
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ U Č E N Í TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS
AND MULTIMEDIA
F A K U L T A INFORMAČNÍCH T E C H N O L O G I Í

ÚSTAV POČÍTAČOVÉ G R A F I K Y A MULTIMÉDIÍ

RECURRENT NEURAL NETWORKS WITH ELASTIC
TIME CONTEXT IN LANGUAGE MODELING
REKURENTNÍ NEURONOVÉ SÍTĚ S PRUŽNÝM ČASOVÝM K O N T E X T E M V JAZYKOVÉM MO

DELOVÁNÍ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. KAREL BENEŠ
A U T O R PRÁCE

SUPERVISOR Dipl.-lng MIRKO HANNEMANN,
VEDOUCÍ PRÁCE

B R N O 2016

Master's Thesis Specification/18955/201S/xbenes20

B r n o U n i v e r s i t y o f T e c h n o l o g y - F a c u l t y o f I n f o r m a t i o n T e c h n o l o g y

D e p a r t m e n t o f C o m p u t e r G r a p h i c s a n d M u l t i m e d i a A c a d e m i c y e a r 2 0 1 5 / 2 0 1 6

Master's Thesis Specification
F o r : B e n e š K a r e l , B e .

B r a n c h o f s t u d y : I n t e l l i g e n t S y s t e m s

R e c u r r e n t N e u r a l N e t w o r k s w i t h E l a s t i c T i m e C o n t e x t i n
T i t l e : , _ _ • |.

L a n g u a g e M o d e l i n g

C a t e g o r y : S p e e c h a n d N a t u r a l L a n g u a g e P r o c e s s i n g

I n s t r u c t i o n s f o r p r o j e c t w o r k :

1. G e t f a m i l i a r w i t h l a n g u a g e m o d e l i n g w i t h r e c u r r e n t n e u r a l n e t w o r k s (R N N)
2 . G e t f a m i l i a r w i t h w a y s o f l e a r n i n g l o n g e r c o n t e x t d e p e n d e n c i e s in R N N s
3 . I m p l e m e n t s o m e o f t h e s e t e c h n i q u e s u s i n g s u i t a b l e m a c h i n e l e a r n i n g t o o l s

4 . C o m p a r e t h e s e t e c h n i q u e s o n a s t a n d a r d d a t a - s e t .
5. S u g g e s t a n d i m p l e m e n t w a y (s) t o i m p r o v e a s e l e c t e d t e c h n i q u e b y s t a n d a r d

m a c h i n e l e a r n i n g t e c h n i q u e s , f o r e x a m p l e r e g u l a r i z a t i o n .
6 . S t u d y t h e i m p r o v e m e n t s i n t e r m s o f c o m p l e x i t y a n d d a t a r e q u i r e m e n t s .
7 . C r e a t e a p o s t e r a n d / o r v i d e o p r e s e n t i n g y o u r w o r k .

B a s i c r e f e r e n c e s :
• b a s e d o n s u p e r v i s o r ' s r e c o m m e n d a t i o n

R e q u i r e m e n t s f o r t h e s e m e s t r a l d e f e n s e :

I t e m s 1 t o 4

D e t a i l e d f o r m a l s p e c i f i c a t i o n s c a n b e f o u n d a t h t t p : / / w w w . f i t . v u t b r . c z / i n f o / s z z /

The Master's Thesis must define its purpose, describe a current state of the art, introduce the theoretical
and technical background relevant to the problems solved, and specify what parts have been used from earlier
projects or have been taken over from other sources.

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version
of the complete program documentation, program source files, and a functional hardware prototype sample if
desired. The information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R,
etc.) in formats common at the FIT. In order to allow regular handling, the medium will be securely attached to
the printed report.

S u p e r v i s o r : H a n n e m a n n M i r k o , D i p l . - I n g . , D C G M F I T B U T

B e g i n n i n g o f w o r k : N o v e m b e r 1, 2 0 1 5

D a t e o f d e l i v e r y : M a y 2 5 , 2 0 1 6

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
Fakulta informačních technologií

Ústav počítačové grafikea multimédií
C l i c " _ r " r ŕ " .

J a n Če rnocký

Associate Professor and Head of Department

http://www.fit.vutbr.cz/info/szz/

Abstract
This thesis describes an experimental work i n the field of statist ical language modeling

wi th recurrent neural networks (R N N s) . A thorough literature survey on the topic is given,
followed by a description of algorithms used for t ra ining the respective models. Mos t of
the techniques have been implemented using Theano toolki t . Extensive experiments have
been carried out w i t h the Simple Recurrent Network (S R N) , which revealed some previ
ously unpublished findings. The best published result has not been replicated i n case of
static evaluation. In the case of dynamic evaluation, the best published result was outper
formed by 1%. Then , experiments wi th the Structural ly Constrained Recurrent Network
have been conducted, but the performance could not be improved over the S R N baseline.
F ina l ly , a novel enhancement of the S R N was proposed, leading to a Randomly Sparse R N N
(R S - R N N) architecture. This enhancement is based on applying a fixed binary mask on
the recurrent connections, thus forcing some recurrent weights to zero. It is empirical ly
confirmed, that R S - R N N models learn the t ra ining corpus better and a combination of
R S - R N N models achieved a 30 % bigger gain on test data than a combination of dense S R N
models of same size.

Abstrakt
Tato zp ráva popisuje e x p e r i m e n t á l n í p r ác i na s ta t i s t i cké j a z y k o v é m mode lován í p o m o c í

r e k u r e n t n í c h n e u r o n o v ý c h sí t í (R N N) . Je zde p řed ložen d ů k l a d n ý p řeh led dosud publiko
vaných prac í , nás l edovaný popisem a l g o r i t m ů pro t r énován í p ř í s lušných m o d e l ů . Vě t š ina
z p o p s a n ý c h technik byla i m p l e m e n t o v á n a ve v l a s t n í m nás t ro j i , z a loženém na kn ihovně
Theano. B y l a provedena rozsáh lá sada e x p e r i m e n t ů s modelem J e d n o d u c h é r e k u r e n t n í sí tě
(S R N) , k t e r á odhal i la n ě k t e r é jejich dosud nepub l ikované vlastnosti . P ř i s t a t i cké evalu
aci modelu byly dosažené výs ledky r e l a t i vně cca. o 2 .7% horší , než nejlepší pub l ikované
výsledky. V p ř í p a d ě d y n a m i c k é evaluace však bylo dosaženo r e l a t ivn ího zlepšení o 1%.
Dá le bylo e x p e r i m e n t o v á n o i s modelem S t r u k t u r n ě o mezen é r e k u r e n t n í s í tě , ale ten se
nepoda ř i l o n a t r é n o v a t k p ř e d p o k l á d a n ý m v ý k o n ů m . K o n ečn ě bylo n a v r ž e n o rozší ření S R N ,
p o j m e n o v a n é N á h o d n ě p ro ř id l á r e k u r e n t n í neu ronová síť. E x p e r i m e n t á l n ě bylo potvrzeno,
že R S - R N N dosahuje lepších výs ledků v učen í v l a s tn ího t r énovac ího korpusu a kombinace
někol ika R S - R N N m o d e l ů p ř ináš í o 3 0 % větš í z lepšení než kombinace s t e jného p o č t u S R N .

Keywords
Statist ical Language Model ing , Recurrent Neura l Network, R a n d o m Sparsity of Weights,
W o r d His tory Representation

Klíčová slova
Sta t i s t i cké jazykové mode lován í , r e k u r e n t n í neu ronové sí tě , n á h o d n á ř ídkos t vah reprezen
tace slovní historie

Reference
B E N E Š , K a r e l . Recurrent Neural Networks with Elastic Time Context in Language Mod
eling. Brno , 2016. Master 's thesis. Brno Univers i ty of Technology, Facul ty of Information
Technology. Supervisor Hannemann M i r k o .

Recurrent Neural Networks with Elastic Time Con
text in Language Modeling

Declaration
Hereby I declare that this d ip loma thesis describes an original work of the the author, under
the supervision of M i r k o Hannemann. A l l the relevant information sources used during
preparation of the thesis are appropriately cited and included i n the list of references.

K a r e l Beneš
M a y 25, 2016

Acknowledgements
I would like to give my thanks to M i r k o Hannemann, for his guidance, patience and a deep
questions that d id not dare to ask. I would also like to thank my fiancee for her endless
support.

© K a r e l Benes, 2016.
This thesis was created as a school work at the Brno University of Technology, Faculty
of Information Technology. The thesis is protected by copyright law and its use without
author's explicit consent is illegal, except for cases defined by law.

Contents

1 I n t r o d u c t i o n 2

2 N e u r a l N e t w o r k s for L a n g u a g e M o d e l i n g 3
2.1 The Task of Stat is t ical Language Mode l ing 3
2.2 Feed-Forward Networks 5
2.3 Fu l ly Connected Recurrent Neura l Networks 9
2.4 Long Short-Term Memory M o d e l 11
2.5 Structural ly Constrained Recurrent Neura l Networks 12

3 A l g o r i t h m s for M o d e l I m p l e m e n t a t i o n a n d T r a i n i n g 14
3.1 Comput ing Gradients w i t h Backpropagat ion 14
3.2 Backpropagat ion through T i m e 16
3.3 Overview of the Learning Process of a Recurrent Neura l Language M o d e l . 17
3.4 Implementation 19

4 P e r f o r m a n c e O v e r v i e w o f t h e S t u d i e d B a s e l i n e M o d e l s 20
4.1 Penn Treebank Dataset 20
4.2 Simple Recurrent Neura l Networks 21
4.3 Structural ly Constrained Recurrent Network 28

5 F o r c i n g S p a r s i t y i n t h e R e c u r r e n t W e i g h t s M a t r i x 30
5.1 Randomly Sparsed Recurrent Neura l Network M o d e l 30
5.2 Performance of the Randomly Sparse R N N M o d e l 31

5.3 Add i t i ona l Properties of the Randomly Sparse R N N M o d e l 34

6 C o n c l u s i o n 37

B i b l i o g r a p h y 38

A p p e n d i c e s 42

Lis t of Appendices 43

A C o n t e n t s o f t h e C D 44

B D e f i n i t i o n o f M o d e l s i n T h e a n o 45

1

Chapter 1

Introduction

Since the early era of continuous speech recognition wi th large vocabulary, it has been
crucial to compare different hypotheses by their adherence to the language of the utterance.
For several decades, simple models based on the Markov assumption were defining the state
of the art i n the field.

Since the second decade of the th i rd mi l lennium, these models are surpassed by various
forms of recurrent neural networks. After their in i t i a l success, recurrent neural networks
have flourished i n acoustic modeling, image captioning and machine translation. It is
argued that the main advantage of such models is the compact representation of arbi trary
long histories.

This project examines various aspects of the basic recurrent neural language model.
Then , an enhancement of this model is proposed and its performance is assessed.

The work is based on a literature survey presented i n Chapter 2. There, the neural
networks used in language modeling are described, including different techniques used for
tackl ing long-term dependencies. In Chapter 3, the process of t raining a neural network
is described, w i th emphasis on techniques relevant mainly for the language modeling. The
literature survey serves as basis for the experiments i n Chapter 4 and inspirat ion for original
proposed technique described i n Chapter 5.

Experiments are conducted on a widely used dataset and a l l hyperparameters are ex
plored. There is certain drawback of the chosen implementation, which is discussed in
depth. Nevertheless, several interesting findings are presented which can not be found in
the literature on the topic. F ina l ly , it is shown how the drawback may be overcome and
state of the arts results reached.

The proposed enhancement of the model is based on keeping only a subset of recurrent
weights and is similar to the dropout technique. It is shown that using this technique allows
for more effective t ra ining and such models combine better than the baseline.

2

Chapter 2

Neural Networks for Language
Modeling

There have been some experiments w i th neural networks (NNs) for language modeling as
early as of 1991 []. However, there has been more interest since 2003 []. A l t h o u g h the
in i t i a l work i n the area was done wi th t radi t ional feedforward neural networks (F F N N s) ,
a boom of recurrent neural networks (R N N s) has been observed i n recent years. In this
thesis, only a few R N N models are considered, for a wider overview refer to publications []

The task of language modeling is understood as defining a probabil i ty dis t r ibut ion over
possible successor events given the history. Assuming that the universe of events is discrete
wi th K distinct events, we can express the m a x i m u m likel ihood (M L) approach of learning
the parameters od the model by using the cross-entropy function (2.1) as the error function.
In the context of language modeling, we refer to an event as word or token. Let us evaluate
the model on a sequence of iV tokens, w i th every token n being encoded as 1-of-K vector
tn and the response of network is denoted as vector yn at every timestep. T h e n the cross-
entropy is defined as a function of model parameters and is computed as a sum of negative
log-probabilities of these events, that would have been the correct predictions.

Throughout this chapter, several different issues are addressed: F i rs t , the task of lan
guage modeling is defined more precisely and t radi t ional approaches to language modeling
are presented. Next , F F N N s are introduced and general properties of N N s are discussed.
In following sections, three recurrent models are defined. General properties of R N N s are
discussed in the scope of the simplest one.

