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Abstract

This thesis describes an experimental work in the field of statistical language modeling
with recurrent neural networks (RNNs). A thorough literature survey on the topic is given,
followed by a description of algorithms used for training the respective models. Most of
the techniques have been implemented using Theano toolkit. Extensive experiments have
been carried out with the Simple Recurrent Network (SRN), which revealed some previ-
ously unpublished findings. The best published result has not been replicated in case of
static evaluation. In the case of dynamic evaluation, the best published result was outper-
formed by 1%. Then, experiments with the Structurally Constrained Recurrent Network
have been conducted, but the performance could not be improved over the SRN baseline.
Finally, a novel enhancement of the SRN was proposed, leading to a Randomly Sparse RNN
(RS-RNN) architecture. This enhancement is based on applying a fixed binary mask on
the recurrent connections, thus forcing some recurrent weights to zero. It is empirically
confirmed, that RS-RNN models learn the training corpus better and a combination of
RS-RNN models achieved a 30 % bigger gain on test data than a combination of dense SRN
models of same size.

Abstrakt

Tato zprava popisuje experimentalni praci na statistické jazykovém modelovani pomoci
rekurentnich neuronovych siti (RNN). Je zde predlozen dukladny piehled dosud publiko-
vanych praci, nasledovany popisem algoritmi pro trénovani ptislusnych modeli. Vétsina
z popsanych technik byla implementovana ve vlastnim néstroji, zalozeném na knihovné
Theano. Byla provedena rozsahla sada experimentti s modelem Jednoduché rekurentni sité
(SRN), ktera odhalila nékteré jejich dosud nepublikované vlastnosti. PFi statické evalu-
aci modelu byly dosazené vysledky relativné cca. o 2.7 % horsi, nez nejlepsi publikované
vysledky. V pripadé dynamické evaluace vSak bylo dosazeno relativniho zlepSeni o 1%.
Daéle bylo experimentovano i s modelem Strukturné omezené rekurentni sité, ale ten se
nepodarilo natrénovat k predpokladanym vykontum. Koneéné bylo navrzeno rozsifeni SRN,
pojmenované Nahodné proridla rekurentni neuronova sif. Experimentalné bylo potvrzeno,
ze RS-RNN dosahuje lepsich vysledki v uceni vlastniho trénovaciho korpusu a kombinace
nékolika RS-RNN modeld prindsi o 30 % vétsi zlepSeni neZz kombinace stejného poctu SRN.
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Chapter 1

Introduction

Since the early era of continuous speech recognition with large vocabulary, it has been
crucial to compare different hypotheses by their adherence to the language of the utterance.
For several decades, simple models based on the Markov assumption were defining the state
of the art in the field.

Since the second decade of the third millennium, these models are surpassed by various
forms of recurrent neural networks. After their initial success, recurrent neural networks
have flourished in acoustic modeling, image captioning and machine translation. It is
argued that the main advantage of such models is the compact representation of arbitrary
long histories.

This project examines various aspects of the basic recurrent neural language model.
Then, an enhancement of this model is proposed and its performance is assessed.

The work is based on a literature survey presented in Chapter 2. There, the neural
networks used in language modeling are described, including different techniques used for
tackling long-term dependencies. In Chapter 3, the process of training a neural network
is described, with emphasis on techniques relevant mainly for the language modeling. The
literature survey serves as basis for the experiments in Chapter 4 and inspiration for original
proposed technique described in Chapter 5.

Experiments are conducted on a widely used dataset and all hyperparameters are ex-
plored. There is certain drawback of the chosen implementation, which is discussed in
depth. Nevertheless, several interesting findings are presented which can not be found in
the literature on the topic. Finally, it is shown how the drawback may be overcome and
state of the arts results reached.

The proposed enhancement of the model is based on keeping only a subset of recurrent
weights and is similar to the dropout technique. It is shown that using this technique allows
for more effective training and such models combine better than the baseline.



Chapter 2

Neural Networks for Language
Modeling

There have been some experiments with neural networks (NNs) for language modeling as
early as of 1991 [35]. However, there has been more interest since 2003 [5]. Although the
initial work in the area was done with traditional feedforward neural networks (FFNNs),
a boom of recurrent neural networks (RNNs) has been observed in recent years. In this
thesis, only a few RNN models are considered, for a wider overview refer to publications [/1]
or [33].

The task of language modeling is understood as defining a probability distribution over
possible successor events given the history. Assuming that the universe of events is discrete
with K distinct events, we can express the maximum likelihood (ML) approach of learning
the parameters od the model by using the cross-entropy function (2.1) as the error function.
In the context of language modeling, we refer to an event as word or token. Let us evaluate
the model on a sequence of N tokens, with every token n being encoded as 1-of-K vector
t, and the response of network is denoted as vector y, at every timestep. Then the cross-
entropy is defined as a function of model parameters ® and is computed as a sum of negative
log-probabilities of these events, that would have been the correct predictions.

N K
B(@) ==Y tulnyu, (2.1)

n=1k=1
Throughout this chapter, several different issues are addressed: First, the task of lan-
guage modeling is defined more precisely and traditional approaches to language modeling
are presented. Next, FFNNs are introduced and general properties of NNs are discussed.
In following sections, three recurrent models are defined. General properties of RNNs are

discussed in the scope of the simplest one.

2.1 The Task of Statistical Language Modeling

Statistical language modeling is the task of estimating a probability distribution over some
dictionary given a history w’i_l consisting of the previous words (2.2). For practical reasons,
we can also define the probability of the whole sequence (2.3).

p(wlwt™) = p(wlwiws . .. w_1) (2.2)



p(s) = p(wiw?) - plwalwy) - plws|wi) - ... = Hp(wilwi_l) (2.3)

For any but the simplest cases, the value of this probability is very low, possibly in-
troducing an underflow when computed on an ordinary floating point architecture. Also,
the length of a sequence may vary significantly from a few words in a single sentence to
thousands of words in case of processing a whole document. Thus, it is customary to report
per-word statistics. Following Equation (2.3), we compute these statistics as a geometric
mean over the whole sentence. Finally, it is usual in machine learning to work with error,
which is the inverted value of the target function.

So we get the perplexity (2.4) measure. Typical values of perplexity range from 120 to
160 on unseen data, depending on complexity of the task and power of the model applied.
This number is equivalent to the average number of words the model would predict as
possible, given that it would only give a uniform probability to the subset of possible words
in the vocabulary and zero to the other words.

N 1
PPL= YT]— (2.4)
g p(w;|wi™)

Taking logarithm of the formula for computing perplexity, we receive an error measure
typically referred to as per-word entropy (2.5). It is an average value of cross-entropy
between the model and some test data. The value of per word entropy is binary logarithm
of perplexity, thus typical values range from 6.9 to 7.3.

N
1 .
per-word entropy = N Z logy p(w;|wi™) (2.5)
i=1
There has been some opposition to statistical language modeling as such, most notably
from Noam Chomsky, 1969:

But it must be recognized that the notion of probability of a sentence” is an
entirely useless one, under any known interpretation of this term.

Nevertheless, the probability of a sentence is utilized in practical applications such as
speech recognition, machine translation and data compression.

For many years, state of the art in language modeling was defined by n-gram models. An
n-gram is an n-tuple of consecutive words. These models exploit the Markov assumption on
the data, modeling the probability of the i-th word conditioned only on the n — 1 previous
words (2.6).

P(wt|w1w2 e wt_l) = P(wt|wt_n+1wt_n+2 . wt_l) (2.6)

Since there is a limited number of possible n — 1 long histories, training of an n-gram
model is constituted by counting occurrences of the given n-grams in a large training cor-
pus. However, not all n-grams are seen in the training data, therefore different smoothing
methods are used in order to assign non-zero probability to such unseen n-grams.

It is possible to represent an n-gram model as weighted a finite automaton by represent-
ing each history as a unique state. The WFST approach allows to efficiently find the most
likely sequence of states and thus words. This can be further exploited in the task of speech



recognition: Other sources of information—the pronunciation of words as well as acoustic
properties of the signal itself —can be encoded as WFST, allowing a compact representation
of the whole problem [31].

Over the years, several improvements of n-grams model have been proposed, that try to
overcome different weaknesses of the standard model. For instance cache models [32] [25]
address the ability to access history beyond the i — n + 1th word. Clustering (or classing)
models [21], define categories, such as day-of-week or color. All words of a single category
are treated as instances of the same token during counting of n-grams. Therefore, we receive
a more robust estimate of the n-gram probability of these tokens.

2.2 Feed-Forward Networks

A neural network (NN) is a general connectionist model, which consists of a set of artificial
neurons. Every artificial neuron computes a scalar function of its multidimensional input.
Inputs of neurons are determined by the interconnection of neurons. Usually, most of
neurons compute the same type of function, exception being the neurons in the last layer.
Inspired by the function of a biological neuron, the function of an artificial neuron can be
expressed as a composition of a basis function g(-) and an activation function f(-).

y = f(g(x)) (2.7)

Although there are other possible basis functions, such as the radial basis function [12],
the linear basis function g(x) = w’x is dominant in todays NNs.

Activation functions are nonlinear and can be either continuous or step-functions. A dis-
cussion of several prevalent activations is given in Subsection 2.2.1. Regardless of the spe-
cific nature of a given nonlinearity, the presence of a non-linearity is crucial for the overall
function of the network: Since linear transformations are closed under composition, a NN
without nonlinearities would be restricted to linear properties of the input.

