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Abstrakt
Zavedli jsme novou vlastnost směšovacích vrstev blokových šifer. Tato vlastnost se nazývá
non-type-preserving a zaručuje odolnost vůči algebraickým útokům na základě imprimi-
tivity skupiny generované kruhovými funkcemi.

Uvažovali jsme binární matici odpovídající směšovací vrstvě a dali jsme potřebné a dostate-
čné podmínky pro binární matici, která zajišťuje typ nezachovávající vlastnost. Pak jsme
ukázali, že některé reálné šifry splňují tyto nezbytné a postačující podmínky, a proto jsou
typ nezachovávající. Uvažované šifry byly GOST, PRESENT a AES.

Nakonec jsme v kapitole 4 ukázali, že pokud míchací vrstva šifry SPN, která používá
adiční modulo 2n pro míchání klíčů, nezachovává typ, pak je skupina generovaná funkcí
round primitivní.

Summary
We introduced a new property of the mixing layers of block ciphers. This property is
called non-type-preserving and it guarantees resistance to algebraic attacks based on im-
primitivity of the group generated by the round functions.

We considered the binary matrix corresponding to the mixing layer and gave necessary
and sufficient conditions on the binary matrix that ensures non-type-preserving property.
Then we showed that some real-life ciphers satisfy those necessary and sufficient condi-
tions and so are non-type-preserving. The ciphers considered were GOST, PRESENT,
and AES.

Lastly, in chapter 4 we showed that if the mixing layer of SPN cipher that uses addition
modulo 2n for key mixing is non-type-preserving then the group generated by the round
function is primitive.
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1. Introduction
This chapter introduces the scope of the thesis which is block cipher security, in particular
we will define a particular type of matrices called type-preserving matrices related to block
cipher security . In Section 1.1 we discuss the history of cryptography. In Section 1.2 we
discuss the classification of cryptography algorithms and we review of former literature in
Section 1.3. Section 1.4 state the goal of the thesis and lastly we give the outline of the
thesis in Section 1.5.

1.1. History of Cryptography
Hieroglyph was used in ancient Egypt, as a formal writing system of the scribes. Hiero-
glyph was used to communicate messages on behalf of the king, only the scribes are privy
to the meaning of the message. The codes are pictorial, the meaning of this pictorial
symbols are known only by the scribes. Similarly the Yoruba people of West Africa, send
confidential messages from one king to another using symbols, symbols which only the
priest understood. This system of communication is called Àrokò. These two systems
of communication strive for confidentiality in communication. This in essence is what
cryptography provides. Cryptography is simply the science of writing and sending secret
messages over an open channel. Open channel in that anybody can have access to this
message but only the intended receiver should understand the message.

We can see that cryptography is an ancient art and it is also of utmost importance. Over
the years the science of sending encrypted messages have metamorphosed into complex
and sophisticated algorithms. The message that is sent confidentially is called plaintext
and the encrypted message is called ciphertext. Although hieroglyph might be 4000 years
old, in the 100 BC the roman emperor Julius Caesar was credited with the invention of
an encryption method, this is known as Caesar cipher. It was used when conveying secret
messages to roman army generals during a war. A cipher is an algorithm used for encryp-
tion and decryption. Caesar cipher is an example of substitution ciphers, in a substitution
cipher each alphabetic character of the plaintext is changed to another character, another
example of a substitution cipher is the affine cipher.

Caeser ciphers shifts each alphabet by 3, for instance the English alphabets A - Z are
labelled 0 - 25 respectively. The encryption function is ε = (x + n) mod 26 where n ∈ N
and x the label of a character of the plaintext. The decrypting process is carried out
using the function d = (y − n) mod 26 , y is the label of a character of the ciphertext.
The simplicity of this cipher has both advantage and disadvantage. Advantage because
it’s easy to implement but the disadvantage arise from the fact that it has 26 key choices
which means it is prone to exhaustive key search.

The affine cipher is also an example of substitution ciphers, affine cipher is an upgrade on
the Caeser cipher, the relative sophistication of the affine cipher provides more security.
The encryption function is, ε = (ax+b) mod 26, where a, b ∈ N and gcd(a, 26) = 1, x is the
label of the character in the plaintext. The decryption function is, d = (a∗y−a∗b) mod 26,
where a∗ is the multiplicative inverse of a mod 26. The condition gcd(a, 26) = 1 assures
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1. INTRODUCTION

that the encryption function is injective, in other words the existence of the inverse of
a mod 26. The key choices in an affine cipher are 312.

It is easy to see that the security of both Caeser cipher and affine cipher depend on the
secrecy of the system and not on the encryption key. This is because once the system
is known, then encrypted messages can easily be decrypted. In fact, substitution ciphers
can be broken by using the frequency of letters in the language. Vigenere in the 16th
century also designed a cipher which was the first cipher using an encryption key. In this
cipher, the encryption key was repeated multiple times spanning the entire message, and
then the ciphertext was produced by adding the message character with the key character
modulo 26 [1]. Vigenere cipher encrypts blocks of plaintext unlike the shift ciphers. In
the Vigenere cipher the secrecy of the message depends on the secrecy of the encryption
key, rather than the secrecy of the system.

During the end of first World War, a German engineer named Arthur Scherbius invented
the enigma machine. Enigma is a mechanical encryption device which used about four
rotors. Each rotor had twenty-six possible initial setting, the key was the initial setting
of the rotors. The German forces used the Enigma for confidential communication during
the second World War. However a group of three polish cryptographers succeeded in
breaking the Enigma, and these three cryptographers sent the technique to the British.
Alan Turing worked extensively on the Enigma machine and devised a means of obtaining
a daily key.

Anciently cryptography was mainly used for military purpose but after the second World
War, the commercial world saw the usefulness of cryptography, that it can be used to
hide information from competitors. In the twenty-first century, cryptographer is widely
used in our day to day activities, including sending of emails, cash withdrawal from the
ATM, secure web browsing, blockchain and so on.

1.2. Classification of Cryptographic Algorithms
There are many ways of classifying cryptographic algorithms, in this thesis we will employ
the classification based on the key used for encryption. In this class of classification we
have symmetric encryption and asymmetric encryption.

Asymmetric encryption uses a public key for data encryption and a private key for de-
crypting the ciphertext. The plaintext is encrypted using the public key of the recipient,
the recipient after receiving the ciphertext, then he/she can decrypt it using his/her
own private key. Examples include the Diffie-Hellman exchange method, Elliptical Curve
Cryptography and Rivest Shamir Adleman (RSA) algorithm. Asymmetric encryption are
mainly used for key exchange because they are not efficient due to slow speed and as a
result of this slow speed, the network is overburdened during the encryption and decryp-
tion process.

Symmetric encryption uses a the same key for both encrypting the plaintext and decrypt-
ing the ciphertext. This key is however a private key, i.e. it is known only by the genuine
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entities involved in the communication. Examples of this type of encryption are broadly
stream ciphers and block ciphers. The private key is shared with recipient using any of
the key exchange protocol, such as Diffie-Hellman exchange method, elliptic curve cryp-
tography and RSA algorithm. The main focus of this thesis is on block cipher which is a
type of symmetric encryption.

1.3. Literature Review
Since the introduction of the first civilian block cipher (LUCIFER) in the 1970s by Horst
Fiestel was a response to the announcement made by the National Bureau of Standards
(NBS), which is now called the National Institute of Standard and Technology (NIST),
the design by Horst Fiestel was presented by IBM as a proposal. The algorithm proposed
by IBM in 1974 was adopted as the Data Encryption Standard (DES) and like earlier
stated it was based on Fiestel’s Lucifer cipher [22].

Loopholes were found in the design of DES not because it was badly designed but due
to rigorous study of DES which led to revolutionary ideas in the cryptanalysis of these
types of cryptographic algorithms. Biham and Shamir’s [6] differential cryptanalysis in
the 1980s and Matsui’s linear cryptanalysis in the early 90s were arguably chiefs amongst
these ideas. These two classes of cryptanalysis and advances in cryptanalysis till recent
times has rendered DES rather insecure in many applications.

Due to the insecurity that DES posed, NIST announced in 1997 the replacement of DES.
After a five-year standardization processing the Rijndael cipher [13] - named after two
Belgian cryptographers, Joan Daemen and Vincent Rijmen, who also turned in a proposal
in response to this announcement - was selected for the Advanced Encryption Standard
(AES) in 2001 amongst fifteen competing designs. Since its selection in 2001 and despite
the rigorous analysis on this cryptosystem, it is still considered secure.

