 

Using (4.13), we get 

P=CTm 

Now using the relation 

and summing by parts we get 
n * — l / , \ p 

A f ' V (4.23) 

2 * < £? 

Qn* Qn* Qn* \R\P 

s P—°m y 

n * - l 

n*-l 
\R\r  

gn* ^ \R\r+^kp 

Now using (4.23), we get 

M < 5 m ( 1 - > 
\RT_ %^ _Ag^ f J _ \ 

p=am 

If 7 > 1 then gp is nondecreasing, therefore Agp > 0 and \zn*\ < Bm. In the case 0 < 7 < 1, 
some simple calculations are necessary to derive that Agp is negative and nondecreasing. 
Hence, we can write 

n* — l / ^ N pN 

l-|i?| ^ ^ \\R\) 
p=am 

Bm [ 1 ^ A ^ ' 1 1 

< B m ( l + 

1-\R\ gn* \\R\n* \R\°« 

1 " \R\ Qn* 

1 Aga,n 

l - l ^ l ft*, 
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Substituting the corresponding form of gn (see (4.15)) and using the binomial formula, 
we can derive 

~ ^Qam = Qam — Qam + 1 

K , + -^y10^ - (am+1+y^X)~1OSX" 

(am + — ) - (1 + ^ ) - l o g ^ ) 
° m * l - A 

< + — ) - i O S ^ ( l - ( l + ~ ^ g ^ ) ) 

1 
1 — A 

1 
1 — A 

1 
1 — A 

1 
1 — A 

5 A 7 l o g A 7 

and analogically 

, 1 
l - A ' 

.1 1 1 

?A7 

?A7 

?A7 
VA ' A 1 - A 

Considering (4.19) we arrive at 

~ A g C T m fogA 7 1 < logA 7 1 A m 
& m + 1 ( l " |A | ) - 7(1 " o-m ~ 7(1 - |i?|) ( a 0 - g j ) ' 

Hence 

M^+W^m^W)^- <4-24) 

Using the notation 
T 2 log A 7 

summarizing cases (i)-(ii) and using the estimates (4.21) and (4.24) we get 

\zn*\ < Bm(l + L A m ) as m —> oo 

for arbitrary n* G Ln+i , n* > <rm. Thus 

5 m + i < L m ( l + L A m ) a s m ^ o o . 

Now we can estimate Bm+\ as 

L m + i < Bm (1 + L A m ) < B0 f[ (1 + L A ' ) 
j'=o 

OO j 
< L 0 J] (1 + L A ' ) < L 0 e x p ( L — 

3=0 
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Thus 
BM < BQ exp(L- -) as m —> oo. 

1 — A 
The estimate (4.17) is proved. • 

Remark 4.9. We can specify the O-term in (4.17). Following some steps in the proof of 
the Theorem 4.8 we obtain the estimate (4.17) in the form 

\Vn\ < Kn~los^ for n = a0, a0 + 1, a0 + 2 , . . . , 

where K := BQ exp(Lj^). Note that the constant L is given by (4.25) and B0 can be 
computed via (4.20) as 

B0 : = sup(\yn\/Qn, n G [LA(a 0 - 1)J, a0] D Z+). (4.26) 

The constant o~o should be proposed with respect to a concrete equation. If we choose 
(To > m a x ( l ^ , ^Zx)\i 2 1 ° g A 7 ) too small, then the constant L can be too large and the 
estimate (4.17) becomes worse. If we choose cr0 too large, then it wil l be necessary to 
calculate the constant B0 in (4.26) in too large interval. 

Example 4.10. In this example we illustrate the application of the Theorem 4.8. Let 
us consider the following initial value problem 

y'{t) = -y(t) - 0.25y(t/4) - 0.2y(t/3), t>0, y(0) = 1. (4.27) 

After a trapezoidal rule discretization of (4.27) with the stepsize h = 0.05 we obtain 

yo = 1, 
3 9 1 (a a - \ 

yn+l = -^Vn - — \Pn,iy\n/i\ + Otn,lV\n/i\+l + Pn,lVL(n+1)/4J + Cin,iy\(n+1)/A\+1 J 

where 

and 

~205 (^ n ' 2 ? / L"/3j + an,2y[n/3\+l + Pn,2yi(n+l)/3\ + «n,2yL(i+1)/3J+1 ) • 

a n , i := l /2(n /4 - \n/A\), f3njl := 1/2 - an,u 

a n , i := l /2((n + l) /4 - [{n + 1)/4J), ^,1 := 1/2 - a n , 2 

a n i 2 := l /2 (n /3 - L«/3J), /3„,2 := 1/2 - a n ,i , 

a n , 2 := l /2((n + l) /3 - [{n + 1)/3J), A , , 2 := 1/2 - a n , 2 . 

Now if we set <7o = 488, then using the Theorem 4.8 with respect to the Remark 4.9 we 
obtain the estimate 

\yn\ < 2 . 1 3 8 n " a 5 7 6 , for n = 488,489, . . . (4.28) 

For a better graphic illustration we denote yh(t) as the linear interpolation of {yn}n=o°; 
i.e. 

y\t) = ( n + l )

h

k - -yn + t-^yn+1, te[nh,(n + l)h], n = 0 , 1 , 2 , . . . (4.29) 

and consider t G [25,4000]. The Fig . 4.1 displays the real numerical solution of the 
problem (4.27) and its upper bound g(t) = 2 . 1 3 8 / i a 5 7 6 r 0 - 5 7 6 w 0 . 3 8 0 7 r 0 5 7 6 . 
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0.06 

0.04 

0.02 

-0.02 

4000 t 

Fig . 4.1: The solution yh(t) and its estimate. 

4.3. The equation (3.1) with a forcing term 
We extend the problem of the study of numerical discretization of (3.1) to the nonho-
mogenous case. We consider the equation 

y'(t) = ay(t) + by(\t) + f(t), t>0. (4.30) 

where a, b ^ 0 are complex numbers, 0 < A < 1 is a real number and / is a complex-valued 
function. The generalization to the case a = a(t), b = b(t) is analogous to procedures 
from the Theorem 3.2. 

The corresponding ©-method discretization of (4.30) arises as a simple modification 
of (3.2) in the form 

Vn+1 Ryn + S (j3ny\\n\ + anyy\n\+i + Pny\\(n+i)\ + «ny|A(n+i)j+] 

, (i-e)hfn + ehfn+1 

where 

and 

R : 

1-Qah 

1 + (1 - G)ha 
l-eha ' 

(4.31) 

S :--
bh 
Qha 

(1 - 6 ) (An - [ \ n \ ) , (3n := 1 - 0 - ar, 

9 ( A ( n + l ) - LA(n + l)J), 0n 
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The useful inequality (3.5) becomes 

\S\ (\/3n\Q[\ni + \an\Q[Xni+l + \PnIQ[X(n+l)\ + \&n|Q[X(n+l)\ +lj < (1 ~ \R\)Qn, (4-32) 

n=0 , l , . . . To find its solution sequence gn we have to specify the meaning of the symbols 
S, fj and R occurring in the hypothesis (3.6). Obviously S = \S\, fj = 1 and R = \R\, 
where we assume \R\ < 1. Thus the solution of (4.32) is given by (3.8), i.e. 

