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Introduction

In quantum information processing, information is encoded in individual quanta.
The light provides natural resource for encoding information into state of light due to its
weak enviromental interaction. To improve the density of the coded information we use
hyper-encoding technique where two or more quantum bits are encoded into single photon.
Coding information into single photon is dependant on how many degrees of freedom it
has. Theoretically speaking it can be infinite since the Hilberts space can be infinite but
technically speaking there are just few options how to code a quantum bit. Most common
are  spatial [1], polarisation [2] and time encoding.

In  my thesis  you  will  be  introduced  to  experimental  realization  of  a  convertor
betweeen  polarization  and  spatial  coding.  We  characterize  it  using  full  tomography
measurement and linear inversion method [3]. In the next part we extent this idea to build
tunable polarization filter using calcite beam displacers and mirrors. Although the mirrors
are  specially  designed  to  minimalize  its  phase  disturbance  we  found  out  that  phase
disturbance is non negligible. We prepared different polarization filthers and characterize
them using full tomography measurements and maximum likelihood method [4]. We use
the core of the setup to realize spatial and polarization encoding simontaneusly.
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Chapter 1

Theory

1.1 Polarization

Consider a monochromatic wave of angular frequency ω traveling in the z direction
with velocity v. The electric field lies in x-y plane and is described by 
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where the complex envelope 
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 yyxx eAeAA , (2)

is a vector with components Ax and Ay. To describe polarization of this wave we trace the
endpoint of the vector E at each position z as a function of time.
    Substituting  (2)  into  (1)  and  expanding  to  Cartesian  basis  we  obtain  parametric
equations of polarization elipse 
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We can rewrite the parametric equations (3) into the implicit form of ellipse equation 
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where δ is phase difference. 

1.2 Jones Formalism

Jones formalism is used to describe light in a pure polarization state. Jones vector
has the form of
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Arbitrary  pure  polarization  state  may  be  described  using  polarization  ellipse  and  its
parameters  ellipticity  χ and  orientation  to  positive  x-semiaxis  ψ.  Jones  vector  can  be
rewritten in notion of elliptical parameters
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Parameters of the polarization ellipse are obtained from relation (5) and (6)
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Every environment that can change polarization state, can be described by transformation
matrix
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where aij ϵ C for i,j = 1,2.
We describe the transformation matrix of multiple environments 1,2,…n described

by matrices T1,T2,…,Tn as
    .... 12 TTTT n                  (9)

For  example  we show the  matrices  for  the  most  frequently  used  optical  devices.  The
polarizer rotated by angle α is described by matrix
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The retarder  plate  which causes phase difference  Г rotated by angle  α is  described by
matrix of form
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Where in case Г=π, we have matrix for half wave plate 
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If Г=π/2 we have matrix for quarter wave plate
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1.3 Stokes formalism

Stokes formalism is used to describe partially polarized states of light. Every state
can  be  mapped  on  Bloch  sphere.  We  define  the  state  with  vector  of  lenght  P which
corresponds to degree of polarization. If  P < 1 the light is not in pure state, if P = 1 the
light is in completely pure polarization state and it is mapped on the surface of the Bloch’s
sphere. The longitude of the point is 2ψ and the latitude is 2χ, where ψ and χ are elliptical
parameters of polarized part of light. We see that these elliptical parameters describe pure
part of state. Let x, y, z be Cartesian coordinates of a point on the sphere. The Stokes vector
consists of parameters:
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We define  degree of polarization as 
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Known ellipse parameters  ψ, χ could be used as a transition from Stokes to Jones
formalism using (6) and from Jones to Stokes using (7) and (14). Due to occurrence of
arctan function we are facing π/4-periodicity problem, so we have to be careful using these
relations. Relation between Jones and Stokes formalism is shown in table 1.
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Table 1: Table of main states in Jones and Stokes formalism.
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1.4 Interference of two partially coherent waves

Let say we have a partially coherent wave E(z,t) described by equation (1) where
the value of amplitude A(z,t) varies with time t and position z. If E(z,t) is added to its own
replica delayed by the time τ we can define the interference pattern as

          cos12 0 gII  ,          (16)

where φ(τ)=argg(τ)}. So the ability of the wave to interfere with is time delayed replica is
depended by its complex degree of temporal coherence. We can define the strength of the
interference by the visibility V

    
minmax

minmax

II

II
V




 ,           (17)

where Imax and Imin are maximum and minimum intensity as τ changes its value. We can see
an relation between intensity I and time delay τ called interferogram on the figure 1. 

Figure 1: Normalized intensity I/2I0 as a function of time delay τ [1].

We can see from the figure 1 that when τ=0 (there is no optical path difference) we find
the maximum intensity and the strongest visibility. 