DES and AES fall under the Block cipher class this is because the algorithm is designed
to work on grouped bits of a fixed length called blocks. Most modern block ciphers are
obtained by composition of round functions and are either Fiestel Networks (FN) or Sub-
stitution Permutation Networks (SPN). In a round function, there are three operations
that occur. One of these operations is key mixing - this is combines the message with the
corresponding round key - which is mostly done by XOR.

The major drawback of XOR is the linearity, which makes the cipher more susceptible
to differential linear cryptanalysis. This could be prevented by using addition modulo
2n where n is an integer, which intuitively could seem like a good practice. In [18] it
is showed that this intuition is quiet valid after constructing two SPN block ciphers one
with the traditional key mixing of XOR and the other with the key mixing of additional
modulo 2n, which was named GPig1 and Gpig2 respectively. The author checked from an
experimental point of view that the bias of the linear cryptanalysis dropped exponentially
fast, which translate to an increase in non-linearity. Another cipher, which is not SPN
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1. INTRODUCTION

but FN, using addition modulo 2n as key mixing is GOST [14].

In [17] it was showed that some weaknesses of block cipher are inherent in the group-
theoretical properties. For example if DES were closed under functional composition then
strengthening DES through using multiple encryptions would be equivalent to single en-
cryption and if the corresponding group is small then there exists a vulnerability due to
birthday-paradox attacks. Investigation of the possibility of the existence of trapdoors in
ciphers whose encryption functions generate an imprimitive group or an affine group was
done by Paterson in[19] and by Calderini in[9] respectively and they showed that these
properties can be turned into an efficient attack. This inspired a branch of research in
symmetric cryptography focused on showing the primitivity of group generated by en-
cryption functions.

1.4. Goal of Thesis
We aim to ascertain that round functions using additional modulo 2n as key mixing func-
tion is watertight against algebraic attacks based on imprimitivity of the group that is
generated by this type of round functions.

We introduced a mixing layer property called non-type-preserving. We will show that this
property guarantees resistance to imprimitivity attacks.

1.5. Thesis Outline
The organization of this thesis is as follows:

Chapter 2 introduces the design principles of block ciphers, the usefulness and importance
of a block cipher. Here we discuss about different approaches to cryptanalysis of block
ciphers which are bruteforce, differential cryptanalysis, linear cryptanalysis and algebraic
cryptanalysis. We also give the classification of block ciphers based on their design prin-
ciple. To close the chapter we summarized the whole chapter.

Chapter 3 presents some general definitions and known results which served as the founda-
tion of the algebraic cryptanalysis done in this thesis. We also discussed on the primitivity
of the group generated by the round function, we introduce the notion of black boxes,
ruled boxes and white boxes used later in the thesis. We also define what we mean by
type-preserving matrices, and gave the necessary and sufficient condition that guarantees
this property. We give examples of real-life ciphers that possess non-type-preserving mix-
ing layers.

Chapter 4 presents how the type-preserving property of known ciphers coupled with other
assumptions on the cipher guarantee primitivity of the whole cipher.
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Chapter 5 is the conclusion and also outline of possible future research directions.
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2. BLOCK CIPHERS

2. Block Ciphers
The design principles are explained after general usefulness and classification of block
ciphers, this is simply to ease the passage to the algebraic analysis. Then lastly we will
discuss the cryptanalysis of block ciphers.

Even though this section is about the general introduction and design of block ciphers,
the understanding of this chapter will help in the algebraic properties of round functions.

2.1. Why block ciphers?
Cryptography studies communications in the presence of an adversary, which translates
to high need for secrecy. This is what cryptosystems strive to provide. A confidential
channel of communication – where messages are only readable by the genuine recipient
and also the sender and for any third party it will be a meaningless piece of information–,
one of the cryptographic primitives used to achieve this goal is the block cipher.

The algorithm used in the design of block cipher works on grouped bits as mentioned
earlier, this is the reason for the name block cipher. One of the many advantages of
block ciphers is that if one letter of the plaintext is changed, this change affects the whole
ciphertext.

Algorithms used in cryptography are divided into different classes depending on the key.
Block ciphers are symmetric key ciphers, this type of algorithm use the same key for
encrypting and decrypting. This key has to be shared between the sender and genuine
recipient in a secured way. Symmetric key ciphers are logically used for authentication
and confidentiality.

The challenge of symmetric key ciphers (in particular block ciphers) would have been the
secret way of sharing the key but this is well handled by the public-key algorithms, which
are cleverly designed in a way that allows parties to share with each other the public part
of a key, to construct a shared private key. We continue this introduction by discussing
in a formal way the design principles of block ciphers.

2.2. Design principles and Classification of Block Ci-
phers

One of the highly desirable property that block ciphers possess is confusion and diffusion,
this was brought to bear by Claude Shannon [20]. Diffusion means that a single change
in the plaintext should affect several characters of the ciphertext and vice-versa, it’s
basically to make the plaintext bits and key bits relation difficulty to analyse by any
attacker. Confusion makes sure that each character of the ciphertext is dependent on
several parts of the key. It is concerned with the relationship between ciphertext and key.
In order to fully explain the working principles of block ciphers, we will discuss the two
main algorithms used for block ciphers,
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2.2. DESIGN PRINCIPLES AND CLASSIFICATION OF BLOCK CIPHERS

2.2.1. Fiestel Networks (FN)
Fiestel Networks (FN) named after the German-born physicist and cryptographer Horst
Feistel, is a symmetric key algorithm used in the design of DES and LUCIFER. The
plaintext and the key are the main input. FN is an iterative procedure that is repeated
for a required number of times. The number of rounds is dependent on the bits of the
plaintext. The iterative procedure consists of a round function, this is responsible for the
encryption process with the aid of subkeys – subkeys are gotten from the master key using
a certain function called key-schedule – .
The plaintext is divided into two halves L0 and R0, this is the initial halves. For each
round i = 0, 1, 2, · · · , r we compute

Li+1 = Ri

Ri+1 = Li ⊕ F(Ri, Ki)
(2.1)

where ⊕ is the XOR and the ciphertext is (Rn+1, Ln+1), F(·, ·) is the round function, Ri

is the right half of the ith round and Li is the left side of the ith round and Ki the subkey
derived by the action of the key schedule on the master key. Example of a block ciphers
that uses the design of FN are DES and GOST cipher, we give the design principle of
GOST cipher after the diagram.

Figure 2.1: DES Feistel block cipher

GOST cipher

GOST[11] cipher is an algorithm that is designed after the FN structure, it encrypts 64-bit
plaintexts into 64-bit ciphertexts with the aid of a key, K = (K1, · · · , K8) such that Ki is 32-
bit , for i = 1, · · · , 8. These Ki are called partial keys and are used sequentially in each
of the 32 rounds. GOST was designed by the Soviet Union (now Russia) in 1970s, the
design allows for the secrecy of both the key and the 8 S-boxes.

The 64-bit plaintext is divided into two halves L0 and R0 of size 32-bit each. The key
mixing operation is carried out on R0, i.e

R0 +K1 (mod 232) = R∗,
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2. BLOCK CIPHERS

R∗ has 32 bits and it is passed into the 8 S-boxes, the resulting 32-bit string is then passed
into the permutation layer which does 11 bits right rotation, the resulting 32-bit string,
say R, is then XORed with L0, this gives R1, and R0 will now be L1. More in general the
(i− 1)th round is

Li = Ri−1

Ri = Li−1 ⊕ F (Ri−1, Li−1, Kj).

Figure 2.2: GOST block cipher

for i ∈ {1, · · · , 32}, j ∈ {1, · · · , 8}. The same procedure is repeated for the 32 rounds.
The partial keys Ki are used in the order

K1, · · · , K8, K1, · · · , K8, K1, · · · , K8, K1, · · · , K8, K8, · · · , K1

for each rounds. Both L32 and R32 are concatenated to form the final output which is the
32-bit ciphertext.

In the next subsection we discuss the other structure with which block ciphers are
designed with, this is the Substitution Permutation Network (SPN).

2.2.2. Substitution Permutation Network (SPN)
The plaintext is divided into parts called bricks after key mixing – key mixing is simply the
plaintext being XORed with the subkey – each bricks is passed into a substitution box
(S-box) achieving confusion. The bricks are put together again and the corresponding
block is passed into a permutation later achieving diffusion. This procedure is carried
out repeatedly for a number of rounds with the subkey being changed for each round.
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2.2. DESIGN PRINCIPLES AND CLASSIFICATION OF BLOCK CIPHERS

The most studied application of SPN is the Rijndael block cipher that won the AES
competition annouced by NIST. This block cipher algorithm was developed by Vincent
Rijmen and Joan Daemen[13]. We discuss briefly on a typical structure of substitution
boxes and permutation layer and give the design principle of AES.