( n + _ I _ ) - ' ° ^ f „ r 0 < 7 < l , ( 4 3 3 ) 

where 7 in (3.7) becomes 

7 - ^ 1 - |i?| 

Now we present the main result of this section. We introduce the following assumption 

/„ = 0{nu) as n - » 00 (4.34) 

for a suitable real scalar z/ < — log A 7 . Then we can formulate the following 

Theorem 4.11. Let yn be a solution of (4-31), where \R\ < 1, S ^ 0 and 0 < A < 1. 
Further let (4-34) hold. Then 

yn = 0(n-l°^) a s r w o o , 7 = - ^ - . (4.35) 
1 — \rC\ 

Proof: We use the substitution zn = yn/1 gn in (4.31), where gn is given by (4.33). Then 

Qn+lZn+l = RQnZn + S (PnQ\\n\Z\_\n\ + OLng\\n\+iZ\\n\+i 

+PnQ\X{n+\)\Z\X{n+\)\ + <XnQlX(n+l)\ + l ^ | A (n+ l ) J +1 ) + 

(4.36) 

1-Q)hfn + Qhfn+1 

1 - Qah 

Now we choose O~Q > m a x ( j ^ , 21og A 7) , Co G Z + and define points am+i '•= 

[CTm

A~1 j , where m = 0 , 1 , . . . . After some calculations, we obtain 

A " m ( < 7 0 - Y~Zj) - ° m - X~l(Jra-i, m = l , 2 , . . . . 

Next we introduce intervals IQ := [\(o~o ~ 1)> &o] n Z + , Im+i '•= [o~m, c m +i] H Z + and denote 
BM : = sup(|;z s|, s e U ™ 0 / ] ) , m = 0 , l , 2 . . . . 

In the sequel we use the estimate 

(1 - &)hfn + Qhf, n+1 
I-Qah 

< Kignn (4.37) 

where i f i is a positive real constant, we choose n* G / m + i , n* > am arbitrarily and 
distinguish two cases with respect to R. 

(i) First, we deal with the case R = 0. In this case 
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S ( / 5 n * _ l ^ L A ( n * - l ) J ^ L A ( n * - l ) J + a n * - l ^ L A ( n * - l ) J + l ^ L ^ ( i * - l ) J + l 
Qn* 

+ Pn*-lQ\\n*\Zy\n*\ + &n*-lQy\n*\+lZ\\n*+ 
(1 - Q)hfn*-i + Qhfn 

Qn*{l - Qah) 

Then 

\zn*\ < Bm \S\ ( | / 5 n * _ l | ^ [ A ( n * - l ) J + \otn*-l\Q\\(n*-l)\+l 
Qn* 

(1 - Q)hfn*-1 + Ohfn* 
+ | A l * - l | £ | > » * J + \an*-l\gi\n*\+lj + 

Using (4.32) and (4.37) we get 

gn*(l - Qah) 

Qn* Qn* 

Hence 
\zn*\< — {Bm + K l a m ^ ° ^ ) . 

Qn* 
Applying the same procedure as in Subsection 4.2 we get the relation 

M < (Bm + K W + ^ X l + 2 1 ° g " 7

A A m ) . (4.38) 

(ii) Let i? 0 . Then we can multiply the equation (4.36) by -̂ +1 and get 

+/5n^LA(n+l) J^LA(n+l) J + S „ £ L A ( n + l ) J + l 2 | A ( n + l ) J + l ) 

i (i - e)fe/„ + e fe / r a + i 

ijn+i I-Qah 

If we sum this relation from om to n* — 1, then we obtain 

Qn*Zn* QamZam 

' ni 
n*-l 

Rn* Ra™ ^ RP 
P=om 

1 
X] ~RP~+IS {PP0[\P1z[\P1 + aPQ[Xpi+iZ[Xpi+i 

+PpQl\(p+i)\Zl\(p+i)\ + S P ^ L A ( P + I ) J + I ^ L A ( P + I ) J + I 

n*-l i (l-e^fp + ehfj p+i 

Rp+1 1 - Qah 
p=am 

i.e. 
n * - l 

Rf~amzam H ^ ~DP~+1S {PPQYMZYM + apQ[Xpl+iZ[\Pi+i 
£n* "' Qn* ^ RV 

p=am 

+ PpQ\\(j>+\)\Z\\(p+\)\ + ®PQi\(p+i)i+iZi\(p+i)i+i 

R^_ 1 (l-Q)hfp + Qhfp+1 

gn* ^ RP+1 1 - Qah 
p=am 
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Taking absolute values we get 

\z * l < B 
n*-l I D i n . " _ ± 1 

Qn* — \R\t 
P—"m 

+ \ap\g[Xpi+l + |/3p|£|A(p+l)J + |ap|0|A(p+l)J+l 

(l-G)hfp + Ghfp+1 

P=am

 1 
1 - Ga/ i 

Thus 

n * - l 

Iz * l < S 

+ |aP|(?LApJ+i + I A ? | £ | A ( P + I ) J + |a P |£ |A(p+i)J+i. 

+ I R l P + l & ~ £ n * — l - | i ? | 

Using (4.32), we get 

M < Bmm\R\n"-'*» + ^ ^ { B m + 
%-tl_-\R\ 

I Rlp+1 QP 1-\R\ ' ̂  \R\v 
P—Om 

and 

\z„*\ < (Bm + 
i/+logA 7 
m 

i - | i ? | 

This equation is analogous to (4.22). Hence we can apply the same procedure as in 
Subsection 4.2 and obtain the analogy of (4.24) in the form 

K 
<(Bm + -^—a»m

+lo^)(l + - l o g A 7 

1-1*1 7 ( l - | i ? | ) ( a o - i 
(4.39) 

Now using the definition of L by (4.25), summarizing cases (i)-(ii) and using estimates (4.38) 
and (4.39) we get 

v+1OSA 7 

for arbitrary n* G / m + i , n * > am. Hence 

as m —> oo 

where 

£ W i < ( 5 m + i f 2 A " m ( l / + l o g A ^)(1 + L A m ) as m -» oo 

( l - | i ? | ) v " u 1 - A 
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Now we can estimate Bm in this way: 

DO OC 

Bm+i < (Bm + K 2 \ - m ^ + l ° ^ ) (1 + L\m) < (B0 + K2J2 A ~ m ( l / + l o g A ^ ) J] (1 + L A m ) 
m=0 777,-0 

< (B0 + K2 ! — ^ ) e x p ( L — * — ) . 

Thus ^ 

Bm < (B0 + g 2 1 _ A _ ( y + l o g A ^ ) e x p ( L — - ) as m -» oo. 

The estimate (4.35) is proved. • 

Remark 4.12. The specification of the O-term in (4.35) is easy. It requires to follow 
some steps performed in the proof of the Theorem 4.11. This problem is discussed in the 
following example. 

Example 4.13. In this example we show the application of the Theorem 4.11. Let us 
consider the following initial value problem 

y'(t) = -2y(t) + y(t/2) + * + , t>0, y(0) = 1 (4.41) 

with the exact solution 

V(t) = ^ r - (4-42) 

The discretization of (4.41) via the formula (4.31) with © = 2/3 and the stepsize h = 0.1 
becomes 

Vo = 1, 

yn+l = JjVn + ^ (finy\\n\ + a n y L A n j + l + Pny\\(n+l)\ + any[A(n+l)j + l ) 

h2 ( n 2(n + l) 

+ 
where 

3 - 2ah V (nh + l)2(nh + 2) (nh + h + l)2(nh + h + 2) 

— h i - \-\\ R — I _ 
a n • 3 ^ 2 2 ' 3 ° L n ' 

_ 2 n + 1 + l h (5 .= l_~ 
an • 3 ^ 2 2 ' 3 ° L n ' 

Now we specify the O-term in (4.35). We determine the constant K such that 

\yn\ < Kn-lo^< for n = a0, a0 + 1, a0 + 2 , . . . . 

