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Abstract

Bionic prostheses are commonly used to help patients perform everyday tasks more effi-
ciently. They incorporate various methods to obtain input from the user and use electric
motors to control fingers and/or other parts of the limb. Unfortunately, the rejection rates
are averaging 44% [64], meaning almost half of the patients stop using the prosthesis and
put it away. The Z-Arm prosthesis from the company Z-Bionics attempts to tackle the
low acceptance rate by logging diagnostic data and helping the patient when improper us-
age or possible prosthesis defect is detected. However, since patient visits are not often
enough to provide engineers with recent diagnostics, a remote way of obtaining them must
be designed. A mobile application utilizing Bluetooth to communicate with the prosthesis
has been implemented as a solution. An extension of an internal web application with
new pages, API endpoints and a MongoDB database accompanies it. While the testing is
still ongoing and results are yet to be measured, first impressions of staff and patients are
positive, indicating a possible improvement in the comfort of prosthesis usage.

Abstrakt

Bionické protézy se bézné pouzivaji k tomu, aby pacientiim pomohly efektivnéji vykonavat
kazdodenni ¢innosti. Zahrnuji rizné metody ziskavani vstupu od uzivatele a pouzivaji elek-
tromotory k ovladani prsti a/nebo jinych ¢éasti koncetiny. Bohuzel mira odmitnuti protézy
dosahuje v pruméru 44 % [64], coz znamend, ze témér polovina pacientii prestane protézu
pouzivat. Protéza Z-Arm od spolecnosti Z-Bionics se pokousi fesit nizkou miru akceptace
mimo jiné tim, Ze zaznamenava diagnostické tidaje a pomahd pacientovi, kdyz detekuje
nespravné pouzivani nebo moznou vadu protézy. Protoze vSak navstévy pacientil nejsou
dostatecné casté, aby specialisté ziskali aktualni diagnostické udaje, je tfeba navrhnout
vhodny zpiisob jejich ziskavani na dalku. Jako feseni byla implementovana mobilni{ aplikace
vyuzivajici Bluetooth ke komunikaci s protézou doprovazena rozsifenim interni webové ap-
likace o nové stranky, koncové body API a databazi MongoDB. Ackoli testovani s pacienty
stale probihd, prvni dojmy zaméstnancu a pacientl jsou vesmeés pozitivni a naznacuji mozné
zlepseni komfortu pri pouzivani protézy.
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Rozsireny abstrakt

Amputace koncetiny méa zavazny dopad na kazdodenni zivot pacienta, ktery je mnohem
vétsi, nez si vétsina z nas dokaze predstavit. Amputace mohou byt zptisobeny vrozenymi
vadami, vétSina je ovSsem zapri¢inéna urazem, napiiklad pfi préaci se stroji nebo pii do-
pravni autonehodé [66]. Protézy se k usnadnéni béznych ¢innosti pacientti s amputaci
pouzivaji jiz po staleti, priemz prvni zndmé protéza pochazi jiz ze 3. stoleti pf. n. 1
[22]. Nejvétsi rozsiteni ovSem zaznamenaly po prvni svétové vilce, a to zejména kvili vétsi
pravdépodobnosti preziti diky lepsi zdravotni péci. I pres vSechen vyvoj na poli bionickych
protéz, zejména v poslednich dvou dekadach, mira prijeti protézy stale zlustava na velmi
nizké tirovni, a to na pouhych 66 % [64].

Cesky startup Z-Bionics, ktery se specializuje na vyrobu bionickjch protéz na miru,
pracuje na zpusobech, jak miru prijeti zvysit. Jednou z cest, jak toho dosahnout, je odhalit
potencionalni problémy s protézami nebo nevhodné pouzivani diive, nez povedou k tomu,
Ze pacient protézu odlozi a uz ji znovu nepouzije. Proto je protéza horni koncetiny Z-Arm
vybavena funkci sbéru diagnostickych dat. Bohuzel vzhledem k tomu, ze navstévy pacientt
se konaji zpravidla jen jednou za nékolik mésicti, ziskani a vyhodnoceni diagnostickych
dat muze nastat pozdé, a proto je tfeba navrhnout a implementovat zpusob pribézného
ziskavani téchto dat vzdélené.

P1i vybéru nejlepsiho zpiisobu ziskavani diagnostickych dat bylo zvazeno nékolik feseni.
Pattilo mezi né pridani modulu pro IoT na PCB desku protézy, vyvoj chytré USB C nabi-
jecky, pomoci které by se protéza nabijela a ktera by byla pripojend k internetu prostied-
nictvim Wi-Fi nebo mobiln{ aplikace vyuzivajici Bluetooth. Nakonec byla zvolena mobilni
aplikace, protoze nevyzadovala hardwarové zmény na protéze ani vyvoj nového hardwaru,
jako v pripadé chytré nabijecky. Toto Teseni by tudiz Slo pouzit i pro jiz vyrobené protézy
a vyzadovalo by pouze aktualizaci firmwaru. DalSim benefitem mobilni aplikace, ktery se
nakonec ukazal pro pacienta v kratkodobém horizontu dokonce nejprinosnéjsim, jsou dalsi
funkce, které mobilni aplikace miize obsahovat, zejména konfigurace protézy.

Dalsim prvkem bylo API rozhrani, do kterého aplikace odesila ziskand diagnosticka
data. Vzhledem k tomu, ze jsme jiz méli nasi interni aplikaci Z-Bionics Hub, kterou jsme
pouzivali hlavné pro inventuru zasob, rozhodl jsem se ji rozsirit o dalsi funkce, které by
umoznily zpracovani a vizualizaci téchto dat.

Vysledkem je mobilni aplikace napsand nad frameworkem .NET MAUI, ktera komu-
nikuje pfes Bluetooth s protézou a vyuziva CBOR pro snizen{ velikosti zprav, API rozhrani
a rozsiteni webové aplikace Z-Bionics Hub o nové stranky pro spravu protéz a vizualizaci di-
agnostickych dat. Mobilni aplikace umoznuje kromé sbéru diagnostickych dat i konfiguraci
protézy. Nastavovat lze chovani protézy v jednotlivych rezimech — tzv. gripech, ukladani po-
jmenovanych predvoleb, nastaveni citlivosti senzorti, jasu a automatického vypinani. Déle
aplikace duplikuje moznosti bézné dostupné stisknutim tlacitek na protéze (spusténi/vyp-
nuti, zména rezimu, pohyb zapésti nebo loktu). API rozhrani je zabezpeceno pomoci JSON
Web Tokenu (JWT) a umoznuje nahravani diagnostickych dat do databaze. Backend byl
rozsifen o druhou databazi dedikovanou pro diagnostickd data — MongoDB. Kolekce v
databazi jsou nastaveny v rezimu TimeSeries. Webova aplikace nasledné tato data vizual-
izuje prostfednictvim graft.

