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Abstract  

The rapid evolution in the field of mobile computing has led to a new alternative way 

for mobile communication, in which mobile nodes form a self-organising wireless network, 

called a Mobile Ad hoc Network (MANET). The specific characteristics of MANETs impose 

many challenges to network protocol designs on all layers of the protocol stack because of 

unpredictable topology changes and mobile nature. Mobility prediction is a tool to deal with 

the problems emerging from the nodes‟ mobility by predicting future changes in the network 

topology. This is crucial for different tasks such as routing. 

In this doctoral thesis, two mobility prediction methods for MANET networks are 

developed. The first method supposes that each node can build its virtual map depending on 

its location over the time. This method is called mobility prediction using virtual map. In 

order to evaluate the developed prediction algorithm, it has been implemented in the network 

simulator NS-2. I have investigated existing mobility models, and how the prediction method 

can be applied to them. Simulations respectively realize performance improvement in terms of 

average end to end delay, packet delivery ratio and network throughput under different 

mobility model. The proposed prediction concept is implemented over AODV (Ad Hoc On-

Demand Distance Vector) routing protocol. 

In the second method, I have developed an artificial neural network for movement 

prediction in MANETs. The prediction model for mobility has been done by the data 

collected from location patterns. The Bayesian technique was used for learning or training 

ANNs. It has been implemented in software for training Bayesian neural networks called 

Model Manager. The best way to evaluate the final model is done by making predictions and 

comparing predictions with target data. The predictions are made by using 50 patterns as input 

variables. 

The reached and in the thesis discussed results show that improvement in the most 

significant network parameters, i.e. delay, throughput and packet delivery ratio, are reached 

even by 30% compared to AODV routing protocol, where the proposed prediction model is 

not utilized. 

Keywords  

Artificial neural networks, Directional antenna, Global Positioning System (GPS) 

coordinates, MANETs, Mobility model, Mobility prediction, Routing protocol. 
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 Abstrakt 

Rychlý vývoj v oblasti mobilní informatiky vyústil v nový, alternativní způsob mobilní 

komunikace, v němž mobilní uzly tvoří samoorganizující se bezdrátovou síť, jíž se říká 

mobilní síť ad hoc (Mobile Ad hoc Network, MANET). Specifické vlastnosti sítí MANET 

stavějí návrh síťového protokolu před řadu problémů na všech vrstvách protokolové sady . 

Příčinou jsou nepředvídatelné změny topologie a mobilní povaha těchto sítí. Nástrojem, který 

řeší problémy plynoucí z mobility uzlů, je predikce budoucích změn v topologii sítě. To má 

zásadní význam pro různé úlohy jako přesměrování. 

Tato disertační práce se zabývá dvěma metodami predikce mobility pro sítě MANET. 

První metoda se nazývá „predikce mobility s využitím virtuální mapy“ (mobility prediction 

using virtual map) a předpokládá, že každý uzel si dokáže vybudovat svou virtuální mapu 

v závislosti na svém umístění v průběhu času. Vyvinutý predikční algoritmus byl 

implementován do síťového simulátoru NS-2, aby jej bylo možné vyhodnotit. V této práci 

zkoumám stávající modely mobility a způsob, jakým v nich lze aplikovat tuto metodu 

predikce. Simulace sledují zlepšení výkonnosti, co se týče průměrného zpoždění na bázi end-

to-end, poměru doručených paketů a propustnosti sítě. Navržený koncept predikce byl 

implementován pomocí směrovacího protokolu AODV(Ad Hoc On-Demand Distance 

Vector). 

Pro druhou metodu jsem vyvinula umělou neuronovou síť pro predikci pohybů v sítích 

MANET. Model pro predikci mobility vznikl na základě dat shromážděných ze vzorců 

umístění. K učení či trénování ANN byl využit bayesovský přístup. Ten byl implementován 

v softwaru pro trénování bayesovských neuronových sítí s názvem Model Manager. 

Nejlepším způsobem hodnocení závěrečného modelu je provedení predikcí a jejich srovnání 

s cílovými daty. Predikce vznikají na základě 50 vzorců jako vstupních proměnných. 

Dosažené výsledky prezentované s diskutované v práci se vyznačují zlepšením 

zásadních parametrů komunikační sítě, jako jsou propustnost, zpoždění, Poměr doručených 

paketů, až o 30% v porovnání s klasickým směrovacím protokolem AODV, kde není 

implementován predikční model. 

Klíčová slova  

Umělé neuronové sítě, směrová anténa, souřadnice systému GPS (Global Positioning 

System), sítě MANET, model mobility, predikce mobility, směrovací protokol.  
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1  INTRODUCTION 

Mobile Ad hoc NETworks (MANETs) have attracted the attention of the scientific 

community for more than three decades. MANET is a wireless network of Mobile Nodes 

(MNs) connected by a wireless link without central control [1]-[3]. The mobile node can be 

carried by people or can be on autonomous system, e.g. vehicle. Each node in a MANET can 

move independently in any direction, therefore links to other devices may change frequently. 

Furthermore, each node makes its decision based on the network situation, without any 

reference infrastructure and thus nodes can behave as routers or hosts. MANETs are Multi-

Hop wireless networks since a node may not be able to connect directly with other nodes 

which are out of its range. In such cases, the data packets from the source need to travel 

through a number of nodes (hops) to reach the destination. The intermediate nodes between 

the source and destination behave as routers [4], [5]. Since the nodes in MANET move 

continually, there are weak and untrustworthy links between them. The design of the network 

layer protocols has been extensively studied [6]-[12]. 

Dynamic topology is a special feature of a mobile ad hoc network. Links between nodes 

are created and broken, as the nodes move within the network. These frequent changes in 

topology affect the performance of ad hoc networks. A mobility model is designed to describe 

the movement of MNs and how their location, speed, and acceleration change over time. 

Many mobility models are studied in [13]-[15]. The mobility model should be able to mimic 

the real movement of MNs.  

 

Fig.  1.1 An example of an ad hoc network 
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Generally, ad hoc networks can be applied in any situation where deployment of a fixed 

communication infrastructure is not possible or a temporary communication is required. 

MANETs are used for commercial environment, education, entertainment, disaster scenarios 

and military applications, where the fixed communication infrastructure is not expected to be 

used in a long time period [16]. In such situations, the MANETs can be advantageously used 

where other technologies either fail or cannot be effectively deployed. Since the nodes are 

mobile; they are allowed to move freely. This produces frequent connectivity changes. In such 

dynamic topology, some pairs of nodes may not be able to connect directly with each other, 

so they use some intermediate nodes to connect to their destinations. These networks are 

called multi-hops networks. Fig.  1.1 shows an example of a MANET which has different 

devices (nodes). A MANET‟s node may be a Personal Digital Assistant (PDA), laptop, 

mobile phone, and other wireless device carried by high-speed vehicles.  

A Vehicular Ad hoc NETwork (VANET) is special kind mobile ad hoc networks where 

wireless transceiver in vehicles form a network with the RoadSide Unit (RSU) without any 

additional infrastructure [17], [18]. The vehicles can communicate with each other, these 

types of communication are called Vehicle to Vehicle (V2V) communication and they 

represent the main communications in VANETs, Fig.  1.2.a. The communication between the 

vehicle and the roadside unit (road infrastructure) are called Vehicle to Infrastructure (V2I) 

communications, Fig.  1.2.b. 

 

(a)                                                        (b) 

Fig.  1.2 VANET networks: a)Vehicle to Vehicle communications, b) Vehicle to 

Infrastructure communications 
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Fig.  1.3 . MANET, VANET and FANET [153] 

Flying Ad hoc Networks (FANETs) are the ad hoc nodes operating in air comprising of 

Unmanned Air Vehicles (UAVs) which can fly autonomously or can be operated remotely 

without carrying any human personnel [153]. These UAVs, if used as network nodes have a 

crucial advantage of formation of an aerial mesh. FANET is used in both  civilian and military 

applications, such as traffic monitoring, wind estimation, disaster monitoring and  border 

surveillance. FANET is a subset of VANET. The relationship among MANET, VANET and 

FANET is illustrated in Fig.  1.3. 

Generally speaking about MANETs, in the case that a node wants to send data, it needs 

to find the location of the destination. While data is being transmitted, the node may move, 

and hence the transmission fails, and the transmitter has to retransmit the data using the 

transport layer. Because data transmission and reception require some energy to perform this 

action and the MNs are powered by a battery, it is very important to use energy as efficiently 

as possible in all layers of the protocol stack [19]. The energy efficiency of the Medium 

Access Protocol (MAC) for the MANET networks is completely different from what it is in 

the MAC for fixed network and cellular network as e.g. discussed in [6], [20], [21]. The 

features of MANET may be summarized as follows:  

 The dynamic nature of network where nodes move arbitrarily and hence the topology 

changes. 

 Infrastructure-less in contrast to with the cellular network. 

 Nodes in MANET share the wireless medium and this medium is not protected from 

outside signals. 
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 Each node can forward data packets to other nodes, so it acts as a router. 

One way to address the effects of node mobility is estimating the movement of the 

MNs. Mobile prediction is a method for estimating the trajectory of the future position of the 

nodes. This topic has been studied in various fields, such as cellular networks and routing for 

wireless mobile ad hoc networks [22]-[25]. It is clear that the application of cellular networks 

operates with more different prerequisites for mobility prediction than for ad hoc networks, 

the hardware of the networks and the behaviour of the nodes are radically different. However, 

the problem of mobility prediction is the same, whether used in wireless networks with fixed 

infrastructure or in wireless mobile ad hoc networks. If topology change can be predicted, 

then path reestablishment can be completed prior to a topology change. A mobility prediction 

scheme for mobile ad hoc networks should present accurate prediction with minimal control 

overhead. The study and analysis of MANET have been carried out by simulation analysis. 

Network simulators are widely used to evaluate the performance of MANETs like NS-2,  

NS-3, and OPNET, among others [26]. Because the real testbeds need a high investment in 

terms of hardware, and, more importantly, the replication of real mobile conditions is very 

difficult in a controlled environment like a laboratory. 

This thesis deals with defining a new prediction model and its utilization in AODV 

routing protocol to provide the improvement of the MANET network parameters. After this 

introduction, the thesis is further organized in 6 main chapters where Chapter 2 includes state 

of art. Chapter 3 introduces the mobility models that have been proposed for MANETs. 

Chapter 4 presents some mobility prediction methods that have been proposed for an ad hoc 

network The Chapter 4 also reviews the challenges at medium access control caused by 

integration of smart antennas system in ad hoc networks. The objectives of this research are 

presented in Chapter 5. Chapter 6 includes the research methodology of the dissertation and 

describes the proposed mobility prediction based on the information of current network status. 

Chapter 7 provides the analysis of the simulation results, and finally, Chapter 8 concludes this 

thesis. 
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2 STATE OF ART 

Due to rapid topology changing and frequent disconnection, the mobility prediction 

helps to develop a snapshot of the future network topology. Therefore, it minimizes location 

updating, thereby reducing communication delay and improving the Quality of Service (QoS). 

Most prediction methods depend on building a mobility profile of the MN. A complete profile 

development of an MN is not feasible and hence 100% accuracy is impossible. The prediction 

accuracy depends on the regularity of an MN and hence MNs that show regularity in 

movement can be predicted with better accuracy. Nevertheless, regular MNs can sometimes 

behave unpredictably. Recently, various mobility prediction methods were proposed for 

MANET. These methods differ in the parameters they predict, the information they use for 

prediction, and the purpose for which the prediction results are used. 

The authors of [27] presented and tested a sequential learning algorithm for the short-

term prediction of human mobility. Constant order Markov model technique is used for the 

prediction. This algorithm predicted the human mobility that used large data sets of 

sequences. Accuracy of prediction is high; however, mobility prediction cannot be computed 

if the mobile history data is not available. 

An Enhanced Localization Solution (ELS) was proposed in [28]. ELS is an innovative 

self-adaptive solution that combines standard location tracking techniques as well as human 

mobility modelling and machine learning techniques. The results showed that ELS worked 

well for different nodes‟ behaviours, and the location prediction could be used in more than 

50% of the cases, with low error and with an effective advantage in terms of power 

consumption.  

Suraj et al. in [29] proposed a new approach to mobility prediction. It is completely 

based on lightweight genetic algorithms to improve the MANET routing algorithms. The 

architecture of this genetic predictor did not include all genetic operations and was modified 

to reach a termination condition without a large number of iterations. This technique opened 

up new possibilities in the field of mobility prediction for MNs in an ad hoc network and can 

lead to better QoS than probability based techniques. However, heavy computational power is 

needed for prediction and more memory is needed for storage in an MN. 

In [30], a new method is proposed to dynamically predict the future position of a 

pedestrian based on the real trajectory data. The proposed method performed well on different 

types of trajectories. This method depends on pedestrian tracked data. The performance is 
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better for high mobility scenarios, where the error vary from three meters to less than one 

meter. 

Authors of [31] proposed a Bayesian model to predict the mobility of a node in 

MANETs to help a routing protocol to avoid broadcasting request messages from a high 

mobility node/region based on the prediction result. This model did not relay on the 

information from GPS. The packet delivery ratio of this method improved up to 46.32% at the 

maximum speed of 30 m/s in the density of 200 nodes/km
2
. 

A mobility prediction method and modelling technique based on the Markov model 

were proposed in [32], the area in which the mobiles move is geographically partitioned into 

cells to form the Markov chain. To enhance the accuracy rate (i.e. to determine the mobility 

behaviour in a shorter time), the number of states must be increased. That is, the geographical 

area must be divided into a larger number of sub-regions of a smaller size.   

In [33], a new solution for the prediction of the future node locations in a MANET is 

proposed using a neural learning machine-based model. This solution is based on 

architectures of the standard MultiLayer Perceptron (MLP) and the Extreme Learning 

Machine (ELM). This model outperforms existing mobility prediction algorithms and 

achieves accuracy scores higher by an order of magnitude. This accuracy allows the proposed 

mobility predictor to improve the overall quality of service in MANETs. The proposed model 

can predict routing tables which would reduce the data exchange in MANETs. Hence the life 

of the node battery is extended. 

Proposed prediction method in [34] predicted future location of user by considering 

online posts which have been tagged with geological coordinates collected through the GPS 

interface of smart phones. However, the prediction accuracy is low because of limited amount 

of information. 

An ad hoc on-demand distance vector routing algorithm, which was proposed in [35], 

took into account node mobility. This algorithm estimated life time of the link based on the 

measured mobility to choose the best route according to the link durations. The proposed 

algorithm also implemented the mobility estimates for route maintenance while the original 

ad hoc on-demand distance vector routing algorithm uses a fixed value as duration for route 

maintenance. This algorithm significantly reduced the number of overhead messages for route 

discovery and route maintenance. Thus the performance (such as packet delivery rate, end to 

end delay) is improved.  
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3 MOBILITY MODELS FOR MANETS 

A Mobile ad hoc network is self-organized i.e., there is no pre-existing infrastructure. 