On this account we use the estimate ( f + 1 ) 2 ( f + 2 ) < t~2 for all t > 0 and put z/ = — 2 in 
(4.34). Further we set a0 = 50 and compute constants K~i and K2 by use (4.37) and 
(4.40), respectively. Then we put 

K = (B0 + K2i T ) e x p ( L 1 

1 _ A-^+i°gA7) y ^ v i _ A y 
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Then it requires only some simple calculations to obtain the estimate (4.35) in the form 

\yn\ < 23.4055n-\ for n = 50 ,51 , . . . (4.43) 

The decay rate of the numerical solution of (4.41) corresponds to the decay rate of the 
exact solution (4.42). Using (4.29), the Fig . 4.2 displays the real numerical solution of 
the problem (4.41) and its upper bound g(t) = 23.4055/it" 1 « 2.3406* - 1. 

0.4-

100 t 

Fig . 4.2: The solution yh(t) and its estimate. 
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5. Stability analysis of the Euler 
formula for the pantograph 
equation 

In this section, we analyse a change of the qualitative behaviour of the numerical 
solution of the scalar pantograph equation 

y'{t) = ay{t)+by{Xt), 0 < A < 1 (5.1) 

which is based on the implicit Euler discretization in the form 

yn+l = TZyn + <%A(n+i)j, n = 0 , 1 , 2 , . . . , (5.2) 

where 

n : = - ^ — , S : = - ^ - , (5.3) 
1 — an 1 — an 

h > 0 is the stepsize. The derivation of this equation is sketched in Section 2. Indeed, 
the formula (5.2) originates from (2.6) by use of r n = Xnh and y / l ( r n + i ) = y[\(n+i)]- Note 
also that there is some analogy between (5.3) and (2.9). The relation (5.3) corresponds 
to the case of the constant coefficients and the choice G = 1 in (2.9). 

Assume that a, b are real scalars, \a\ + b < 0 and 0 < 1 — A << 1. Then the numerical 
solution of (5.1) has a tendency to tend to zero solution, but after reaching a certain critical 
index this tendency vanishes and the solution is "blowing up". Our next investigation is 
inspired by the paper [34], where this phenomenon (familiarly referred to as the numerical 
nightmare) has been investigated using the explicit Euler method. In the connection with 
the studied problem we can mention the other useful sources [1-3,10,11,17,30]. 

The difference equation (5.2) is of an increasing order, but for 

m + X — 1 m + X 
" e : = T ^ A ' T ^ X 

ill G 

the order is fixed to the value m. Then we can rewrite the equation (5.2) as a three-term 
difference equation 

yn+i - TZyn - Syn-m = 0, n G Im, (5.4) 

where TZ, S are given by (5.3). 
Our aim is to estimate the maximal order m* of the difference equation (5.4), where 

the condition for the asymptotic stability of its solutions is stil l guaranteed, but starting 
from m = m* + 1 is no more valid. 

It is well-known that the solution of linear difference equation (5.4) is asymptotically 
stable if and only if all the zeros of the corresponding characteristic polynomial lie inside 
a unit disk. Therefore we recall the Schur-Cohn criterion (see, e.g. [10, p. 164]) which 
plays a key role in our investigation. For our purposes it is sufficient to reformulate this 
criterion directly to the three-term difference equation (5.4). 

Theorem 5.1. The zeros of the characteristic polynomial 

P( y U ) = fj^*1 - Knm - S (5.5) 

of the difference equation (5.4) lie inside a unit disk if and only if the following holds: 
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(i) P(l) > 0, 

(ii) ( - l ) m + 1 P ( - l ) > 0, 

(Hi) the m x m matrices 

( 1 

- n 

M ± 0 

0 

1 

0 

0 

1 0 
-K 1 J 

± 

( 0 

0 

V -s o 

0 

-S 0 

0 

-s \ 

o I 
are positive innerwise (i.e. determinants of all of its inners are positive). 

In the sequel, we derive an auxiliary difference equation arising from the application 
of the Schur-Cohn criterion to the equation (5.4). The analysis of this auxiliary equation 
(in particular, the discussion of the sign of its solutions with respect to the assumptions 
(i)-(iii) of the Theorem 5.1) enables us to investigate the problem when the discretization 
(5.2) admits a sudden change of its behaviour. 

We start our analysis with discussions of the assumptions of the Theorem 5.1 in the 
connection with our problem. Under the assumption \a\ + b < 0 we can rewrite the 
condition (i) as 1 — 1Z — S > 0 which is equivalent to 

(a + b) 
h 

1 — ah 
>0 , 

i.e. 
1/h > a. 

Condition (ii) of the Theorem 5.1 implies that we have to assume 

l + ft-<S>0 and l + ft + <S>0. 

These inequalities are satisfied if and only if 

h< 2 / (a+ |6 | ) . 

(5.6) 

(5.7) 

Note that relation (5.7) implies the previous condition (5.6). 
Now let \a\ + b < 0 and h < 2/(a + \b\) (ensuring that (i) and (ii) are valid). We show 

that there exists m* G Z + such that the third condition (iii) holds provided m = 1 , . . . , m* 
and it is not valid for all integers m > m*. On this account we derive a three-term 
difference equation for determinants Dm := de t (M^) , m = 1,2,. . . (see the Theorem 
5.1). We introduce here S := ± 5 to cover both sign cases in next computations. Then 
we can express Dm+2 as 

D m+2 
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o - n i 

\m+3 i 

-n 

- s o ... o - 7 2 

Now we apply the Laplace expansion along the last column in the first matrix and 
along the first column in the second one. Then we get 

D m+2 :i - s2)Dr, -Dmns 

Analogously we can write 

D m+4 '1 - S2)D m+2 -Dmns 

-72 

0 

-s o 
o o 

- n 

o 
-s o 
o o 

0 

0 
o - n i 

0 
o - n i 

. . . 0_7^ 

Using the Laplace expansion along the last row we obtain 

-n 

, I t\m<r>2£ 
Jm+2 Dm+A = (1 - S2)Dm+2 + (-l)mK2S 

0 
-S 0 . . . 0 - 7 2 | 

Now using the Laplace expansion along the first column we arrive at 

-72 

D m + 4 ; i - 5 2 ) J D m + 2 - 723(-ir iS 

0 

0 0 
- 5 0 ••• 0 - 72 i 
0 0 . . . 0 - 7 ^ 

K2S2Dr 

(5.8) 

Substituting from (5.8), we can rewrite this relation as the linear difference equation of 
the fourth order 

subject to initial conditions 

(1 + 722 - S2)Dm+2 + 1Z Dm = 0 (5.9) 

£>i = 1 - 5 , 
D2 = 1 - 572 - S2, 
D3 =1-S - n 2 s -S2 + S3, 

D4 = 1 - 72 3 5 - 7 2 2 5 2 + 72<S3 - 725 + 5 4 - 2 5 2 . 