A FFNN is a learnable model defining a function ¢ : X — Y, which consists of several
separate layers as demonstrated in figure 2.1. Since every neuron j in any given layer
performs the same operation y = f (W?Xj), we can consider the whole layer as a vector of
these neurons, writing h; for hidden layer i. Then, we can express the computation of all
neurons in a single layer as h;11 = f(Wh;), where the activation function f(-) is applied
element-wise.

2.2.1 Nonlinearities Used in Artificial Neurons

Following the original argument from the 1950’s [30], it has been proven [14], that with
a sigmoidal activation function (2.8), a FFNN can approximate any continuous function
to arbitrary precision, given the hidden layer is large enough. This has been later gener-
alized [21] to any activation function, that is continuous, bounded and nonconstant. It is
noteworthy, that the early works were motivated by Hilbert’s 13th problem, which asks,
whether a solution of a seventh-degree equation can be expressed as a composition of finite
set of two-parameter functions.

1 asx — 400

o(x) = { (2.8)
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Figure 2.1: General schema of feedforward neural network (FFNN). Each node represents
a single neuron. Each arrow represents a synaptic connection and weight is associated with
it. Nonlinear activation of the neurons is not shown.
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Figure 2.2: A feedforward neural network (FFNN) used as a language model. It takes
a finite number of words as input, three in this case. Every word 7 has its own, independent
projection matrix U;, depending on the position it is at. The pre-last hidden layer, called
compression layer (purple), is used to pull the most important information from the word
vector. This allows the output layer to concentrate on the actual prediction of the output
word.
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(a) Logistic sigmoid (b) Hyperbolic tangent (¢) Rectified linear unit

Figure 2.3: Different nonlinearities used as activation functions. In this work, the logistic
sigmoid is used. Note that hyperbolic tangent is is the same function, just rescaled. Refer
to Figure 3.1 for derivatives of these functions.

There are three dominant activation functions used today. The logistic sigmoid (Fig. 3.1a),
as given by (2.9), arises naturally from logistic regression for binary classification [10]. How-
ever, it has been shown [1&], that hyperbolic tangent(Fig. 3.1b), as given by (2.10), allows
faster training and a NN using it will typically reach a better local optimum.

Finally, the rectified linear unit (ReLU)(Fig. 3.1c) has been recently proposed [19] to
allow a deeper propagation of gradients'. The ReLU activation is also more biologicaly
plausible and leads to a sparse representation of the input in the hidden layers.

1 ed 4 e 0
= 2. L a a>0
o(a) 1+e @ (29) tanh(a) et —e @ (2.10) ReLU(a) = 0 otherwise
(2.11)

The output layer neurons are treated differently, because we want the output of the
network to define a probability distribution, i.e. we want all the outputs to be positive and
to sum up to one. For this purpose, the softmax function is used. It is in principle a nor-
malized per-element exponentiation of the basis function. Since the underlaying function
is exponential, much greater output value is assigned to neurons with just slightly greater
basis value. Thus the name ,softmax®, since the function tends to assign almost 1 to the
neuron with the highest basis value and almost zero to the rest of them.

el
Z
HIEI
softmax( ) >: ,Z:Ze"k (2.12)
: : k=1
OK
ek
—Z—

2.2.2 Neural Networks with several Hidden Layers

Although one hidden layer can be proven to provide universal capabilities to a NN, it is
computationally beneficial to use more successive hidden layers. Advantages of increased
depth have been argued [1][7], proven [25] and shown to take part for instance in the human
vision [31] system. The principal advantage of a deeper NN is the ability to use an output of

!The necessity, effects and problems of gradients propagation are discussed in Chapter 3.



a given neuron as the input for all neurons in the following layer, thus relieving them from
the necessity to compute the associated feature themselves. Stacking more layers therefore
allows for transforming the input into features of increasing level of abstraction.

Until 2006, there was little success in training neural networks with more hidden layers
in a supervised manner. This was mainly due to the highly non-convex objective function
and difficulties in expressing the influence of parameters close to the input layer —as the
output of these neurons is used in a complex way by large parts of the network, it is difficult
to find out figure out a change of its parameters that would improve the overall behaviour
of the network.

In 2006, a pretraining method was published [22], which allows training layer-wise in
an unsupervised manner, which is followed by supervised fine-tuning of the weights in the
whole network.

There were several attempts to remove the unsupervised pretraining from the proce-
dure. Supervised training with adding layers one at a time [0] did show improvement over
whole-network-at-once approach but did not reach performance of unsupervised pretrain-
ing. Finally, it has been shown in 2010 [19], that using the rectifiers as activations, very
deep networks can be trained directly in a supervised manner.

2.2.3 Regularizing Techniques for Improving Generalization Properties
of Neural Networks

Since NNs used as probabilistic models are discriminative > and we train them using the
ML approach, some techniques have to be applied to assure that overfitting to the training
data does not occur.

A basic technique to avoid overfitting is to reduce the dimensionality of the parameter
space. In the context of NNs, this equals to using smaller hidden layers. Although there
are some sophisticated methods such as adding hidden units during the learning [10], it is
typically up to the designer of the network to choose reasonable sizes of individual hidden
layers. Thus, they are usually picked by intuition and performance of different sizes is
compared on a held-out validation set. The effect of the hidden layer size is discussed in
the experiments sections.

Another option is to suppress large parameter values. This is generally done by en-
hancing the loss function by a penalty term (2.13) [10], where || - || denotes the norm of
the parameters. A square of the Ly norm and the L; norm are typically used as penalty
functions.

loss(®) = E(®) + 3||®|| (2.13)

For deep neural networks (DNNs), a very successful method of dropout was proposed
recently [45]. This method introduces a nonzero probability, that an input of a neuron will
be replaced by zero, effectively turning the neuron off for a given training sample. This
improves the ability of the network to generalize, because following neurons can not overly
rely on the output of any given neuron, and also improves learning because it help to break
symmetries between neurons. This effect will be further discussed in Chapter 3.

Nevertheless, it is uncommon for today’s NNs used as language models (LMs) to over-
train. The reason is, that the amounts of data (millions to billions of tokens) greatly surpass

2They estimate the conditional probability p(t|z) of some target ¢ given input x, as opposed to generative
models estimating probability p(z,t) of the data itself.
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(a) Packed diagram of RNN. The (b) Detailed diagram of RNN operation in a single timestep.
271 block denotes a delay for sin- Values of the neurons in the hidden layer are concatenated to
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Figure 2.4: General schema of an recurrent neural network (RNN). This structure is also
the one proposed by early work of Elman [15], known as simple recurrent network (SRN).
An RNN expects the input to be a sequence of single elements. The length of the sequence
is unlimited and the model keeps a compressed representation of all the previous samples
in its hidden layer.

the memorization abilities of any reasonably sized NNs. Thus, the main issue with training
NN LMs is underfitting.

2.3 Fully Connected Recurrent Neural Networks

A Recurrent neural network (RNN) is such a NN, that uses its hidden state from processing
the last sample as an additional input for processing the current sample. The first note of
such RNN is found in the work of Elman [15].

The first successful [36] RNN model used for language modeling was a RNN using hidden
units with logistic sigmoid activation (2.9). The structure of the model is directly following
the general Figure 2.4. A single processing step (consuming one input and producing one
output) is thus defined as follows: The output is given by Equation (2.15) and the hidden
state is given by Equation (2.14).

ht = O'(UXt + Wht_l) (214)

vt = softmax(Vhy) (2.15)

The matrix U captures the input mapping. It is essentially equivalent to the weight
matrix of a single layer of an FFNN, but given that the input encodes discrete events (words)
in the 1-of-K encoding scheme, every single column of U can be understood as a word vector
of the respective word. Therefore, the weight matrix U introduces a continuous vector space
representation of discrete events.

The idea of word vectors has flourished since their implicit introduction, and word
vectors are used separately now, as an input to natural language processings (NLPs) ap-
plications. A detailed discussion on definition, computation and properties of word vectors
can be found in recent papers [38] [39] [43].

The output layer consisting of weight matrix V and the softmax output activation is
a standard multi-class logistic regression, as used in any NN for multi-class classification.
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Figure 2.5: A recurrent neural network (RNN) expanded for three timesteps. This diagram
shows that an RNN can be interpreted as a deep neural network (DNN) with parameters
shared across the layers. Note that every box represents whole layer of NN, thus consists
of hundreds to thousands of neurons.
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The matrix W represents the recurrent weights. The state h;_; of the hidden layer is
multiplied by these weights and then added to the input of hidden units at the step t. The
actual value of this weight matrix is crucial for the overall behaviour of the network: Every
input x; has in general some influence on every hidden state hy,t’ > t. In every timestep
t, this influence is multiplied by W, so it can either gradually diminish, which is typically
more desirable, or suppress influence of following words. It can not actually grow, because
the definite upper bound is saturating all the neurons in the hidden layer, regardless of the
input.

As emphasised in Figure 2.5, an RNN may be understood as a DNN with output spread
in time. Note that this DNN has parameters shared throughout the whole depth. Therefore,
problems similar to what is experienced in training DNNs may arise in training RNNs.

Given that hidden layer h; is the only input to the output layer, which actually com-
putes the probability p(w|h), it is clear that the hidden layer provides compact history
representation in the form of a vector in a continuous n-dimensional space. The continuous
representation is the key aspect for the improved performance [36], as it is a way to avoid
the curse of dimensionality experienced by n-gram models.