Testovani nékterych ¢asti aplikace je realizovano formou automatizovanych unit a end-
to-end testt. Mobilni aplikace a webové vizualizace byly testovany ruc¢né. Na testovani
se kromé autora podileli dalsi zaméstnanci Z-Bionics a bylo zahajeno testovani s pacienty,
kterého se v dobé psani této prace Ucastni jeden pacient, v brzké dobé se nicméné ocekava
zapojeni dalsich pacientu. Testovani s pacienty potrva nékolik mésicl, tudiz zatim nelze



uvadét konkrétni zavéry, ovsem prvni dojmy pacientti ohledné mobilni aplikace jsou vesmeés
pozitivni, coz naznacuje mozné zlepseni komfortu pii pouzivani protézy.
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Chapter 1

Introduction

Having a limb amputated is a life-changing event with consequences more significant than
most of us imagine. Limb amputation affects millions of people worldwide. In the United
States alone, 550,000 Americans were living with an upper extremity amputation in 2005
[71]. Bionic prostheses are commonly used to help patients perform everyday tasks more
easily. They have been used for centuries; however, despite the significant development
after the 1st and 2nd World Wars, upper limb prostheses have a notably low acceptance
rate, averaging 66% [71].

One of the ways to increase the acceptance rate is to gain an insight into how each patient
uses their prosthesis and to monitor the prosthesis’ state, detecting and dealing with possible
issues before they result in the patient’s dissatisfaction, which might ultimately result in the
patient putting the prosthesis away and never using it again. Since patient visits only occur
every few months, the sole diagnostics collection is not sufficient, and a way of obtaining
them remotely needs to be designed and implemented.

The aim of this thesis is, therefore, to propose a solution for obtaining the diagnostic
data, implement it and test under real-life conditions. To achieve this, I have collaborated
with a company called Z-Bionics, a Czech startup that specializes in making custom-made
bionic prostheses and allows me to implement the solution in a real product and test it
with real devices and patients to ensure that it brings expected benefits.

The thesis begins with research into the history of bionic prostheses, summarizes the
current state with emphasis on myosignal acquisition and provides a brief overview of the
Z-Bionics Z-Arm prosthesis in Chapter 2. Chapter 3 continues with research into the
processing and visualization of healthcare time series data and related GDPR specifics and
also describes ways of visualizing obtained data. Target groups and their needs are analyzed
in Chapter 4, and so is the current state of the Z-Arm prosthesis and relevant Z-Bionics
tools. A solution consisting of a mobile application communication with the prosthesis via
Bluetooth and changes to the Z-Bionics Hub, its databases and API are proposed in Chapter
5. Chapter 6 describes the implementation process, used frameworks and libraries, and any
noteworthy deviations from the proposed solution. Implemented changes were tested using
automated tests, manually by the author, and by Z-Bionics employees and patients who
use the Z-Arm prosthesis in Chapter 7.



Chapter 2

Bionic Prostheses

A bionic prosthesis is an artificial limb that closely mimics a real limb’s natural movements
and functions [2]. It incorporates a range of sensors and motors that enable it to respond to
the user’s commands. Most common prostheses are of lower limbs due to the considerably
more significant number of patients suffering from lower limb amputation [71] and their
relative simplicity compared to upper arm prostheses. This thesis will, however, focus on
the upper arm’s bionic prostheses.

2.1 History of Bionic Prostheses

The first known prostheses date to the 3rd Century BC, when a Roman general, Marcus
Sergius, lost a hand in the Second Punic War and had an iron prosthesis made for him,
which enabled him to return to battle [22]. Early prostheses were relatively simple, usually
made of wood or iron, optionally covered with leather, and often designed for a particular
use (holding a shield, for Example). The primary cause of the prolonged development of
prostheses in Ancient history and the Medieval Ages was little need for them. Due to the
state of Medicine, amputation of a limb used to be, in most cases, fatal, with the cause of
death being an infection or haemorrhage that followed the initial injury [22].

A more advanced example from the 16th Century was a set of prostheses made for
a German mercenary called Goetz Von Berlichingen, one of which offered independent
movement of phalanges and opposition of thumbs, allowing the knight to hold the horse’s
rein [63]. The demand for prostheses spiked after World War I and II due to a large number
of veterans suffering devastating extremity injuries [83]. Upper limb prostheses created in
the early and mid 20th Century mainly were not built for cosmetic purposes but were
instead designed for practical use, often consisting of a base part that was attached to the
body and that contained a universal socket and multiple attachments tailored for a specific
use that could be attached to the socket [49].

The first myoelectric prosthesis was developed by Reinhold Reiter in 1948 [83]. Electric
motors actuated it, and the myosignal was obtained using SEMG signals. sSEMG sensors
were placed on the remaining muscles (usually biceps or triceps), and their tightening was
used for prosthesis control. The prosthesis, however, was not portable and was designed
to be used as a worktable tool plugged into a power outlet. Unfortunately, this prosthesis
was not clinically or commercially adopted [65]. Despite providing more intuitive controls
over body-powered prostheses, early myoelectric prostheses had significant drawbacks that
severely affected their acceptance rate by patients. These include being considerably heavier



than the natural limb, providing no feedback, and forcing the patient to visually check the
prosthesis. Furthermore, they were prone to accidental activation that could result in
dropping a grasped object. The majority of these drawbacks persist even today [69].

In the early 2000s, targeted muscle reinnervation (TMR) and targeted sensory rein-
nervation (TSR) attempted to tackle the lack of feedback [39]. It is a surgical procedure
that consists of denervating a small area of skin and then reinnervating it with fibres of
remaining hand nerves [28]. When such an area is touched, it provides the patient with a
sense of a missing limb being touched [55]. This is then used to provide feedback to the
user, allowing for distinguishing multiple levels of force, grasped object size, and density
[39].

In recent years, other ways of improving the prosthesis wear comfort and use intuitive-
ness are being tested and implemented in new prostheses. These include using lightweight
3D-printed materials for reduced weight [12], pattern-recognition-based myoelectric control
[11], and can also incorporate neural networks [80].