(5.10) 
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Let us emphasize that the difference equation (5.9) is the same for both cases S = —S 
and S = 5 , but the sign of S influences the initial conditions. 

In the sequel we find the general solution of the difference equation (5.9). The cha­
racteristic polynomial of (5.9) is 

C4 - (i + n2 - s2)(2 + n2 (5.ii) 

and has the roots in the form 

where (1 + K2 - S2)2 - ATI2 < 0. Indeed, since 

a2-b2<0 and 4 - 4ah + (a 2 - b2)h2 > 0 for 0<h< 

we have 

i.e. 

a + | & | ' 

h2(a2 - b2) (4 - 4ah + (a 2 - b2)h2) 
(I-ah)2 (1 - ah)2 < ' 

1 + K2 - S2 - 211) • (1 + 1Z2 - S2 + 211) < 0. 

Using the notation 

1 _ 2 c2^ - 1 
A = - (1 + IV - <S2), B = -\/4:K2 -(l + TZ2- <S2)2, 

the roots of (5.11) can be expressed as 

Cl,2,3,4 = G 4 ± ^ ) 1 / 2 

which implies 

A B 
VA2 + B2(— ±i 

VA2 + B2 VA2 + B2 _ 

1/2 

Ci, 2 = (A2 + S 2 ) 1 / 4 ( c o s ( ^ / 2 ) ± 
Cs,4 = {A2 + fi2)1/4(cos(^/2 + TT) ± i s i n ( ^ / 2 + T T ) ) , 

where </3 is given by 
B 

ip = arcsin — =. 
VA2 + B2 

To summarize this, the solution of (5.9) can be written in the form 

Dm = (A2 + B2)m^ [(Ci + ( - l ) m C 3 ) cos (m^/2 ) + ( C 2 + ( - l ) m C 4 ) s i n ( m ^ / 2 ) ] , 

where C\,..., C4 are general constants. In the sequel we specify a certain relation among 
them. We emphasize that the next calculations are analogous for both cases S = ±<S. 
Util izing initial conditions (5.10) we arrive at 

D2 =(C1 + C3)A+(C2 + Ci)B, 
DA =(C1 + C3)(A2-B2) + (C2 + C4)2AB, 

34 



hence 
n \n — 2AD2-D4 _ 1 La i -

 0 3 — 4 2 , R 2 — J-

C2 + C4 
A 2+B 2 

P 2 - A _ l-52--R2-2TC5 

Analogously we can write 

D1 = ( C i - C3)^V1ZTA + ( c 2 - cA)^Vn^A, 
D3 = (C i - C 3 ) ^ ^ / 7 ^ T ^ ( 2 , 4 - ft) + ( C 2 - C 4 ) ^ ^ / 7 ^ 4 ( 2 , 4 + K), 

hence 
D1V2(2A+TZ)-D3V2 _ 1+K-Š 

2KVK+A V2Jn+(l+TZ2-Š2)/2'' 

C2 — C 4 = D i ^ ( 2 A - T C ) - D 3 ^ _ l-TC-5 
-2KVK-A V2^K-(l+K2-S2)/2' 

Now we can observe that 

C l + C 3 V 4 ^ 2 " (! + ^ 2 " 5 2 ) 2 

C 2 + C 4 1 - 5 2 - K2 - 2KŠ 

i.e. 
C l — C3 C l + C; 3 

C 2 — C 4 C 2 + C4 

Using the property (5.12) we are going to analyse the sign of Dm. It follows from (5.10) 
that the condition h < l / ( a + |6|) implies D\ > 0. To find whether 

Dm*Dm*+l < 0 (5.13) 

for a suitable m* G Z + we note that by previous calculations, the condition (5.13) is 
equivalent to 

Dm*Dm*+i < 0, 

where 
(j _|_ (j 

Dm* = 77 I J * cos(m>/2) + s in(m>/2) . 
C/ 2 + 0 4 

Considering Z) m * as a function Z) = D(u) of a continuous argument M (instead of index 
m*), we need to solve the equation D{u) = 0, i.e. 

- § ^ = t a n ( ^ / 2 ) . (5.14) 

One can easily verify that the left-hand side of the previous equation is negative and 
positive for S = S < 0 and S = —S > 0, respectively. Then the smallest positive root of 
(5.14) is given by 

11 

IT + a r c t a n ( - ^ ± g i ; 

a r c t a n ( - g g g ; 

for S = S < 0, 
(5.15) 

for S = -S>0. 

We recall that the condition (iii) has to be fulfilled for S = S and S = —S simultaneously, 
hence we put 

/ J All2 - (1 + ft2 - S2)2 \ i B 
mQ := 2arctan — — — — — ——— / arcsm 

1 - S2 - TZ2 + 2TZS I ^JA2 + B2' 
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i.e. 

/ J All2 - (l + K2 - S 2 ) 2 \ I J All2 - ( l + K 2 - S2)2 

mQ = zarctan — — — — — ——— / arcsm — — . 
0 I 1 - S2 - K2 + 2KS J I 211 

Now we can express the discussed critical order m* as 

m 
[m0\, m0gZ+, 
mo — 1, mo G Z + . 

To summarize all previous calculations we can observe that considering any positive 
integer m < m*, the polynomial (5.5) has all its roots in the unit disk, hence the difference 
equation (5.4) is asymptotically stable. On the contrary, for any m > m* the polynomial 
(5.5) does not have this property. Indeed, it is obvious from (5.15) that Dm*+i < 0 and 
Dm*+2 < 0 provided S = —S. Since either M j ^ * + 1 or M j ^ * + 2 always appears as an inner 
in every M^, m > m* + 2, then the property (iii) of the Theorem 5.1 is not fulfilled for 
any m > m*. 

The previous analysis enables us to formulate the next result: 

Theorem 5.2. Let \a\ + b < 0, h < l / ( a + |6|) and let the values 71, S be given by (5.3). 
Then all the roots of the polynomial (5.5) lie inside the unit disk if and only if 

m < m 
[m0\, m0 & 
mo — 1, mo G 

where 

( J All2 -(l + ll2 - S 2 ) 2 \ I J All2 - (1 + ll2 - S2)2 

mo = 2 arctan — — — — — / arcsm 

Furthermore, 

1-S1-TV+2KS J I 2K 

h^o (b2 - a2)1'2 a-b 

Proof: The proof follows from our previous analysis. The relation l i m ^ o ^ * ^ follows 
from the L'Hopital 's rule. • 

Hence, under the assumptions introduced in the Theorem 5.2, the solution of (5.2) has 
a tendency to reach the zero solution for n < n* = [_™_"̂ Aj . For n > n* this tendency 
vanishes. 

We can summarize that considering the numerical methods of the Euler type, our 
technique for the determination of m* leads to the investigation of the asymptotic stability 
of the three-term difference equation (5.4). The stability analysis of (5.4) leads to another 
auxiliary difference equation (5.9) for the determinants Dm occurring in the assumptions 
of the Schur-Cohn criterion. 

Now we present the example illustrating the contribution of the Theorem 5.2. 

