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Terminology

• R stands for the set of all real numbers,

N stands for the set of all natural numbers.

• If we choose n ∈ N, then Rn stands for the set of all n-tuples of real numbers.

• The set C(J) stands for a set of vector functions x(t), whose components

x1(t), . . . , xn(t) are continuous on J .

If we choose k ∈ N, then x ∈ Ck(J) means that components x1(t), . . . , xn(t)

have continuous kth derivatives on J .

• The set C(G), C(J × G), stands for a set of vector functions f , ϕ, whose

components are continuous on G, J ×G, respectively.

If we choose k ∈ N, then x ∈ Ck(J) means that components x1(t), . . . , xn(t)

have continuous kth derivatives on J .
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Introduction

Imagine a species in the nature, imagine growth and decline of its population.

But what is the reason for these changes in the population size, and are we able

to make at least simple anticipation of the evolution? We know that this commu-

nity is not the only one in the nature, and thus some coexistence or, vice versa,

some tendencies for competing to exclude other species are required. Would we

be able to describe at least basic principles of these coexistences or competitions

in such a way as to be able to predict the evolution of population size?

This bachelor thesis will present and describe few population models to show

that cases mentioned above are possible to model using differential equations. To

show that dynamical systems give us an opportunity to model, analyse and make

at least slight predictions of evolution or behaviour of some biological commu-

nity. Due to the scope of the thesis, we will be interested in continuous dynamical

systems.

The thesis is divided into 3 chapters. The first one is purely theoretical, there

are presented some basics of scalar and planar dynamical systems, on which the

following chapters build. The second one presents few models falling into Scalar

dynamical systems, as well as it contains elaborated exercises dealing with the

given topic. The third chapter is focused on applications of planar dynamical

systems. The chapter consists of description of two population models and of

elaborated exercises related to the models and their application. All these exer-

cises were taken from [3], chapter 6.
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Due to the limited range of this thesis, there are analysed and described only

some selected models in population dynamics, although there exist many more.
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Chapter 1

Dynamical systems

A mathematical model of some system that is changing over time is called a

dynamical system.

If we are observing evolution of some dynamical system continuously, we are

talking about a continuous dynamical system. On the other hand, if the evolution

of dynamical system is observed at separate instants of time, it is known as a

discrete dynamical system.

Dynamical systems can also be classified from another point of view, whether

their states are described by a real number or by an n-dimensional vector of real

numbers. The system in which only one variable is observed is called a scalar

dynamical system and is more described in Section 1.1. If we follow the time evo-

lution of two variables, we call such system a planar dynamical system, described

in Section 1.2.

Now we will introduce the basic terms used in the theory of dynamical sys-

tems 1.

Definition 1.1. Let G be an open subset of the space Rn and a vector function

ϕ(t,x) mapping the set R×G into G. Furthermore, let ϕ ∈ C(R×G) and have

the following properties:

• ϕ(0,x0) = x0 for each x0 ∈ G;

1Theorems and Definitions are taken from [1].
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• ϕ(t+ s,x0) = ϕ(t,ϕ(s,x0)) for each t, s ∈ R,x0 ∈ G;

• for each t ∈ R there is an inverse mapping to the mapping ϕ(t, •) and is

equal to ϕ(−t, •) : G→ G.

Then the mapping ϕ : R×G→ G is called a flow. For each fixed t ∈ R, we will

name a mapping

ϕ(t, •) : G→ G

a dynamical system in Rn. The space Rn will be called a phase space.

Consider a system of n autonomous ordinary differential equations of the first

order 
x′1(t) = f1(x1, . . . , xn),
...
x′n(t) = fn(x1, . . . , xn).

(1.1)

Functions f1, . . . , fn are functions of n real variables. This system can be equiv-

alently written in a vector form of

x′(t) = f(x(t)), (1.2)

where f = (f1, . . . , fn), x = (x1, . . . , xn), x′ = (x′1, . . . , x
′
n).

Definition 1.2. By a solution of the equation (1.2) on the interval J ⊂ R we

understand a vector function x(t) = (x1(t), . . . , xn(t)) ∈ C1(J) such that the

equation (1.2) holds for each t ∈ J .

A basic condition that we can specify for individual solutions of equation (1.2)

is an initial (Cauchy) condition

x1(0) = x01, . . . , xn(0) = x0n, (1.3)

where the point x0 = (x01, . . . , x
0
n) ∈ Rn is called an initial point of solution. The

equivalent vector form of the condition (1.3) is

x(0) = x0. (1.4)
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Definition 1.3. Finding the solution of the equation (1.2) under the given initial

condition (1.4) is called Cauchy(’s) initial value problem. We will denote it as

the problem (1.2), (1.4).

The problem is to find a solution of the equation (1.2) on an interval J ⊂ R

satisfying the condition (1.4). Such solution will be marked as ϕ(•,x0). Ac-

cording to Definition 1.2 and formula (1.4), the function ϕ satisfies the following

equalities

ϕ(t,x0) = f(ϕ(t,x0)) for each t ∈ J, (1.5)

ϕ(0,x0) = x0. (1.6)

The proof of the following theorem will not be included into this thesis, but

it can be found in [1].

Theorem 1.1. (Basic theorem on existence and uniqueness) Let G be an open

subset in Rn containing point x0. Further let f ∈ C1(G).

Then the problem (1.2), (1.4) has the unique solution ϕ(t, x0) defined on a

maximal interval Ix0 = (ax0 , bx0) ⊂ R containing 0.

Definition 1.4. Let ϕ(•,x0) be a solution of the Cauchy initial value problem

(1.2), (1.4). The set {(t, ϕ(t,x0)) : t ∈ Ix0} is called a graph of the solution.

Definition 1.5. Let ϕ(•,x0) be a solution of the Cauchy initial value problem

(1.2), (1.4). The set {ϕ(t,x0) : t ∈ Ix0} is called an orbit of the solution.

Definition 1.6. A critical point of the equation (1.2) is a point x = (x1, . . . , xn) ∈

Rn satisfying the system of equations
f1(x1, . . . , xn) = 0,
...
fn(x1, . . . , xn) = 0.

If a point x is not a critical point, it is called a regular point of the equation (1.2).
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Definition 1.7. A phase portrait of the equation (1.2) is a set of orbits of all

equations’ solution curves along with arrows indicating variance of point ϕ(t,x0)

on the orbit for increasing t. The space Rn containing a phase portrait of the

equation is called a phase space.