Given that H denotes dimensionality of the hidden layer and V size of the vocabulary,
the total number of learnable parameters is equal to V x H + H? + (H + 1) x V. Only
the H? term is inherent to the type of recurrent connection used, as the terms V x H
and (H + 1) x V are directed by the vocabulary size and are inevitable in any NN-based
statistical language model.

The output layer is a computational bottleneck. Not only it involves the biggest matrix
multiplication, but also |V| exponentiations. Therefore, a factorization method is often
used to obtain a speed-up: Words are clustered into classes, every word w receiving its
class ¢y, and a hierarchical softmaz (2.16) is than applied to predict the next word. With
the number of classes close to 1/|V], the complexity drops from O(HV) to O(HVV). In
practice, the speed-up ratio of 20 is not unusual, at a slight decrease of the performance.

10



Origins of the hierarchical softmax are traced back to Goodman’s work [20].

plwrsa|wy) = p(wiglew, ., wh) - plew,, |wh) (2.16)

2.4 Long Short-Term Memory Model

It has been shown [8] and recently discussed [12], that despite their general potential, simple
RNNs are prone to many problems preventing them from learning long-term dependencies.
A brief discussion of these problems will be given in Chapter 3.

As a model capable of learning long-term dependencies, the long short-term memory
(LSTM) model [23] was introduced in the late 1990s. In this model, a simple neuron in the
recurrent layer is replaced by a memory cell, which is able to store information for arbitrary
long timespans.

An LSTM is typically understood just as a single layer of a possibly deeper architec-
ture. To get the same view of a simple RNN, one would consider it as defined only by
Equation (2.14), allowing the input to be computed by some previous layers.

Denoting the element-wise product (Hadamard product) by ®, we can express the
output h; of an LSTM layer at timestep ¢, given input x;:

p: = tanh(Ux; + Why_1 + by) ® o(Iux + Iyhi—1 + b;) (2.17)
my =my_1 ©o(Fyx; +Fphy_1 +by) + py (2.18)
h; = tanh(my) © 0(Gzx¢ + Grhy—1 + by) (2.19)

In these equations, m; denotes internal memories of the LSTM and p; denotes already
gated input. The weight matrices I, F,., G, are all of the same size and transform the input
into gating signals (explained below), similarly the matrices I, Fj,, G}, are of the same size
and operate on the output of the LSTM layer from the previous timestep. The terms
by, bi, by, by are biases in respective transformations. Note, that the output h; is typically
hidden within the whole network, it is the LSTM analogy of h; in the simple RNN. Thus
its linear transformations are denoted by Aj. Operation of the LSTM is illustrated in
Figure 2.6.

Every element-wise product has an interpretation of gating with strong influence on
operation of the LSTM: Gating in (2.17) protects the internal memory of LSTM cells from
input, gating in (2.18) allows to forget current memories and finally in (2.19), parts of the
memories can be blocked from spoiling the output. As the gating is done by element-wise
multiplication, the LSTM can learn to gate specific parts of the signal from passing further,
making it a very flexible model.

This flexibility comes with a cost: Having the actual input plus three gates, taking full
information from input, the model has roughly 4 times as many parameters as a simple
RNN. The time needed for the computation of a single timestep is also greater than in
a simple RNN. Nevertheless, this is not so important, as the most computationally expensive
operation is usually the output layer which is common for both models.

Inspired by the LSTM architecture, gated recurrent unit (GRU) model was proposed [13],
achieving similar results with only one gate per unit. In a recent exploration paper by Jéze-
fowicz et al. have performed an exhaustive search of architectures similar to the LSTM and
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(a) Detail of a single LSTM cell. Note that (b) One layer of LSTM. Note that the gating

the main difference with respect to a simple input to respective gates is computed from
neuron of a regular RNN is the additional the whole input x;, h. Capital letters denote
recurrent connection within. Letters ¢,f,g de- linear transformation by respective matrices.
note the input, forgetting and output gating

respectively.

Figure 2.6: Diagram of long short-term memory (LSTM) operation. Thick lines represent
flow of actual data, while thin ones are so called gating inputs, that open or close respective
gates by point-wise multiplication. Green unit represents input, red output and blue is the
internal memory. In both diagrams, both nonlinearities and biases are omitted.

GRU. However, they did not find any, which would outperform both LSTM and GRU on
all of the considered tasks [29].

2.5 Structurally Constrained Recurrent Neural Networks

The so called Structurally Constrained Recurrent Network (SCRN) model was proposed by
Mikolov et al. [37] as an alternative to the complex gating systems. This model enhances
the simple recurrent network (SRN) by adding dedicated neurons, that are constrained as
to store information about longer history. Several attempts to achieve similar results using
similar techniques were reported, e.g. [10] [27] or [3]. This section describes the Structurally
Constrained Recurrent Network (SCRN) model.

With the dedicated neurons added, a single computational step of a SCRN is defined
by the following equations:

St = (]_ — Oé)BXt + aSp—q (220)
ht = O'(UXt + Wht—l + PSt) (221)
vyt = softmax(Vphy + Vsy) (2.22)

The hidden state vector h and the output vector y have the same meaning as in SRN
defined by Equations (2.15) and (2.14). The vector s captures the state of the longer
memory neurons. These neurons are not affected by the regular hidden neurons, which
makes the changes in s much slower. Thus, these neurons keep information for a longer
time, making it possible for the network to learn from longer-term dependencies in the text.

Notice that no nonlinearity is applied as activation of these neurons, resulting in more
effective back-propagation of gradients, as discussed in detail in Section 3.2. Also this makes
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Figure 2.7: Schema of Structurally Constrained Recurrent Network (SCRN). It is an en-
hanced model of simple recurrent network (SRN) from Figure 2.4a. Note that the values
of longer memory neurons (orange) from last timestep are not transformed by any lin-
ear transformation but element-wise scaling. Complete operation of the SRN is given by
Equations (2.20), (2.21) and (2.22).

them effectively accumulate their input. Therefore, slow neurons represent an exponentialy
decaying bag-of-words feature.

Although the decay parameter o could be learnt and even set to different values for
separate neurons, the authors do not advert it. They argue and show by experiments, that
with sufficient number of regular hidden neurons ?, the choice of « is arbitrary as long as
it is close to 1.

The pair of hidden vectors can also be viewed as a single hidden vector ¢, where h and
s are concatenated. The computation of new value of the hidden vector can be expressed

as follows:
. . W | P . L
cy = nonhneamty( 0 Tal cy—1 + input pI‘OJeCtIOIl)

We can see that nearly whole lower part of the united recurrent matrix is forced to zero
value, hence the name structurally constrained recurrent network.

3Depending on the dataset, as few as 100 can be considered sufficient.
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Chapter 3

Algorithms for Model
Implementation and Training

The most prevalent methods for training NNs are based on gradient descent methods. That
is, the error estimate E(@t) is computed for the current setting ®; of parameters and so
are its first derivatives with respect to all parameters ¢;.

Given that we have computed the current gradient of the error with respect to every
parameter, there are several training procedures used. The basic approach, batch training,
accumulates the errors from all training samples, then computes the gradient and updates
the parameters. This method is solid in the sense that it uses an estimate of error the error
as accurate as possible. However, it is not used in practice due to slow convergence and
being prone to ending in a shallow local optimum.

To overcome this issue, stochastic gradient descent can be applied. In this training
schema, the weights are updated after every sample. Stochastic gradient descent typically
converges much faster and the noise in the estimate of the error allows it to escape from
most of the local optima. However, the computation of gradients is a costly operation and
computing it after every sample may be too expensive. Therefore it is common to compute
the weight update after a fixed number of samples. These minibatches can be picked so
that there is an example of each output class in each batch, so that the network has to
learn to discriminate between them.

3.1 Computing Gradients with Backpropagation

The essential operation necessary for this kind of optimization is the computation of the
gradients. As will be shown, it is possible to compute the gradients with respect to all pa-
rameters of a neural network in an efficient manner. This method is called backpropagation
(back propagation of errors), and it can be derived as follows:

Let us have a FFNN with several hidden layers and a softmax as the output layer.
The hidden layers are assumed to have a logistic sigmoid as their activation function. The
discussion of other nonlinearities defined in 2.2.1 with respect to the backpropagation is
given Subsection 3.1.1. Then every output y; is computed as:

e’

Yi = S e (3.1)

Putting regularization aside for the moment, we optimize the cross-entropy only, so we
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minimize the function:
€%
E:—Ztklogyk:—ztkW (32)
k k J

Given that last hidden layer of network is h;;, the o;s are computed as:
o= Vhy; + b, (3.3)

So let us assume that we have processed a single training sample x and received an
output y while we know the correct output ought to be t. Using the chain rule of derivation,
we first take the partial derivative of the error with respect to the weight matrix V:

OF OF Jo O[Vhys + by] T
V- deav LY T 5y (6= y)hiy (3:4)
Similarly, partial derivative can be taken with respect to the biases of the output:

08 _ 9B Do _ )O[VhM+bv]_(t_ )
b, 0odb, Y b -0y

(3.5)

Finally, we move deeper to the network and investigate influence of the pre-last hidden
layer hjs_1 on the result. We know that the last hidden layer hy; was computed from
hjy;_; as follows:

hM:U(WMhM_1+bM):U(OM) (3.6)