2.2 Current State of Bionic Prostheses

Today’s upper limb bionic prostheses feature advanced myosignal acquisition and elec-
tromechanical control of fingers. Both custom-made and serially produced prostheses are
available, offering a range of biosignal acquisition methods and supplementary sensors for
improved command recognition [72]. 3D printing and composite materials are commonly
used during manufacturing, allowing for considerably lighter prostheses that improve user
comfort by weighting similarly to a natural arm. Some experiments incorporate a neuro-
musculoskeletal interface, which is directly connected to the bone using an osseointegrated
implant to solve issues related to traditional socket suspension. Implanted electrodes pro-
vide bi-directional communication with the prosthesis [57].

Bionic prosthesis control methods can be split into neuromuscular (myosignals), neural,
and brain signals. There are also other, rather unusual, ways of control (for Example, using
IMU (Inertial measurement unit) sensors, Voice control, etc.). The most commonly used
method is the myosignal acquisition, which has been used since Reinhold Reiter’s invention
as described in 2.1 [48]. Figure 2.1 briefly overviews various techniques for controlling a
bionic prosthesis. Section 2.2.1 describes some of the techniques depicted.



!oSed

3%

B LD- Electromyography B CElectroencephalography IMU
T~
- ] HD - Electromyography ;3: = @ Functional Near-Infrared Voice
= Fi h: (= &5
g - : orc:myograp Yy ) =8 B ntraneural Spectroscopy Tongue/Feet
b E Mechanomyoeraphy, é‘g @ extraneural
§ S - Sonomyography E g Computer Vision
o =
z [ | Magnetomyography § Sl
v [ | Optical Myography = .

g Optical sensor
2 . Near Infrared Spectroscopy

[ ] Electrical Impedance Tomography

. Capacitance Sensing

B  Wyokinetic control
w B Electrocorticography
>
(] B ntracortical Neural Signals
<
> o |8 Implantable
2 =
e = | Percutaneous electrodes
&' LEGEND
(] ] TMR B rnp B siosignals
o . Alternative input source
g B  CGineplasty Integrative input source
(%]

Figure 2.1: Overview of available signal acquisition methods'[48]

2.2.1 Myosignal Acquisition

Myosignal can be acquired in a number of ways, both invasive and non-invasive, each
offering different advantages and disadvantages. Most important differences include signal
sensitivity, muscle cross-talk (detecting activity of surrounding muscles that we do not want
to measure), other forms of interference, wear comfort, long-term usage difficulties, etc. The
oldest and, to this day, most commonly used myosignal acquisition method is using surface
electromyography (SEMG) sensors [44]. An EMG sensor is a compact device with two
or three electrodes and is non-invasively placed on the skin [43]. It captures the electric
potential that muscle cells generate as they contract [58]. The sensor usually consists of
two electrodes that are placed on the skin above the muscle that is being measured. The
sensor then measures the voltage difference between electrodes [77]. Ideally, two sensors
are placed on antagonist muscles, which increases accuracy and enables easier filtering of
crosstalk and other interference [48].

EMG offers a comfortable way of measuring myosignal and is suitable for use in pros-
thetics thanks to its compact size and small energy requirements; however, it is important
to recognize its drawbacks because they severely affect the accuracy of measurement. Due
to the EMG sensor being placed on the skin, it suffers from skin impedance, sweat, and
electrode shift [13]. Additionally, deep muscles cannot be reliably measured, which is espe-
cially problematic for amputees as their muscles on the residual limb degrade as a result of
very little activity [48]. Commercially available EMG sensors include Myoscan SA9503M
[8], Biometrics Ltd.’s SX230 [9], and Elemyo’s MYO v1.4 [15]. They differ in dimensions,

Tmage used with permission by Copyright Clearance Center, Inc. on behalf of the Rightsholder.



weight, electricity consumption, sensitivity, and the range of frequencies they are able to
capture; however, considering that the captured signal requires additional processing and
filtering in order to be usable regardless of the sensor used, the most important differences
are the dimensions and weight because they affect both patient comfort and restrict the
design of the socket and prosthesis [82].

A different approach that aims to obtain EMG signals more precisely and reliably is
invasive electromyography (iIEMG). Unlike SEMG, electrodes are implanted directly into
muscles during a surgical procedure using either needles or wires as electrodes [24]. While
the common sEMG drawbacks, such as muscle crosstalk, sweat, and electrode shift, are
greatly mitigated, the need for surgery and the implants being connected to the prosthesis
by a wire bring significant challenges, such as increased discomfort in the form of pain and
a risk of infection and other complications related to the surgical procedure [48]. Therefore,
iEMG is more suitable for short-term diagnosis and research, where precision is crucial, and
infection risk resulting from daily usage is greatly reduced [24, 48].

As described in Section 2.1, another method that further exploits electromyography is
targeted muscle reinnervation (TMR) and targeted sensory reinnervation (TSR). In TMR,
the remaining limb nerves that originally controlled the muscles of an amputated limb are
surgically redirected to nearby muscles. The nerves then grow into the muscles, and when
the patient thinks about moving the missing limb, the signals from the brain are picked
up by the reinnervated muscles [47]. Then, SEMG sensors obtain myosignal, which is then
used for prosthesis control. The capabilities of TMR are very dependent on the individual
patient. The TMR has the drawbacks of both sEMG and iEMG because surgery is necessary
to perform the reinnervation [76]. On the other hand, TSR focuses on providing sensory
feedback to the patient by restoring a sense of touch [55].

Other myosignal acquisition techniques include forcemyography (FMG), which uses
force sensors that detect muscle contraction [19]; mechanomyography (MMG), which is
based on detecting vibrations generated by contracted muscles [16]; or sonomyography,
which detects changes in muscle thickness when contracted using ultrasound [54]. Alterna-
tively, a bionic prosthesis can be controlled using other types of inputs, for Example, voice
commands [7], accelerometers, gyroscopes, or magnetometers [40]. These input sources
can be used as a primary control source; however, in most cases, they only supplement
myosignals to enhance the intuitiveness and accuracy of the myosignal acquisition [7, 40].

Despite the aforementioned highly advanced methods, such as TMR and TSR, non-
invasive sEMG sensors still prevail as the most common myosignal input method for pros-
thetics [44]. One of the prostheses using SEMG sensors to obtain myosignal is the Z-Bionics
Z-Arm. The following text will focus on this prosthesis.



2.3 Z-Arm Prosthesis

The Z-Arm is a bionic upper arm prosthesis. It is manufactured individually for each
customer and incorporates 3D scanning and printing for perfect fit. Figure 2.2 shows a
render of a Mk3 version of the Z-Arm prosthesis, and Figure 2.3 captures a process of
3D scanning a patient’s residual limb. A 3D scan of a healthy arm is captured as well
and serves as a reference when tailoring the prosthesis to match the size of the healthy
arm. The prosthesis is attached to the limb using a socket that is selected by a physician
and custom-made by an orthopaedic company? [82]. The finished prosthesis mounted on a
socket can be seen in Figure 2.4.