Definition 1.8. A critical point x ∈ G ⊂ Rn of the equation (1.2) is called

stable, if the following statement holds{
∀ε > 0 ∃δ > 0 ∀x0 ∈ G : ‖ x− x0 ‖ < δ ⇒ ‖ ϕ(t,x0)− x ‖ < ε

for each t ≥ 0.
(1.7)

Definition 1.9. A critical point x ∈ G ⊂ Rn of the equation (1.2) is called

unstable, if the following statement holds{
∃ε > 0 ∀δ > 0 ∃x0 ∈ G : ‖ x− x0 ‖ < δ ∧ ‖ ϕ(t,x0)− x ‖ ≥ ε

for at least one t > 0.
(1.8)

Definition 1.10. A critical point x ∈ G ⊂ Rn of the equation (1.2) is called

asymptotically stable, if it is stable and the following statement holds

∃r > 0 ∀x0 ∈ G : ‖ x− x0 ‖ < r ⇒ lim
t→∞
‖ ϕ(t,x0)− x ‖ = 0. (1.9)

1.1. Scalar dynamical systems

If we put a dimension n = 1 in definitions and theorems above, we get dynam-

ical systems in R which are called scalar dynamical systems. The equation (1.2)

has for n = 1 the following form

x′(t) = f(x(t)). (1.10)

Theorem 1.2. Let be f ∈ C1(R). The solution ϕ(t, x0) of the equation (1.10),

defined on (ax0, bx0), either converge to the critical point of the equation (1.10)

for t→∞ (if bx0 =∞), or has an infinite limit for t→ bx0 ≤ ∞.

Theorem 1.3. Let be f ∈ C1(R) and x ∈ G be a critical point of the equation

(1.10). If f ′(x) < 0, then x is asymptotically stable. If f ′(x) > 0, then x is

unstable.
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Definition 1.11. A critical point x ∈ G of the equation (1.10) is called hyperbolic,

if f ′(x) 6= 0. A critical point x ∈ G of the equation (1.10) is called non-hyperbolic,

if f ′(x) = 0.

1.2. Planar dynamical systems

If we put a dimension n = 2 in definitions and theorems from the beginning

of Chapter 1, we get planar dynamical systems, which arise from system of two

autonomous ordinary differential equations of the first order{
x′1(t) = f1(x1, x2),
x′2(t) = f2(x1, x2),

(1.11)

where a mapping f = (f1, f2) has continuous partial derivatives on an open set

G ⊂ R2. The system (1.11) can be written in an equivalent vector notation

x′(t) = f(x(t)). (1.12)

According to Definition 1.6, the point x = (x1, x2) ∈ G is a critical point of the

equation (1.12), if and only if

f1(x1, x2) = 0, f2(x1, x2) = 0.

1.2.1. Planar linear dynamical systems with a constant ma-

trix in canonical form

This chapter includes equations of the form

x′ = J · x(t). (1.13)

for any two-dimensional constant matrix J in Jordan canonical form. The phase

space, as defined in Definition 1.7, is in that case R2.

Theorem 1.4. Let J be a matrix with the complex conjugate eigenvalues λ1,2 = α ± iβ,

where α 6= 0, β 6= 0. Then the equation (1.13) has one of the four phase portraits

on Figure 1.1.

14



Figure 1.1: The picture was taken from [1].

Theorem 1.5. Let J be a matrix with purely imaginary eigenvalues λ1,2 = ± iβ,

where β 6= 0. Then the equation (1.13) has one of the four phase portraits on

Figure 1.2.

Figure 1.2: The picture was taken from [1].

1.2.2. Planar non-linear dynamical systems

Definition 1.12. A critical point x ∈ G of the equation (1.12) is called hyperbolic,

if the Jacobian matrix

Df(x) =

(
∂f1
∂x1

(x1, x2)
∂f1
∂x2

(x1, x2)
∂f2
∂x1

(x1, x2)
∂f2
∂x2

(x1, x2)

)
(1.14)

has both eigenvalues with non-zero real components.

Definition 1.13. A critical point x ∈ G of the equation (1.12) is called non-

hyperbolic, if the Jacobian matrix (1.14) has at least one eigenvalue with zero real

component.

Definition 1.14. Let x ∈ G be a critical point of the equation (1.12). The

equation

y′ = Df(x)y (1.15)
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is called a linear variational equation to the equation (1.12) at the point x.

Theorem 1.6. Let x ∈ G be a hyperbolic critical point of the equation (1.12). If

the eigenvalues of the Jacobian matrix Df(x) have negatives real parts, then the

critical point x is asymptotically stable.

Theorem 1.7. Let x ∈ G be a hyperbolic critical point of the equation (1.12). If

at least one eigenvalue of the Jacobian matrix Df(x) has a positive real compo-

nent, then the critical point x is unstable.

Definition 1.15. A critical point x of the equation (1.12) is called a source

(sink), if there exists a neighbourhood U of the point x such that for each point

x0 ∈ U the entire positive part (negative part) of the orbit of the solution ϕ(t,x0)

stays in U and moreover

lim
t→∞

ϕ(t,x0) = x

(
lim

t→−∞
ϕ(t,x0) = x

)
.

Definition 1.16. A critical point x of the equation (1.12) is called a saddle, if

there exist points x0 6= x and x1 6= x such that

lim
t→∞

ϕ(t,x0) = x and lim
t→−∞

ϕ(t,x1) = x.

Theorem 1.8. Let x ∈ G be a hyperbolic critical point of the non-linear equa-

tion (1.12). Then the point x is

• a source,

• a sink,

• a saddle

if the critical point (0, 0) of the linear variational equation (1.15) is such.
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Definition 1.17. A critical point x of the equation (1.12), which is a sink or a

source is called a spiral, if there exists a neighbourhood U of the point x such

that for each point x0 ∈ U either the positive or the negative part of the orbit of

the solution ϕ(t,x0) circulates around the point x infinitely. It means that when

transformed into polar coordinates r(t) and θ(t) ,

lim
t→∞
|θ(t)| =∞ or lim

t→−∞
|θ(t)| =∞.

If the orbits circulate around the point x only a finite number of times, then the

point x is called a node.

Theorem 1.9. (Method of linearization) Let f ∈ C2(G) and let x ∈ G be a

hyperbolic critical point of the non-linear equation (1.12).