So continuing with the chain rule of derivation, we get:

oF OF 0o 0h OF 0o 0Jhy Oo
_ob do ohm _ M. Z2M — (t—y)-VIohy o(1—hy)ohl,

(3.7)
Here, we have taken advantage of the specific form of the derivative of the logistic sigmoid,
as defined in (3.10).
We could take the derivative with respect to the biases by, analogically.
We can make get the key insight into the process of computing gradients by defining
errors at the investigated layers:

so_OE o _ OE oy OE

= = 3.8
807 8OM ( )

Bonr 1

Finally, we the observe relation between errors at subsequent layers and the relation of
errors at layers to errors of particular parameters. These relations follow from the assumed
uniform feed-forward architecture of the network:

00™  Ohy,

m—1 _ ¢m | .
0 =90 ahm 8Om_1

=" Wg‘n ®0m—-1©® (]_ — Om—l) (39)

Continuing to deeper layers h,,, 1 < n < m, we see that we always use the error computed
with respect to the activity 0,11 of neurons in following layer. This allows to iteratively
compute these partial errors for deeper layers and then taking the partial derivatives to
the respective weights. The advantage over a naive approach is in the usage of already
precomputed errors associated with layers closer to the output.
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(a) Logistic sigmoid (b) Hyperbolic tangent (¢) Rectified linear unit

Figure 3.1: Derivatives of different nonlinearities used as activations in neural networks
(NNs)

3.1.1 Derivatives of the Activation Functions

It is also useful to investigate the derivatives of nonlinear activation functions used in NNs.

Both logistic sigmoid and hyperbolic tangent have bell-shaped derivatives with maxima
at zero, which leads to a decrease of the magnitude of errors in deeper layers. The deriva-
tive of hyperbolic tangent is sharper, which is one of the reasons for the higher speed of
convergence. Given that the value of the nonlinearity has been computed as h, it is compu-
tationally simple to get the derivative at the examined point for both logistic sigmoid (3.10)
and hyperbolic tangent (3.10).

o'(a) = o(a)(1 —o(a)) (3.10) tanh’(a) = 1 — tanh?(a) (3.11)

The ReLU activation has a constant derivative for any positive input value, which allows
theoretically unlimited propagation of the gradients. This effect helps greatly for training
DNNs and some initial work has been done in training RNNs as well [3]. Even though its
derivative at zero is not defined, it is not a problem in practice, as both left derivative (0)
and right derivative (1) can be used. Computing the derivative of ReLU at a given point
is trivial (3.12).

, {1 a>0
ReLU'(a) = ) (3.12)
0 otherwise

It is suggested [18] to take the particular form of the nonlinearity into account when
initializing the weights of the network. The initialization should be done in such a way,
that most neurons are likely to have the activations in regions of non-zero derivative, which
prevents early saturation of the nonlinearities.

3.2 Backpropagation through Time

The backpropagation of errors presented in Section 3.1 is defined for FFNNs. However,
an extension to RNNs is straightforward and follows the unpacked diagram (as presented
in Figure 2.5) of RNN operation. The schema of gradient flow in an RNN is shown in
Figure 3.2.

The core of the backpropagation through time is captured by the equation for com-
puting error vectors at different depths of the network (3.13). The formula has interesting
implications which are further discussed.
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Figure 3.2: Schema of error backpropagation through time. Note that it is the usual
backpropagation, just the network is an expanded RNN. Differences introduced by extensive
weight sharing between the layers are discussed in the text.

T
P = ] [@-h)oh oWt o) (3.13)
i=T—D

As the error is backpropagated through the same matrix over and over, it is actually
multiplied by a power of the recurrent weights matrix. As follows from linear algebra, the
power may happen to grow exponentially, resulting in so called gradient explosion. This
effect has been thoroughly studied [12] and several solutions were proposed. Most of them
consist of thresholding the gradient, either element-wise or as whole vector. Therefore, the
exploding gradient is solved at the level of computing gradients, regardless of recurrent
model used.

On the other hand, the gradual element-wise multiplication by the derivative of the
activation introduces so called gradient vanishing. This effect is further increased if all
eigenvalues of W are less than one. Therefore, it is difficult to learn longer temporal
dependencies using this technique. In practice, prolonging the backpropagation over more
than six time steps has been shown to have negligible effect [36].

Both the LSTM and SCRN try to overcome the vanishing gradient by enhancements to
the model. The LSTM does so by introducing the inner memory loop, where the memories of
the network are not transformed by any linear or non-linear transformation. The memories
can only be suppressed by the forgetting gate, but the network can learn to keep the
gate open. This is achieved by keeping the input to the respective gate high enough, as
the logistic sigmoid saturates fast. The SCRN introduces slower neurons, which are not
affected by any nonlinearity either. By setting a reasonably high «, the exponential decay
of gradients is under control and the network can benefit from backpropagating over tens
of words.

3.3 Overview of the Learning Process of a Recurrent Neural
Language Model

Regardless of its structure, the recurrent neural network is trained on a dedicated training
corpus. The basic strategy for learning the structure of the text is to process it word by
word, as illustrated by Figure 3.3. This is the original strategy used in [30]. It is noteworthy
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more than N years |ago researchers |reported </s> the asbestos fiber <unk> is unusually <unk> once it
more than N years ago |researchers |reported </s> the asbestos fiber <unk> is unusually <unk> once it

more than N years ago researchers reported </s> the asbestos fiber <unk> is unusually <unk> once it

Figure 3.3: Learning the weights with backpropagation through time using a sliding window
over the training text. The network processes one word at a time (green) and makes a single
prediction (red word). Therefore, the weights are updated once per every word. Although
the gradients are backpropagated only five steps into the history (dark blue words), previous
words also influence the process, via the hidden state of the network.

more than [N years ago researchers reported </s> the asbestos fiber <unk> is unusually <unk> once it

more than N years ago researchers reported </s> the asbestos fiber <unk> is unusually <unk> once it

Figure 3.4: Updating the weights only once every 3 words. Green words are used for input
only, red are only used as targets. The yellow words are used first as target and then as
input. Backpropagation is done over five timesteps (words in dark blue), earlier words have
only the effect of providing hidden state.

that this approach is typically implemented so that every single hidden vector is computed
just once and only the current values of the parameters are stored. This implies that
during the back-propagation, the gradients are computed with different recurrent weights
than the forward pass of the respective hidden vectors. Nevertheless, it does not lead to
any degradation in practice and experimental results suggests that it is even beneficial.

The backpropagation through time is a computationally costly operation. Therefore,
it is often done only once per some segment of words, as illustrated in Figure 3.4. This is
a sequential equivalent of the minibatch training used in the training of FFNNs. It trades
the computational speed for the speed of convergence and it is not recommended to use
a too long update period [30].

When training a FFNN for classification, it is customary to shuffle the training examples
after each epoch. It is empirically observed, that it helps the stochastic gradient descent
to avoid getting stuck at local optima. Also, it helps the network to learn generally valid
facts about the data, rather than to approximate some false relations between successive
samples. When training RNNs, it is necessary to keep the order of samples in a sequence,
because the RNN is used for that very reason, to learn the dependencies between successive
samples. However, shuffling may be done at a higher level, for instance shuffling sentences
or blocks of sentences. When shuffling is done at the sentence level, the network learns as
if sentences were independent, i.e. it cannot learn any memories which would help it at the
beginning of a new sentence.

Finally, the network can be trained from multiple streams in parallel. This is a direct
equivalent to the minibatch training used in training FFNNs. It can be used with updat-
ing weights on each word as well as with updating after a block of words. The multiple
streams are typically given from a single training file, which is read at multiple points, e.g.
with four streams, the training corpus consists of four streams, starting at words number
0, N/4, N/2 and 3N /4 (0-based). With multistream learning, the input words (their 1-of-
K encodings) may be stacked as column vectors into a single matrix X. Then, assuming
the softmax function operates column-wise, it is possible to express the forward steps of
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a simple recurrent network as follows:
Ht = O'(UX + WHt_l) (314)

Y = softmax(VH;) (3.15)

The effect of this altered operation is two-fold. At first, the matrix multiplication can
be computed in an optimized way, reducing the total time required for processing the whole
training corpus. Secondly, when the network operates on several streams in parallel, it can
not adapt to a specific topic and is forced to learn general dependencies in the data.

3.4 Implementation

To have control over the experiments to follow, a language modeling toolkit was imple-
mented. Python was used as the programing language and the computational model was
defined using the Theano toolkit [1] [9].

Theano is a toolkit for specification, compilation and execution of symbolic computation
graphs. Therefore is is straightforward to express the computation of the model.

On the other hand, Theano makes it impossible to forward pass over every word just
once and then back-propagate the errors from target word for several steps into history.
Therefore, a mini-batch setup is accustomed: A sequence of several words is presented to
the model at once. The forward pass is computed over all these word and errors are then
backpropagated simultaneously from all of the words. The hidden state is passed around
from one sequence to another.

This way, errors from different words are back-propagated for different number of steps.
In order to ensure a certain minimal depth of backpropagation, a few words are added
at beginning of each sequence. These words come from the previous sequence, thus the
sequences do overlap. However, the objective function is computed only as the average of
errors on the words from current sequence, avoiding duplication of targets.