1.5 One qubit tomography and polarization state reconstruction 

Lets suppose we have an  unknown polarization  state which is represented by its
density  matrix.  In  order  to  reconstruct  its  density  matrix  we  measure  intensities  in
particular projections. We use projections to |H>, |D>, |R> basis. From measured intensities
we can calculate propabilities of finding the state in the given projection:
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where 


 is a density matrix. From equation (18) we can obtain Stokes parameters define

S 1=2ρH−1,                        (19)

            S 2=2ρD−1,                               (20)

                           S 3=2ρR−1,                               (21)

  S 0=√(S 1
2
+S2

2
+S 3

2
) .     (22)

From obtained Stokes vectors we are able to reconstruct density matrix in a following way

ρ̂=
1
2
∑
i=0

3

S iσ̂ i

          (23)

where S i are Stoke's vectors and σ̂ i are Paulie matrices. Purity of state is defined as

             P=Tr (ρ 2
) .                             (24)

Please note that equation (24) and equation (22) are identical.  Another property we are
going to deal with is fidelity. Fidely defines overlap between two density matrices. Fidelity
of two states is defined as

                                 F (ρ ,σ )=Tr {[(σ )
1/2 ρ (σ )

1 /2
]
1 /2

}
2

.           (25)

1.6 Maximum likelihood reconstruction method

Another reconstruction method is maximum likelihood method. Let us assume we
have finite number  N  of identical samples of the physical system, each in the same but
unknown quantum state described by density operator  ρ . Our task is to reconstruct the
unknown quantum state  ρ  from the measurements performed on them. We consider the

positive  operator-valued  measure  (POVM)  Π l that  yields  propabilities p l of  individual
outcomes, 

              
p l=Tr [ρ Π l ] , pl≥0 ,∑

l

p l=1 .
                                 (26)

If POVM is tomographically complete, it is possible to determine the true state ρ directly

by inverting  linear  relations  (27)  between propabilities  p l and the  elements  of  density
matrix  ρ . However, there is no way to find out the exact probabilities since only finite
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number N of samples of the system can be investigated. In case of  Nl  occurrences of the

outcome  Π l ,  the relative detection frequencies  f l=N l/ N represent the only data that
could  be  used  for  reconstruction  of  our  unknown true  state.  The maximum likelihood
approach to this  reconstruction  problem consists  in  finding a  density operator  ρ est that
generates, probabilities (27) that are as close to the observed frequencies fl  as possible

   
ρ est=arg max

ρ
L [ f l , p l(ρ )] ,

              (27)

     
L[ f l , pl (ρ )]=∑

l

f l ln p l .
                    (28)

It can be shown that the reconstruction procedure can be interpreted as a generalized 
POVM measurement if the log-likelihood measure (28) is used. 

Analytical approach to the problem of maximization (27) of the log-likelihood 
functional (28) involves a formulation of nonlinear extremal operator equation for the 
density matrix that maximizes the log-likelihood functional,

                 
ρ=μ−1 R ρ , R=∑

l

f l

pl

Π l ,
        (29)

where μ is Lagrange multiplier in form

                     
μ=Tr [R ρ ]=∑

l

f l=1.
                     (30)

Advantage of the equation (29) is that it might have an iterative solution. Equation (29) and
its hermitian conjugate leads to the symmetric extremal equations in the manifestly 
positive semidefinite form

             ρ=μ−2 R ρ R ,μ=(Tr [Rρ R])
1 /2

.                            (31)

Iterations given by

        ρ (n+1)=μ(n)−2 R(n)ρ (n) R(n)
         (32)

preserve the positive semidefiniteness and trace normalization of the density operator ρ .

1.7 Reconstruction of process matrix (completely positive CP map)

The linear completely positive (CP) map describes the transformation of physical 
system from quantum state ρ i n to quantum state ρout . The mathematical formulation of 

CP maps relies on the isomorphism between linear CP maps M s from operators on the 
Hilbert space H to operators on Hilbert space K and positive semidefinite operators S on 
Hilbert space H K

14



             ρout=M S [ρ i n]=Tr H [S ρ i n
T  1K ] ,                     (33)

where T is transposition and 1K is identity operator on K space. The deterministic quantum
transformations preserve the trace of the transformed operators. This must hold for any 
input state ρ i n , the operator S must satisfy the condition 

              Tr K [ S ]=1H ,                                (34)

where 1H is identity operator on H space.
 Let ρ m denote various input states from space H, which are used for probing of the 

quantum process. Measurements described by POVMs Π ml are carried out on each 

corresponding output state from space K. Let f ml denotes the relative frequency of the 
corresponding detection of POVM element. The estimated operator S should maximize the 
constrained log-likelihood functional

        
Lc [ f ml , pml (S )]=∑

m ,l

f ml ln pml−Tr [Λ S ]
  (35)

pml=Tr [S ρ m
T Π ml ] ,                        (36)

where Λ=λ 1K and λ is the matrix of Lagrange multipliers that account for the   
trace-preservation condition (34). The extremal equations for S can be obtained by varying 
functional (35) with respect to S,

Lc [ f ml , pml (S+δ S )]−Lc[ f ml , pml(S )]=0,        (37)

                  
Tr [(∑m ,l

f ml

pml

ρ m
T Π ml−Λ)δ S ]=0,

                  (38)

for all δ S , which leads to

       
S=Λ−1 K S , K=∑

m, l

f ml

pml

ρ m
T  Π ml .

       (39)

 We arrive at symmetrical expression suitable for iterations,

       S=Λ−1 K S K Λ−1 .                     (40)

The Lagrange multiplier λ must be determined from constraint (34)

        λ=(Tr K [ KSK ])
1 /2 .         (41)

The operator Λ is positive definite. Equations (40) and (41) may be solved numerically by 
iterations starting from some unbiased map. Equation (40) preserves the positive 
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semidefiniteness of S and constraint (34) is satisfied in each step. We can define process 
fidelity by 

            
F χ=

Tr [ S S id ]

Tr [ S ]Tr [S id ]
,

        (42)

where S id is theoretical process matrix. Theoretical process matrix is defined as

S id=
(1 N )Φ (1 N +.)