Hence it independently determines its own configuration parameters such as position 

identification, power control, routing and addressing. The free movement of nodes raises 

several new issues that did not have to be solved in fixed network infrastructures. This 

mobility is a very significant attribute in MANETs. The MN may follow different mobility 

models that affect the network performance. Therefore, the mobility model should be able to 

mimic the real movement of MNs. A mobility model is mainly designed to describe the actual 

movement pattern of MNs, their geographic position, speed, etc. It determines the location of 

nodes in the topology at any given instant, which in turn directly impacts the network 

connectivity. The mobility models are mathematical algorithms that try to fit the behaviour of 

real movement patterns. However, the drawback of these algorithms is that the mobility 

model reflects the real behaviour of MNs only to a certain degree. A good overview of 

mobility models can be found in [13] or in [36]. 

As shown in Fig.  3.1, there are two categories of mobility models: entity mobility 

models and group mobility models [13], [37]-[39]. The entity mobility models represent MNs 

whose movements are independent of each other. While the group mobility models represent 

MNs whose movements are dependent on each other. 

In this part, some mobility models that have been proposed for an ad hoc network are 

presented: 

 Random Walk Mobility model. 

 Random Waypoint Mobility model. 

 Random Direction Mobility model. 

 Modified Random Direction Mobility model. 

 Map-based Mobility model. 

 Reference Point Group Mobility model 

The Random Walk Mobility model and the Random Waypoint Mobility model are the 

two most used mobility models in ad hoc networks. Therefore, these mobility models will be 

used in the simulation and their improvements proposed within this thesis.  
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Fig.  3.1 Summary of mobility models for MANETs 

3.1 Random Walk Mobility Model 

The Random Walk Mobility model (RWM) was first represented mathematically by 

Einstein in 1926 [40]. In this mobility model, an MN can move randomly, which means that 

the direction and speed of moving are selected randomly with uniformly distributed. Both the 

speed and the direction are limited by a pre-defined range,                     and [0; 2π] 

respectively. Each movement in the RWM model occurs in either a constant time period   or 

at a constant distance travelled  , at the end of which a new direction and speed are 

calculated. If a node reaches the border of the area, it selects a new direction [40]. If the node 

moves according to these rules and reaches the boundary of simulation field, the node moves 

away from the boundary by an angle      )), where    ) is the angle during the time 

interval  . Many derivatives of the RWM model have been studied including the one-

dimensional, two-dimensional, three-dimensional, and d-dimensional walk [41]. Fig.  3.2 

shows an example of the movement pattern of an MN based on the Random Walk Mobility 

model after 30 steps. 
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Fig.  3.2 Movement pattern of an MN using the 2-D Random Walk Mobility model 

3.2 Random Waypoint Mobility Model 

The Random Waypoint Mobility model (RWP) is one of the most popular mobility 

models used to evaluate the mobility prediction in MANET. With this model, the node moves 

from its current position to a new one by randomly selecting destination and speed. The 

distribution of speed is uniform within a range                    . When the node 

reaches its destination, it waits for a certain time (pause time) and then it again selects  

a random destination and a new speed. The path between the current position and the 

destination is considered to be straight line. 

Note that the Random Waypoint Mobility model is equivalent to the Random Walk 

Mobility model if the pause time is zero and                     of Random Waypoint 

equal to                     of Random Walk Mobility model [13], [42], [43]. An 

example of the Random Waypoint movement of an MN after 30 steps is shown in Fig.  3.3. 

This model and its derivatives are widely used. Some research efforts described inherent 

deficiencies such as non-stationarity. Stationarity means that statistical properties (mean, 

variance and the probability distributions) do not change in time during simulation [44]. 

Where in RWP model, the average speed of the nodes is found to consistently decrease over a 

large interval of time, speed actually decays will cause node speed to become zero [47]. With 
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increasing simulation time, the speed of the nodes will have an exponential distribution. 

Hence speed distribution is not uniform [45], [46]. Another deficiency is nonuniform spatial 

distribution (border effect) which means that MNs travel through the centre of the simulation 

area with a greater probability than any other area. At the end of the simulation, the density of 

nodes is much higher at the centre of the simulation area and almost non-existent at the 

boundaries. However, it is sometimes still widely used since the decaying effects are only 

observed during long simulations.  Long simulation using RWP model under the above-

described conditions was performed to show the decrease in average instantaneous speed. The 

model is initialized with a speed distribution [0, 40]. The average speed of the nodes at the 

end of the simulation is shown in Fig.  3.4. 

 

Fig.  3.3 Movement pattern of an MN using the RWP Mobility model 
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Fig.  3.4 Average instantaneous speed in meters/second for RWP model [47]  

3.3 Random Direction Mobility Model 

Similar to RWP model, the Random Direction Mobility (RDM) model also considers 

user movement along straight line paths, constant speeds and pauses in between motion 

positions. This model was set to overcome the non-uniform spatial distribution problem in 

RWP model [48]-[50]. Instead of selecting a random destination within the simulation area, in 

the random direction model, a node randomly and uniformly selects a direction by which to 

move along until it reaches the boundary. Once the boundary is reached, the node pauses for a 

certain period of time, selects a new direction in the interval        , and continues the 

process. The nodes are uniformly distributed within the simulation area by this model. This 

model is used for simulation studies of mobile cellular networks [48]. Fig.  3.5 shows an 

example path of an MN, which begins at the centre of the simulation area  using the RDM 

Model.  
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Fig.  3.5 Movement pattern of an MN using the RDM model  

3.4 Modified Random Direction Mobility  

Another variation of the Random Direction Mobility model is the Modified Random 

Direction Mobility model (MRD). Similar to RDM, an MN randomly and uniformly selects a 

direction by which to move. However, it chooses a random destination point on the projected 

line between current point and boundary. 

In comparison to the RWP, the difference is that the distance an MN travels is 

uniformly distributed in [0, distance-to-border] while each movement in the RWP model 

occurs in either a constant time period   or at a constant distance travelled  .  

3.5 Map-Based Mobility Modelling 

Map-Based Movement (MBM) allows the nodes to use random paths based on a map 

which is defined in dependence on the network environment (e.g., the environment may be a 

map of a city) [14].  
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Fig.  3.6 Matrix of movement probability 

In other words, nodes move randomly but always follow the paths defined by map data. 

In MBM each node is represented by a matrix of movement probability in eight main 

neighbouring directions based on the determinants of the given environment, Fig.  3.6, and the 

centre of matrix      ) represents the probability of the node staying in the same 

position [14]. 

In order to get a softer path and reduce the meanders, it‟s possible to use an additional 

matrix of 3x3 in size to determine additional weights based on the direction of the previous 

movement. This matrix is called the direction matrix. For example, Fig.  3.7a prefers a 

horizontal movement with the possibility of turning up or down. If the node moves in the 

upright direction, this direction in the next step has the highest probability. It means that the 

direction matrix will rotate according to the previous step as shown in Fig.  3.7b. 

 

Fig.  3.7 Direction matrix: a) initial state b) rotated matrix 
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When the MN has to move towards a hotspot with known coordinates, it is possible to 

use a global direction matrix, which prefers a global direction from an entire virtual 

environment. This matrix is only rotated when the current hotspot is achieved and the node 

will continue moving toward the next hotspot.  

3.6 Reference Point Group Mobility Model 

Group mobility models are proposed for many situations where a group of members 

work together in a cooperative way to accomplish a common purpose such as an avalanche 

rescue. Reference Point Group Mobility Model (RPGM) represents the group mobility model 

which was first introduced in [51]. In this mobility model, each group has a logical centre. 

The centre‟s motion defines the entire group‟s motion behaviour, including location, speed, 

direction, acceleration, etc. Thus, each group is composed of one reference point and a 

number of members. The movement of reference point defines the motion of reference point 

itself, and the general motion trend of the whole group. For each node, mobility is assigned 

with a reference point that follows the group movement. In each group, nodes are uniformly 

distributed within a radius   from the reference point. The reference point scheme allows 

independent random motion behaviour for each node, in addition to the group motion. Thus 

this mobility model makes two vectors: group mobility vector, which is shared by all 

members of the same group and internal mobility vector, which represents the relative 

mobility of a node inside the group. The vector sum of the two mobility vectors decides the 

mobility of the node [52], [53]. 

3.7 Summary 

There are several mobility models that have been proposed to fit certain specific 

mobility scenarios [13]. This chapter presented some mobility models that have been 

proposed for MANETs: Random Walk Mobility model, Random Waypoint Mobility model, 

Random Direction Mobility model, Modified Random Direction Mobility model, Map-based 

Mobility model and Reference Point Group Mobility model. The Random Walk Mobility 

model and the Random Waypoint Mobility model are the two most used mobility models in 

ad hoc networks. Therefore, these mobility models are later assumed, discussed and analysed 

by simulations as will be shown in the Chapter 7, whereas the mobility prediction is utilized.  
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4 MOBILITY PREDICTION 

As already mentioned above, the free movement of nodes raises several new issues that 

did not have to be solved in fixed network infrastructures. One way to address the effects of 

node mobility is estimating the movement of the MNs before the actual movement (mobility 

prediction). Mobility prediction methods are commonly based on historical movement 

patterns of the MN. Predictions can be for the next step of MN movement or for a whole 

sequence of movements. Almost all prediction methods depend on the fact that node 

movements are not completely random [25].  

4.1 Existing Methods of Mobility Prediction 

Mobility prediction has received a lot of attention from the research community. A lot 

of research has been conducted to improve the accuracy of the mobility prediction methods or 

to enhance the performance of the mobility based networking protocols [54]-[62]. This 

section presents some mobility prediction methods that have been proposed for an ad hoc 

network protocol. Fig.  4.1 shows the most frequently reported applications of the mobility 

prediction in MANET which can be summarized as estimation of the link availability time, 

path reliability, route duration, network partitioning prediction, and routing enhancement [23], 

[63], [64].  

 

Fig.  4.1 Applications of mobility prediction  
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The mobility prediction is widely used to estimate the link availability time in a wireless 

mobile network. A link is available between every two nodes as long as they are within the 

transmission range of one another. A prediction mechanism for Link Expiration Time (LET) 

between two MNs has been studied in [65]-[69] to improve routing protocols for MANETs. 

LET is a period of time that two neighbouring nodes will remain connected by using mobility 

parameters of these two nodes (e.g. speed, direction and radio propagation range). 

By exploiting the fact that an MN moves by a non-random movement pattern in real 

situations, it is possible to estimate the future topology of the network. The Global Positioning 

System (GPS) and the signal strength methods both use physically measured parameters to 

predict the link availability time. A prediction algorithm using GPS was proposed in [68] to 

determine the LET. It is assumed that all MNs in the network have their clock synchronized 

(e.g. by using the GPS clock itself). Assume two nodes i and j are within the transmission 

range of each other, Fig.  4.2. If the nodes i and j at locations (     ) and (     ) are moving at 

speed vi and vj respectively, then the link expiration time is calculated as follows: 

     
       )  √      )         ) 

     
  

  (1)

where,  

                       (2)

           (3)

                      (4)

           (5)

            (6)

whereas θi and θj are the moving directions of nodes i and j, respectively. 
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Fig.  4.2 Link expiration time between pair of nodes 

The mobility information of each MN can be observed from GPS. If the nodes i and j 

are traveling at the same speed and the same direction (     ,      ), the link expiration 

time is infinite. After predicting the LETs of all links of a route, the minimum value of LETs 

is the Route Expiration Time (RET). This allows rebuilding route before route failure. 

However, this method is not suitable in the case of sudden changes in the direction and speed. 

It is only used for simple mobility model.  A prediction algorithm using signal strength was 

proposed to determine the time when two nodes are moving out of the radio transmission 

range. This algorithm only uses the signal power of receiving the packet and does not depend 

on any add-on device. 

A path reliability is another metric for path selection [70] because LET alone cannot 

exactly judge link availability. If    is the expiration time of an active link between two nodes 

i and j at time   , the availability of this link     ) is devided into two parts:  

 availability of the link when the speeds and moving direction of tow nodes i and 

j are constant over the time period of (     ),  

 availability of the link for the other cases [70]. 

A prediction mechanism for a proximity has been presented in [71], [72]. The proximity 

model has been presented to quantify the future proximity of adjacent nodes and provides a 

quantitative metric that reflects the future stability of a given link. This model is used in 

MANETs to minimize the requirement for precise mobility information. 

Network partition occurs because of the group mobility behavior of the MNs in 

MANETs, where the MNs belonging to the same mobility group show similar mobility 
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pattern, while the nodes of different groups show varied mobility patterns [73]. The system 

proposed in [74] is for the detection and recovery of network partitioning using additional 

nodes. This system has a reactive behavior, which means that the system only becomes active 

when a communication problem occurs, for example, when a link breaks down. 

The Markov model has been used in algorithms for prediction [75]. Several mobility 

prediction methods and modeling techniques based on the Markov model were proposed in 

[76]-[80]. A Mixed Markov chain Model (MMM) has been proposed for next location 

prediction in [81]. This approach considers that standard Markov Models (MM) and Hidden 

Markov Models (HMM) are not generic enough to encompass all types of mobility. 

Therefore, the concept of MMM was proposed as an intermediate model between individual 

and generic models. The prediction of the next location is based on a Markov model 

belonging to a group of individuals with similar mobility behaviour. This approach clusters 

individuals into groups based on their mobility traces and then generates a specific Markov 

model for each group. The prediction accuracy of MMM is better than those of a simple 

Markov model and a hidden Markov model. A mobility prediction-based clustering (MPBC) 

scheme was proposed by Ni et al. [82] for wireless mobile ad hoc networks. A node may 

change the associated cluster head (CH) several times during the lifetime of its connection. 

The proposed clustering algorithm includes an initial clustering stage and a cluster 

maintaining stage. The Doppler shifts associated with periodically exchanged Hello packets 

between neighbouring nodes are used to predict their relative speeds, and the estimation 

speeds are used to predict the remaining time that a cluster member may stay in the 

transmission range of its cluster head.  

In general, the GPS-based prediction method is one of the good solutions to estimate the 

network mobility [31], [84]. The authors of [84] modified Q-Routing algorithm by 

Reinforcement Learning (RL) techniques. The aim of this method is to increase network 

nodes‟ lifetime by proper energy-efficient policies and achieving fault-tolerance, through a 

rapid path-handover and mobility prediction.  

The authors of [85] proposed a new approach to predict user mobility in the absence of 

mobility history by using Short Message Service (SMS) and instantaneous Geological 

coordinates. This work was applied to predict the mobility of medical rescue vehicles and 

social security systems. 

In [83], I implemented a neural network to predict the future movement of MNs in ad 

hoc networks. This method consists of three-layer feed-forward network. The back-
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propagation algorithm was used to learn the neural network. The mobility prediction allows 

finding the more stable links in a mobile ad hoc network. The training and testing neural 

network were done by the input and output patterns representing locations of mobile ad hoc 

node which moves according to RWM Mobility model. I evaluated the neural network by 

presenting the new input patterns to this network to produce the predictions. It was found out 

that feed-forward neural network works well for prediction the next position of a MN in 

MANET. 

In [154], I proposed a prediction algorithm of the future movement of nodes based on 

the information of current network status as will be seen in section 6.1. It determines the 

behavior of the mobility prediction method using data collected from the node which moves 

according to random walk mobility model. This article studied the impact of the mobility 

prediction method on mobile nodes' parameters such as delay, throughput and packet delivery 

ratio as will be seen in section 7.1.   