The tool has a command line interface, exporting all hyperparameters. This allows
running experiments from outer environments, e.g. shell scripts. A framework for running
parallel experiments on an SGE cluster was built, utilizing this property.

Three classes were separated from the source code: A simple wrapper for vocabulary,
handling unknown words in a defined manner. Class representing SRN model. This class
not only defines the computation done by the model, but also serves a base class. Therefore,
it implements utility abilities such as wrapping Theano objects into user-callable methods
or storing the model to hard drive. Finally, a class representing SCRN inherits from the
SRN-representing class, defining only the differences from the basic model.

To avoid segmenting always into same sequences, half-length sequences at the beginning
of epoch is presented on every other epoch. E.g. the first epoch begins with sequences 1—
20, 2140, ..., the second begins with sequences 1-10, 11-30, 31-50, .... For third epoch,
sequencing from the first is used and so on.

Like the rnnlm, gradient clipping is implemented, with clipping threshold fixed to 15.
As explained in Section 3.2, this is sufficient measure for suppressing the exploding gradient
problem.

Hierarchical softmax is used in no form, because the main issue with experimental
results was their accuracy, not the speed.

19



Chapter 4

Performance Overview of the
Studied Baseline Models

In the following chapter, the principal techniques from previous chapters are assessed in
practice. Most of the chapter is dedicated to the investigation of the SRN model. A number
of experiments was performed, exploring the behaviour of the networks under different
conditions. The usual scheme for publishing experimental results consists of selecting the
range of the hyperparemeter to explore, plotting the results and finally selecting the best
value. Sometimes, only the best value is picked, without even stating the parameters
used [3]. In this chapter, complete results for each experiment are stated, including other
characteristics where appropriate. Therefore, this chapter can serve as a comprehensive
test overview for Theano-based implementations of SRN.

No experiments were done with the LSTM model, as the proposed technique (see Chap-
ter 5) does not build on top of it and the model itself is rather complicated, thus it is a big
step away from the core of the work.

Furthermore, implementation details are specified in order to capture whole process of
implementing SRN in detail and to allow for future replication of the stated results.

4.1 Penn Treebank Dataset

Penn Treebank (PTB) is a subset of the Wall Street Journal corpus'. It has been hand-
annotated for grammar categories at University of Pennsylvania, thus its name. Grammar
annotation allows for application of models that are aware of linguistic properties of the
language.

There is a widely used preprocessed version?. The vocabulary is reduced to the 9999
most common words in this version and the rest of the words in the is replaced by an <unk>
token. It is generally accepted, that this token for rare words is considered to be a regular
word, i.e. predicting the <unk> correctly improves the performance as much as predicting
any other word.

In this preprocessed version, sentence boundaries are captured only implicitly as line-
breaks. It is necessary to make these explicit for a successful training of a LM. In this
work, it is done by adding a </s> token to the end of every line. Other implementations
do this as well [36] [37], however it is done at the level of reading the training file and it is

'LDC item number LDC99T42, https://catalog.ldc.upenn.edu/LDCIITA2
http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
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not a documented feature. Preliminary experiments have shown, that ignoring the end of
sentences hurts the network by roughly 1 bit of per word entropy.

The widely used version of PTB is divided into three parts: Training set consists of
approx. 890 000 tokens in approx. 42 000 sentences. Validation subset consists of approx.
70 000 tokens in 3370 sentences. Similarly, the test set contains approx. 79 000 tokens in
approx. 3700 sentences. The validation set is used in the experiments for setting the learning
rate during the training, while test set is used purely for estimating the performance.

It is persistent in all the experiments, that models perform better on the test set than
on the validation set. This is simply caused by the test set being more similar to the train
set. Nevertheless, the results on both these sets are very consistent.

4.2 Simple Recurrent Neural Networks

A thorough examination of the SRN performance on the PTB dataset is captured in this
section. The experiments are organized from exploration of fundamental parameters, e.g.
the number of hidden units, towards the less influential ones such as the weight of the
regularization.

Results are reported on training (red curves), validation (blue curves) and test set
(purple curves). Furthemore, the error on training data was collected during the last epoch
of training. This is error is referred to as training-dynamic (green curves). It is always
better than the error obtained on the training set in a static manner, because the network
is adapting to the text on-the-fly.

4.2.1 Number of hidden neurons

An initial experiment is focused on the number of hidden neurons. The purpose of this
experiment is twofold: At first, it gives a general overview of the model performance.
Secondly, this experiment examines the trade-off between learning speed and final error.

The following parameters were picked for this experiment: Weights were updated once
every 4 words, training was done on 4 streams in parallel. The gradients were back-
propagated 10 words into the history. The initial learning rate was set to 0.1.

The results of the experiment are captured in Figure 4.1. The observed errors are smooth
in the number of hidden units, which is an expected result. We can see that starting from
certain number of hidden units, there is only little improvement reached by adding more.
Therefore, the following experiments have not been carried out with more than 200 hidden
units.

The slight degradation of performance on the validation and test datasets at 300 hidden
units is not consistent with published results. It is possible, that it is purely due to some
noise introduced by the random initialization. The other possible explanation is, that it
corresponds to a local maximum of the overtraining—the training error reaches optimum
here.

4.2.2 Depth of backpropagation and updates frequency

In the next experiment, the combined effect of backpropagation depth and frequency of
weight updates is investigated. For brevity, the frequency of updates is referred to using
the bptt-block parameter of the learning. The value of the bptt-block expresses after
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Figure 4.1: Performance of simple recurrent network (SRN) with respect to the number of
hidden units. Results are average of 3 networks with different random initialization. Mean
absolute difference from the median result is 0.02 bits.
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Figure 4.2: Comparison of simple recurrent network (SRN) performance with respect to
how often a weights update is performed. Green is the error obtained while training; red is
the error on the training dataset obtained with fixed weights; blue and purple are validation
and test errors respectively.

how many words the update is performed. For this experiment, the networks have 200
hidden units. The initial learning rate is set to 0.1.

The results of the experiment are captured in Figure 4.2. For the 4 investigated values
of bptt-block, the error is observed as dependent on the depth of backpropagation though
time.

The errors on the validation and testing dataset do not exhibit any significant changes.
It can be explained by examining details of the propagation: The average depth of the back-
propagation of errors from a given target word is equal to the average of back-propagation
depth and bptt-block. Therefore, the worst average depth of back propagation is 5 (up-
dates once per 4 words, additional backpropagation 2 words). As Mikolov has shown [30],
the SRN does not benefit much from back-propagating more than 6 words into the history.
Therefore we can see that except the worst case, gradients are back-propagated for sufficient
number of steps.
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Figure 4.3: Performance of a simple recurrent network (SRN) with respect to the initial
learning rate. Results are average of 3 networks with different random initialization. The
rough results for training set can be simply explained by effects of the random initialization
and noise in the training data.

4.2.3 Initial Learning Rate

In the following experiment, the initial learning rate is investigated. Networks in this
experiment have 200 hidden units. Weights are updated every 4 words and error gradients
are back-propagated for 10 words.

The results of the experiment are captured in Figure 4.3. Considering the validation
and test set, the parameter is well-behaved. The graph is very smooth in the semi-log
domain and we can see a single local minimum around 0.1. This result is in line with values
published in experimental papers.

The performance on the training set is less smooth, which is not surprisive—as the
model tries to optimize its performance directly on the training corpus, its performance on
it is likely to sensitive to certain hyperparameters. However, the general trend also suggests
that best values lies somewhere between 0.02 and 0.5.

Furthemore, the effect of different initial learning rates is examined at the level of error
improvements during training of a single network. Three representative examples are shown
in Figure 4.4. The training of all the models can be divided into two stages: In the first
stage, the initial learning rate is kept and the network is learning its parameters. Once
the validation error gets worse than in the previous epoch, the learning switches into the
second stage. During this stage, learning rate is divided after every epoch, thus the errors
converge to a local minimum.

With the initial learning rate 0.1 (Fig. 4.4b), the learning progress is split roughly into
halves. Also, we can see the model converging quite fast, which was consistent with the
other runs. There is a simple explanation for the train error being worse than the validation
and test errors after the first epoch: As the train error is computed on-the-fly, it is biased
by the start of the training, when the model is giving random predictions and the error is
very high.

When the initial learning rate was set to a too high value (Fig. 4.4a), the model did
not converge in the first stage. Therefore it effectively learns only during the second stage.
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Figure 4.4: Typical learning progress for different initial learning rates. Reported are results
on test set (purple), validation set (blue) and training set (green). Note, that the results
on the training set are computed during the training, i.e. while the weights were being
adapted. The missing results for the initial learning rate 1 were just too bad —the model
did hardly converge. The observed results were reached when the learning rate was already
halved between epochs.

This seems to prevent the model from reaching a high-quality local optimum. One possible
reason is, that the network did not have an opportunity to move by a large vector in
a reasonable direction in the parameter space during the first stage.

With the initial learning rate smaller than optimal (Fig. 4.4c), we can see that the
convergence is slower. The model reaches better error during the first stage, which is in line
with theoretical expectations. When the learning rate is smaller, the model can dive into
narrower ravines of the error function. On the other hand, the model eventually reaches
an optimum that is a little bit worse. The probable explanation is the same as with initial
learning rate too big—the model did not move far enough during the first stage. In this
case, it was so because of the model was concentrating on fine details of the error landscape.