Example 5.3. We consider the initial value problem 

y'(t) = -0.1y(t) - y(0.99t), t > 0, y(0) = 1 (5.16) 
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and its implicit Euler discretization 

Vn+1 
100 
101 Vn 

10 
101 2/[0-99(n+l)J • n. 0,1,2, . //o 1 (5.17) 

with the stepsize h = 0.1. Using (4.29), the Fig . 5.1 illustrates the behaviour of the 
solution of (5.17). For a better representation of the character of this solution we present 
the Fig . 5.2. This figure plots the values (t,\ogw(\yh(t)\+e)), where e = 2.23 x 1 0 " 3 0 8 . It 
follows from the Fig . 5.2 that for nh G (100,300) the values of yh(t) are already less then 
10~ 4 0 . Considering such small values the solution of the problem (5.17) approximates the 
zero solution and it seems that the calculation could be finished. However, if nh > 300 
then the solution increases quickly (in absolute values). 

Using the Theorem 5.2 we are able to find the change point 

n*h 
m* + A 
1 - A 

h = 1699/i = 169.9, 

where the character of this solution changes. For a better illustration the solution yn of 
(5.17) close to this point is displayed on the Fig . 5.3. Moreover, we can find the point 

t* l im 
h->0 

m* + A 
1 - A 

h = 167.9, 

where the character of the exact solution of the problem (5.16) changes. It remains to 
note that this value equals to the value presented in [34], where the equation (5.16) was 
studied by use of the explicit Euler discretization. 

yh(t) 

1 

200 400 600 800 1000 1200 

- 2 -

Fig . 5.1: The solution yh(t). 
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Fig . 5.2: The solution log10(\yh(t) \ + e). 

Fig . 5.3: The solution yh(t). 
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6. Some comparisons and examples 
In this section, we mention several comparisons and numerical consequences concerning 

the asymptotic estimates of the exact pantograph equation and its G-method discretiza­
tion. We consider the scalar pantograph equation 

y'(t) = ay(t)+by(Xt), t>0, (6.1) 

where 0 < A < 1 and assume that Re a < 0,b ^ 0. We note that this equation is 
a particular case of each of the equations (3.1), (4.2), (4.11) and (4.30) considered in 
previous sections. 

In Subsection 6.1 we mention some basic numerical notions and characteristics asso­
ciated with the stability of the equation (6.1). The aim of the following subsections is to 
illustrate the contribution of the asymptotic results mentioned in previous sections to the 
numerical investigation of the equation (6.1) and present various comparisons with the 
known results. 

6.1. Some numerical preliminaries 
It is well known (see [15]) that the necessary and sufficient asymptotic stability condition 
for (6.1) is 

Re a < 0, \b\ < \a\. 

This implies the analytical asymptotic stability region for the equation (6.1) in the form 

S •= {(a, b) G C 2 : Re a < 0, |6| + a < 0}. 

The discrete analogy of the asymptotic stability region S for the exact equation (6.1) 
is the corresponding numerical stability region. Considering the Q-method 

yn+1 = Ryn + S \ Pny\\n\ + anyy\n\+i + f3nV\\{n+i)\ + anyjA(n+i)j+iJ , n = 0 , 1 , . . . (6.2) 

where R, S are given by 

and 

an := (1 - G)(An - [\n\), (5n := 1 - G - an, (6.4) 

an := Q(A(n + 1) - [X(n + 1)J), J3n := Q - an , 

we have the following definition. 

Theorem 6.1. The numerical stability region for the Q-method (6.2) is defined as the set 
S@ of all couples of complex numbers (a,b) such that any solution y„ of (6.2) is tending 
to zero as n —> oo whenever 0 < A < 1. We say that the Q-method (6.2) is asymptotically 
stable if 

S c S e 

for any h G M + . 
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The asymptotic stability of the recurrence (6.2) is the subject matter of many papers. 
We mention at least the following results which are closely related to our investigations. 
If G = 1 (the case of the implicit Euler method), then the method (6.2) is asymptotically 
stable (see [23, p. 266]). Further, if a, b are real scalars such that 

a < 0, \b\<-a, I _ < G < 1, (6.5) 
2 2 d 

then the solution yn of the G-method (6.2) is tending to zero for all A G (0,1) (see [35]). 
A stronger result is proved in [15, 24] provided A = where L > 2 is an integer. It 
has been shown that the third condition in (6.5) can be weakened as 

- < Q < 1. 
2 ~ ~ 

In the other words, assuming A = 1/L, the G-method (6.2) is asymptotically stable if and 
only if 1/2 < 0 < 1. 

6.2. The asymptotic estimate for the exact and dis-
cretized pantograph equation. 

The important theoretical question about numerical approximations is the problem whether 
the numerical and exact solution admit a related asymptotic behaviour on the unbounded 
domain. Recall that the qualitative behaviour of the solutions of the exact equation (6.1) 
is well known (see, e.g. [16, 25, 26]) and can be described as follows: 

Theorem 6.2. Let y be a solution of the equation (6.1), where Re a < 0, b ^ 0 and 
0 < A < 1. Then 

y{t) = O ( r l o g * | f e / a | ) as t —> oo . (6.6) 

Moreover, if y(t) = o(t~logx '6/a') as t —> oo, then y is the zero solution. 

In other words, the estimate (6.6) is nonimprovable. 
Now we are going to formulate the corresponding discrete estimate following from the 

Theorem 3.2 (as well as from the Theorem 4.4, the Theorem 4.8 or the Theorem 4.11). 

Corollary 6.3. Let yn be a solution of the discretization (6.2) with R, S given by (6.3), 
where 

2Re a < (2G - l)\a\2h, (6.7) 

b ^0 and 0 < A < 1. Then 

fc = 0 ( n - ^ ) as . w o o , 7 = } 1 _ ^ _ ( , _ ^ • (6.8) 

Remark 6.4. The condition (6.7) seems to be analogical with the condition Re a < 0 
in the Theorem 6.2. Let Re a < 0. Then (6.7) is fulfilled for any h > 0 if and only if 
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1/2 < G < 1. Assuming 0 < Q < 1/2, the condition (6.7) represents the restriction on 
the stepsize h and has the form 

2Re a 
< ( 2 G - l ) | a | 2 ' 

Comparing (6.6) and (6.8), the natural question arises, namely what is the relation 
between the upper bound (6.6) derived in [16, 25, 26] for the exact solution of (6.1) and 
our upper bound (6.8) derived for its numerical solution. 

Answering our question we first consider the case where a is a real constant (6 can be 
complex). Then we can observe that 7 occurring in (6.8) becomes 

7 
\b/a\ for (1 - Q)h\a\ < 1, 
h\b\/(2 + h\a\{2e - 1)) for (1 - Q)h\a\ > 1. 

Hence the value \b/a\ known from the asymptotic description of the exact scalar panto­
graph holds for discretization (6.2) with the modest restriction on the stepsize h. In other 
words both the exact solution and the numerical solution have exactly the same decay 
rate. 

We note that in the case Q = 1 (the implicit Euler method) we get the equality 
7 = \b/a\ without any restriction to the stepsize h. We emphasize that this result is a 
significant strengthening of the asymptotic stability property of this method mentioned 
in the previous subsection. In particular, assuming \b\ < \a\, we can guarantee that the 
discretization (6.2) with G = 1 preserves not only the convergency to zero, but also the 
same decay rate of this convergency regardless of the stepsize h. In the remaining cases 
0 < Q < 1 the condition (1 — Q)h\a\ < 1 (ensuring the same decay rate of the exact and 
numerical solution) means the stepsize restriction. 