• substitution boxes (S-boxes): This is the layer that is responsible for confusion.
It can be considered as a function from a vector space Fm

2 to Fn
2 i.e S : Fm

2 → Fn
2 ,

where n and m can be the same or different but mostly not greater than a byte ( 8
bits ). This function is constructed to be invertible for being able to decrypt. S-boxes
are have some algebraic properties like bijection, non-linearity, completeness and
high algebraic degree but just for mentioning some of them. They are constructed
using different methods

• Permutation boxes (P-boxes) : This linear transformation is applied on the out-
put of the S-boxes. The main purpose of the permutation boxes is that diffusion be
achieved. Diffusion hides any forms of statistical relationship between the cipher-
text and plaintext. According to Shannon [20] diffusion refers to dissipating the
statistical structure of plaintext over the bulk of ciphertext, so that bit redundancy
apparent in the plaintext won’t be apparent in the ciphertext.

Figure 2.3: A typical four rounds of an SPN
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2. BLOCK CIPHERS

Advanced Encryption Standard(AES)

We give a brief explanation of the working principle of the AES. In the year 2000, the
winner of AES was announced to be the algorithm submitted by Daemen and Rijmen, this
algorithm was called Rijndael [13]. The AES uses repeated numbers of rounds to obtain
security, this approach is similar to the one used in DES, however the design of AES is
not the same as that of DES. Each round in AES consists of substitution, permutation
and key mixing, this is traditionally done with XOR. The encryption and decryption
operation of AES are distinct, also worthy of note is that the mathematical structure
behind the design of AES is based on arithmetic in the field F28 (i.e GF (28)). The
arithmetic carried out on GF (28) is performed using polynomial arithmetic modulo the
irreducible polynomial X8+X4+X3+X+1. This polynomial was the choice of Rijndael.

AES is highly desirable not just because of a better security it offers but also because it
works not only with longer plaintext, it has different sizes namely, 128 bits, 192 bits and
256 bits. We will however consider only the 128 bits in the explanation of the working
principle we will give here. The explanation of the working principle was taken from [21].

Rijndael operates on a byte matrix called the state matrix. The state matrix S, is a 4× 4
matrix of bytes

S =


s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

 ,

note that each si,j, i, j = 0, · · · , 3 is 8-bits. The round key is also held in a 4× 4 matrix

Ki =


k0,0 k0,1 k0,2 k0,3
k1,0 k1,1 k1,2 k1,3
k2,0 k2,1 k2,2 k2,3
k3,0 k3,1 k3,2 k3,3

 .

The operation of the Rijndael is divided into four steps. We will give the steps for
encryption and also give a pseudo-code of the encryption function and decryption function.

1. SubBytes : This is the first step, it involve the non-linear layer which is the
S-box. The S-box of Rijndael has a simple structure which assures resistance to
differential cryptanalysis and it also gives an assurance that there is no existence
of any trapdoor. Mathematically, the operation of the S-box is first to take the
multiplicative inverse of each byte of the state matrix si,j, i, j = 0, · · · , 3. However,
since there’s no multiplicative inverse for 0 byte, the convention is to map it to zero.
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This multiplicative inverse we will represent by x = [x7, · · · , x0]. Secondly is to
perform an affine F2 transformation given below;

y0
y1
y2
y3
y4
y5
y6
y7


=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1


·



x0

x1

x2

x3

x4

x5

x6

x7


⊕



1
1
0
0
0
1
1
0


.

The new byte is y. For the decryption process, we take the inverse of the affine
transformation and y is used in place of x.

2. ShiftRows: The main essence of this step is to cause the columns of the state
matrix to interact with each other when the process is repeated. The ShiftRows
performs a cyclic shift both while encrypting and decrypting, the operation of the
ShiftRows during encryption is given below;

s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

 →


s0,0 s0,1 s0,2 s0,3
s1,1 s1,2 s1,3 s1,0
s2,2 s2,3 s2,0 s2,1
s3,3 s3,0 s3,1 s3,2

 .

The operation is in the opposite direction when decrypting.

3. MixColumns : The MixColumns makes sure that each row in the state matrix
interacts with each other over a number of rounds. Both the ShiftRows and the
MixColumns ensure that every byte interact one with another, so that a little change
to the input state will affect the output state greatly.

4. AddRoundKey : The roundkey addition is simply XORing the state matrix with
the round key matrix in a bitwise manner.

We give the pseudo-code for encryption and decryption below.

Rijndael encryption Rijndael decryption
AddRoundKey (S,K0) AddRoundKey (S,K10)
for i = 1 to 9 do InverseShiftRows (S)
SubBytes(S) InverseSubBytes (S)
ShiftRows(S) for i = 9 downto 1 do
MixColumns(S) AddRoundKey(S,Ki)
AddRoundKey(S,Ki) InverseMixColumns(S)
end InverseShiftRows (S)
SubBytes (S) InverseSubBytes (S)
ShiftRows (S) end
AddRoundKey (S,K10) AddRoundKey (S,K0)
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2.2.3. Round Functions
Mathematically, block ciphers can be defined as a family of key-dependent permutation
of the plaintext space V i.e {εk | εk : V → V, k ∈ K} ⊆ Sym(V ), where |V | ≤ |K|. The
encryption function εk is the composition of r round function εkh induced by the subkey
kh. Each subkey is generated by a public procedure ϕ : {1, 2, · · · , r}×K → V , such that
ϕ(h, k) = kh is the h − th round key, given the key k. The round function εk is defined
thus

εkh = γλσkh (2.2)
• γ : V → V is a non-linear permutation, called parallel S boxes which acts in par-

allel on each bricks Vj, i.e (x1, x2, · · · , xn)γ = ((x1, · · · , xm)γ1, . . . , (x1, · · · , xm)γδ),
where V = V1 × · · · × Vδ and Vj = Fm

2 for each j.

• λ ∈ Sym(V ) is a linear map called mixing layer that is permutation layer.

• σkh : V → V is the key mixing function, that is a combination of the plaintext and
the corresponding subkey.

From now on, when there is no risk of getting confused, we will delete the subscript h
and write εk instead of εkh .

2.3. Cryptanalysis
The cryptanalyst sole purpose is to exploit the weaknesses of a cryptosystem in order to
break the security provided by the cryptographic primitive. This is done by mathematical
algorithms, known as attack, directed against cryptosystems which at best could get the
secret key. In order to get this secret key the cryptanalyst studies the cryptosystem,
first to know how it works and at the end for finding a technique to weaken the it. The
cryptanalysis introduced here is directed against block ciphers. Even though the main
goal of the cryptanalyst is to get the secret key of the cryptosystem this is often an
unattainable problem. There is a classification of the attacks based on the information
retrieved, enumerated below in an increasing order of strength according to Alkhzaimi
in[2];

• Distinguishing algorithm: This algorithm simply states the type of design used
in a cryptosystem. For instance, if we have two black boxes which one consists of
a block cipher implementation and the other just randomly chosen permutation on
Fn
2 . A distinguishing algorithm strives to effectively determine one that contains a

block cipher.

• Local deduction: The cryptanalyst here can generate the plaintext from the ci-
phertext and vice versa

• Global deduction: Without any knowledge about the key, the cryptanalyst will be
able to develop an equivalent encryption function and decryption function that yield
the same result as the encryption and decryption function used in the cryptosystem.

• Total break: This is the most desired jewel of any cryptanalyst where the most
desirable information of a cryptosystem – the secret key – is obtained by the crypt-
analyst.
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2.3.1. Attack Models
Attack models are the level of knowledge or accessibility to information that an attacker
is privy to when trying to carry out an attack on a cryptographic primitive. These models
are chosen based on the success probability they poise for a specific cryptanalysis method
and also on the complexity of the attack. In [2] different classes of attack models were as
listed below;

• Ciphertext Only Attack (COA) : This is the most realistic of the classes. It
assumes that the only information an attacker possesses is about the ciphertext and
by analysing the ciphertext the attacker might be able to come up with a partial or
complete information about the plaintext, in example of this class of attack model
is the bruteforce method.

• Chosen Ciphertext Attack (CCA) : This model also makes use of plaintext
knowledge but this is only after decrypting some selected ciphertext. A cryptanalysis
method that makes use of this model is the differential cryptanalysis.