4.2 Quality of Service  

The QoS (Quality of Service) is an integral part of MANETs. The topology of MANET 

is changing due to dynamic joining and leaving of the wireless nodes. Requirements on QoS 

rise from the application layer in the form of ensuring the required values of some network 

parameters such as throughput, delay or jitter. Most of the modern multimedia applications 

strictly require QoS methods [86], [87]. The goal of using QoS is deterministic behaviour of 

the network, which is achieved when the information transmitted through the network is 

delivered on time. In this case, the required quality and utilization of network sources are  

optimized [88].  

The main issues associated with providing QoS in MANET are:  

 Unreliable communication channel - the bit errors are the main problem of 

unreliable wireless channel. This is due to high interference, thermal noise or 

multipath fading effect. Using wireless environment for MANETs may lead to 

leakage of information.  

 Maintenance of the route - the dynamic nature of the network topology and 

also the changing behaviour of the communication medium makes the 

maintenance of network very difficult. The established routing path may be 

broken during the process of data transfer. Hence it is necessary to maintain and 
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update the routing paths with minimal overhead and delay. That requires the 

reservation of resources at the intermediate nodes.  

 Mobility of the nodes - the nodes in MANET are considered as MNs that move 

independently and randomly. Therefore, the topology information has to be 

updated frequently [89]. 

 Limited power supply - providing the QoS consumes more power due to 

overhead from MNs. This is reflected in a faster discharging of the battery. 

 Lack of centralized control - the MNs in ad hoc networks can join or leave the 

network. The network is then set up spontaneously. There is no centralized 

control. That leads to increased algorithm‟s overhead and complexity.  

 Collisions - the nodes must communicate between themselves on common 

channel. This generates the problems of interference and channel contention (for 

example the hidden node problem). For peer-to-peer data communication it is 

possible to use TDMA (Time Division Multiple Access) systems where each 

MN may transmit at a predefined time [90]. Other options are to use a different 

frequency band or spreading code CDMA (Code Division Multiple Access) for 

each transmitter.  

 Security - it is an important part of MANETs. The physical medium of 

communication is insecure. There is a need to design security-aware routing 

algorithms for these networks [91]. 

Today, most user equipment (mobile phones, tablets, net-books, etc) supports multiple 

Radio Access Technologies (RATs), such as Long Term Evolution (LTE) and WiFi. One of 

the most engaging challenges for mobile operators is the question how to manage the data 

traffic in mobile networks which is increasing exponentially; mainly due to the growing 

popularity of applications for mobile devices. Mobile data offloading represents the idea of 

cost-efficient technology to release the overloaded parts of RAN in cellular networks. This 

emerging solution introduces the concept of offloading the mobile data from primary cellular 

communication technology to the IEEE 802.11 infrastructure with aim to gain extra capacity 

(higher throughput) and improve the overall network performance and user experience. In 

[127], we addressed two the most discussed solutions for offloading between the LTE cellular 

network and WiFi when the performance needs/requirements exceed the threshold for 

providing the services via LTE network under an agreed-upon QoS. In detail, the 

implementation of SNR (Signal-to-Noise Ratio) threshold based handover and network 
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throughput based handover solutions following the 3GPP standard for Access Network 

Discovery and Selection Function framework for WiFi offloading in simulation environment 

NS-3 is proposed. We have shown that user equipment is connected to WiFi access point 

(AP) at the distance of 117 meters at 1.68 Mbit/s throughput, beyond this range the user 

equipment is switched to the LTE network at 8.5 Mbit/s throughput for 3 MHz channel 

bandwidth and 16.08 Mbit/s throughput for 5 MHz channel. 

4.3 Routing Protocols for MANETs 

MANET routing algorithm inherited from traditional algorithms fails to consider ad hoc 

network characteristics like mobility and resource constraints. Therefore, it is subject to 

inefficiency. Since a mobile ad hoc network consists of wireless hosts that may move often 

and hence may cause links to be broken frequently. The protocol must adapt to frequent 

changes of network topology to set reliable paths, which remain valid as long as possible. The 

increased mobility of ad hoc nodes presents a challenging issue for protocol design. Various 

routing schemes have been proposed for ad hoc networks, they are classified on the basis of 

the way the network information is obtained in these routing protocols. These protocols are 

proactive (table driven), reactive (on demand) and hybrid routing protocols [8], [92]-[95]. 

Proactive routing protocols in wireless networks have a minimum end to end delay but they 

incur additional overhead due to maintaining up-to-date information [96]. While reactive 

routing protocols have lower overhead because routes are determined only on demand. End to 

end delay increases due to route discovery procedures. Hybrid routing protocols are using the 

best features of both the proactive and reactive routing protocols. The most popular protocols 

from these categories are: 

 Optimized Link State Routing protocol (OLSR) [97]. 

 Ad hoc On-Demand Distance Vector (AODV) [98]-[100]. 

 Destination-Sequenced Distance-Vector routing (DSDV) [101]. 

 Dynamic Source Routing (DSR) [10], [102]. 

 Temporally Ordered Routing Algorithm (TORA) [103]. 

 Zone Routing Protocol (ZRP) [11].  

A simplified view of the routing protocols in MANET is given in Fig.  4.3.  

In [97], I described the quality of services support in MANET networks based on the 

modification of the OLSR routing protocol. The selected messages of this protocol were 
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extended by new fields that were used for the QoS assurance. The experimental model of QoS 

support in MANET was implemented into the OPNET Modeler simulation environment. 

 

Fig.  4.3 Classification of MANET routing protocols 

In [105], a new routing protocol is proposed that rank the available routes according to 

their path stability. Therefore, a signal strength based link prediction technique is proposed for 

demonstration. The proposed routing concept is implemented over AODV routing protocol. 

 In order to improve routing protocol performance, there are two schemes that utilize 

location information (for instance, obtained using the global positioning system). The first 

scheme is Location-Aided Routing (LAR) that uses location information obtained from the 

GPS to limit the search for a new path to a smaller request region of the ad hoc network [106]. 

Another location-based routing protocol is Distance Routing Effect Algorithm for Mobility 

(DREAM) [11], [107]. DREAM updates routing table periodically. Some routing protocols 

that have been proposed for an ad hoc network protocol are presented in this part. 

Me with other authors in [104] implemented DSDV routing protocol into the simulation 

model of MANET, which was designed in the NS-3 environment. Further, the simulation 

focused on the analysis of the effect of QoS support on the most significant network 

parameters. For the purpose of performed analysis, two network services with different user 

priorities were defined: File Transfer Protocol (FTP) and Voice over IP (VoIP). The obtained 

results show that the deployment of QoS into the MANET brings the decrease of the end to 

end delay and jitter for VoIP service.  
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Table  4-1 End to end delay for VoIP service 

User priority level End to end delay [ms] 

QoS=0 210 

QoS = 6 (default) 160 

QoS = 6 (improved) 143 

Table  4-2  Jitter for VoIP service 

User priority level Jitter [ms] 

QoS=0 5.2 

QoS = 6 (default) 3.7 

QoS = 6 (improved) 1.4 

 

The end to end delay for VoIP was decreased from 210 ms to 160 ms in case of default 

QoS settings and to 143 ms in case of our improved algorithm as shown in Table  4-1.This 

change corresponds to the percentage decrease of 31.90% for improved QoS.  The jitter for 

VoIP service decreases about 73.07% in the scenario with the modified QoS model, 

Table  4-2. 

Due to the lower priority, the values of network parameters for the FTP service were 

increased. The end to end delay for the FTP application was increased from the value 262 ms 

to 319 ms. Another increase occurs when the improved QoS algorithm was implemented. This 

result verifies the theoretical presumptions when the FTP traffic has the lowest priority. 

 By the simple modification of the default QoS algorithm we were able to achieve better 

performance for the delay-sensitive network application [104]. The proprietary 

implementation of QoS support into the routing protocol DSDV was successful and brings 

expected results. The created model of MANET can be used as a basis for the related 

research. 
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4.3.1 Ad Hoc On-demand Distance Vector (AODV) 

AODV routing protocol is reactive routing protocol and one of the most popular routing 

protocols designed to be used in mobile ad hoc networks [108]-[110]. AODV is developed 

based on the DSDV routing algorithm [99]. This protocol does not maintain permanent route 

table. Instead, routes are built by the source on demand. It has two phases: route-discovery 

and route-maintenance. The network remains inactive unless a connection is required by a 

node in the network.  The source node that wants to know a route to a given destination 

broadcasts a Route REQuest (RREQ). The route-discovery phase is initiated as shown in 

Fig.  4.4, where node A wants to connect to node G. The adjacent node receives RREQ with 

the addresses of the source node and a destination node if it is same with the destination 

node‟s address. It sends a Route REPly (RREP) to the source node, otherwise, checking the 

routings in the route table that could reach the destination node, then sends RREP to the 

source node, or continues flooding the network by sending RREQ [98]. Fig.  4.5 presents the 

route determination from source A to the destination G. AODV protocol can maintain 

neighborhood information through broadcasting hello message periodically. A route is 

maintained only when it is used. If a source node moves, a new route discovery process is 

initiated. If intermediate nodes or the destination move, the next hop links break resulting in 

link failures. Therefore, routing tables are updated for the link failures and all active 

neighbours are informed by a Rout ERRor (RERR) message. 

 

 

Fig.  4.4 Propagation of RREQ 
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Fig.  4.5 Path of the RREP from the destination to the source 

The problem of the AODV is that it selects a route with fixed lifetime instead of any 

reliable lifetime parameters and uses the route until a link failure occurs. The duration for 

route maintenance has fixed value while each link has different link duration as well as active 

route duration due to node mobility. However, AODV is a very useful and desired protocol in 

MANETs for its performance, because It was observed that AODV is very good in term of 

packet delivery ratio, throughput and end to end delay [108], [111]. 

4.3.2 On-Demand Multicast Routing Protocol for MANETs 

The On-Demand Multicast Routing Protocol (ODMRP) has been proposed in [112], the 

source node creates and updates group membership and multicast routes on demand (non-

periodically) to reduce the channel overhead. ODMRP depends on the concept of forwarding 

group. Forwarding group is a set of nodes that is in charge of forwarding multicast data on 

shortest paths between any member pairs. It has two cycles: a request cycle and a reply cycle. 

When a source wants to send packets, it periodically broadcasts the join request, which 

includes a member advertising packet and data, to the entire network to update the 

membership information and the routes. When a node receives a non-duplicate join request, it 

saves the source ID in its routing table and then it rebroadcasts the join request. When the 

desired multicast destination receives the join request, it builds a join table which is 

broadcasted to neighbouring nodes. When a node receives the join table it understands that it 

is on the route to the source in case that the next node ID of one of the entries is the same of 

its ID. This node is part of the forwarding group, thus it builds its own join table which is also 
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propagated to neighbouring nodes after setting of Forwarding Group Flag (FG-Flag) [113]. 

Each part of the forwarding group propagates the join table until it reaches the multicast 

source via the shortest path. This method updates the routes from sources to destinations and 

builds the forwarding group. Fig.  4.6 shows the request and the reply cycles of ODMRP.  

After building up the forwarding group and routes, a source can propagate packets to 

destinations by selected routes and forwarding groups. When a node receives the multicast 

data packet, it forwards the multicast data packet if the following two conditions are true: the 

multicast packet is not a duplicate and the setting of FG-Flag for the multicast group is still 

available. Nodes in the forwarding group will be non-forwarding nodes if they have not 

received join tables before their FG-Flag are expired. Thus, no explicit control packets need to 

join or leave the group. However, ODMRP discovers multicast routes only in the presence of 

data packets to be delivered to a multicast destination. Route discovery is based on the request 

and reply cycles where multicast route information is stored in all intermediate nodes on the 

multicast path. For example, there are three sources (S1, S2, S3) as shown in Fig.  4.7. These 

sources send multicast data packets to three destinations (D1, D2, D3) through forwarding 

group (N1, N2, N3).  

 

Fig.  4.6 The request and the reply cycles of ODMRP 
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Fig.  4.7 An example of the ODMRP 

The route from S1 to D3 is S1, N1, N3, D3. If the route between N1 and N3 is broken, 

in ODMRP, the route S1, N1, N2, N3, D3 will be in exchange for the route S1, N1, N3, D3. 

While in a tree configuration, the route from S1 to D3 is broken until the tree is reconfigured. 

An example of join table forwarding is illustrated in Fig.  4.8. Multicast destinations D1 

and D2 send their join tables to multicast sources S1 and S2 through N1. Multicast destination 

D3 sends its join table to S1 through N1 and to S2 through N2. When source S2 wants to send 

data to D3, it broadcasts the join request. When node N2 receives the join request, it saves the 

source ID in its routing table and then it rebroadcasts the join request. The desired destination 

D3 receives the join request; it builds a join table which is broadcasted to neighbouring nodes. 

When an intermediate node N2 receives the join table of D3, it sets the FG-Flag and builds its 

join table because the next node ID of one of the entries is the same of its ID.  

Note that the channel overhead is decreased in case where node N1 broadcasts the join 

table once even though it receives three join tables from three destinations D1, D2, D3 

because these multicast destinations have the same links to the source. ODMRP requires 

periodic flooding of join request to build and refresh routes which often cause contention and 

collisions. Thus it is important to find the optimal flooding interval. 
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Fig.  4.8 An example of a join table forwarding 

4.3.3 Applying Mobility Prediction 

The routing protocol must adapt to frequent changing network topologies to set reliable 

routes. The route establishment time should be short, with minimal overhead. Predicting the 

availability of a route in a network can significantly improve the capabilities of the existing 

routing protocols. The On-Demand Multicast Routing Protocol with Mobility Prediction 

(ODMRP-MP) was proposed in [114]. The period of time two neighbouring nodes will 

remain connected is predicted by using mobility parameters of these two nodes provided by 

GPS [67], [68]. With the predicted time of route disconnection, join request is only flooded 

when route breaks of on-going data sessions are imminent. A join request is tailed by the 

location, speed, and direction of the source. The source sets the minimum LET field to the 

maximum LET value. The neighbouring node, which receives a join request, predicts the link 

expiration time between itself and the previous hop. It rebroadcasts the join request, but this 

join request will include the minimum between this value and the MIN LET indicated by the 

receiving join request, this minimum value is RET. The node also updates the location and 

mobility information field according to its own information. If a forwarding group node 

receives multiple Join tables with different RET values from the same source to multiple 

destinations, it selects the minimum RET among them and sends its own join table with the 

chosen RET value attached. Then the source can build new routes by flooding a join request 

when route breaks of on-going data sessions are imminent (i.e. before the minimum RET 
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approaches). The Destinations only send join tables after receiving join request. The selection 

of the minimum refresh interval and the maximum refresh interval should be adaptive to 

network situations (e.g., traffic type, traffic load, mobility pattern, mobility speed, channel 

capacity, etc.) 