4.2.4 Effects of the L2-regularization

Next, the importance of the L2-regularization is assessed. As defined in Eq. (2.13), the
weight of the regularization is ruled by a single parameter 5. The original publication
on the topic [30] claims, that applying regularization in training SRN is mainly good for
numerical stability reasons and it is not important when the computation is done double-
precision. This issue is not discussed in follow-up publications.

For this experiment, networks with 200 hidden units were trained. Weights were updated
once every 4 words and gradients were backpropagated for 10 timesteps. The initial learning
rate was set to the found optimal value of 0.1.

The results are captured in Figure 4.5. It is natural to follow the graph from its left
end: With the § parameter close to zero, the model is optimizing only the error on the
train data. Therefore, we can take the left-most results as baseline. In the region till 1076,
the regularization has hardly any effect.

Then the training error goes briefly down only to take off later. The improvement on
the training data is can be explained by suppressing the adaptation effects:

The training corpus consists of several sections, where certain topics are dominant.
Thus the network adapts to the given topic during the training, as can be seen from the
error difference between adaptive (green curve) and nonadaptive (red curve) processing of

24



9 L TTTT T TTTTTI ]

Training — dynamic
—%— Training —static
—%— Validation
n
4:3 —— Test
Q0
g 81| .
>
o)
Q
—~
=
=
[}
=
g 7
[
—
o
6 w1 | 1l Ll Ll 1 ! I

1078 1077 107% 107° 10~* 102 102
B

Figure 4.5: Performance of a simple recurrent network (SRN) with respect to the weight
of the L2 regularization penalty. Results are average of 3 networks with different random
initialization. The interesting part is the improvement on training set around 5-107% and
the improvement on the test and validation set around 2 - 107°.

the training corpus. But when the regularization weight is increased, the network can not
over-concentrate on the current topic. Therefore, better performance is achieved on the
sentences, which do adhere to the current topic very well.

The usual effect of regularization is observed in the region from 2-107% to 5-1075: The
gap between the training and test error is closing and it is caused not only by the training
error increasing, but also the validation and test error decrease bellow the baseline. This
signals clearly that the networks are subject to overfitting, although its degree is small.

Once the weight of the L2 regularization passes 10~4, the overall effect is very negative,
as errors on all the datasets increase rapidly. Nevertheless, this is well in line with theoretical
expectations—as the weight of the regularization term increases, the optimized function
becomes very different from the error landscape itself.

It is straightforward to observe the effect of L2-regularization directly at the level of
model parameters. Figure 4.6 shows histograms of weights under different values of .
We can see that under very loose regularization (red curves), the weights are nearly nor-
mally distributed. As the regularization weight increases, the weights in the networks are
distributed more tightly around the zero.

An interesting issue arises with the recurrent weights: Regardless of regularization, these
weights are skewed towards the negative values. As the regularization becomes tighter, the
network drops most of the positive weights, but retains a comparatively vast number of
negative ones.

There are several possible reasons behind: At first, the negativity of weights implies
oscillation. This is a plausible reason, since oscillation in several hundred dimensional
space means jumping around. And it is reasonable for the network to expect the next word
to be positioned in a different area of the history representation space, e.g. an article—
a noun—a verb etc. The second reason is, that the history representation is used rather
to suppress some aspects of input words than to amplify others. However, there is no
explanation on why it should do so.
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Figure 4.6: Distribution of weights in the simple recurrent network (SRN), as dependent
on the weight of L2 regularization. Distributions are plotted for 8 equal to: 1078 (red),
2-107° (green) and 10~3 (blue). Refer to Figure 4.5 for the impact on the performance.
Histograms are computed from three randomly initialized networks. For the recurrent
matrix, the histogram is computed from all weights. Subsampling down to 120 000 weights
was used in the case of input and output mapping. In all cases, the zero-most bin with
tight regularization goes up to around 0.8.
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Figure 4.7: Exploration of SRN behaviour with respect to number of learning streams and
frequency of updates. The experiment was also conducted for 12 streams, but the result
were very similar to the 10 streams, just a little bit worse. Weight updates after 4, 8, 16
and 32 words were tried for all explored numbers of streams. However, as the number of
streams grew, not all models have successfully converged, thus the missing values.

A slight skew towards negative values is apparent also in the output mapping. However,
it diminishes as the regularization gets tighter.

4.2.5 Multistream Learning

In his thesis, Mikolov [30] claims, that it is very beneficial to perform updates of weights
often. Therefore, another experiment was focused at multistream learning. I have exam-
ined number of streams in combination with frequency of updates, as these are the two
parameters governing number of updates per epoch.

In this experiment, networks were 200 hidden units wide. Gradients were backpropa-
gated for 10 words into history.

Results of the experiment are summarized in Figure 4.7. We can see that once the
product of the number of the streams and the bptt-block exceeds 20, the performance
degrades dramatically. With lower number of streams and frequent updates, the obtained
error seems quite robust to the particular setting. The error increase with 4 streams and
bptt-block=16 seems quite random, it is possible to be introduced by some special char-
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Figure 4.8: Dynamic performance on the test set. For reference, the final performance on
the validation set is reported as well. These results are computed on a single input model.

acteristics of the data.

4.2.6 Dynamic Application of Networks

Finally, I have evaluated the network dynamically. For this experiment a network from
the experiment examining weight of L2-regularization was taken. It was the one with best
performance on the validation set. Then a single epoch of training on the test set is run. 1
have tried a range of different learning rates, to find optimal setup. The original training
was ended with learning rate around 5-1075.

Result of the experiment is captured in Figure 4.8. It is obvious that best results are
obtained with learning rate around 0.01. With lower learning rate, the network can not
adapt enough. With higher learning rate, the network may leave the valley of error function
reached during the original training.

The performance on the validation set is also interesting: Overall, the fine tuning of the
model to the test set hurts the performance. With learning rate around 1073, this decrease
in performance is smaller, because the network was just a little pushed from its original
local optimum, which has similar effect to applying regularization. When the learning rate
gets too big, the performance on the validation set is completely degraded, simply because
the network adapts too much to a different error landscape.

4.2.7 Simple Recurrent Network Summary

To sum up the the experiments with the SRN models, I have compared the achieved re-
sults with the Mikolov’s original implementation rnnlm. The most interesting results are
summarized in Table 4.1.

We can see that this Theano-based implementation has not reached the best published
results. As all available hyperparameters have been extensively explored, the only difference
remaining is the way of passing through the trainined set. Since the L2 regularization has
helped a lot (removes 30 % of the difference) and has been claimed by Mikolov not to bring
any gains, we can assume that his originial implementation serves as strong regularizer.
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Table 4.1: Performance of different models on the test set. Upper and lower bound is given
by an external implementation of RNN LM and a smoothed 3-gram model respectively.

Model Entropy Perplexity
Good Turing 3-gram 7.38 165.2
Basic experiment, 100 neurons 7.32 159.8
Basic experiment, 200 neurons 7.30 157.6
B = 107", 200 neurons 7.24 151.2
8 =10"?, 200 neurons, dynamic 6.87 117.0
ronlm toolkit, 200 neurons 7.10 138.4
rnnlm toolkit, unknown number of neurons 6.94 123.2

4.3 Structurally Constrained Recurrent Network

The paper introducing SCRN comes also with a link to public implementation®. However,
it is implemented in Torch, which is a library for tensor computation in Lua scripting
language. Since Theano was selected as the tool for implementation in this work, the
SCRN model has been reimplemented®.

The paper also comes with reasonably detailed description of hyperparameters used for
training the model[37]. Therefore, the first natural experiment was focused on replicating
the published result. However, the models did not converge at all in my case.

Taking experience from experiments with SRN, the most likely reason of the divergence
is the combination of a rather big number of streams (32) with updates after 5 words and
a very long backpropagation trough time (50 steps).

Therefore, I have decided to try an experiment with modest setting of these parameters.
The following experiment has been done with 4 streams, updating after every 4th word. The
networks were 200 hidden neurons wide. Backpropagation was done for 10 steps only. This
can be expected to decrease the effect of introducing slow neurons, however an improvement
should be observed anyway, since we expect regular neurons to learn from histories up to 6
words only.

To suppress effects of random initialization, this experiment was run as a search over
the number of slow neurons. Results of the experiment are summarized in Figure 4.9. No
substantial improvement was observed, and definitely not a consistent one. Overall, the
model seems to overtrain more than a SRN and the results are worse than the published
ones. Therefore, the implementation technique where a single hidden state is computed
only once during the epoch really serves as a strong regularizer.

1 did not perform experiments with explicit regularization, as the author did not mention
it at all and the reached results were worse than a comparable SRN anyway.

3https://github.com/facebook/SCRNNs
4See Appendix B for code.
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Figure 4.9: Performance of a Structurally Constrained Recurrent Network (SCRN) with
respect to the number of slow neurons. Results are average of 3 networks with different
random initialization. We can see that the slower neurons have hardly any effect on the
test and validation performance. Slight improvement on the train set can be observed, but
not in smooth and interpretable way.

29



Chapter 5

Forcing Sparsity in the Recurrent
Weights Matrix

As explained in Subsection 2.5, the SCRN model can be interpreted as a simple recurrent
network with constrained values in the recurrent weights matrix. These constraints are
supposed to help the network to focus on different aspects of the text with different parts
of the parameters.

Sparsity in recurrent networks is proposed by Bengio et al. as well [3]. In their approach,
the sparsity is not an inherent property of the model, but is forced by L1 regularization.
However, they use ReLLU as the nonlinearity in the hidden layer.