• Chosen Plaintext Attack (CPA) : This model also makes use of plaintext knowl-
edge but this is only after encrypting some selected plaintext. A cryptanalysis
method that makes use of this model is the differential cryptanalysis.

• Related Key Attack : Both the knowledge of the ciphertext and the plaintext
is made available to the attacker in this model. And these ciphertexts are under
different unknown but related keys that possess a chosen (or unknown) relation with
the key to be recovered.

2.3.2. Cryptanalysis Techniques
There exist some techniques for cryptanalysing block cipher, one of the best known method
is differential cryptanalysis introduced by Biham and Shamir[6]. Linear cryptanalysis is
another technique widely studied and it was introduced by Matsui at the EUROCRYPT
’93. Also there is a recent approach called the algebraic cryptanalysis. Below we give an
overview of such attack method;

• Bruteforce : This is also known as exhaustive key search, it is a general technique
for all cryptographic algorithms, here the cryptanalyst tries all possible keys in order
to decrypt the ciphertext. On an average the cryptanalyst will try 2n−1 different
keys before breaking a cipher that has a key size of n bits but on a bad day the
trials can be as many as 2n. The computational complexity of an attack is denoted
by O(2n). For a cipher to be assumed to be secure, the best known attack against
it must have at least the same computational capability as the bruteforce[8].

• Differential cryptanalysis : This technique can also be used against any cryp-
tographic algorithm that is designed with a non-changing round function in an
iterative procedure. Differential cryptanalysis was the first known attack that could
recover, albeit theoretically, the DES key in a time lesser than the exhaustive key
search computational time[6]. It exploits – if there exist any – the high probabil-
ity of certain occurrences of plaintext differences and differences of ciphertext[16].
Let X̄ and X̃ be two distinct plaintexts with the same number of bits such that
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X̄ = [x̄1, · · · , x̄n] and X̃ = [x̃1, · · · , x̃n] and let Ȳ and Ỹ be their respective cipher-
text such that Ȳ = [ȳ1, · · · , ȳn] and Ỹ = [ỹ1, · · · , ỹn], then the plaintext difference
is ∆X = X̄ ⊕ X̃ and the ciphertext difference is ∆Y = Ȳ ⊕ Ỹ where ⊕ is XOR.

• Linear cryptanalysis : It is a known plaintext attack, however with the cryptan-
alyst having no way of selecting the plaintext and corresponding ciphertext. Linear
cryptanalysis exploits any high probability occurrences of linear expressions involv-
ing plaintexts, ciphertexts and subkeys[16]. It was however unsuccessful in rendering
DES unsecured, since it requires 247 known plaintexts before getting the key.

• Algebraic cryptanalysis : This technique is relatively new, it explores the alge-
braic properties of the encryption functions and the cipher is converted to a system
of equations. The properties of the group generated by encryption functions are
analysed for inherent trapdoors see for example[6], also the cipher can be converted
into a system of polynomial equations over Galois field F2, sometimes over other
rings and this polynomial equations can be solved, according to Bard in[5]. In this
thesis we will focus on exploiting the trapdoor from some group properties.

2.4. Summary
Here we discussed a rather general introduction to block ciphers by discussing the design
principles and the classification which it falls under and the usefulness of block ciphers in
cryptography. While also we talked about the cryptanalysis of block ciphers.
We discussed in detail the working principles and the components with the underlining
mathematical methods employed in this design which will come in handy when exploring
their algebraic properties.
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3. Preliminary results and
Type-preserving matrices

In this chapter we discuss some known results that are vital for the imprimitivity of group.
This property is used in the attack that will be discussed in the next chapter. Moreover,
we will give the definition of group generated by the round function of a block cipher and
we present some properties, finally we define the so-called type-preserving matrices [4].
We start this chapter with the definition of vector spaces, group and some specific groups.
Lastly we discussed some results already established in [10] and [3].

Definition 3.1. A Vector space V (also called linear space) over a scalar field K is a
set whose elements are called vectors, on which two operations are defined namely vector
addition (+) and scalar multiplication (·);

• Vector addition: V × V 3 (u, v) −→ u + v ∈ V

• Scalar multiplication: K × V 3 (λ, v) −→ λ · v

λ ∈ K, ∀u, v ∈ V , and the following properties are satisfied;

1. ∀u, v,w ∈ V ,

• u + v = v + u,
• u + (v + w) = (u + v) + w

2. ∀v ∈ V, ∃0 ∈ V such that 0 + v = v + 0 = v,

3. ∀v ∈ V, ∃−v ∈ V such that v + (−v) = (−v) + v = 0,

4. ∀u, v ∈ V and λ, µ ∈ K,

• 1 · v = v
• (λ+ µ) · v = λ · v + µ · v
• λ · (u + v) = λ · u + λ · v.

Vector spaces form a group under the operation of vector addition (+). The plaintext
space V = {0, 1}n, where n ∈ N and key space K = {0, 1}p, where p ∈ N are vector
spaces.

Definition 3.2. A pair (G,∗), where G is a non-empty set and ∗ : G × G −→ G is a
binary operation, is called a group if the following conditions are satisfied;

• Associative property: ∀a, b ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c)

• Identity element: ∀a ∈ G,∃e ∈ G such that, a∗e = e∗a = a (e is called the identity
element.)

• Existence of inverse: every element a ∈ G has exactly one inverse, i.e ∀a ∈ G,∃!b ∈
G such that a ∗ b = b ∗ a = e
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A group G such that |G| < ∞ is called a finite group. A pair (H, ∗), where H ⊂ G, that
satisfies the three conditions listed above, is called subgroup of G. If the operation ∗ is
also commutative i.e a ∗ b = b ∗ a, for any in the underlining set, then the group is called
Abelian group.

Definition 3.3. The set of n × n invertible matrices, together with the operation of
ordinary multiplication is called general linear group of order n, denoted by GLn. GLn

forms a group under this operation since the product of two invertible matrices is again
invertible, an invertible matrix possesses an inverse, with identity matrix as the identity
element of the group.

Definition 3.4. The symmetric group on a set V denoted by Sym(V ) is the set of all the
permutations of V . The pair (Sym(V ), ◦), where ◦ is function composition, is a group.
Finally a group G is called permutation group, if G is a subgroup of Sym(V ) for some
set V .

Definition 3.5. Let V be a set and G be a group, any surjective homomorphism
α : G −→ Sym(V ), is called action of G on V. for each g ∈ G and v ∈ V , the action of g
on v is denoted by vg.

Definition 3.6. Let G be a group acting on V , the orbit of v ∈ V is defined as, vG def
=

{gv | g ∈ G}. Every action of a group on a set decomposes the set into orbits.

Definition 3.7. The stabilizer of v ∈ V , under the action of group G, is the set of all
g ∈ G which give a fix permutation of v i.e. Gv = {g ∈ G | vg = v}.

Definition 3.8. The group G is transitive on the set V, if V is non-empty and there is
exactly one orbit.

Proposition 3.1. For V 6= ∅, an action of G on V is transitive if and only if, given
u, v ∈ V, ∃g ∈ G such that v = ug [12].

Proof:
Suppose the action is transitive, so there is one orbit. Given u ∈ V , its orbit must fill up
V , so v = ug, ∀v ∈ V and some g ∈ G. Conversely, suppose that ∀u, v ∈ V we can write
v = ug for some g ∈ G. Fix u ∈ V . Since every v ∈ V has the form vg for some g ∈ G,
every v is in the orbit of u. Thus V has only one orbit. �

The consequence of Proposition 3.1 above is an equivalent definition of transitivity group
i.e. a group G is said to be transitive on V if for each v, u ∈ V, ∃g ∈ G such that v = ug.

Definition 3.9. Let B = {U |U ⊆ V } be a partition of V (i.e V is a disjoint union of the
sets of B), B is said to be G-invariant if for any B ∈ B and g ∈ G we have Bg ∈ B. A
partition B is called trivial if B = V or B = {v|v ∈ V }.

Definition 3.10. Any non-trivial, G-invariant partition B of V is called block system
for the action of the group G. Every B ∈ B is called imprimitivity block, if G is transitive
on V and there is no block system, then the action of group G is called primitive on V .
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Lemma 3.1. A block of imprimitivity is the orbit vH of a proper subgroup H < G that
properly contains the stabilizer Gv for some v ∈ V .

Lemma 3.2. If T is a transitive subgroup of G, then a block system for G is also a block
system for T

3.1. Round functions and Primitivity
The algebraic attack we are considering in this thesis is based on the imprimitivity of the
permutation group that is generated by the block cipher, this type of attack was described
in [19].