In this scheme, instead of using the minimum delay path, we can choose a route that is 

the most stable (i.e. the one with the largest RET). An example of route selection algorithm is 

presented in Fig.  4.9. Two routes are available from the source S to the destination D. Route 1 

has a path of (S-A-B-C-D) and route 2 has a path of (S-A-E-C-D). The route expiration time 

of route 1 is 2 (min (3; 2; 4; 5)= 2) while that of route 2 is 1 (min (3; 5; 1; 5)=1). The 

destination selects the route with the maximum RET, and hence route 1 is selected. The 

multicast destination should wait for a convenient period of time to receive all possible routes 

and then the route which has maximum RET is selected to be included in a join table. 

The route expiration time prediction could become incorrect because a node can 

accelerate, decelerate and change its direction while it is traveling. Also, the mobility 

information obtained from GPS may not always be accurate. If we suppose that there is no 

sudden change of direction and the mobility information obtained from GPS is accurate, the 

predicted route expiration time of a node could be always accurate. 

ODMRP-MP is more effective compared to ODMRP because ODMPR-MP reconstructs 

the routes before topology changes (i.e. before the minimum RET approaches), thus most data 

are received without being lost. 

 

 

Fig.  4.9 Route selection example 
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4.4 Integration of Smart Antennas in Ad Hoc Network 

Due to the need for increasing exchange and share data, users demand easy connectivity 

and fast network wherever they are. Recently, users are interested in interconnecting all their 

personal electronic devices together using MANET. As a result, the throughput capacity of ad 

hoc network can be limited because of interference. When a smart antenna system is 

integrated into such network, significant spatial reuse of the wireless channel can be achieved, 

decreasing the interference and thereby increasing the capacity of the network [115]-[117]. In 

this chapter, a short review of the challenges at medium access control caused by integration 

of smart antennas system in ad hoc networks is given. 

4.4.1 Smart Antenna 

Typically, an ad hoc network uses omnidirectional antennas, which can transmit and 

receive signals equally from all directions. Since two nodes communicate using a given 

channel, all the other neighbouring nodes keep inactive. Thus the throughput capacity of an ad 

hoc network that uses such antennas is limited [118]. Smart antennas allow the energy to be 

transmitted or received in a particular direction as opposed to disseminating energy in all 

directions [119]. The capacity of MANETs is constrained by the interference between 

concurrent transmissions from neighbouring nodes.  

The ability of smart antennas to direct their radiation energy toward the direction of the 

intended node while suppressing interference can significantly increase the throughput 

capacity compared to a network equipped with omnidirectional antennas because they allow 

the communication channel to be reused [120]. In other words, nodes with smart antennas 

focus only on the desired nodes and allow the neighbouring nodes to communicate, 

Fig.  4.10.b. In contrast nodes with omnidirectional antennas keep the neighbouring nodes 

inactive during their transmission as shown in Fig.  4.10.a [121].  

There are two types of directional antennas systems: switched beam (sectorized) 

antenna systems and steerable beam system (adaptive).  

 In the switched beam (sectorized) antenna systems, multiple fixed beams are possible. 

These systems present a predetermined set of beams which can be selected as appropriate. For 

a switched beam antenna with K beams, the width of each beam is 2п/K radians. A directional 

transmission would then cover one of these k fixed sectors as illustrated in Fig.  4.11. 
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 (a) (b) 

Fig.  4.10 Throughput capacity of a network with a) omnidirectional antennas, b) a 

network with smart antennas 

 

Fig.  4.11 Switched beam antenna system 

The other type is steerable beam system (adaptive) in which the main lobe of the 

antenna can be focused toward the user of interest and nulls in the direction of the 

interference. Thus, if a node wants to communicate with its neighbour, it can adaptively steer 

its beam so as to point the main lobe towards that neighbour in a mobile scenario as  

well [122]. 

Gain and directivity are intimately related in antennas. Gain is a measure of the increase 

in power. The gain of a directional antenna is typically higher than that of an omnidirectional 

antenna. Directional antennas can have a larger directional range as compared to an 

omnidirectional antenna [123]. The gain of a directional antenna in a particular direction  ⃗ is 

defined as:  
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 ( ⃗)   
 ( ⃗)

    
     (7)

where   is the efficiency of the antenna which accounts for losses.  ( ⃗) is the energy in the 

direction  ⃗.      is the energy over all directions. The direction of peak gain is referred to the 

main lobe of the antenna. 

4.4.2 MAC Protocol Using Directional Antennas 

Suppose that there is a MANET of n MNs, where each MN has smart antennas with 

non-overlapping directions and all nodes use the same wireless channel. The antennas of a 

node cover all directions. The RTS and CTS messages are assumed to contain location 

information of both the sender and destination; this, in turn, helps transmit (or receive) the 

DATA and ACK messages directionally [7].  

There are two approaches proposed for directional medium access control in [123]: 

Aggressive Collision Avoidance approach and Conservative Collision Avoidance approach. 

In the aggressive collision avoidance approach, a node can start a new transmission in spite of 

receiving an RTS or CTS sent by other nodes. The handshake is used only for ensuring that 

the destination is not busy sending or receiving. While in conservative collision avoidance 

approach a node is always prevented from transmitting when it receives an RTS or CTS. The 

performance evaluation shows that both approaches outperform the IEEE 802.11 MAC with 

omnidirectional communications. These approaches suffer from high collisions rate because 

of their dependence on omnidirectional mode for the transmission or reception of control 

packets in order to establish directional links. Another approach has been studied in [124]. 

This is called Destination Oriented Multiple Access (ROMA) which uses Multi-Beam 

Antenna Arrays (MBAA) as shown in Fig.  4.12.  ROMA computes a link activation schedule 

in each time slot using two-hop topology information. Thereby significant improvement in 

network throughput and delay can be achieved.  However, ROMA does not take into account 

nodes mobility. 
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Fig.  4.12 The multi-beam Antenna array 

In [125] Location and Mobility Aware (LMA) MAC protocol are developed for 

VANETs. The predictive location and mobility of the vehicles are adapted to provide robust 

communication links while using the directional beams. The LMA protocol predicts the 

transmission angle between the transmitter and destination. The predicted angle is not 

accurate because the moving angle of the destination can be changed during the data 

transmission thus causing data loss. This protocol can be enhanced by using the Directional 

Beacon (DB) mechanism which makes the MNs get the update of mobility information via 

DB after any change of one node moving angle or speed. If nodes move regularly, the 

predicted angle can be more accurate. However, new challenges appeared with the directional 

communications, such as deafness and hidden terminal problems. 

 

Fig.  4.13 Two scenarios of deafness 
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Two types of deafness are shown in the Fig.  4.13. The first scenario shows that node N 

does not know about the transmission between S and D, so if it has a packet to send to node S 

it sends RTS but node N does not hear. In the second scenario, node N1 sets its Directional 

Network Allocation Vector (DNAV) for beam 3 because of receiving CTS from the 

destination. Node N2 sets DNAV for beams 4 and 2 because of receiving RTS and CTS. If 

node N2 has a packet to send to N1, it starts sending RTS to N1 from beam 1, thus the 

deafness occurs. 

A new directional MAC protocol has been proposed in [126], it includes a new scheme 

to inform its neighbours who were deaf because of other communications. Thus it solves the 

deaf node problem. Moreover, it prevents the hidden node problem. Each node has Multiple 

Beam Smart Antenna (MBSA) with non-overlapping directions that cover all directions 

around the node (2п rad). If a node wants to send a packet, the RTS/CTS handshake occurs 

directionally between the source and the destination. If it is completed, the communicating 

nodes send RTS/CTS simultaneously through all beams except the data communicating 

beams. Then they start transmitting data using the beam pointed each other and prevent the 

other beams from transmission and reception. When the neighbours hear a packet they set 

DNAV for that beam. After transmitting data, the idle neighbour of the node, which has just 

completed their transmission, will send a Neighbour Information Packet (NIP) to this node to 

be aware of on-going communication in the network. Thus by using this method of 

simultaneous transmission of RTS/CTS and transmission of NIP, the deaf and hidden node 

problem is prevented. 

4.5 Neural Network for Mobility Prediction  

Artificial Neural Networks (ANNs) are an information processing model that is inspired 

by the way biological nervous systems work, such as the brain, on a computer. It was founded 

by McCulloch and co-workers beginning in the early 1940s [128], [129]. 

ANNs are used in many applications to solve some real world problems. ANNs solve 

many engineering problems such as classifications, prediction, pattern recognition, and non-

linear problems [130], [131]. Neural networks with its learning and generalization ability may 

act as a suitable tool to predict the location of an MN. The training process requires a set of 

examples of proper network behaviour (network inputs x and target outputs t). The process of 

training a neural network involves tuning the values of the weights and biases of the network 

to optimize network performance. The default performance function for feed-forward 
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networks is Mean Square Error (MSE). MSE is the average squared error between the 

network outputs and the target outputs. If   is a vector of   targets and   is a vector of   

predictions. MSE is defined as follows: 

    
 

 
∑      )

 

 

   

    (8)

A neural network can be used to fit both linear and non-linear relationships in functions, 

this is the main reason of using the neural network [132]. In [64], Kaaniche and Kamoun 

introduced a neural network based method for mobility prediction in ad hoc networks. They 

used a time series prediction technique based on recurrent neural network a backpropagation 

multilayer neural network to estimate the future location of MN based on time series 

observations as the input of the network. This method consists of a three-layer and recurrent 

neural network. It used back propagation through time algorithm for training. In [133], the 

authors also predicted the mobility parameters using the time series. They proposed 

AutoRegressive Hello protocol (ARH) which is a mobility prediction scheme based hello 

protocol in mobile ad hoc networks. Each node predicts its own position by an ever-updated 

autoregression-based mobility model. The node sends „hello‟ message for location update 

only when the predicted location is too different from the actual one. Each location update 

corresponds to a „hello‟ message transmission 

An adaptive learning automata-based mobility prediction method was presented in 

[134]. This method made prediction based on the Gauss–Markov random process, and 

exploiting the correlation of the mobility parameters over time. It used a continuous valued 

reinforcement scheme to learn how to estimate the future mobility characteristics based only 

on the mobility history. The mobility distribution parameters are assumed to be unknown, it 

means that this method does not need a prior knowledge of the mobility parameters. This 

proposed algorithm can be tuned to duplicate a wide spectrum of the mobility patterns with 

various degree of randomness (memory), and also includes the Random Walk, Random 

Waypoint and Brownian motion mobility models which are the three most popular mobility 

patterns widely used in mobile ad hoc networks.  

Authors of [135], [136] proposed ELMs to fit and predict mobility of nodes in 

MANETs. This method predicted the future node positions and future distances between 

neighbouring nodes. The ELMs capture better the existing interaction/correlation between the 

Cartesian coordinates of the arbitrary nodes leading to more realistic and accurate mobility 
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prediction based on several standard mobility models (Gauss-Markov, Random Waypoint, 

Random Walk and Manhattan). Prediction accuracy in terms of MSE was found to be 0.0623 

for Random Waypoint Mobility model. This method gives more accurate results but fails 

when mobility history is missing [33].  

Evolutionary algorithms are metaheuristic algorithms that provide quasioptimal 

solutions in a reasonable time. They have been applied to solve optimization problems related 

to a type of complex network like MANETs. A good overview of the application of 

evolutionary algorithms for MANETs can be found in [137].  

4.5.1 Bayesian Neural Network 

As it will be shown in more detail in Chapter 6, a Bayesian technique was used for 

learning or training ANNs because it offers as few assumptions as possible about the form 

that fits the data, while trying to simulate its shape [138]. The Bayesian method assumes that 

the function modelled should be continuous and differentiable. This method can address 

issues like regularization (overfitting or not) and model selection / comparison, without the 

need for a separate cross-validation data set. Also, this method can find the significance of 

each input which refers to the amount of variation in the output that can be caused by a 

particular input.  

Bayes' Theorem 

Bayes‟ theorem provides a direct method of calculating the probability of a hypothesis 

based on its prior probability, the probabilities of observing various data given the hypothesis, 

and the observed data itself [139]. The Bayes‟ rule can be used to determine the conditional 

probability of hypothesis h given data D: 

     )  
     )   )

   )
     (9)

in this formula,      ) is the conditional probability of h given data D.    ) is the prior 

probability of   before having seen the data  .    ) is the prior probability of D (probability 

that D will be observed).      ) is the probability of the data D for given h and is called the 

likelihood [140]. In general this (     )) will provide an entire distribution over possible 

values of   rather that the single most likely value of  . 

We can apply this process to neural networks and calculate the probability distribution over 

the network weights given the training data,      ). Acquiring the weights in the Bayesian 
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neural networks means changing the weights from the prior    ) to the conditional      ), 

as a result of observing data. With this method, error bars can also be placed on the output of 

the network, by considering the shape of the output distribution,      ).  

Bayesian methods allow considering an entire distribution of answers instead of a single 

answer. Optimization methods focus on determining a single weight assignment that 

minimizes some error function (typically a least squared-error function). This is equivalent to 

finding a maximum of the likelihood function, i.e. finding a    that maximizes the probability 

of the data given those weights       ). 

The next position of the MN      in MANETs is the parameter of interest in our work. It can 

be expressed as a non-linear function   of a number of experimental parameters in the 

database:   

                                 )     (10)

where                are the positions of MN at time             ) and                

are values of speed at time               ), respectively.  

As it will be shown in section  7.3, only the current position and speed       ) are used to find 

the next position of MN. Therefore, the next position can be expressed as a non-linear 

function   of a current position and speed: 

            )    (11)

4.6 Summary 

The mobility prediction techniques and applications were presented in the introduction 

to this chapter. Many of these techniques lack the ability to predict random movements. 

However, all prediction methods depend on the fact that node movements are not completely 

random. The most applications of the mobility prediction in MANET were summarized as 

estimation of the link availability time, path reliability, route duration, network partitioning 

prediction, and routing enhancement.  

A number of routing protocols have been developed for MANETs. Some of them are 

AODV, ODMRP and ODMRP-MP routing protocols which were shortly described in 

section  4.3. The AODV is simple, but efficient and effective routing protocol for MANETs 

and therefore it is used in my simulations as will be further discussed in Chapter  7.  
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A review of integration of directional antennas in ad hoc networks was presented in this 

chapter. Directional antennas allow the communication channel to be reused, therefore 

throughput capacity is enhanced compared to a network using omnidirectional antennas. 

The end of this chapter was dealing with the neural network based method for mobility 

prediction in MANETs. Brief definition of principles of the Bayesian technique for learning 

ANNs was given because it is used for prediction in this work as will be seen in sections  6.2 

and  7.3. 
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5 THESIS OBJECTIVES  

With the development of new network technologies and techniques, MANETs are 

getting into the focus of interest very quickly. MANET networks have no fixed network 

infrastructure, which guarantees free movement to the end-stations in the entire network. On 

the other hand, this free movement of stations raises several new issues that must not have 

been solved in fixed network infrastructures. The majority of the nodes forming a MANET 

network are mobile and therefore they are usually powered by a battery supply. Due to this 

fact, there will be a particular emphasis on performance in the design of the prediction 

algorithm. Selecting and employing mobility models and mobility prediction techniques are 

extremely important in MANETs because it describes the node‟s movement (node‟s location, 

transmission range) from time to time. 

