
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

DESIGN AND IMPLEMENTATION OF A SURVIVAL
COMPUTER GAME
NÁVRH A IMPLEMENTÁCIA SURVIVAL POČÍTAČOVEJ HRY

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ONDREJ KOVÁČ
AUTOR PRÁCE

SUPERVISOR doc. Ing. MARTIN ČADÍK, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023

Institut: Department of Computer Graphics and Multimedia (UPGM)

Student: Kováč Ondrej

Programme: Information Technology

Specialization: Information Technology

Category: Computer Graphics

Academic year: 2022/23

Assignment:

1. Explore the history and state of the art of design of survival computer games.
2. From the existing game engines, choose the one suitable for implementation. Familiarize yourself

with the chosen game engine and describe its features.
3. Design a new survival game based on the findings.
4. Implement the proposed game and experiment with different designs and game mechanics in

successive iterations.
5. Present the resulting game in the form of a poster and a short video.

Literature:
Koster, Raph. Theory of fun for game design. O'Reilly Media, Inc., 2013.
Schell, Jesse. The Art of Game Design: A book of lenses. CRC press, 2008.
Unity Learn. Unity, https://learn.unity.com/.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Čadík Martin, doc. Ing., Ph.D.

Head of Department: Černocký Jan, prof. Dr. Ing.

Beginning of work: 1.11.2022

Submission deadline: 10.5.2023

Approval date: 24.1.2023

Bachelor's Thesis Assignment
146142

Design and Implementation of Survival Computer GameTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
This bachelor’s thesis focuses on the design and implementation of a post-apocalyptic, sur-
vival computer game with RPG elements named "Beneath the Mushroom Clouds". The
thesis contains a short introduction to the game industry and genres describing the game,
general overview of game engines and specific aspects of the Unity game engine. Further-
more, it describes the design and implementation of some of the individual elements that
make up the game. The implementation of these elements is described conceptually, with
minimal examples of actual code.

Abstrakt
Táto bakalárska práca sa zameriava na návrh a implementáciu postapokalyptickej survival
počítačovej hry s RPG prvkami nazvanej "Beneath the Mushroom Clouds". Práca obsahuje
krátky úvod do herného priemyslu a žánrov opisujúcich hru, všeobecný prehľad herných
enginov a špecifické aspekty herného enginu Unity. Ďalej popisuje návrh a implementáciu
niektorých individuálnych prvkov, ktoré tvoria danú hru. Implementácia týchto prvkov je
popísaná konceptuálne s minimálnymi ukážkami kódu.

Keywords
Computer game, Game design, Game implementation, Unity, BTMC, Survival, Post-apocalyptic

Kľúčové slová
Počítačová hra, Návrh hry, Implementácia hry, Unity, BTMC, Survival, Postapokalyptická
hra

Reference
KOVÁČ, Ondrej. Design and Implementation of a Survival Computer Game. Brno, 2023.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology. Su-
pervisor doc. Ing. Martin Čadík, Ph.D.

Design and Implementation of a Survival Com-
puter Game

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the au-
thor under the supervision of Mr. Martin Čadík. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Ondrej Kováč

May 9, 2023

Contents

1 Introduction 3

2 Video Game Genres 4
2.1 Related Game Genres . 4
2.2 Inspiration from other video games . 8

3 Unity Game Engine 10
3.1 Game Engines . 10
3.2 Unity . 10

4 Game Design of BTMC 16
4.1 Genre . 16
4.2 Game Engine Choice . 16
4.3 In-Game World . 17
4.4 RPG Elements . 17
4.5 Survival Elements . 18
4.6 Combat System . 20
4.7 Non-Playable Characters . 21
4.8 User Interface . 21

5 Implementation Basics 23
5.1 Project Setup . 23
5.2 Camera System . 24
5.3 Objects . 25

6 Player Implementation 27
6.1 Player Controls . 27
6.2 Player Status . 28
6.3 Field of View and Fog of War . 32

7 Implementation of NPCs and Ranged Combat 38
7.1 Non-playable Characters . 38
7.2 Ranged Combat . 46

8 User Interface Implementation 54
8.1 Menu . 54
8.2 HUD . 55
8.3 Inventory Screen . 60

1

9 Implementation of Animations and Sounds 70
9.1 Animations . 70
9.2 Sound Design . 73

10 User Testing 75
10.1 Demo Level . 75
10.2 Bug Reports . 76
10.3 User Input . 76
10.4 Performance . 76

11 Conclusion 79

Bibliography 81

2

Chapter 1

Introduction

Gaming industry is one of the biggest and fastest-growing entertainment industries in
the world. It has already surpassed the music and the film industry [20]. In 2021, the
gaming industry’s worth was estimated to be roughly $180 billion [20] [21] [15]. While
the majority of this sum is generated by the largest and well known game development
studios such as Microsoft, Sony or Nintendo [4], majority of games are created by small,
indie developer studios and individuals.

In recent years, we have seen an increase in games focused around one particular genre:
survival. These games feature an open-world environment where the main objective is to
keep your character alive for as long as possible by scavenging for resources. These games
are often designed to be punishing and unforgiving, with all of the player’s progress lost
when the character inevitably dies. While to some this may seem like a terrible way to
entertain themselves, these games are increasingly more popular amongst players. This
may be attributed to the base survival instincts of humans and to the desire for freedom
to create one’s own story [11] [19].

This thesis focuses on the design and implementation of ”Beneath the Mushroom
Clouds“ (BTMC), a hardcore, post-apocalyptic, survival computer game imple-
mented using the Unity game engine and written in the C# language.

Chapter 2 briefly summarizes video game genres relevant to BTMC and mentions other
games that served as inspiration for its creation.

Chapter 3 provides a general overview of game engines and specific aspects of the
Unity game engine used in the implementation of this game.

Chapter 4 contains the initial design of the game, as it was described in its game
design document (GDD), together with notes about changes made during implementa-
tion.

Chapters 5 - 9 consist of conceptual explanations of how individual elements which make
up the game were implemented.

Chapter 10 contains a short description of user testing of the game.
Chapter 11 summarizes the state of the game at the time of writing of this thesis and

the author’s newly gained experience in the design and implementation of video games.

3

Chapter 2

Video Game Genres

In this chapter I will talk about the different genres of video games, specific examples and
games that inspired the creation of BTMC.

These days, video games can hardly be described by a single genre. Most games are a
blend of different genres which should give us an idea of what to expect from the game.
The most prominent genres in the modern video game industry are[13]:

• Sandbox

• Real-time strategy (RTS)

• Shooters (first-person and third-person)

• Multiplayer online battle arena (MOBA)

• Role-playing (RPG, ARPG, and more)

• Simulation and sports

• Puzzlers and party games

• Action-adventure

• Survival and horror

• Platformer

2.1 Related Game Genres
BTMC would be best described as a blend of the following genres: Survival, Post-
apocalyptic, Role-playing game (RPG), Third-person Shooter (TPS). In the fol-
lowing sections I will broadly explain these genres.

2.1.1 Survival

Survival is the primary genre of BTMC and all of the games which served as inspiration
contain some aspects of survival.

4

Character’s needs

The most prominent mechanic in almost all of the video games that fall into the survival
genre are the fundamental needs necessary for survival of the player character. These
three needs will be found in almost any survival game:

• Health - An indication of how ”alive“ your character is. This is in most games
represented by hit-points. If your hit-points drop to zero your character dies. You
will often get injured in survival games and therefore you need to heal your character.
In many newer survival games a more complex health system is being implemented
compared to older games. Instead of simply taking some cure-all pills to increase
your hit-points or bandaging the same arm over and over again, you have to address
a specific wound by using specific medicine. Bandages for bleeds, splints for broken
bones, antibiotics for infection and so on. This creates a much more interesting and
nerve-wrecking experience, where the player might have all sorts of medical items on
hand but not the one they need at that moment.

• Hunger - Everyone needs to eat and the player character is no exception in most
survival games. Hunger can be implemented in many ways. In some games, it is simply
a hunger bar which is filled by eating food and depleted over time. Once the hunger
bar is depleted, the character starts slowly losing health and dies (Don’t Starve). Some
games take a bit more sophisticated approach to hunger. For example, a game might
not consider only the caloric value of food but also what macro-nutrients the food
contains (Project Zomboid). Some games might even require your character to keep
balanced vitamin levels in their bloodstream(SCUM). A low hunger bar might also
result in debuffs, such as no health regeneration, inability to run or reduced damage.

• Thirst - The one resource even more important than food is water. This need is very
commonly implemented in the same way as hunger. Either as a simple thirst bar or
a more complex system with negative effects associated with dehydration.

While these are the main needs found in almost all of survival games, some games
implement other needs as well, such as:

• Sleep

• Body Temperature

• Boredom

• Socialization

• Defecation

Then there are games that have some specific need which is often not found in other games
and serves as an interesting gameplay mechanic or a story device, such as sanity (Don’t
Starve) or malaria that needs to be regularly treated with medication (Far Cry 2).

5

Figure 2.1: Examples of status bars in different games - Don’t Starve (left), The Forest
(center), Unturned (right)

Dangerous scenarios

Most survival games rely on dangerous scenarios to create an engaging experience, especially
if the game doesn’t heavily rely on story. Hostile NPCs are a common element that serve
to create these situations. These NPCs can take many forms, such as zombies, wild animals,
large sea creatures, mutants, or hostile humans.

However, some survival games do not need to rely on NPCs at all. In multiplayer
survival games, often all that needs to be done is to throw players into a survival scenario
and leave them to fend for themselves. Soon enough they will either start turning on each
other or forming groups. In some games this is the core gameplay loop. Find a group,
collect resources, build a base and raid other player’s bases (Rust).

Inventory system

In vast majority of survival games, the player is limited by their inventory capacity. This
forces the player to consider what they will be carrying with them, how many resources
they can gather and so on.

There are many different ways to implement an inventory system and limit the amount
of items the character can carry. These are the most common inventory systems:

• Grid-based system - The character’s inventory is split into individual cells. These
cells form a grid into which the player can place the items they find. While in some
games each item takes up only one cell (Minecraft), other games use this system to
simulate the volume of objects. In these games, larger items span over multiple cells
which means that the organization of inventory is important(DayZ).

• Weight system - Instead of focusing on the size of the carried items, their weight
is what matters (Project Zomboid). These games will often include a specific debuff
- over-encumbrance. When the character is carrying items over their weight limit
they will slow down, won’t be able to run and so on.

• Combination of grid-based and weight system - This is perhaps the most re-
alistic, widely used inventory system. The player has to consider both the size of the
item and its weight (Escape From Tarkov).

• Maximum amount of specific resource - Some games simply give the player
specific inventory containers for each individual resource in the game. For example,
the player can carry 20 sticks, 50 stones and 100 leaves. It does not matter what
resources they have, the player can only carry a specific maximum amount of each
resource.

6

Figure 2.2: Examples of inventory systems - Combination of grid-based and weight system
from Escape From Tarkov (left) and a Weight system from Project Zomboid (right)

2.1.2 Post-Apocalyptic

Post-apocalyptic is not only a genre of video games, but one of the genres of fiction as a
whole. Instead of directly affecting gameplay, such as genres mentioned above, it defines the
setting of the game. Works of post-apocalyptic fiction take place after some catastrophic
event has occurred. The main characteristics are struggles to survive in a dangerous,
devastated world filled with ruins and rubble of buildings. Without basic necessities people
are accustomed to in modern times such as electricity, running water, readily available food
or laws, humans might often turn on each other. This may cause further instability and a
complete collapse of societal structure[14] [8].

Anyone can very quickly recognise this setting as perfect for survival games. Actually
most survival games fall into either the post-apocalyptic genre or a stranded-on-an-island
type scenario. While survival games in which the player gets stranded away from civilization
will put their focus on surviving in nature by gathering wood, stones and hunting wild
animals, post-apocalyptic scenarios often require scavenging in the ruins of the civilization
that once was.

2.1.3 Role-playing game (RPG)

The RPG genre has a long history, predating the popularization of video games. Role-
playing games used to originally be tabletop games. The origin of this genre is a bit
debatable, however the first commercially available game recognized as an RPG was Dun-
geons and Dragons (D&D), which was developed in 1974.

It took just a few years before the first RPG video games were developed. The first
RPG video games were not created commercially for home computers but instead ran on
large mainframes in American universities. All of these games were somewhat influenced
by D&D. A large boom in the RPG video game industry began in the ’80s with games such
as Rogue, Akalabeth: World of Doom, Wizardry or Ultima serving as the foundation for the
RPG video game genre [12] [5] [2].

While almost all of the early RPG titles are set in fantasy worlds with different races
of humanoids or magical creatures RPGs with other themes were created. The main char-
acteristic of an RPG are non-linear storytelling, quests, encounters and developing
characters.

7

2.1.4 Third-person shooter (TPS)

While BTMC is not a shooter per say, a large part of the gameplay loop and enjoyment
comes from encounters with enemies. These encounters will often include firearms or
other ranged weapons. Shooter games are one of the most prominent genres of video
games. Most of these shooters are first-person shooters (FPS). That means that the player
is looking through the eyes of the character. In TPS, players see their character from a
different perspective but still control the character’s aim.

2.2 Inspiration from other video games
BTMC draws a lot of inspiration from other video games. That’s why I believe they should
be briefly mentioned in this thesis together with the mechanics and themes that each game
brought into this project.

2.2.1 Project Zomboid

Project Zomboid is one of the main inspirations for this game. The game was first released in
2013 by an indie development studio The Indie Stone. It’s a post-apocalyptic, open-world,
zombie survival game with very deep internal mechanics.

The features inspired by this game are:

• Post-apocalyptic setting

• Character skills

• Complex healing and debuff system

• Needs such as sleep or body temperature

2.2.2 Darkwood

Darkwood is a survival horror game developed by Acid Wizard Studio. It was first released
in 2014 as an early access with a later full release in 2017.

The features inspired by this game are:

• The overall graphical design

• Field of view/Fog of war system

2.2.3 Neo Scavenger

Neo Scavenger is a turn-based, RPG survival game set in a post-apocalyptic wasteland. It
was developed in 2014 by Blue Bottle Games.

The features inspired by this game are:

• Origin story of the player character

• Visual aspect of the healing system

8

2.2.4 This War Of Mine

This War Of Mine is a survival game set in a war torn country. It was developed by 11 Bit
Studios in 2014.

The features inspired by this game are:

• Dark, morally grey encounters during the game

2.2.5 Escape From Tarkov

Escape From Tarkov is a tactical FPS game developed by Battlestate Games. It was released
in 2017 and remains in beta to this day.

The features inspired by this game are:

• Complexity of ranged weapons

• Combination of grid/weight inventory system

9

Chapter 3

Unity Game Engine

3.1 Game Engines
A game engine is an environment which provides a layer of abstraction for game developers
when developing video games. These environments provide a suite of visual development
tools and reusable software components to shield developers from the complicated tasks
that need to run in the background for the game itself to work. Tasks which these compo-
nents simplify are, for example, reading the player’s Input, rendering Graphics onto the
player’s screen, simulating Physics of objects, providing tools for simplified AI creation,
implementation of Sounds and support for Networking services for online multiplayer
[18].

Back in the early stages of gaming industry, most studios developed their own, propri-
etary game engines, specifically designed for one game[1]. However creating a game engine
is quite a difficult task and depending on how complicated the game engine is and what
libraries and tools are used in the development, it can take anywhere from a couple of days
to a couple of years[9]. This endeavour is, of course, quite costly. That’s why many studios
instead choose to work with commercially developed game engines. The best-known com-
mercially available game engines include Unreal Engine, Unity and CryENGINE[17].