We can define a block cipher as

C = {εk : V −→ V | k ∈ K}, (3.1)

where K is the key space, V is the plaintext space, in particular V is a vector space over
F2 of dimension n, and εk is a permutation of V and C ⊆ Sym(V ). We can define a
permutation group when we consider the group generated by C,

Γ(C) def
= 〈εk | k ∈ K〉 ≤ Sym(V ). (3.2)

From definition we see that Γ(C) strongly depends on the key-schedule function which
makes the study of Γ(C) really difficult, for this reason, the study of key-schedule function
is outside the scope of this thesis. Paterson and Kaliski in ([19],[17] ), showed that it
is interesting to study Γ(C) in order to know weakness of a block cipher. Since Γ(C)
is difficult to study we define another group containing Γ(C) that is Γ∞(C) were the
roundkey varies in k ∈ K and

Γ∞(C) def
= 〈εh,k | k ∈ K〉. (3.3)

Notice that the round key vary for each round h = 1, · · · , r and so Γ∞(C) allows us to
ignore the effect of the key schedule.

In this thesis we are interested on the ciphers called substitution permutation networks,
where each round function is

εh,k = γλσkh , (3.4)

with γ a non-linear permutation, λ a linear permutation and σkh the key mixing function
using the subkey generated by the key schedule function for the hth-round. So, Γ∞(C)
can be expressed in terms of these round function i.e

Γ∞(C) = 〈γλσkh | 1 ≤ h ≤ r, k ∈ K〉, (3.5)

sometimes we will denote Γ∞(C) by Γ∞. The set V , the space of plaintext, possesses two
different group structures, namely the traditional addition modulo 2 (i.e XOR), denoted
by ⊕ and the addition modulo 2n which is denoted by �, which is used in the key
mixing function. XOR makes V a vector space over F2. Now we define the additional
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modulo 2n. Let a = (a0, a1, · · · , an) and b = (b0, b1, · · · , bn) be elements of V , i.e ai, bi ∈
{0, 1} for each i. Let us define �,

a� b = (a0 + a12 + · · ·+ an−12
n−1) + (b0 + b12 + · · ·+ bn−12

n−1)

≡ c0 + c12 + c22
2 + · · ·+ cn−12

n−1) mod 2n

= (c0, c1, · · · , cn−1),

(3.6)

where ci ∈ {0, 1}. It is easily to prove that the pair (V,�) is isomorphic to the group Z2n

of integer modulo 2n. We will denote this group by (Z2n ,�). Below are some elementary
fact we will repeatedly make use of, for more details and proofs of the following results
see [3].

Lemma 3.3. The subgroups of (Z2n ,�) are linearly ordered; they are 〈2q〉, for q ∈ [0, n].

We defined T as the group of �-translations on V ,

T def
= {σk : v −→ v � k | k ∈ V, σk : V −→ V }, (3.7)

notice that and σ0(v) = v, ∀v ∈ V , this means that 0 is the orbit of every element in V ,
so this makes T transitive on V .

Lemma 3.4.
Γ∞ = 〈T , γλ〉. (3.8)

Γ∞ is transitive on V

Proof:
If we set k = 0, then γλσ0 = γλ, and γλ ∈ Γ∞, so (γλ)−1 ∈ Γ∞. Now for all k ∈ V
(γλ)−1γλσk = σk and σk ∈ Γ∞. �

Since the map v −→ σv preserves the structures between (V,�) and T , this fact leads to
the following two well known results which are taken from [10].

Lemma 3.5. The subgroups of T are of the form

{σu : u ∈ U},

where U is a subgroup of (V,�)

Lemma 3.6. If Γ∞, acting on V , has a block system, then this consists of the cosets of
a �− subgroup of V , that is, it is of the form

{W � v : v ∈ V },

where W is a non-trivial, proper subgroup of (V,�).
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Paterson in [19] gave an example of a pseudo DES cipher that is resistant to linear crypt-
analysis and differential cryptanalysis but be easily broken by algebraic attack since the
round functions of this pseudo DES cipher generate an imprimitive group, so it can be
easily broken. This is because imprimitivity of the group can be used as means of con-
structing a hidden trapdoor. The study carried out in [19] aroused cryptanalysts’ intrigue
in studying imprimitivity of the groups generated by round functions.

Now we consider the results and definitions given in[3], we also adopt the same notation
that was used therein. According to lem2q, a subgroup D of Z2n is of the form 〈2q〉,
for q ∈ [0, n[. Therefore we represent each of the elements d of D = 〈2q〉 as an element
of F2

n = Fq
2 × Fn−q

2 of the form 0[0,q−1||d[q,n−1] ∈ Fn−q
2 . We shall use the same compact

notation used in[3]:

1. A white box denotes a subset of Fm
2 of cardinality 1,

2. A blue box (will be called ruled box) denotes a subset of Fm
2 of cardinality

1 < t < 2m,

3. A black box denotes the full set Fm
2 .

We will say that a box has white, ruled or black type.

Definition 3.11. Let D be a subset of

F2
n = V1 × V2 × · · · × Vδ,

where each space Vi are subspaces of V and with dimension m (such that m× δ = n) are
called bricks. We shall say that D has a type if

D = (D ∩ V1)× (D ∩ V2)× · · · × (D ∩ Vδ).

This type will be a sequence of δ white, ruled or black boxes, where the i − th block is
the projection of D on Vi [3].

Remark 3.1. lem2q states that a subgroup D of Z2n has the form 〈2q〉, for q ∈ [0, n[.
Thus subgroup D = 〈2q〉 has one of the following two types.

1. The first is when q 6≡ 0 (mod m), there is a ruled box which is the containing the
q-th bit i.e

q-th · · · q-th q-th q-th · · · q-th

2. The second one is when q ≡ 0 (mod m);
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(a) when q = 0, here the subgroup is the full group Z2n and all are black boxes i.e

q-th · · · q-th q-th q-th · · · q-th

(b) when q = n, here the subgroup is {0} and all are white boxes i.e

q-th · · · q-th q-th q-th · · · q-th

(c) when q 6= 0 and q 6= n, here the subgroup has nw white boxes and nb = δ − nw

black boxes, where nw and nb are integer such that q = nwm and 0 ≤ nw, nb ≤
δi.e

q-th · · · q-th q-th q-th · · · q-th

From Remark 3.1, dittoed [3], we set the bounds for the number of white, black and
ruled boxes which are respectively nw, nb and nr. The type of any subgroup D of Z2n

can be associated with the number of each boxes i.e (nw, nr, nb). Subsequently we, with a
abuse of notation, represent the type of D as (nw, nr, nb). Also from Remark 3.1 we can
find information about the bounds of nw, nb and nr. We see that nr can appear at most
once from the first condition in Remark 3.1. nb, nw can appear at most δ times which we
can see from the 2(a) and 2(b) of 3.1 respectively, thus we have the bounds;

nw + nb + nr = δ

0 ≤ nw ≤ δ

0 ≤ nb ≤ δ

0 ≤ nr ≤ 1

(3.9)

The behaviour of the sum � with respect to the type is considered in the next lemma,
this also is a result from [3].
Lemma 3.7. If D is a subgroup of Z2n and v ∈ Z2n then D and v � D have the same
type.

Proof: Any element d of D = 〈2q〉 has a binary representation of the form;

d = 0[0,q−1] || d[q,n−1],

we can also divide v into two halves i.e v = v[0,q−1] || v[q,n−1], then ∀d ∈ D

v � d = (v[0,q−1] || v[q,n−1])� (0[0,q−1] || d[q,n−1])

= v[0,q−1] � 0[0,q−1] || v[q,n−1] � d[q,n−1]

= v[0,q−1] || v[q,n−1] � d[q,n−1]

0[0,q−1] is a zero vector of length q and d[q,n−1] ranges in Fn−q
2 , so does v[q,n−1] � d[q,n−1].

Since d is arbitrary in D then D and v �D are of the same type.
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3.2. Type-preserving Matrices
The round function was earlier defined as εh,k = λγσk where λ is the mixing layer, γ is the
permutation layer and σk is the subkey addition. We had earlier mentioned in Subsection
Round Functions the main goal of the components of the round function and we said that
the main goal of λ is the diffusion. In this section we will study the diffusion properties
of an invertible mixing layer λ, the linear layer λ mixes the subspaces Vi, ∀i = 1, · · · δ of
V, which are also called bricks. Let us consider Λ the matrix of size n corresponding to
λ, where n is the dimension of V . The dimension of the subspaces Vi, ∀i = 1, · · · δ is m
such that n = mδ. The matrix Λ is given by;

Λ =


Λ1,1 Λ1,2 · · · Λ1,δ

Λ2,1 Λ2,1 · · · Λ2,δ
... ... . . . ...