Tr [(1 N )Φ (1 N +.)]
,

        (43)

where N is general transformation, N+ is its hermitian conjugate, Φ= |Φ><Φ|=|HH>+|VV> 
is maximally entagled Bell state.
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Chapter 2

Experiment

2.1 Converter between polarization and spatial modes

Our first goal is to construct converter between polarization and spatial modes. This
is done by building 28 cm long Mach-Zehnder interferometer using calcite beam displacers
and reaching the highest possible visibility. Experimental setup of our converter is shown
in figure 2.

Figure 2: Converter between polarization and spatial modes.

I  used temperature  controller  THORLABS TED200C which was set  on  12 kΩ,
THORLABS LED200C laser diode controller with operating current set on  100 mA and
LED diode which produces laser beam with center wavelength of 805 nm that is coupled to
NUFERN single mode optical fibre (SMF). Using polarization controller  (PC) I was able
to adjust the laser beam to be maximally horizontally polarized. Laser beam then leaves the
collimator  and  interacts  with  EKSMA  99.9 polarization  beam  splitter  which  reflects
vertically polarized light and transmits horizontally polarized light. For detection of our
intensities we used THORLABS power meter set to measure in Volts. I adjusted the height
of the laser beam to be set up on 90 mm.   Before any optical component was adjusted I
checked the back reflection. I also tried to aim the laser beam to the center of every optical
component so I could achieve lowest measurement errors.

I  put  first  calcite  beam  displacers  (BD1)  behind  the  PBS1.  Thanks  to  its
birefringence,   vertically  polarized  light  goes  through  the  calcite  without  changing  its
direction while horizontally would change. Our calcite is 10 mm high, 10 mm wide, 40 mm
long and since it acts like a beam displacer the distance between vertical and horizontal
output is 4 mm. I had to set up the reference plane of the calcite accordingly to output plane
formed by vertical and horizontal  light  so it  would be approximately parallel  to optical
table. To prevent cutting off the output of horizontal polarized light, I aimed the laser to be
1-2 mm next to the center of BD1. Next step was calibration of waveplates which is crucial
for the preparation and detection of polarization state. I calibrated the waveplates between
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PBS1 and BD1. More details of  waveplate calibration is described in appendix 1. After
calibration of waveplates I put QWP1 and HWP1 in front of BD1. 

In order to achieve interference at the edge of second BD2 I put half waveplate
HWP 45 behind BD1. It was set up to 45 degrees. This changes horizontal polarization into
vertical polarization and vise versa. Behind HWP 45 I put second calcite BD2 and rotated
the  BD2 along  its  optical  axis  so  the  x-y  axes  of  the  second calcite  had  been set  up
identically to the x-y axes of the first calcite. Behind the BD2 I adjusted the detection part
which consists of HWP2, QWP2 and PBS2.

In  order  to  measure  visibility I  had  to  set  diagonally  polarized  light  in  the
preparation and detection part of the setup. Angles needed for preparation and detection of
the polarization state are described in Appendix 2. By changing the horizontal tilt of BD2 I
changed the path difference in the Mach-Zehnder (MZ) interferometer. When I reached the
minimum optical path difference I reached the highest visibility possible. By measuring the
output intensity at  both output ports behind PBS2 I was able to calculate the visibility of
the interference. Maximum reached visibility was 0,950. Reason why we could not reach
higher visibility is because the spatial overlap of the both interfering waves is not perfect.
To solve this  problem  we can couple the  output  signal into single mode optical  fibre.

Next  step was  to  characterize  this  device  by  state  and  process  tomography.  In
preparation part I prepared six polarization states - horizontal  |H>, vertical |V>, diagonal |
D>,  antidiagonal  |A>,   right  circular  |R> and left  circular  |L> polarazation. For  every
polarization state I had to set up the detection part  for six polarization projections |H>, |
V>,  |D>,  |A>,  |R>,  |L> respectively. I  measured  6  intensities  for  every  prepared
polarization state and results are shown in table 2. 

Table 2: Measured intensities for six polarizations states.

Projection  I|H>       [mV] I|V>       [mV] I|D>       [mV] I|A>       [mV] I|R>       [mV] I|L>       [mV]
Basis 

H 0,000 0,007 0,209 0,211 0,207 0,206

V 0,000 0,000 0,207 0,212 0,215 0,205

D 0,205 0,215 0,418 0,015 0,210 0,221

A 0,205 0,208 0,010 0,410 0,221 0,199

R 0,224 0,232 0,238 0,234 0,415 0,008

L 0,234 0,228 0,232 0,236 0,010 0,415

As expected I detected the highest intensity in such polarization projection/analyses
in which we prepare the state in. From the measured intensities I was able to reconstruct
the polarization state and its Stokes vectors. The visualisation of Stokes vectors on Bloch
sphere  are  shown on  figure  3.  In  ideal  case  Stokes  vectors  would  appear  exactly  on
individual axes corresponding their polarization state. We can see that they are slightly off.
By solving equations (14) we can find the longitudinal 2ψ and latitudinal 2χ angles which
says how many degrees they are off the axes. I also calculated purity P  using equation (15)
and  determined  whether  the  polarization  state  is  mixed  or  pure.  Purity P  and  other
parameters are calculated in table 3.  Please note that purity  P  and other parameters are
calculated from raw experimental data which contains detector noise. The detector noise is
considered  to  be  the  dark  current  of  the  detector  and  incident  light  from the  room.  I
measured it when I blocked laser beam and its value is  0,0062 mV. I also  analysed data
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without  detector  noise. I  took  the  value  of  detector  noise  and  subtracted  it  from  the
measured data in table 2. I received new set of data, from which I calculated purity P’ and
other parameters which are shown in table 4. We can see that by subtracting the value of
noise from the measured data the purity of the states increases.