2.1 The Task of Statistical Language Modeling

Statist ical language modeling is the task of estimating a probabil i ty d is t r ibut ion over some
dict ionary given a history u ^ - 1 consisting of the previous words (2.2). For pract ical reasons,
we can also define the probabil i ty of the whole sequence (2.3).

or [33].

N K
(2.1)

n=l k=l

p(w\w\ X) = p(wt\w1W2 • • • Wt-l) (2.2)

3

p(s) =p(wi\wi) -p{w2\w\)-p{w2,\wl) • ... = Y_p(wi\w\ x) (2.3)
i.

For any but the simplest cases, the value of this probabil i ty is very low, possibly in
t roducing an underflow when computed on an ordinary floating point architecture. A l so ,
the length of a sequence may vary significantly from a few words i n a single sentence to
thousands of words i n case of processing a whole document. Thus, it is customary to report
per-word statistics. Fol lowing Equa t ion (2.3), we compute these statistics as a geometric
mean over the whole sentence. F ina l ly , it is usual in machine learning to work wi th error,
which is the inverted value of the target function.

So we get the perplexity (2.4) measure. T y p i c a l values of perplexity range from 120 to
160 on unseen data, depending on complexity of the task and power of the model applied.
This number is equivalent to the average number of words the model would predict as
possible, given that it would only give a uniform probabil i ty to the subset of possible words
in the vocabulary and zero to the other words.

P P L

Taking logar i thm of the formula for computing perplexity, we receive an error measure
typical ly referred to as per-word entropy (2.5). It is an average value of cross-entropy
between the model and some test data. The value of per word entropy is binary logar i thm
of perplexity, thus typica l values range from 6.9 to 7.3.

1 N

per-word entropy = — — log2p(wj\w\ 1) (2-5)
i=l

There has been some opposit ion to statist ical language modeling as such, most notably
from N o a m Chomsky, 1969:

But it must be recognized that the notion of „probability of a sentence" is an
entirely useless one, under any known interpretation of this term.

Nevertheless, the probabil i ty of a sentence is ut i l ized i n pract ical applications such as
speech recognition, machine translation and data compression.

For many years, state of the art i n language modeling was defined by n-gram models. A n
n-gram is an n-tuple of consecutive words. These models exploit the Markov assumption on
the data, modeling the probabil i ty of the i - th word conditioned only on the n — 1 previous
words (2.6).

P(wt\w1W2 • • • Wt-l) = P(wt\wt-n+lWt-n+2 • • • Wt-l) (2.6)

Since there is a l imi ted number of possible n — 1 long histories, t ra ining of an n-gram
model is constituted by counting occurrences of the given n-grams in a large t ra ining cor
pus. However, not a l l n-grams are seen i n the t ra ining data, therefore different smoothing
methods are used i n order to assign non-zero probabil i ty to such unseen n-grams.

It is possible to represent an n-gram model as weighted a finite automaton by represent
ing each history as a unique state. The W F S T approach allows to efficiently find the most
likely sequence of states and thus words. Th is can be further exploited i n the task of speech

4

recognition: Other sources of information - the pronunciat ion of words as well as acoustic
properties of the signal i t s e l f - c a n be encoded as W F S T , al lowing a compact representation
of the whole problem [].

Over the years, several improvements of n-grams model have been proposed, that t ry to
overcome different weaknesses of the standard model . For instance cache models [32] []
address the abi l i ty to access history beyond the i — n + 1th word. Cluster ing (or classing)
models [21], define categories, such as day-of-week or color. A l l words of a single category
are treated as instances of the same token during counting of n-grams. Therefore, we receive
a more robust estimate of the n-gram probabil i ty of these tokens.

2.2 Feed-Forward Networks

A neural network (NN) is a general connectionist model, which consists of a set of artificial
neurons. Every art if icial neuron computes a scalar function of its mult idimensional input.
Inputs of neurons are determined by the interconnection of neurons. Usually, most of
neurons compute the same type of function, exception being the neurons i n the last layer.
Inspired by the function of a biological neuron, the function of an art if icial neuron can be
expressed as a composit ion of a basis function g{-) and an act ivation function / (•) .

A l though there are other possible basis functions, such as the radial basis function [12],
the linear basis function <?(x) = w T x is dominant in todays N N s .

Act iva t ion functions are nonlinear and can be either continuous or step-functions. A dis
cussion of several prevalent activations is given i n Subsection 2.2.1. Regardless of the spe
cific nature of a given nonlinearity, the presence of a non-linearity is crucial for the overall
function of the network: Since linear transformations are closed under composit ion, a N N
without nonlinearities would be restricted to linear properties of the input.

A F F N N is a learnable model defining a function q : X —> Y, which consists of several
separate layers as demonstrated i n figure 2.1. Since every neuron j i n any given layer
performs the same operation y = / (W J X J) , we can consider the whole layer as a vector of
these neurons, wr i t ing hj for hidden layer i. Then, we can express the computat ion of a l l
neurons i n a single layer as h j + i = / (W h j) , where the act ivat ion function /(•) is applied
element-wise.

2 . 2 . 1 Nonlinearities Used in Artificial Neurons

Following the original argument from the 1950's [], it has been proven [11], that w i th
a sigmoidal act ivat ion function (2.8), a F F N N can approximate any continuous function
to arbi trary precision, given the hidden layer is large enough. This has been later gener
alized [21] to any act ivation function, that is continuous, bounded and nonconstant. It is
noteworthy, that the early works were motivated by Hi lber t ' s 13th problem, which asks,
whether a solution of a seventh-degree equation can be expressed as a composit ion of finite
set of two-parameter functions.

y = /(ff(x)) (2.7)

0 as x —>• —oc

as x —>• +oc

5

Input
layer

Second
hidden
layer

Output
layer

Output #1

Output #2

Output #3

Figure 2.1: General schema of feedforward neural network (F F N N) . E a c h node represents
a single neuron. E a c h arrow represents a synaptic connection and weight is associated wi th
it. Nonlinear activation of the neurons is not shown.

X i - l

X t - 2

Figure 2.2: A feedforward neural network (F F N N) used as a language model . It takes
a finite number of words as input, three in this case. Every word i has its own, independent
projection mat r ix Ui, depending on the posit ion it is at. The pre-last hidden layer, called
compression layer (purple), is used to p u l l the most important information from the word
vector. This allows the output layer to concentrate on the actual predict ion of the output
word.

(i

-1

(a) Logistic sigmoid (b) Hyperbolic tangent (c) Rectified linear unit

Figure 2.3: Different nonlinearities used as activation functions. In this work, the logistic
sigmoid is used. Note that hyperbolic tangent is is the same function, just rescaled. Refer
to Figure 3.1 for derivatives of these functions.

There are three dominant activation functions used today. The logistic sigmoid (F ig . 3.1a),
as given by (2.9), arises natural ly from logistic regression for binary classification [10]. How
ever, it has been shown [18], that hyperbolic tangent(Fig. 3.1b), as given by (2.10), allows
faster t ra ining and a N N using it w i l l typical ly reach a better local opt imum.

Final ly , the rectified linear unit (R e L U) (F i g . 3.1c) has been recently proposed [19] to
allow a deeper propagation of gradients 1 . The R e L U activation is also more biologicaly
plausible and leads to a sparse representation of the input i n the hidden layers.

a(a)
1 + e-

(2.9) tanh(a)
ea + e"

(2-10) ReLU(a)
a > 0

otherwise

(2.11)

The output layer neurons are treated differently, because we want the output of the
network to define a probabi l i ty dis t r ibut ion, i.e. we want a l l the outputs to be positive and
to sum up to one. For this purpose, the softmax function is used. It is i n principle a nor
malized per-element exponentiation of the basis function. Since the underlaying function
is exponential, much greater output value is assigned to neurons wi th just sl ightly greater
basis value. Thus the name „sof tmax" , since the function tends to assign almost 1 to the
neuron wi th the highest basis value and almost zero to the rest of them.

softmax ^

OR

r" K

k=l

(2-12)

2 . 2 . 2 Neural Networks with several Hidden Layers

Al though one hidden layer can be proven to provide universal capabilities to a N N , it is
computat ional ly beneficial to use more successive hidden layers. Advantages of increased
depth have been argued [1] [7], proven [25] and shown to take part for instance in the human
vision [] system. The pr inc ipal advantage of a deeper N N is the abi l i ty to use an output of

l r The necessity, effects and problems of gradients propagation are discussed in Chapter 3.

7

a given neuron as the input for a l l neurons in the following layer, thus relieving them from
the necessity to compute the associated feature themselves. Stacking more layers therefore
allows for transforming the input into features of increasing level of abstraction.

U n t i l 2006, there was l i t t le success i n t ra ining neural networks wi th more hidden layers
in a supervised manner. Th is was mainly due to the highly non-convex objective function
and difficulties i n expressing the influence of parameters close to the input l aye r - a s the
output of these neurons is used in a complex way by large parts of the network, it is difficult
to find out figure out a change of its parameters that would improve the overall behaviour
of the network.

In 2006, a pretraining method was published [], which allows t ra ining layer-wise in
an unsupervised manner, which is followed by supervised fine-tuning of the weights i n the
whole network.

There were several attempts to remove the unsupervised pretraining from the proce
dure. Supervised t ra ining wi th adding layers one at a t ime [] d id show improvement over
whole-network-at-once approach but d id not reach performance of unsupervised pretrain
ing. F ina l ly , it has been shown i n 2010 [19], that using the rectifiers as activations, very
deep networks can be trained directly i n a supervised manner.

2.2.3 Regularizing Techniques for Improving Generalization Properties
of Neural Networks

Since N N s used as probabil ist ic models are discriminative 2 and we t ra in them using the
M L approach, some techniques have to be applied to assure that overfitting to the t raining
data does not occur.

A basic technique to avoid overfitting is to reduce the dimensionality of the parameter
space. In the context of N N s , this equals to using smaller hidden layers. A l though there
are some sophisticated methods such as adding hidden units dur ing the learning [], it is
typical ly up to the designer of the network to choose reasonable sizes of ind iv idua l hidden
layers. Thus, they are usually picked by in tu i t ion and performance of different sizes is
compared on a held-out val idat ion set. The effect of the hidden layer size is discussed in
the experiments sections.

Another option is to suppress large parameter values. Th is is generally done by en
hancing the loss function by a penalty term (2.13) [10], where || • || denotes the norm of
the parameters. A square of the L 2 norm and the L\ norm are typical ly used as penalty
functions.

For deep neural networks (D N N s) , a very successful method of dropout was proposed
recently [15]. Th is method introduces a nonzero probabili ty, that an input of a neuron w i l l
be replaced by zero, effectively turning the neuron off for a given t ra ining sample. This
improves the abi l i ty of the network to generalize, because following neurons can not overly
rely on the output of any given neuron, and also improves learning because it help to break
symmetries between neurons. This effect w i l l be further discussed in Chapter 3.

Nevertheless, it is uncommon for today's N N s used as language models (L M s) to over
t ra in . The reason is, that the amounts of data (millions to billions of tokens) greatly surpass

2 T h e y estimate the conditional probability p{t\x) of some target t given input x, as opposed to generative
models estimating probability p(x, i) of the data itself.

(2.13)

8

Input Hidden Output
layer layer layer

(a) Packed d iagram of R N N . T h e (b) De ta i l ed d iagram of R N N operat ion i n a single t imestep.
z^1 b lock denotes a delay for s in- Values of the neurons i n the h idden layer are concatenated to
gle t imestep. the input i n the next step.

Figure 2.4: General schema of an recurrent neural network (R N N) . This structure is also
the one proposed by early work of E l m a n [], known as simple recurrent network (S R N) .
A n R N N expects the input to be a sequence of single elements. The length of the sequence
is unl imi ted and the model keeps a compressed representation of a l l the previous samples
i n its hidden layer.

the memorizat ion abilities of any reasonably sized N N s . Thus, the main issue wi th t raining
N N L M s is underfitting.

2.3 Fully Connected Recurrent Neural Networks

A Recurrent neural network (R N N) is such a N N , that uses its hidden state from processing
the last sample as an addi t ional input for processing the current sample. The first note of
such R N N is found i n the work of E l m a n [15].

The first successful [36] R N N model used for language modeling was a R N N using hidden
units w i th logistic sigmoid act ivation (2.9). The structure of the model is directly following
the general Figure 2.4. A single processing step (consuming one input and producing one
output) is thus defined as follows: The output is given by Equa t ion (2.15) and the hidden
state is given by Equa t ion (2.14).

h 4 = <r(Ux t + W h t _ i) (2.14)

yt = sof tmax(Vht) (2.15)

The mat r ix U captures the input mapping. It is essentially equivalent to the weight
matr ix of a single layer of an F F N N , but given that the input encodes discrete events (words)
in the 1-of-K encoding scheme, every single column of U can be understood as a word vector
of the respective word. Therefore, the weight mat r ix U introduces a continuous vector space
representation of discrete events.