We can also discuss some stability consequences following from the previous conside­
rations. It follows from (6.8) that all complex couples (a, b), satisfying the condition 

\b\h< \1 - Gah\ -\1 + (1 - G)ah\ (6.9) 

belong to the stability region S@. Let a G R, b G C and |6| < —a (we emphasize that 
this is just the asymptotic stability condition for the exact equation (6.1) with a real 
parameter a). If (1 — Q)h\a\ < 1 holds, then (6.9) is satisfied trivially. If (1 — Q)h\a\ < 1 
does not hold, then (6.9) becomes 

\b\h <2 + {l-20)ah. 

To obtain the stability condition independent of the stepsize h, we can rewrite (6.9) into 
the form 

2 2\a\ an 

From here we deduce that if \b\ < —a and 

1 1|6| 
9 <e<i , 
2 a 
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then any solution yn of (6.2) tends to zero for any stepsize h > 0 and any 0 < A < 1. 
Note that we obtain the condition (6.5). 

Finally, we consider the case where both parameters a, b are complex. If Im a / 0, 
then the previous relation for 7 is no longer valid and it turns out that 7 is always greater 
then \b/a\ and h\b\/(2 + % | ( 2 G - 1)) provided (1 - Q)h\a\ < 1 and (1 - Q)h\a\ > 1, 
respectively. 

6.3. Illustrating examples 
In the next examples we specify the parameters a, b in (6.1) and calculate the upper 
bound for its G-method discretization (6.2). 

Example 6.5. We illustrate the unstable case of the equation (6.1) via the choice a = 
—0.5, b = — 2 and A = 1/2. Consequently, we investigate the initial value problem 

y\t) = -0 .%(t ) - 2y(t/2), t > 0, y(0) = 1. (6.10) 

The asymptotic estimate of the solution of (6.10) is given by (6.6) as 

y(t) = 0{t2) as t - » 0 0 . 

Now we compute the asymptotic estimate of the solution of the Q-method discretization 
of (6.10). We choose the stepsize h = 0.05 and consider the trapezoidal rule discretization 
obtained from (6.2) via the choice Q = 1/2. Then 7 = jz^L. = | £ | = 4 a n c [ w e c a n rewrite 
(6.8) as 

\Vn\ < Lin2 for all n large enough, (6-11) 

where L\ > 0 is a suitable real constant. Following some steps in the proof of the Theorem 
3.2 and noticing that for 7 > 1 it holds L\ = Bo, where 

B0 = sup( |y n (n - 3 )" 2 | , n G [ L y J , aQ] D Z+) . 

Now we choose <T0 representing the starting point for the asymptotic estimation performed 
in the proof of the Theorem 3.2. B y (3.11), it is enough to put cr0 = 7. However, to obtain 
a reasonable computational and especially graphic illustration of (6.11), we suggest the 
choice of a larger value of GQ, say <7o = 150. Then B0 « 0.000055 and the asymptotic 
estimate (6.11) becomes 

\yn\ < 0.000055 n2 for all n large enough . 

Now we consider the numerical solution yh(t) (see (4.29)) of the equation (6.10), where 
t G [7.5,400] and its upper bound g(t) = 0.000055 t2/h2 w 0.02200812. The following Fig. 
6.1 plots {t,\ogw(\yh(t)\ + e)) and ( t , log 1 0 ^(t)) , where e = 2.23 x 1 0 " 3 0 8 . 
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Fig . 6.1: The solution log1Q(\yh(t)\ + e) and its estimate. 

Example 6.6. In this example we illustrate the asymptotic stable case. Since we wish 
to perform this illustration via this example with the known exact solution, we have to 
consider nonhomogeneous scalar pantograph equation (see the form (4.30)). 

We investigate the initial value problem 

y'(t) = -160y(t) +80y(t/2) + T ^ ^ T ^ T , t > 0, y(0) = 1 (6.12) 

with the exact solution y(t) = The corresponding G-method discretization (4.31) 
yields the sequence yn which represents the approximate values of y(t) = at grid 
points t = nh. Applying the Theorem 4.11, we get the estimate 

Vn = 0(n~l) as n —> oo (6.13) 

provided (1 — 9)h\a\ < 1. Note that this decay rate corresponds to the decay rate of the 
exact solution. 

Now let h = 0.05. Then we can calculate to special values of Q corresponding to the 
assumption \R\ < 1 and (1 — 6)h\a\ < 1. The first condition implies G > \ — ̂  = 0.375 

and second one implies Q > 1 — ̂  = 0.875. Note that assuming Q > 0.875, the 
boundedness of the relative errors is guaranteed because of the property (6.13). 

The Table 6.6 involves the list of the exact values y(nh) = ^ r j , the numerical values 
yn and their relative errors (RE) at some grid points nh. It confirms our theoretical 
knowledge about the role of the "critical" parameter G = 0.375. 
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nh 50 100 250 500 
y(nh) 0.1961E-1 0.9901E-2 0.3984E-2 0.1996E-2 

G = 0.374 Vn -0.2935E2 -0.1505E4 -0.2426E9 -0.1177E18 G = 0.374 
R E 0.1498E4 0.1520E6 0.6088E11 0.5810E20 

Q = 0.375 Vn -0.7826E-1 -0.8910E-1 -0.8282E-1 -0.9139E-1 Q = 0.375 
R E 0.4091E2 0.9099E2 0.2089E3 0.4589E3 

G = 0.376 Vn -0.2102E-1 -0.1057E-1 0.2567E-3 0.1338E-3 G = 0.376 
R E 0.2072E1 0.2067E1 0.9356 0.9330 

Q = 0.4 yn 0.2751E-1 0.1386E-1 0.5937E-2 0.2973E-2 Q = 0.4 
R E 0.4031 0.3996 0.4902 0.4893 

Q = 0.5 Vn 0.2811E-1 0.1415E-1 0.5732E-2 0.2870E-2 Q = 0.5 
R E 0.4335 0.4294 0.4387 0.4378 

G = 0.8 0.2817E-1 0.1418E-1 0.5697E-2 0.2853E-2 G = 0.8 
R E 0.4367 0.4326 0.4299 0.4290 

Q = 1 Vn 0.2804E-1 0.1412E-1 0.5669E-2 0.2839E-2 Q = 1 
R E 0.4299 0.4258 0.4210 0.4222 

Table 6.6 

6.4. The comparison with other asymptotic estimates 
for the 6-method discretization of (6.1) 

The asymptotic investigation of the discretized pantograph equation is rare. To our 
knowledge, the only paper dealing with the asymptotics of the G-method discretization 
is [33]. However, this paper discusses the Q-method discretization on the quasigeometric 
mesh (characterized by the property l i m ^ o o hn = co). Considering the asymptotics of 
the Q-method on the uniform mesh, we can mention papers [6] and [29] dealing with the 
trapezoidal rule and Euler discretization of (6.1), respectively. 

To compare the estimate (6.8) with the relevant estimate presented in [6] we need to 
make some minor modifications. The reason is that the discretization of (6.1) utilized 
in [6] is slightly different from the formula (6.2). The mentioned discretization is in the 
general case given by (2.16) and for the equation (6.1) has the form 

yn+i = Ryn + S (j3ny\\n\ + a ny LAnj+i) , (6.14) 

where R, S are given by (6.3) and 

0n := 1 — an, an := An — |_AnJ + GA. 