3.2 Unity
While there were many commercially available game engines to choose from, I chose Unity
for two main reasons. The first reason was prior experience with the game engine and the
second reason is that it is widely considered as one of the most beginner-friendly game
engines. In this section I will explain the basic concepts of Unity needed to understand the
rest of the thesis.

10

3.2.1 Unity IDE

While Unity is quite a complex game engine and offers a multitude of tools in its IDE, I will
mention only those which were used in the development and will therefore help to make
explanations in chapters 5-9 more clear.

Figure 3.1: Example of Unity IDE configuration from early stages of implementation of
BTMC

Hierarchy window

In the Hierarchy window, we can see the currently opened Scene and Game Objects in
the Scene. In this hierarchy window, we can create hierarchy trees. This means assigning
child Game Objects to parent Game Objects within the scene.

Figure 3.2: Example of the object hierarchy for the Player Game Object in BTMC

11

The Hierarchy window therefore serves a very important purpose - it is a structured
navigation for finding Game Objects without having to manually find them in the Scene
View and it allows the developer to group multiple Game Objects into one.

Scene View

In the scene view, the scene can be seen from a perspective which makes it easy to edit.
The developer can navigate the scene and interact with the objects ”by hand“.

Game View

This is the view the player will see when playing the game. It renders whatever the Main
Camera sees. In the IDE there is an option to change the editor to Play Mode. In
the Play Mode the IDE allows the developer to play the game as if it were built, without
actually having to build the game and run it. This is of course a huge advantage which saves
a considerable amount of time, due to the fact that building the game can be a lengthy
process.

Inspector

In the Inspector window, an individual Game Object can be edited. Each Game Object
has a set of Components attached to it the inspector makes it very easy to add, edit and
remove individual Components of Game Objects.

Project window

In the Project window, the user has access to all of the assets for the game. These are the
individual files such as scripts, sprites, materials, textures, sounds and so on. It is designed
as a regular file explorer with folders and files, common for many operating systems.

Animation

Animation window lets the user create animations. There are many different ways to ani-
mate various objects in video games from moving, rotating and scaling objects to swapping
sprites and so on. By using animation events the user is able to trigger methods from
scripts at specific points in the animation. The animation window also contains a Curves
section which allows the user to modify the process of changing individual values in the
animation.

Animator

The animator window is used to specify when different animations are meant to be played.
It works as a finite state machine, where individual animations represent the states. The
user can then specify transitions between these states which are triggered either automati-
cally when the previous animation reaches an end or after a trigger or a variable is changed
through code.

12

3.2.2 Game Objects

The main building blocks of each game created in unity are Game Objects. Without them,
no game could be created. For example, Game Objects are all of the ”physical“ objects the
player sees. Things such as buildings, NPCs, cars, ground and so on. But these are not
the only Game Objects. All of the UI elements are also Game Objects - HUD, inventory
screens, main menu and so on. There are even Game Objects that the player does not even
see but are sometimes necessary for background scripts or are used to group other Game
Objects. Lastly, without Game Objects, the player couldn’t really see anything because
even the Main Camera is a Game Object.

Each Game Object has a Name and can be assigned a Tag and a Layer. Tags and
Layers can in some cases be used interchangeably. However there are some key differences.
There is only a limited amount of layers - 32 out of which only 27 can be defined by the
user, while there is a virtually unlimited amount of tags that can be created. Layers can
also be used to specify which objects should be visible to Cameras or hit by Raycasts.

3.2.3 Components

The Importance of Game Objects has been explained in the previous subsection. However
Game Objects are mostly useless without Components. Each Game Object has to have at
least one Component and that is the Transform Component. This component determines
the objects position, rotation and scale.

There are however many other Components a Game Object may have. Here are just a
few examples that I deem the most important.

Renderer

There are many different kinds of Renderers but all of them serve the same main purpose.
This component makes it possible to see the game object. Without some kind of Renderer
Component the Game Object cannot be rendered onto the screen and therefore will be
invisible.

In 2D games it is common to use the Sprite Renderer for most visible Game Objects.
A Sprite Renderer uses a sprite from a file as the visual representation of the object. The
Sprite Renderer offers a few options to adjust the look of the sprite.

Figure 3.3: Example of a Sprite Renderer Component

13

Collider

Just like the Renderer Components there are multiple different types of Colliders (Box,
Capsule, Polygon etc.). These Colliders can often be separated to two main categories -
2D and 3D colliders. It should come as no surprise that for BTMC, only 2D colliders are
used.

Colliders are needed to register collisions with other objects. While the Collider itself
does not handle the physics of collision, it is there to detect the collisions.

Figure 3.4: Example of a Box Collider 2D Component

Rigidbody

There are only two variants of a Rigidbody Component - 2D and 3D Rigidbody. Rigidbody
is a component which gives the Game Object physical properties such as Mass, Gravity
Scale, Angular and Linear Drag and so on. Rigidbody also allows to apply forces onto
the Game Object. When combined with a Collider the object can collide and physically
interact with other Game Objects.

Figure 3.5: Example of Rigidbody 2D Component

14

Camera

The Camera component allows the Game Object to render certain objects from the scene.
The component has a multitude of options to edit what the camera sees, how it sees those
items, where it renders them and so on.

Figure 3.6: Example of Camera Component

Scripts

Besides choosing one of the default components offered by Unity, a manually written
script in C# can be attached to the Game Object. It is common practice for each script
to contain the definition of a specific class. These classes often inherit from the MonoBe-
hvaiour class and redefine its behaviour. The most commonly redefined methods are:

• Start() - Code in this method is executed on the first frame when the script is
activated.

• Awake() - Code in this method is executed when the Game Object to which this
script is attached is activated, regardless of whether the script itself is active.

• Update() - Code in this method is executed each frame, if the script is active.

• FixedUpdate() - Code in this method is executed independent of the frame-rate.
Instead it is called in sync with the physics system, which of course makes this
method ideal for simulating physics correctly.

Besides the inherited methods the developer may of course create their own methods.

3.2.4 Raycasts

Raycasts are part of Unity’s physics system and they work pretty much like a laser beam.
They have a point from which they originate and a direction at which they’re aimed.
Raycasts then take note of each Collider they pass through or stop at the first hit collider.
A Layer Mask may also be assigned to a Raycast which means that the Raycast will only
detect collisions with Colliders that are attached to Game Objects that belong to specific
Layers. I have decided to mention them here as they play a huge role in BTMC. They are
used for a Field of View/Fog of War system, to determine bullet trajectories, detection of
the player by the hostile NPCs and so on.

15

Chapter 4

Game Design of BTMC

The design of BTMC began with a Game Design Document (GDD). GDD broadly
outlines what the game is supposed to be. Since this document is created before the
development of the game even starts, it is usually quite inaccurate and the document goes
through numerous changes and iterations. In this chapter I will be referencing the GDD
for BTMC.

I would also like to mention that this design chapter outlines what the game is supposed
to look like in its final stage. At the time of writing of this thesis the game is far from a
finished product and therefore a lot of the mechanics in this section are not yet implemented.
See chapter 11 for the summary of the final product.

4.1 Genre
The genre of the game was one of the first aspects that needed to be chosen. In the GDD the
game was described as a post-apocalyptic, single-player, hardcore survival game.
This categorization was mostly preserved. The game was however further categorized as
an RPG due to the character’s skills and abilities and a Third-person shooter, since
firearms will likely play a great role in the gameplay for most players.

4.2 Game Engine Choice
Unity was the chosen game engine from the beginning of design. As mentioned before,
Unity is considered to be one of the most beginner-friendly game engines, while pro-
viding plenty of tools to create a game of this scope. Unity was also chosen due to prior
experience.

16

4.3 In-Game World
While ”post-apocalyptic“ is a good description in terms of genre it is quite a broad term.
The specifics were already outlined in the GDD before implementation.

4.3.1 Setting

The game is set in a future in which most of humanity has been wiped out by an atomic
war. Most of the people who survived the initial explosions died in the coming years due
to health complications from exposure to radiation, missing infrastructure, food shortages
caused by a nuclear winter and anarchy that ensued.

4.3.2 Story

The main character (player) was a subject in the research of cryogenics, frozen in a cryo-
genics pod long before the war even started. Stored in an underground research facility,
they were able to survive the blasts and the experiment was a success! The pod automati-
cally defrosts the main protagonist and opens roughly 5 years after the war. Disoriented
and confused, they step out of the pod to a new, harsh world.

4.3.3 World Structure

The map of the game was designed to be composed of 4 areas:

• Forest - Hostile area, patrolled by bandits composed mostly of trees, roads and
occasional houses

• Derevstok - A small, walled-off village in the Forest. A safe area with traders and
quest givers.

• Kumensk - Hostile area, patrolled by the remnants of military. Mostly consisting of
larger buildings and city streets.

• Market - A secure town square in Kumensk with traders and quest givers.

4.4 RPG Elements
While the game was not originally labeled as an RPG, the GDD already considered character
skills as part of the game. The originally designed skills were:

• General - Strength, Fitness, Agility, Awareness

• Offensive - Ranged, Melee, Trapping

• Miscellaneous - Lockpicking, Looting, Medical

17

4.5 Survival Elements

4.5.1 Character Needs

In the GDD the character was designed to have these needs:
• Health

– Lowered by injuries.
– Recovers over time if the player is well fed and hydrated.
– If health drops to zero, the character dies.

• Stamina

– Lowered by melee attacks and sprinting.
– Replenished quickly over time.
– After dropping to zero the character cannot sprint and their attacks are weak-

ened. It has to fully replenish before these debuffs are removed.

• Hunger

– Lowers slowly over time.
– Replenished by eating food.
– If hunger falls below 50% the character does not replenish health.
– If hunger reaches zero, the character becomes malnourished and starts slowly

losing health.

• Thirst

– Lowers slowly over time.
– Replenished by drinking fluids.
– If thirst falls below 50% the character does not replenish health.
– if thirst reaches zero, the character becomes dehydrated and starts slowly losing

health.

• Body Temperature

– Regulated by standing close to a heat source or by removing clothing.
– If the character is too cold, they will enter a state of hypothermia and start

slowly losing health. Their hunger depletion will increase due to increased calorie
requirements.

– If the character is too hot, they will enter a state of hyperthermia and start slowly
losing health. Their thirst depletion will increase due to excessive sweating.

• Tiredness

– Lowers slowly over time.
– Replenished by sleeping.
– Character becomes tired if the value drops below 20%. This applies various

debuffs.
– If the value drops to zero, the character faints and sleeps on the ground for a

short period of time.

18

4.5.2 Health System

The Health System in BTMC was designed with a little bit of complexity. While the health
is the main indicator of the state of the character, it is not just a simple number reduction
on each hit and an addition when using medicine.

The Health Status of the character is composed of 6 body parts. All of the limbs,
torso and the head. Each of these parts has different injuries that have to be treated using
different medical items:

• General injuries (possible to appear on any body part)

– Gunshot - Caused by ranged weapons
– Cut - Caused by sharp melee weapons
– Bruise - Caused by blunt melee weapons

• Limb injuries (arms and legs)

– Fracture - Caused by blunt melee weapons

• Other injuries

– Bleeding - Damages health over time, caused by gunshots and cuts. Can be
either heavy or light.

– Infection - Damages health over time and causes severe pain. Caused by im-
properly treated gunshots and cuts.

– Pain - Applies a broad range of debuffs (lower accuracy, speed, carry weight,
etc.) based on severity of the pain. Caused by all kinds of injuries.

– Radiation Poisoning - Causes pain and damage to health over time. Caused
by movement in irradiated areas. Effect lingers for a short period of time even
after leaving irradiated area.

– Food Poisoning - Causes pain. Caused by eating improper food.

In the GDD these different health items were designed:

• Bandage - stops light bleeds and heals them over time, fast use

• Tourniquet - stops heavy bleeds but does not heal them, fast use

• Needle and thread - stops heavy bleeds and heals them over time, slow use

• Disinfectant - prevents infection, fast use

• Painkillers - combats pain effects, fast use

• Splint - heals fracture over time, slow use

• Antibiotics - combats ongoing infection, fast use

• Blood transfusion - fills health bar, slow use

19

4.5.3 Shelter

A kind of a shelter system was designed in the GDD. Since the character gets tired over
time, they will need to sleep. The quality of sleep will depend on where they sleep (the
ground, a bedroll, a bed, etc.). Since night temperatures in the game will fall well below
the freezing point, the player will have to find suitable shelter with a heat source to sleep.
Sleeping also makes the character vulnerable and various noise traps or lethal traps can
be set up to wake the character up or protect them.

4.6 Combat System
Combat in BTMC was designed to be split into two categories - melee and ranged.

4.6.1 Melee Combat

Melee weapons were designed to have these 4 attributes:

• Weight - Affects attack speed and stamina consumption.

• Damage - Affects how damaging the weapon is.

• Reach - How far can the character swing the weapon.

• Type - Blunt or sharp. Determines types of injuries that can be caused by the
weapon.

4.6.2 Ranged Combat

The ranged combat in BTMC was designed to combine the player’s skill, the character’s
ability to use a ranged weapon and a bit of random chance. The accuracy of ranged
weapons is designed as a cone which represents where the bullet might fly. Since there is no
way to aim up and down in a top-down, 2D game, the body part that was hit when the bullet
connects is determined randomly. It is not just pure randomness though. The abilities of
the character play a role in determining what part of the enemy was hit. Characters with
better ranged abilities have a higher chance of hitting critical body parts.

Each weapon in BTMC uses a different ammunition type. Furthermore some weapons
require magazines to function and these magazines have to be filled before use in the
inventory.

4.6.3 Stealth

In BTMC it is not always wise to charge head on into combat. Sometimes it’s better to
stay low and quiet. Moving in stealth also provides nice bonuses to attacks on unsuspecting
enemies. Melee attacks from stealth cause instant kills and stealth attacks with ranged
weapons are much more accurate and have a higher chance to hit critical body parts.

20

4.7 Non-Playable Characters
NPCs in BTMC were designed to be split into 4 categories:

• Traders

– Static, bound to one place
– Friendly
– Trade items for in-game currency
– Reward player for completing quests

• Civilians

– Some are static and some are mobile
– Friendly
– Some may provide quests for the player

• Bandits

– Mobile
– Form groups
– Hostile
– Usually equipped with melee weapons with occasional low-end ranged weapon

• Soldiers

– Mobile
– Form groups
– Hostile, more dangerous than bandits
– Equipped with military-grade gear

4.8 User Interface

4.8.1 HUD

The HUD in BTMC was designed to show the following information:

• Status Bars for character’s needs

• Injuries

• Buffs/debuffs

• Equipped weapon

• Stance of the character

• Added information from equipped gear such as:

– Time - if the character is wearing a wrist watch
– Radiation readings - if the character has a Geiger Counter equipped

21

4.8.2 Inventory Screen

The Inventory Screen was designed as a menu that contains 4 tabs:

• Inventory

• Health

• Map

• Tasks

4.8.3 Inventory Tab

The inventory tab was designed to be split into 3 parts:

• Equipped

• Inventory

• Ground

The ”Equipped“ part of the Inventory Tab will showcase a character outline with items
that are currently equipped on the character such as clothes, backpacks, weapons and so
on.

The ”Inventory“ part of the Inventory Tab will be split into multiple grids depending
on what kinds of clothes the character has equipped. Some clothing items will apply a
weight reduction to items carried within them. For example, a hiking backpack is much
more comfortable to wear than a cheap satchel, so items carried inside the backpack will
not weigh down the character as much.

The ”Ground“ part of the Inventory Tab will show items on the ground in the vicinity
of the character.