Another example of proposing sparsity can be found in a more theoretically based work
of Sutskever et al. [16]. They advocate initializing the recurrent weights in the form of
a sparse matrix. Their reasoning is that a network initialized this way would not change
its hidden state so rapidly, so it is easier to back-propagate the error and distribute the
adjustments to the responsible parameters.

Finally, there is a quite successful model called Echo State Network (ESN) used in
general sequence prediction [26]. This model is, in its topology, very similar to the SRN.
However, only the output weights are learned, thus the training is computationally very
simple, as no backpropagation takes place. The rest of the weights are simply set during
creation of the network. Moreover, the recurrent weights are initialized as being very sparse,
e.g. 15 input connections per neuron for a hidden layer with a few hundreds of neurons.

All of these examples suggest, that it is beneficial to keep some of the recurrent connec-
tion at zero. Thus, a simple extension to this idea is studied in this chapter.

5.1 Randomly Sparsed Recurrent Neural Network Model

The proposed model is based directly on the SRN model. The change is introduced to the
computation of the hidden state. The original equation (2.14) is replaced by its enhanced
version:

ht = O'(UXt + ((Wm ® W)ht_l) (51)

The introduced matrix W, is a binary mask and the ® operation represents entry-wise
multiplication. Thus, the only ability of W,, is to turn single entries of W on or off. This
matrix is set as a fixed parameter of the model and can thus be initialized by specific shape
or randomly.
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The introduction of W,, allows to turn the network sparse. In this work, random
initialization of W, is studied, with a focus on the behaviour of the networks when there
are only a few entries set to one. Therefore, the proposed model is called Randomly Sparse
Recurrent Neural Network (RS-RNN).

The governing parameter is then the amount of nonzero elements in W,,. Its normalized
value is called density. Note, that for density equal to 1, the RS-RNN is equivalent to the
SRN.

This approach is similar to the dropout technique described in Section 2.2.3. It repre-
sents a dropout applied only to the recurrent connections. The difference from the standard
form of dropout consists of two concepts: At first, the RS-RNN is simpler because the mask
of dropping out is fixed for all the training. Secondly, dropout turns off whole neurons, while
in RS-RNN, only specific neuron-neuron connections are set on or off.

However, dropout is rarely used for recurrent connections. The main reason is that it is
usually discussed in context of the LSTM model. In the LSTM model, the network learns
to protect its memories and therefore grows dependent on their precise values. So it is very
difficult for the network to learn what to expect from any specific memory in the presence
of dropout, where only ~20-30 % of the neurons are kept from previous timesteps.

Thus in practise, dropout is used only for the regular non-recurrent connections '. This
approach is also supported by some publications [17] [14]. There were some experiments
suggesting, that with a careful setting, even a dropout on the recurrent connections may
work, although not as well as dropout at other places of the architecture [11].

In his recent paper, Gal has investigated the application of dropout in RNNs interpreted
as Bayesian networks [17]. Supporting my approach, he shows that using the same mask
for all timesteps is correct way to approach dropout in recurrent networks.

5.2 Performance of the Randomly Sparse RNN Model

As a quick assessment of the potential of the RS-RNN model, a simple experiment with 100
hidden units was performed. The random mask was randomly initialized so that 20 %, 40 %,
60 %, 80 % and 100 % of its entries were set to one. The networks were trained with initial
learning rate 0.1, updating the weights every 30 words and backpropagating the gradients
for 5 words into the history.

The results of this experiment are captured in Figure 5.1. The error on the validation
and test set is slightly increasing as the recurrent weights grow sparse. Taking the analogy
with the experiment exploring the effect of the number of hidden units, this is a direct
impact of decreasing the number of learnable parameters of the model. However, the
decreasing error on the training set does not follow this explanation. This improvement can
be explained using similar reasoning as Sutskever et al. did for their sparse initialization [16]:
Having the recurrent connections sparse makes it easier for the network to learn temporal
dependencies in the data, because the hidden state does not change so rapidly with every
timestep.

Thus, the decreased performance on the validation and test set may be caused by the
model fitting the training corpus better.

'Personal communication with R&D staff from Seznam.cz.
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Figure 5.1: Performance of a Randomly Sparse Recurrent Neural Network (RS-RNN) with
100 hidden neurons, with respect to the density of the random mask. Thus sparser models
are in the left. Results are average of 9 networks with different random initialization.

5.2.1 Interpolation of Several Randomly Initialized Models

Since the RS-RNN seems to learn the training corpus better than a dense SRN, the idea of
combining such models becomes tempting. For this purpose, wider models with 200 hidden
neurons were trained, with the rest of the learning parameters kept same as in the previous
experiment. The individual performance of these models is captured in Figure 5.2.

The combination of models is done as an unweighted linear interpolation (5.2), also
called posterior combination. The motivation behind this is that the models should be in
principle equal, so training interpolation weights would just exploit differences introduced
by noise.

N
_ 1 _
p(wt|p§ 1) =N Zpi(wthfi 1) (5.2)
i=1

The results of the interpolation are captured in Figure 5.3. We can see that when the
mask has as few as 20 % zero entries (density = 0.8), the result of combination is much
better than combination of SRN models (density = 1). The improvement over a baseline —
the average of single systems with test entropy 7.28 —has been quantified in Table 5.1. We
can see that the relative improvement of the gain of the RS-RNN compared to the SRN is
approximately 30 %.

5.2.2 Applying the L2 Regularization on Randomly Sparse RNN

The other way to exploit the better performance of RS-RNN on the training data is to
resctrict it with regularization. To explore this possibility, an experiment has been con-
ducted with RS-RNNs. Taking experience from experiments with regularization on SRN
(see Section 4.2.4) only a narrower range of regularization weights was explored.

The effect of the regularization is pictured in Figure 5.4. We can see that the general
behaviour of RS-RNN under L2 regularization is similar to the SRN. The maximum gain,
obtained at 8 = 2 -10°, is similar to the gain of the SRN. However, since the models
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Figure 5.2: Performance of a Randomly Sparse Recurrent Neural Network (RS-RNN) with
200 hidden neurons, with respect to the density of the random mask. Results are average
of 9 networks with different random initialization. We can see that the general trend is
very similar to the networks with 100 hidden neuron (see Figure 5.1). When the density
drops too low (5%, leftmost entry), we can see that overall performance gets worse. The
main reason is a severe decrease of the number of parameters in the recurrent layers.
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Figure 5.3: Effect of interpolation of randomly initialized models as dependent on the
density of random mask, compared to the performance of individual models. All models
have 200 hidden neurons and for every density, nine models have been trained and combined.
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Table 5.1: Performance of models interpolation on the test set as dependent on the density
of the random mask. The improvement over baseline is reported on entropy.

Density Entropy Perplexity Improvement over baseline

1.0 7.05 132.5 3.2%
0.8 6.97 125.4 42%
0.6 6.99 127.1 4.0%
0.4 6.99 127.1 4.0%
0.2 7.00 128.0 3.8%
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Figure 5.4: Effect of the L2-regularization on models with density=0.2. All models have
200 hidden neurons and for every weight of regularization, nine models have been trained
and combined.

perform much worse without regularization, the final result is comparable to a SRN without
regularization.

The intersting observation is, that even with quite tight regularization, the gap between
dynamic and static performance on the training set remains significant.

5.3 Additional Properties of the Randomly Sparse RNN Model

Since the restricting mask W, rather significantly alters the performance of the model, it
is worth investigating, how the inner workings of the RS-RNN differ from a similar SRN.

As the first case, the learning progress of a single model is examined. For this, three
models of different density were taken from the experiment with 200 hidden neurons. These
models are not special in any respect.

The respective learning progress is plotted in Figure 5.5. We can see that the selected
models improve very similarly. The only significant difference is the performance degrada-
tion of the model with density = 0.6 in the sixth epoch, but that may well be caused by
some random effect. Also, it has no further effect because the training procedure performs
a rollback to the previous model when the validation error increases.
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Figure 5.5: Typical learning progress for different density of the random mask. Reported
are results on test set (purple), validation set (blue) and training set (green). Note, that
the result on the training set are computed during the training, i.e. while the weights were
being adapted.

Furthermore, the distribution of weights is examined. For this analysis, weights from
all models with a given density were accumulated. I believe that by doing so, no important
quality of the data is lost. Furthermore, only those of recurrent weights are taken into
account, which are active.

Histograms of weights in all the matrices are presented in Figure 5.6. We can see that
the input mapping and output mapping are distributed nearly normally. The recurrent
weights are much more have a higher variance.

The same pattern can be observed for the weights in both U and V: The sparser the
mask, the wider the distribution. The exception is the fully connected network (black
curve), for which the weights are distributed a little wider.

The recurrent weights follow a similar pattern, but loosely. The distribution of weights
for middle density (0.6, green curve) is nearly identical to distribution of weights in a dense
network (black curve).

The recurrent weights also are biased towards the negative values, like in the case of
SRN (see Subsection 4.2.4). However, the bias towards negative values gets more significant
as the weights get sparser. We can assume that it is important for the network to retain
a significant portion of its negative weights.