Figure 2.2: Z-Arm Mk3 prosthesis [82]

2The company is called ,ortopedickd protetika® in Czech



Figure 2.3: 3D scanning a client [32]

Figure 2.4: Finished prosthesis (Z-Bionics Arm Mk2 model) worn by a client [82]

The myosignal acquisition is ideally achieved using a pair of sSEMG sensors placed on
antagonistic muscles. The currently used sensor is the Elemyo v1.4 (figure 2.5). Some
patients, however, do not have a pair of antagonistic muscles left on their residual limb. In
such a case, a single sEMG sensor must be used, reducing accuracy. The captured myosignal



is then amplified and filtered. An example of the final signal used for control can be found
in Figure 2.6. In addition to SEMG sensors, the prosthesis also features two gyroscopes
that can be used to determine its position and react to myosignal input accordingly.

Figure 2.5: Elemyo v1.4 EMG sensor [15]

Myo signal

ence: 100 ms

Figure 2.6: Example of captured myo signal displayed using an internal configurator utility
[82]

2.3.1 Motor Control

Brushed DC electric motors control fingers. Each finger has its motor, allowing for indi-
vidual control, which is especially useful when gripping objects. The finger’s position is
calculated using a potentiometer by calculating the ratio between maximum and minimum
extension of the finger. The smoothness of the movement is ensured thanks to feedforward
control, which allows for precise control of the motor’s speed. A crucial part of the finger’s
movement is the gripping force, which allows for holding objects. The first step is to de-
tect the object, which is done by observing the feedforward control’s interventions. In the
future, grip detection will be done by observing the acceleration and current draw of the
motor, allowing for faster detection while reducing the number of false positives.

10



2.3.2 Diagnostic Data

To improve the client’s comfort by making the prosthesis as intuitive as possible, especially
when it comes to the handling of myosignals, and also to detect issues, preferably before
they result in permanent damage to the prosthesis, the firmware in the prosthesis collects
and stores diagnostic data and is equipped with small storage which can be used to store
the captured data temporarily.

11



Chapter 3

Processing and Visualization of
Healthcare Data

Working with medical data, especially those containing sensitive patient information, is
very distinct from other disciplines. Challenges such as privacy, legal and ethical issues,
missing values, and bias control arise and must be considered at all times while obtaining
or analyzing such data and when storing it.

3.1 Security and Privacy Aspects

Recognizing security challenges associated with processing personal data, especially pa-
tients’ sensitive medical records, is crucial in keeping such information safe. Great care
should be put into the security of all systems that will have access to sensitive information.
In order to implement a secure system, these basic goals need to be taken into consideration
[67]:

o Confidentiality—data are inaccessible to individuals who are not authorized.
o Integrity—relevant information cannot be modified by unauthorized people.
o Availability—request data are obtainable when required by an authorized person.

o Authentication—being able to ensure that the person really is someone who they
claim to be.

e Access control—being able to keep non-permitted users out of the system.
¢ Non-Repudiation—inability to dispute the authorship of a statement.

However, effort must also be put into a secure development and production environment.
Whether it is making sure the CI/CD pipeline cannot be altered and malicious code is not
injected when compiling code (as happened during 2020 United States federal government
data breach [75]), or ensuring that the servers and software running on them are receiving
security updates. Also, employees should only be given the permissions they need to perform
their work, and proper authentication methods, such as multi-factor authentication, should
be used. Lastly, recognizing the influence of human factors and educating both employees
and clients on cybersecurity should not be underestimated [59].
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Privacy is also an important topic to address. There are multiple ways of ensuring
the privacy of patients is protected both ethically and per legal requirements [14]. Ways
of protecting privacy include collecting only the data required, using data anonymization
when possible, and deleting all data that is no longer needed [14, 60].

Due to the sensitive nature of medical data, handling it is bound by strict requirements
and regulations, such as the General Data Protection Regulation (GDPR)' in Europe and
the Health Insurance Portability and Accountability Act (HIPAA)? in the United States
[36]. This thesis will mainly focus on GDPR-related challenges.

3.2 GDPR Specifics

Article 5.1-2 of GDPR defines seven data protection and accountability principles when
processing personal data. These are lawfulness, fairness and transparency, purpose limi-
tation, data minimization, accuracy, storage limitation, integrity and confidentiality, and
accountability. The data subject (patient) has privacy rights that have to be considered:
the right to be informed, the right of access, the right to rectification, the right to erasure,
as well as other rights [17]. The right to be informed requires the data subject to be in-
formed about the collection and use of the personal data as well as about the duration of
storage, the rights of the data subject, their ability to withdraw their consent, and about
their right to file a complaint with the authorities. The data subject has to be informed in
a transparent, easily accessible, and understandable way [35]. The right of access ensures
that the data subject has, upon request, the right to obtain information if any data related
to them are being collected and processed, and if so, also at least the following [20]:

e processing purposes,
o categories of data concerned,
e recipients or categories of recipients to whom the data are disclosed,

o period for which the data is intended to be stored, or, if not possible, the criteria used
to determine that period,

o existence of rights to rectify or to erase personal data or to restrict personal data
processing,

o right to lodge a complaint with the supervisory authority.

The right to rectification allows data subjects to request correction of any inaccuracies
in their personal data. The right to erasure, otherwise known as the right to be forgotten,
provides data subjects with a right to have their personal data erased upon request, unless
[20]:

e There are overriding legitimate grounds for the processing.

e The processing of personal data is necessary for exercising the right of freedom of
expression and information; reasons of public interest in the area of public health;
archiving purposes in the public interest, scientific or historical research purposes or
statistical purposes; the establishment, exercise or defence of legal claims.

https://eur-lex.europa.eu/legal-content/EN/ALL/Puri=celex:32016R0679
https://www.hhs.gov/hipaa/index.html
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3.3 Time Series Data

Some healthcare data, such as patient vitals or medical device logs, are captured periodically
and contain a timestamp, and thus can be considered as time series data.

Time series (TS) is a sequence of data captured in specific time intervals and, therefore,
can be seen as a sequence of discrete-time data [79]. An example of TS data includes log
files or data captured by IoT devices. TS data can be split into two basic categories [38]:

¢ Uni-variate TS—a single value corresponds to a timestamp.
o Multivariate TS—each timestamp is linked with an array (or vector) of real values.