The idea of word vectors has flourished since their impl ic i t introduction, and word
vectors are used separately now, as an input to natural language processings (N L P s) ap
plications. A detailed discussion on definition, computat ion and properties of word vectors
can be found in recent papers [38] [39] [43].

The output layer consisting of weight mat r ix V and the softmax output act ivat ion is
a standard multi-class logistic regression, as used in any N N for multi-class classification.

9

Figure 2.5: A recurrent neural network (R N N) expanded for three timesteps. Th is diagram
shows that an R N N can be interpreted as a deep neural network (D N N) wi th parameters
shared across the layers. Note that every box represents whole layer of N N , thus consists
of hundreds to thousands of neurons.

The mat r ix W represents the recurrent weights. The state h ^ _ i of the hidden layer is
mult ipl ied by these weights and then added to the input of hidden units at the step t. The
actual value of this weight matr ix is crucial for the overall behaviour of the network: Every
input xt has i n general some influence on every hidden state hf,t' > t. In every timestep
t, this influence is mul t ip l ied by W , so it can either gradually diminish, which is typical ly
more desirable, or suppress influence of following words. It can not actually grow, because
the definite upper bound is saturating a l l the neurons i n the hidden layer, regardless of the
input.

A s emphasised i n Figure 2.5, an R N N may be understood as a D N N wi th output spread
in t ime. Note that this D N N has parameters shared throughout the whole depth. Therefore,
problems similar to what is experienced i n t ra ining D N N s may arise in t ra ining R N N s .

Given that hidden layer ht is the only input to the output layer, which actually com
putes the probabil i ty p(wt\h), it is clear that the hidden layer provides compact history
representation i n the form of a vector in a continuous n-dimensional space. The continuous
representation is the key aspect for the improved performance [36], as it is a way to avoid
the curse of dimensionality experienced by n-gram models.

Given that H denotes dimensionality of the hidden layer and V size of the vocabulary,
the to ta l number of learnable parameters is equal to V x H + H2 + (H + 1) x V. O n l y
the H2 te rm is inherent to the type of recurrent connection used, as the terms V x H
and (H + 1) x V are directed by the vocabulary size and are inevitable i n any NN-based
statistical language model.

The output layer is a computat ional bottleneck. Not only it involves the biggest matr ix
mult ipl icat ion, but also | V | exponentiations. Therefore, a factorization method is often
used to obtain a speed-up: Words are clustered into classes, every word w receiving its
class cw, and a hierarchical softmax (2.16) is than applied to predict the next word. W i t h
the number of classes close to -\/| V | , the complexity drops from O(HV) to O(HyfV). In
practice, the speed-up ratio of 20 is not unusual, at a slight decrease of the performance.

10

Origins of the hierarchical softmax are traced back to Goodman 's work [20].

p(wt+i\w\) = p(wt+i\cWt+1,w\) • p(cWt+1\w\) (2.16)

2.4 Long Short-Term Memory Model

It has been shown [8] and recently discussed [42], that despite their general potential , simple
R N N s are prone to many problems preventing them from learning long-term dependencies.
A brief discussion of these problems w i l l be given i n Chapter 3.

A s a model capable of learning long-term dependencies, the long short-term memory
(L S T M) model [23] was introduced i n the late 1990s. In this model, a simple neuron in the
recurrent layer is replaced by a memory cell, which is able to store information for arbi trary
long timespans.

A n L S T M is typical ly understood just as a single layer of a possibly deeper architec
ture. To get the same view of a simple R N N , one would consider it as defined only by
Equa t ion (2.14), al lowing the input to be computed by some previous layers.

Denoting the element-wise product (Hadamard product) by 0 , we can express the
output h(of an L S T M layer at timestep t, given input xt:

pt = t a n h (U x t + W h f _ i + b „) 0 a(Ixxt + Ih^t-i + b i) (2.17)

mt = m 4 _ i 0 a(Fxxt + F h h t _ i + bf) + pt (2.18)

h 4 = t anh(m 4) 0 a(Gxx.t + G h h 4 _ i + bg) (2.19)

In these equations, mt denotes internal memories of the L S T M and pt denotes already
gated input . The weight matrices IX,FX, Gx are a l l of the same size and transform the input
into gating signals (explained below), s imilar ly the matrices 1^, F^, are of the same size
and operate on the output of the L S T M layer from the previous timestep. The terms
bu,bi,bf,bg are biases i n respective transformations. Note, that the output ht is typical ly
hidden wi th in the whole network, it is the L S T M analogy of i n the simple R N N . Thus
its linear transformations are denoted by A ^ . Operat ion of the L S T M is i l lustrated in
Figure 2.6.

Every element-wise product has an interpretation of gating w i th strong influence on
operation of the L S T M : Ga t i ng i n (2.17) protects the internal memory of L S T M cells from
input, gating i n (2.18) allows to forget current memories and finally i n (2.19), parts of the
memories can be blocked from spoil ing the output. A s the gating is done by element-wise
mult ipl icat ion, the L S T M can learn to gate specific parts of the signal from passing further,
making it a very flexible model.

This flexibil i ty comes wi th a cost: Hav ing the actual input plus three gates, taking full
information from input, the model has roughly 4 times as many parameters as a simple
R N N . The t ime needed for the computat ion of a single timestep is also greater than in
a simple R N N . Nevertheless, this is not so important , as the most computat ional ly expensive
operation is usually the output layer which is common for both models.

Inspired by the L S T M architecture, gated recurrent unit (G R U) model was proposed [13],
achieving similar results w i th only one gate per unit . In a recent exploration paper by Joze-
fowicz et a l . have performed an exhaustive search of architectures similar to the L S T M and

11

(a) D e t a i l of a single L S T M cel l . No te that
the ma in difference w i t h respect to a simple
neuron of a regular R N N is the addi t iona l
recurrent connect ion w i t h i n . Let ters i,f,g de
note the input , forgetting and output gat ing
respectively.

U x , O—•Iňt h i

(b) One layer of L S T M . Note that the gat ing
input to respective gates is computed from
the whole input x t , h . C a p i t a l letters denote
linear t ransformation by respective matrices.

Figure 2.6: D iag ram of long short-term memory (L S T M) operation. Th ick lines represent
flow of actual data, while th in ones are so called gating inputs, that open or close respective
gates by point-wise mul t ip l ica t ion. Green unit represents input, red output and blue is the
internal memory. In both diagrams, both nonlinearities and biases are omitted.

G R U . However, they d id not find any, which would outperform both L S T M and G R U on
al l of the considered tasks [29].

2.5 Structurally Constrained Recurrent Neural Networks

The so called Structural ly Constrained Recurrent Network (S C R N) model was proposed by
Miko lov et a l . [37] as an alternative to the complex gating systems. This model enhances
the simple recurrent network (SRN) by adding dedicated neurons, that are constrained as
to store information about longer history. Several attempts to achieve similar results using
similar techniques were reported, e.g. [] [] or []. Th is section describes the Structural ly
Constrained Recurrent Network (S C R N) model.

W i t h the dedicated neurons added, a single computat ional step of a S C R N is defined
by the following equations:

st = (1 - a) B x t + a s t _ i (2.20)

h ť = a (U x ť + W h u + P s ť) (2.21)

y ť = s o f t m a x (V h h ť + V s s ť) (2.22)

The hidden state vector h and the output vector y have the same meaning as in S R N
defined by Equations (2.15) and (2.14). The vector s captures the state of the longer
memory neurons. These neurons are not affected by the regular hidden neurons, which
makes the changes i n s much slower. Thus, these neurons keep information for a longer
time, making it possible for the network to learn from longer-term dependencies in the text.

Notice that no nonlinearity is applied as act ivat ion of these neurons, resulting i n more
effective back-propagation of gradients, as discussed in detail i n Section 3.2. Also this makes

12

—> yt

z -1

Figure 2.7: Schema of Structural ly Constrained Recurrent Network (S C R N) . It is an en
hanced model of simple recurrent network (SRN) from Figure 2.4a. Note that the values
of longer memory neurons (orange) from last timestep are not transformed by any l in
ear transformation but element-wise scaling. Complete operation of the S R N is given by
Equations (2.20), (2.21) and (2.22).

them effectively accumulate their input . Therefore, slow neurons represent an exponentialy
decaying bag-of-words feature.

A l though the decay parameter a could be learnt and even set to different values for
separate neurons, the authors do not advert i t . They argue and show by experiments, that
wi th sufficient number of regular hidden neurons 3 , the choice of a is arbi trary as long as
it is close to 1.

The pair of hidden vectors can also be viewed as a single hidden vector c, where h and
s are concatenated. The computat ion of new value of the hidden vector can be expressed
as follows:

We can see that nearly whole lower part of the united recurrent matr ix is forced to zero
value, hence the name structurally constrained recurrent network.

3 Depending on the dataset, as few as 100 can be considered sufficient.

13

Chapter 3

Algorithms for Model
Implementation and Training

The most prevalent methods for t ra ining N N s are based on gradient descent methods. That
is, the error estimate E ($^) is computed for the current setting $^ of parameters and so
are its first derivatives wi th respect to a l l parameters fa.

Given that we have computed the current gradient of the error w i th respect to every
parameter, there are several t raining procedures used. The basic approach, batch training,
accumulates the errors from a l l t raining samples, then computes the gradient and updates
the parameters. Th is method is solid in the sense that it uses an estimate of error the error
as accurate as possible. However, it is not used i n practice due to slow convergence and
being prone to ending in a shallow local opt imum.

To overcome this issue, stochastic gradient descent can be applied. In this t raining
schema, the weights are updated after every sample. Stochastic gradient descent typical ly
converges much faster and the noise in the estimate of the error allows it to escape from
most of the local opt ima. However, the computat ion of gradients is a costly operation and
computing it after every sample may be too expensive. Therefore it is common to compute
the weight update after a fixed number of samples. These minibatches can be picked so
that there is an example of each output class i n each batch, so that the network has to
learn to discriminate between them.

3.1 Computing Gradients with Backpropagation

The essential operation necessary for this k ind of opt imizat ion is the computat ion of the
gradients. A s w i l l be shown, it is possible to compute the gradients w i t h respect to a l l pa
rameters of a neural network i n an efficient manner. Th is method is called backpropagation
(back propagation of errors), and it can be derived as follows:

Let us have a F F N N wi th several hidden layers and a softmax as the output layer.
The hidden layers are assumed to have a logistic sigmoid as their activation function. The
discussion of other nonlinearities defined i n 2.2.1 wi th respect to the backpropagation is
given Subsection 3.1.1. T h e n every output yi is computed as:

pOi

V l = = ^ (3.1)

Pu t t i ng regularization aside for the moment, we optimize the cross-entropy only, so we

14

minimize the function:

E = -Y/tklogyk = -Y, tk (3.2)
k k ^3 e

Given that last hidden layer of network is hjn, the OjS are computed as:

o = V h M + hv (3.3)

So let us assume that we have processed a single t ra ining sample x and received an
output y while we know the correct output ought to be t. Us ing the chain rule of derivation,
we first take the par t ia l derivative of the error w i th respect to the weight mat r ix V :

dE dEdo <9 [VhM + tyj T

dW = d^ffV = (t " y) 9V = (t " y) h ^ (3 - 4)

Similarly, par t ia l derivative can be taken wi th respect to the biases of the output:

dE dE do ^d[VhM + bv]
dhv = -do-dK = (t " y) do = (t " y) (3 - 5)

Final ly , we move deeper to the network and investigate influence of the pre-last hidden
layer h j ^ - i on the result. We know that the last hidden layer YYM was computed from
h jn - i as follows:

hil l = o - (W M h M - i + bM) = <T(OM) (3.6)

So continuing wi th the chain rule of derivation, we get:

dE dE do dhM dE do dhM doM , ^ u T
= -d^-dh^-dw^ = a S ' ^ ' a ^ ' a w ^ = (t " y) " v © h M 0 (i - h M) 0 h M _ 1

(3-7)
Here, we have taken advantage of the specific form of the derivative of the logistic sigmoid,
as defined i n (3.10).

We could take the derivative wi th respect to the biases b^" analogically.
We can make get the key insight into the process of computing gradients by defining

errors at the investigated layers:

S° = ^ , SM = ^ , S^ = - ^ , . . . (3.8)
do doM doM-i

Final ly , we the observe relation between errors at subsequent layers and the relat ion of
errors at layers to errors of part icular parameters. These relations follow from the assumed
uniform feed-forward architecture of the network:

§m-i = 5 ™ . ^ - . - f ^ - = 5 m - W l & o ™ . ! 0 (1 - O m _ !) (3.9)
c n m c o m _ i

Cont inuing to deeper layers h„ , 1 < n < m, we see that we always use the error computed
wi th respect to the act ivi ty on+\ of neurons i n following layer. Th is allows to iteratively
compute these par t ia l errors for deeper layers and then taking the par t ia l derivatives to
the respective weights. The advantage over a naive approach is in the usage of already
precomputed errors associated w i t h layers closer to the output.