4.8.4 Health Tab

The Health Tab is designed to look very similar to inventory tab. The ”Equipped“ part of
the screen will instead show current injuries of the character and the ”Inventory“ part of
the screen will show only the available medical items. The ”Ground“ part of the screen
works just like it did before.

4.8.5 Map Tab

The Map Tab will show the player the map of the game, provided the character has a map
in their inventory. Otherwise the tab will not show anything.

4.8.6 Tasks Tab

The Task Tab will show the progress of active quests, given to the player by traders and
civilians.

22

Chapter 5

Implementation Basics

Each section in this chapter conceptually describes implementation of an individual con-
cept or a mechanic in BTMC. In some of these sections, there will be mentioned a video
tutorial, on which the implementation is based on. I would like to note that while these
tutorials served as the base for said mechanics and as such are mentioned as sources, they
were changed, adapted and expanded significantly during implementation.

5.1 Project Setup
Before implementing the project I first had to set up my work environment. I installed
the Unity Hub application and created a new project. I have downloaded the newest
Unity Editor release at the time (2021.3.9.f1) and created a new project using the default
2D Template. A new project starts with a Sample Scene and a Main Camera Game
Object.

5.1.1 Game Objects in 2D Space

In Unity Game Engine there is no true 2D workspace. 2D games are created in a 3D space
and only appear to be 2D. In BTMC this is achieved by pointing the camera perpendicular
to the XY-plane (parallel to the Z axis). Therefore the player character and all of the
visible Game Objects in BTMC are 2D sprites aligned parallel to the XY plane. Since
the objects are just 2D sprites, they have no depth (they are infinitely thin in the Z axis).

This means that if two Game Objects should appear below (or above) one another, their
Z axis position has to be set to different values. Another thing that needs to be ensured
is that if two visible objects can appear in the same 2D space (they do not collide), they
must have different Z axis values to avoid a common visual bug called Z-fighting.

23

Figure 5.1: Using a camera to display 3D space as 2D space

5.2 Camera System

5.2.1 Camera Movement

The Main Camera renders objects placed in front of it onto the screen of the player. It
can be considered one of the most important objects in any game created in Unity.

In BTMC the Main Camera is configured to always look at the player character
and keep the player in the center of the screen. There are exceptions to this however.

First of all, the camera does not follow the player perfectly. For a better visual ex-
perience, the camera is set to follow the player smoothly. This is achieved by delaying
the camera movement using the Lerp method. This method linearly interpolates between
two points. To move the camera closer to the player character each frame, the current
position of the camera and the current position of player character are supplied as the
two points. Then, the time difference between the current and previous frame (stored in
Time.deltaTime) is used to gradually move the camera.

The camera also does not keep the player character in the center of the screen when the
player is ”looking around“ using the right mouse button (see 6.3.2). This function lets
the player see farther in a particular direction than what is normally visible to them. In
this case the camera will calculate a point in the world between the position where the
player is aiming and the position of the player character. The camera will then position
itself to look at this point.

24

5.3 Objects
In this section I will refer to objects as being ”below“ or ”above“ each other. However, as
mentioned in subsection 5.1.1, what this truly means is that their Z axis position values are
different.

5.3.1 Visible Game Objects

I have split the visible Game Object in BTMC into two categories. World Objects and
UI Objects. World Objects are objects that represent real-life objects in the game,
such as characters, walls, containers and so on. UI Objects are objects that the player sees,
however they do not truly exist in the game world such as UI and HUD elements.

Visible World Objects:

• Ground - Only one Game Object is assigned to this category and that is the Ground.
The Ground is a large plane that spans the entire playable area and is always below
all other Game Objects.

• Ground Objects - Ground objects such as rugs, trash on the ground and so on
are objects which serve a decorative purpose and can be walked on by the player
character.

• Player - The player is composed of 4 visible Game Objects. The Legs, the Torso,
the Head and the FirearmSprite. This is done due to the way Animation (see 9.1.1)
and Hitboxes (see 7.2.5) are implemented in BTMC.

• Non-playable characters - NPCs are composed in the same way as the Player in
terms of visible Game Objects.

• Full Obstacle - Game Objects that the in-game characters should not be able to
see through, pass through or shoot through, such as walls and tree trunks.

• Half Obstacle - Game Objects that the characters can see through (if currently
standing), shoot through, however cannot pass through, such as half walls, barrels,
sandbags and so on. These are the objects that can be used as cover during ranged
combat (see 7.2.4).

• Low Obstacle - Game Objects that the characters can always see through and
shoot through, however they cannot pass through such as chairs, tables, chain link
fences and so on.

• Interactables - Objects that the player can interact with such as containers, doors
or beds.

• Fog of War - FOW is a large image on a World Canvas which represents areas that
the player does not see (see 6.3).

25

Most of the visible UI objects belong to one layer called ”UI“, which is one of the
default Unity layers.

Visible UI Objects:

• Menu Screen - Main Menu screen, Pause Menu screen and Options screen which
mostly consist of buttons and other interactable UI elements (see 8.1)

• HUD Objects - Status bars, HUD devices, player stance, equipped weapon infor-
mation, rest menu and rest screen (see 8.2).

• Inventory Screen - Screen where the player manages their items, equipment and
health (see 8.3)

UI Objects are always displayed above all World Objects.

5.3.2 Invisible Game Objects

Sometimes Game Objects are needed, which are invisible to the player. These Game
Objects exist simply to hold certain scripts, serve as a grouping object for other
Game Objects or have some other special function. There are many of these invisible
objects in BTMC and will be mentioned and explained later in this chapter, in the sections
which they are relevant to.

26

Chapter 6

Player Implementation

6.1 Player Controls

6.1.1 Reading Input

Input System

At the time of writing of this thesis, there are two most common ways to read the player’s
input in Unity. The older way of getting the input directly from an input device or through
the old Input Manager and a newer way of getting the input indirectly through an Input
Action using an Input System package.

While the new Input System is generally harder for new users to grasp it brings multiple
advantages. I personally chose it for two reasons. Namely it saves computer resources
(provided it’s used correctly) and it offers a relatively easy way to change Action Maps.
There there are multiple ways to read player’s input via the new Input System Package.
I have chosen the often encouraged way of sending messages to scripts when a player
input is detected.

Sending Input Messages

To send input messages, I first had to add a Player Input component to the player Game
Object. I have also created a script named PlayerControls and attached it to the player.
It is important that the Player Input component and the script are attached to the same
Game Object, otherwise the Player Input component will not be able to send the messages
to the script. A considerable advantage of this message system is that the Player Input
component will automatically find and send a message to any script attached to the same
GameObject that contains a method named On[Input Action Name].

Next, I created a new Input Actions File in the game’s Assets folder. All of the
Action Maps and Input Actions will be stored in this file. I have also attached this file to
the Player Input component mentioned earlier. The first Action Map I have created was
the Player Action Map. In this action map are stored all of the controls associated with
controlling the player character.

The second Action Map in the game is the UI Action Map. This action map is used
whenever the player is interacting with the UI of the game, such as the Inventory Screen
or the Pause Menu.

27

Character Movement

Now, for the sake of simplifying the process I will focus only on the character movement.
This was however done for all of the other controls.

In the Player Action Map I have added a new Input Action named Move. Since the
player will move the character using the W S A D control scheme I decided to read
the Move action as a Digital Normalized 2D Vector and I have added a new Up/-
Down/Left/Right Composite to the Move action. To this composite I have assigned
the corresponding buttons. With this setup the Input System will read any combination of
said buttons as a 2D vector (buttons opposite each other cancel out).

Figure 6.1: Unit-circle showing combinations of pressed movement keys and corresponding
normalized vectors.

The next thing I had to do was to create a new method in the Player Controls script
named OnMove. Now every time the player presses any of the movement buttons the OnMove
method is called and the 2D vector is passed to it as an argument. In this case the method
applies a force to the Rigidbody of the player Game Object in accordance with the direction
of the vector.

6.2 Player Status
The status of the player is determined by many variables. These variables are stored,
updated and managed by a class named PlayerStatus. This class also manages local and
global status effects, current status of body parts and the like.

28

6.2.1 Basic Status Variables

Basic status variables are:

• Stance and movement variables - Whether the player is sprinting, running,
crouched, resting and so on

• Speed variables - Sprint speed, walk speed and crouch speed

• Shooting Ability - Ability to use firearms (see 7.2.2)

These variables mostly serve as flags or are used in calculations by other scripts. The
Shooting Ability and Speed variables are changed with injuries and pain (see 6.2.3).

When the player character is sprinting they lose Hunger, Thirst and Tiredness points
at a faster rate.

6.2.2 Survival Status Variables

There are 6 survival status variables the player needs to manage to ensure the survival of
the player character:

• Health

• Stamina

• Body temperature (currently not implemented)

• Hunger

• Thirst

• Tiredness (fatigue)

Health

Undoubtedly the most important survival status variable. When the player character’s
health drops to 0, the player character dies. There are a few ways to lose health such
as not managing the hunger or thirst of the player character or from injuries sustained in
fights with NPCs.

There is however only one way to regenerate health. The player character’s health is
regenerated if they currently have the Nourished status effect.

Health is capped at 100 but can be reduced by injuries.

Stamina

Stamina is depleted by sprinting and regenerated when not sprinting. When the player
runs out of stamina, they will be unable to sprint. They regain the ability to sprint after
stamina has regenerated above 20%.

Stamina is capped at 100 but can be reduced by infection.

Body Temperature

While the body temperature mechanic is quite easy to implement, currently the game
simply lacks enough clothing items to make it viable.

29

Hunger

Hunger is periodically drained and is replenished by consuming food. When hunger drops
to zero, the player character gains the Starving status effect.

Thirst

Much like hunger, the thirst is also periodically drained and replenished by drinking water.
When thirst drops to zero, the player character gains the Dehydrated status effect.

Tiredness

Tiredness or fatigue is also periodically drained and is replenished by resting. When the
character’s tiredness drops below 20% they gain the Tired status effect. When tiredness
drops to 0 the character will faint until tiredness regenerates back to 20%.

6.2.3 Health System

The health system in BTMC works based on status effects. Status effects can be split
into local and global.

Local status effects

Local status effects are bound to a specific body part. There are 6 distinct body parts
in the game:

• Head

• Torso

• Left Arm

• Right Arm

• Left Leg

• Right Leg

All of these body parts can be affected by either one, or a combination of these local
status effects:

• Open Wound

• Bleeding

• Clean Bandage

• Dirty Bandage

• Disinfected

• Infection

• Stitched Wound

• Pain

30

Open Wound effect is gained after the character is shot. Each open wound lowers
the character’s maximum health by 10 points.

Bleeding effect is first gained when the character is shot and regained every time, the
player removes a bandage from an Open Wound. It causes the player to periodically lose
health for each bleeding wound.

Clean Bandage effect is gained after the player uses a Clean Bandage to bandage
their wound. Clean bandages stop bleeding and help prevent infection from infection
rolls. They also help disinfected body parts stay disinfected for much longer.

Dirty Bandage effect is gained after the player uses a Dirty Bandage to bandage their
wound or after a Clean Bandage loses its durability and turns into a Dirty Bandage.
Dirty Bandages also stop bleeding but they do not prevent infection. They also help the
body part stay disinfected but for a shorter period of time, compared to Clean Bandages.

Disinfected effect is gained after the player uses an Antiseptic on an Open Wound
or a Stitched Wound. Disinfected body parts have no chance of getting infected from
infection rolls.

Infection is gained after a body part gets infected. Gaining infection is based on
randomized infection rolls that happen every few in-game minutes. Every Open Wound
or a Stitched Wound has a chance to get infected. The chance starts at 0%. If a wound
does not get infected on a roll, 2% is added to the chance. This chance only accumulates
for Open Wounds but the rolls still happen for Stitched Wounds. If the wound is bandaged
with a Clean Bandage, the chance only accumulates by 0.5%. When an Antiseptic is used,
all accumulated chance is reset to 0% and as long as the body part is disinfected, it does
not accumulate infection chance. Once a body part gets infected it accumulates infection
and lowers the maximum stamina by 10 points. To heal this infection, the player has to
take Antibiotics which lower the infection over time.

Stitched Wound is gained by using a Suture Needle on an Open Wound. This stops
bleeding and the accumulation of infection chance, but as mentioned before, the wound can
still get infected. Stitched wounds lower the maximum health by 5 points and heal over
time, at which point the body part is completely healed.

Pain is caused by Open Wounds and can only be prevented by taking Painkillers.
Each body part that has the Pain effect lowers the shooting ability.

Global Status Effects

Global status effects are applied to the entire body, not just a specific body part. Global
Status Effects:

• Nourished

• Starving

• Dehydrated

• Over-encumbered

• Tired

• Painkillers

• Antibiotics

31

Nourished effect is gained by keeping the character’s thirst and hunger above 90%.
This status effect is the only way the player character can regenerate lost health. Removed
when either of these values drops below the threshold.

Starving effect is gained when the character’s hunger drops to zero. Causes the player
to lose health over time and applies the Pain effect to the torso. Removed by eating.

Dehydrated effect is gained when the character’s thirst drops to zero. Causes the
player to lose health over time and applies the Pain effect to the head. Removed by
drinking.

Over-encumbered effect is gained when the character carries too much weight. Dis-
ables sprinting. Removed by removing items from the inventory.

Tired effect is gained when the character’s tiredness drops below 20%. Lowers stamina
regeneration and slightly decreases shooting ability. Removed by resting.

Painkillers effect is gained by using Painkillers. Removes Pain from body parts as
long as it is active. Removed over time.

Antibiotics effect is gained by using Antibiotics. Slowly removes infection from body
parts as long as it is active. Removed over time. Wounds that have been infected for too
long may require multiple antibiotics.

6.3 Field of View and Fog of War

6.3.1 Player vision and character vision

In most first-person games and some third-person games, what the player sees and what
the character sees are the same thing. In BTMC however these are two different things.
As mentioned in subsection 5.2.1, what the player sees in BTMC is a top-down view of
the area around the player character. What the character sees determines what will be
shown to the player.

Therefore in this section when I refer to the Field of View (FOV), I am referring to
the FOV of the player character.

Since BTMC is supposed to be a hardcore survival game, it would not make much sense
to have the player see enemies that are outside of the FOV of the player character or areas
they have not yet explored. That’s why I have implemented a Field of View/Fog of War
system.

As evident by the name, this system is works as a combination of 2 separate concepts -
Field of View (FOV) and a Fog of War (FOW). The implementation of FOV is based on a
tutorial created by a user named Code Monkey [7] and FOW is based on a tutorial created
by a user named Santzo84 [16].

This system is implemented using:

• FOV Object,

• FOV Brush Camera and FOV Brush texture

• FOV Trail Camera and FOV Trail texture

• FOW Canvas and FOW Object

• FOW Shader

32

6.3.2 Field of View

Field of View is a ”cone“ of vision of the player character. When an obstacle is placed into
FOV it obstructs the vision and therefore nothing behind this object can be seen. Obstacles
that always block the vision are called Full Obstacles and obstacles that block the vision
only when crouching are called Half Obstacles (see section 5.3.1 for examples).

To achieve this effect I have used Raycasts. Each frame, multiple Rays are cast out of
the player character towards where the character is looking, each at a slightly different
angle. These Rays ”fly“ towards the position they were aimed at, until they reach the
maximum distance called the FOV Distance. If they collide with any object between
their origin and destination, that object will be added to an array of collided objects.

If the object they collided with is supposed to block the character’s vision they will
mark the point where they hit the object as their end point.

There is also another set of Rays with much shorter maximum distance which symbolize,
what I like to call, a Field of Perception (FOP). FOP is the area behind the player
character. Therefore it is not what the player character sees but rather what the player
character should be aware of.