The information obtained by examining the data can be used for future predictions. That
is done by analyzing underlying patterns in the TS data [6].

Medical datasets are relatively small compared to other disciplines and often can be
collected only in a non-reproducible way. This increases the risk of the data being affected
by measurement errors, missing data, and patient bias [41].

3.3.1 Classification of Time Series Data

Classification of TS data is crucial in data analysis and machine learning. It involves
labelling TS data based on their characteristics and patterns. This classification helps to
identify different patterns in the data and provides a better understanding of the data for
future predictions. It can also help make informed decisions and take appropriate actions
based on the patterns observed in the data. [4]

Generally, classification algorithms can be split into feature-based, distance-based, and
model-based methods [81]. The feature-based classification consists of extracting a set of
features representing the global TS patterns [42] and then applying conventional classifica-
tion methods [81]. In distance-based classification, distance metrics are used to determine
class membership [4]. Finally, model-based classification presumes identical model genera-
tion for all class series and assigns new series to the best-fitting model’s class [1].

3.3.2 Storage of Time Series Data

Compared to traditional datasets, TS datasets are relatively larger in size and are much
more uniform [34]. TS data also don’t require indefinite storage and can be aggregated
or dropped altogether after a certain period. Such specific needs require well-optimized
storage capable of storing large amounts of data and handling real-time data ingestion. It
should also provide advanced features such as data compression, indexing, and aggregation
to optimize performance and reduce storage costs [45]. The storage should be able to han-
dle both univariate and multivariate TS data and support various data types and formats.
Additionally, it should offer easy integration with other tools and platforms for data visu-
alization, analysis, and machine learning. Finally, good storage for TS data should ensure

data security, privacy, and compliance with relevant regulations and standards [5].

Relational databases

A relational database is a (most commonly digital) database based on the rela-
tional model of data, as proposed by E. F. Codd in 1970. [78]
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A relation database is based on the relation model, and it stores and manages data us-
ing a collection of tables with rows and columns. Each table represents a specific entity or
relationship, and each row represents a specific instance of that entity or relationship. The
columns in a table represent the attributes or properties of the entity or relationship. In a
relational database, data is organized into tables with defined relationships between them,
and data can be accessed and manipulated using SQL (Structured Query Language) com-
mands [56]. As of 2023, relational databases remain the most common types of databases,
with SQL databases taking four places in global use statistics [70].

TS data can be stored in a table with columns for timestamp and value, as well as addi-
tional columns for any other relevant metadata. TS data can also be stored across multiple
tables, with each table representing a different time period or granularity. However, queries
on large T'S datasets can be slow and resource-intensive, particularly when querying across
multiple tables; therefore, traditional relational databases are usually not a recommended
choice for storing TS data [74]. A notable exception is PostgreSQL and its TimescaleDB
extension.

TimescaleDB

TimescaleDB is an open-source PostgreSQL extension that adds support for efficient TS
hosting [25]. It introduces hyper tables, which are PostgreSQL tables customized for the
purpose of handling TS data. They automatically partition the data by time and optionally
by space. Hypertables also create indexes on time and space if used for partitioning [73].
Due to being built upon PostgreSQL, a relation database, TimescaleDB fully supports SQL
queries. At the same time, it has an expansion model comparable to NoSQL databases [68].

NoSQL Databases

With the continuous development of cloud computing and the Internet in general, a demand
has been raised for databases capable of high concurrent reading and writing with low
latency, efficient big data storage and access, high scalability and availability, and lower
management and operational costs. As a response, new types of databases emerged. These
new databases are referred to as ,NoSQL“ databases, and as the name implies, they are
generally very different from traditional relational databases [27]. Unlike relation databases,
NoSQL databases do not support ACID transactions but instead use a softer consistency
requirement called BASE (basically available, soft state, eventually consistent) [50], and
implement the CAP theorem [23], which consists of:

e Consistency—each server should return the right response to each request.
o Availability—each request should eventually receive a response.

e Partition tolerance—servers can be partitioned into multiple groups that cannot com-
municate among them.

It is important to note that a distributed system cannot realistically meet all three
needs simultaneously, but only two [27], and the purpose of the system is usually the
key to determining which needs should be focused on. Despite NoSQL databases being
considerably newer than relation databases, thanks to the high demand, we can nowadays
find many different databases (described in, with each providing a different idea of storing
and accessing data (as described in Section 3.3.2), the optimization for running in the cloud,
or available client libraries.
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Types of NoSQL Databases

NoSQL databases use different approaches to data representation models. These approaches
can be split into four categories [53]: In Key-Value oriented architecture, each stored item
has a corresponding key, and all queries on the data use it. Examples of Key-value-oriented
databases include Oracle NoSQL and OrientDB. Columns oriented databases store data
as columns instead of rows. Commonly used columns-oriented databases are Apache Cas-
sandra and Google Bigtable. An alternative to column-oriented databases are document-
oriented databases. They extend the key-value principle by considering the structure of
the stored data as a document. The most common databases are MongoDB, Azure Doc-
umentDB, and MarkLogic. The last category is graph-oriented databases model. It is
designed to overcome problems associated with very complex connectivity links between
data, which makes it suitable, for example, for social networks. Examples include Apache
Giraph, Neo4j, and VelocityDB.

Some databases, like Amazon DynamoDB, InfluxDB, and Azure Cosmos DB, can use
a combination of these types in order to serve a specific purpose [62]. This thesis will focus
on the most commonly used NoSQL databases with dedicated support for TS data.

InfluxDB

InfluxDB is an open-source database designed to store and process TS data. It is developed
by InfluxData. It is written in Go and provides a query language similar to SQL [21]. Tt
offers official client libraries for almost all major high-level programming languages [33],
which include C#, Go, Java, JavaScript, PHP, Python, etc.

An InfluxDB database always contains a time column, which stores timestamps associ-
ated with specific data [52]. Timestamps are stored in epoch nanosecond format. Another
mandatory column is the measurement column. It describes the data and is stored in the
form of a string. The measured values are stored as fields in the form of a key-value pair.
They are not indexed. Additional metadata can be stored as tags, once again in the form
of a key-value pair [31]. They are optional, indexed, and, when used properly, can improve
the query performance [32]. InfluxDB allows configuring a retention policy and handles the
deletion of old data without any user intervention [29]. Data processing and aggregation
can be achieved using tasks—flux scripts that can be run periodically, query data, analyze
or modify it, and write it back to the database. They can also be used to detect anomalies
and, for example, send notifications about them [30].