15

ity

-1

(a) Logistic sigmoid (b) Hyperbolic tangent (c) Rectified linear unit

Figure 3.1: Derivatives of different nonlinearities used as activations i n neural networks
(NNs)

3 .1 .1 Derivatives of the Activation Functions

It is also useful to investigate the derivatives of nonlinear act ivat ion functions used i n N N s .
B o t h logistic sigmoid and hyperbolic tangent have bell-shaped derivatives w i th max ima

at zero, which leads to a decrease of the magnitude of errors i n deeper layers. The deriva
tive of hyperbolic tangent is sharper, which is one of the reasons for the higher speed of
convergence. G iven that the value of the nonlinearity has been computed as h , it is compu
tat ional ly simple to get the derivative at the examined point for both logistic sigmoid (3.10)
and hyperbolic tangent (3.10).

a'(a) = <r(o)(l - <r(o)) (3.10) tanh'(o) = 1 - t a n h 2 (a) (3.11)

The R e L U activation has a constant derivative for any positive input value, which allows
theoretically unl imi ted propagation of the gradients. Th is effect helps greatly for t ra ining
D N N s and some in i t i a l work has been done i n t ra ining R N N s as well [3]. Even though its
derivative at zero is not defined, it is not a problem i n practice, as both left derivative (0)
and right derivative (1) can be used. Comput ing the derivative of R e L U at a given point
is t r i v i a l (3.12).

R e L U ' (a) = { 1 a > ° (3.12)
I 0 otherwise

It is suggested [18] to take the part icular form of the nonlinearity into account when
ini t ia l iz ing the weights of the network. The ini t ia l izat ion should be done in such a way,
that most neurons are l ikely to have the activations in regions of non-zero derivative, which
prevents early saturation of the nonlinearities.

3.2 Backpropagation through Time

The backpropagation of errors presented i n Section 3.1 is defined for F F N N s . However,
an extension to R N N s is straightforward and follows the unpacked diagram (as presented
in Figure 2.5) of R N N operation. The schema of gradient flow i n an R N N is shown in
Figure 3.2.

The core of the backpropagation through time is captured by the equation for com
put ing error vectors at different depths of the network (3.13). The formula has interesting
implications which are further discussed.

16

Figure 3.2: Schema of error backpropagation through time. Note that it is the usual
backpropagation, just the network is an expanded R N N . Differences introduced by extensive
weight sharing between the layers are discussed i n the text.

T
5°= II [(l - h i) 0 h i 0 W T] (t - o) (3.13)

i=T-D

A s the error is backpropagated through the same mat r ix over and over, it is actually
mult ipl ied by a power of the recurrent weights matr ix . A s follows from linear algebra, the
power may happen to grow exponentially, resulting i n so called gradient explosion. Th is
effect has been thoroughly studied [42] and several solutions were proposed. Most of them
consist of thresholding the gradient, either element-wise or as whole vector. Therefore, the
exploding gradient is solved at the level of computing gradients, regardless of recurrent
model used.

O n the other hand, the gradual element-wise mul t ip l ica t ion by the derivative of the
activation introduces so called gradient vanishing. This effect is further increased i f a l l
eigenvalues of W are less than one. Therefore, it is difficult to learn longer temporal
dependencies using this technique. In practice, prolonging the backpropagation over more
than six t ime steps has been shown to have negligible effect [36].

B o t h the L S T M and S C R N t ry to overcome the vanishing gradient by enhancements to
the model. The L S T M does so by introducing the inner memory loop, where the memories of
the network are not transformed by any linear or non-linear transformation. The memories
can only be suppressed by the forgetting gate, but the network can learn to keep the
gate open. This is achieved by keeping the input to the respective gate high enough, as
the logistic sigmoid saturates fast. The S C R N introduces slower neurons, which are not
affected by any nonlinearity either. B y setting a reasonably high a, the exponential decay
of gradients is under control and the network can benefit from backpropagating over tens
of words.

3.3 Overview of the Learning Process of a Recurrent Neural
Language Model

Regardless of its structure, the recurrent neural network is trained on a dedicated t raining
corpus. The basic strategy for learning the structure of the text is to process it word by
word, as i l lustrated by Figure 3.3. T h i s is the original strategy used i n [36]. It is noteworthy

17

more than N years ago researchers reported </s> the asbestos f i b e r <unk> i s unusually <unk> once i t

more than N years ago researchers reported </s> the asbestos f i b e r <unk> i s unusually <unk> once i t

more than N years ago researchers reported </s> the asbestos f i b e r <unk> i s unusually <unk> once i t

Figure 3.3: Learning the weights w i th backpropagation through time using a sl iding window
over the t ra ining text. The network processes one word at a t ime (green) and makes a single
prediction (red word). Therefore, the weights are updated once per every word. A l though
the gradients are backpropagated only five steps into the history (dark blue words), previous
words also influence the process, v i a the hidden state of the network.

more than N years ago researchers reported </s> the asbestos f i b e r <unk> i s unusually <unk> once i t

more than N years ago researchers reported </s> the asbestos f i b e r <unk> i s unusually <unk> once i t

Figure 3.4: Upda t ing the weights only once every 3 words. Green words are used for input
only, red are only used as targets. The yellow words are used first as target and then as
input. Backpropagat ion is done over five timesteps (words i n dark blue), earlier words have
only the effect of providing hidden state.

that this approach is typical ly implemented so that every single hidden vector is computed
just once and only the current values of the parameters are stored. This implies that
during the back-propagation, the gradients are computed wi th different recurrent weights
than the forward pass of the respective hidden vectors. Nevertheless, it does not lead to
any degradation i n practice and experimental results suggests that it is even beneficial.

The backpropagation through t ime is a computat ional ly costly operation. Therefore,
it is often done only once per some segment of words, as i l lustrated i n Figure 3.4. Th is is
a sequential equivalent of the minibatch t raining used in the t ra ining of F F N N s . It trades
the computat ional speed for the speed of convergence and it is not recommended to use
a too long update period [36].

W h e n t ra ining a F F N N for classification, it is customary to shuffle the t ra ining examples
after each epoch. It is empir ical ly observed, that it helps the stochastic gradient descent
to avoid getting stuck at local opt ima. Also , it helps the network to learn generally valid
facts about the data, rather than to approximate some false relations between successive
samples. W h e n t ra ining R N N s , it is necessary to keep the order of samples in a sequence,
because the R N N is used for that very reason, to learn the dependencies between successive
samples. However, shuffling may be done at a higher level, for instance shuffling sentences
or blocks of sentences. W h e n shuffling is done at the sentence level, the network learns as
if sentences were independent, i.e. it cannot learn any memories which would help it at the
beginning of a new sentence.

Final ly , the network can be trained from mult iple streams in parallel . Th is is a direct
equivalent to the minibatch t ra ining used in t ra ining F F N N s . It can be used wi th updat
ing weights on each word as well as w i th updat ing after a block of words. The multiple
streams are typical ly given from a single t ra ining file, which is read at mult iple points, e.g.
w i th four streams, the t raining corpus consists of four streams, starting at words number
0, N/4, N/2 and 3N/4 (0-based). W i t h mult is t ream learning, the input words (their 1-of-
K encodings) may be stacked as column vectors into a single matr ix X . Then , assuming
the softmax function operates column-wise, it is possible to express the forward steps of

18

a simple recurrent network as follows:

H (= (r (U X + W H M) (3.14)

Yt = s o f t m a x (V H t) (3.15)

The effect of this altered operation is two-fold. A t first, the matr ix mul t ip l ica t ion can
be computed i n an opt imized way, reducing the to ta l t ime required for processing the whole
t ra ining corpus. Secondly, when the network operates on several streams in parallel , it can
not adapt to a specific topic and is forced to learn general dependencies i n the data.

3.4 Implementation

To have control over the experiments to follow, a language modeling toolkit was imple
mented. P y t h o n was used as the programing language and the computat ional model was
defined using the Theano toolkit [1] [9].

Theano is a toolki t for specification, compilat ion and execution of symbolic computat ion
graphs. Therefore is is straightforward to express the computat ion of the model.

O n the other hand, Theano makes it impossible to forward pass over every word just
once and then back-propagate the errors from target word for several steps into history.
Therefore, a mini-batch setup is accustomed: A sequence of several words is presented to
the model at once. The forward pass is computed over a l l these word and errors are then
backpropagated simultaneously from a l l of the words. The hidden state is passed around
from one sequence to another.

This way, errors from different words are back-propagated for different number of steps.
In order to ensure a certain min ima l depth of backpropagation, a few words are added
at beginning of each sequence. These words come from the previous sequence, thus the
sequences do overlap. However, the objective function is computed only as the average of
errors on the words from current sequence, avoiding dupl icat ion of targets.

The tool has a command line interface, export ing a l l hyperparameters. Th is allows
running experiments from outer environments, e.g. shell scripts. A framework for running
parallel experiments on an S G E cluster was buil t , u t i l iz ing this property.

Three classes were separated from the source code: A simple wrapper for vocabulary,
handling unknown words in a defined manner. Class representing S R N model . Th is class
not only defines the computat ion done by the model, but also serves a base class. Therefore,
it implements u t i l i ty abilities such as wrapping Theano objects into user-callable methods
or storing the model to hard drive. F ina l ly , a class representing S C R N inherits from the
SRN-representing class, defining only the differences from the basic model.

To avoid segmenting always into same sequences, half-length sequences at the beginning
of epoch is presented on every other epoch. E . g . the first epoch begins w i t h sequences 1-
20, 21-40, . . . , the second begins wi th sequences 1-10, 11-30, 31-50, For th i rd epoch,
sequencing from the first is used and so on.

Like the rnn lm, gradient c l ipping is implemented, w i t h c l ipping threshold fixed to 15.
A s explained in Section 3.2, this is sufficient measure for suppressing the exploding gradient
problem.

Hierarchical softmax is used i n no form, because the ma in issue w i t h experimental
results was their accuracy, not the speed.

19

Chapter 4

Performance Overview of the
Studied Baseline Models

In the following chapter, the pr incipal techniques from previous chapters are assessed in
practice. Mos t of the chapter is dedicated to the investigation of the S R N model . A number
of experiments was performed, exploring the behaviour of the networks under different
conditions. The usual scheme for publishing experimental results consists of selecting the
range of the hyperparemeter to explore, p lot t ing the results and finally selecting the best
value. Sometimes, only the best value is picked, without even stating the parameters
used [3]. In this chapter, complete results for each experiment are stated, including other
characteristics where appropriate. Therefore, this chapter can serve as a comprehensive
test overview for Theano-based implementations of S R N .

No experiments were done wi th the L S T M model, as the proposed technique (see Chap
ter 5) does not bu i ld on top of it and the model itself is rather complicated, thus it is a big
step away from the core of the work.

Furthermore, implementat ion details are specified in order to capture whole process of
implementing S R N i n detail and to allow for future replication of the stated results.

4.1 Penn Treebank Dataset

Penn Treebank (P T B) is a subset of the W a l l Street Journal corpus 1 . It has been hand-
annotated for grammar categories at Univers i ty of Pennsylvania, thus its name. Grammar
annotation allows for appl icat ion of models that are aware of l inguistic properties of the
language.

There is a widely used preprocessed vers ion 2 . The vocabulary is reduced to the 9999
most common words i n this version and the rest of the words in the is replaced by an <unk>
token. It is generally accepted, that this token for rare words is considered to be a regular
word, i.e. predicting the <unk> correctly improves the performance as much as predicting
any other word.

In this preprocessed version, sentence boundaries are captured only impl ic i t ly as line-
breaks. It is necessary to make these explicit for a successful t ra ining of a L M . In this
work, it is done by adding a </s> token to the end of every line. Other implementations
do this as well [36] [37], however it is done at the level of reading the t ra ining file and it is

X L D C item number LDC99T42 , h t tps : / / ca ta log . ldc .upenn .edu /LDC99T42
2 h t t p : / / w w w . f i t . v u t b r . c z / ~ i m i k o l o v / r n n l m / s i m p l e - e x a m p l e s . t g z

20

https://catalog.ldc.upenn.edu/LDC99T42
http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz

not a documented feature. Pre l iminary experiments have shown, that ignoring the end of
sentences hurts the network by roughly 1 bit of per word entropy.

The widely used version of P T B is divided into three parts: Tra in ing set consists of
approx. 890 000 tokens in approx. 42 000 sentences. Val ida t ion subset consists of approx.
70 000 tokens i n 3370 sentences. Similar ly, the test set contains approx. 79 000 tokens in
approx. 3700 sentences. The validat ion set is used i n the experiments for setting the learning
rate during the training, while test set is used purely for estimating the performance.

It is persistent i n a l l the experiments, that models perform better on the test set than
on the validat ion set. Th i s is s imply caused by the test set being more similar to the t ra in
set. Nevertheless, the results on both these sets are very consistent.

4.2 Simple Recurrent Neural Networks

A thorough examination of the S R N performance on the P T B dataset is captured i n this
section. The experiments are organized from exploration of fundamental parameters, e.g.
the number of hidden units, towards the less influential ones such as the weight of the
regularization.