FOV and FOP are two angles, which add-up to 360° around the player. FOV is always
smaller but FOV Rays are much longer than FOP Rays.

When the Player presses the right mouse button, they can look around, which lets
them see further (FOV Distance is increased) but FOV is much more narrow (FOV is an
even smaller angle compared to FOP).

Figure 6.2: Example of FOV and FOP Rays with Raycast Hits.

Each frame there is therefore an array of points in the world at which the Rays either
collided with an obstacle or reached the maximum FOV (or FOP) Distance. These points
are then connected and an outline of a Mesh is created. This Mesh symbolizes which areas
are currently visible to the player character. This mesh is then rendered and placed onto
the FOV Object. The FOV Object is rendered in bright red color and placed into the
FOV Layer.

33

Figure 6.3: Example of FOV Object blocked by Full Obstacles

6.3.3 FOV Cameras

Two cameras are used in this FOV/FOW system. Both of these cameras are positioned to
see the entire playable area and never move. They also differ from the Main Camera
by storing what they see into a Render Texture instead of displaying it onto the player’s
screen.

Both Cameras are set to only render the red FOV Object.
The FOV Brush Camera stores what it sees into a large texture with a black back-

ground called FOVBrush. The FOV Trail Camera also stores what it sees into a large
texture with a black background called FOVTrail.

The main difference between these two cameras is that the FOV Brush Camera over-
writes the texture at the end of each frame with black background while the FOV Trail
Cmaera does not. This means that while the FOVBrush texture stores only the current
location of the FOV, the FOVTrail texture ”remembers“ which areas were already ex-
plored.

Figure 6.4: Example of FOVBrush Texture (left) and FOVTrail Texture (right) after some
movement.

34

6.3.4 Fog of War

Now by combining these two textures I was able to create the desired FOV/FOW effect.
Inside the FOW Canvas is stored a FOW Game Object containing a Raw Image
component covering the entire playable area. The FOVTrail texture is placed into this Raw
Image. This would however only cause a large, black and red image to be seen on the
screen.

To get the desired effect I have created a FOW Shader and a new FOW Material
which combines these two textures into one. This material is then used on the FOW Object.

6.3.5 FOW Shader

The input of the FOW shader are the two textures created in subsection 6.3.3. This shader
will combine the textures into one Material in the following steps.

While the shader works with the textures on a pixel basis, I will explain this process by
talking about the textures as a whole as I believe it makes the process easier to understand.

First the textures are blurred. I have tried two different approaches. The first approach
is the usual way of blurring objects, which is often referenced online. The second one is
designed by myself due to optimization reasons.

The first approach is to use a simple blurring shader such as a Box Blur. The simplest
Box Blur, which takes the values of the blurred pixel and the 4 corner pixels around it
and averages them provides only a very weak blur if it is only used once. That’s why it is a
common practice to blur the texture, downscale it, blur it again, upscale it and finally blur
it again. This provides a satisfactory blur and usually is not very resource heavy.

However due to the special circumstances of this FOV/FOW system, this required
to use this method on both of the cameras, before they even stored what they render
into textures. I have not figured out how to properly apply this method, so that it is
only performed once. Furthermore Unity has a slight performance problem with using
post-processing effects (such as blurring) on individual cameras. This caused major
performance issues down the way and caused the FPS of the game to be unstable and fairly
low considering the simplicity of the project (∼ 60 - 300 FPS at the time of development).

I have therefore devised a way to blur the textures directly inside the custom FOW
shader without the need for downscaling and upscaling. My method uses a blur which is
much less optimized, because it averages 33 pixels per pixel instead of 5 pixels. This is
done to make the blur stronger without the need for downscaling and upscaling.

This shader can definitely be optimized and improved, but I’m not familiar with coding
shaders. However in the end result, it caused the FPS to almost triple and stabilize (∼
900 FPS at the time of development).

Figure 6.5: Box blur shader (left) and my custom shader (right). The red pixel is the
currently calculated pixel and the green pixels are taken into account when averaging.

35

After the textures are blurred, red pixels on the FOVBrush texture are turned to green
pixels. This is done by simply swapping the green and red values of the red pixels.

Then the shader adds the colors of both textures together. I will illustrate the possible
pixel color combinations using RGBA values: [RED, GREEN, BLUE, ALPHA]. Note
that the values are capped at 1 and anything larger will be stored as 1.

• Black + Black: [0,0,0,1] + [0,0,0,1] = [0,0,0,1]

• Black + Red: [0,0,0,1] + [1,0,0,1] = [1,0,0,1]

• Red + Green: [1,0,0,1] + [0,1,0,1] = [1,1,0,1]

Here can be seen that areas undiscovered by the player will be colored black, dis-
covered areas will be colored red and currently visible areas will be colored yellow.

Once this combined texture is created, the following formula is applied to create the
final material:

𝐴 = 1− 0.5𝑅− 0.5𝐺

When the final material is created, it is fully black and only alpha value of each pixel
is modified. Undiscovered pixels will be fully black (alpha = 1), discovered pixels will
be semi-transparent (alpha = 0.5) and currently visible pixels will be fully transparent
(alpha = 0).

Figure 6.6: Final result of the FOV/FOW system

6.3.6 Disadvantages

While this approach produces the result I was looking for, there are multiple disadvantages.

Computing Raycasts

Raycasts in large numbers can be quite taxing on computer resources. In the default settings
of the game, there are 50 rays for FOV and 50 for FOP. The player is able to customize
the amount between 50 and 200 rays for FOV. These rays are calculated each frame and
for each ray all collisions have to be checked. Decreasing the amount of rays will however
cause the FOV edge to have visible edges instead of appearing round. This will also cause
thin objects to possibly ”slip“ between the rays and therefore not obstruct FOV.

36

Large Textures

Since the FOV textures are stretched across the entire playable area, they cannot be in a
too low resolution because the pixels would become too apparent even with the blurring.
Planned map size is currently at least 200x200 in-game metres per area and for the FOW
to appear correctly I am using textures with 4096x4096 pixels. Usually, each pixel needs 4
bytes to store all 4 RGBA values. This means that each texture would take up 64MB of
space. I have managed to reduce this number by changing the color format of the textures
to R8_UNORM which only stores the red value of the RGBA format. This means that
each pixel now only takes one byte and each texture 16MB of space.

37

Chapter 7

Implementation of NPCs and
Ranged Combat

7.1 Non-playable Characters
Non-playable characters (NPCs) will play a large role in the final game. NPCs will vary in
difficulty, hostility and their overall function. At the time of writing of this thesis there is
only one type of NPC in the game and that is a simple ”Hostile NPC“.

7.1.1 Pathfinding

Pathfinding is in my opinion the most important aspect of any non-static NPC. It is
used to determine the best path between the NPCs current position and their destination.
Unity provides their own pathfinding tools but those are designed for 3D games. They take
into account the size of the character, how well they scale slopes and so on. Since BTMC
is a 2D game however, I had to implement my own pathfinding algorithm based on the A*
algorithm for finding the shortest path between nodes on a graph or a grid .

A* Algorithm Prerequisites

The implementation of said algorithm is based on an online tutorial created by a user named
Code Monkey [6].

the A* algorithm works by assigning 3 values (costs) to each node:

• G Cost - The distance between the node and the start node.

• H Cost - The estimated distance between the node and the end node. The distance
is estimated using a suitable heuristic function.

• F Cost - Sum of the G cost and F cost of the node.

In BTMC each of these nodes is represented by a PathNode class. Besides holding infor-
mation about its costs, it also holds information about whether it is walkable, occupied
and from which node did the algorithm reach this node.

These nodes are all part of one instance of a large grid which is represented by a
PathFindingGrid class. This class contains 200x200 nodes per map area, which means
that each node represents a square metre of space. I have found this to be a good balance
of the amount of nodes and precision of pathfinding. A grid too large will be more taxing

38

on computer resources when calculating the path, but a smaller one will cause the NPCs
to not be able to pass narrow spaces.

The heuristic function used in the calculation of distances must be admissible. This
means that the expected H cost cannot overestimate the actual cost to reach the end
node. In BTMC the heuristic function is based on a modified Euclidean Distance heuris-
tic. In Euclidean Distance, the path can pass through tiles vertically, horizontally
and diagonally. The Euclidean Distance calculates the cost of moving diagonally as a
square root of the sum of moving first horizontally squared and then vertically squared
(Pythagorean Theorem).

In BTMC, the costs of moving between two tiles are set to 10 for vertical and horizontal
movement and 14 for diagonal movement. This saves computer resources by avoiding the
use of floats and the square root function at the cost of accuracy (14 is not the exact square
root of 200). This inaccuracy is very much negligible.

Lastly, for an A* algorithm to work, two lists are needed. One of them named Open
List, which holds all nodes that are scheduled for evaluation by the algorithm and a Closed
List which holds all of the nodes that were already evaluated.

In BTMC, the Closed List is implemented as a HashSet. This works because there is
always only one instance of the node in the Closed List and the only thing that needs to
be checked is whether a node is or isn’t in the list. This makes HashSet a perfect candidate
for a bit of optimization as HashSets are faster when searching for items within them
compared to Lists.

Valid Nodes

The algorithm works slightly differently in BTMC than it does in theory as it performs
additional checks. Therefore I would like to define a valid node. A node is valid when it is
both walkable and it’s not occupied.

Walkable nodes are nodes that the NPCs can walk on. These are set when the scene
is first loaded. It works by creating a 200x200 2D array of Booleans. Then, all of the
obstacle objects (see 5.3.1) in the scene are found. Since these are 2D sprites there is
always a rectangle that can encapsulate them. The positions of the corners of said
rectangle are determined in World Space and then turned into the Grid Node coordinates.
These Grid Node coordinates are sorted and iterated through from left to right and from
top to bottom and any Path Nodes covered by the obstacle are marked as not walkable in
the Boolean array. This array is then passed to the PathFinding class when its Instance
is created and the PathFindingGrid is initialized.

Occupied nodes are reserved by other NPCs during pathfinding. NPCs reserve the
final node in their destination after it is found by the A* algorithm. They also reserve the
nodes they are currently standing on. This is done to prevent NPCs from ending up on
the same node when trying to get to the same destination and therefore clipping through
each other. This is not a perfect system however, as the NPCs will still pass through each
other while walking if they are walking along the same path.

39

A* Algorithm

The algorithm in BTMC works in the following steps:

1. Performs validity checks for the end node. If the node is not valid, the algorithm
tries to find a suitable neighbouring node, which can be used instead. If it fails
to find a suitable node, the algorithm ends in failure.

2. Sets the G Cost of all nodes to the maximum value of int.

3. Sets the G Cost of the start node to 0 and estimates its H Cost.

4. Gets the node with the lowest F Cost from the Open List (Current Node).

5. If the Current Node is the end node, moves to step 14.

6. Removes the Current Node from the Open List and adds it to the Closed List.

7. Gets the list of neighbours.

8. If the neighbour list is empty, moves to step 13. Otherwise gets one of the neighbour
nodes (Current Neighbour Node).

9. If the Current Neighbour Node is in the Closed List, moves to step 8.

10. If the Current Neighbour Node is not valid, adds it to the Closed List and moves to
step 8.

11. Calculates the potential new G Cost of the Current Neighbour Node as a sum of
the G Cost of the Current Node and the cost of moving to the Current Neighbour
Node.

12. If the potential new G Cost is lower than the G Cost stored in the Current Neighbour
Node, updates the G Cost to the new value and sets the ”came from“ node as
the Current Node. Calculates the H Cost, adds the Current Neighbour Node into the
Open List and moves to step 8.

13. If the Open List is not empty, move to step 4. If it is empty, no path can be found
between the start and end node and the algorithm ends in failure.

14. If this step was reached, it means the path to end node was found and now the path
is traced back using the ”came from“ nodes stored in each node along the path.
The result is a list of nodes which represent the path and the algorithm ends in
success.

This algorithm works quite well, however considering the size of the map, if there ever
was an unreachable node or a node with a particularly complicated path to it, the
algorithm might try to search a large portion of the 40 000 nodes that tile the map to find
a path. This would, of course, cause a massive lag, especially if multiple NPCs attempted
to find the path at the same time.

There are numerous methods to try and pre-determine whether a node is unreachable,
before attempting to find the shortest path using the A* algorithm. These methods would
however slow down each pathfinding attempt in which the node is reachable, which is the
majority of cases. So to make sure the game does not freeze in these special cases and to

40

not slow down the algorithm any further I have added a maximum available F Cost.
Since F Cost of nodes accumulates steadily throughout the algorithm, setting a limit means
that the algorithm will stop if it takes too long.

At the time of writing of this thesis, the maximum F Cost is set to 1000. When we
consider the size of the map, and the costs of moving from one node to another, this means
that if the algorithm did not find a path that is shorter than 100 in-game metres, it
ends in failure. Even with this limitation, these cases will produce a small stutter when
multiple NPCs are attempting to find the path at the same time.

Path Modification

While the A* algorithm finds the shortest path in a grid based environment, it is still bound
to move in only 8 directions. To make the path the NPCs take look more natural and,
in many cases, a bit shorter, I have added a modification to the final determined path.

When the path is calculated as a set of nodes, there are possibly nodes which are, in a
sense, redundant. What I mean by that is that when the node coordinates are converted
into in-game positions, which are used when actually moving the NPC, there are positions
that are between two other positions that do not have any obstacles between them
and therefore do not need to be there.

Figure 7.1: Example of a raw A* algorithm path (top) and a modified path (bottom).

While in the figure above, it does not seem like much has changed, in-game it makes a
lot of difference. The basic 8 dimensional movement that the raw A* algorithm produces
is very easy to spot on actual NPCs in-game, as they often do not take straight paths
to their destination.

This modification has a considerably bigger impact on larger, open areas. Especially
when the NPC is moving at a roughly 22.5° angle from one of the 8 basic directions.

41

Figure 7.2: Example of a raw A* algorithm path (left) and a modified path (right).

In the figure above, if we consider the tile to be 1 square metre as it is in BTMC, the
path traveled by the raw A* would be roughly 10.65 metres, while the modified path is
roughly 9.84 metres. Not a huge difference but the real value of this modification is in the
fact that the NPC takes a straight path to the destination.

In short, this modification algorithm works by creating a start index and an end index.
Then it shoots a Raycast between the nodes on said indexes. If there are obstacles in
the way, the algorithm increments the start index and tries again. If there are no
obstacles in the way the algorithm removes all of the nodes in between the start index
node and the end index node, sets the end index as the current start index (as there
surely are no more nodes to be removed after the current start index), resets the start
index and does the process again. The algorithm ends when the start index is one less
than the end index, which means that no nodes can be removed anymore.

7.1.2 NPC Status

In many ways the NPCs in BTMC are just a very simplified version of the player char-
acter.

Health

At the time of writing of this thesis, the NPCs in BTMC do not have as complex of a health
system as the player character does. They do no need to take care of their basic needs and
they do not get injured in the same way as the player does (see 6.2.3).

The NPCs have only their health variable and information about which of their
body parts were hit to simulate the sort of debuffs the player receives (such as their
shooting ability or their speed lowered).

42

Visibility

Since the player should only be able to see NPCs that are currently in the FOV of their
character, the NPCs turn their visibility on and off based on whether or not any of their
colliders are currently hit by a Raycast from the player character’s FOV.

Death

If the NPCs health drops to zero, the NPC dies. It is immediately destroyed and a Dead
Body container is instantiated where it died. This container plays a death animation as
soon as it is instantiated. A randomized set of items is spawned into the container along
with a number of forced items, such as the weapon the NPC was equipped with, along
with ammunition and magazines for that weapon.