Following the recent state of the art the purpose of study is twofold: (i) design of a 

prediction algorithm of the future movement of mobile stations in MANETs based on a 

virtual map and (ii) artificial neural network development for movement prediction in 

MANETs.  

The main goal of this dissertation thesis is to evaluate the proposed mobility prediction 

methods. In order to achieve this goal, the following subtasks have been formulated: 

 Evaluation of mobility prediction method for AODV routing protocol by 

comparison of differences in performance evaluation of the traditional AODV 

routing protocol and the Modified AODV (MAODV) which uses proposed 

mobility prediction method. 

 Determination of the behaviour of the mobility prediction method using data 

collected from the node which moves according to Random Waypoint Mobility 

model and Random Walk Mobility model. 

 Determination of the impact of the mobility prediction method on MNs' 

parameters such as delay, throughput and packet delivery ratio. 

 Determination of the behaviour of neural network based method using data 

collected from the node which moves according to Random Waypoint Mobility. 
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6 PROPOSED MOBILITY PREDICTION ALGHORITHMS 

In order to achieve the aim of the thesis, this chapter describes the prediction algorithm 

of the future movement of nodes based on the information of current network status. Since the 

nodes move continually with only a limited amount of energy, it is necessary to focus on the 

QoS of the communication process during designing new methods and functions.  

6.1 Mobility Prediction Using Virtual Map 

The prediction method supposes that each node can build its virtual map depending on 

its location over the time. This method is called mobility prediction using virtual map. A node 

uses the next step of moving to update neighbours within the transmission range and then the 

neighbours investigate this location information to estimate the new direction of this node. 

This solution joins the map based movement prediction with the usage of directional 

antennas. The method for prediction should be implemented and evaluated as will be shown 

in Chapter 7. 

6.1.1 Mathematical Preliminaries 

This section describes the mathematical terms I have used for mobility prediction. 

6.1.1.1 Markov Chains 

A Markov chain is a discrete random process with the Markovian property. It represents 

a transition between a finite number of probable states, where the next state depends only on 

the present state of the system and not on the past states [141] (first order Markov chain 

model). The statistical properties of the system help to predict the next steps. The state 

transition represents the changes of the system. 

Assume a set of states   {          },     is the probability of movement from 

state    to state   . This probability does not depend on which state the chain was in before the 

current state where:  

    )                 )         (12)

∑           

   

   (13)

Fig.  6.3 displays a Markov chain with three states   {         }, the transition 

probabilities between these states can be represented as a matrix P: 
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Fig.  6.1 A Markov chain for three states 

  [

         

         

         

]     (14)

The first row of the transition matrix represents the probability of transition from   to 

  ,    or   . Similarly for the second and third rows. 

In the case where the probability      ) does not depend on when the transition 

occurred, we are talking about a homogeneous Markov where      )     . 

6.1.1.2 Maximum Likelihood Estimation 

Maximum Likelihood Estimation (MLE) is the procedure of estimating the parameters 

of a statistical model given observations, by finding the parameter values that maximize the 

likelihood of making the observations given the parameters. The likelihood of a set of data is 

the probability of obtaining that particular set of data, given the chosen probability 

distribution model. This expression contains the unknown model parameters. The values of 

these parameters that maximize the sample likelihood are known as the Maximum Likelihood 

Estimates [142], [143]. Consider a Markov chain model of a random sequence states space, 

the likelihood function for a parameter   is denoted    ): 

   )       )   ∏      )

 

   

     (15)

where   is observed data vector            ). Maximizing    ) with respect to   will give 

the MLE estimation: 
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             )       ∏      )

 

   

    (16)

For computational convenience, the MLE is obtained by maximizing the log-likelihood 

function, because the two functions,        )  and    ), are monotonically related to each 

other so the same MLE is obtained by maximizing either one: 

         (   [∏      )
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)    (17)

6.1.2 Mobility Prediction Method 

As a matter of fact, MN moves randomly without reference to a defined map. Thus I 

suppose that each node can build its virtual map depending on its location over the time [144]. 

Suppose there is a location X1, X2, ….. Xn of   independent observations. It is assumed that each 

MN has a Location Table (LT) in which the location information of its neighbours is 

temporarily stored. 

At each location  , the probability of node‟s movement to another location   is 

calculated as: 

     (     )                 )     (18)

where           . Based on Maximum Likelihood Estimation the node selects the next 

location which is the most probable outcome    . 

When node A intends to send a message to node B, the (RTS|CTS) handshaking occurs. 

The RTS packet includes location information of A: the time instant of RTS transmission   , 

IDA, current position      )        )      )), and speed   . In addition, the most probable 

coordinates of the next position       )         )       )) calculated according to the A‟s 

virtual map are also transmitted, Fig.  6.2. Therefore node B saves A‟s information in its LT: 

      )               )          )      ),    (19)
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Fig.  6.2 The antenna of node A is pointed to the predicted direction of node B 

where      is Time To Live of node A,      = 0 at each registration of       ) and then 

     increases with time. When it exceeds a certain threshold  , the       ) is deleted from 

the MN‟s LT. 

The CTS packet from B includes location information of B, and node A saves this 

information in its LT: 

      )               )          )      )      (20)

Hence the distance between the position of B and       ) is: 

  √       )         )       (21)

Node A can estimate the position of node B at      from Fig.  6.3 using similarity of 

triangles: 

       )       )

      )       )
 

       )       )

      )       )
 

        )  

 
      (22)

As a result, 

        )       )  (      )       ))
        )  

 
   

       )       )         )       ))
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   (23)
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Fig.  6.3 Prediction of location using the current and the next position 

Therefore, the transmission angle of data from node A to B at       is: 

          )       
       )         )

       )         )
     (24)

Then the antenna of nodes A and B is pointed to the predicted direction to send data. 

However, during the transmission between A and B, it is possible that position       ) is 

achieved by B and B will continue its movement to the next new position, thus the directional 

beacon of node B will distribute this new information to B‟s neighbours within the 

transmission range, thereby node A updates B‟s location information to estimate the new 

direction of node B. 

This scheme provides an adaptive location prediction mechanism. It proactively predicts 

future locations of communicating nodes and minimizes location updating, thereby reducing 

communication delay. 

The main technique to evaluate the performance of MANETs has been the use of 

network simulator NS-2 version 2.35. Because the real testbeds need a high investment in 

terms of hardware, and, more importantly, the replication of real mobile conditions is very 

difficult in a controlled environment like a laboratory. This algorithm has been implemented 

in NS-2 in order to be able to investigate its impact on network performance with a number of 

experiments. A summary overview of NS-2 is given in the Annex A. The entire simulation 
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work is conducted and implemented on a Linux (Ubuntu distribution) operating system. For a 

realistic simulation of the network, two mobility models (Random Walk and RWP models) 

are chosen to illustrate the performance advantage from the proposed mobility prediction 

algorithm.  

BonnMotion is used to create mobility scenarios [145]. BonnMotion is a Java software 

which creates and analyses mobility scenarios and is most commonly used as a tool for the 

investigation of mobile ad hoc network characteristics. The parameters for the scenario can be 

specified through the command line. For example, the Random Walk model is generated as 

follows: 

bm -f randwalkfile RandomWalk -n 20 -x 500 -y 500 -t 10 -d 100 -h 5 -i 1000 

where: 

- f: output filename 

- n: 20 number of nodes 

- x: 500  width of the simulation movement field (m) 

- y: 500  length of the simulation movement field (m) 

- t: 10 time limited mode (s) 

- d: 100 duration of simulation (s) 

- h: 5 maximum speed (m/s) 

- i: 1000 number of seconds to skip from starting point 

The scenarios can also be exported for several network simulators, such as 

GloMoSim/QualNet, COOJA, MiXiM, and NS-2. Command to convert output file to NS-2 

format: 

bm NSFile – f randwalkfile  

this command generates movement file and parameter file for Random Walk Mobility model. 

This file can be used as an input to the Tcl script. 

6.2 Bayesian Neural Network for MANETs 

The aim of the research has been to develop prediction model for mobility in the 

MANETs using the data collected from location patterns. MacKay's Bayesian framework for 

backpropagation is a practical and powerful means to improve the generalization ability of 

Artificial Neural Network (ANN) [146]. The software used for training Bayesian neural 

networks is called Model Manager [147]. Model Manager is a graphical interface developed 

by MacKay. It incorporates further practical methods which further contribute to the 
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successful completion of modelling. The database is randomly divided into training and 

testing sets, to ensure that both the half used for training and testing contains similar 

information. The Model Manager enables to form final model. This final model is built from a 

set of multiple submodels. The optimum number of submodels to form the set is determined 

depending on the combined test error of all the members of the set. This method further 

attempts to find the appropriate level of complexity from the data, and to ensure a robust 

solution is found. The Bayesian method assumes that the function modelled should be 

continuous and differentiable. MacKay has shown that a sufficiently complex three layer 

network using hyperbolic tangent functions in the form of (27), is able to imitate any such 

function [148]. Therefore, the three layer neural network, as characterised in section  6.2.1, is 

used to predict the future location of a node. The training a neural network involves tuning the 

values of the weights based on the data given. For modeling the mobility behaviour, the 

literature offers a set of mobility [13]. In this work I used Random Waypoint Mobility to 

construct location patterns. The Random Waypoint is one of the most popular mobility 

models used to evaluate the mobility prediction in MANET, because it is flexible and 

simulates in a realistic way the movement of people. The movement of an ad hoc MN can be 

described by two coordinates (x, y) and speed (s).  Numerical inputs have been available from 

200 patterns obtained from the simulation of Random Waypoint model. The first 150 patterns 

are used for training network and the rest for predicting. I have used three inputs (the current 

coordinates and speed (x, y, s)) to predict the next coordinates. 

For completing training without overfitting, the mobility prediction model prepares the 

database before training as follows: 1) the database is randomly divided into training and 

testing sets, 2) the minimum and maximum of each variable and the target are searched, 3) the 

inputs are normalized within a range of ±0.5. The aim of normalizing is to compare the 

sensitivity of the prediction results for different inputs without biasing the comparison 

because of the different magnitudes of the set of inputs. The normalizing is done as 

follows [149]:  

   
      

         
         (25)

where   is the unnormalized input,      and       are the maximum and minimum values in 

the database for a particular input.    is the normalized value. 



 

 

58 

 

6.2.1 Structure of the Neural Network 

In the three-layer feed-forward neural network the first layer consists of the inputs to the 

network, the next layer consists of a number of non-linear operators    which form the hidden 

layer, and the third layer consists of the output function. Fig.  6.4 shows an example of feed-

forward neural network which contains three layers. 

Data move in only from the input nodes, through the hidden nodes and to the output 

node. There are no loops in the network; every node in a layer is connected with all the nodes 

in the previous layer, hence called feed-forward ANN [150]. Each connection may have a 

different weight. The activation function for     node is given by following equation: 

       (∑    
  )

     
  )

 
)     (26)

 

 

Fig.  6.4 The architecture of feed-forward neural network 

The output is given by equation: 
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where    are inputs, and     are the weights which define the network. The superscripts 
(1)

 and 

(2)
 denote weights and biases in the hidden layer and in the output layer. The optimum value 

for   is obtained through training the network. The parameters   are known as biases.  
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The complexity of any neural network increases by increasing the number of hidden 

units. During the training phase the inputs are known, the output is known, and the weight can 

be examined. In order to find the interactions between inputs and output a model makes 

predictions and visualises the behaviour which emerges from various combinations of inputs.  

One of the problems that can occur during neural network training is called overfitting, 

which leads to an unjustified level of accuracy and thus, a high level of complexity. If a model 

is too complex it may give poor generalization (overfitting). Overfitting occurs when the 

network has memorized the training set but has not learned to generalize to new inputs. 

Overfitting produces a relatively small error on the training set but a much larger error when 

new data is presented to the network. Training a network includes finding a set of weights and 

biases which balances between complexity and accuracy as illustrated by the following 

equation [150]: 

   )               (28)

where    is an organizer of the complexity. It forces the network to use small weights and 

limited number of hidden units: 

   
 

 
∑   

 

  

     (29)

   is the overall error between target output values and network output values: 

   
 

 
∑(     )

 

 

     (30)

where    represents the set of targets for the set of inputs   , and    represents the set of 

corresponding network outputs. In (28),   and   represent control parameters which define 

the trade-off between complexity and accuracy of the model. The training algorithm updates 

the weights and biases to minimise a combination of squared errors and weights and then 

determines the correct combination to produce a network that generalizes well. 

Training the neural network is achieved by modifying the weights to fit the functions to 

the data using backpropagation gradient descent optimisation procedures [150], to minimise 

an objective function. This is achieved by calculating and optimising an objective 

function  (28). The fitting method infers a probability distribution for the weights from the data 

presented instead of identifying one best set of weights. It is popular to use the test error (sum 

squared error) as the default metric for choosing the best model, but in fact this may be a 

misleading criterion [148]. In many applications there will be an opportunity not to simply 
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make a scalar prediction, but rather to make a prediction with error bars, or maybe an even 

more complicated predictive distribution. It is then reasonable to compare models in terms of 

their predictive performance as measured by the log predictive probability of the testing data. 

Under the Log Predictive Error (LPE), the penalty for making a wild prediction is much less if 

that wild prediction is accompanied by appropriately large error bars. The test error does not 

have this advantage. Assuming that for each set    the model gives a prediction according to 

the normal distribution with average    ) and variance (  
  )

)
 

, the LPE is calculated as 

follows [151]:  
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where   
  )

 is related to the uncertainty of fitting for the set of inputs    ). This error penalizes 

unexpected predictions to a lesser extent when they have large error bars (uncertainties).  

When a neural network is used, it is important to distinguish between the two types of 

error. Noise means little changes in the results when the experiment is repeated a number of 

times due to uncontrolled variables. The noise is constant, so it does not contribute to the 

evaluation of the behaviour of the model. The second type of error is uncertainty, which refers 

to doubtfulness in the mathematical functions capable of representing the same data. Once 

more data are observed, the uncertainty can decrease, allowing the predictions made by the 

network to become more accurate. Modelled uncertainties are presented as error bars. The 

average of the error bars is calculated as follows: 

     
 

 
 ∑  

 

   

     (32)

where   represents the total number of predictions and    the error accompanying each 

prediction. The root mean square residual (RMS) was used to evaluate the final model and it 

was calculated as follows:  

      √
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     (33)

where    and    are the target value and network output respectively. 

The final model is built from a set of multiple models. The model which is a member in 

this set will be called as submodel. The optimum number of submodels to form the set is 
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determined depending on the combined test error of all the members of the set. The prediction 

or the output of a set of submodels is the mean prediction of its members ( ̅): 

 ̅  
 

 
∑    )

 

     (34)

and the variance    is given by equation: 
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where  ̅ represents the mean prediction of submodels which form a set,   is the number of 

submodels in the set and the exponent   refers to the submodel used to give the corresponding 

prediction    ).  

6.3 Summary 

This chapter presented the theoretical description and used mathematical calculus of 

proposed algorithms for prediction of the future movement of nodes based on the information 

of current network status. The first method joins the map based movement prediction with the 

usage of directional antennas. It proactively predicts future positions of communicating nodes 

and minimizes location updating.  