Results are reported on training (red curves), val idat ion (blue curves) and test set
(purple curves). Furthemore, the error on t ra ining data was collected during the last epoch
of t ra ining. This is error is referred to as training-dynamic (green curves). It is always
better than the error obtained on the t raining set in a static manner, because the network
is adapting to the text on-the-fly.

4.2.1 Number of hidden neurons

A n in i t i a l experiment is focused on the number of hidden neurons. The purpose of this
experiment is twofold: A t first, it gives a general overview of the model performance.
Secondly, this experiment examines the trade-off between learning speed and final error.

The following parameters were picked for this experiment: Weights were updated once
every 4 words, t ra ining was done on 4 streams i n parallel . The gradients were back-
propagated 10 words into the history. The in i t i a l learning rate was set to 0.1.

The results of the experiment are captured i n Figure 4.1. The observed errors are smooth
in the number of hidden units, which is an expected result. We can see that starting from
certain number of hidden units, there is only l i t t le improvement reached by adding more.
Therefore, the following experiments have not been carried out w i t h more than 200 hidden
units.

The slight degradation of performance on the val idat ion and test datasets at 300 hidden
units is not consistent w i th published results. It is possible, that it is purely due to some
noise introduced by the random ini t ia l izat ion. The other possible explanation is, that it
corresponds to a local m a x i m u m of the overtraining - the t ra ining error reaches op t imum
here.

4.2.2 Depth of backpropagation and updates frequency

In the next experiment, the combined effect of backpropagation depth and frequency of
weight updates is investigated. For brevity, the frequency of updates is referred to using
the b p t t - b l o c k parameter of the learning. The value of the b p t t - b l o c k expresses after

21

Number of h idden neurons

Figure 4.1: Performance of simple recurrent network (SRN) wi th respect to the number of
hidden units. Results are average of 3 networks wi th different random ini t ia l izat ion. Mean
absolute difference from the median result is 0.02 bits.

Depth of back-propagation Depth of back-propagation Depth of back-propagation Depth of back-propagation

(a) b p t t - b l o c k = 4 (b) b p t t - b l o c k = 6 (c) b p t t - b l o c k = 8 (d) b p t t - b l o c k = 1 0

Figure 4.2: Compar ison of simple recurrent network (SRN) performance wi th respect to
how often a weights update is performed. Green is the error obtained while t raining; red is
the error on the t ra ining dataset obtained w i t h fixed weights; blue and purple are val idat ion
and test errors respectively.

how many words the update is performed. For this experiment, the networks have 200
hidden units. The in i t i a l learning rate is set to 0.1.

The results of the experiment are captured i n Figure 4.2. For the 4 investigated values
of b p t t - b l o c k , the error is observed as dependent on the depth of backpropagation though
time.

The errors on the validat ion and testing dataset do not exhibit any significant changes.
It can be explained by examining details of the propagation: The average depth of the back-
propagation of errors from a given target word is equal to the average of back-propagation
depth and b p t t - b l o c k . Therefore, the worst average depth of back propagation is 5 (up
dates once per 4 words, addi t ional backpropagation 2 words). A s Miko lov has shown [36],
the S R N does not benefit much from back-propagating more than 6 words into the history.
Therefore we can see that except the worst case, gradients are back-propagated for sufficient
number of steps.

22

I I I I I I I I I I I I I I I I I I I

i c r 2 k t 1 io°
Initial learning rate

Figure 4.3: Performance of a simple recurrent network (SRN) wi th respect to the in i t i a l
learning rate. Results are average of 3 networks wi th different random ini t ia l izat ion. The
rough results for t ra ining set can be s imply explained by effects of the random ini t ia l izat ion
and noise i n the t ra ining data.

4.2.3 Initial Learning Rate

In the following experiment, the in i t i a l learning rate is investigated. Networks i n this
experiment have 200 hidden units. Weights are updated every 4 words and error gradients
are back-propagated for 10 words.

The results of the experiment are captured i n Figure 4.3. Considering the validat ion
and test set, the parameter is well-behaved. The graph is very smooth i n the semi-log
domain and we can see a single local m i n i m u m around 0.1. This result is in line w i th values
published in experimental papers.

The performance on the t ra ining set is less smooth, which is not surprisive - as the
model tries to optimize its performance directly on the t ra ining corpus, its performance on
it is l ikely to sensitive to certain hyperparameters. However, the general trend also suggests
that best values lies somewhere between 0.02 and 0.5.

Furthemore, the effect of different in i t i a l learning rates is examined at the level of error
improvements during t ra ining of a single network. Three representative examples are shown
in Figure 4.4. The t ra ining of a l l the models can be divided into two stages: In the first
stage, the in i t i a l learning rate is kept and the network is learning its parameters. Once
the val idat ion error gets worse than i n the previous epoch, the learning switches into the
second stage. D u r i n g this stage, learning rate is d ivided after every epoch, thus the errors
converge to a local min imum.

W i t h the in i t i a l learning rate 0.1 (F ig . 4.4b), the learning progress is split roughly into
halves. Also , we can see the model converging quite fast, which was consistent w i t h the
other runs. There is a simple explanation for the t ra in error being worse than the validat ion
and test errors after the first epoch: A s the t ra in error is computed on-the-fly, it is biased
by the start of the training, when the model is giving random predictions and the error is
very high.

W h e n the in i t i a l learning rate was set to a too high value (F ig . 4.4a), the model d id
not converge i n the first stage. Therefore it effectively learns only during the second stage.

23

0 2 4 6 8 10 12 14 16
Number of epochs

0 2 4 6 8 10 12 14 16
Number of epochs

0 2 4 6 8 10 12 14 16
Number of epochs

(a) In i t i a l learning rate = 1. (b) In i t i a l learning rate = 0.1. (c) In i t i a l learning rate =
0.01.

Figure 4.4: T y p i c a l learning progress for different in i t i a l learning rates. Repor ted are results
on test set (purple), val idat ion set (blue) and t ra ining set (green). Note, that the results
on the t ra ining set are computed during the training, i.e. while the weights were being
adapted. The missing results for the in i t i a l learning rate 1 were just too b a d - t h e model
d id hardly converge. The observed results were reached when the learning rate was already
halved between epochs.

This seems to prevent the model from reaching a high-quality local op t imum. One possible
reason is, that the network d id not have an opportuni ty to move by a large vector in
a reasonable direction in the parameter space during the first stage.

W i t h the in i t i a l learning rate smaller than opt imal (F ig . 4.4c), we can see that the
convergence is slower. The model reaches better error during the first stage, which is i n line
w i th theoretical expectations. W h e n the learning rate is smaller, the model can dive into
narrower ravines of the error function. O n the other hand, the model eventually reaches
an op t imum that is a l i t t le bit worse. The probable explanation is the same as w i th in i t i a l
learning rate too b i g - t h e model d id not move far enough dur ing the first stage. In this
case, it was so because of the model was concentrating on fine details of the error landscape.

4.2.4 Effects of the L2-regularization

Next , the importance of the L2-regularization is assessed. A s defined i n E q . (2.13), the
weight of the regularization is ruled by a single parameter f3. The original publ icat ion
on the topic [36] claims, that applying regularization i n t ra ining S R N is mainly good for
numerical s tabil i ty reasons and it is not important when the computat ion is done double-
precision. T h i s issue is not discussed i n follow-up publications.

For this experiment, networks w i t h 200 hidden units were trained. Weights were updated
once every 4 words and gradients were backpropagated for 10 timesteps. The in i t i a l learning
rate was set to the found opt imal value of 0.1.

The results are captured i n Figure 4.5. It is natural to follow the graph from its left
end: W i t h the (3 parameter close to zero, the model is opt imiz ing only the error on the
t ra in data. Therefore, we can take the left-most results as baseline. In the region t i l l 1 0 - 6 ,
the regularization has hardly any effect.

Then the t ra ining error goes briefly down only to take off later. The improvement on
the t ra ining data is can be explained by suppressing the adaptat ion effects:

The t ra ining corpus consists of several sections, where certain topics are dominant.
Thus the network adapts to the given topic during the training, as can be seen from the
error difference between adaptive (green curve) and nonadaptive (red curve) processing of

24

G
h t 8 i(r 7 nr 6 nr 5 i(r 4 ur 3 icr 2

/8

Figure 4.5: Performance of a simple recurrent network (SRN) wi th respect to the weight
of the L 2 regularization penalty. Results are average of 3 networks w i t h different random
ini t ia l izat ion. The interesting part is the improvement on t ra ining set around 5 • 1 0 - 6 and
the improvement on the test and val idat ion set around 2 • 1 0 - 5 .

the t ra ining corpus. B u t when the regularization weight is increased, the network can not
over-concentrate on the current topic. Therefore, better performance is achieved on the
sentences, which do adhere to the current topic very well.

The usual effect of regularization is observed i n the region from 2 • l C r 6 to 5 • l C r 5 : The
gap between the t ra ining and test error is closing and it is caused not only by the t raining
error increasing, but also the validat ion and test error decrease bellow the baseline. Th is
signals clearly that the networks are subject to overfitting, al though its degree is small .

Once the weight of the L 2 regularization passes 1 0 - 4 , the overall effect is very negative,
as errors on a l l the datasets increase rapidly. Nevertheless, this is well in line wi th theoretical
expectations - as the weight of the regularization term increases, the opt imized function
becomes very different from the error landscape itself.

It is straightforward to observe the effect of L2-regularizat ion direct ly at the level of
model parameters. Figure 4.6 shows histograms of weights under different values of j5.
We can see that under very loose regularization (red curves), the weights are nearly nor
mal ly distr ibuted. A s the regularization weight increases, the weights i n the networks are
distr ibuted more t ight ly around the zero.

A n interesting issue arises w i th the recurrent weights: Regardless of regularization, these
weights are skewed towards the negative values. A s the regularization becomes tighter, the
network drops most of the positive weights, but retains a comparatively vast number of
negative ones.

There are several possible reasons behind: A t first, the negativity of weights implies
oscillation. This is a plausible reason, since oscil lation in several hundred dimensional
space means jumping around. A n d it is reasonable for the network to expect the next word
to be positioned i n a different area of the history representation space, e.g. an a r t i c l e -
a n o u n - a verb etc. The second reason is, that the history representation is used rather
to suppress some aspects of input words than to amplify others. However, there is no
explanation on why it should do so.

25

- 0 . 4 - 0 . 2 0 0.2 0.4

(a) Input mapping U .

- 1 - 0 . 5 0 0.5 1

(b) Recurrent weights W .

- 1 - 0 . 5 0 0.5 1

(c) Output mapping V .

Figure 4.6: Dis t r ibu t ion of weights in the simple recurrent network (S R N) , as dependent
on the weight of L 2 regularization. Dist r ibut ions are plotted for /3 equal to: 10~ 8 (red),
2 • 1 0 - 5 (green) and 1 0 - 3 (blue). Refer to Figure 4.5 for the impact on the performance.
Histograms are computed from three randomly ini t ia l ized networks. For the recurrent
matr ix , the histogram is computed from a l l weights. Subsampling down to 120 000 weights
was used i n the case of input and output mapping. In a l l cases, the zero-most b in wi th
tight regularization goes up to around 0.8.

15 20
(a) 2 streams (b) 4 streams (c) 6 streams (d) 8 streams (e) 10 streams

Figure 4.7: Exp lo ra t ion of S R N behaviour w i t h respect to number of learning streams and
frequency of updates. The experiment was also conducted for 12 streams, but the result
were very similar to the 10 streams, just a l i t t le bit worse. Weight updates after 4, 8, 16
and 32 words were tr ied for a l l explored numbers of streams. However, as the number of
streams grew, not a l l models have successfully converged, thus the missing values.

A slight skew towards negative values is apparent also i n the output mapping. However,
it diminishes as the regularization gets tighter.

4.2.5 Multistream Learning

In his thesis, Miko lov [36] claims, that it is very beneficial to perform updates of weights
often. Therefore, another experiment was focused at mult is t ream learning. I have exam
ined number of streams i n combinat ion wi th frequency of updates, as these are the two
parameters governing number of updates per epoch.

In this experiment, networks were 200 hidden units wide. Gradients were backpropa-
gated for 10 words into history.

Results of the experiment are summarized i n Figure 4.7. We can see that once the
product of the number of the streams and the b p t t - b l o c k exceeds 20, the performance
degrades dramatically. W i t h lower number of streams and frequent updates, the obtained
error seems quite robust to the part icular setting. The error increase wi th 4 streams and
b p t t - b l o c k = 1 6 seems quite random, it is possible to be introduced by some special char-

26

- Test-dynE
Valid at i<

o

o

z
I

7.6

7.4

7.2

6.8
i o - 10~ 4 10" 3 10~ 2 10" 1

In i t i a l learning rate

Figure 4.8: Dynamic performance on the test set. For reference, the final performance on
the val idat ion set is reported as well . These results are computed on a single input model.

acteristics of the data.