Table 3: Calculated purity P, Stokes parameters S of reconstructed polarization state,
longitudinal 2ψ and latitudinal 2χ angles.

Stokes
parameter 

 
P

 
S1

 
S2

 
S3      2Ψ

(degrees)
2χ

(degrees)Basis 
H 0,976 0,976 0,002 0

0,14 0

V 0,971 -0,972 0,023 0
1,41 0

D 0,931 -0,024 0,023 0,931
-90,0 87,95

A 0,954 -0,007 0,048 -0,952
88,33 -87,11

R 0,962 -0,018 0,962 0,008
88,96 0,51

L 0,953 0,012 -0,953 -0,009
-89,22 -0,51

Table 4: Calculated purity P’, Stokes parameters S’ of reconstructed polarization state,
longitudinal 2ψ and latitudinal 2χ angles.

Stokes
parameter 

 
P’

 
S1’

 
S2’

 
S3’   2Ψ´

(degrees)
2χ´

(degrees)Basis 
H 0,995 0,995 0,003 0 0,14 0

V 1,000 -1,000 0,025 0 1,40 0

D 0,961 -0,053 -0,024 0,958 -90,0 86,51

A 0,982 -0,007 0,049 -0,982 88,32 -87,11

R 0,991 -0,018 0,991 0,009 88,96 0,50

L 0,982 0,013 -0,982 -0,009 -89,22 -0,51
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Figure 3: We can see the visual interpretation of Stokes vectors on Bloch’s sphere.
Where axes S1, S2, S3 interprete the individual dimensions of Hilbert’s space. S1

represents H , V  polarization, S3 represents D , A  polarization and S2 represents

R , L  polarization. First picture represents reconstructed H  state, second V ,

third D , fourth A , fifth R , sixth L .
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I interpreted polarization state with its density matrix calculated from data without
considering detectors noise and reconstructed our density matrices by using equation (20).
From the density matrices I was able to calculate fidelity  according to equation  (22). I
calculated  fidelity  F  between  reconstructed  density  matrix  from  data  and  theoretical
density  matrix  defined  on  input.  If fidelity  is  equal  to  one  the  reconstructed  state  is
identical  to the  input  state.  This  means  our  operation  is  described  by  identity.
Reconstructed density matrices with calculated purities and fidelities are shown in figure 4.
We can see that in all cases fidelity are very close to one.

Figure 4: Reconstructed density matrices with linear inversion method.

 Real part of |H> polarization state. Real part of |V> polarization state.

   P' = 0,995 F = 0,998  P' = 1,0  F =1,0

   Real part of |D> polarization state. Real part of |A> polarization state.

P' = 0,961  F = 0,979 P' = 0,982  F = 0,991
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Real part of |R> polarization state. Imaginary part of |R> polarization state.

P' = 0,991  F = 0,996  

Real part of |L> polarization state. Imaginary part of |L> polarization state.

    P' = 0,982 F = 0,991

From the complete tomografic results I was able to reconstruct the experimental
process matrix. Experimental  process matrix is usefull for characterisation of our device.
It helps us to calculate the output density matrix from input density matrix without any
further  measurement,  see  equation  (33).  Reconstructed  experimental  process  matrix  is
shown in figure 5. Theoretical process matrix is shown in figure 6. From theoretical and

experimental  process  matrix  I  calculated  process  fidelity F χ (37)  which  describes  the
overlap  beetween  experimentaly  measured  and  theoreticaly  calculated  process  matrix.
Process fidelity is very close to  1 which means that our mode convertor works as it was
designed.
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Figure 5: Experimental polarization state process matrix.

Figure 6: Theoretical polarization process matrix.

F χ =0,988

23

HH HV VH VV
0

0,1

0,2

0,3

0,4

0,5

HH

HV

VH

VV

HH HV VH VV
0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

HH
HV

VH
VV



2.2     Preparation of MZ interferometer for hyper-encoding

In last section we were dealing with the encoding information into spatial mode of
the light. Since our final goal is to encode  information to spatial and polarization degree of
freedom of the light we had to reorganize the experimental setup. To get more space in the
Mach-Zehnder  interferometer  we added  two FEMTOLASSER mirrors,  see  fig  7.  This
increased the length of the Mach-Zehnder interferometer from  28 cm to  72 cm.  Mirrors
generaly change the polarization  state  of  the  reflected  light  but  ours  were  designed to
change  it  minimaly.  The  angle  of  incidence  for  both  mirrors  was  approximately  45
degrees. 

Figure 7: Converter between polarization and spatial coding with mirrors.

Building the experiment was almost identical to previous case described in section
2.1. The only difference was that this time I used PIN photodiode detector which was set to
measure intensities in ampers  A. I set up the preparation and detection part for diagonal
polarization.  By changing  the  horizontal  position  of  BD2 I  was  searching  for  highest
visibility. Obtained visibility was only 0,633. 

To compensate the phase of the MZ interferometer and to obtain higher visibility I
added phase plates into experimental setup. First I added the one I tilted manually. I put
one VOD phase plate to each trajectories of the interferometer. Initially, the incident beam
was  perpendicular  to  the  plates  plane.  I  tilted  BD2  horizontally.  I  found  the  highest
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visibility on its horizontal scale. Then I tilted one phase plate horizontally. By tilting the
phase plate I also changed the optical path difference in the Mach-Zehnder interferometer.
Repating this method the highest visibility I was able to find was V=0,724. 