7.1.3 NPC Firearms

The NPCs use a modified version of the same firearm script as the player. All of the
calculation used by the firearm of the player, such as hit chances, weapon accuracy and so
on apply to the NPCs as well. However there are core differences in the way the firearms
are implemented for NPCs.

Firearm Item

The firearm the player is currently using is determined by what firearm the player has
currently equipped in their inventory. Since NPCs do not have any inventory, their
firearm is randomly chosen and assigned to them when they first spawn. This is much
the same Inventory Item (see 8.3) as the player uses, but instead of being stored in the
inventory, it is attached to the NPC Game Object directly.

Firearm Operation

The main difference between the firearm script of the NPC and the firearm script of the
player character is that in the case of the player character, the Player needs to be limited
by the current state of the weapon (for example unable to shoot if the weapon is empty
or the weapon is currently being reloaded). In the case of the NPC however, they can be
simply programmed not to attempt to shoot if the weapon is not ready to fire. This
makes their implementation much simpler and less taxing on computer resources.

43

7.1.4 Hostile Behaviour

As mentioned at the beginning of this section, at the time of writing of this thesis, the only
implemented NPC type is a hostile NPC. The behaviour of NPCs is implemented as a
finite state machine and is currently implemented with 5 behavioural states: Idle, Patrol,
Attack, Chase and Search.

Figure 7.3: State machine of a hostile NPC.

Idle State

This is one of two default states of NPCs. In this state the NPC stands in the position it
was spawned in. The NPC will periodically turn their head and look around.

Patrol State

This is the other default state of NPCs. In this state, the NPC has a list of positions
set as its patrol locations. The NPC will move from position to position, briefly looking
around each one.

Attack State

This state is entered when the NPC spots the player character. The NPC will equip their
firearm if it was not equipped already. During this state, the NPC will always attempt to
look at the player character and fire at them.

Before the NPC attempts to fire at the player, it will assume an attack position.
This means that the NPC will attempt to find the closest pathfinding node to its current
position and stand on it. Since occupied nodes are not considered valid (see 7.1.1), this
helps with clumping of enemies when they attack the player. The enemies will still stand
quite close to each other but will have a personal space of 1 square metre.

While the NPC is in an attack state, it stays in one spot. This means that the player
could potentially walk all the way in front of the NPC and since firearms in BTMC shoot

44

their bullets from the muzzle, the player could push past the muzzle and avoid damage.
To get around this, the NPCs will back away from the player if the player gets too close.
No path finding is used in this case, the NPCs simply move in the opposite direction
of the player. While doing so, they shoot Raycasts behind them to detect any obstacles.
Therefore the NPC stops backing away if they are backed into an obstacle.

Chase State

The chase state is entered either when the NPC loses track of the player in Attack state
or hears a noise in any state besides the Attack state. When the Chase state is entered
for the first time, the NPC will try to reach the player character’s last known position
or the location of the heard noise.

Search State

The search state is entered exclusively after the Chase state in case the player character
was not found. When search state is first entered a random set of 5 locations in the area
around the last known position or the position of the heard noise are generated. The NPC
will then search these 5 areas. If the player was not found, the NPC returns back to its
default state.

7.1.5 Player Detection

Currently there are 2 ways an NPC may detect the player’s presence:

• Vision

• Hearing

NPC Vision

The vision of NPCs works comparably to the player character. There is one key difference
however. While dozens of Raycasts have to be computed to determine the FOV of the
player character, the FOV of the NPC is much simpler. Instead of having many Raycasts
calculated each frame, a Game Object in the shape of a FOV cone is placed onto the
NPC. This FOV object has a collider component, set as a trigger attached to it. By
using this trigger collider, the FOV object can detect when the player character enters it.
When the player character enters the FOV object, a single Raycast is shot out of the
NPC towards the player character each frame. If the Raycast hit an Obstacle along the
way, it means that the player is not actually visible. Whether or not Half Obstacles block
this Raycast is determined by both the stance of the player character and the NPC.

NPC Hearing

Besides seeing the player character, the NPCs may hear a gunshot, weapon manipulation
or the sounds of movement. For this purpose I have created two classes: NoiseOrigin
and NoiseReceiver. The Noise Origin can simulate noise by using an OverlapCircleAll
method, which works similarly to Raycasts. Instead of being a line that detects all objects
along its path, the Overlap Circle detects all objects within a circular area. The noise
generator will only detect colisions with objects in a ”NoiseReceiver“ layer. Each NPC

45

has one of these Noise Receiver objects attached to it. This way when a noise is generated
by a Noise Origin, all Noise Receivers within this circle are notified. The size of this circle
is variable and depends on the loudness of the noise.

7.2 Ranged Combat

7.2.1 Firearms

There are currently 4 firearms in BTMC. Each firearm has its advantages and disadvantages.
There are numerous ways the firearms are balanced such as damage, accuracy, fire-rate,
weight, rarity, ammo scarcity and so on.

Firearms:

• Pistol - semi-automatic, medium damage, medium accuracy, plentiful ammunition,
low weight, uses magazines

• Assault rifle - fully/semi automatic, high damage, high accuracy, scarce ammunition,
high weight, uses magazines

• Pump shotgun - pump action, low damage pellets, bullet spread, plentiful ammu-
nition, high weight, internal magazine

• Hunting rifle - bolt action, very high damage, very high accuracy, scarce ammuni-
tion, high weight, internal magazine

7.2.2 Firearm mechanics

All firearms are represented as the same Firearm Game Object attached to the Player
Game Object. The Firearm is composed of 3 Game Objects. The Muzzle and two Cone
Lines. The cone lines are only for debugging purposes and show the current accuracy of
the firearm. The Muzzle is the object from which bullets originate. To the Muzzle is also
attached a Muzzle Flash object which renders different muzzle flash sprites as the firearm
is fired.

All firearm functionality is implemented in a single script called FirearmScript at-
tached to the Firearm Game Object. The script uses numerous variables to change the
behaviour of the currently selected firearm such as damage, accuracy, fire rate and so
on. There has to be constant communication and synchronization between the Firearm
Script, Inventory Controller and the HUD Controller as they are all intertwined. It
also calls methods of the Human Animation Controller and the Audio Manager.

The general information specific to all firearms of the same type, such as whether it uses
magazines, fire rate, accuracy, damage and so on are stored in the ItemData Scriptable
Object (see 8.3) associated with the currently equipped firearm. Information about the
current firearm as a standalone object such as current ammunition status are stored in the
InventoryItem script of the firearm. The Firearm Script calls methods of the Inventory
Controller such as firing a round, cycling of the firearm or reloading, which update the
current state of the firearm in the InventoryItem script.

Firearm accuracy

The accuracy of a firearm is determined by the firearm, the ability of the player character
and current recoil accumulated from consecutively fired rounds. Firearm accuracy is

46

represented by a cone originating from the muzzle of the firearm and centered towards
the point where the player is aiming. The degrees of the cone are calculated each frame.

Figure 7.4: Aim Cone sketch (left) and an actual in-game aim cone displayed using cone
lines (right)

Formula for calculating the firearm accuracy:

𝐴 = 𝐴𝑏𝑎𝑠𝑒 * 𝑆 +𝑅

Where:

• 𝐴 - Calculated weapon accuracy in degrees

• 𝐴𝑏𝑎𝑠𝑒 - The base accuracy of the weapon. This is determined by the firearm.

• 𝑆 - The current shooting ability of the player character. This is affected by injuries
of the player character. This value is always ranges from 0.1 - 1 where 0.1 is the best
possible ability.

• 𝑅 - Current recoil of the firearm - accuracy modifier based on consecutively fired
shots.

47

Firearm Recoil

It is expected that when someone is quickly firing from a firearm, they will be as accurate
as when they are firing slowly. This is why I implemented firearm recoil and cooldown
into the game.

The output of the recoil system is the Recoil modifier used when calculating the
accuracy of the firearm.

Formula for calculating the firearm’s recoil:

𝑅 = (𝑅𝑏𝑎𝑠𝑒 − 0.5 * (1− 𝑆)) *𝐵𝑐𝑜𝑛

Where:

• 𝑅 - Current recoil of the firearm

• 𝑅𝑏𝑎𝑠𝑒 - The base recoil increment per fired bullet. This depends on the firearm that
is used (for example a shotgun has a much more powerful recoil per bullet than a
pistol).

• 𝑆 - The current shooting ability of the player character. This is affected by injuries
of the player character. This value is always ranges from 0.1 - 1 where 0.1 is the best
possible ability.

• 𝐵𝑐𝑜𝑛 - Amount of consecutively fired shots. This value is capped at a certain
amount and recoil does not accumulate past that amount.

0.2 seconds after the player stops shooting, the weapon recoil slowly decreases. The
cooldown rate is one consecutively fired round each 0.1 seconds. By lowering the amount
of consecutively fired rounds, the recoil calculation will return smaller values.

The presence of 𝑆 in both of these equations means that the shooting ability of the
player character has an effect on both the accuracy of the first bullet fired from the weapon
and on the ability to control the weapon’s recoil.

7.2.3 Bullet Mechanics

How weapons fire bullets is covered in the previous section. In this section I will explain
how the bullets themselves behave.

Bullet Deviation

Each time a weapon is fired a bullet deviation is calculated based on the current weapon
accuracy. This value, calculated in degrees, determines the deviation of the fired bullet
from the point at which the player is aiming. This deviation is calculated for each fired
bullet by first deciding whether the bullet will deviate from the point of aim to the left or
to the right. Then a random number is picked between 0 and half of the current weapon
accuracy.

I would also like to establish two new terms to make the explanations in the following
sections easier: A shooter and a victim. A shooter is a person firing a bullet and a
victim is the person who was hit by a Bullet Raycast. The player character and the
NPCs can be be both in the role of a shooter or a role of a victim in different scenarios.

48

Bullet Raycast

After the Bullet Deviation is calculated for a bullet a Ray is fired, originating from the
muzzle of the weapon towards the point where the player is aiming plus the bullet
deviation. Each object that’s hit by this Ray is added to an array of collided objects.
Depending on the type of the object that was hit, a different action is performed.

Bullet Impact Point

There are 3 types of objects recognized by the bullet Raycast:

• NPC or Player

• Half Obstacle

• Anything else

When a Half Obstacle is detected on the path there are two possible outcomes. Either
the bullet hits the obstacle or the bullet flies over the obstacle. This is based on the
distance between the shooter and the Half Obstacle.

If the shooter stands:

• less than 5 metres away from the obstacle, there is a 0% chance of hitting the
obstacle.

• between 5 and 15 metres away from the obstacle, a formula is used to calculate
the chance between 0% and 50% with a linear drop-off.

• more than 15 metres from the obstacle, there is a 50% chance of hitting the obstacle.

Formula for calculating the chance of a bullet hitting a Half Obstacle, when the shooter
is standing 5 to 15 metres away from the obstacle:

𝑃 = (𝐷 − 50) * 0.005

Where:

• 𝑃 - Probability of the bullet hitting the Half Obstacle

• 𝐷 - Distance between the shooter and the Half Obstacle in dm

If the bullet hits the obstacle the point where it hit is registered as the bullet’s im-
pact point. Otherwise a distance between the shooter and the wall is stored for future
calculations and bullet flies over.

When the bullet Ray passes through an NPC or the Player (victim), it does not
automatically mean that the victim was hit. Whether the victim was hit depends on
multiple factors. These factors and possible outcomes are explained in subsection 7.2.4.

If the bullet hit the victim, it takes notes of each hit-box it passed through and calls a
method on the victim’s hit-box passing all body parts the Raycast passed through. Other-
wise the bullet flies over the victim.

If the bullet Ray hits anything else other than Half Obstacle, NPC or the Player, the
point at which the bullet hit the object is considered the bullet’s impact point.

49

Bullet Impact and Muzzle Flash

Once the bullet’s impact point is determined, a Bullet Impact Game Object is created
from a prefab and is positioned at the impact point and rotated away from the
origin of the bullet. This object has a Sprite Renderer component and an Animator
with animations of different bullet impacts. Based on what type of obstacle was hit, a
different bullet impact animation is selected. After the animation is done playing, the
object is destroyed.

Besides the impact point a Muzzle Flash Coroutine is started. This coroutine selects
a Muzzle Flash Sprite from an array of sprites based on the currently selected weapon.
Each weapon has 3 muzzle flash sprites which alternate between shots. This ensures that
weapons that can fire rapidly, such as the Pistol or the Assault Rifle have different muzzle
flashes for consecutive shots and therefore look more natural.

After the muzzle sprite is selected, the Muzzle Flash Game Object attached to the
Muzzle of the Firearm (see subsection 7.2.2) has its Sprite Renderer set to the selected
sprite. After that the Sprite Renderer is enabled together with a 2D Light Source that
emits from the Muzzle Flash. After 0.05 seconds the flash and the light are turned off again.
This produces, in my opinion a quite pleasant firearm flash which illuminates surrounding
area and casts shadows.

7.2.4 Taking cover

An obvious way the victim can take cover from projectiles is to break the line of sight
between them and the shooter by hiding behind a tall object (a Full Obstacle). This
however, may not always be possible and even if it is, the victim loses the ability to return
fire without leaving the cover.

In this section I will explain the implementation of taking cover from firearms without
utilizing full obstacles. As mentioned in the subsection 7.2.3, just because a bullet Raycast
passed through a hitbox of the victim, it does not mean that they were hit by the projectile.
There is also a possibility that the projectile flew over.

Stance

There are two stances that the victim can take - standing and crouching. The stance has
a considerable effect on whether they were hit by the bullet or the bullet flew over them.

If the victim is standing, there is a 100% chance that they will be hit, regardless of
the distance between them and the shooter.

If the victim is crouching, there are multiple outcomes determined by the distance
between them and the shooter:

• 5 metres or less - there is a 100% chance that the shooter will hit the victim (stance
has no effect at this distance).

• 5 to 15 metres - linear drop-off from 100% to 80%

• 15 metres or more - there is an 80% chance that the shooter will hit the victim.

50

Formula for calculating the chance of hitting a crouched person between 5 and 15 metres
away:

𝑃 = (1− (𝐷 − 50) * 0.002)

Where:

• P - Probability of the bullet hitting the victim

• D - Distance between the shooter and the victim

This chance is further modified depending on whether the bullet passed a Half Ob-
stacle on its trajectory.

Half Obstacles

If a projectile passed a half obstacle before reaching the victim a special formula is used
to simulate hiding behind cover. The output of this formula is a Hit Chance modifier.
This is only applied if the victim is crouched.

Standing victim has an implied cover from the fact that the projectile might hit the half
obstacle. If it flew over the half obstacle, it is likely that it hit the standing victim.

If the victim is crouched however, the projectile could’ve flown over the half wall and
over the victim as well. Furthermore there is a certain safe distance behind the half cover,
where it should be impossible for the shooter to hit the victim.

Figure 7.5: Illustration of taking cover by crouching behind a half obstacle.

As shown in the figure, there are 3 areas behind the half obstacle. The sizes of these
areas are determined by the distance between the shooter and the half obstacle (Shooter-
Obstacle Distance - 𝐷𝑠−𝑜).

• Safe Area - If the victim is crouched in this area the Hit Chance modifier is 0. This
area spans between the half obstacle and 0.25 * 𝐷𝑠−𝑜 behind the half obstacle.

• Area where cover is losing effect - If the victim is crouched in this area the formula
below is used to determine the Hit Chance modifier. This area spans between 0.25
* 𝐷𝑠−𝑜 and 2 * 𝐷𝑠−𝑜 behind the half obstacle.

• Area where the cover lost all effect - If the victim is crouched in this area, the
Hit Chance modifier is 1 and therefore the cover has no effect. This area starts at 2
* 𝐷𝑠−𝑜 behind the half obstacle and continues forever.