4.2.6 Dynamic Application of Networks

Final ly , I have evaluated the network dynamically. For this experiment a network from
the experiment examining weight of L2-regularizat ion was taken. It was the one wi th best
performance on the val idat ion set. Then a single epoch of t ra ining on the test set is run. I
have t r ied a range of different learning rates, to find op t imal setup. The original t raining
was ended wi th learning rate around 5 • 1 0 - 6 .

Result of the experiment is captured in Figure 4.8. It is obvious that best results are
obtained wi th learning rate around 0.01. W i t h lower learning rate, the network can not
adapt enough. W i t h higher learning rate, the network may leave the valley of error function
reached during the original t raining.

The performance on the validat ion set is also interesting: Overal l , the fine tuning of the
model to the test set hurts the performance. W i t h learning rate around 1 0 - 3 , this decrease
in performance is smaller, because the network was just a l i t t le pushed from its original
local opt imum, which has similar effect to applying regularization. W h e n the learning rate
gets too big, the performance on the validat ion set is completely degraded, s imply because
the network adapts too much to a different error landscape.

4.2.7 Simple Recurrent Network Summary

To sum up the the experiments w i th the S R N models, I have compared the achieved re
sults w i th the Mikolov ' s original implementat ion rnn lm. The most interesting results are
summarized in Table 4.1.

We can see that this Theano-based implementat ion has not reached the best published
results. A s a l l available hyperparameters have been extensively explored, the only difference
remaining is the way of passing through the trainined set. Since the L 2 regularization has
helped a lot (removes 30 % of the difference) and has been claimed by Miko lov not to bring
any gains, we can assume that his originial implementat ion serves as strong regularizer.

27

Table 4.1: Performance of different models on the test set. Upper and lower bound is given
by an external implementat ion of R N N L M and a smoothed 3-gram model respectively.

M o d e l Ent ropy Perplexity

G o o d Tur ing 3-gram 7.38 165.2
Basic experiment, 100 neurons 7.32 159.8
Basic experiment, 200 neurons 7.30 157.6
P = 1 0 " 5 , 200 neurons 7.24 151.2
j3 = 1 0 - 5 , 200 neurons, dynamic 6 . 8 7 1 1 7 . 0
rnn lm toolki t , 200 neurons 7 . 1 0 1 3 8 . 4
rnn lm toolki t , unknown number of neurons 6.94 123.2

4.3 Structurally Constrained Recurrent Network

The paper introducing S C R N comes also wi th a l ink to public implementa t ion 3 . However,
it is implemented i n Torch, which is a l ibrary for tensor computat ion i n L u a scripting
language. Since Theano was selected as the tool for implementat ion i n this work, the
S C R N model has been reimplemented' 1 .

The paper also comes w i t h reasonably detailed description of hyperparameters used for
t ra ining the model[37]. Therefore, the first natural experiment was focused on replicating
the published result. However, the models d id not converge at a l l i n my case.

Taking experience from experiments w i th S R N , the most l ikely reason of the divergence
is the combination of a rather big number of streams (32) w i t h updates after 5 words and
a very long backpropagation trough time (50 steps).

Therefore, I have decided to t ry an experiment w i th modest setting of these parameters.
The following experiment has been done wi th 4 streams, updat ing after every 4th word. The
networks were 200 hidden neurons wide. Backpropagat ion was done for 10 steps only. Th is
can be expected to decrease the effect of introducing slow neurons, however an improvement
should be observed anyway, since we expect regular neurons to learn from histories up to 6
words only.

To suppress effects of random ini t ia l izat ion, this experiment was run as a search over
the number of slow neurons. Results of the experiment are summarized in Figure 4.9. N o
substantial improvement was observed, and definitely not a consistent one. Overal l , the
model seems to overtrain more than a S R N and the results are worse than the published
ones. Therefore, the implementat ion technique where a single hidden state is computed
only once during the epoch really serves as a strong regularizer.

I d id not perform experiments w i th explicit regularization, as the author d id not mention
it at a l l and the reached results were worse than a comparable S R N anyway.

3 ht tps : / /g i thub.com/facebook/SCRNNs
4See Appendix B for code.

28

https://github.com/facebook/SCRNNs

6 I 1 1 1 1
10 20 30 40 50 60

Number of slow neurons

Figure 4.9: Performance of a Structural ly Constrained Recurrent Network (S C R N) wi th
respect to the number of slow neurons. Results are average of 3 networks wi th different
random ini t ia l izat ion. We can see that the slower neurons have hardly any effect on the
test and val idat ion performance. Slight improvement on the t ra in set can be observed, but
not i n smooth and interpretable way.

29

Chapter 5

Forcing Sparsity in the Recurrent
Weights Matr ix

A s explained in Subsection 2.5, the S C R N model can be interpreted as a simple recurrent
network wi th constrained values in the recurrent weights matr ix . These constraints are
supposed to help the network to focus on different aspects of the text w i th different parts
of the parameters.

Sparsity in recurrent networks is proposed by Bengio et a l . as well [3]. In their approach,
the sparsity is not an inherent property of the model, but is forced by L I regularization.
However, they use R e L U as the nonlinearity i n the hidden layer.

Another example of proposing sparsity can be found i n a more theoretically based work
of Sutskever et a l . [46]. They advocate in i t ia l iz ing the recurrent weights i n the form of
a sparse matr ix . The i r reasoning is that a network ini t ia l ized this way would not change
its hidden state so rapidly, so it is easier to back-propagate the error and distribute the
adjustments to the responsible parameters.

Final ly , there is a quite successful model called Echo State Network (E S N) used in
general sequence predict ion [26]. Th i s model is, i n its topology, very similar to the S R N .
However, only the output weights are learned, thus the t raining is computat ional ly very
simple, as no backpropagation takes place. The rest of the weights are s imply set during
creation of the network. Moreover, the recurrent weights are ini t ia l ized as being very sparse,
e.g. 15 input connections per neuron for a hidden layer w i th a few hundreds of neurons.

A l l of these examples suggest, that it is beneficial to keep some of the recurrent connec
t ion at zero. Thus, a simple extension to this idea is studied in this chapter.

5.1 Randomly Sparsed Recurrent Neural Network Model

The proposed model is based direct ly on the S R N model . The change is introduced to the
computat ion of the hidden state. The original equation (2.14) is replaced by its enhanced
version:

h < = a (U x t + ((W m 0 W) h < _ 1) (5.1)

The introduced mat r ix W m is a binary mask and the 0 operation represents entry-wise
mult ipl icat ion. Thus, the only abi l i ty of W m is to tu rn single entries of W on or off. Th is
matr ix is set as a fixed parameter of the model and can thus be ini t ia l ized by specific shape
or randomly.

30

The introduct ion of W m allows to turn the network sparse. In this work, random
ini t ia l izat ion of W m is studied, w i th a focus on the behaviour of the networks when there
are only a few entries set to one. Therefore, the proposed model is called Randomly Sparse
Recurrent Neura l Network (R S - R N N) .

The governing parameter is then the amount of nonzero elements i n W m . Its normalized
value is called density. Note, that for density equal to 1, the R S - R N N is equivalent to the
S R N .

This approach is s imilar to the dropout technique described i n Section 2.2.3. It repre
sents a dropout applied only to the recurrent connections. The difference from the standard
form of dropout consists of two concepts: A t first, the R S - R N N is simpler because the mask
of dropping out is fixed for a l l the training. Secondly, dropout turns off whole neurons, while
in R S - R N N , only specific neuron-neuron connections are set on or off.

However, dropout is rarely used for recurrent connections. The main reason is that it is
usually discussed i n context of the L S T M model . In the L S T M model, the network learns
to protect its memories and therefore grows dependent on their precise values. So it is very
difficult for the network to learn what to expect from any specific memory i n the presence
of dropout, where only - 2 0 - 3 0 % of the neurons are kept from previous timesteps.

Thus i n practise, dropout is used only for the regular non-recurrent connections 1 . Th is
approach is also supported by some publications [47] [44]. There were some experiments
suggesting, that w i th a careful setting, even a dropout on the recurrent connections may
work, al though not as well as dropout at other places of the architecture [11].

In his recent paper, G a l has investigated the applicat ion of dropout in R N N s interpreted
as Bayesian networks []. Support ing my approach, he shows that using the same mask
for a l l timesteps is correct way to approach dropout i n recurrent networks.

5.2 Performance of the Randomly Sparse R N N Model

A s a quick assessment of the potential of the R S - R N N model, a simple experiment w i th 100
hidden units was performed. The random mask was randomly ini t ia l ized so that 20 %, 40 %,
60%, 8 0 % and 100% of its entries were set to one. The networks were trained wi th in i t i a l
learning rate 0.1, updat ing the weights every 30 words and backpropagating the gradients
for 5 words into the history.

The results of this experiment are captured in Figure 5.1. The error on the validat ion
and test set is slightly increasing as the recurrent weights grow sparse. Taking the analogy
wi th the experiment exploring the effect of the number of hidden units, this is a direct
impact of decreasing the number of learnable parameters of the model . However, the
decreasing error on the t ra ining set does not follow this explanation. This improvement can
be explained using similar reasoning as Sutskever et a l . d id for their sparse in i t ia l iza t ion []:
Having the recurrent connections sparse makes it easier for the network to learn temporal
dependencies i n the data, because the hidden state does not change so rapidly wi th every
timestep.

Thus, the decreased performance on the val idat ion and test set may be caused by the
model fi t t ing the t ra ining corpus better.

1 Personal communication with R & D staff from Seznam.cz.

31

http://Seznam.cz

0.2 0.4 0.6 0.8 1

Density of the random mask

Figure 5.1: Performance of a Randomly Sparse Recurrent Neura l Network (R S - R N N) wi th
100 hidden neurons, w i t h respect to the density of the random mask. Thus sparser models
are i n the left. Results are average of 9 networks wi th different random ini t ia l izat ion.

5.2.1 Interpolation of Several Randomly Initialized Models

Since the R S - R N N seems to learn the t ra ining corpus better than a dense S R N , the idea of
combining such models becomes tempting. For this purpose, wider models w i th 200 hidden
neurons were trained, w i th the rest of the learning parameters kept same as i n the previous
experiment. The ind iv idua l performance of these models is captured i n Figure 5.2.

The combination of models is done as an unweighted linear interpolation (5.2), also
called posterior combination. The motivat ion behind this is that the models should be in
principle equal, so t ra ining interpolation weights would just exploit differences introduced
by noise.

1 N

p{wt\p\-1) = -YjPl{wt\p\-1) (5.2)
i=l

The results of the interpolation are captured i n Figure 5.3. We can see that when the
mask has as few as 2 0 % zero entries (density = 0.8), the result of combination is much
better than combination of S R N models (density = 1) . The improvement over a base l ine-
the average of single systems w i t h test entropy 7 .28-has been quantified in Table 5.1. We
can see that the relative improvement of the gain of the R S - R N N compared to the S R N is
approximately 30%.

5.2.2 Apply ing the L2 Regularization on Randomly Sparse R N N

The other way to exploit the better performance of R S - R N N on the t ra ining data is to
resctrict it w i th regularization. To explore this possibility, an experiment has been con
ducted wi th R S - R N N s . Taking experience from experiments w i t h regularization on S R N
(see Section 4.2.4) only a narrower range of regularization weights was explored.

The effect of the regularization is pictured i n Figure 5.4. We can see that the general
behaviour of R S - R N N under L 2 regularization is similar to the S R N . The m a x i m u m gain,
obtained at /? = 2 • 10 5 , is s imilar to the gain of the S R N . However, since the models

32

0 0.2 0.4 0.6 0.8 1

Density of the random mask

Figure 5.2: Performance of a Randomly Sparse Recurrent Neura l Network (R S - R N N) wi th
200 hidden neurons, w i th respect to the density of the random mask. Results are average
of 9 networks wi th different random ini t ia l izat ion. We can see that the general trend is
very similar to the networks wi th 100 hidden neuron (see Figure 5.1). W h e n the density
drops too low (5%, leftmost entry), we can see that overall performance gets worse. The
main reason is a severe decrease of the number of parameters i n the recurrent layers.

0.2 0.4 0.6 0.8 1

Density of the random mask

Figure 5.3: Effect of interpolation of randomly ini t ia l ized models as dependent on the
density of random mask, compared to the performance of ind iv idua l models. A l l models
have 200 hidden neurons and for every density, nine models have been trained and combined.

33

Table 5.1: Performance of models interpolation on the test set as dependent on the density
of the random mask. The improvement over baseline is reported on entropy.

Density Ent ropy Perplexity Improvement over baseline

1.0 7.05 132.5 3.2%
0.8 6.97 125.4 4.2 %
0.6 6.99 127.1 4 .0%
0.4 6.99 127.1 4 .0%
0.2 7.00 128.0 3.8%

Figure 5.4: Effect of the L2-regularizat ion on models w i th density=0.2. A l l models have
200 hidden neurons and for every weight of regularization, nine models have been trained
and combined.

perform much worse without regularization, the final result is comparable to a S R N without
regularization.