To locate  highest  visibility  faster  I  used phase plates  where one was fixed and
second was automatically rotating using external electrical  source. They were pieces of
glass  from the  same  phase  plate  so  the  width  was  the  same for  both.  We set  up  the
electrical voltage of the source on 5V.  In this case I was able to scan the horizontal scale of
BD2 on osciloscope. By changing the horizontal position of BD2 the interference pattern
was changing. The goal was to find the biggest difference between highest and lowest
intensity on the interferogram (similar to the one on figure 1). In that way I was able to
find maximum visibility V= 0,841. 

In comparison to previous experiment from section 2.1 the visibility had decreased
about 0,1. Since the time difference between experiments was long we suspect there can be
something with the laser source. We suspected that the coherent length of the source could
have changed. In order to eliminate this alternative I decided to change the laser source to
one  with  narrower  bandwidth.  Narrow bandwitdh  leads  to  longer  coherence  time  and
longer coherence length.  With the new source I was unable to find higher visiblitiy as
before. This means that our  suggestion is not the main cause of the problem and I changed
the new laser source back to original one.

Next step was to check the power difference in both separated laser beams behind
BD1 after  diagonal  polarization  preparation.  So I  blocked  one  beam behind BD1 and
measured the power of the second beam with power meter and vice versa. I found out that
there was a power difference between upper and lower path. By slightly rotating the first
calcite  I  managed to change the power in each path to be  50%  of the full  power.  By
rotating the second calcite I wanted to fix the x-y plane to be identical to the first calcite.
Then I was searching for the highest visibility.  The estimated visibility was V=0,901.  

Because of the BD1 rotation we lost polarization frame reference and I decided to
build  the  experiment  from the  beginning and recalibrate  all  optical  components  again.
Moreover  I  decided  to  remove  phase  plates  from  the  experimental  setup.  Once  the
experimental setup was finished  I measured visibility of V=0,945, which is comparable to
experiment in previous section.

Following the suggestion about spatial overlap from last section I decided to couple
the optical signal into single mode fiber NUFERN HP780. I was able to reach V=0,994
visibility and coupling efficiency of 0,849. Now I was able to characterize this device by
state tomography, see section 2.1. Measured intensities and estimated stokes parameters
are shown in table 5 and 6, respectively.

Table 5: Measured intensities for different states and their projections.

Projection  I|H>           [A] I|V>          [A] I|D>          [A] I|A>            [A] I|R>            [A] I|L>            [A]
Basis 

H 0,841 0,0 0,441 0,436 0,428 0,376

V 0,0 0,828 0,423 0,418 0,429 0,366

D 0,418 0,417 0,758 0,091 0,151 0,654

A 0,416 0,412 0,071 0,768 0,648 0,168

R 0,414 0,421 0,128 0,683 0,732 0,121

L 0,432 0,349 0,711 0,131 0,114 0,733
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  Table 6: Stokes parameters and purity of polarization states.

Stokes
parameter 

 
S1

            
S2

 
S3

 
P

Basis 
H 0,994 0,059 0,0 0,000

V -0,993 0,071 0,0 0,000

D 0,0 -0,632 0,791 0,988

A 0,011 0,589 -0,827 0,999

R -0,011 0,719 -0,681 0,000

L 0,100 -0,742 0,686 0,988

From table 6 we can see that coupling laser beam to optical fiber lead to higher
degree of polarization which is almost  1 in all cases this time. This means our states are
located on the surface of Bloch’s sphere where they are completely pure. Moreover the
coupling signal into single mode fiber eliminated the detector noise.

If we compare data from table 4 and table 6 we can see that the Stokes vectors for
H  and  V  stayed  the  same but  the Stokes  vectors  for  D ,  A  and  R ,  L  had

changed. We conclude that a global phase change was present due to light reflection on
mirrors. The visualisation  of  Stokes  vectors  on Bloch sphere  are  shown  on  figure  8.
Solving the equation (14) and comparing  table  7 to the table  4 we calculated  that  the
Bloch's  sphere  had  rotated  40  degrees  counter  clockwise  in  average. Calculated
longitudinal 2ψ’ and latitudinal 2χ’ angles are shown in table 7. 

Table 7: Longitudinal 2ψ and latitudinal 2χ angles.

Angles 
  2Ψ

(degree)
  2χ

(degrees)
Basis 

H 3,21 0,13

V 3,76 0,21

D -90 51,59

A 88,82 -54,91

R 89,04 42,82

L -82,09 -43,41
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Figure 8: We can see the visual interpretation of Stokes vectors on 3D Bloch’s sphere
using mirrors in experiment. Where axes S1, S2, S3 represent individual dimensions of

Hilbert’s space. S1 represents H , V  polarization, S3 represents D , A

polarization and S2 represents R , L  polarization. First picture represents

reconstructed H  state, second V , third D , fourth A , fifth R , sixth L .
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I  described the  polarization  states  with  their  density  matrices. I  reconstructed
density  matrices  using  maximum  likelihood  method  and  raw  data  from  table  5.
Reconstructed  density  matrices  are  shown  in  figure  9.  From  the  density  matrices  I
calculate the purity P. We can see that purities are very close to one.