Since the discretization studied in [6] originates from the formula (6.14), we first reformu­
late the Corollary 6.3 for such a discretization. To perform this, we denote 

n = ?](Q, A) := sup (\f3n\ + \an\) < oo. 
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The next lemma yields the explicit form of n and can be found in the particular case 
Q = 1/2 in [6, Theorem 6]. 

Lemma 6.7. Let 0 < A < 1 , 0 < G < 1 . Then the function 7](0,X) has the following 
values: 

( 1, A = K/L, OK < 1, K, L G { 1 , 2 , . . . } and relatively prime, 

1 + 2GA - f , A = K/L, OK > 1, K, L G { 2 , 3 , . . . } and relatively prime, 
1 + 2GA, A irrational. 

(6.15) 
Proof: First note that 1 < i](0,X) < 1 + 2GA. Now assume A = f, where 1 < K < L 
and (K, L) are relatively prime. It is known that 

nK nK nK mod L 
~L ~ ^ir^ = L ' 

Then 

sup a n = GA + sup (An — [AnJ) = GA H — = 1 + QA — —. 

Thus the first two cases of (6.15) are true. 
Let A be an irrational number. The case Q = 0 is trivial, hence we deal only with 

0 / 0 . In this case, for every e > 0, e < GA there exists an ne such that 

1 — e < An e — |_AneJ. 

Furthermore, 
ane > 1 + GA - e > 1 

and we arrive at 

r](0, A) > ane + |1 - a n e \ = 1 + 2QA - 2e. 

Now we get r](0, A) > 1 + 2GA, because e > 0 can be made arbitrary small. • 

Using this we can reformulate the Corollary 6.3 for the discretization (6.14) as follows: 

Corollary 6.8. Let y„ be a solution of the discretization (6.14) with R, S given by (6.3), 
where (6.7) holds, 6 ^ 0 and 0 < A < 1. Then 

yn = 0(n-l°^*) a s n ^ o o , 7 * = J ^ L (6.16) 
1 — \rC\ 

where r\ = 7](0,X) is given by (6.15). 

Note that the estimate (6.16) can be weaker than the estimate (6.8) because the value 
of t] can be grater then one. It follows from the Lemma 6.7 that if OK < 1 and A = K/L 
where K,L G Z + are relatively prime, then rj(0,X) = 1. In this case the asymptotic 
estimates (6.16) and (6.8) coincide. 
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Now we can discuss the main goal of this subsection, namely the comparison of our 
estimate (6.16) with the relevant result from [6] describing the asymptotics of (6.14) for 
0 = 1/2. On this account, we introduce the notation. 

7:= \R\+V\S\, 

where n = 77(1/2, A) is given by (6.15). Now we can read [6, Theorem 5] as follows: 

Corollary 6.9. Let yn be a solution of the discretization (6.14), where Re a < 0, b 7̂  0 
and 0 < A < 1. Further let 7 < 1. Then 

yn = 0(n-los^) a s r w o o , 7 = \R\ + r]\S\. (6.17) 

Let us emphasize that this result have been derived in a more general case when the 
equation (6.1) and its discretization (6.14) involve the neutral term. On the other hand, 
the Corollary 6.9 discusses only the case 7 < 1 and O = 1/2. 

Now we can easily compare our relation (6.16) with the asymptotic estimate (6.17) 
derived in [6, Theorem 5] under the assumption 7 < 1. Considering this assumption we 
get 

l* = ^jKl<\R\+v\S\=7, 

where the equality sign between 7* and 7 occurs if and only if 7 = 1. In particular, 
substituting the values R and S from (6.3) into the inequality 7* < 1 we can easily check 
that the solution of (6.14) is bounded if 

R e o < ° - " | 6 | + i 2 + H + r 2 - H - ° ' 

which is the same stability condition as the one derived in [6] and [15] by use of the 
inequality 7 < 1. However, considering the asymptotic stable case ( 7 < 1), the formula 
(6.16) provides a stronger asymptotic estimate than the formula (6.17) yields. More 
precisely, both formulae affirm the algebraic decay of yn, but the asymptotic property 
(6.16) guarantees a stronger decay rate. 

The next example illustrates the previous comparison. We specify the parameters a, b 
in (6.1) and discuss the upper bounds for (6.14) with the stepsize h = 0.05 with O = 1/2. 

Example 6.10. We choose a = — 1 and b = —0.5 in (6.1), i.e. we consider the initial 
value problem 

y'(t) = -y(t)-0.5y(t/2), t>0, y(0) = 1. (6.18) 

Then the corresponding discretization (6.14) becomes 

yn+1 = Ryn + S ((3/4 - n /2 + [n/2\)y[n/2i + (n/2 - [n/2\ + l / 4 ) y K 2 J + 1 ) , (6.19) 

yo = 1, where the symbols R and S have been introduced in (6.3). 
Then 

b 
7 = \R\ +v(X)\S\ « 0.9756, 7 * - ' ' S 

1 - \R\ a 
0.5 
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and the asymptotic estimates (6.17) and (6.16) become 

yn = 0 ( n - ° - 0 3 5 6 ) as n —> oo (6.20) 

and 
Vn = O ( n - 1 ) as n —> oo , (6-21) 

respectively. Our next intention is the computational presentation of the estimate (6.21) 
and its graphic comparisons with the estimate (6.20) as well as with the real behaviour of 
the discretization (6.19). To make the estimate (6.21) more applicable from the computa­
tional viewpoint it is necessary to specify the O-term in (6.21), i.e. determine a constant 
L i > 0 such that 

\Vn\ < LITT1 for all n large enough. 

It follows from the proof of the Theorem 3.2 (the part (ii) and the relation (3.19) with 
respect to K = K2) that L\ = BQexp{j^}, where the constants B0 and K2 can be 
calculated via (3.13) and (3.16) as 

B0 = sup( |y n (n + 2)|, n G [L^J, a0] n Z+), K2 = . 
Z (Jo — s 

To obtain a satisfactory graphic illustration of our estimate we can choose, e.g. the 
same value of CTQ as in the Example 6.5, i.e. CTQ = 150. Then K2 ~ 0.279 and for the 
specification of BQ it remains to determine (or at least estimate) the values of yn for 
n = 1, 2 , . . . , 150. B y [33, Theorem 2], these values are uniformly bounded by \y(0)\ = 1. 
However, to obtain a stronger majorant constant L \ , we prefer their direct calculation via 
(6.19). Then BQ « 1.9369, hence L\ ~ 3.3834 and we can precise the upper bound (6.21) 
for the solution yn of (6.19) in the form 

\yn\ < 3.3834n _ 1 for all n large enough 

(more precisely, for n = 150,151,...). 
Now we consider the estimate (6.20). Since yao = yiso ~ 0.012, we can choose the 

corresponding majorant constant L2 specifying the O-term in (6.20) as L2 = 0.012 x 
15 0 0 0 3 5 6 ~ 0.0144 (in other words, to obtain a sharp majorant constant we choose such 
L2 that the values of yn and its estimate L2n~om5(i coincide for n = 150). This implies 

\yn\ < 0.0144 n -°- 0 3 5 6 for all n large enough 

(in the sequel we can see that this estimate holds for n = 150,151,...). 
Now the gap between both asymptotic results can be simply illustrated by the following 

figure. We use here (4.29) and consider t G [7.5,400] (note that the left-end point t = 7.5 
corresponds to the starting index <7o = 150 of the asymptotic estimation via the relation 
t = 150 h). The Fig . 6.2 plots the numerical solution yh of (6.18) as well as its upper 
bounds g(t) = 3.3834 ht~l w 0.1692 r 1 and f(t) = 0.0143 /jO.osse^-o.osse w o .0129r° - 0 3 5 6 . 
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-0.01 --