Then the point x is

• a node-source,

• a spiral-source,

• a node-sink,

• a spiral-sink,

• a saddle

if the critical point (0, 0) of the linear variational equation (1.15) is such.
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Chapter 2

Application of scalar dynamical
systems

2.1. Exponential growth (Malthusian model)

Thomas Robert Malthus is largely famous for his idea of limiting the growth

of the population. In 1798, he published An Essay on the Principle of Population

where his model, also called Exponential growth, is presented. Malthus’ thesis is

based on the observation that there is an asymmetry between population growth

and resources production growth. In the mathematical language it means that

while the population increases exponentially, the resources increase only arith-

metically. So it follows that even though there were not any war or epidemic or

something different able to decrease the population size, a famine will be nec-

essary. This famine could last until the population level decreases below the

available resources. Malthus also proposed several ways, quite drastic ways, to

regulate the population. These rules as well as any other policy of demographic

regulation is called Malthusianism.

The model assumes that the birth and death rates are proportional to the size

of the population. The concepts of fertility rate (number of births per unit of

time and individual) β and mortality rate (number of deaths per unit time and

per individual) δ are introduced and assumed to be constant in time.
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The rate of change of population size N(t) is then the difference, i.e

N ′(t) = βN(t)− δN(t), (2.1)

but the rate is mostly known in the form of a differential equation

dN(t)

dt
= rN(t), r = β − δ, (2.2)

with an initial condition N(0) = N0 > 0.

The differential equation (2.2) is called Exponential growth or Malthusian growth

model. However the model is better known in the form of the solution of equa-

tion (2.2).

To find this solution we can use the method of separation of variables 1. This

way we get functions

f(t) = r and g(N) = N,

for which we have

D(f) = R and D(g) = R,

therefore it makes sense to look for a solution only in the set R2. But since this

is a population model, it only makes sense to consider non-negative N , therefore

we will look for a solution in the set

Ω = R× (0,∞).

Now we need to check if there are any critical points. Definition 1.6 implies that

a critical point of a differential equation is an expression of a solution whose value

does not change over time. In other words, we have to find for which N holds

dN

dt
= 0.

1Explanation of method of separation of variables can be found in [2]
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The equality applies only for N = 0, i.e. the system has one critical point N = 0,

which is anyway outside the investigated space Ω.

Let write the equation (2.2) in the form

N ′(t) = rN(t), r ∈ R, t ∈ R.

After modification it is possible to apply integration∫
N ′(t)

N(t)
dt =

∫
r dt.

In order to proceed, we use a substitution ω = N(t) and dω = N ′(t) dt, conse-

quently we have ∫
dω

ω
= rt+ c1, c1 ∈ R.

Then we can continue by logarithmization

ln |N(t)| = rt+ c1, c1 ∈ R.

Since N(t) > 0, ∀t ∈ R, we can remove the absolute value, thus

ln(N(t)) = rt+ c1, c1 ∈ R.

By expressing N(t) from the equation we get a general solution

N(t) = ert+c1 , t ∈ R, c1 ∈ R,

or otherwise

N(t) = cert, t ∈ R, c ∈ R+.

But we need to find such solution suiting the initial condition N0 = N(0). If we

compute N(0), we get such c = N0, which suits the initial condition. Hence the

wanted solution of the equation (2.2) is

N(t) = N0e
rt, t ∈ R, (2.3)

where

20



• N(0) = N0 is the initial population size,

• r = β − δ is the population growth rate, sometimes called Malthusian

parameter,

• t is the time.

We know that the parameter r is equal to the difference β − δ. It implies

that if fertility exceeds mortality, i.e. β > δ, the Malthusian model predicts

exponential population growth, shown in Figure 2.1. Contrariwise if β < δ, the

population must decrease until it is extinguished. This type of the model is called

Exponential decay and is represented on Figure 2.2.

Figure 2.1: Exponential growth
N(t) = N0e

rt, r > 0, with an initial
population N0

Figure 2.2: Exponential decay
N(t) = N0e

rt, r < 0, with an initial
population N0

In the real world, examples of exponential growth are very limited, because

expansion runs into other real-world constraints such as space and food resources.

Nevertheless, this principle can be observed, for example, in Radioactive decay.

Or the model can be used, for example, to model the initial growth phase of

bacterial populations in an optimal environment or as a basic model of economic

growth. However, this model is quite simple to be considered for populations

interacting with their environment, such as ours.
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2.2. Logistic growth

In 1838, Pierre François Verhulst, inspired by Malthus, proposed his own

model called Logistic growth. Whereas Malthus introduced fertility and mortality

rates to be constant, Verhulst came with an idea that the larger the population,

the lower fertility rate and the higher death rate. It means that if the growth

reaches maximum rate for a certain size of population, then the rate begins to

slow down until it stops completely when the population reaches a critical size K.

The parameter K is interpreted as the maximum number of individuals that the

environment is able to support.

The model considers a non-constant intrinsic growth rate

g(N) = r

(
1− N

K

)
, (2.4)

where we can see that the rate g(N) depends on the population size N . We also

see that as the population size N increases, the rate g(N) decreases. Once the

critical population size K is reached, the growth rate will be null, because the

term
(
1− N

K

)
will be equal to zero.

The model is mathematically described by the following equation

dN(t)

dt
= rN(t)

(
1− N(t)

K

)
, (2.5)

where

• N(t) represents the size of the population over time,

• r > 0 is a growth rate per capita,

• K is a critical size of the population, also known as carrying capacity,

• N0 represents the initial population.

The solution of the model and its properties are studied and shown in Exam-

ple 2.2.1 originally from [3].
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Problem 2.2.1. Let’s consider the following equation

dN

dt
= r

(
1− N

K

)
N. (2.6)

(a) Assuming that N(0) = N0, integrate equation (2.6) and show that its solution

is given by

N(t) =
N0K

N0 + (K −N0)e−rt
. (2.7)

(b) Show that the solution given by (2.7) has the following properties:

(1) lim
t→∞

N(t) = K,

(2) the graph is convex for t such that N0 < N(t) < K/2,

(3) the graph is concave for t such that K/2 < N(t) < K,

(4) if N0 > K, the graph is convex.

Solution

ad(a): The equation (2.6) can be solved by the method of separation of vari-

ables 2. Thus we obtain functions

f(t) = r and g(N) =

(
1− N

K

)
N

for which we have

D(f) = R and D(g) = R.

It follows that it makes only sense to find a solution in the set R2. However, we

are investigating a population model, therefore we will look for a solution only in

the set

Ω = R× (0,∞).

In order to solve the equation (2.6), we must find its critical points. According

to Definition 1.6, the critical point is the point at which the population reaches

an equilibrium. It means we solve

dN

dt
= 0.

2Explanation of method of separation of variables can be found in [2]
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We found that it holds if and only if N = 0 or 1− N
K

= 0, which implies that we

have two critical points N = 0 and N = K.