The intersting observation is, that even wi th quite tight regularization, the gap between
dynamic and static performance on the t ra ining set remains significant.

5.3 Addit ional Properties of the Randomly Sparse R N N Model

Since the restricting mask W m rather significantly alters the performance of the model , it
is worth investigating, how the inner workings of the R S - R N N differ from a similar S R N .

A s the first case, the learning progress of a single model is examined. For this, three
models of different density were taken from the experiment w i th 200 hidden neurons. These
models are not special in any respect.

The respective learning progress is plotted in Figure 5.5. We can see that the selected
models improve very similarly. The only significant difference is the performance degrada
t ion of the model w i th density = 0.6 in the s ix th epoch, but that may well be caused by
some random effect. A l so , it has no further effect because the t ra ining procedure performs
a rollback to the previous model when the val idat ion error increases.

34

0 2 4 6 8 10 12 14 16
Number of epochs

0 2 4 6 8 10 12 14 16
Number of epochs

0 2 4 6 8 10 12 14 16
Number of epochs

(a) Density = 0.2. (b) Density = 0.6. (c) Density = 1.

Figure 5.5: T y p i c a l learning progress for different density of the random mask. Reported
are results on test set (purple), val idat ion set (blue) and t ra ining set (green). Note, that
the result on the t raining set are computed during the training, i.e. while the weights were
being adapted.

Furthermore, the dis t r ibut ion of weights is examined. For this analysis, weights from
al l models w i th a given density were accumulated. I believe that by doing so, no important
quali ty of the data is lost. Furthermore, only those of recurrent weights are taken into
account, which are active.

Histograms of weights i n a l l the matrices are presented i n Figure 5.6. We can see that
the input mapping and output mapping are distr ibuted nearly normally. The recurrent
weights are much more have a higher variance.

The same pattern can be observed for the weights in both U and V : The sparser the
mask, the wider the dis t r ibut ion. The exception is the fully connected network (black
curve), for which the weights are distr ibuted a l i t t le wider.

The recurrent weights follow a s imilar pattern, but loosely. The dis t r ibut ion of weights
for middle density (0.6, green curve) is nearly identical to dis t r ibut ion of weights i n a dense
network (black curve).

The recurrent weights also are biased towards the negative values, like i n the case of
S R N (see Subsection 4.2.4). However, the bias towards negative values gets more significant
as the weights get sparser. We can assume that it is important for the network to retain
a significant por t ion of its negative weights.

W i t h some of the sparse models a question may arise, how many hidden neurons from
the past do actually affect a part icular one? We can see, that due to transit ivity, a l l of
them contribute: Let us assume an R S - R N N w i t h the density of the mask equal to 0.2.
Then , a hidden neuron i s - o n average - connected to 40 hidden neurons i n the previous
step. However, looking two steps back, this part icular neuron should be connected to
40 • 40 = 1600 3> 200 neurons. Thus we can safely assume, that it is effectively connected
to a l l of them. This has been empir ical ly verified on a l l generated masks.

We can expect this to hold for masks down to density d = 1/s/N. Therefore, the gains
achieved by making the mat r ix sparse clearly do not come from lower level of connectivity
between hidden neurons, but slower change of state. Thus I suggest that the improvements
reached are obtained by the model being easier to learn, due to easier dis t r ibut ion of
gradients i n the first step of backpropagation through time.

35

(a) Input mapp ing U . (b) Recurrent weights W . (c) O u t p u t mapp ing V .
Note the different axes scale.

Figure 5.6: Dis t r ibu t ion of weights i n the Randomly Sparse Recurrent Neura l Network
(R S - R N N) , as dependent on the density of the random mask. Distr ibut ions are plotted
for density equal to: 0.2 (blue), 0.4 (red), 0.6 (green), 0.8 (purple) and 1 (black). Refer
to Figure 5.2 for impact on performance. Histograms are computed from nine randomly
ini t ia l ized networks. For the recurrent matr ix , the histogram is computed from a l l nonzero
weights. Subsampling down to 120 000 weights was used i n the case of input and output
mapping.

36

Chapter 6

Conclusion

In this d ip loma project, I have investigated learning procedures of recurrent neural networks
(R N N) i n language modeling. Several prevalent models are presented, as well as techniques
for their t raining. Based on this knowledge, a language modeling tool was implemented in
order to experiment w i th the models. Us ing this tool , the Simple Recurrent Network (SRN)
model was intensively tested i n a range of situations. A l so , the Structural ly Constrained
Recurrent Network (S C R N) was implemented and tested. A novel enhancement of the S R N
was proposed and thoroughly studied.

The downside of the Theano based S R N implementat ion is, that the result reached
was by 2.7% worse than the best published result. O n the other hand, I have found
out that L 2 regularization helps to reduce this gap by 30%. This result is contrary to
previous publications on the topic, which c la im that L 2 regularization does not br ing any
improvement in performance. F ina l ly , I have found out that the implementat ion eventually
outperforms the best published results when evaluating the test set dynamically.

The S C R N model d id not converge when using the parameters given by its authors. In
a simpler setup, the result d id not get better than the S R N baseline.

The conclusion from these experiments is, that the implementat ion details impl ied by
Theano lead to a worse performance. Other implementations use a more direct approach,
which seems less i n line w i th the theory of gradient learning, however works as a strong
regularizer.

The R S - R N N model seems to overtrain a l i t t le , compared to the S R N model. However,
it has been empirical ly shown, that the gains on the t ra ining corpus can be effectively
transformed into improved performance on a test set by a simple posterior combination.
This improvement is by 3 0 % larger than the improvement reached by a combination of
the same number of dense S R N models. Th is result has been presented at the E x c e l ® F I T
student conference [2].

Future work w i l l be oriented i n two directions: The R S - R N N model w i l l be integrated
into some of the toolkits that produce the state of the arts results. If the improvement w i l l
last, it should be a model improvement suitable for publicat ion.

The other extension of this d ip loma project lies in combining the R S - R N N model w i th
a Bayesian treatment of R N N s i n language modeling. Since the Bayesian treatment poses
a way of regularization on its own, it w i l l be interesting to see whether the improved learning
performance of the R S - R N N could be ut i l ized i n an other way than the interpolation of
several models.

37

Bibliography

[1] Frederic Bastien, Pascal Lambl in , Razvan Pascanu, James Bergstra, Ian J .
Goodfellow, A r n a u d Bergeron, Nicolas Bouchard, and Yoshua Bengio. Theano: new
features and speed improvements. Deep Learning and Unsupervised Feature Learning
N I P S 2012 Workshop, 2012.

[2] K a r e l Beneš . Randomly Sparsed Recurrent Neura l Networks for Language Model ing .
In Excel@FIT, Student Conference, 2016.

[3] Y . Bengio, N . Boulanger-Lewandowski, and R . Pascanu. Advances in Opt imiz ing
Recurrent Networks. In Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on, pages 8624-8628, M a y 2013.

[4] Yoshua Bengio. Learning Deep Architectures for A I . Foundations and Trends@ in
Machine Learning, 2(1):1-127, 2009.

[5] Yoshua Bengio, Ré jean D u c h a ř m e , Pascal Vincent , and Chr i s t i an Janvin . A neural
probabilist ic language model . J. Mach. Learn. Res., 3:1137-1155, M a r c h 2003.

[6] Yoshua Bengio, Pascal Lambl in , D a n Popovic i , Hugo Larochelle, Univers i tě De
Montrea l , and Mont rea l Quebec. Greedy Layer-Wise Tra in ing of Deep Networks. In
In NIPS. M I T Press, 2007.

[7] Yoshua Bengio, Y a n n Lecun, Departement D' informatique E t Recherche
Opé ra t i onne l l e , Univers i t ě De Montreal , L . Bo t tou , O . Chapelle, D . Decoste, and
J . Weston (eds. Scaling learning algorithms towards ai , 2007.

[8] Yoshua Bengio, Patr ice Simard, and Paolo Frasconi. Learning Long-Term
Dependencies w i th Gradient Descent is Difficult . IEEE Transactions on Neural
Networks, 5(2):157-166, 1994.

[9] James Bergstra, Ol iv ie r Breuleux, Frederic Bastien, Pascal L a m b l i n , Razvan
Pascanu, Gui l laume Desjardins, Joseph Tur ian , D a v i d Warde-Farley, and Yoshua
Bengio. Theano: a C P U and G P U math expression compiler. In Proceedings of the
Python for Scientific Computing Conference (SciPy), June 2010. O r a l Presentation.

[10] Chris topher M . Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[11] Theodore Bluche, Christopher Kermorvant , and Jerome Louradour . Where to apply
dropout i n recurrent neural networks for handwri t ing recognition? In International
Conference of Document Analysis and Recognition (ICDAR), 2015.

38

[12] D a v i d S. Broomhead and D a v i d Lowe. R a d i a l Basis Functions, Mul t i -Var iab le
functional interpolation and adaptive networks. Complex Systems, 2:321-355, M a r c h
1988.

[13] K y u n g H y u n Cho , Bar t van Merrienboer, D z m i t r y Bahdanau, and Yoshua Bengio. O n
the properties of neural machine translation: Encoder-decoder approaches. CoRR,
abs/1409.1259, 2014.

[14] George Cybenko. Approx ima t ion by Superpositions of a Sigmoidal Func t ion .
Mathematics of Control, Signals, and Systems (MCSS), 2(4):303-314, December
1989.

[15] Jeffrey L . E l m a n . F i n d i n g Structure in T ime . COGNITIVE SCIENCE,
14(2): 179-211, 1990.

[16] Scott E . Fah lman and Chr i s t i an Lebiere. The Cascade-Correlat ion Learning
Architecture. In Advances in Neural Information Processing Systems 2, pages
524-532. Morgan Kaufmann, 1990.

[17] Y a r i n G a l . A theoretically grounded applicat ion of dropout in recurrent neural
networks. arXiv:1512.05287, 2015.

[18] Xav ie r Glorot and Yoshua Bengio. Understanding the difficulty of t ra ining deep
feedforward neural networks. In International conference on artificial intelligence and
statistics, pages 249-256, 2010.

[19] Xav ie r Glorot , Antoine Bordes, and Yoshua Bengio. Deep Sparse Rectifier Neura l
Networks. In Geoffrey J . Gordon and D a v i d B . Dunson, editors, Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics
(AISTATS-11), volume 15, pages 315-323. Journal of Machine Learning Research -
Workshop and Conference Proceedings, 2011.

[20] Joshua Goodman . Classes for fast m a x i m u m entropy training. CoRR,
cs .CL/0108006, 2001.

[21] Joshua T . Goodman . A bit of progress i n language modeling. Computer Speech &
Language, 15(4):403 - 434, 2001.

[22] Geoffrey E . Hin ton , Simon Osindero, and Yee-Whye Teh. A Fast Learning A l g o r i t h m
for Deep Belief Nets. Neural computation, 18(7):1527-1554, 2006.

[23] Sepp Hochreiter and J i i rgen Schmidhuber. L o n g Shor t -Term Memory. Neural
Comput., 9(8):1735-1780, November 1997.

[24] K u r t Hornik . Approx ima t ion capabilities of multi layer feedforward networks. Neural
Networks, 4(2):251 - 257, 1991.

[25] Johan Hastad and M i k a e l Go ldmann . O n the Power of Smal l -Depth Threshold
Circui ts . Computational Complexity, 1:610-618, 1991.

[26] Herbert Jaeger. Adapt ive nonlinear system identification wi th echo state networks.
In S. Becker, S. Th run , and K . Obermayer, editors, Advances in Neural Information
Processing Systems 15, pages 609-616. M I T Press, 2003.

39

[27] Herbert Jaeger, Mantas Lukosevicius, D a n Popovic i , and Ud o Siewert. Opt imiza t ion
and applications of echo state networks wi th leaky- integrator neurons. Neural
Networks, 20(3) :335 - 352, 2007. Echo State Networks and L i q u i d State Machines.

[28] Frederick Jelinek, Bernard Meria ldo , Sa l im Roukos, and M a r t i n Strauss. A dynamic
language model for speech recognition. In Proceedings of the Workshop on Speech and
Natural Language, H L T '91, pages 293-295, Stroudsburg, P A , U S A , 1991. Associat ion
for Computa t iona l Linguist ics .

[29] Rafa l Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. A n empir ical exploration of
recurrent network architectures. In Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages 2342-2350,
2015.

[30] Andr e y N . Kolmogorov. O n the representation of continuous functions of many
variables by superposition of continuous functions of one variable and addi t ion. Dokl.
Akad. Nauk SSSR, 114:953-956, 1957.

[31] Norbert Kruger , Peter Janssen, Sinan K a l k a n , Markus Lappe, Ales Leonardis, Justus
Piater , Anton io J . Rodriguez-Sanchez, and Laurenz Wisko t t . Deep Hierarchies i n the
Pr imate V i s u a l Cortex: W h a t C a n W e Learn for Computer Vis ion? IEEE Trans.
Pattern Anal. Mach. Intell, 35(8):1847-1871, August 2013.