Fig . 6.2: The solution yh and its upper bounds 

6.5. The comparison of results describing the stability 
behaviour of numerical solution of (6.1) 

In this subsection we consider the equation (6.1) and its simplest (Euler) discretization. 
Our intention is to discuss the relation between the result presented in Section 5 and 
result stated in [34]. We show that the result presented in Section 5 for the implicit Euler 
method can be modified also for the explicit Euler discretization and extend the result 
from [34]. On this account we consider explicit Euler discretization of (6.1) in the form 

yn+1 = TZyn + Sy\\n\, (6.22) 

where 
K:=l + ah, S:=bh. (6.23) 

This equation arises from (2.5), where we put r n = Xnh and use the piecewise constant 
interpolation yh(Tn) = y\\n\. Let 

m — 1 m 
for a suitable m G 

Then we can convert the problem of finding the critical index (see the discussion performed 
in Section 5) to the analysis of the characteristic polynomial 

P (^ ) = ^r+l - Knm - S. (6.24) 

In particular, we focus on the calculation of the maximal value of order m* for which (6.24) 
is of a Schur type, and starting from m = m* + 1 the polynomial looses this property. On 
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this account we mention the main result of [34], where the polynomial (6.24) is studied 
by use of the Kuruklis ' result on the asymptotic stability of 

yn+1 - TZyn - Syn-m = 0 

(see [31]). 

Theorem 6.11. Let \a\+b < 0, h < l / ( a + a n d let the values 1Z, S be given by (6.23). 
Then all the roots of the polynomial (6.24) inside the unit disk if and only if 

m < m* :-
[m0\, m 0 ^ Z + , 
mo — 1, mo G Z + , 

where 

M I N W - a Y / 2 + 0 ( f e ) (arCtan
 ( f e 2 " a 2 ) 1 2 + 0 ( / L ) ) > i J > f O T ° > 0 > 

m0 = { 4 a r c 4 | 6 | f e / 2 ) ~ I ' for ° = 0 ' ( 6 " 2 5 ) 
L- ( T T + arctan ( j > 2 ~ f ) 1 / 2 + 0( / i ) ) , for a < 0. 

Furthermore, 

h(b2-a?yi2+o(h) 

min{ ( f e 2 _ ] 2 ) 1 / 2 arctan ( f e ' ° 2 ) 1 / 2 , ^} , for a > 0, 

l im m*h = I 2 l ^ , for a = 0, 2|b|-

( F E2_A2)i/2 + arctan i — j , for a < 0. 

The main utility of this theorem is following: There exists (see [34]) the critical point t* = 
Yzr\imh^oiTi*h in the sense that the solution of (6.1) displays a tendency to decrease (in 
modulus) before t* and to increase soon after t*. The Theorem 6.11 makes the computation 
of t* effective. 

Now we mention our contribution to this discussion which follows from the results 
mentioned in Section 5. The equation (6.22) can be also analysed by use of the procedure 
performed in Section 5. Indeed, the characteristic polynomial (6.24) is identical with (5.5), 
where it is enough to consider 1Z = 1 + ah and S = bh. Therefore we can reformulate the 
Theorem 5.2 as follows. 

Theorem 6.12. Let \a\+b < 0, h < l / ( a +16|) and let the values 1Z, S be given by (6.23). 
Then all the roots of the polynomial (6.24) ^ e inside the unit disk if and only if 

m < m [m0\, mo 
mQ — 1, mQ G 

where 

( J4K2 - (l + K2 - S 2 ) 2 \ I J All2 - ( l + K 2 - S2)2 

mo = 2 arctan ————— — / arcsin 

Furthermore, 

l - S 2 - K 2 + 2KS I I 2K 

h^o (b2 - a2)1'2 a-b 
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We note that this expression for m* in the Theorem 6.12 does not depend on the sign 
of a. Moreover, contrary to the corresponding result in [34] we derive the exact expression 
for mo (in particular, the term 0(h) involved in (6.25) is specified). Consequently, we can 
compute the critical index n* = [fz\\ exactly. 

We emphasize that the procedure utilized in Section 5 is applicable also in a more 
general situation. In particular, we can consider difference equations arising from (5.1) 
via more advanced discretizations. E.g. the G-method discretization with a piecewise 
constant interpolation leads to the recurrence in the form 

yn+1 = Ryn + S(eylxin+1)i + (1 - ©)y[Anj), (6.26) 

where R, S are given by (6.3). Of course, then we have to analyse the four-term difference 
equation (6.26) instead of the previously considered three-term equation (6.22). However, 
the advantage of our approach consists in the fact that the previous analysis utilizes the 
Schur-Cohn criterion which can be applied for any linear autonomous difference equation 
instead of Kuruklis ' result [31] for three-term linear equations which is applied in [34]. 
This extension of our previous results to more general discretizations of (6.1) is the subject 
of further considerations. 
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7. Conclusion 
The aim of this thesis was to present some qualitative properties of delay difference 

equations and their applications to the numerical analysis of given D D E s . A special 
attention was paid to the scalar pantograph equation 

y'(t) = ay(t) + by(Xt), 0 < A < 1, t > 0 

and its various modifications. We described the qualitative (mostly asymptotic and sta­
bility) properties of its G-method discretization 

yn+i = Ryn + S (pny\\n\ + ctny\\n\+\ + A»2/|A(n+i)J + a„?/|A(n+i)J+i) , n = 0 , 1 , . . . 

where R,S are given by (6.3), an, (3n and an, /3n by (6.4). We compared these properties 
with the behaviour of the exact (differential) pantograph equation, which enabled us to 
formulate some numerical consequences of these qualitative results. Some comparisons 
with the known relevant results have been done and some illustrating examples have been 
involved as well. Furthermore, using the Schur-Cohn criterion on the asymptotic stability 
of the solutions we analysed a family of three-term difference equations and discussed a 
specific stability phenomenon for the Euler discretization of the pantograph equation. 

Finally, we mention some open problems and general remarks. We recall that the 
problem of the asymptotic stability of the Q-method discretization of the pantograph 
equation (in particular, the necessary and sufficient condition of the asymptotic stability 
in the form 1/2 < O < 1) is solved only for those A which are reciprocal to positive 
integers. More generally, we pose a conjecture that the asymptotic estimate (6.8) holds 
without any restriction on the stepsize h provided 1/2 < O < 1. For the time being, this 
conjecture is confirmed for 0 = 1, but numerical calculations and experiments indicate its 
validity for 1/2 < 0 < 1. Another natural extension of our results concerns the stability 
analysis performed in Section 5 for the Euler discretization of the pantograph equation. 
We hope that our proof technique can be extended to the analysis of the 0-method (6.26). 

The common investigation of the properties of the studied differential equations and 
its difference analogies (obtained via a suitable numerical discretization) was the unified 
viewpoint of the considerations and results mentioned in this thesis. This is an impor­
tant aspect of the modern theory of dynamic equations on time scales (see [4] and [5]). 
Therefore, this theory can motivate us to other extensions of our previous results. 
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