First, we will focus on finding the solution in Ω1 = R × (0, K), it means we

have to find a function N whose graph is a subset of Ω1. We come out of the

equation (2.6) which will be denoted as N ′(t) in the following part. Thus we have

N ′(t) = r

(
1− N(t)

K

)
N(t).

The equation must be rearranged, so that it could be integrated. So we acquire∫
N ′(t)(

1− N(t)
K

)
N(t)

dt =

∫
r dt.

If we use a substitution ω = N(t) and dω = N ′(t) dt, we have∫
dω(

1− ω
K

)
ω

= rt+ c, c ∈ R,

and we can continue by logarithmization

ln |N(t)| − ln

∣∣∣∣1− N(t)

K

∣∣∣∣ = rt+ c, c ∈ R. (2.8)

The absolute values can be removed because the following conditions are satisfied

1. N(t) > 0 ∀t ∈ R,

2. (1− N(t)
K

) > 0, this condition applies, since N(t) < K suits Ω1.

To find out the solution N(t), we need to rearrange the equation (2.8) which

yields

ln

(
N(t)

1− N(t)
K

)
= rt+ c.

Then we need to find an antilogarithm and simplify so that we get

N(t) = ert+c

(
1− N(t)

K

)
,
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and finally express N(t) which leads to

N(t) =
ert+c

1 + ert+c

K

=
Kert+c

K + ert+c
. (2.9)

We found a general solution, but now we want to find such value of K for which

the solution suits the initial condition N0 = N(0). Thus we make the substitu-

tion N(0) and then, we can express K = N0ec

ec−N0
. If we put this found K into N(t),

we obtain the required solution

N(t) =
N0K

N0 + (K −N0)e−rt
, t ∈ R.

Then, we will focus on finding the solution in Ω2 = R × (K,∞), it means that

we will search for a function N whose graph is a subset of Ω2. Using similar

procedures as in the previous part, we obtain

ln |N(t)| − ln

∣∣∣∣1− N(t)

K

∣∣∣∣ = rt+ c,

where c ∈ R. There we can also remove the absolute values, because the following

conditions are satisfied

1. N(t) > 0 ∀t ∈ R,

2. (1− N(t)
K

) < 0, this condition applies, as N(t) > K suits Ω2.

After removing the absolute values and simplification, we have

ln

(
N(t)

N(t)
K
− 1

)
= rt+ c,

which can be further modified so that we get the general solution

N(t) =
−ert+c

1− ert+c

K

=
−Kert+c

K − ert+c
.
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Again, we operate with the initial condition N0 = N(0) and we want to find a

solution suiting that condition. Thus, after expressing K = N0ec

N0−ec from N(0) and

substituting it in N(t), the wanted solution is acquired

N(t) =
N0K

N0 + (K −N0)e−rt
, t ∈ R.

ad(b):

To confirm the property (1), we have to compute

lim
t→∞

KN0

N0 + (K −N0)e−rt
=
KN0

N0

= K.

Thus the statement of the model, that the population size tends to its maximum

number K over time t, is proved.

The proof of properties (2), (3), (4) requires calculation of second derivative of

the function N(t), i.e. we need to compute

N ′′(t) =

(
(rN(t))′

(
1− N(t)

K

)
+ rN(t)

(
1− N(t)

K

)′)
(N ′(t))2,

which can be simplified by expanding and rearranging, hence we get

N ′′(t) = r2N(t)

(
1− N(t)

K

)(
1− 2N(t)

K

)
(N ′(t))2.

Then it is necessary to find inflexion points and, for each interval, determine

concavity or convexity. To find inflexion points, we have to solve N ′′(t) = 0,

which is satisfied for N(t) = 0, N(t) = K or N(t) = K
2

. Now it remains

to take any value of variable N from each interval,
(
0; K

2

)
,
(
K
2

;K
)
, (K;∞),

substitute it in N ′′(t) and find out the sign of the result. It can be written in a

table for clarity, as shown in Figure 2.3.

26



Figure 2.3: The sign table for function N where N ′ = N ′(t) and N ′′ = N ′′(t)

Now we are able to make following conclusions.

For t such that N0 < N(t) < K
2

, the value of N ′′(t) is positive, so the graph is

convex. In Figure 2.4 it applies for t ∈ (0; ti).

For t such that K
2
< N(t) < K, the value of N ′′(t) is negative, so the graph is

concave. In Figure 2.4 it applies for t ∈ (ti;∞).

For t such that K < N(t), the value of N ′′(t) is positive, so the graph is convex.

In Figure 2.4 it applies for t ∈ (0,∞).

Figure 2.4: Representation of the size of the population N over time t, where ti
is an inflexion point of the function N

In example 2.2.1, we have derived the solution of the Logistic growth model
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together with its properties. Its graphical representation can be seen in Figure 2.5,

which shows the population dynamics given by the model.

Figure 2.5: Representation of the population size N over time t where K = 120
and r = 1.2

This model is already more suitable for modelling population growths than

the Exponential growth model, because it takes into account environmental con-

straints. For example, yeast, a microscopic fungus used to make bread and alco-

holic beverages, can produce a classic S-shaped curve when grown in a test tube.

Yeast growth levels off as the population hits the limit of the available nutrients.

But we can also mention an example from the real world where a logistic growth

curve fits the population dynamics, and that is the population growth of the

harbor seal in Washington State in the 1980s and 1990s 3.

3This phenomenon is discussed in the survey [9].
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Chapter 3

Application of planar dynamical
systems

3.1. Lotka-Volterra model

It is a mathematical model describing oscillations in a biological system, where

one species is a prey and the second one is a predator.

The dynamics of predator-prey system is mathematically expressed by a pair

of first-order non-linear differential equation developed independently by Alfred

J. Lotka and Vito Volterra.

The model was initially proposed by Alfred J. Lotka in the theory of autocat-

alytic chemical reactions in 1910. In 1920, Lotka extended the model, via Andrey

Kolmogorov, to ”organic systems” using a plant species and a herbivorous animal

species as an example and in 1925 he used the equations to analyse predator–prey

interactions in his book on biomathematics.

In 1926, Voltera developed the same set of equations to describe maritime phe-

nomenon observed by Umberto D’Ancona - D’Ancona studied the fish catches in

the Adriatic Sea and he had noticed that the percentage of predatory fish caught

had increased during the years of World War I (1914–18). This puzzled him, as

the fishing effort had been very much reduced during the war years.