The second method uses artificial neural network for movement prediction in MANETs.  

It depends on Bayesian technique for training neural network. Only the current position and 

speed are used to find the next position of MN. It has been implemented in Model Manager 

for training Bayesian neural networks. 

Both proposed prediction approaches are further implemented into the Random Walk 

and Random Waypoint models in Chapter 7.   
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7 PROPOSED MOBILITY PREDICTION METHODS’ 

IMPLEMENTATION AND THE RESULTS  

This chapter describes the implementation of the mobility prediction algorithm 

described in section  6.1. The algorithm has been implemented in NS-2 in order to be able to 

investigate its impact on network performance with a number of experiments. NS-2 models a 

realistic mobility of the nodes and also includes an accurate model of the IEEE 802.11 

Distributed Coordination Function (DCF) wireless MAC protocol.  

7.1 Evaluation of Mobility Prediction Method Using Virtual Map 

For a realistic simulation of the network, two mobility models (Random Walk and 

Random Waypoint models) are chosen to illustrate the performance advantage of the 

proposed mobility prediction algorithm. A network area of (500×500) m
2
 is built on the 

simulation platform and simulation time is for 100 sec. Traffic type is Transmission Control 

Protocol (TCP). The simulation parameters considered for the performance evaluation of the 

mobility prediction algorithm are summarized in Table  7-1.  

Table  7-1 Simulation parameters used in this study 

Platform  Linux (Ubuntu 14.04) 

Simulation Tool  Network Simulator 2 (NS-2) 

Simulation area  500x500 

Wireless mac interface 802_11 

Propagation model  Two ray ground 

Channel  Wireless channel 

Max packet in interface queue 50 

Connection Type TCP 

Application  FTP 

Antenna Type  Antenna/DirAntenna 

simulation time 100 sec 

Maximum Speed 1.5m/sec 
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The mobile node is considered to be carried by people or by autonomous system. In 

order to evaluate the proposed mobility prediction method, I provide discussion about 

network simulation based performance evaluation of the traditional AODV routing protocol 

and AODV with proposed mobility prediction method. MAODV will refer to AODV with the 

mobility prediction method. The simulation environment consists of five different numbers of 

nodes which are 20, 40, 60, 80 and 100 MNs. Both Random Walk model and RWP model are 

also chosen to illustrate the performance metrics.  

Using NS-2, I created an adaptive location predictive algorithm using new_app 

parameter. A new procedure using source, destination and all given parameter is generated. It 

takes an element to store location information and then it finds the shortest path using current 

position and range of changing position. The procedure tests if the neighbour‟s history is 

available then updates all node current position, next position, virtual map and location 

storage table. Otherwise add all the history of neighbour node in neighbour history file. The 

procedure stores all the current position, change position, next hop and all in a list. 

Performance Metric 

Simulations evaluate proposed mobility prediction based on an end to end delay, 

throughput, and packet delivery ratio using NS-2 simulation tools: 

1. The average end to end delay is the average time taken for a data packet to be 

successfully transmitted over a MANET from source to destination. Mathematically, 

the average end to end delay is computed as: 

   )   
∑       )

 
   

 
   (36)

where    ) is the average end to end delay, n is the number of data packets 

successfully transmitted over the network,    is the time at which a packet with 

unique identifier i is received and    is the time at which a packet with unique 

identifier i is sent. The average end to end delay should be low for high 

performance. 

2. Packet Delivery Ratio (PDR) is the ratio of packets successfully received to the total 

sent and is determined as: 
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For better performance, the PDR should be high. 

3. Throughput is defined as the total packets delivered over the total simulation time. 

In other words; it is the rate of successful data delivery across a network. The 

throughput is usually measured in terms of bits per second. A higher throughput 

implies better QoS of the network.  

The following sections illustrate how the performance of the proposed method varies 

across different mobility models, number of nodes and speeds. 

7.1.1 Performance metrics of Random Walk Model  

This analysis includes the simulation of 20, 40, 60, 80, 100 nodes. A network area of 

(500 ×500) m
2
 is built on the simulation platform and total simulation time is 100 sec. Traffic 

type is TCP. The values of performance metrics are given in Table  7-2 to evaluate the 

performance of network for Random Walk model with traditional AODV. A Tcl script is 

written in NS-2 for simulation of network model. Some important NS-2 commands used for 

the simulation are as follows: 

set val(chan)   Channel/WirelessChannel    ;  # channel type 

set val(prop)   Propagation/TwoRayGround   ; # radio-propagation model 

set val(netif)  Phy/WirelessPhy            ;  # network interface type 

set val(mac)    Mac/802_11                 ;  # MAC type 

set val(ifq)    Queue/DropTail/PriQueue    ;  # interface queue type 

set val(ll)     LL                         ;   # link layer type 

set val(ant)    Antenna/DirAntenna       ;  # antenna model 

set val(ifqlen) 50                         ;   # max packet in ifq 

set val(rp)     AODV                       ;   # routing protocol 

The randomwalk parameter file and randomwalk movement file, that were generated by 

bonnmotion tool, specify the parameters for the mobility scenario. These files are called using 

NS-2 command as follows: 

source randomwalk20n-ALL.ns_params 

source randomwalk20n-ALL.ns_movements 
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The parameter file has complete set of parameters used for the simulation, and the 

movement file contains the movement data.  

Table  7-2 The values of performance metrics of Random Walk model for AODV 

Number of 

nodes 

Average end to end 

delay (sec) 

Packet delivery 

ratio 

Throughput 

(Kbps) 

20 0.383 65.66 51.58 

40 0.225 88.71 93.69 

60 0.395 80.66 80.11 

80 0.688 75.00 134.49 

100 0.323 88.75 211.46 

 

In order to measure the performance of this network using AODV as routing protocol 

without the proposed mobility prediction method, the values are obtained from the trace file 

generated by NS-2. Using the AWK script the data is processed and is used to measure the 

performance metrics. The values of these metrics are listed in Table  7-2. Table  7-3 presents 

the performance of this network using MAODV as routing protocol with the proposed 

mobility prediction method.  

Table  7-3 The values of performance metrics of Random Walk model for MAODV 

Number of 

nodes 

Average end to end 

delay (sec) 

Packet delivery 

ratio 

Throughput 

(Kbps) 

20 0.153 97.75 67.01 

40 0.157 95.66 95.35 

60 0.385 88.00 93.03 

80 0.484 80.00 133.45 

100 0.227 90.64 125.97 
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As it can be seen, Fig.  7.1-Fig.  7.3 illustrate the comparative between AODV and 

MAODV for Random Walk model. The range of number of nodes is between 20 and 100. 

The red line provides the AODV and the blue line demonstrate the MAODV. The upward and 

downward arrows refer to the corresponding percentage change for each number of nodes. 

Fig.  7.1 shows that the AODV routing protocol has delay higher without the mobility 

prediction than the delay with the mobility prediction. The delay includes all possible delays 

i.e. buffering route discovery latency, queuing at the interface queue, retransmission delay at 

MAC and propagation delay. In case of MAODV, the delay increases when the number of 

nodes increases between 40 and 80 nodes. Until 80 nodes the delay of MAODV decreases 

when the number of nodes increases. Based on this result, the MAODV has better delay 

performance than the AODV. For 20 nodes, the delay of MAODV is 60% lower than the 

delay of AODV. 

  

Fig.  7.1 Comparison of average end to end delay of Random Walk model 
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Fig.  7.2 Comparison of packet delivery ratio of Random Walk model 

Fig.  7.2 shows that the PDR of MAODV is higher than PDR of AODV. For 20 nodes, 

the PDR of MAODV is 49% greater than the PDR of AODV.  

The curve of the throughput for Random Walk model is illustrated in Fig.  7.3. For 

number of nodes greater than 60, the throughput of AODV increases when the number of 

nodes increases. The throughput for MAODV is better than the throughput of AODV for the 

range of number of nodes between 20 and 80. While for 100 nodes, the throughput of AODV 

is better than the throughput of MAODV. Because as the number of nodes increases in a 

limited area of network, there is always better and better path between source and destination 

and therefore there is no need to predict the mobility of a node for high number of nodes. In 

other words, since the time to estimate the position of all other neighbouring nodes might be 

more significant before the data transmission, the throughput decreases.  
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Fig.  7.3 Comparison of throughput of Random Walk model 

The MAODV performed better as compared to AODV. This is due to the fact that 

MAODV takes into account the next position of the destination to point the antenna to the 

predicted direction to send data. Therefore, the probability of packet drop decreases, the delay 

decreases and the performance improves. 

7.1.2 Performance metrics of Random Waypoint Model  

This analysis includes the simulation of 20, 40, 60, 80, 100 nodes. A network area of 

500 by 500 m
2
 is built on the simulation platform and total simulation time is 100 sec. Traffic 

type is TCP. Same scenario (Random Waypoint model) is used for both AODV and 

MAODV. The values of performance metrics are listed in Table  7-4 to evaluate the 

performance of network for Random Waypoint model with traditional AODV.  

The Random Waypoint movement file for node movement, generated by BonnMotion 

tool, is called using NS-2 commands as follows: 
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this file contains the movement data. 
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Table  7-4 The values of performance metrics of Random Waypoint model for AODV 

Number of 

nodes 

Average end to end 

delay (sec) 

Packet delivery 

ratio 

Throughput 

(Kbps) 

20 0.131 90.63 68.60 

40 0.156 68.86 84.64 

60 0.132 98.71 124.25 

80 0.130 98.63 174.87 

100 0.121 98.68 216.19 

Table  7-5 The values of performance metrics of Random Waypoint model for MAODV 

Number of 

nodes 

Average end to end 

delay (sec) 

Packet delivery 

ratio 

Throughput 

(Kbps) 

20 0.123 98.70 69.50 

40 0.127 98.66 95.85 

60 0.125 98.68 146.79 

80 0.130 98.63 169.44 

100 0.123 98.75 178.51 

 

From Fig.  7.4, the delay in both AODV and MAODV is almost the same for the range 

of number of nodes between 60 and 100. But for number of nodes between 20 and 60, AODV 

has delay higher than MAODV. Based on this result, the MAODV has better delay 

performance than the AODV for the range of number of nodes between 20 and 60. For 40 

nodes, the delay of MAODV is 19% lower than the delay of AODV. The number of nodes 

does not have influence on the delay for the range of number of nodes between 60 and 100. 

The PDR in both AODV and MAODV is almost the same for the range of number of 

nodes between 60 and 100 as shown in Fig.  7.5. For the range of number of nodes between 20 

and 60, the MAODV performed better as compared to AODV. 
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Based on the result of Fig.  7.6, the throughput of both AODV an MAODV increases 

when the number of nodes increases. For the range of number of nodes between 20 and 80, 

the throughput of MAODV performed better as compared to the throughput of AODV. But 

AODV has throughput higher than MAODV for number of nodes equal to 100. 

As it can be seen for the range of number of nodes between 20 and 60, MAODV 

performed better than AODV in term of delay, PDR and throughput. While for number of 

nodes greater than 60, the performance of MAODV is not improved. This is due to the fact 

that as the number of nodes increases in a limited area of network, the distance between 

source and destination decreases and therefore the probability of packet drop decreases. 

Subsequently, there is no need to predict the mobility of a node for high number of nodes. 

 

Fig.  7.4 Comparison of average end to end delay of Random Waypoint model 
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Fig.  7.5 Comparison of packet delivery ratio of Random Waypoint model 

 

Fig.  7.6 Comparison of throughput of Random Waypoint model 
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7.1.3 Improvement of the Proposed Method MAODV 

After analysis of traditional AODV and the proposed MAODV the results are shown in 

Table  7-6 and Table  7-7. These tables show improvement in performance metrics of the 

proposed method MAODV for Random Walk and Random Waypoint models, the range of 

number of nodes is between 20 and 80.  

As can be seen in Table  7-6 with reference to the performance for Random Walk, I 

observed that the delay of the proposed method MAODV is 30% lower than the delay of 

AODV. The packet delivery ratio of MAODV has 13% improvement compared to AODV. 

The results of simulation indicate to 8% improvement in throughput of MAODV compared to 

AODV. 

Table  7-6 Improvement of the proposed method MAODV for Random Walk 

 AODV MAODV Improvement [%] 

Average end to 

end delay [sec] 

0.403±0.23 0.281±0.17 30% 

Packet delivery 

ratio [%] 

79.76±6.86 90.41±8.88 13% 

Throughput 

[kbps] 

89.97±20.40 97.21±33.22 8% 

Table  7-7 Improvement of the proposed method MAODV for Random Waypoint 

 AODV MAODV Improvement [%] 

Average end to 

end delay [sec] 

0.134±0.013 0.126±0.004 6% 

Packet delivery 

ratio [%] 

91.10±14.89 98.68±0.04 8% 

Throughput 

[kbps] 

113.09±45.12 120.40±49.97 6% 
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The performance of MAODV for Random Waypoint has been improved as well, see 

Table  7-7. In comparison to the AODV, the delay has 6% improvement, the packet delivery 

ratio of MAODV has 8% improvement and the throughput has 6% improvement. 

Hence the MAODV performed better as compared to AODV for both mobility models. 

As I mentioned before that MAODV takes into account the next position of the destination to 

point the antenna to the predicted direction to send data. Therefore the probability of packet 

drop decreases, the delay decreases and the performance improves. 

7.2 Determination of the Behaviour of the Mobility Prediction Method  

This section investigates how the proposed mobility prediction method behaves with 

different mobility models (Random Waypoint, Random Walk). These mobility models are the 

most frequently used mobility model in MANET simulations. The simulation parameters 

considered for the performance evaluation of the mobility prediction algorithm are 

summarized before in Table  7-1. The analysis based on comparing the different metrics of the 

protocols mobility models that I described previously in section  3. 

7.2.1 Effect of Varying Number of Nodes  

The simulation environment consists of five different numbers of nodes which are 20, 

40, 60, 80 and 100 MNs. Through the simulation of Random Walk model and Random 

Waypoint model, compare their performance in the number of nodes. The values of 

performance metrics are listed in Table  7-3 to evaluate the performance of network for 

Random Walk model. Table  7-5 shows the values of performance metrics to evaluate the 

performance of network for Random Waypoint model.  

Random Walk Mobility model and Random Waypoint Mobility model both are actually 

same mobility models apart from the pause time which is zero in Random Walk Mobility 

model. The max pause time used in Random Waypoint simulation was 60 sec. Their speed, 

direction and angle of motion are similar to each other. 

The comparison of the two investigated mobility models, Random Walk model and 

Random Waypoint model, is shown in Fig.  7.7- Fig. 7.9 for the range of number of nodes 

between 20 and 100. The red line provides the Random Walk and the blue line demonstrates 

the Random Waypoint model. The upward and downward arrows refer to the corresponding 

percentage change for each number of nodes. 
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Fig.  7.7 Average end to end delay for different number of nodes 

Fig.  7.7 shows average time which is taken by a data packet to reach the destination. In 

case of Random Walk model (red curve), the delay increases when the number of nodes 

increases between 20 and 80 nodes. Until 80 nodes the delay on the Random Walk decreased 

when the number of nodes increases. This is because the density of nodes is increased, 

therefore, the probability of finding neighbouring nodes (when a node wants to send data to a 

particular node) increases when there are more nodes in the network. The delay of the 

Random Waypoint model (blue curve) is remained unchanged and less as compared with the 

Random Walk model. From this density of nodes the Random Waypoint performed better as 

compared to Random Walk model. 