MongoDB

MongoDB is an open-source document-oriented general-purpose database. It supports
generic secondary indexes, provides an aggregation framework, and supports time-to-live
collections for temporarily stored data, such as logs [10]. Version 5 introduced native sup-
port for TS data, called MongoDB TS Collections [3]. This collection type organizes writes
in order to store data from the same sources together with other data points from a similar
point in time [51]. MongoDB doesn’t enforce any predefined schema, which includes doc-
ument keys. This makes adding and removing fields as needed easier and can accelerate
development by allowing developers to iterate quickly [10]. MongoDB is also well-optimized
for cloud hosting, and the company even offers its own cloud solution called MongoDB Atlas
[61].
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3.3.3 Visualization of Time Series Data

Visualization of time series data can help understand it faster and notice patterns that
might not be otherwise visible [18]. Various visualization techniques can be utilized in
order to visualize the data effectively [26]. They include:

e Tabular visualization—time series data are presented in a table format with rows
representing time periods and columns representing variables and measurements.

¢ Plot of measurement times—measurement times are displayed along a one-dimensional
axis. Such a view helps to understand the temporal distribution of captured data.

e Linear line plot—data points are plotted and connected with straight lines, showing
the data’s trend and continuity over time.

e Area chart—Area charts emphasize the cumulative value or distribution over time by
filling the area between the line representing the data and the x-axis.

o Bar chart—values of a specific measurement are represented as rectangular bars with
corresponding height. This helps when comparing values between different time pe-
riods or categories.

e Histogram—divides the range of values into intervals and represents the distribution
of data based on the count of data points falling in each interval.

Depending on the source, time series datasets can be enormous, and retrieving millions
of rows from data to project the data into a chart can result in very high bandwidth between
the database and the visualization system. This can be improved by aggregating the data
and only visualizing datasets in the needed detail [37]. An example of such an approach is
time-based grouping and aligning the time intervals with the pixel columns of the resulting
chart, for which just a fraction of the detail of the whole dataset is usually needed. The
value of a group can be either sampled or computed using aggregation functions, such as
min, maz, avg, median, medoid or mode. Ideally, the resulting chart based on aggregated
data looks identical to the one based on original data and needs only a fraction of bandwidth
and computing power to be displayed [37].

Tools that visualize time series data differ based on how we want to display them. Dedi-
cated programs for data visualization are, for example, Microsoft Power BI, Microsoft Excel,
or Tableau. Popular libraries used by developers include Chart.js® for web development,
and Plotly” or ScottPlot” for desktop development.

3https://www.chartjs.org/
“https://plotly.com/
Shttps://scottplot.net/
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Chapter 4
Analysis

This thesis aims to obtain, process, and visualize diagnostic data captured by the Z-Bionics
Z-Arm prosthesis. The target audience can be split into two groups—patients using Z-
Bionics prostheses and Z-Bionics staff using the captured data to improve those prostheses.
The use cases among these groups are different.

4.1 User and Company Requirements

The proposed solution will have to follow certain requirements, both by the users—patients
and staff, as well as by the Z-Bionics company. Performing analysis of some of the Z-Bionics
patients determined the following:

o Patients are suffering from an upper limb amputation, both congenital and traumatic.
e The amputation extent may vary from the wrist all the way up to the shoulder.

o Patients’ age ranges from 15-70 years of both sexes.

e No technical proficiency can be expected.

Patients might also be suffering from other diseases or abnormalities, which puts further
requirements on the accessibility of the chosen solution. Since patients use prostheses, diag-
nostic data collection happens while the prosthesis is physically with them, influencing how
the data are collected and sent to Z-Bionics servers. Finally, the data collected about pros-
thesis usage is classified as sensitive personal data of the patients and must be adequately
handled.

Staff, on the other hand, is expected to have at least basic technical skills and can, if
necessary, undergo additional training. They mainly use laptops and desktops, so the diag-
nostic data visualization should be able to use the larger screen effectively. The company’s
requirements include:

o Existing tools should be thoroughly analyzed and used, if possible.
o Additional server expenses should kept minimal.

e The solution that requires the least research and development resources should be
chosen unless it has significant benefits compared to alternatives.

o If a mobile application is developed, it has to support both Android and iOS.
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4.2 Current State

Z-Bionics uses several internal tools that aid with patient management, inventory, claims
management, research, and development. Some of the tools are from 3rd parties, while
others are developed internally. Those include Z-Hub, a web application currently mainly
used for management purposes, and Z-Arm Configurator, a combination of client software
and a website, which allows configuration and monitoring of a Z-Arm prosthesis using a
computer and a cable connection via USB.

The Z-Arm prosthesis comes with a custom-made PCB with firmware that can capture
diagnostic data and store them on 512kB storage. Furthermore, it is equipped with a USB
C port and a Bluetooth module.

4.2.1 Z-Bionics Hub

The Z-Bionics Hub is an internal application in the form of a website that is used by Z-
Bionics staff and stores records of staff members, patients, insurance claims, manufactured
prostheses, and components in stock. It is based on the ASP.NET Blazor Server' and
ASP.NET Razor?, a C# framework. Authentication is implemented using Duende Iden-
tityServer® and supports both OAuth 2.0 and OpenID Connect, while a Microsoft SQL
database handles the data storage. Ul is based on the Bootstrap framework and UI com-
ponent kit from Syncfusion’

The Hub uses a three-layered architecture, individual components are pictured in Figure
4.1. Currently, the hub does not contain any used API endpoints because ASP.NET Razor,
the framework used for login and user management pages, is server-side, and ASP.NET
Blazor Server used for main content handles communication between browser and server
via SignalR, a library for real-time communication. Therefore, neither of the Ul components
needs to use REST API to access the database, and if communication with the Hub will
be required, suitable endpoints will need to be implemented.

"https://learn.microsoft.com/en-us/aspnet/core/blazor/hosting-models

“https://learn.microsoft.com/en-us/aspnet/core/tutorials/choose-web-ui#aspnet-core-razor-
pages

3https://duendesoftware.com/products/identityserver

‘https://www.syncfusion.com/blazor-components
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Figure 4.1: Simplified overview of current Z-Bionics Hub architecture

4.2.2 Diagnostic Data Capture

The prosthesis firmware captures and temporarily stores diagnostic data related to various
prosthesis events and states. Some of the data is logged periodically, while an event triggers
the collection of others. The types of diagnostic data are:

o Battery report—logged periodically every 10 minutes when the prosthesis is powered
by the battery and every minute when charging. It contains information about the
charging status, current charge level, battery temperature, internal resistance, and
usable capacity.
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o Power state report—generated when the prosthesis is turned on or off and only con-
tains the power state.

e Motor anomaly report—logged when an abnormal motor behaviour is detected. This
includes overshooting the target position, getting out of bounds, being unable to
reach or overshooting the target speed. The report contains the index of the motor
in question, anomaly type, position history of the part being controlled by the motor
(e.g. finger), history of force applied by the motor, and the motor temperature.

e Grip mode usage report—generated every time the patient switches the prosthesis
grip mode and contains basic information about the current mode.

e Snapshot report—the only type of log that is generated manually by the patient.
Patients who notice a prosthesis’s unexpected behaviour can easily create a snapshot
by triple-pressing the main control button on the prosthesis. The report contains a
short history of myo signal, motor position, force, motor temperature, and selected

grip.