The Lotka–Volterra model has been used to explain the dynamics of natural

populations of predators and prey, such as the lynx and snowshoe hare data of

the Hudson’s Bay Company, that traded in animal furs in Canada, and the moose
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and wolf populations in Isle Royale National Park.

List of simplifying assumptions made by Volterra:

1. Prey population have an unlimited supply of food at all time.

2. Prey grow in an unlimited way when predators do not keep them under

control.

3. Predators depend on the presence of their prey to survive, because the

growth rate of the predator population is proportional to food intake (the

rate of predation).

4. The rate of predation depends on the likelihood that a victim is encountered

by a predator.

As we are interested in evolution over time, we notice X(t) number of preys

and Y (t) number of predators over time t. Both are therefore functions from

R+ to N, but in order to have mathematical tools we prefer to work with contin-

uous variables. This is why we consider two new quantities

x(t) =
X(t)

X0

and y(t) =
Y (t)

Y0
, (3.1)

where X0 (respectively Y0) is a fixed number of prey (respectively predators).

The quantities x and y are therefore proportions of prey and predators. The

variations of x(t) and y(t) are hence small quantities, so that we can assume that

x(t) and y(t) are continuous functions from R+ to R.

For the rest, we will make the additional regularity presumption by assuming

these functions are differentiable. Consider the rates of change over an interval4t

4x(t)
4t

x(t)
=

4X(t)
4t

X(t)
. (3.2)

If we suppose that the variations of x(t) are small compared to X(t), we can go

to the limit

lim
4t→0

4x(t)
4t

x(t)
=
x′(t)

x(t)
. (3.3)

30



In the absence of predators, the prey have a constant growth rate (we assume

abundant food and lack of competition) and it is represented by

x′(t)

x(t)
= a. (3.4)

After rearrangement we acquire a Malthus-type equation dx
dt

= ax, a > 0, which

gives by integration the geometrical law of increase x(t) = x0e
at 1. This corre-

sponds to assumption 2, i.e. the prey grow in an unlimited way when predators

do not keep them under control.

Likewise, predators tend to disappear in the absence of prey for lack of food.

This mortality rate is expressed by

y′(t)

y(t)
= −c. (3.5)

It remains to take into account the interactions between the two species.

The predation rate (the rate of decline of prey due to predators) is assumed to be

proportional to the number of predators. Hence the equation (3.4) has the form

x′(t)

x(t)
= a− by(t), a, b > 0. (3.6)

The rate of change in the number of predators is proportional to the amount of

food available to them, i.e. the number of prey. Adequate form of the equa-

tion (3.5) is then

y′(t)

y(t)
= −c+ dx(t), c, d > 0. (3.7)

By adding the initial conditions (beginning population of each species) we obtain

set of equations called Lotka-Volterra equations{
x′ = x(a− by)
y′ = y(−c+ dx)

and (x(0), y(0)) = (x0, y0), x0, y0 > 0, (3.8)

1Malthusian exponential growth is discussed in Section 2.1.
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which can be written into the more known form{
dx
dt

= ax− bxy
dy
dt

= −cy + dxy
and (x(0), y(0)) = (x0, y0), x0, y0 > 0. (3.9)

The term xy approximates the likelihood of an encounter between predators and

prey since both species move about randomly and are uniformly distributed over

their habitat. The ratio b/d is analogous to predation efficiency, i.e. the efficiency

of converting a unit of prey mass into a unit of predator mass.

To summarize the meaning of each parameter of the Lotka-Volterra equations:

• a > 0 represents growth rate of preys,

• b > 0 represents predation coefficient,

• c > 0 represents mortality rate of predators,

• d > 0 represents reproductive rate of the predator per prey.

The system of Lotka-Volterra equations has two steady states

(x1, y1) = (0, 0), (3.10)

(x2, y2) =
( c
d
,
a

b

)
. (3.11)

Here we can see that the steady-state level of prey is not dependent on its own

growth rate or mortality, but rather on parameters associated with the predator

(x2 = c/d). Inversely, the same applies for predator.

To find out a character of the steady states (x1, y1) and (x2, y2), we use the

Jacobian matrix of partial derivatives of the right part of the system

J(x, y) =

(
a− by −bx
dy dx− c

)
. (3.12)

Let us consider the critical point (x1, y1). If we substitute the critical point in

the Jacobian matrix (3.12), we get

J(x1, y1) =

(
a 0
0 −c

)
(3.13)
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and we are able to compute eigenvalues of the matrix

λ1 = a and λ2 = −c.

The critical point is hence hyperbolic by Definition 1.12. It suggests that we can

apply Theorem 1.7, according to which the critical point is unstable.

According to the classification of phase portraits in [1], Chapter 6, the critical

point (x1, y1) appears to be a saddle, because it satisfies the condition λ1λ2 < 0,

by which the saddle point is characterized there. To verify this statement, if we

set x = 0, dy
dt

will be negative, therefore y decline ∀t > 0. However, if we set

y = 0, dx
dt

will be positive, therefore x increases ∀t > 0. These two cases are shown

in Figure 3.1. Based on these behaviours, and the assertion of Definition 1.16,

we can certainly say that the critical point (0, 0) is a saddle.

Figure 3.1: The saddle critical point (0, 0).

Consequently, it is easy to conclude that the natural extinction of the prey pop-

ulation is not possible. This follows already from the very nature of the critical

point, which is instability, i.e. for populations sizes however close to this critical

point, there will be no extinction, the populations will always recover.
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Let us now consider the second critical point (x2, y2) =
(
c
d
, a
b

)
. We again substi-

tute the critical point into the Jacobian matrix (3.12), so we get

J(x1, y1) =

(
0 − bc

d
ad
b

0

)
, (3.14)

which allows us to calculate the eigenvalues

λ1,2 = ±i
√
ca.

The critical point is hence non-hyperbolic by Definition 1.13. Since the eigenval-

ues of J(x2, y2) are pure imaginary and detJ(x1, y1) > 0, the critical point (x1, y1)

appears to be a center, following the classification of phase portraits in [1], Chap-

ter 6. A verification can be done simply by resolving the system (3.9). If we take

the equations of the system (3.9) and divide the second equation by the first one,

we acquire

dy

dx
=

y

a− by
dx− c
x

.

Using the method of separation of variables 2 we have∫
a− by
y

dy =

∫
dx− c
x

dx,

which yields

a ln |y| − by = dx− c ln |x|+ c1, c1 ∈ R. (3.15)

Since the model is the population one, we are only interested in solutions for

which x > 0 and y > 0 hold. Consequently we can remove the absolute value

from (3.15) and after rearrangement we get

a ln y + c lnx− by − dx = c1, c1 ∈ R. (3.16)

Let us denote

L(x, y) = a ln y + c lnx− by − dx.
2Explanation of method of separation of variables can be found in [2]
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Then obviously, the solution of the system (3.9) is a pair (x(t), y(t)), satisfying

x(t) > 0 and y(t) > 0, so that there exists c1 ∈ R such that

L(x(t), y(t)) = c1, ∀t ∈ R.