The curve of the packet delivery ratio is shown in Fig.  7.8, the Random Waypoint 

model performed better in delivering packet data to the destination. The Random Waypoint 

model almost ensures a successful transfer between nodes 20 and nodes 100. The PDR for 

Random Waypoint is remained unchanged. And then the PDR for the Random Walk model 

decreased with increasing the number of nodes.  

The curve of the throughput for both mobility models is illustrated in  

Fig.  7.9. The Random Waypoint shows throughput higher than the Random Walk model. 
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Fig.  7.8 Packet delivery ratio for different number of nodes

 

Fig.  7.9 Throughput for different number of nodes  

Table  7-8 shows the comparison of the two investigated mobility models: Random 

Walk and Random Waypoint models when the number of nodes varies between 20 and 80 

nodes. The proposed mobility prediction method MAODV has been used with these two 
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models. The results of simulation indicate to 71% improvement in delay, 21% improvement 

in packet delivery ratio and 37% improvement in throughput of Random Waypoint compared 

to Random Walk.  

Table  7-8 The comparison of the mobility models by varying number of nodes 

 Random Walk Random Waypoint Improvement [%] 

Average end to 

end delay [sec] 

0.281±0.166 0.126±0.003 71% 

Packet delivery 

ratio [%] 

90.41±8.88 98.68±0.06 21% 

Throughput 

[kbps] 

102.96±33.22 132.02±54.51 37% 

 

As it can be seen, Random Waypoint Mobility performs better as compared to Random 

Walk model, because the pause time in Random Waypoint Mobility model decreases the 

mobility and so as the path breakage which enhances the performance compared to Random 

Walk. 

7.2.2 Effect of Varying Maximum Speed of Node Movement 

A network area of 500 by 500 m
2
 is built on the simulation platform and simulation is 

for 100 sec and 20 nodes. Since the mobile node is considered to be carried by people or by 

autonomous system, the simulation environment consists of different values of the maximum 

speed of a node movement which are 1.5, 5, 10, 15, 20, 25 m/sec.  

Table  7-9 shows the values of performance metrics to evaluate the performance of 

network for Random Walk model. The values of performance metrics are given in Table  7-10 

to evaluate the performance of network for Random Waypoint model. The comparison of 

Random Walk model and Random Waypoint model is shown in Fig.  7.10- Fig.  7.12 for the 

range of speed between 1.5 and 25 m/sec. 
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Table  7-9 The values of performance metrics of Random Walk model 

Node max 

speed (m/sec) 

Average end to end 

delay (sec) 

Packet delivery 

ratio (%) 

Throughput 

(Kbps) 

1.5 0.150 97.57 67.01 

5 0.124 98.75 63.79 

10 0.217 48.90 62.98 

15 0.183 48.75 61.14 

20 0.195 33.75 61.66 

25 0.190 33.75 61.57 

Table  7-10 The values of performance metrics of Random Waypoint model 

Node max 

speed (m/sec) 

Average end to end 

delay (sec) 

Packet delivery 

ratio (%) 

Throughput 

(Kbps) 

1.5 0.123 98.72 69.5 

5 0.130 98.61 67.62 

10 0.129 98.61 66.69 

15 0.124 98.72 65.00 

20 0.124 98.72 65.00 

25 0.123 98.73 63.65 

 

As shown in Fig.  7.10 average end to end delay of both mobility models. It shows that 

delay slightly increases for increasing the node speed of Random Walk model, while delay of 

Random Waypoint is remained unchanged and less as compared with the Random Walk 

model. For speed higher than 15m/sec, the delay of Random Waypoint is about 36% lower 

than the delay of Random Walk. 

Based on the result of Fig.  7.11, the node with Random Waypoint has still better and 

constant packet delivery performance than the Random Walk which provide less packet 

delivery for speed higher than 5m/sec.  
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Fig.  7.10 Average end to end delay for different values of maximum speed 

  

Fig.  7.11 Packet delivery ratio for different values of maximum speed 
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Fig.  7.12 Throughput for different values of maximum speed 

In Fig.  7.12, Random Waypoint shows higher throughput than Random Walk. The 

throughput of Random Walk decreases when the speed of nodes increases. The throughput 

decreases for increasing the node speed of both mobility models. 

Table  7-11 shows the comparison of the two investigated mobility models: Random 

Walk and Random Waypoint models when the value of the maximum speed of a node 

movement varies between 1.5 and 25 m/sec.  

Table  7-11 The comparison of the mobility models for different values of speed 

 Random Walk Random Waypoint Improvement [%] 

Average end to 

end delay [sec] 

0.177±0.047 0.126±0.004 6% 

Packet delivery 

ratio [%] 

60.25±7.58 98.69±0.06 87% 

Throughput 

[kbps] 

63.03±0.66 66.24±1.31 4% 

6%↑ 

5%↑ 

50

55

60

65

70

75

0 5 10 15 20 25 30

Th
ro

u
gh

p
u

t(
K

b
p

s)
 

Node Max speed (m/sec) 

Random waypoint Random walk



 

 

80 

 

The simulation results show 6% improvement in delay, 87% improvement in packet 

delivery ratio and 4% improvement in throughput of Random Waypoint compared to Random 

Walk. As it can be seen, Random Waypoint Mobility performs better as compared to Random 

Walk model, because the pause time in Random Waypoint Mobility model decreases the 

mobility and therefore ensures more stable link between neighbouring nodes. 

7.3 Bayesian Neural Network Results 

This section determines the behaviour of neural network based method which was 

described in section  4.5. The Bayesian technique is used for training neural network. Only the 

current position and speed are used to find the next position of MN. It has been implemented 

in Model Manager for training Bayesian neural networks. 

Consider an ad hoc node moves according to Random Waypoint Mobility model within 

area of (500×500) m
2
. The speed range is [speedmin-40m/s],                  (see 

Fig.  7.13). The coordinates and speed are saved every second, starting from   second to 200 

seconds. Therefore 200 patterns are available. The first 150 patterns are used for training 

network and the rest for predicting. This model used the current coordinates and speed  

(x, y, s) as input variables, and the next coordinates as targets. The minimum and maximum 

of each input variable and the target data are shown in Table  7-12. 

The Bayesian method can find the significance of each input, thus there is no need to 

exclude any variable prior to the analysis. The variables which have little effect in explaining 

the output will be linked to small weights. 

 

Fig.  7.13 Example of movement of an MN. 
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Table  7-12 The minimum and maximum values for the database 

 

Min Max MinNo MaxNo Average StDev 

   34.6 285.2 136 6 135.8 47.47 

   97.6 430.4 54 105 251.7 75.69 

   0.3 40 1 59 19.1 11.73 

Target      34.6 285.2 135 5 134.8 46.82 

Target      97.6 430.4 53 104 251.2 75.98 

 

After analysing and preparing the database, many submodels have been developed. 

Each submodel contained a set of parameters which defined the function that best fits the data 

with which the submodel has been developed. Each submodel had a given number of hidden 

units and different seed, thus different results were obtained by the particular submodel. Seeds 

are the initial weights which have been used as guesses. The time required to train a submodel 

grows exponentially with the number of hidden units (typically, training a submodel with one 

hidden unit took a few seconds, while many hours were required for 100 hidden units). 

The number of hidden units is assumed in range of 1 to 20. In the training phase, one 

hundred networks were trained with hidden units ranging from one to twenty and five seeds in 

each case, as shown in Table B-1and Table B-2. Each submodel made a prediction differently 

and these submodels were sorted by decreasing LPE, the submodel with the highest log 

predictive error is the best one. 

Following the mathematical theory of neural network described in section  6.2 and 

using  (30) and  (31), the optimal submodel is selected based on minimum test error or 

maximum log predictive error. The test error and log predictive error during the training phase 

in dependence on the number of hidden units are shown in Fig.  7.14 and Fig.  7.15 

respectively. Fig.  7.15 shows the changing of LPE of      with the number of hidden units. 

The LPE has an optimum value at about one hidden unit, as the test error has a minimum 

value at one hidden unit, Fig.  7.14. The best submodel according to the LPE was then selected 

and tested on the output side. Test the submodel with one hidden unit and two seeds, see 

Fig.  7.16.  
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Fig.  7.14 The test error during the training phase  

 

Fig.  7.15 The log predictive error during the training phase 
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Fig.  7.16 The predictions by the best submodel for: a) training set, b) testing set  

As mentioned before, the database is randomly divided into training and testing sets, to 

ensure that both the half used for training and testing contains similar information. For testing 

the best submodel, the Model Manager makes prediction using whole database (training set 

and testing set) as illustrated in Fig.  7.16 here in normalized values. These processes have 

been done during the training stage.     

These submodels sometimes had domains in which they displayed good prediction, and 

others in which they did not. It is important to mention that a set of submodels with a given 

numbers of hidden units and different seed is called a model or a set of multiple submodels. 

Their predictions are combined to give the best overall result possible.  

The final model has been built from a set of multiple submodels. The maximum number 

of submodels included in my sets equals to 20. The optimum number of submodels to form 

the set is determined based on the combined test error of all the members of the set. These 

methods were further attempts to find the appropriate level of complexity from the data, and 

to ensure a robust solution is found. The sets, which are built, are as many as there are 

submodels: the first set contains only the first submodel, the second set contains the two first 

submodels etc.  
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Fig.  7.17 The combined test error for the sets of different sizes 

Usually, the error is minimized by using more than one submodel in the set. However in 

this case, the optimum number of submodels to form the set was found to be one as shown in 

Fig.  7.17. Therefore, the test error for the best submodel is 0.0663, and the combined test 

error of the set is 0.0663; this is test error estimated just for set containing only one submodel, 

and hence the test error for the best submodel and the combined test error of the set are the 

same. 

The best way to evaluate the set of submodels is by making predictions and comparing 

predictions with target data. Fig.  7.18 shows a plot of target versus the predicted output using 

the selected set; predictions are made by using 50 patterns as input variables. Fig.  7.19 shows 

the prediction performance of the proposed model for Random Waypoint Mobility. It is clear 

that the universal approximation capability of the set enables them to track the nodes mobility 

once training is completed.  
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Fig.  7.18 Prediction of next position xn+1 in [m] against measured value in [m] 

 

Fig.  7.19 The prediction result of Random Waypoint Mobility 
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Fig.  7.20 The confidence and prediction bands of linear regression at confidence level 

95%. 

In Fig.  7.20, confidence and prediction intervals are used to characterize the results. It 

was performed the linear regression of data (predicted and measured). The linear regression 

line has an equation of the form: 

                  

           
   (38)

where   is the predicted value,   is the target value and    is the correlation coefficient. The 

confidence level used is 95% around the average. This means that there is a 95% probability 

that the true linear regression line of the population will lie within the confidence interval of 

the regression line calculated from data. The confidence interval of the prediction presents a 

range for the mean rather than the distribution of individual data points. It does not tell the 

likely range of all values, just how much the average value is likely to fluctuate. The 

correlation of measured and predicted through the best model has been found acceptable. 
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The results of these predictions are shown in the Table C-3. Note that these data have not 

been included into the training and verification phase of the neural network model 

development. 

7.4 Summary 

This chapter presented the implementation of the proposed mobility prediction methods 

and the results. The mobility prediction method using virtual map has been implemented in 

NS-2. Both Random Walk model and RWP model were chosen to illustrate the performance 

metrics of the proposed mobility prediction algorithm. The performance metrics used are end 

to end delay, throughput, and packet delivery ratio.  

Section  7.1 presented the improvement of the proposed method MAODV as compared 

with the traditional AODV routing protocol. Simulations evaluated proposed mobility 

prediction based on an end to end delay, throughput, and packet delivery. The MAODV 

performed better as compared to AODV. This is due to the fact that MAODV takes into 

account the next position of the destination to point the antenna to the predicted direction to 

send data. Therefore the probability of packet drop decreases, the delay decreases and the 

performance improves. 

Section  7.2 investigates how the proposed mobility prediction method behaves with 

both mobility models (random waypoint, Random Walk). The simulation results were 

exported for different number of nodes and for different values of maximum speed. The 

chosen numbers of nodes were 20, 40, 60, 80 and 100 MNs. The values of maximum speed of 

a node movement were 1.5, 5, 10, 15, 20, 25 m/sec. The simulation results showed that 

Random Waypoint Mobility performs better as compared to Random Walk model. This is 

because of the pause time in Random Waypoint Mobility model, which decreases the mobility 

and so as the path breakage which enhances the performance compared to Random Walk. 

In section  7.3, the neural network based method has been implemented in Model 

Manager for training Bayesian neural networks. The best model was selected and tested on 

the output side. The final model has been built from a set of multiple submodels.  It has been 

found that the optimum number of submodels to form the set is one. The final model was used 

to make predictions of 50 patterns as input variables. The results of these predictions are 

shown in Table C-3. The prediction values were compared with target values. Confidence and 
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prediction intervals are used to characterize the results. It has been found that the correlation 

of measured and predicted through the best model is acceptable. 
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8 CONCLUSION  

The main goal of this thesis was to define mobility prediction methods for MANET 

networks: the first method is based on the virtual map and the second method uses a neural 

network.  

In the virtual map based scheme, each node can build its virtual map of moving 

depending on its location over the time. Thereby, the MNs use this map to define the next step 

in the control message between the sending nodes. The predicted information about the 

expected movement of stations is used for finding the optimal path from the source to the 

destination. I evaluated the mobility prediction method for AODV routing protocol by 

comparison of differences in performance evaluation of the traditional AODV routing 

protocol and the MAODV which uses proposed mobility prediction method. Also Random 

Walk Mobility model and Random Waypoint Mobility model have been carried out for this 

comparison. Simulation results illustrated that the performance of the proposed method 

enhanced in term of delay, throughput and PDR for the range of number of nodes between 20 

and 80. Table  8-1 summarizes the improvement of MAODV compared to AODV for Random 

Walk Mobility model and Random Waypoint Mobility model. 

Table  8-1 Improvement of the proposed method MAODV 

  Average end to end delay Packet delivery ratio Throughput 

Improvement for 

Random walk 

30% 13% 8% 

Improvement for 

Random Waypoint 

6% 8% 6% 

 

Comparative results of the Random Walk Mobility model and Random Waypoint 

Mobility model have been carried out via NS-2 software simulations. These mobility models 

are represented in BonnMotion. I investigated existing mobility models, and how the 

prediction solution in this research can be applied to them. Simulations respectively realize 

performances in terms of average end to end delay, packet delivery ratio and network 

throughput under different mobility model. The proposed prediction concept is implemented 

over AODV routing protocol. Simulation results illustrated that the performance of the 
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proposed method varies across two mobility models, number of nodes and speeds. The 

proposed method provides an adaptive location prediction mechanism. It proactively predicts 

future locations of communicating nodes and minimizes location updating, thereby reduces 

communication delay. From the simulation analysis I can conclude that Random Waypoint 

model is the best model which outperforms Random Walk model in term of end to end delay, 

throughput, and packet delivery ratio. 