All reports contain a timestamp of when they were generated. After the report is
generated, it is stored in CBOR® on the prosthesis internal storage. After the storage
reaches its capacity, the oldest reports are deleted. A different retention priority can be set
for various report types, thanks to which snapshots reports, for example, can be stored for
considerably longer than less important battery reports.

4.2.3 Obtaining the Diagnostic Data

In order to store, process, and visualize the captured diagnostics, a reliable and unobtrusive
way to obtain and upload them to Z-Bionics servers needs to be established. This can
be done using peripherals already installed on prostheses, such as the USB C port and
Bluetooth module, or by introducing new ones—in such cases, the feasibility of retrofitting
them on existing prostheses needs to be considered.

The data has to be obtained frequently due to storage limitations of the prosthesis’
hardware. The MCU has 512 kBs of storage dedicated to diagnostic data. The size of the
reports ranges from 12 B up to 256 B, excluding storage overhead, which virtually doubles
the size of storage needed to store a report. With an average of 624 battery reports, 360
grip mode usage reports, 180 myo status reports, 100 motor anomaly reports, 20 power
state reports, and 0.5 snapshot reports every day, as determined by internal analysis, the
prosthesis is only capable of storing 5-6 days worth of diagnostic data. The next generation
of the prosthesis is planned to get 16-128 MBs of storage, which would be sufficient for over
a year. However, since the additional storage cannot be retrofitted to existing and currently
manufactured prostheses, the method of obtaining the diagnostic data must consider the
need to get the data from the prosthesis every few days.

Obtaining the Diagnostic Data Using USB

The USB C connector is located on the main control board and is easily accessible via a
dedicated opening in the casing. It is already used for battery charging, prosthesis con-
figuration, debugging, and firmware updates, making it a good candidate for obtaining
diagnostic data from the prosthesis. This can be achieved by connecting the prosthesis to a

Shttps://www.rfc-editor.org/rfc/rfc8949.html
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computer and then using an application installed on it to communicate with the prosthesis,
get the diagnostic data, and securely upload it to the Z-Bionics server. Such workflow ap-
pears to be ideal for getting the diagnostic data by the Z-Bionics staff. On the other hand,
having to connect the prosthesis to a computer every few days and run an application to it
to upload the diagnostic data is uncomfortable and annoying for patients.

An alternate way of uploading the diagnostic logs via USB has been proposed to address
this issue. A special charging adapter, capable of connecting to the Internet via Wi-Fi, could
be used. It would automatically obtain and upload the logs from the prosthesis during the
charging process. This approach makes the process considerably less annoying for the
patient, though it still comes with some limitations, the most notable one being the need
for the charging adapter to be configured to use the patient’s Wi-Fi. An intuitive way of
configuring the adapter by the patient would need to be researched and implemented along
with the adapter itself.

Obtaining the Diagnostic Data via IoT Network

To avoid having the patient configure and regularly use anything other than the prosthesis
itself and still get the diagnostic data, an IoT network, such as Cat-M or LoRaWAN, could
be utilized. It requires no action from the patient and, therefore, doesn’t affect the overall
comfort of prosthesis usage. On the other hand, it can only be used on new prostheses
with the necessary hardware to connect to an IoT network since retrofitting is not possible
due to space restraints, and the cost of such hardware and network usage fees must also
be considered. Furthermore, the IoT connection likely won’t be available when the patient
travels abroad, which is not the case when using Bluetooth, as long as the phone is connected
to the Internet.

Obtaining the Diagnostic Data via Bluetooth

Another approach that might address inconveniences related to USB transfer is Bluetooth.
The prosthesis is equipped with a Bluetooth Low Energy module, which is currently not
being used for any operations. If the Bluetooth functionality was implemented in the FW,
an application for mobile phones could be utilized. The application would establish a
connection with the prosthesis and extract the logs out of it. This approach appears to
be significantly more convenient for patients than USB transfer; however, it still requires
action on their part—pairing the application with the prosthesis and frequently opening it.
The inconvenience of having to open the application frequently could be mitigated by also
integrating the prosthesis configuration into the application.

A disadvantage of Bluetooth technology, and an issue that would have to be addressed
if Bluetooth were to be chosen, is security. Since the prosthesis doesn’t have a display or
a keyboard, it has to accept any incoming connection request, which comes with a risk of
sensitive personal data theft. Furthermore, if the prosthesis could also be configured via
Bluetooth, the attacker would be able to control the motors on the prosthesis, which are
strong enough to cause injury to the patient or others.
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Chapter 5

Proposed Solution

Based on the findings made in Chapter 4 and a discussion with colleagues, I have decided
to select a mobile application and Bluetooth as the preferred way to obtain diagnostic
data from the Z-Arm prosthesis. When combined with additional features that allow easy
prosthesis customization, the application appears to be the most convenient way. Unlike
other approaches, such as an IoT network, it does not require any hardware changes to the
prosthesis, allowing its use on already manufactured prostheses after a firmware update.

As depicted in Figure 5.1, the extension of Z-Bionics Hub will be in the form of new Ul
pages, a REST API, and an additional database dedicated to time series data—MongoDB.
The authentication will be handled by an already implemented SSO system based on the
Duende IdentityServer framework.

5.1 Mobile Application

The application is set to have additional features apart from obtaining the diagnostic data.
As mentioned in Section 4.2.2, the prosthesis can capture snapshot reports when the patient
encounters unexpected behaviour of the prosthesis. The application should allow the patient
to include a comment describing the issue, which would greatly help the staff with finding
the cause of the problem. Other additional features include:

o additional motor control (controlling wrist and elbow motors),
e ability to customize grips, save grip presets, and assign them to individual grip slots,
e myo sensor settings—sensitivity, short and long gestures,

e customization of other miscellaneous features, such as automatic standby mode and
LED indicator brightness,

¢ low battery and charging status notifications,

e manuals.
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Figure 5.1: Simplified overview of the proposed changes to the Z-Bionics Hub
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Based on these requirements, a Figma design has been created, and selected views
can be found in Appendix A. Features were split into logical groups and given their own
page. Figure A.1 shows the application’s menu. Other notable pages include the homepage
(figure A.2), which allows for quick grip switching as well as additional motor control; the
grip configuration page (figure A.3) for more advanced grip customization, including the
option to use presets; and the snapshots page A.4), which shows snapshots captured by
the patient including date and time to help the patient remember why they triggered the
snapshot, an option to delete the snapshot if it was created unintentionally, and finally, the
option to leave a comment describing the problem the patient encountered.