In other words, the orbits of the system lie at the levels of the function L(x, y)

and are represented in Figure 3.2.

Figure 3.2: A neutral stability predicted by Lotka-Volterra equation.

We can clearly see that the orbits oscillate periodically around the critical point
(
c
d
, a
b

)
.

These periodicity is better illustrated in Figure 3.3.
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Figure 3.3: a = 1, b = 0.03, c = 1, d = 0.04

Already according to Figure 3.2, the critical point
(
c
d
, a
b

)
seems to be a center.

However, we can also check it by considering how many times an orbit of the

system (3.9) intersects the line x = c
d
. On the nullcline x = c

d
, we observe that

L
( c
d
, y
)

= a ln y − by + c ln
c

d
− c.

Let us denote

f(y) = L
( c
d
, y
)

and examine the monotony of the function f on its domain (0,∞), which is at the

same time the interval of our interest because, as already mentioned, we are only

interested in positive values of y. Thus we need to compute its first derivative

f ′(y) =
b

y

(a
b
− y
)
.

Obviously,

• f ′(y) > 0 for y ∈
(
0, a

b

)
,
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• f ′(y) < 0 for y ∈
(
a
b
,∞
)
,

thus the function f(y) is increasing on the interval
(
0, a

b

)
and decreasing on

(
a
b
,∞
)
,

and the point a
b

is therefore a point at which the function f(y) has a strict local

maximum. Moreover

lim
t→0+

f(y) = −∞,

lim
t→∞

f(y) = −∞.

Hence it must be true that the equation f(y) = C has at most two solutions for

any given constant C ∈ R. Specifically

• no solution, if C > f
(
a
b

)
,

• one solution, if C = f
(
a
b

)
,

• two solutions, if C < f
(
a
b

)
.

Consequently, trajectory of the orbits of the system (3.9), defined by the prescrip-

tion (3.16), intersects the line x = c
d

at most twice for any value of the constant c1.

Therefore, the trajectory cannot be a spiral because the set of the solutions of

the equation f(y) = C is not infinite, and hence the critical point
(
c
d
, a
b

)
must be

a center.

To interpret the model, let us recall that the size of the predator population

is completely dependent on the size of the prey population, and vice versa.

If there is enough prey, the predator population begins to grow. As the number

of predators increases, the amount of prey caught increases so that the prey does

not reproduce fast enough and the prey population starts to decrease. This fact

means that predators will die out due to lack of food. This will eventually benefit

the prey, as the environment will again be safer for them and their population

will start to grow again. And so the whole scenario repeats periodically.

In this model, therefore, natural extinction of populations is not possible.
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The model is the simplest one from predator-prey models and its idea consists

of the interaction of two populations in a permanent environment. Even if we

don’t find many such environments in the real life, the model can be used as a

helpful diagnostic tool. For example, as noted in [3], we could use this model

together with minor variants to test out a set of assumptions and so identify

stabilizing and destabilizing influences. Moreover, the model served as a basis for

other models that were created by modifying this model.
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3.2. Lotka-Volterra model with a refuge

It may be interesting to consider that some prey may hide from predators.

Such a model can be conceived in several ways, especially in terms of how we

define the amount of prey that can be hidden. Here we will analyse one of the

possible models.

Problem 3.2.1. Suppose that prey have a refuge from predators into which they

can retreat. Assume the refuge can hold a fixed number of prey. How would you

model this situation and what predictions can you make?

Solution

Already known parameters:

• a . . . growth rate of preys,

• b . . . predation coefficient,

• c . . . mortality rate of predators,

• d . . . reproductive rate of the predator per prey.

We consider a new parameter:

• p . . . the amount of prey that the refuge can hold.

We define a function

Ψ(x) = max{0;x− p} =

{
0 for x ≤ p

x− p for x > p

representing the amount of prey available for predation.

Thus our model has the following form

dx

dt
= ax− bΨ(x)y,

dy

dt
= −cy + dΨ(x)y.
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Here we can notice that the right-hand sides of the system are not from C1, it

means for the right sides of the equations in the system above holds f /∈ C1(R2).

However as the function Ψ(x) is Lipschitz continuous, it also applies for the right-

hand sides f on R2. And therefore the assertion of Theorem 1.1 is valid in this

case.

As we are analysing a population model, we are interested in results for x > 0

and y > 0.

First, we analyse the model having presumptions

0 ≤ x ≤ p,

y ≥ 0,

which lead us to consider following form of the system of equations

dx

dt
= ax, (3.17)

dy

dt
= −cy. (3.18)

This means that since the entire prey amount can be hold by the refuge, we

do not assume any predation. Thus the prey population increases, however, the

predator population declines due to lack of food.

The equilibrium in the model occurs when the amount of both populations does

not change, thus we can easily deduce that the corresponding critical point is

(x1, y1) = (0, 0). The Jacobian matrix of partial derivatives of the system’s right

sides (
a 0
0 −c

)
. (3.19)

will help us to investigate stability of this critical point. Normally the next step

is to substitute the point into the equation (3.19), but we already have the matrix

in required form. Afterwards, we have to compute eigenvalues of the matrix,

(a− λ)(−c− λ) = 0 ⇔ λ1 = a ∨ λ2 = −c.

40



In this case, we can just claim that the critical point is a saddle, because we

already proved it for the critical point (3.10), in the previous model, having the

same eigenvalues of the Jacobian matrix. We can also make the same conclu-

sion as for the critical point (3.10), which is that the natural extinction of the

populations is not possible.

The solution of the system will be found by resolving∫
dx

x
=

∫
a dt,∫

dy

y
= −

∫
c dt.

Using logarithmization we get

ln |x| = at+ q,

ln |y| = −ct+ r,

where q, r ∈ R. The absolute value can be removed because, as mentioned in the

beginning, we are only interested in x > 0 and y > 0. And after rearranging the

expression we arrive to the solution

x = eat+q,

y = e−ct+r.

Therefore, the dynamics of this model is possible to illustrate by Figure 3.4.
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Figure 3.4: The phase portrait of the system (3.17), (3.18) under conditions
0 ≤ x ≤ p and y ≥ 0. Used values of parameters are a = 1, c = 1.