51

Formula for calculating the Hit Chance in the Area behind cover where the cover is
losing effect:

𝑃 = ((𝐷𝑣−𝑜 − 0.25 *𝐷𝑠−𝑜)/(1.75 *𝐷𝑠−𝑜))

Where:

• 𝑃 - Hit Chance modifier

• 𝐷𝑣−𝑜 - Distance between the Half Obstacle and the victim

• 𝐷𝑠−𝑜 - Distance between the Half Obstacle and the shooter

The Hit Chance modifier is then multiplied by the chance that the bullet hit the enemy
based on the distance between the shooter and the (crouched) victim.

7.2.5 Hit-boxes

Hit-boxes in BTMC are colliders, that serve to detect where a bullet hit a character.
They are controlled by the methods of a HumanHitbox class used by both both the player
character and NPCs. Switching of the colliders is done through Animation Events.

Each character is split into 5 hit-boxes:

• Head

• Torso

• Legs

• Left Arm

• Right Arm

Each of these body part’s hit-boxes is implemented using a 2D Collider, either a
Polygon Collider or a Capsule Collider. One of the problems was that it is quite
hard to change a polygon collider at runtime and therefore, body parts that use polygon
colliders have multiple different colliders which are turned on and off depending on what
hit-box should be used. Since composing animations for each frame of every animation
would be quite tedious, there are only 4 composed hit-boxes:

• Standing Idle

• Crouching Idle

• Short Weapon Equipped

• Long Weapon Equipped

52

Figure 7.6: Hitboxes (green lines) from left to right: Standing Idle, Crouching Idle, Short
Weapon Equipped and Long Weapon Equipped.

Once the firearm script of a player or an NPC sends information about which body
parts were hit by a Raycast, the hit-box uses probability to determine which body part
was hit as in a 2D top down game, the Raycast may pass through all hit-boxes at once. It
splits individual hit-boxes into main hit-boxes (head, torso, legs) and arm hit-boxes (left
arm, aright arm). The hit-box follows this criteria when deciding which body parts were
really shot:

• If the bullet Raycast passed through multiple main body parts, one of these body
parts is selected. This means that head, torso and legs cannot be hit in the same
shot as it would not make much sense. The torso is most likely to be hit and the head
least likely. If the legs are hit, there is a 50/50 chance on which leg was hit.

• If the bullet Raycast did not pass through a main body part but did pass through
both arms (very likely when holding a firearm), each arm has a 50% probability it
was hit (but at least one has to be hit).

• If the torso was determined as a hit and the raycast passed through either of the
arms, there is a 20% chance that the arm was hit.

• Lastly if there is only one body part that the Raycast passed through, then there is
a 100% chance it was hit.

This seems a bit complicated because these probabilities were clashing with the pre-
vious implementation of missing a shot due to factors such as stance or cover. Therefore
if the FirearmScript determined the shot as a hit, then the hit-box has to determine at
least one body part as being truly shot.

53

Chapter 8

User Interface Implementation

Just like most other games, BTMC uses User Interface (UI) to communicate important
aspects of gameplay to the player and read their input outside of gameplay. UI in BTMC
can be split into 3 main sections:

• Menu - UI used to interact with the game itself outside of the actual gameplay.
This section would include the Main Menu screen, Pause Menu screen and Options
Screen.

• HUD - HUD (Head-up or Heads-up Display) is used to communicate valuable in-
formation to the player during gameplay. It is used for aspects that cannot be
easily shown via in-game objects or mechanics (such as Hunger, Thirst Tiredness)
or information that may not always be apparent from the game (Stance or Selected
Weapon).

• Inventory - The Inventory screen provides interface for the interaction with found
items, player equipment and health screen.

8.1 Menu
Menu screens in BTMC use layouts and buttons conventional for most games.

8.1.1 Main Menu

The main menu in BTMC is the first loaded scene when the game is started. It consists of
the following buttons:

• Demo Level - Level created to showcase the state of the game at the time of writing
of this thesis.

• New Game - Currently unavailable, will be used to start a new game when the game
is finished.

• Load Game - Currently unavailable, the game is currently unable to save progress.

• Options - Used to change visual and audio aspects of the game.

• Quit Game - Turns off the application.

54

8.1.2 Pause Menu

Pause menu is entered from the game when player presses the Esc button. It consists of
the following buttons:

• Resume - Closes the pause menu and resumes the game.

• Save Game - Currently unavailable, will be used to save the game to a save slot.

• Options - Used to change visual and audio aspects of the game.

• Main Menu - Returns the player to the Main Menu.

• Quit Game - Turns off the application.

8.1.3 Options Menu

Accessible from both the Main Menu and the Pause Menu. It is split to 2 sections:
• Video - Used to change resolution, quality preset, fullscreen option and the amount

of FOV Raycastas.

• Audio - Used to control master volume, sound effects volume and inventory sounds
volume.

8.2 HUD
The HUD in BTMC is separated to these main sections:

• Upper Status Bars

• Lower Status Bars

• Stance

• Devices Section

• Weapon Section

Figure 8.1: Overview of the main sections which make up the HUD.

55

8.2.1 Upper Status Bars

The Upper Status Bars contain 3 horizontal status bars that need to be long enough to
communicate their status visually:

• Health Bar - The overall health of the player character and arguably the most
important status bar. If this bar reaches zero the player character dies. Therefore
it is positioned as the first status bar and also accompanied by a number to show
the value more accurately.

• Stamina Bar - The current stamina of the player character. It is important for
players to manage their character’s stamina carefully, so that they do not end up in
a fight or flight scenario out of stamina. Since stamina fluctuates the most from all
of the status bars I have decided to omit a number showing the precise amount since
it would only serve as a distraction.

• Body Temperature Bar - This status bar differs from all of the other status bars,
because it does not fill up like the rest. Instead it shows a static background and
a slider that indicates how cold or hot the player character feels (it does not display
the surrounding temperature).

Health bar and Stamina Bar are also accompanied by arrows that indicate how fast their
value is dropping or rising (3 arrows each way). This also serves as a good indicator for
the player that something could be very wrong with the character (for example 3 left
facing arrows on the health bar indicate a strong bleed). These values may also have their
maximum value lowered by injuries, which is shown by a hatched area at the end of the
bar.

Figure 8.2: Stamina Bar displaying two draining arrows (moderate amount of drain) and
lowered maximum stamina by 10 points.

8.2.2 Lower Status Bars

The Lower Status Bars contain 3 short, vertical status bars that are not as important to
be judged visually and fluctuate much less compared to the Upper Status Bars:

• Hunger Bar - The current nourishment level of the player character.

• Thirst Bar - The current hydration level of the player character.

• Tiredness Bar - How tired the player character is (full bar means that the character
is fully rested).

Since these Status Bars are much shorter and their fullness might be a bit harder to judge
visually compared to the Upper Status Bars, all of them are accompanied by a number
showing their precise value. They also lack the arrows present in the Upper Status Bars.
While the rate at which these bars fill up or deplete can change based on factors such as
current body temperature or equip load, it is usually not as acute. Also the arrows are not
very aesthetically pleasing in the very small Status Bars.

56

All of the status bars (beside the Body Temperature Bar) also change their color to
bright red when their value drops below a certain threshold (less visible on the Health Bar
as it is already red but there is still a difference). The Bars accompanied by a number also
change the color of the number to bright red at this point. This threshold is usually 20%.

8.2.3 Stance

The Stance is a simple outline that shows the current stance of the player character (stand-
ing or crouching). While this may seem a bit redundant as the player character can be seen,
due to the artistic inexperience of the author when it comes to drawing, human anatomy
and animations it is best to make sure that the player knows if their character is currently
standing or crouching.

8.2.4 Devices Section

The devices section is used to present the player with additional information provided the
player character is wearing such devices. Otherwise this section is empty. There are
currently only two such devices in the game:

• Watch - A digital wrist watch, which displays current time, date and surrounding
temperature.

• Geiger Counter - A device used to measure surrounding radiation in mSv (milisiev-
ert). Radiation is not currently implemented.

8.2.5 Weapon Section

The weapon section is only visible if the player is currently holding a weapon. It provides
the player with all necessary information about the weapon the player character is currently
using. The weapon section contains the following information:

• Weapon Outline - The outline of the used weapon. This outline serves to quickly
visually inform the player about which weapon is currently selected without reading.

• Weapon Name - The name of the selected weapon.

• Firing mode - Which firing mode is selected on the firearm. The only weapon
currently in the game which supports a selective fire mode is the Assault Rifle.

• Magazine Bar - A bar which uses a row of bullets to symbolize the amount of ammo
in the magazine. This Ammo Bar depletes a bit unconventionally from bottom to
top which is supposed to simulate the movement of bullets in a magazine which are
pushed towards the chamber.

57

• Chamber - This visually tells the player whether the weapon is currently chambered
and ready to fire.

• Ammo Count - The current ammo count and the capacity of the magazine. The
current ammo count also takes into account the chambered round and therefore on
a full magazine and a chambered round, the text will display an ammo count higher
than the maximum capacity by one (for example 31/30).

Figure 8.3: Overview of the weapon section of HUD.

8.2.6 Rest Menu

When the player interacts with a bed, a rest menu is opened in the middle of their screen.
In this rest menu the player may choose to rest for a specified amount of time (1-8 hours)
or until the character is well rested. This menu shows the player their current and
projected values of hunger, thirst and tiredness after the rest.

Figure 8.4: Rest menu.

58

8.2.7 Interaction Text

When there is an interactable object within the player character’s interact range, a
text is displayed above them. The text is composed of the name of the interactable object
in brackets and the action that will be performed. The interaction is always tied to the
closest interactable object in range besides one special case when there is a dead body next
to a door. In this case, the door has a higher priority. This is done, because when an
NPC dies close to a door and therefore a dead body is spawned in their place the player
may to be unable to open doors and escape a potentially dangerous scenario or get stuck
in a room with a closed door.

Figure 8.5: Example of an interaction text for a bed.

59

8.3 Inventory Screen
The implementation of the Inventory System is based on a tutorial created by a user named
Greg Dev Stuff [10].

The Inventory in BTMC is split into 4 main sections:

• Equipment - Used to interact with items and manage equipment of the character.

• Health - Used to interact with items and manage treatment of the character.

• Map - Currently not implemented. Will show the map of the region.

• Journal - Currently not implemented. Will be used to manage quests.

The Inventory System in BTMC is quite complex and therefore in this section I will try
to abstract the individual components as much as possible while still keeping the explanation
thorough.

Figure 8.6: Screenshot of the Inventory Screen showcasing all of the different components.

8.3.1 Item Grid

Figure 8.7: 6x5-tile item grid.

Item grid is one of the main components of this Inventory System. It simulates space for
storing items. The grid is split into individual cells and always has a rectangular shape.
Visually the grid is implemented as a tiled image, using the individual inventory slot sprites
as tiles.

60

The grid contains a two dimensional array of references to Inventory Items. This
array keeps track of what item is stored in each tile. Since the grid is just a singular
object and not actually a grid of individual slots, it needs to somehow calculate where to
store items or what item was selected when the grid was clicked on.

To find out which tile was clicked on, the grid uses a function which uses the screen
position of the mouse to and converts it to the grid position. Then a secondary function
is applied to figure out which tile was clicked. This causes a minor issue with different
resolutions. Since the game was meant to be played at FullHD (1920x1080) resolution,
clicks in any other resolution will not work properly when using the raw mouse position.
This means that some of the values have to be normalized and converted.

To manipulate items, the grid provides functions to get, grab and place items. All of
these functions require the tile coordinates. When the player attempts to place an item into
the grid, multiple checks have to be performed. The outcome of these checks determines
whether the item will be placed or not. Afterwards, all of the tiles that are occupied by
said item are set to reference that item (using the aforementioned two dimensional array
of references). When an item is grabbed from the grid, these references are set back to
null.

Two main checks for item placement are the boundary check and the overlap check.
Boundary check makes sure that the placed item does not protrude outside of the bound-
aries of the grid, while the overlap check makes sure that the item does not overlap with
an item that is already placed. The overlap check also performs a check for stackable
items which is one of a few cases when item overlap should be accepted (other cases often
include manipulation with items related to weapons such as ammo and magazines).

Sometimes the grid is part of an equipable item which also serves as a container. In
this case, the grid must be able to save and load its items. This is because when such an
item is equipped to the character, this grid is spawned from a prefab into the inventory
screen. When this item is unequipped, the grid is destroyed. If the items could not be
saved, they would simply be destroyed with the grid. These items are saved in a array of
references, that is being stored by the item itself in its InventoryItem script.

The grid also features two helping functions which are used when reloading firearms or
loading magazines with ammunition. One of these functions serves to find ammunition
items of certain type, by simply checking the entire array of item references and returning
the first found item matching the criteria. The other function attempts to find the best
(fullest) magazine using the same technique.

Lastly there is also a function which finds available space for an item of certain size.

8.3.2 Inventory Item

Figure 8.8: Assortment of different Inventory Items placed in an Item Grid.

61

Inventory items represent the real-life objects within the game. Their implementation is
split into two main files. The InventoryItem script and the ItemData scriptable object.
Inventory Items can take up one or more inventory slots, but just like the Item Grids the
shape of the area they take up is always rectangular.

The Item Data is used to keep static information about objects, that are of the same
type and share certain attributes. It does not hold information about an individual
object (for example whether an item is a magazine is stored in Item Data while how much
ammunition is currently inside it is stored in the Inventory Item script).

Figure 8.9: Example of the Item Data for an Assault Rifle item split into two parts.

There are many different item types (which often overlap) in the game such as:

• Equipment - Items that can be equipped to the player character such as clothing,
weapons or devices.

• Container - Items that are able to hold other items such as backpacks, chest rigs,
pants with pockets and so on.

• Weapon, firearm, magazine, ammo - Items tied to the combat system.

• Stackable - Items, that can be stored as one item, up to a maximum stack count
such as ammunition.

The Inventory Item script implements the functionality of inventory items and it stores
information that are specific to each instance of an item. Information about a specific
instance consists of variables such as current position on grid, how many items are in the
current stack, if the item is equipped and so on.

The general functions available to all Inventory Items are the function to set the basic
item variables and the ability to rotate an item. The rest of the functions available to
items are specific to certain item types.

62

The rotate function works simply by rotating the object in the game by 90 degrees
if the item is not rotated and rotating it back to normal if it is. If the item contains an
Item Subtext, its position has to be updated as well. When retrieving the dimensions of
an object, its rotation has to be considered and therefore if the item is rotated, the values
for width and height are swapped.

Inventory Item script implements functionality and variables for all sorts of different
items. Here are some examples of different item types and functionality provided for them:

• Container - Array of two dimensional arrays of items and a function to save and
load items from grids that belong to this item.

• Stackable - Variable for current stack count and functions to set, subtract, add to
the stack and update the text of the stack.

• Magazines - Variable for current ammo count and functions to load and unload
ammunition from magazines

• Weapons - A large amount of functions for manipulation with magazines, chambers
and firearm functions

Stackable items, magazines and weapons also use an Item Subtext. This is a small text,
always located in the bottom right tile of the item which gives information either about
the amount of items in a stack or the fullness of magazine or a firearm.

8.3.3 Item Highlight

Figure 8.10: Example of the Item Highlight on hover (left), valid placement (center) and
invalid placement (right).

Before an Item is selected a white colored Highlight lets the player properly see which
item is going to be selected on click.

If the player is already holding an item, they can clearly see which tiles will be oc-
cupied after placement. Using red and green color it also shows whether the tiles are
free or occupied. The Highlight has many exceptions to this rule however because some
combinations of overlapping items are valid (for example hovering stackable items of the
same type over each other or hovering a round over a weapon to chamber the weapon).