5.1.1 Bluetooth Communication

The application will use Bluetooth Low Energy to communicate with the prosthesis. The
communication will use CBOR' to transfer data more efficiently (at the cost of user read-
ability when debugging).

Since the prosthesis has no display or keyboard, it does not do any authentication at
the Bluetooth level. However, after a new device is paired, its identity is verified using a
one-time password. The OTP generation is challenge-based, meaning that the prosthesis
generates a number based on a secret and sends it to the mobile application, which sends
it to the Z-Bionics Hub API, which generates an answer number and sends it back to the
mobile application. The application then sends the answer to the prosthesis, which validates
it. This approach avoids the need to share the secret anywhere apart from the prosthesis
and the database the API is using, and, unlike time-based OTP, it can work even if the
internal clock in the prosthesis is out of sync.

5.2 Z-Bionics Hub

The Z-Bionics Hub will be extended with appropriate API endpoints for communication
with the mobile application, corresponding business logic, and data storage infrastructure
to process and store obtained diagnostic data and new UI pages to display the collected
diagnostic data.

5.2.1 API and Database Extension

Each diagnostic report type has a corresponding model and entity. Models are shared with
the mobile application and used in rest communication, while entities will set the data
format to be stored in the database. All MongoDB-related logic will be located in the
Diagnostics DAL project and called from business logic facades. Mainly, CRUD operations
will be implemented in the first iteration of the extended Hub, and a retention strategy will
be set up for the time-series collections in the MongoDB database.

Apart from handling diagnostic data, the API will also handle the authorization and
authentication of patients, both when using the provided API endpoints and when pairing
with the prosthesis. The prosthesis authentication will be handled by storing a secret for the
aforementioned challenge-based OTP and providing the patient’s mobile application with a
response generated using the provided challenge and the secret if successfully authenticated.
This reduces the risk of the prosthesis being hacked and misused and also significantly
reduces its usability and value in case it gets stolen from a patient.

"https://cbor.io/

25



5.2.2 UI Extension

The Hub will be extended with pages for prosthesis management. The structure will be
similar to other existing management pages, visible in Figures 5.2 and 5.3, such as user
management pages. They will consist of three views—a list with a filtering option, an edit
page, and a create page. Edit and create pages will be made as forms, and the edit page
will contain a delete button, which will show a confirmation popup before deleting the
prosthesis.
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Figure 5.2: Screenshot of Z-Bionics Hub‘s user list page
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Figure 5.3: Screenshot of Z-Bionics Hub‘s user edit page

The diagnostics visualization should contain an appropriate way of selecting the desired
prosthesis and a dropdown for selecting the time range of displayed data. The displayed
diagnostics will be split into several categories to make navigation more efficient:

¢ Summary—a category containing general usage data, such as usage, battery and
charging history.
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¢ Anomalies—a category dedicated to motor anomalies.
e Snapshots—a category with snapshot information, similar to anomalies.

¢ Other Information—a category containing various other logged data and long-time
statistics.

The summary component (Figure B.1) will contain a chart with a history of battery-
related information, such as the battery level, temperature, and internal resistance. It will
also highlight charging intervals. The specific way of highlighting will be dependent on the
selected chart library. It will also show usage information, such as a sum of grip activations,
the used grip strengths or the finger-easing feature usage.

The motor anomaly (Figure B.2) and snapshot (Figure B.3) components will both con-
tain a timeline with selectable markers corresponding to individual motor anomalies/snap-
shots, a filter with appropriate selection options, and a detail section with information
related to the selected motor anomaly /snapshot. The anomaly detail will contain the type
of anomaly, the affected motor number, and the history of motor values captured prior
to the anomaly creation. These values include the input, position, current and movement
speed. The snapshot detail will contain the patient’s comment (if submitted), the myo
signal history, and statistical information about myo signals (minimum, average and maxi-
mum amplitudes, and reliability score). Finally, the Other Information component (Figure
B.4) will contain a chart with the battery condition that will be calculated from battery
reports. And plain text statistics, such as total grip usage count, power-on count, and the
charging cycle count.
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Chapter 6

Implementation

The implementation of the proposed changes was split into individual milestones, which
would allow for better coordination with firmware developers, who made changes to the
prosthesis’ firmware based on my needs. The milestones were as follows:

1. Implementing mobile application front-end according to the wireframe.

2. Mocking the Bluetooth communication and adding logic to the mobile application.
3. Implementing the API and connecting it to a database.

4. Implementing Bluetooth communication into the mobile application.

5. Connecting the mobile application to the APIL.

6. Implementing the hub UI extension.

6.1 Mobile Application

Due to the Z-Bub using ASP.NET Blazor, a C# web framework, I decided to use .NET
MAUI, which is a multi-platform mobile (and desktop) C# framework, which allows me
to use a common library for shared models and significantly reduce code redundancy. The
target platforms are Android and iOS. The application consists of multiple projects, repre-
senting a layered architecture. The projects are:

e Zbionics.Customer App.App—The presentation layer. Contains Views and View-
Models.

e Zbionics.Customer App.BL—The main business logic. Contains facades and their
interfaces and entity mappers.

e Zbionics.Customer App.BL.Mock—Contains mocked facades that implement in-
terfaces in the main BL project.

e Zbionics.Customer App.BL.Bluetooth—The project that handles all Bluetooth
pairing and communication; Contains facades and their interfaces and services related
to Bluetooth.

e Zbionics.Customer App.BL.Bluetooth.Mock—Contains mocked facades of the
Bluetooth business logic.
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e Zbionics.Customer App.DAL—Data access layer. Handles local storage of diag-
nostics.

e Zbionics.Customer App.Common—A project with enums, models and interfaces
that are common for the above projects.

6.1.1 User Interface

Despite the user interface source code being shared for both platforms, the application has
a slightly different appearance, respecting each platform’s design guidelines to a certain
extent. The application makes use of various community libraries, such as UraniumUI
and CommunityToolkit, which help with improving the user experience and reducin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>