Now, we focus on the model assuming

x > p,

y ≥ 0,

thus our system of equations has a form

dx

dt
= ax− b(x− p)y, (3.20)

dy

dt
= −cy + d(x− p)y. (3.21)

As we are mainly interested in the stability analysis, it is mandatory to find

critical points of the system. We already know from Definition 1.6 that a system

achieves its equilibrium in moment when the amount of the population does not

change. Therefore we solve

ax− b(x− p)y = 0, (3.22)

−cy + d(x− p)y = 0. (3.23)
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The solution of the equality (3.22) can be found simply. It applies for y = 0 or

x = c
d

+ p.

However, finding the solution of (3.23) is no longer so trivial. But we can take

benefit of the fact, that it makes sense to look for solutions only for x and y such

that dy
dt

= 0, i.e. for y = 0 and x = c
d

+ p.

This way, we discovered following critical points

(x1, y1) = (0, 0),

(x2, y2) =

(
c

d
+ p,

ac+ adp

bc

)
.

But due to given assumptions, x > p, y ≥ 0, we are interested only in the second

critical point (x2, y2).

In order to examine the stability and the type of the critical point (x2, y2), let

us linearize the system of equations (3.20), (3.21). It means that we first compute

the Jacobian matrix of the system

J(x, y) =

(
a− by −bx+ bp
dy dx− c− dp

)
and then determine the value of J(x2, y2), which is

J(x2, y2) =

(
−adp

c
− bc

d
acd+ad2p

bc
0

)
.

The non-linear system (3.20), (3.21), can be now locally, i.e. about the steady

state (x2, y2), replaced by the linear variational equation, as defined by Defini-

tion 1.14.

Now we need to know the eigenvalues of the matrix J(x2, y2) to be able to decide

about the stability and type of the critical point (x2, y2). So, if we put

det(J(x2, y2)− λE) = 0,

where E is the identity matrix, we get the quadratic equation

λ2 + λ
adp

c
+ ac+ adp = 0, (3.24)
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whose discriminant is

4 =
(adp)2 − 4c2(ac+ adp)

c2
.

Obviously we cannot make any decision about the sign of the discriminant at

this moment, consequently we need to make an examination to be able to decide

whether the eigenvalues λ1, λ2 of the matrix J(x2, y2) are real numbers or complex

numbers. So, let us examine whether 4 < 0, i.e.

(adp)2 − 4c2(ac+ adp)

c2
< 0,

that is

(adp)2

4ac2(c+ dp)
< 1. (3.25)

Hence, clearly, if the inequality (3.25) holds, the eigenvalues

λ1 = −adp
2c

+
1

2c

√
(adp)2 − 4c2(ac+ adp),

λ2 = −adp
2c
− 1

2c

√
(adp)2 − 4c2(ac+ adp),

would not be real numbers. In such case, the eigenvalues λ1, λ2 have the form

α± βi, where α < 0 and β > 0 .

Otherwise, when the condition (3.25) is not met, the eigenvalues λ1, λ2 would

be real. But what about their signs? Naturally, the eigenvalue λ2 is always a

negative number. However concerning the eigenvalue λ1, its sign is not apparent

at first sight. So let us assume that the eigenvalue λ1 is negative, then it would

have to be true that

−adp
2c

+
1

2c

√
(adp)2 − 4c2(ac+ adp) < 0,

which can be modified such that√
(adp)2 − 4c2(ac+ adp) < adp,
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that is

4c2(ac+ adp) > 0. (3.26)

Which we know is true since a, c, d, p ∈ R+. Therefore, we can conclude that if

the condition (3.25) does not hold, then λ1, λ2 ∈ R−.

Now, let us focus on the first case, where λ1, λ2 = α ± βi, α < 0, β > 0. Since

these critical points have non-zero real components, clearly, by Definition 1.12,

they are hyperbolic. Consequently we can apply Theorem 1.6, according to which

λ1, λ2 are asymptotically stable.

Following the classification of phase portraits in [1], Chapter 6, the critical point

(x2, y2) we can find out type of the critical point. As

detJ(x2, y2) > 0 and trJ(x2, y2) < 0,

the critical point is a sink. Concretely, it is a spiral-sink point, since the charac-

teristic condition

4detJ(x2, y2) > (trJ(x2, y2))
2

holds and it is true that

λ1,2 = α± iβ, α < 0, β 6= 0.

According to Theorem 1.9, we can assert that also the critical point of the non-

linear system (3.20), (3.21) is a spiral-sink point, because the type of the critical

point of the non-linear system is same as the type of the null critical point of the

corresponding linearized system.

The phase portrait of the system around this critical point is represented in

Figure 3.5.
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Figure 3.5: The phase portrait of the system (3.20), (3.21), under conditions
x > p and y 6= 0, in the case when 4 < 0. Used values of parameters are a = 1,
b = 0.03, c = 1, d = 0.04, p = 10.

The representation of the population dynamics of this system is shown by

Figure 3.6. It is obvious that the population stabilizes over time, since the critical

point (x2, y2) is a spiral-sink. This behaviour is clearly visible in Figure 3.7.
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Figure 3.6: Representation of the population dynamics of the system (3.20),
(3.21), under conditions x > p and y 6= 0, in the case when 4 < 0. Used values
of parameters are a = 1, b = 0.03, c = 1, d = 0.04, p = 10.
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Figure 3.7: Oscillations of populations in population dynamics of the system
(3.20), (3.21), under conditions x > p and y 6= 0, for initial populations
x0, y0 = 10, in the case when 4 < 0 . Used values of parameters are a = 1,
b = 0.03, c = 1, d = 0.04, p = 10.

Now, let examine the case where λ1, λ2 ∈ R−. Also these critical points have

non-zero real components, thus, by Definition 1.12, they are hyperbolic. This

allows us to apply Theorem 1.6, according to which λ1, λ2 are asymptotically

stable. If we use again the classification of phase portraits in [1], Chapter 6, we

realize that the critical point is a sink since

detJ(x2, y2) > 0 and trJ(x2, y2) < 0.

Moreover,

4detJ(x2, y2) < (trJ(x2, y2))
2

and

λ1, λ2 < 0, λ1 6= λ2,
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holds, which suggests that the critical point is a node-sink type.

Also there we can claim that the critical point of the non-linear system (3.20),

(3.21) is of the same type as the one of the linearized system, i.e. a node-sink,

which is guaranteed by Theorem 1.9.

The phase portrait of the neighbourhood of the critical point is shown by Fig-

ure 3.8.