With some of the sparse models a question may arise, how many hidden neurons from
the past do actually affect a particular one? We can see, that due to transitivity, all of
them contribute: Let us assume an RS-RNN with the density of the mask equal to 0.2.
Then, a hidden neuron is—on average—connected to 40 hidden neurons in the previous
step. However, looking two steps back, this particular neuron should be connected to
40 - 40 = 1600 > 200 neurons. Thus we can safely assume, that it is effectively connected
to all of them. This has been empirically verified on all generated masks.

We can expect this to hold for masks down to density d = 1/v/N. Therefore, the gains
achieved by making the matrix sparse clearly do not come from lower level of connectivity
between hidden neurons, but slower change of state. Thus I suggest that the improvements
reached are obtained by the model being easier to learn, due to easier distribution of
gradients in the first step of backpropagation through time.
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Figure 5.6: Distribution of weights in the Randomly Sparse Recurrent Neural Network
(RS-RNN), as dependent on the density of the random mask. Distributions are plotted
for density equal to: 0.2 (blue), 0.4 (red), 0.6 (green), 0.8 (purple) and 1 (black). Refer
to Figure 5.2 for impact on performance. Histograms are computed from nine randomly
initialized networks. For the recurrent matrix, the histogram is computed from all nonzero
weights. Subsampling down to 120 000 weights was used in the case of input and output

mapping.

36



Chapter 6

Conclusion

In this diploma project, I have investigated learning procedures of recurrent neural networks
(RNN) in language modeling. Several prevalent models are presented, as well as techniques
for their training. Based on this knowledge, a language modeling tool was implemented in
order to experiment with the models. Using this tool, the Simple Recurrent Network (SRN)
model was intensively tested in a range of situations. Also, the Structurally Constrained
Recurrent Network (SCRN) was implemented and tested. A novel enhancement of the SRN
was proposed and thoroughly studied.

The downside of the Theano based SRN implementation is, that the result reached
was by 2.7% worse than the best published result. On the other hand, I have found
out that L2 regularization helps to reduce this gap by 30%. This result is contrary to
previous publications on the topic, which claim that L2 regularization does not bring any
improvement in performance. Finally, I have found out that the implementation eventually
outperforms the best published results when evaluating the test set dynamically.

The SCRN model did not converge when using the parameters given by its authors. In
a simpler setup, the result did not get better than the SRN baseline.

The conclusion from these experiments is, that the implementation details implied by
Theano lead to a worse performance. Other implementations use a more direct approach,
which seems less in line with the theory of gradient learning, however works as a strong
regularizer.

The RS-RNN model seems to overtrain a little, compared to the SRN model. However,
it has been empirically shown, that the gains on the training corpus can be effectively
transformed into improved performance on a test set by a simple posterior combination.
This improvement is by 30 % larger than the improvement reached by a combination of
the same number of dense SRN models. This result has been presented at the ExcelQFIT
student conference [2].

Future work will be oriented in two directions: The RS-RNN model will be integrated
into some of the toolkits that produce the state of the arts results. If the improvement will
last, it should be a model improvement suitable for publication.

The other extension of this diploma project lies in combining the RS-RNN model with
a Bayesian treatment of RNNs in language modeling. Since the Bayesian treatment poses
a way of regularization on its own, it will be interesting to see whether the improved learning
performance of the RS-RNN could be utilized in an other way than the interpolation of
several models.
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Appendix A

Contents of the CD

/
| thesis.pdf ..ot e Text of the thesis.
I = TREXsources.
PEE Plots of the experiment results, including data.
tikz .ooiiiiee., Images picturing models and illustrating learning techniques.
I o) v =Y PP Python implementation.
10E= T o O o The runnable script.
MOl . Py .ottt ittt Definition of models in Theano.
| _penn-treebank-sentences...Penn Treebank corpus, version used for experiments.
| sge-ptb.....oiiiii Bash framework for running experiments.
| _extractor.py Extracts results from a logs together with selected hyperparameters.
| epochal-eXtractor.pPy....ovveiiiinieinnnnnennn. Collects per-epoch performance.
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Appendix B

Definition of Models in Theano

This Appendix presents parts of the code responsible for the actual computation. For
complete code, refer to Appendix A.

Note that the samples are generally stored in 3D tensors, by default indexed as (stream,
timestep, sample items). This implies, that when taking a 2D slice, each sample is a row
vector. Thus, vectors are multiplied into matrices from the left, unlike the math definition
in Chapter 2 and 3.

The class StructurallyConstrainedRecurrentNetwork does not have its own contruc-
tor, it uses just the one inherited from SimpleRecurrentNetwork.

Note that line have been broken to fit into the page.

def

softmax3d (x):

if x.ndim != 3:
raise ValueError("Tried, to,apply,3d,softmax ,on," + str
(len(x.shape) + "-d,tensor"))
e_x = T.exp(x - x.max(axis=2, keepdims=True))

return e_x/e_x.sum(axis=2, keepdims=True)

class SimpleRecurrentNetwork:

def __init__(self, vocab_size, hidden_config, clip_thres,
beta, custom_mask = None):
self._hidden_config = hidden_config
self._init_params(vocab_size, hidden_config,
custom_mask)
self._init_hidden_inputs(hidden_config)

self._seq = T.imatrix("x") # a 7row s a "sentence"”
self._1r = T.scalar("learning,rate")

_nb_targets = T.iscalar ("number of targets")
_req_h = T.iscalar ("requested hidden,state (from ,end)"

)

self._seq.shape[0]
self._seq.shape[1]

nb_seqs
seq_len
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def

t = self._seql:,-_nb_targets:]

self._y = self._model_computation(self._seq,
clip_thres) # 0 - streams, 1 - time, 2 - tndividual
word probas
y_reshaped = self._y.dimshuffle(1l, 0, 2) # 0 - time,
1 - streams, 2 individual word probas

hidden_output = self._hidden_output(_req_h)

self. _err = -T.sum(T.log2(
y_reshaped[T.arange (y_reshaped.shape [0] -
_nb_targets, y_reshaped.shape[0]).reshape
((-1,1)), T.arange(y_reshaped.shape[1]), t.T]

))
self._12 norm = T.sum([T.sum(x*x) for x in self.
_params])
cost = self._err + betax*xseq_len*self._12_norm
self._sgd = StochasticGradientDescent(self._params,
cost, self._1lr, clip_thres)
self. _test = theano.function(
inputs=[self._seq, _nb_targets, _req_h] + self.
_hidden_inputs,
outputs=[self._err, self._y] + hidden_output
)
self._train = theano.function(
inputs=[self._seq, self._lr, _nb_targets, _req_h]
+ self._hidden_inputs,
outputs=[self._err, self._y] + hidden_output,
updates=self._sgd.get_updates ()
)

_model_computation(self, seq, clip_thres):

self._p = self. _Ulseql[:, :-1]1].dimshuffle(l, 0, 2)

# dimshuffle mnecessary, so that time s the outermost
aT%Ls

def srn_step(p_t, h_tml, rec_weights, rec_weights_mask
)
x_t = T.as_tensor_variable(p_t, ndim=2) # dim 0 -
samples from different streams, dim 1 -
elements of their word-vectors
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h_ t = T.nnet.sigmoid(x_t + T.dot(h_tml,

rec_weights*rec_weights_mask))
return theano.gradient.grad_clip(h_t,

clip_thres)

self._hsl, updates = theano.scan(
fn = srn_step,
sequences = self._p,

outputs_info =
non_sequences =

strict = True

self._hsl = self._hsil.dimshuffle(1l,

[self._ho],
[self. W,
truncate_gradient

-clip_thres,

self. _W_mask],

self._h = T.concatenate ([self._hO.dimshuffle (0, ’x’,

1), self._hsl], axis

return softmax3d(T.dot(self._h,

class StructurallyConstrainedRecurrentNetwork(

SimpleRecurrentNetwork) :

def _model_computation(self,
self. _Ulseql:,
self. _B[seql:,

self._p
self._b

def step(p_t, b_t, h_tml,
x_t = T.as_tensor_variable(p_t,
samples from different streams,
elements of their word-vectors

1 t = T.as_tensor_variable(b_t,
samples from different streams,

self. _V))

clip_thres):
:-1]].dimshuffle (1, 0, 2)
:-1]].dimshuffle (1, 0, 2)

ndim=2) # dim 0 -
dim 1 -

ndim=2) # dim 0 -
dim 1 -

elements of their bag-of-word-vectors

[= ()}
ot o
o

(s_t, P))

return theano.gradient.grad_clip(h_t,

(1-self._alpha)*x1l_t + self._alphax*s_tml
T.nnet.sigmoid(x_t + T.dot(h_tml, W) + T.dot

-clip_thres,

clip_thres), theano.gradient.grad_clip(s_t, -

clip_thres, clip_thres)

[self._hsl, self._ssi],
fn = step,

sequences = [self._p,
[self._ho,
[self. W,
truncate_gradient

outputs_info =
non_sequences =

strict = True
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self._bl,
self._sO0],
self._P],

theano.scan (


http://self._h.sl
http://self._h.sl

self._hsl
self._ssli

self._h = T.

1), self.
self._s = T.
1), self.

return softmax3d(T.dot(self._h,

self._s,

self._hsl.dimshuffle(1, 0, 2)
self._ssl.dimshuffle(1, 0, 2)

concatenate ([self._hO.dimshuffle (0, ’x’,

_hs1], axis

1)

concatenate ([self._s0.dimshuffle (0, ’x’,

_ssl1], axis

self. _V_s))
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1)

self. _V_h) + T.dot(