63

8.3.4 Container Items

Figure 8.11: Container prefabs for Cargo Pants and Small Chest Rig

Container items are equipable clothing items that expand the character’s inventory.
They use a prefab, which contains their name and structure of one or more Item Grids.
The item grids are structured to somewhat simulate the storage space of said items. In the
case of the example above, the Cargo Pants have two large pockets, while the Small Chest
Rig has 6 small compartments for magazines.

These prefabs are created in the Inventory Section in the middle of the screen and
always follow the same order in terms of the type of equipment. This helps to achieve
some sort of consistency. The order is:

1. Chest Rig

2. Torso Top Layer

3. Pants Top Layer

4. Backpack

This ordering is further important because different containers have different capabil-
ities. For example when the player wants to use an item quickly during gameplay without
opening their inventory (for example reloading a magazine), that item has to be placed
in either the chest rig or pockets. Accessing items in the backpack requires the player
to open their inventory. That’s why containers which provide quick access to items are
positioned at the top of the screen.

64

8.3.5 Context Menu

Figure 8.12: The entire possible context menu split into two halves.

The player is presented with this Context Menu, whenever they right-click on an Inventory
Item. This menu is stored as a prefab and is used for different interactions with items. When
the Context Menu is created, the menu decides which buttons should be shown and which
shouldn’t based on the attributes of said item.

Info - All items. Opens the Item Info Window.
Equip - Equipable but unequipped items. Equips the item if the corresponding item

slot is free, otherwise does nothing.
Unequip - Equipped items. Unequips the item, first it tries to place the item into the

character’s inventory. If not possible places item into the container/ground Item Grid. If
that is also impossible, nothing happens.

Open - Container items which are not equipped and not opened. Open the Container
Item Window.

Close - Container items which are not equipped and opened. Closes the Container Item
Window.

Use - Usable items, such as food, drink and medical items.
Attach Magazine - Firearms which use magazines and do not have a magazine in-

serted. This button tries to find the best magazine in both the inventory and container/-
ground grid and inserts it into the weapon. If no magazine was found, nothing happens.

Remove Magaizine - Firearms which use magazines and have a magazine inserted.
This button removes the magazine from the weapon and uses it as the Selected Item.

Chamber Round - Firearms, which have an empty chamber and an open bolt. At-
tempts to find a fitting bullet in the character’s inventory or in the container/ground grid.
If no ammo is found, nothing happens.

Clear Chamber - Firearms, which have a full chamber and an open bolt. Removes
the round from the chamber and uses it as the Selected Item.

Rack Firearm - Firearms, which have an empty chamber and have ammo in the
magazine. Takes one bullet from the magazine and inserts it into the chamber.

Open Bolt - All firearms, opens the bolt/slide/receiver of the firearm if it is closed. If
there is a round in the chamber, it is removed and used as the selected item.

Close Bolt - All firearms, closes the bolt/slide/receiver of the firearm if it is open. If
the has a magazine and ammo in it, this chambers a round.

Load Ammo - Firearms with internal magazines and magazines which are not full.
Fills the weapon’s internal magazine or a magazine with ammo from the inventory or the

65

container/item grid. This function tries to look for ammo until the magazine is either full
or no more ammo was found.

Unload Ammo - Firearms with internal magazines and magazines which are not empty.
Removes all ammo from the magazine and uses it as Selected Item.

Split Stack - Stackable items which have more than one instance of said object in
them. Splits the stack into two halves and the new half is used as the Selected Item.

Destroy - All items. Destroys the item. If the item is a container or a firearm, all
contents are destroyed as well.

8.3.6 Inventory Windows

Figure 8.13: Item Info window (left) and a Container Window (right).

There are two types of inventory windows that can be opened using the Context Menu.
The Item Info window and a Container window.

The Item Info window, which can be opened for all items contains the image of the
item, item’s description, various information about the item depending on the type of
the item, weight and value. Only one info window can be opened per item.

The Container Window can be opened for Container Items that are not currently
equipped. It allows the player to place items into these Containers without the need to
equip them. Only one container window can be opened per item. This is done to circumvent
the need to implement synchronization between different grid instances of the same item.
If the item is moved or equipped the window will automatically close to prevent all sorts
of bugs and exploits (such as storing the item into itself).

Both of these windows can be moved around and closed using the top of the window
which displays the item’s name and an ”X“ button.

66

8.3.7 Item Slot and Equipment Outline

Figure 8.14: Example of Item Slots and Equipment Outline without and with items.

Item Slots are used to equip certain items. They are conceptually similar to the Item Grid
and use functions for item manipulation such as get, grab or place, but instead of using
cells, they simply hold one Inventory Item.

There are total of 14 item slots present in the game. They can be split into 3 categories:

• Clothing

• Weapons

• Devices

Clothing Slots: Head, Chest Rig, Torso Base Layer, Torso Top Layer, Gloves,
Backpack, Legs Base Layer, Legs Top Layer, Socks, Footwear.

Weapon Slots: Primary Weapon, Secondary Weapon
Equipment Slots: Watch, Geiger Counter
Since the Item Slots vary in their size, and the items which they hold cam also vary

in size, the items placed into these slots are visually resized and rotated, to be visually
appealing and resized back when they are removed from the slot.

This section of the inventory also contains the Equipment Outline which shows the
individual items equipped on the player character. This is purely aesthetic. This works
by having an Outline Sprite assigned to items in their Item Data. These sprites are carefully
created in such a way that they do not need to be individually resized and can be simply
swapped.

67

8.3.8 Health Screen

Figure 8.15: Health screen with various injuries on each body part.

The health screen looks exactly like the equipment screen but instead of the equipment
outline, there is an outline showing the current injuries of the character. This outline
shows the current local status effects for each body part and the global status effects.

The player can use local healing items (Clean Bandage, Dirty Bandage, Antiseptic
and Suture Needle by dragging them onto the affected body part. There are also global
healing items (Painkillers and Antibiotics) which the player consumes by using the Use
option in the Context Menu.

For the health screen, I have reused the same Equipment Slots used in the Equipment
section. They are just made invisible and have special behaviour, such as destroying one-use
items and hiding the bandage items.

8.3.9 Inventory Controller

The Inventory Controller script works as an interface between the inventory system and
the rest of the game and also as an interface between the different components of the
inventory system itself. It handles functionality between Item Grids, Item Slots, Inventory
Items, Context Menu and so on.

This script is the most complex and arguably the most important from the entire
inventory system. This script holds all of the high level information about the current state
of the inventory such as what the player has equipped, references to opened windows, what
item is currently selected and many more.

Listing all of the functionality of this script would be overwhelming for this document
but broadly speaking it handles communication between different components mentioned
above by performing checks, controlling edge cases and so on.

It handles spawning of container prefabs and outline sprites when items are equipped,
communicates with the HUD, handles the color and placement of the Item Highlight, opens
the Context Menu and Inventory Windows, handles weapon selection and much, much
more.

68

This script also implements functionality of hotkeys, which provide quality of life
improvements when using the inventory. These hotkeys are:

• Quick Transfer - By Holding Shift by default, the player can quickly transfer items
between the container/ground grid an the inventory grids. If an equipped item is
clicked it is automatically transferred to the inventory.

• Quick Equip - By Holding Alt by default, the player can quickly equip or unequip
items by clicking on them.

• Quick Split Stack - By holding Ctrl by default, the player can quickly split a stack
of items in half.

8.3.10 Firearms

Firearms in BTMC are implemented to reflect their real life functionality as much as pos-
sible. They use magazines, individual rounds, they have to be chambered to fire and so on.
This makes them the most complex type of items in the game and therefore they need
a lot of functionality.

For example, to avoid tedious work with the Context Menu, the player is able to load
magazines into weapons by simply dragging the magazine over the weapon in the
inventory. Rounds can also be dragged over weapons to chamber them or dragged over
magazines to fill them up.

To illustrate the complexity of firearms I have drawn a decision tree which illustrates
all of the different tasks that need to be performed during a quick reload of a firearm that
uses magazines.

Figure 8.16: The decision tree for reloading a weapon using magazines.

It is also worth noting that this tree does not showcase many checks such as when the
player switches weapons during reloading, it does not showcase animation activation,
HUD updates and already uses abstract functions such as finding the best magazine. This
still makes this decision tree a very simplified look at weapon reloading.

69

Chapter 9

Implementation of Animations and
Sounds

9.1 Animations

9.1.1 Character Animations

Both the player character and the NPCs are composed of 4 visible Game Objects: the
Head, the Torso, the Legs and the Firearm Sprite. Each of these objects behaves a bit
differently concerning their rotation, position and sprite sheet animations.

I chose the approach of animating using sprite sheets, because I think it looks really well
with this type of 2D game. It does have a major downside however. For each frame of the
animation, a new, slightly different sprite has to be ”drawn by hand“. This has proven to
be extremely time consuming. Furthermore if the player character wears different clothing
that needs to be visible on the player character, an entirely new set of animations has to
be drawn for that specific type of clothing. At the time of writing of this thesis however,
clothing items are not visible in-game.

As I have no art training and lack the skills to properly draw and shade human anatomy,
the character animations were created in a sort of stop motion capture. I have created
a rough human model in a 3D software named Blender. This human model was created
with an armature, which let me move its limbs in a natural manner. I roughly painted
the model within the software using texture painting. With this set up, I could simply
arrange the the model into one of the frames of the animation I was creating, screenshot
it from above, pixelate it to fit the aesthetic of the game and edit it in any regular paint
software. This process is done a few times for each sprite sheet.

To control which animation should be played at a specific time, I used an Animation
State Machine provided by Unity, which allows me to control the animations by transi-
tioning between states using control variables. This state machine is composed of many
sub-state machines and is frankly too complicated to be reasonably illustrated here.

To have a better control of these animations, the animator of the characters is controlled
by a shared HumanAnimationController script. This script contains methods which play
the correct animations for movement or weapon manipulation and also make sure that ani-
mation sounds are played at the right time. These methods are then called at the correct
time from different scripts (such as the firearm script calling a weapon equip animation
when a new weapon is selected).

70

The Head

The Head Game Object is mostly only rotated and moved in relation to the rest of the
body. Currently, the only exception is when the character us using a long firearm. In
this case, the head’s sprite is swapped for a sprite in which the head is slightly leaning to
the right. The Head always rotates towards the cursor.

When the player character is standing, walking or running, the Head is positioned in
the center of the Player Game Object. When crouched however, the Head has to be
moved slightly in relation to the center of the Player. This movement is done through
the Animator component of the Torso Game Object. When the sprites of the Torso are
changed firing crouching down or standing up, the Head is moved to a new position, so that
it always stays at the end of the neck.

The Torso

The Torso Game Object uses multiple sprite sheets for different actions. Currently ani-
mated actions are the following:

• Walking (standing and crouching)

• Running

• Crouching Down

• Standing Up

• Equipping a long firearm (standing and crouching)

• Equipping a short firearm (standing and crouching)

• Death Animation

There are still many animations that have to be added, such as all weapon manipula-
tion animations. These animations are, at the time of writing of this thesis, replaced by
placeholder animations composed of different frames of the weapon equip animations.

Just like the Head, the Torso also rotates towards the cursor, however it moves only
after the Head has moved in a certain direction for at least 30 degrees. This makes the
character first rotate their head and only after they reach said threshold, they rotate their
body.

Figure 9.1: Torso sprite sheet for walking animation in BTMC.

The Legs

The legs also use multiple sprite sheets for movement animations, just like the Torso. When
the character is standing still, the Legs rotate in sync with the Torso. If the character
us moving, the Legs are rotated in the direction of the movement vector.

71

The Firearm Sprite

The Firearm Sprite Game Object is a part of the character in terms of animation. It is
responsible for animating the currently equipped firearm in the character’s hands. The
Torso weapon animations are played in sync with the Firearm Sprite animations. This is
important to ensure, so that the character is not, for example, shooting with empty hands.
The animations are created to fit each other with a pixel-perfect precision. The Animator
for the Firearm Sprite uses Animator Overrides, which use the same state machine but
replace the animations with different ones, based on the weapon the character is currently
using.

Figure 9.2: Torso sprite sheet for equipping a long weapon and an assault rifle sprite sheet.

Figure 9.3: Final in-game result (together with the head sprite).

9.1.2 Environment Animations

Environment animations are animations of visible objects in the environment. These are
much simpler than character animations. Examples of environment animations are ani-
mated containers, doors or fires.

Figure 9.4: Sprite sheet for an Ammo Crate container.

72

9.2 Sound Design
The sound design in video games is, in my opinion, responsible for a large part of immer-
sion.

9.2.1 Sound Implementation

The implementation of sound is based on a tutorial created by a user named Brackeys [3].
This system uses an AudioManager class which is responsible for swapping audio clips

on different Audio Sources attached to objects within the game.
There are 2 major audio clip categories in BTMC:

• Clips that cannot overlap - These clips will be canceled by other audio clips played
on the same game object. For example weapon manipulation sounds.

• Clips that can overlap - If these clips started playing, they will finish playing. These
are various inventory sounds, gunshots, walking sounds and so on.

9.2.2 Audio Listener

Each scene in Unity should have only one Audio Listener. This Audio Listener is in
most games attached to the Main Camera. In BTMC however, I wanted to implement
directional sound based on the position of the player character.

This was hard to implement using a camera which sees the scene from far up. For
this reason, the audio listener is attached to the player character. If the component was
attached directly to the character however, the sound would also depend on the current
rotation of the player. While this could be more realistic as sounds behind the character
would be quieter, this also created a very confusing experience.

Therefore the Audio Listener is attached to an Audio Listener Game Object which is
attached to the player and always faces the same direction as the camera. This produces
the desired directional sound behaviour.

9.2.3 Randomized pitch

Some audio clips have randomized pitch within a certain range when they play. This is
especially important for sounds like gunshots, which are played in quick succession. If they
did not have randomized pitch, they would sound extremely unrealistic as real gunshots
fired from the same weapon do not sound the same.

9.2.4 Sound recording

I wanted to record as many of my own audio clips as possible. I managed to record audio
for some of the weapon sounds, inventory sounds, sounds for item interaction and so
on. Despite this, there were sounds I couldn’t record as I either did not have access to
those specific items or good enough replacements (pump shotgun) or I did not have good
enough microphone to records the sounds in a satisfactory quality (gunshots).

The sounds I couldn’t capture myself were downloaded from a website called Pixabay,
which holds a large range of royalty free sounds for both personal and commercial use
without the need for mention of their site or the creators as a source.

The sounds I did record were cleaned of background noise, cut and edited using a free
audio editing software called Audacity. Despite using a relatively cheap microphone for

73

recording, the audio sounds, in my opinion, unexpectedly good and, in many cases, is much
better than the audio I downloaded from the internet.

Figure 9.5: Photos of the recording of a pistol rack (left) and empty casings hitting a
wooden floor (right).

74

Chapter 10

User Testing

Even though BTMC is, at the time of writing of this thesis, far from a finished product, user
testing and overall input of potential customers is an important aspect of the development
of any video game or a software product.

User testing for BTMC was done on a sample of 10 people. This is quite a small sample
but considering the very early stage of development, I was not yet comfortable providing
the game to a larger audience. These people were given:

• A rough description of the game’s mechanics, such as combat, inventory screen,
health system and so on.

• A list of known bugs which are easy to find but are either rather hard to remove or
they are not too detrimental to gameplay

• A list of features that were not implemented and their lack of implementation could
be mistaken for a bug

• The control scheme of the game

10.1 Demo Level
Considering that BTMC does not yet have enough features and content to be played as
originally intended, I have created a demo level. This demo level is supposed to serve as
a demonstration of the implemented mechanics mentioned in chapters 5 - 9.