I also calculated fidelity F of the states and we can see that fidelity is smaller than
in previous experiment. This is because the Blochs equator had rotated counter-clockwise.
Diagonally and  antidiagonally states gained imaginary parts  on their antidiagonals. Left
circular  and right  circular  polarization  states  gained real  parts  on their  diagonals.  This
finding carried on also into estimation process fidelity. In comparison to the case without
mirrors  the  process  fidelity  dropped  about  0,1  to 0,886.  Reconstructed  experimental
polarization process matrix is shown on figure 10.

Figure 9: Reconstructed density matrix of the states using MAXLIK method.

           Real part of |H> polarization state. Real part of |V> polarization state.

P=0,998  F=0,999 P=0,993  F=0,996

Real part of |D> polarization state Imaginary part of |D> polarization state

P=0,988  F=0,892

28

H V
0

0,2

0,4

0,6

0,8

1

H

V
H V

-1

-0,5

0

0,5

1

H
V

H V
0

0,5

1

H

V

H V
0

0,2

0,4

0,6

0,8

1

H
V



Real part of |A> polarization state. Imaginary part of |A> polarization state.

P'=0,999  F=0,909

Real part of |R> polarization state. Imaginary part of |R> polarization state.

P=0,999  F=0,894

Real part of |L> polarization state. Imaginary part of |L> polarization state.

P=0,988  F=0,859
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Figure 10: Reconstructed experimental process matrix with mirrors in the set up.

Real part of experimental process matrix.

Imaginary part of experimental process matrix.

    F χ =0,886
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Phase compensation 

From previous results  we came to a conclusion that Blochs equator had rotated
counter-clockwise. This can be understood as a global phase shift. There are two ways to
compensate the phase shift. One way is to do it experimentally by adding HWP and QWP
into experimental setup. The second way is to find one unitary operation and compensate it
numerically.  In order to obtain highest possible fidelity we decided to find one suitable
unitary operation. This was done by using phase matrix (see appendix 3) which I applied to
all reconstructed matrices. The phase matrix rotates Blochs sphere 40 degrees clockwise.
Calculated  purities  and fidelities  before and after phase compensation  are in  table  8.  I
applied  this  unitary operation  to  experimental  process  and process  fidelity  raised from
0,886 to 0,995. Compensated experimental process matrix is shown in figure 11.

Table 8: Calculated purities P, fidelities F before phase compensation and F' after
phase compensation. 

P F F'

|H> 0,998 0,999 0,999

|V> 0,999 0,996 0,996

|D> 0,998 0,892 0,999

|A> 0,999 0,909 0,998

|R> 0,999 0,894 0,997

|L> 0,988 0,859 0,993

Figure 11: Compensated experimental process matrix. 

Real part of experimental process matrix.

31

HH HV VH VV
-0,1

0

0,1

0,2

0,3

0,4

0,5

HH

HV

VH

VV



Imaginary part of experimental process matrix.
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2.3 Partially tunable polarization filter 

One  goal  of  the  thesis  is  build  and  characterize  a  tunable  polarization  filter.
Polarization filter  is an device where one or both polarization components of the laser
beam are  attenuated.  We  change  linear  polarization  (  |H>,  |V>  )  into  arbitrary  linear
polarization state. Polarization filter is realized by two VOD half waveplates and BD2. Our
calcite  displacer  BD1 separates horizontal  (upper path) and vertical  polarization (lower
path) by 4 mm. VOD HWPs have holes which are 6 mm wide in a diameter. So we were
able to put VOD HWPs inside our interferometer so that one path interacts with HWPs and
the second does not. I put one HWP into each path, see figure 12. In that way I was able to
manipulate both polarizations independently by setting VOD HWPs. The actual filtering is
realized by BD2. Physical implementation of the setup is shown on figure 13.

Figure 12: Tunable polarization filter.

After  adding  VOD HWP's  into  experimental  setup  we  achieved  80%  coupling
efficiency to  optical  fiber.  The measured  visibility  was V=0,993.   We measured  three
different complete tomographies for polarization filters where the filter was set to transmit
only 1/2, 1/3 and 2/3 of incident horizontal polarization. From measured data I calculated
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process fidelities for all filters. Process fidelities (appendix 4) in all cases were below 0,36.
In order to obtain better  process fidelities  I  applied to  all  polarization  filters  particular
unitary operation to compensate the phase shifts, see table 9. To ilustrate 1/2 polarization
filter behaviour we show reconstruced states as well as caluclated purities and fidelities on
figure 14. Compensated proces matrices for 1/2, 1/3 and 2/3 filters and their theoretical
process matrices are shown in figure 15, 16 and 17, respectively.

Figure 13: Physical implementation of partially tunable polarization filter. Red
emphasise paths of the light.
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Table 9: Filter fidelities F χ  before phase compensation and F ' χ  after compensation
and compensating phase Φ .

Filter Fχ F'χ Φ [degrees]

1
2

0,21 0,98 160

1
3

0,36 0,96 161

2
3

0,11 0,94 203

Figure 14: Reconstructed density matrices of ½ intensity attenuator in horizontal
polarizaton.

Real part of |H> polarization state. Real part of |V> polarization state.

P=0,999 F=0,991      P=0,989 F=0,989

Real part of |D> polarization state. Imaginary part of |D> polarization state.

P=0,999 F=0,997
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Real part of |A> polarization state. Imaginary part of |A> polarization state.

P=0,999 F=0,976

Real part of |R> polarization state. Imaginary part of |R> polarization state.

P=0,999 F=0,981

Real part of |L> polarization state. Imaginary part of |L> polarization state.