Λδ,1 Λδ,2 · · · Λδ,δ

 .

Notice that Λ is a block matrix of dimension δ × δ, and each submatrix Λi,j, 1 ≤ i, j ≤ δ
of Λ is of dimension m×m. If for any i 6= j, Λi,j = 0 then λγ is a parallel map. For each
submatrix, we shall use the notation;

Λ(i1,j1):(i2,j2)
def
=

Λi1,j1 · · · Λi1,j2
... . . . ...

Λi2,j1 · · · Λi2,j2

 .

However, we are interested in the image of D ⊆ Fn
2 by the mixing layer λ, so we will work

with the set Im|Dλ = {vΛ | v ∈ D}. We can also define the image of D by only a portion
Λ(i1,j1):(i2,j2) of the mixing layer, that is Im|DΛ(i1,j1):(i2,j2) = {vΛ(i1,j1):(i2,j2) | v ∈ D}.

The set Im|DΛ(i1,j1):(i2,j2) is the set obtained by projecting D on the coordinates corre-
sponding to the boxes j1, · · · , j2. By type-preserving we mean to study the properties of
the matrix Λ that makes

type(Im|Dλ) = type(D). (3.10)

We will give a formal definition of type-preserving [4] matrix below;

Definition 3.12. A matrix Λ ∈ GL(Fn
2 ), which is the corresponding mixing layer γ,

satisfying equation (3.10) for any D ⊆ Fn
2 , is called type-preserving. If Λ is not type-

preserving, then we say that it is non-type-preserving.

We are interested D ⊆ Fn
2 which are subgroups of Z2n , with type (nw, nr, nb) satisfying

the bound condition in equation (3.9). From now on we will consider the subsets D of
Fn
2 that are all of this kinds. Any vector v ∈ D can be represented by v = (vw|vr|vb)

which is a concatenation of some vectors vw, vr and vb whose length depend on the type
(nw, nr, nb) of D. In particular vw ∈ Fmnw

2 , vr ∈ Fmnr
2 and vb ∈ Fmnb

2 , from the structure
of D in remark 3.1 have the properties below:
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|{vw : ∃v = (vw|vb|vr) ∈ D}| = 1

2 ≤ |{vr : ∃v = (vw|vb|vr) ∈ D}| ≤ 2mnr − 1

|{vb : ∃v = (vw|vb|vr) ∈ D}| = 2mnb .

(3.11)

Now we state and prove some lemmas. These lemmas will lead to the main result of
this section, which presents the properties that the matrix Λ need to have to be type-
preserving.

Lemma 3.8. Let type(D) = type(Im|Dλ) = (nw, 0, δ−nw), where 1 ≤ nw ≤ δ− 1. Then

Λ(nw+1,1):(δ,nw) = 0. (3.12)

Proof:
We proceed by contradiction, that is, suppose that type(D) = (nw, 0, δ−nw) and Λ(nw+1,1):(δ,nw) 6=
0. Now since v depends on the type of D, we consider two vectors v, v′ ∈ D such that
v = (vw|vb) and v = (v′w|v′b) since nr = 0. Suppose that v ∈ Ker(Λ(nw+1,1):(δ,nw)) i.e
vΛ(nw+1,1):(δ,nw) = 0 and v′ 6∈ Ker(Λ(nw+1,1):(δ,nw)) then due to the properties of D in 3.11,
we have that vw = v′w. So, if we apply λ on v and v′ we have

vΛ = (vwΛ(1,1):(nw,nw)|0),

and
v′Λ = (v′wΛ(1,1):(nw,nw)|v′bΛ(nw+1,1):(δ,nw)),

this means that
v′Λ = vΛ⊕ (0|v′bΛ(nw+1,1):(δ,nw)),

here 0 denotes string of nb zeros. Since vΛ 6= v′Λ, therefore type(D) 6= type(Im|Dλ) which
is a contradiction.

Next we check that the converse of the previous lemma holds i.e the property 3.12 implies
that D and its image have the same type.

Lemma 3.9. Let 1 ≤ nw ≤ δ−1 and Λ(nw+1,1):(δ,nw) = 0. Then type(D) = type(Im|Dλ) =
(nw, 0, δ − nw)

Proof:
We construct D with the type (nw, 0, δ − nw), then any vector v ∈ D can be written as
(vw|vb) where vw is fixed and vb ∈ Fδ−nw

2 . Since Λ(nw+1,1):(δ,nw) = 0 then for any v, v′ ∈ D,
vΛ = (vwΛ(1,1):(nw,nw)|0) and v′Λ = (vwΛ(1,1):(nw,nw)|0) where 0 is a string of nb zeros. We
can say that the first mnw bits of any v ∈ D are the same, in particular the first nw

boxes of Im|Dλ are white. Since λ invertible, and so Λ have a full rank, which is true
if we assume that Λ(nw+1,nw+1):(δ,δ) is invertible. Since {vb : ∃v = (vw|vb) ∈ D} = Fδ−nw

2 ,
then {vbΛ(nw+1,nw1):(δ,δ) : ∃v = (vw|vb) ∈ D} = Fw

2 }, from here we can conclude that
type(Im|Dλ) = (nw, δ − nw, 0).

We have proved that Λ(nw+1,1):(δ,nw) = 0 is a necessary and sufficient property on Λ to
have a mixing layer which preserves the type (nw, δ − nw, 0).
The special cases, when type(D) = (0, δ, 0) and type(D) = (δ, 0, 0), are trivial since all
full rank matrices preserve these types.
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Lemma 3.10. Let both D and Im|Dλ be of the type (nw, 1, δ−nw−1), where 1 ≤ nw ≤ δ−2.
Then Λ satisfies the following properties:

(a) Λ(nw+2,1):(δ,nw) = 0,

(b) Λ(nw+1,1):(nw+1,nw) is not of a full-rank matrix,

(c) 2 ≤ |Im|D(Λ(nw+1,nw+1):(δ,nw+1))| < 2m(δ−nw−1),

(d) |Im|D(Λ(nw+1,nw+2):(δ,δ)| = 2m(δ−nw−1).
Proof:
Employing the same notation for v, v′ ∈ D, i.e v = (vw|vb|vr). Recall that |{vw : ∃v =
(vw|vb|vr) ∈ D}| = 1 mean that vw is the same for each v ∈ D. We prove this lemma in
a sequential manner, where in each we deny each of the properties (a)-(d).

(a) In this case we can consider v = (vw|vr|vb) and v′ = (vw|vr|v′b) in D.
We assume Λ(nw+2,1):(δ,nw) 6= 0, such that vb ∈ Ker(Λ(nw+2,1):(δ,nw)) and v′b 6∈ Ker(Λ(nw+2,1):(δ,nw)),
then this means that vΛ has different first mnw bits with respect to v′Λ, which con-
tradicts the fact that |{vw : ∃v = (vw|vb|vr) ∈ D}| = 1, thus the first nw boxes in
Im|Dλ are in fact not white, and so violating the hypothesis of the lemma.

(b) In this case we can consider v = (vw|vr|vb) and v′ = (vw|v′r|vb) in D.
We assume that Λ(nw+1,1):(nw+1,nw) is a full-rank matrix. If vr ∈ Ker(Λ(nw+1,1):(nw+1,nw))
and vr 6∈ Ker(Λ(nw+1,1):(nw+1,nw)), then vΛ and v′Λ have different m(nw + 1) bits.
Which means the type of Im|Dλ is not (nw, 1, δ − nw − 1). This is a contradiction.

(c) Considering v = (vw|vr|vb) in D.
We assume that |Im|D(Λ(nw+1,nw+1):(δ,nw+1))| = 1, then if we apply v on λ we obtain
the (nw + 1)th term entry of the output to be a white box and not a ruled box,
similarly if |Im|D(Λ(nw+1,nw+1):(δ,nw+1))| = 2m(δ−nw−1) we obtain the (nw+1)th entry
of the output to be a black box and not a ruled box. This contradicts the hypothesis
of the lemma.

(d) Considering v = (vw|vr|vb) in D.
We assume that |Im|D(Λ(nw+1,nw+1):(δ,nw+1))| < 2m(δ−nw−1), then upon applying v on
λ, we obtain the last δ−nw−1 entries of the output vector to be a ruled box which
contradicts the hypothesis of the lemma.