In the neural network based method, an ANN for movement prediction has been 

developed in MANETs. The Bayesian technique was used for training ANNs. It has been 

implemented in Model Manager for training Bayesian neural networks. Training a network 

includes finding a set of weights and biases which gives a trade-off between complexity and 

accuracy. The best way to evaluate the final model is done by making predictions and 

comparing predictions with target data. The predictions are made by using 50 patterns which 

have not been included into the training phase. I found out that the universal approximation 

capability of the set enables them to track the nodes mobility once training is completed. The 

Correlation of measured and predicted through the best model has been found acceptable. 
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LPE Log Predictive Error 

LT Location Table  

LTE Long Term Evolution  

MAC Medium Access Protocol  

MANET Mobile Ad hoc NETworks  

MAODV Modified Ad Hoc On-Demand Distance Vector 

MaxSR Spatial Reuse Maximizer  

MBAA Multi-Beam Antenna Arrays  

MBM Map-Based Movement  

MBSA Multiple Beam Smart Antenna  

MLE Maximum likelihood Estimation 

MLP MultiLayer Perceptron 

MM Markov Model  

MMM Mixed Markov chain Model  

MN  Mobile Node 

MRD Modified Random Direction  

MSE Mean Square Error 

MSRCC Spatial Reuse Maximizer in Cooperative Communication 

NAM Network Animator  

NIP Neighbor Information Packet  

NS-2 Network Simulator-2 

ODMRP On-Demand Multicast Routing Protocol  

OLSR Optimized Link State Routing  

PDA Personal Digital Assistant  
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PDR Packet Delivery Ratio 

QoS Quality of Service 

RAT Radio Access Technology  

RDM Random Direction Mobility  

RERR Rout ERRor  

RET Route Expiration Time  

RL Reinforcement Learning 

ROMA Receiver Oriented Multiple Access  

RPGM Reference Point Group Mobility  

RREP Route REPly  

RREQ Route REQuest  

RTS Request-To-Send 

RWM Random Walk Mobility  

RWP Random Waypoint 

SMS Short Message Service 

SNR Signal-to-Noise Ratio 

TDMA Time Division Multiple Access  

TORA Temporally ordered routing algorithm 

TTL Time To Live 

VANET Vehicular Ad Hoc Network  

VoIP Voice over IP  

ZRP Zone Routing Protocol 
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ANNEXES 

 

ANNEX A  

Network Simulator NS-2 

NS-2 is a free and open-source event-driven simulator used specifically for research 

projects. Since its inception in 1989, NS-2 has continuously gained tremendous interest from 

industry, academia, and government [152]. It can be downloaded from the NS-2 homepage. 

NS-2 provides a highly modular platform for simulation of wired as well as wireless 

networks. NS-2 contains modules for many network components such as MAC, routing, 

transport layer protocol, application, etc. The activities of the network are processed and 

queued in form of events, in a scheduled order. These events are then processed as per 

scheduled time that increases along with the processing of events. However, the simulation is 

not real time; it is considered virtual. Network Simulator is mainly written in two languages. 

They are C++ and OTcl. OTcl is the object-oriented version of Tool Command language. It is 

used to build the network structure and topology. C++ is the most important and kernel part of 

the NS-2. A Tcl script is written in NS-2 for simulation of network model. When this Tcl 

script is run it creates two files trace file and Nam file. The Nam file is distributed with NS-2 

simulator to read an input file and draw the network events graphically. It provides visual 

interpretation of overall network. Whereas trace file stores different events statistics such as 

each individual packets arrival time, departs or is dropped , information about protocol agent, 

traffic agent , source and destination nodes address etc., which can be used to measure a 

protocol performance, see Fig.A.1. In order to extract a subset of the data of interest and 

analyse them from trace file, different tools are available such as grep, AWK, sed, Perl. I used 

AWK programming script to analyse the simulation results. 

 

 

 

 

Fig. A.1 An example of a trace file 

Event Time 
From 

node 

To 

node 

Packet 

type 

Packet 

size 
Flags Fid 

Src 

Addr 

Dest 

Addr 

Packet 

ID 

Seq 

Num 

Example  

r: receive  

d: dropped 
Address in “node-port” format  

CBR or TCP 
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ANNEX B 

Bayesian probability theory 

Bayesian probability theory provides a mathematical framework for peforming 

inference, or reasoning, using probability. The foundations of Bayesian probability theory 

were laid down some 200 years ago by scientists such as Bernoulli, Bayes, and Laplace, but it 

has been held suspect or controversial by modern statisticians. The last few decades though 

have seen the occurrence of a “Bayesian revolution,” and Bayesian probability theory is now 

commonly employed (oftentimes with stunning success) in many scientific disciplines, from 

astrophysics to neuroscience. It is most often used to judge the relative validity of hypotheses 

in the face of noisy, sparse, or uncertain data, or to adjust the parameters of a specific model. 

Table B-1 The ranking of the 100 submodels depending on the LPE for      

Number of submodel Number of hidden units TE LPE 

1 1 0.0663 40.507 

2 2 0.0664 40.493 

3 1 0.0664 40.492 

4 2 0.0664 40.489 

5 20 0.0666 40.461 

6 2 0.0666 40.46 

7 7 0.0666 40.455 

8 15 0.0666 40.455 

9 9 0.0666 40.454 

10 5 0.0666 40.453 

11 13 0.0666 40.45 

12 3 0.0666 40.444 

13 5 0.0667 40.444 

14 10 0.0667 40.444 
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Number of submodel Number of hidden units TE LPE 

15 1 0.0666 40.443 

16 2 0.0667 40.44 

17 7 0.0667 40.44 

18 4 0.0667 40.439 

19 7 0.0667 40.439 

20 9 0.0667 40.439 

21 4 0.0667 40.438 

22 14 0.0667 40.438 

23 2 0.0667 40.436 

24 1 0.0667 40.435 

25 10 0.0667 40.434 

26 3 0.0667 40.433 

27 7 0.0667 40.433 

28 6 0.0667 40.432 

29 10 0.0667 40.432 

30 3 0.0667 40.43 

31 8 0.0667 40.43 

32 11 0.0667 40.43 

33 9 0.0667 40.429 

34 19 0.0667 40.429 

35 14 0.0667 40.428 

36 17 0.0667 40.428 

37 6 0.0667 40.427 
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Number of submodel Number of hidden units TE LPE 

38 12 0.0667 40.427 

39 6 0.0667 40.425 

40 19 0.0667 40.425 

41 5 0.0667 40.424 

42 8 0.0667 40.423 

43 11 0.0667 40.423 

44 3 0.0667 40.421 

45 11 0.0668 40.421 

46 13 0.0668 40.421 

47 14 0.0668 40.421 

48 19 0.0668 40.421 

49 12 0.0668 40.42 

50 16 0.0668 40.42 

51 4 0.0668 40.419 

52 15 0.0668 40.419 

53 15 0.0668 40.419 

54 17 0.0668 40.418 

55 19 0.0668 40.416 

56 5 0.0668 40.415 

57 6 0.0668 40.415 

58 8 0.0668 40.413 

59 11 0.0668 40.413 

60 15 0.0668 40.413 
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Number of submodel Number of hidden units TE LPE 

61 18 0.0668 40.413 

62 5 0.0668 40.411 

63 17 0.0668 40.411 

64 17 0.0668 40.411 

65 20 0.0668 40.411 

66 12 0.0668 40.41 

67 13 0.0668 40.409 

68 18 0.0668 40.408 

69 19 0.0668 40.408 

70 7 0.0668 40.407 

71 13 0.0668 40.407 

72 20 0.0668 40.407 

73 9 0.0668 40.406 

74 20 0.0668 40.405 

75 9 0.0668 40.404 

76 6 0.0668 40.403 

77 10 0.0668 40.403 

78 18 0.0668 40.403 

79 10 0.0668 40.401 

80 8 0.0669 40.4 

81 13 0.0669 40.399 

82 3 0.0668 40.398 

83 4 0.0668 40.398 
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Number of submodel Number of hidden units TE LPE 

84 16 0.0669 40.394 

85 8 0.0669 40.393 

86 16 0.0669 40.392 

87 12 0.0669 40.39 

88 4 0.0669 40.384 

89 16 0.067 40.379 

90 14 0.067 40.372 

91 16 0.067 40.358 

92 18 0.067 40.354 

93 1 0.0672 40.326 

94 20 0.069 40.291 

95 18 0.069 40.281 

96 17 0.0691 40.273 

97 11 0.0691 40.246 

98 12 0.0692 40.234 

99 14 0.0694 40.202 

100 15 0.0694 40.201 

  

Table B-2 The ranking of the 100 submodels depending on the LPE for      

Number of submodel Number of hidden units TE LPE 

1 3 0.0544 41.34 

2 12 0.0544 41.34 

3 5 0.0544 41.337 
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Number of submodel Number of hidden units TE LPE 

4 2 0.0544 41.327 

5 18 0.0545 41.322 

6 11 0.0545 41.32 

7 12 0.0545 41.318 

8 12 0.0545 41.318 

9 19 0.0545 41.306 

10 14 0.0545 41.305 

11 20 0.0545 41.304 

12 11 0.0545 41.301 

13 18 0.0545 41.299 

14 2 0.0545 41.298 

15 7 0.0545 41.298 

16 8 0.0545 41.296 

17 14 0.0545 41.296 

18 13 0.0545 41.295 

19 16 0.0545 41.294 

20 19 0.0545 41.293 

21 19 0.0545 41.289 

22 12 0.0545 41.286 

23 4 0.0545 41.284 

24 18 0.0545 41.283 

25 11 0.0545 41.281 

26 15 0.0545 41.281 
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Number of submodel Number of hidden units TE LPE 

27 14 0.0546 41.28 

28 16 0.0546 41.279 

29 8 0.0545 41.278 

30 9 0.0546 41.276 

31 7 0.0546 41.275 

32 13 0.0546 41.275 

33 3 0.0546 41.274 

34 6 0.0546 41.274 

35 8 0.0546 41.274 

36 3 0.0546 41.272 

37 10 0.0546 41.272 

38 4 0.0546 41.271 

39 6 0.0546 41.271 

40 13 0.0546 41.27 

41 10 0.0546 41.269 

42 6 0.0546 41.268 

43 16 0.0546 41.267 

44 17 0.0546 41.266 

45 20 0.0546 41.266 

46 20 0.0556 41.266 

47 9 0.0546 41.265 

48 14 0.0546 41.265 

49 17 0.0546 41.263 
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Number of submodel Number of hidden units TE LPE 

50 9 0.0546 41.262 

51 15 0.0546 41.262 

52 4 0.0546 41.261 

53 10 0.0546 41.259 

54 4 0.0546 41.257 

55 15 0.0546 41.257 

56 5 0.0546 41.254 

57 16 0.0546 41.254 

58 11 0.0546 41.252 

59 9 0.0546 41.251 

60 13 0.0546 41.251 

61 13 0.0546 41.251 

62 2 0.0546 41.249 

63 10 0.0546 41.249 

64 3 0.0546 41.247 

65 1 0.0546 41.246 

66 17 0.0546 41.246 

67 16 0.0546 41.245 

68 15 0.0546 41.243 

69 5 0.0546 41.242 

70 6 0.0546 41.242 

71 20 0.0546 41.242 

72 2 0.0546 41.24 
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Number of submodel Number of hidden units TE LPE 

73 1 0.0546 41.239 

74 1 0.0546 41.239 

75 11 0.0546 41.239 

76 1 0.0546 41.238 

77 19 0.0546 41.237 

78 2 0.0546 41.236 

79 18 0.0546 41.235 

80 10 0.0547 41.234 

81 3 0.0547 41.229 

82 7 0.0547 41.229 

83 8 0.0547 41.229 

84 7 0.0547 41.225 

85 17 0.0547 41.222 

86 12 0.0547 41.219 

87 5 0.0547 41.216 

88 7 0.0547 41.214 

89 4 0.0547 41.212 

90 5 0.0547 41.204 

91 6 0.0547 41.204 

92 8 0.0547 41.2 

93 9 0.0547 41.2 

94 19 0.0561 41.171 

95 17 0.0561 41.164 
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Number of submodel Number of hidden units TE LPE 

96 14 0.0548 41.159 

97 18 0.0561 41.143 

98 15 0.0562 41.126 

99 20 0.0563 41.098 

100 1 0.0551 41.016 
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Annex C 

Table C-3 The prediction result of the final model 

Target x Predicted x Target y Predicted y 

129.7156 107.228424 231.0979 220.1442 

120.1699 129.330154 240.2457 229.1602 

110.7698 120.305794 230.8672 238.6118 

136.3183 111.496231 212.2988 228.9203 

169.8127 135.609055 217.5237 209.9602 

166.5246 167.68103 215.7803 215.2594 

163.6189 164.5298 197.7517 213.482 

156.4737 161.743744 197.9661 195.3978 

169.7807 154.890884 169.0575 195.6078 

164.4491 167.650208 179.6855 167.7419 

165.5044 162.539764 154.2109 177.7965 

135.8401 163.551575 176.3146 154.106 

162.7199 135.153152 173.3911 174.5855 

158.3512 160.881302 174.123 171.8138 

176.6424 156.691452 170.8021 172.5016 

175.84 174.217834 169.395 169.3742 

156.929 173.450638 148.185 168.0524 

126.8719 155.327484 149.1247 148.721 

112.9182 126.634323 167.0078 149.5552 

81.87854 113.501808 166.779 165.8281 

64.97796 85.075562 141.5899 165.6168 
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Target x Predicted x Target y Predicted y 

65.14812 70.207657 140.9583 142.9303 

61.62059 70.354774 116.0995 142.3769 

64.85123 67.314583 110.3939 121.6165 

96.99024 70.097878 106.8863 117.0847 

77.21342 98.755966 85.75106 114.3493 

78.49543 80.922539 113.502 98.57555 

78.09761 82.060425 113.1833 119.5439 

114.2324 81.707031 107.8142 119.2867 

90.04467 114.730919 110.876 115.0711 

80.32447 92.426933 139.7865 117.4664 

75.51623 83.688049 148.2459 141.3662 

73.77048 79.42099 149.8323 148.7719 

64.69909 77.881088 143.9131 150.1802 

80.92021 69.966545 164.2392 144.9546 

113.2512 84.219643 146.3105 163.2607 

96.1193 113.813095 179.3829 147.0654 

75.44638 97.958939 190.6821 177.5116 

82.97872 79.359337 229.2408 188.4417 

92.60815 86.060059 228.0355 227.2507 

92.72517 94.755333 226.4292 226.0058 

67.89718 94.861855 213.4125 224.3546 

48.65807 72.740074 209.7198 211.086 

49.6661 56.351059 224.8924 207.3549 
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Target x Predicted x Target y Predicted y 

54.68765 57.191692 247.2709 222.7808 

60.14778 61.409374 246.4741 245.905 

78.74902 66.052628 261.6077 245.0733 

43.26599 82.285995 269.2236 260.8248 

43.02196 51.891014 268.6239 268.7519 

55.85355 51.690758 297.8515 268.1212 
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