P=0,999 F=0,992
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Figure 15: Experimental and theoretical process matrix for ½ intensity attenuator for
horizontal polarization.

Real part of experimental process matrix.

Real part of theoretical process matrix.

F χ =0,979       
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Figure 16: Experimental and theoretical process matrix for 1/3 intensity attenuator for
horizontal polarization.

Real part of experimental process matrix.

Real part of theoretical process matrix.

F χ =0,959
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Figure 17: Experimental and theoretical process matrix for 2/3 intensity attenuator for
horizontal polarization.

Real part of experimental process matrix.

Real part of theoretical process matrix.

F χ =0,937
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2.4 Polarization and spatial hyper-encoding

Our final experiment was dealing with encoding information in both spatial  and
polarization modes. In order to apply polarization coding in our experimental setup we had
to  add  preparation  and  detection  part  of  the  second  qubit,  see  figure  18. In  order  to
characterize  the  device  we had to  realize  1296 measurements.  We had to  prepare  six
combinations of polarization on both qubits in preparation parts, which gives us thirty six
combinations together. In order to collect information for state reconstruction we had to
realize thirty six projections  in detection part.  So doing this  manually would had been
extremely demanding. We decided to automatize the detection part of 1st and 2nd qubit.

Figure 18: Experimental setup for spatial and polarization coding.

For automatization of our waveplates we put them into motorized rotation stages 
Newport SMC100. Since our waveplates are not calibrated I had to write a computer script
for  calibration.   In  the  end  we  used  manual  waveplates  for  preparation  parts  and
automatized waveplates for detection parts. Photo of experimetal realization is shown on
figure 19.
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To automatize motorized stages we wrote a computer script. At the beginning the
waveplates rotates to |HH> position. Where on first place is detection of 1st qubit and in
second place is detection of 2nd qubit. Then it measures and writes the data to a text book.
Then it changes the position to |HV>, |HD>, |HA>, |HR>, |HL> where after changing every
position it measures and writes down the data. This is the first cycle. After this cycle the 1st

qubit in detection part changes its position to |V> polarization and 2nd qubit in detection
part changes its position to |H> polarization. Data are measured, written down and the next
cycle continues. There are six cycles alltogether for every input state.

We  measured   full  tomography  for  this  two  qubit  device.  All  states  are
reconstructed using maximum-likelihood method. To reach higher state fidelities we had to
compensate  the  phase  shift  which  we  applied  to  measured  data.  Calculated  purities,
fidelities and phase shifts are shown table 10. 

As an example, I provide reconstructed state for |HH> and |AR> polarization as
well as their theoretical counterparts, see figure 18.

Figure 19:  Experimentaly realized information encoding into polarization and spatial
mode of light. Red lines emphasise paths of the light. 
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Figure 18: Reconstruction of hyper-encoded states.

Reconstructed  |HH> state.

Theoretical  |HH> state.

P=0,999 F=0,979
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Real part of reconstructed |AR> state.

Real part of theoretical |AR> state.
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Imaginary part of reconstructed |AR> state.   

Imaginary part of theoretical |AR> state.   

P=0,999 F=0,939
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Table 10: Input states, reconstructed states, compensating phases Φ , fidelities
F before phase compensation and F' after phase compensation, purities P.

Input state Reconstructed
state

Φ [degrees] F F' P

|HH> |HH> 0 0,979 0,979 0,999

|HV> |HV> 0 0,979 0,979 0,999

|HD> |HD> 0 0,979 0,979 0,999

|HA> |HA> 0 0,949 0,949 0,999

|HR> |HR> 0 0,977 0,977 0,999

|HL> |HL> 0 0,996 0,996 0,999

|VH> |VH> 0 0,979 0,000 0,999

|VV> |VV> 0 0,951 0,951 0,999

|VD> |VD> 0 0,979 0,979 0,999

|VA> |VA> 0 0,999 0,999 0,999

|VR> |VR> 0 0,949 0,949 0,999

|VL> |VL> 0 0,964 0,964 0,999

|DH> |DH> 0 0,991 0,991 0,999

|DV> |DV> 225 0,146 0,988 0,999

|DD> |DD> 200 0,042 0,805 0,999

|DA> |DA> 155 0,039 0,918 0,740

|DR> |DR> -5 0,946 0,947 0,999

|DL> |DL> -30 0,779 0,845 0,999

|AH> |AH> 160 0,023 0,998 0,999

|AV> |AV> -120 0,249 0,972 0,999

|AD> |AD> 0 0,820 0,820 0,752

|AA> |AA> 180 0,121 0,823 0,775

|AR> |AR> 0 0,939 0,939 0,999

|AL> |AL> -40 0,655 0,696 0,999

|RH> |RH> -25 0,882 0,982 0,999

|RV> |RV> 39 0,827 0,984 0,999

|RD> |RD> 45 0,781 0,939 0,999

|RA> |RA> 45 0,782 0,948 0,999

|RR> |RR> 200 0,021 0,931 0,999

|RL> |RL> 230 0,151 0,849 0,999

|LH> |LH> 0 0,631 0,631 0,999

|LV> |LV> 0 0,631 0,631 0,999

|LD> |LA> 0 0,626 0,626 0,999
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|LA> |LD> 0 0,632 0,632 0,999

|LR> |LR> 0 0,494 0,494 0,999

|LL> |LL> 0 0,504 0,504 0,999

From table 10 we see that purities of reconstructed states |DA>, |AD> and |AA>
drops to  0,745 while in others are  0,999.   We suspect that this is due phase fluctuations
which have occurred during the state measurements. 