[32] R o l a n d K u h n and Renato De M o r i . A cache-based natural language model for speech
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
12(6):570-583, 1990.

[33] Zachary Chase L i p t o n . A cr i t ical review of recurrent neural networks for sequence
learning. CoRR, abs/1506.00019, 2015.

[34] Mehryar M o h r i and Fernando Pereira and Michae l R i l ey . Speech recognition wi th
weighted finite-state transducers. In Springer Handbook on Speech Processing and
Speech Communication, chapter 28. Springer-Verlag New York , Inc., 2008.

[35] Ris to Mi ikku la inen and Michae l G . Dyer . Na tu ra l language processing wi th modular
neural networks and distr ibuted lexicon. Cognitive Science, 15:343-399, 1991.

[36] Tomas Miko lov . Statistical Language Models Based on Neural Networks. P h D thesis,
2012.

[37] Tomas Miko lov , A r m a n d Joul in , Sumit Chopra , Michae l Math ieu , and Marc 'Aure l i o
Ranzato. Learning longer memory i n recurrent neural networks. CoRR,
abs/1412.7753, 2014.

[38] Tomas Miko lov , I lya Sutskever, K a i Chen , Greg Corrado, and Jeffrey Dean.
Dis t r ibuted representations of words and phrases and their compositionality. CoRR,
abs/1310.4546, 2013.

[39] Tomas Miko lov , Wen tau Y i h , and Geoffrey Zweig. Linguis t ic regularities i n
continuous space word representations. In Proceedings of the 2013 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT-2013). Associa t ion for Computa t iona l
Linguist ics , M a y 2013.

40

[40] Michae l C . Mozer . Neura l net architectures for temporal sequence processing, pages
243-264. Addison-Wesley, 1994.

[41] W i m De Mulder , Steven Bethard, and Marie-Francine Moens. A survey on the
applicat ion of recurrent neural networks to statist ical language modeling. Computer
Speech & Language, 30(1):61 - 98, 2015.

[42] Razvan Pascanu, Tomas Miko lov , and Yoshua Bengio. Understanding the Exp lod ing
Gradient P rob lem. CoRR, abs/1211.5063, 2012.

[43] Jeffrey Pennington, R icha rd Socher, and Chris topher Mann ing . Glove: G loba l
vectors for word representation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1532-1543, Doha , Qatar,
October 2014. Associat ion for Computa t iona l Linguist ics .

[44] V u P h a m , Christopher Kermorvant , and Jerome Louradour . Dropout improves
recurrent neural networks for handwri t ing recognition. CoRR, abs/1312.4569, 2013.

[45] N i t i s h Srivastava, Geoffrey Hin ton , A l e x Krizhevsky, I lya Sutskever, and Rus lan
Salakhutdinov. Dropout : A Simple W a y to Prevent Neura l Networks from
Overfftting. J. Mach. Learn. Res., 15(1):1929-1958, January 2014.

[46] I lya Sutskever, James Martens, George D a h l , and Geoffrey Hin ton . O n the
importance of in i t ia l izat ion and momentum in deep learning. In Sanjoy Dasgupta
and D a v i d Mcallester, editors, Proceedings of the 30th Lnternational Conference on
Machine Learning (LCML-13), volume 28, pages 1139-1147. J M L R Workshop and
Conference Proceedings, M a y 2013.

[47] Wojciech Zaremba, I lya Sutskever, and O r i o l Vinya ls . Recurrent neural network
regularization. CoRR, abs/1409.2329, 2014.

41

Appendices

42

List of Appendices

A C o n t e n t s o f t h e C D

B D e f i n i t i o n o f M o d e l s i n T h e a n o

Appendix A

Contents of the C D

/
t h e s i s . p d f Text of the thesis.
t e x L^T£]Xsources.

t pgf Plots of the experiment results, including data,
t i k z Images pic tur ing models and i l lustrat ing learning techniques.

p y t h l e m P y t h o n implementation.
m a i n . p y The runnable script.
model .py Defini t ion of models i n Theano.

_ p e n n - t r e e b a n k - s e n t e n c e s . . . P e n n Treebank corpus, version used for experiments.
s ge -p tb Bash framework for running experiments.
e x t r a c t o r . p y Ext rac ts results from a logs together w i t h selected hyperparameters.
e p o c h a l - e x t r a c t o r .py Collects per-epoch performance.

44

Appendix B

Definition of Models in Theano

This Append ix presents parts of the code responsible for the actual computat ion. For
complete code, refer to A p p e n d i x A .

Note that the samples are generally stored i n 3D tensors, by default indexed as (stream,
timestep, sample items) . Th is implies, that when taking a 2D slice, each sample is a row
vector. Thus, vectors are mul t ip l ied into matrices from the left, unlike the math definition
in Chapter 2 and 3.

The class StructurallyConstrainedRecurrentNetwork does not have its own contrac
tor, it uses just the one inherited from SimpleRecurrentNetwork.

Note that line have been broken to fit into the page.

def softmax3d (x) :
i f x.ndim != 3 :

r a i s e V a l u e E r r o r (" T r i e d u t o u a p p l y u 3 d u s o f t m a x u o n u " + s t r
(l e n (x . s h a p e) + " - d u t e n s o r "))

e_x = T.exp(x - x.max(axis= 2, keepdims=True))
r e t u r n e_x/e_x.sum(axis= 2, keepdims=True)

c l a s s SimpleRecurrentNetwork:
def _ _ i n i t _ _ (s e l f , v o c a b _ s i z e , h i d d e n _ c o n f i g , c l i p _ t h r e s ,

b e t a , custom_mask = None):
s e l f . _ h i d d e n _ c o n f i g = h i d d e n _ c o n f i g
s e l f . _ i n i t _ p a r a m s (v o c a b _ s i z e , h i d d e n _ c o n f i g ,

custom_mask)
s e l f . _ i n i t _ h i d d e n _ i n p u t s (h i d d e n _ c o n f i g)

s e l f . _ s e q = T . i m a t r i x (" x ") # a row is a "sentence"
s e l f . _ l r = T . s c a l a r (" l e a r n i n g u r a t e ")

_ n b _ t a r g e t s = T . i s c a l a r (" n u m b e r u o f u t a r g e t s ")
_req_h = T . i s c a l a r (" r e q u e s t e d u h i d d e n u s t a t e u (f r o m u e n d) "

)

nb_seqs = s e l f . _ s e q . s h a p e [0]
se q _ l e n = s e l f . _ s e q . s h a p e [1]

45

t = s e l f . _ s e q [: , - _ n b _ t a r g e t s :]

s e l f . _ y = s e l f . _ m o d e l _ c o m p u t a t i o n (s e l f . _ s e q ,
c l i p _ t h r e s) # 0 - streams , 1 - time, 2 - i n d i v i d u a l
word probas

y_reshaped = s e l f . _ y . d i m s h u f f i e (1, 0, 2) # 0 - time,
1 - streams, 2 i n d i v i d u a l word probas

hidden_output = s e l f . _ h i d d e n _ o u t p u t (_ r e q _ h)

s e l f . _ e r r = -T.sum(T.log2(
y _ r e s h a p e d [T . a r a n g e (y _ r e s h a p e d . shape [0] -

_ n b _ t a r g e t s , y_reshaped.shape [0]) .reshape
((- 1 , 1)) , T.arange(y_reshaped.shape [1]) , t.T]

))

s e l f . _ 1 2 _ n o r m = T.sum([T.sum(x*x) f o r x i n s e l f .
_params])

cost = s e l f . _ e r r + b e t a * s e q _ l e n * s e l f . _ 1 2 _ n o r m

s e l f . _ s g d = S t o c h a s t i c G r a d i e n t D e s c e n t (s e l f . _ p a r a m s ,
c o s t , s e l f . _ l r , c l i p _ t h r e s)

s e l f . _ t e s t = t h e a n o . f u n c t i o n (
i n p u t s = [s e l f . _ s e q , _ n b _ t a r g e t s , _req_h] + s e l f .

_ h i d d e n _ i n p u t s ,
o u t p u t s = [s e l f . _ e r r , s e l f . _y] + h i d d e n _ o u t p u t

)

s e l f . _ t r a i n = t h e a n o . f u n c t i o n (
i n p u t s = [s e l f . _ s e q , s e l f . _ l r , _ n b _ t a r g e t s , _req_h]

+ s e l f . _ h i d d e n _ i n p u t s ,
o u t p u t s = [s e l f . _ e r r , s e l f . _y] + hidden_output ,
u p d a t e s = s e l f . _ s g d . g e t _ u p d a t e s ()

def _model_computation (s e l f , seq, c l i p _ t h r e s) :
s e l f . _ p = s e l f . _ U [seq [: , : - 1]] . d i m s h u f f i e (1 , 0, 2)
dimshuf f i e necessary, so that time is the outermost

axis

def s r n _ s t e p (p _ t , h_tml, r e c _ w e i g h t s , rec_weights_mask
) :
x_t = T . a s _ t e n s o r _ v a r i a b l e (p _ t , ndim=2) # dim 0 -

samples from d i f f e r e n t streams, dim 1 -
elements of t h e i r word-vectors

46

h_t = T . n n e t . s i g m o i d (x _ t + T . d o t (h _ t m l ,
r e c _ w e i g h t s * r e c _ w e i g h t s _ m a s k))

r e t u r n t h e a n o . g r a d i e n t . g r a d _ c l i p (h _ t , - c l i p _ t h r e s ,
c l i p _ t h r e s)

s e l f . _ h s l , updates = theano.scan(
f n = s r n _ s t e p ,
sequences = s e l f . _ p ,
o u t p u t s _ i n f o = [s e l f . _ h 0] ,
non_sequences = [s e l f ._W, self._W_mask] ,
t r u n c a t e _ g r a d i e n t = - 1 ,
s t r i c t = True

)

s e l f . _ h s l = s e l f . _ h s l . d i m s h u f f i e (1 , 0, 2)
s e l f . _ h = T . c o n c a t e n a t e ([s e l f . _ h 0 . d i m s h u f f i e (0 , 'x',

1) , s e l f . _ h . s l] , a x i s = 1)
r e t u r n softmax3d(T.dot (s e l f . _h , s e l f ._V))

c l a s s S t r u c t u r a l l y C o n s t r a i n e d R e c u r r e n t N e t w o r k (
SimpleRecurrentNetwork) :
def _ m o d e l _ c o m p u t a t i o n (s e l f , seq, c l i p _ t h r e s) :

s e l f . _ p = s e l f . _ U [seq [: , : - 1]] . d i m s h u f f i e (1 , 0, 2)
s e l f . _ b = s e l f . _ B [seq [: , : - 1]] . d i m s h u f f i e (1 , 0, 2)

def s t e p (p _ t , b_t , h_tml , s_tml , W, P) :
x_t = T . a s _ t e n s o r _ v a r i a b l e (p _ t , ndim=2) # dim 0 -

samples from different streams, dim 1 -
elements of t h e i r word-vectors

l _ t = T . a s _ t e n s o r _ v a r i a b l e (b _ t , ndim=2) # dim 0 -
samples from different streams, dim 1 -
elements of t h e i r bag-of-word-vectors

s_t = (1 - s e l f . _ a l p h a) * l _ t + s e l f . _ a l p h a * s _ t m l
h_t = T . nnet . sigmoid (x _ t + T . dot (h_tml , W) + T . dot

(s _ t , P))
r e t u r n t h e a n o . g r a d i e n t . g r a d _ c l i p (h _ t , - c l i p _ t h r e s ,

c l i p _ t h r e s) , t h e a n o . g r a d i e n t . g r a d _ c l i p (s _ t , -
c l i p _ t h r e s , c l i p _ t h r e s)

[s e l f . _ h . s l , s e l f . _ s s l] , updates = theano.scan(
f n = step ,
sequences = [s e l f . _ p , s e l f . _b] ,
o u t p u t s _ i n f o = [s e l f . _ h 0 , s e l f . _ s 0] ,
non_sequences = [se l f . _ W , s e l f . _ P] ,
t r u n c a t e _ g r a d i e n t = - 1 ,
s t r i c t = True

47

http://self._h.sl
http://self._h.sl

)

s e l f . _ h s l = s e l f . _ h s l . d i m s h u f f i e (1 , 0, 2)
s e l f . _ s s l = s e l f . _ s s l . d i m s h u f f i e (1 , 0, 2)

s e l f . _ h = T . c o n c a t e n a t e ([s e l f . _ h 0 . d i m s h u f f i e (0 , 'x',
1) , s e l f . _ h s l] , a x i s = 1)

s e l f . _s = T . c o n c a t e n a t e ([s e l f . _ s 0 . d i m s h u f f i e (0 , 'x',
1) , s e l f . _ s s l] , a x i s = 1)

r e t u r n s o f t m a x 3 d (T . d o t (s e l f . _h , s e l f . _ V _ h) + T . d o t (
s e l f . _s , s e l f . _ V _ s))

18