This level is created as a singular scene, composed of multiple buildings populated with
hostile NPCs. The player is spawned in a small house in the center of the map. In this
house, there are a few pre-determined starting items such as one container item, so that
the player can utilize the inventory, basic healing items and a firearm with ammunition.

The end goal of this level is to simply survive for as long as possible. The player
can try to clear buildings, which periodically re-spawn enemies and loot. The player can
then obtain resources by looting either container objects within those buildings or the dead
bodies of killed NPCs. When the player character dies, they are shown a death screen with
the cause of death and the amount of time they survived for.

75

10.2 Bug Reports
One of the most important reasons user testing is needed in early development is the
discovery of bugs. When there is only one person testing the video game, especially when
the person is a developer of the game, they might get a figurative tunnel vision. What
this means is that they may focus on certain mechanics, where they expect most bugs and
not explore and test other parts of the game.

This also allows for the game to be tested on a variety of hardware and operating
systems, which can reveal bugs and performance issues that may be unique to certain
configurations.

In the case of BTMC however, there were hardly any bugs reported by the players.
Most of these bugs were connected to the game being played in different resolutions,
which causes misalignment of UI elements.

10.3 User Input
Besides bug reports, getting input about the playability of the game is also quite im-
portant. Since the people who tested the game were made aware of the early stage of
development, they understood that balance, difficulty and amount of content were not the
priority of testing. There were however mentions and proposals about different quality of
life improvements, such as items automatically stacking when quickly transferred into
the inventory.

10.4 Performance

10.4.1 FPS

Frames per second or FPS is one of the most commonly used metrics to describe how
well a game performs on different devices. For computer games, an FPS count over 60
is in most cases considered satisfactory. On lower FPS counts, the game may appear
unresponsive or the player’s input may feel ”sluggish“.

When the FPS count drops below 24, individual frames become noticeable, which
results in a choppy and fragmented appearance of the game, making it difficult for the
player to have a smooth and immersive experience.

In the table below are listed different middle-end and high-end computers on which the
game was tested, together with observed FPS counts.

76

CPU GPU RAM OS FPS Count
Intel Core i5 - 4460 AMD Radeon 8GB Windows 10 90-1103.2 GHz RX 470
Intel Core i7-9750H NVIDIA GeForce 16GB Windows 11 90-1102.3 GHz GTX 1050

Intel Core i5 - 4670K NVIDIA GeForce 16GB Windows 10 100-1203.4 GHz GTX 1070
Intel Core i7-11800H NVIDIA GeForce 16GB Windows 10 150-2102.6 GHz RTX 3070
AMD Ryzen 5 6600H NVIDIA GeForce 16GB Windows 11 140-1803.3 GHz RTX 3060
AMD Ryzen 5 3600X NVIDIA GeForce 16GB Windows 10 150-2003.8 GHz RTX 3080
AMD Ryzen 7 5800X NVIDIA GeForce 32GB Windows 11 220-2503.8 GHz RTX 2070

AMD Ryzen 7 5800X3D NVIDIA GeForce 16GB Windows 11 180-2004.5 GHz GTX 1070Ti
AMD Ryzen 9 5900X NVIDIA GeForce 32GB Windows 11 180-2203.7 GHz RTX 3080

I have also decided to test the game on old, low-end devices which were not designed
to run video games.

CPU GPU RAM OS FPS Count
AMD Athlon II X2 250e AMD 760G 4GB Windows 7 < 103.00GHz (Integrated)

Intel Celereon CPU Intel HD Graphics 4GB Windows 10 20-30N3060 1.6GHz (Integrated)

I have identified NPCs as the main source of lower performance. Currently, NPCs are
quite badly optimized, especially regarding pathfinding. In the current rendition of the
demo level, there are a maximum of 29 NPCs active at any given time. In later versions of
the game, there is likely to be some sort of chunk system implemented. In this system,
the map is split into different areas or chunks. This way, each NPC or any performance
intensive part of the game can be assigned to a chunk. Using this system, it would be
possible to deactivate them when the player is not within that chunk of the map. This
would of course save a lot of computer resources, if done properly.

10.4.2 Rapid Access Memory

Another important metric to consider is the usage of Rapid Access Memory or RAM. I
have analyzed the RAM usage of BTMC using an experimental package from Unity called
Memory Profiler. This tool allows developers to take snapshots of RAM when the game
is running and see which parts of the game take up the most space.

Through this tool I have found, that at the time of writing of this thesis, BTMC uses
roughly 200MB of RAM during runtime. This number starts a bit smaller but due to the
loading of resources (such as loading an image of an item, when it is spawned for the first
time), it slowly rises.

77

The largest chunk of memory (currently roughly 140MB) is used by Render Textures.
These include the render textures used in the FOV/FOW system (see 6.3), but also Render
Textures created by Unity, which are needed to render the scene.

Other considerable chunks of memory are consumed by regular Textures such as the
ones used for items and UI elements. Since BTMC is designed in something of a pixelated
art style, these textures do not consume too much memory individually, but they do add
up during gameplay.

78

Chapter 11

Conclusion

In conclusion the process of design and implementation of this video game has been quite
a learning experience.

Firstly I would like to address the current state of the game. I avoid using the term

”final product“ because the development of BTMC will continue beyond the scope of
this thesis. There were a lot of things planned for BTMC that I never had any chance
of completing on time. The project was simply too ambitious from the beginning. This
was one of my first learning experiences in this project. Learning to manage one’s
expectations about a project and being able to say no to ideas about new
features (even one’s own ideas).

Some of the features were greatly expanded in their functionality compared to what
was originally planned. Features such as the Inventory System or the Firearm Functionality
turned out better than expected but of course, this took time away from all the other
features that were never implemented due to time constraints. Features such as melee
combat, non-hostile NPCs, character creation, RPG elements, quests and much, much
more.

I originally planned to focus on the technical side of the game first and after that
was done, I planned to focus on the creation of Assets, Sounds and the like. During the
implementation I have realized that the art and technical side of the game go hand-in-
hand and it is very hard to implement one after the other. This is because, without some
major prior experience with game development, it is quite hard to have an idea about
implementation of certain technical aspects without a reference to what the final game will
look like.

I have also severely underestimated the importance of art in video games. Until this
project I looked at video games as a product of programming. Now I feel like programming
is definitely a smaller portion of a video game than I originally thought. Even on a game,
as visually simple as BTMC, I spent dozens and dozens of hours drawing items and
objects, creating animations, mixing sounds and other things that have next to nothing to
do with programming. From now on I am looking at games, first and foremost, as pieces
of art. I feel like artists, writers, sound designers, music composers, animators and other
non-programming roles really do not receive enough credit in the video game industry,
despite being such a huge part of every single video game.

On the technical side of things, I have learned the importance of good code segmen-
tation and compartmentalization, creation of proper APIs for individual classes and
reusable code. Many times throughout the development I have written a piece of code
that applied to a specific problem, only to need, pretty much the same code for a different

79

application. This meant either rewriting of the original implementation to accommodate
both use cases or copying functionality from the original code, to the new one. Another
large problem was the considerable difference between my programming skills in the be-
ginning of the project and towards the end. In the beginning I was much less experienced,
lacked knowledge about different built-in Unity methods and overall structure of C#. This
means that the older code feels like it was written by someone else and when I needed to
apply the functionality of scripts that were months apart in creation, it was not an easy
task.

Lastly I would like to address the importance of planning. Experienced programmers
or project leaders always mention how quite a bit of time should be spent on planning as it
will save a great deal of time during development. While this is true, I would like to point
out that this does not necessarily apply to inexperienced people. While I could have spent
longer planning BTMC, and it may have resulted in more realistic expectations, planning
for things you have little to no experience with is mostly futile. Many of my plans were not
met simply because I had no idea how some of the features could be implemented, what
were the limitations of the software or how much time certain aspects of development
take. If I planned the game and its development again I surely would prepare a much more
realistic plan.

Despite all of the problems listed above I am still very happy with the results and I
plan to continue my work on BTMC in the future months and years, until it becomes the
game that I originally envisioned and more.

80

Bibliography

[1] Arm. Gaming Engines [online]. 2022 [cit. 2023-1-18]. Available at:
https://www.arm.com/glossary/gaming-engines.

[2] Beresford, P. A history of RPGs. Den Of Geek [online]. january 2011, [cit.
2023-1-19]. Available at: https://www.denofgeek.com/games/a-history-of-rpgs/.

[3] Brackeys. Introduction to AUDIO in Unity [online]. May 2017. Available at:
https://www.youtube.com/watch?v=6OT43pvUyfY.

[4] Cheema, R. 5 Biggest Video Game Companies In The World. Insider Monkey
[online]. november 2022, [cit. 2023-1-16]. Available at:
https://www.insidermonkey.com/blog/5-biggest-video-game-companies-in-the-
world-1090614/?singlepage=1.

[5] Cobbett, R. The history of RPGs. PC Gamer [online]. may 2021, [cit. 2023-1-19].
Available at: https://www.pcgamer.com/the-complete-history-of-rpgs/.

[6] CodeMonkey. A* Pathfinding in Unity [online]. October 2019. Available at:
https://www.youtube.com/watch?v=alU04hvz6L4.

[7] CodeMonkey. Field of View Effect in Unity (Line of Sight, View Cone) [online].
October 2019. Available at: https://www.youtube.com/watch?v=CSeUMTaNFYk.

[8] Cornett, B. The Post-Apocalyptic Genre: Definition, Characteristics, Examples
and More. BRANDON CORNETT [online]. october 2022, [cit. 2023-1-19]. Available
at: https://www.cornettfiction.com/post-apocalyptic-genre-explained/.

[9] Deckhead. How Long Does It Take To Make A Video Game? HP Development
Company [online]. february 2020, [cit. 2023-1-18]. Available at:
indiegamedev.net/2020/02/05/how-long-does-it-take-to-make-a-video-game.

[10] GregDevStuff. Grid Inventory in Unity Tutorial Tile based inventory in Unity
[online]. October 2021. Available at: https://www.youtube.com/watch?v=2ajD1GDbEzA.

[11] Houghton, D. Why are there so many survival games? And why do we love the
pain they bring? GamesRadar+ [online]. october 2014, [cit. 2023-1-16]. Available at:
https://www.gamesradar.com/why-are-there-so-many-survival-games-and-why-do-
we-love-pain-they-bring/.

[12] North, J. A Brief History of the RPG. PC Gamer [online]. april 2020, [cit.
2023-1-19]. Available at: https://medium.com/super-jump/exploring-video-game-
genres-role-playing-games-5dd55221d16d.

81

https://www.arm.com/glossary/gaming-engines
https://www.denofgeek.com/games/a-history-of-rpgs/
https://www.youtube.com/watch?v=6OT43pvUyfY
https://www.insidermonkey.com/blog/5-biggest-video-game-companies-in-the-world-1090614/?singlepage=1
https://www.insidermonkey.com/blog/5-biggest-video-game-companies-in-the-world-1090614/?singlepage=1
https://www.pcgamer.com/the-complete-history-of-rpgs/
https://www.youtube.com/watch?v=alU04hvz6L4
https://www.youtube.com/watch?v=CSeUMTaNFYk
https://www.cornettfiction.com/post-apocalyptic-genre-explained/
indiegamedev.net/2020/02/05/how-long-does-it-take-to-make-a-video-game
https://www.youtube.com/watch?v=2ajD1GDbEzA
https://www.gamesradar.com/why-are-there-so-many-survival-games-and-why-do-we-love-pain-they-bring/
https://www.gamesradar.com/why-are-there-so-many-survival-games-and-why-do-we-love-pain-they-bring/
https://medium.com/super-jump/exploring-video-game-genres-role-playing-games-5dd55221d16d
https://medium.com/super-jump/exploring-video-game-genres-role-playing-games-5dd55221d16d

[13] Pavlovic, D. Video Game Genres: Everything You Need to Know. IndieGameDev
[online]. july 2020, [cit. 2023-1-19]. Available at:
https://www.hp.com/us-en/shop/tech-takes/video-game-genres.

[14] Pérez Latorre Óliver. Post-apocalyptic Games, Heroism and the Great Recession.
Game Studies [online]. december 2019, vol. 19, no. 3, [cit. 2023-1-19]. ISSN
1604-7982. Available at: http://www.gamestudies.org/1903/articles/perezlatorre.

[15] Research, G. V. Video Game Market Size & Share Growth Report, 2030 [online].
2022 [cit. 2023-1-16]. Available at:
https://www.grandviewresearch.com/industry-analysis/video-game-market.

[16] Santzo84. Unity 2019 - 2D Fog Of War Tutorial using Render Textures and Shaders
[online]. October 2019. Available at: https://www.youtube.com/watch?v=MUV9Nr-cIGU.

[17] Sibony, J. The Best 7 Gaming Engines You Should Consider for 2022. Incredibuild
[online]. february 2021, [cit. 2023-1-18]. Available at:
https://www.incredibuild.com/blog/top-7-gaming-engines-you-should-consider.

[18] StudyTonight. Game Engine and History of Game Development [online]. 2022 [cit.
2023-1-18]. Available at:
https://www.studytonight.com/3d-game-engineering-with-unity/introduction.

[19] Sullivan, S. Why Are Survival Games Popular? MMOs [online]. october 2015, [cit.
2023-1-16]. Available at:
https://mmos.com/editorials/why-are-survival-games-popular.

[20] Townley, D. Gaming’s singularity: how games media is taking over the world. The
Drum [online]. may 2022, [cit. 2023-1-16]. Available at:
https://www.thedrum.com/opinion/2022/05/16/gaming-s-singularity-how-games-
media-taking-over-the-world.

[21] Wijman, T. The Games Market and Beyond in 2021: The Year in Numbers. Newzoo
[online]. december 2021, [cit. 2023-1-16]. Available at: https://newzoo.com/insights/
articles/the-games-market-in-2021-the-year-in-numbers-esports-cloud-gaming.

82

https://www.hp.com/us-en/shop/tech-takes/video-game-genres
http://www.gamestudies.org/1903/articles/perezlatorre
https://www.grandviewresearch.com/industry-analysis/video-game-market
https://www.youtube.com/watch?v=MUV9Nr-cIGU
https://www.incredibuild.com/blog/top-7-gaming-engines-you-should-consider
https://www.studytonight.com/3d-game-engineering-with-unity/introduction
https://mmos.com/editorials/why-are-survival-games-popular
https://www.thedrum.com/opinion/2022/05/16/gaming-s-singularity-how-games-media-taking-over-the-world
https://www.thedrum.com/opinion/2022/05/16/gaming-s-singularity-how-games-media-taking-over-the-world
https://newzoo.com/insights/articles/the-games-market-in-2021-the-year-in-numbers-esports-cloud-gaming
https://newzoo.com/insights/articles/the-games-market-in-2021-the-year-in-numbers-esports-cloud-gaming

	Introduction
	Video Game Genres
	Related Game Genres
	Inspiration from other video games

	Unity Game Engine
	Game Engines
	Unity

	Game Design of BTMC
	Genre
	Game Engine Choice
	In-Game World
	RPG Elements
	Survival Elements
	Combat System
	Non-Playable Characters
	User Interface

	Implementation Basics
	Project Setup
	Camera System
	Objects

	Player Implementation
	Player Controls
	Player Status
	Field of View and Fog of War

	Implementation of NPCs and Ranged Combat
	Non-playable Characters
	Ranged Combat

	User Interface Implementation
	Menu
	HUD
	Inventory Screen

	Implementation of Animations and Sounds
	Animations
	Sound Design

	User Testing
	Demo Level
	Bug Reports
	User Input
	Performance

	Conclusion
	Bibliography