Moreover we also found out that the phase differs from state to state.  For example
we can see this difference in state compensation between |DH> and |DV> state. Which
yields 225 degrees.

Last inconsistent result with theoretical expectation  are  cases where we prepared
left  cicular  polarization  in  the 1st qubit  preparation.  Although these  states  are pure the
fidelities  are  below  0,632.  We  were  not  able  to  compensate  the  global  phase  of  the
measurement states to reach higher fidelities. Unfortunatelly we do not know what caused
this discrepancy between experiment and theory, yet.  We plan to investigate this issue in
near future.
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Chapter 3

Conclusion

In the first part of my thesis we built a convertor between polarization and spatial
coding. We  characterized the device by one qubit reconstruction using linear inversion
method. We evaluated our results with and without consideration of detectors noise. We
could see that when we do not take noise detector into account, purities and fidelities of
reconstructed states increased and are very close 1. We also characterized the device by its
process fidelity and it yields 0,988.

In the next experiment we build a tunable polarization filter which attenuates one or
two polarization components of laser beam. We increased the length of the Mach-Zehnder
interferometer from 28 cm to 72 cm by adding two mirrors. Moreover we couple the output
signal to single mode fibre to eliminate detector noise. We measured complete tomography
of new the device without filtering any polarization. Using maximum likelihood estimation
for state recostruction and we found out that mirrors introduced global phase shift. This
caused the process fidelity to drop to 0,886. By compensating the phase the process fidelity
increased to  0,988.  We measured a complete  tomography for 1/2,  1/3,  2/3 polarization
filters. In order to obtain the highest fidelity we had to find three unitary operations which
are suitable  for each particular  filter  individualy.  Estimated process fidelities for above
mentioned polarization filters are 0,979, 0,959 and 0,937, respectively.

Last experiment we were working on was device capable of encoding  information
into polarization and spatial degrees of freedom of light. We characterized this device by
reconstruction of all 36 input states. We found out that purities in three cases were around
0,75.  We suspect that this is due phase fluctuations which have occurred during the state
measurements. In other measurements the phase seems to be constant but it differs from
state to state. The inconsistent results with theory occured in cases where we prepared left
cicular polarization in spatial mode of preparation stage. Although purities of those states
were almost one we were unable to compensate the global phase shift to reach fidelity of
the state higher than 0,632.
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Appendix 

1. Calibration of the quarter wave plates and half wave plates was done in respect to
PBS1  and  BD1.  The  detector  was  placed  behind  the  BD1  to  find  such  an  angle  for
waveplate where the initial  horizontally polarized light does not change its polarization
state  by passing  through BD1.  Finding it  is  crutial  so we would  be able  to  rotate  the
polarization vector on Poincare sphere from horizontal to any arbitrary polarization basis.
We found this  angle  by rotating  the  waveplates  and  detecting  the  maximum intensity
behind the BD1 in the horizontally polarized output (figure 3).

Figure 3: Calibration of waveplates.

2. All the preparation parts consists off  QWP and HWP, respectivelly.  Horizontal
polarized beam enters the quarter and half wave plate for the polarization preparation of
the photons. Using this preparation setup we could rotate the vector of polarization under
its axis of  x-y   which then changes the type of polarization from horizontal to vertical,
diagonal,  anti-diagonal,  left  circular,  right  circular  and  elliptical  polarization,

LRADVH ,,,,,  respectively. On table 11 are shown the degrees how to set up

QWP1 and HWP1 in our experimental polarization preparation set up to get any arbitrary
polarization basis. Degrees are written in respect to zero point of the waveplate.

Table 11: Polarization preparation for initial horizontal polarization.

QWP [degrees] HWP [degrees]

|H> 0 0

|V> 0 45

|D> 0 22,5

|A> 0 -22,5

|R> 45 0

|L> -45 0
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For detection part we placed HWP and QWP , respectively. On table 12 are shown
the degrees how to set up HWP and QWP in our detection set up to measure in particular
projection.

Table 12: Polarization preparation for initial horizontal polarization.

HWP [degrees] QWP [degrees]

|H> 0 0

|V> 45 0

|D> 22,5 0

|A> -22,5 0

|R> 0 45

|L> 0 -45

3. Correcting the global phase shift  is  realized by finding a unitary transformation
defined by matrix

U (ϕ )=(1 0
0 exp(−iϕ )).

I found a unitary operation that corrects our phase shift. Applying this matrix will correct
our results. Transformation by unitary matrix is defined

ρout=U T ρ U T
+. ,

where ρ is our reconstructed matrix, UT
+ is hermitian conjugate of unitary operation U+.

4. Theoretical model described in this case is a little bit different than in appendix 3.
The intensity attenuator is a non-unitary operation. This means our transformation through
Mach-Zehnder interferometer is non-unitary

ρ ideal=
N T ρ i n NT

+.

Tr [N T ρ N T
+.
]

,

where  NT is a non-unitary transformation,  NT
+ is its hermitian conjugate and ρ i n is input

state . In our case NT is defined as

N T=P F T 1 UT

where PF  is matrix which defines  intensity attenuator in horizontal polarization,  T 1  is
matrix which defines half wave plate set on 45 degrees. Calculated fidelities are 

F (ρ ideal ,ρ )=Tr {[ ( ρ )
1 /2 ρ ideal ( ρ )

1 /2
]
1 /2

}
2 ,
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is density matrix through transformation of our system and ρ is reconstructed matrix from 
data.where ρ ideal
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