Figure 3.8: The phase portrait
of the system (3.20), (3.21), un-
der conditions x > p and y 6= 0,
in the case when 4 > 0. Used
values of parameters are a = 1,
b = 0.03, c = 1.5, d = 0.09,
p = 150.

The population dynamics of this system is depicted in Figure 3.9. Also in

this case the stabilisation of the population occurs. Moreover, it happens much

faster than in the previous system, i.e. the system (3.20), (3.21), where λ1, λ2

are complex numbers in form α ± βi, α < 0, β > 0. It is well illustrated in

Figure 3.10.
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Figure 3.9: Representation of the population dynamics of the system (3.20),
(3.21), under conditions x > p and y 6= 0, in the case when 4 > 0. Used values
of parameters are a = 1, b = 0.03, c = 1.5, d = 0.09, p = 150.
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Figure 3.10: Oscillations of populations in population dynamics of the system
(3.20), (3.21), under conditions x > p and y 6= 0, for initial populations x0, y0 =
10, in the case when 4 > 0. Used values of parameters are a = 1, b = 0.03,
c = 1.5, d = 0.09, p = 150.

To summarize, the examined type of Lotka-Volterra model with a refuge sta-

bilizes over time for any initial population x0, y0 > 0, i.e. the population size

converges to the steady state value
(
c
d

+ p, ac+adp
bc

)
. Even when the population is

anywhere close to 0, there is always a recovery and stabilization. The final repre-

sentation of the model having parameters a, b, c, d, p such that the condition (3.25)

holds is shown in Figure 3.11. On the other hand, when the condition (3.25) is

not satisfied, the final representation of the model is depicted in Figure 3.12.
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Figure 3.11: Representation of the population dynamics in the Lotka-Volterra
model with a refuge in the case when 4 < 0. Used values of parameters are
a = 1, b = 0.03, c = 1, d = 0.04, p = 10.

Figure 3.12: Representation of the population dynamics in the Lotka-Volterra
model with a refuge in the case when 4 > 0. Used values of parameters are
a = 1, b = 0.03, c = 1.5, d = 0.09, p = 150.

52



What is interesting in this model is that when the prey population size ex-

ceeds the number of prey that the refuge can hold, the amount of prey is never

again reduced below that number. This can be verified by substituting of x = p

in (3.20), (3.21), which yields

dx

dt
= ap,

dy

dt
= −cy.

As a, p > 0, then dx
dt
> 0. It follows that if the function x(t) reaches the value p, it

is only possible that the function is increasing, never decreasing. This behaviour

is marked by red arrows in Figures 3.13 and 3.14.

Figure 3.13: Representation of the population dynamics in the Lotka-Volterra
model with a refuge in the case when 4 < 0. Used values of parameters are
a = 1, b = 0.03, c = 1, d = 0.04, p = 10.
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Figure 3.14: Representation of the pop-
ulation dynamics in the Lotka-Volterra
model with a refuge in the case when
4 < 0. Used values of parameters are
a = 1, b = 0.03, c = 1, d = 0.04, p = 10.

Finally, if we compare the Lotka-Volterra model with a refuge and the neutral

Lotka-Volterra stability model, described in Section 3.1, we can notice several

differences.

First one can be found in the parameters on which the equilibrium of a population

depends. Let us recall the populations steady state in the neutral Lotka-Volterra

stability model ( c
d
,
a

b

)
and in Lotka-Volterra model with a refuge(

c

d
+ p,

a

b
+
adp

bc

)
.
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For the prey population it is almost the same, the equilibrium is still related

only to the parameters associated with predators, only shifted by the value of the

number of prey that the refuge can hold. But, concerning the equilibrium of the

predator population, this state of the population depends on the parameters as-

sociated with the prey as well as the predators, i.e. in addition to the parameters

a and b, it also depends on c and d. And, moreover, it depends on parameter p

too. In other words, in that case, the behaviour of predator population influences

their own steady state value.

Second difference is quite obvious from the above analysis. The populations

which oscillate and never stabilize in the neutral Lotka-Volterra model, in the

case of the model with a refuge finally find an equilibrium point and stabilize.

However, what they have in common is that the natural extinction is not pos-

sible. No matter how small the populations are, there will always be a recovery.
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Conclusion

We have presented several models describing a population dynamics. It should

be noted that these were continuous models. The first part of the thesis consists

of some theory of dynamical systems. In the second part, the reader could get

acquainted with two scalar models, namely the Exponential growth and the Logis-

tic growth. And finally, the Lotka-Volterra model was introduced, together with

its modification, in which the model considers the prey refuge, where the refuge

can hold a fixed number of prey.
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Contents of the attached CD

The enclosed CD contains the MATLAB source codes of the images that ap-
pear in the thesis. This section provides the mapping of the files to figures in the
thesis.

The file

∗ ExponentialGrowth 1.m refers to Figure 2.1,

∗ ExponentialGrowth 2.m refers to Figure 2.2,

∗ LogisticGrowth.m refers to Figure 2.5,

∗ LotkaVolterra CP1 SaddlePoint.m refers to Figure 3.1,

∗ LotkaVolterra OrbitsWithDirections.m refers to Figure 3.2,

∗ LotkaVolterra PopulationsOverTime.m refers to Figure 3.3,

∗ LotkaVolterraRefuge 0toP PhasePortrait.m refers to Figure 3.4,

∗ LotkaVolterraRefuge PtoInf CPSpiral PhasePortrait.m refers to Fig-
ure 3.5,

∗ LotkaVolterraRefuge PtoInf CPSpiral OrbitsWithDirections.m refers
to Figure 3.6,

∗ LotkaVolterraRefuge PtoInf CPSpiral PopulationsOverTime.m refers to
Figure 3.7,
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∗ LotkaVolterraRefuge PtoInf CPNode PhasePortrait.m refers to Figure 3.8,

∗ LotkaVolterraRefuge PtoInf CPNode OrbitsWithDirections.m refers to
Figure 3.9,

∗ LotkaVolterraRefuge PtoInf CPNode PopulationsOverTime.m refers to
Figure 3.10,

∗ LotkaVolterraRefuge 0toInf CPSpiral OrbitsWithDirections.m refers
to Figure 3.11,

∗ LotkaVolterraRefuge 0toInf CPNode OrbitsWithDirections.m refers to
Figure 3.12,

∗ LotkaVolterraRefuge 0toInf CPSpiral OrbitsWithDirections HghltArrows.m

refers to Figure 3.13,

∗ LotkaVolterraRefuge 0toInf CPNode OrbitsWithDirections HghltArrows.m

refers to Figure 3.14.
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