We want to see if the properties enumerated in the above lemma are not just necessary
but also sufficient properties for type-preserving.

Lemma 3.11. Let Λ be a matrix satisfying the four properties in 3.10 then λ preserve
the type (nw, 1, δ − nw − 1), 1 ≤ nw ≤ δ − 2.
Proof:
If we consider D of type (nw, 1, δ−nw−1), and its ruled box is the kernel of Λ(nw+1,1):(nw+1,nw),
then Im|Dλ is also of the type (nw, 1, δ − nw − 1).

We can infer from Lemma 3.11 that the properties in Lemma 3.10 is a necessary and
sufficient condition for λ to be type-preserving. Now we prove the special cases when
nw = 0 and nw = δ − 1.
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Lemma 3.12. Let type(D) = type(Im|Dλ) = (δ − 1, 1, 0), then Λ satisfies;

(a) Λ(δ,1):(δ,δ−1) is not a full-rank matrix,

(b) Λ(δ,δ) 6= 0.

Conversely, if Λ satisfies the two properties above, then there exists D whose type is
preserved by Λ.

Lemma 3.13. Let type(D) = type(Im|Dλ) = (0, 1, δ − 1), then Λ satisfies;

(c) 2 ≤ |Im|D(Λ(1,1):(δ,1))| < 2m(δ−1),

(d) |Im|D(Λ(1,2):(δ,δ)| = 2m(δ−1).

Conversely, if Λ satisfies the two properties above, then there exists D whose type is
preserved by Λ.

Now the consequence of these lemmas will be the next theorem which gives necessary and
sufficient properties that the matrix Λ must possess to make it a type-preserving matrix.

Theorem 3.1. The mixing layer λ is type-preserving with respect to the subsets of Fn
2

with type (nw, nr, nb) satisfying equation (3.9) if and only if, there exists an integer nw ∈
{0, · · · , δ} for which either equation (3.13)

Λ(nw+1,1):(δ,nw) = 0 (3.13)

or the following properties hold

(a) Λ(nw+2,1):(δ,nw) = 0,

(b) Λ(nw+1,1):(nw+1,nw) is not a full-rank matrix,

(c) 2 ≤ |Im|D(Λ(nw+1,nw+1):(δ,nw+1))| < 2m(δ−nw−1),

(d) |Im|D(Λ(nw+1,nw+2):(δ,δ))| = 2m(δ−nw−1).

Proof:
The bounds of the nw, nb and nr were given in equation (3.11), using this we have four
cases to consider, namely;

1. type(D) = (0, 0, δ),

2. type(D) = (δ, 0, 0),

3. type(D) = (nw, 0, δ − nw),

4. type(D) = (nw, 1, δ − nw − 1).
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The proof of cases 3 and 4 is the consequence of the lemmas 3.8 to lemma 3.13, cases 1
and 2 are trivial cases, since all full-rank matrices (since λ is an invertible linear map)
preserve type(D) = (0, 0, δ) and type(D) = (δ, 0, 0), i.e type(D) = type(Im|Dλ) = (0, 0, δ)
and type(D) = type(Im|Dλ) = (δ, 0, 0) respectively.

We will proceed to give real-life examples of ciphers that have non-type-preserving mixing
layer because it does satisfy Theorem 3.1, but before proceeding to this we will give some
definitions and corollaries that are consequences of Theorem 3.1.

Corollary 3.1. If Λ(nw+2,1):(δ,nw) 6= 0, for any nw ∈ {1, · · · , δ − 2}, then Λ is non-type-
preserving.
Proof:
Λ(nw+2,1):(δ,nw) is a submatrix of Λ(nw+1,1):(δ,nw). Therefore if Λ(nw+2,1):(δ,nw) 6= 0 then
Λ(nw+1,1):(δ,nw) 6= 0 also, which violates equation (3.13) of Theorem 3.1. Thus from The-
orem 3.1, if equation (3.13) and property (a) are not satisfied, Λ is non-type-preserving.

Definition 3.13. A matrix over a finite field which has all its minors to be non-zero is
called Maximum Distance Separable (MDS).
Lemma 3.14. A mixing layer λ such that Λ is Maximum Distance Separable matrix is
non-type-preserving.
Proof:
Since Λ is MDS, then Λ(nw+1,1):(δ,nw) 6= 0 for nw ∈ {1, · · · , δ− 2}, then from Corollary 3.1
we have that Λ is non-type-preserving.

3.2.1. Examples of Non-type-preserving mixing layer
The aim of this subsection is to show that the mixing layer of some known block ciphers
are non-type-preserving with respect to the subsets of Fn

2 whose type satisfies the bounds
condition in equation (3.9). We considered the mixing layer of AES-like cipher[13], GOST-
like cipher[3] and PRESENT cipher[7]
Example 3.1. Mixing layer of an AES-like[13] cipher is the product of the ShiftRows and
the MixColumns which are matrices in GLδ(F2m), where δ = 2t, for some integer t. The
ShiftRows is a circulant block matrix with entries Ij for j ∈ {1, · · · , 2(t/2)} where,

Ij =

{
1 ∈ F2m , position (j, j)

0 ∈ F2m , otherwise
.

We represent the ShiftRows by its first column since it is a circulant matrix,

ShiftRows =



I1
I2t/2

...
Ij
...
I2


. (3.14)
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The second component of the mixing layer is the MixColumns. It is a block matrix whose
submatrices are MDS matrix in GL2(t/2)(Fm

2 ) denoted by M ,

MixColumns =

M · · · 0
... . . . ...
0 · · · M

 , (3.15)

where M is a 4× 4 matrix in GL4(F8
2), and its entries are in hexadecimal

M =


2 1 1 3
3 2 1 1
1 3 2 1
1 1 3 2

 . (3.16)

We can now define the matrix ΛAES corresponding to the mixing layer. This is a particular
case where δ = 16,m = 8

ΛAES = ShiftRows ·MixColumns =


M · I1 M · I2 M · I3 M · I4
M · I4 M · I1 M · I2 M · I3
M · I3 M · I4 M · I1 M · I2
M · I2 M · I3 M · I4 M · I1

 (3.17)

Proposition 3.2. ΛAES is non-type-preserving.

Proof:
We only need show that ΛAES is MDS, which is true since M is an MDS i.e Λδ,1 6= 0.
Therefore, from Lemma 3.14, ΛAES is non-type-preserving.

More generally, any AES-like [13] is non-type-preserving. Another example is GPig2 [18].

Example 3.2. Considering any GOST-like cipher [3] we will show that this also is non-
type-preserving. In the case of the GOST the needed parameters are the number of bits
n, the bricks and its dimension δ and m respectively and lastly the right rotation which is
by eleven bits therefore we have n = 32,m = 4, δ = 8 and s = 11. We will represent the
right rotation by 11 bits by π11 and it is given by

π11 =

(
1 2 · · · 32
12 13 · · · 11

)
The corresponding mixing layer is

ΛGOST =

[
0 121

111 0

]
,

where 0 is an i× j matrix and 1i is a i× i matrix, for any i, j ∈ N.

Proposition 3.3. Let Λ be a binary circulant permutation matrix associated to the rota-
tion of s bits. Then Λ is non-type-preserving if and only if m ≤ s ≤ m(δ − 1), where s is
the right rotation.
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Proof:
We will denote the mixing layer by Λs to show the slight dependence of Λ on s the bits
of right rotation. We

Λs =

[
0 1mδ−s

1s 0

]
,

where 1s is a s× s identity matrix and 1mδ−s a (mδ− s)× (mδ− s) identity matrix. We
will consider for the case where s = m, s > m and lastly when s is not in the interval
[m,m(δ − 1)].

If s = m, then for each nw ∈ {1, · · · , δ − 2}, we have that Λ(δ,1) 6= 0, this implies that
Λ(nw+2,1):(δ,nw) 6= 0 therefore from the result in Corollary 3.1 we have that Λs is non-type-
preserving. For nw = δ − 1 we only need to show that Λs does not satisfy the properties
in Lemma 3.13. This is true since Λ(1,2) 6= 0. The type here is worthy of note and it is of
the type (0, 1, δ − 1).

Now, if s > m, we used similar arguments as before i.e Λ(δ,1) 6= 0, for nw ∈ {1, · · · , δ− 2},
which means Λs is non-type-preserving from Corollary 3.1. For nw = δ − 1, the prop-
erties in Lemma 3.13 are not satisfied since Λ(nw+1,nw) 6= 0. Thus we proved that
for m ≤ s ≤ m(δ − 1), Λs is non-type-preserving. However, for s outside the range
[m,m(δ − 1)], Λs is type-preserving, since if s = 0 or s = mδ, Λs is an identity matrix
that preserves the type.

The consequence of Proposition 3.3 is the following corollary.
Corollary 3.2. The mixing layer of a GOST-like cipher is non-type-preserving.
Lastly we will consider the block cipher PRESENT[7], however with a slight modification
to its mixing layer. This modification is for convenience.
Example 3.3. The parameters of PRESENT are n = 64, m = 4, δ = 16 and s = 16.
The bit permutation used is

π16(i) =

{
(16(i− 1) mod 63) + 1 if 1 ≤ i ≤ 63

64 if i = 64.

The mixing layer associated to π16(i) is ΛP which is

ΛGOST =

[
0 148

116 0

]
,

where 0 is an i × j matrix and 1i is a i × i matrix, for any i, j ∈ N. Now we will show
that ΛP is non-type-preserving.
Lemma 3.15. The mixing layer of PRESENT is non-type-preserving.
Proof:
We will prove this by employing corollary 3.1, i.e we will only show that (ΛP )(nw+2,1):(δ,nw) 6=
0 for any nw ∈ {1, · · · , δ − 2}, here δ = 16. This is straightforward since the bit value
1 at positions (13, 4), (45, 12) and (61, 16) are contained in the submatrices (ΛP )(3,1):(16,1)
and (ΛP )(4,1):(16,2), (ΛP )(nw+2,1):(16,nw) for any nw ∈ {3, · · · , 10} and (ΛP )(nw+2,1):(16,nw) for
any nw ∈ {11, · · · , 14} respectively. This in turn means that (ΛP )(nw+2,1):(δ,nw) 6= 0 for
any nw ∈ {1, · · · , 14}.
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4. Applications
Block ciphers are designed according to either the Fiestel Network (FN) or the Substi-
tution Permutation Network (SPN), in this chapter we will discuss chiefly the effect of
a non-type-preserving mixing layer on the imprimitivity of the group generated by the
round functions of a block cipher. We will proceed by considering a generalized block
cipher that is designed according to SPN and then FN. We considered SPN with addition
modulo 2n key mixing which we will denote henceforth as SPNmod and as for FN we
considered GOST-like cipher.

4.1. Primitivity of an SPNmod Cipher
The goal of this section is to prove the primitivity of a generalized SPNmod cipher un-
der the assumption that the mixing layer is non-type-preserving and the S-Boxes are
invertible. We define the bricks of the message from the plaintext space below;

V = V1 × V2 × · · · × Vδ, (4.1)

where the dimension of each brick is m, i.e dim(Vi) = m,∀i ∈ {1, · · · , δ}

Theorem 4.1. Let C be an SPNmod cipher acting on the plaintext space V, in which the
round function is of the form defined in equation (2.2),

εkh = γλσkh ,

for the each round key k ∈ K, the key space, where γ, λ, σkh still have the same meaning,
but for convenience we state again their meaning;

• γ : V → V is a non-linear permutation, called parallel S boxes which acts in parallel
on each bricks Vj, i.e

(x1, x2, · · · , xn)γ = ((x1, · · · , xm)γ1, . . . , (x1, · · · , xm)γδ),

where γi ∈ Sym(Vi) and 0γi 6= 0.

• λ ∈ Sym(V ) is a linear map called mixing layer and it is non-type-preserving.

• σk : V → V is the �− translation of V by k, i,e ∀v ∈ V vσk = v � k.

Then Γ∞ = Γ∞(C) is primitive.

Proof:
We start this prove by giving the definition of a primitive group. The group Γ∞ = 〈T , γλ〉
see equation (3.7), is primitive if;

• its action on V is transitive

• There’s no block system.
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Lemma 3.4 proves that Γ∞ = 〈T , γλ〉 is transitive on V , for convenience we denote γλ
by κ. Thus we need only to show that there is no block system. In order to prove this
we employ Lemma 3.6, i.e we need to show that there is no non-trivial subgroup D that
satisfies Lemma 3.6, which means

Dκ = v �D

only if D is a trivial proper subgroup of (V,�). Let 0 be the string of n zeros, then 0 ∈ D
and v � 0 = v this means that

v = 0κ.

So we need only to prove that for each non-trivial proper subgroup D of V we have
Dκ 6= 0κ�D. The S-Boxes are parallel and invertible, thus they map any set with a type
to another set with the same type, this means that Dγ and D has the same type. Also
v�D has the same type as D from Lemma 3.7. This means that v�D and Dγ have the
same type. But λ is a non-type-preserving mixing layer therefore Dγλ doesn’t have the
same type as Dγ, which implies that

Dκ 6= v �D,

for every non-trivial proper subgroup D of V . This means that Γ∞ is primitive.

Remark 4.1. The cipher Gpig2[18] has all the properties of the Theorem 4.1 and it is
SPNmod, so the group generated by its round functions is primitive.

4.2. Primitivity of GOST-like ciphers
GOST-like ciphers are designed according to Fiestel Networks, thus the message is parti-
tioned into 2 halves, using this information we represent the plaintext space by Cartesian
product of these halves i.e V = V 1 × V 2, where V i, i = 1, 2, is Fn

2 . The mixing layer
is any non-type-preserving matrix instead of a rotation. We then prove that under the
assumptions given below, the group generated by this round functions is primitive.

We consider some assumptions on a GOST-like cipher.

• The plaintext space V = V 1 × V 2, and V i, i = 1, 2 are further splitted into bricks,
i.e

V i = V i
1 × V i

2 × · · · × V i
δ ,

where m > 1 is the dimension of each brick and δ > 1 is the number of the bricks.

• The parallel S-Box which is a non-linear invertible map γ ∈ Sym(V i) that acts in
parallel on each brick V i

j and 0γj = 0, where γj ∈ Sym(V i
j ).

• The mixing layer λ ∈ Sym(V i) that is non-type preserving.

• Key mixing σ : Fn
2 → Fn

2 , which is a �-translation.

• κ = γλ ∈ Sym(V i).
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Moreover, we consider the key mixing σ using the subkeys (k1, k2) ∈ K×K on (x1, x2) ∈
V 1 × V 2, i.e

(x1, x2)σ(k1,k2) = (x1 � k1, x2 � k2)

To introduce the Fiestel Network (FN) structure, we employ a formal matrix P of dimen-
sion 2n× 2n.

P =

[
0 1
1 κ

]
,

where each of the entries in P are n× n matrix. For any (x1, x2) ∈ V 1 × V 2, we have the
right action of P on (x1, x2)

(x1, x2)P = (x1, x2)

[
0 1
1 κ

]
= (x2, x1 ⊕ x2κ).

(4.2)

We can now define the group generated by the round function of any GOST-like cipher

Γ∞ = 〈σkPσh : k, h ∈ H = K ×K〉

Theorem 4.2. Let C be a generalized GOST-like cipher as defined above. If the parallel
S-Box γ is in Sym(V i), then Γ∞(C) is primitive.

Proof:
Lemma 4.7 in Section 4 of [3] proves this using Goursat’s Lemma[15], the case when
Dκ = 0κ � D. We then consider this case Dκ = 0κ � D with D a non-trivial proper
subgroup of Z2n , in the same way we approached it in the proof of Theorem 4.1, and we
apply Theorem 3.1, then we conclude that Γ∞(C) is primitive.
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5. Conclusion
This thesis focused on imprimitivity attacks [?paterson1999imprimitive?] on block ciphers,
since block cipher are known for their strength in resisting other known attacks namely,
linear, differential and algebraic cryptanalysis attacks. Our main result is on the mixing
layer, we considered the binary matrix associated with the mixing layer. On this binary
matrix we presented the conditions necessary and sufficient for it to be type-preserving
and we said that if this type-preserving property is lacking then the binary matrix is
called is said to be non-type-preserving.

We then showed in theorems 4.1 and 4.2 that if the binary matrix corresponding to the
mixing layer is non-type-preserving then the resistance to imprimitivity attacks is guar-
anteed. It is worthy of mention that the block cipher we considered is the one whose key
mixing is by addition modulo 2n, where n is the dimension of the plaintext.

A possible future research direction will be to consider a GOST-like cipher with a key-
schedule, a non-type-preserving mixing layer and a parallel S-Box. This will lead to a
more detail analysis of the security of the cipher which will include the study of statistical
attack on this type of GOST-like cipher. This should give a better apprehension of the
inner workings of the cipher which uses key mixing function of addition mod 2n.
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