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Terminology 

• R stands for the set of all real numbers, 

N stands for the set of all natural numbers. 

• If we choose n G N , then W1 stands for the set of all n-tuples of real numbers. 

• The set C(J) stands for a set of vector functions x(t), whose components 

Xi(t),... ,xn(t) are continuous on J . 

If we choose k G N , then x G Ck(J) means that components X\{t),..., xn(t) 

have continuous kth derivatives on J . 

• The set C(G), C(J x G), stands for a set of vector functions f, ip, whose 

components are continuous on G, J x G, respectively. 

If we choose k G N , then x G Ck(J) means that components X\{t),..., xn(t) 

have continuous kth derivatives on J . 
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Introduction 

Imagine a species in the nature, imagine growth and decline of its population. 

But what is the reason for these changes in the population size, and are we able 

to make at least simple anticipation of the evolution? We know that this commu­

nity is not the only one in the nature, and thus some coexistence or, vice versa, 

some tendencies for competing to exclude other species are required. Would we 

be able to describe at least basic principles of these coexistences or competitions 

in such a way as to be able to predict the evolution of population size? 

This bachelor thesis wil l present and describe few population models to show 

that cases mentioned above are possible to model using differential equations. To 

show that dynamical systems give us an opportunity to model, analyse and make 

at least slight predictions of evolution or behaviour of some biological commu­

nity. Due to the scope of the thesis, we wil l be interested in continuous dynamical 

systems. 

The thesis is divided into 3 chapters. The first one is purely theoretical, there 

are presented some basics of scalar and planar dynamical systems, on which the 

following chapters build. The second one presents few models falling into Scalar 

dynamical systems, as well as it contains elaborated exercises dealing with the 

given topic. The third chapter is focused on applications of planar dynamical 

systems. The chapter consists of description of two population models and of 

elaborated exercises related to the models and their application. A l l these exer­

cises were taken from [3], chapter 6. 
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Due to the limited range of this thesis, there are analysed and described only 

some selected models in population dynamics, although there exist many more. 
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Chapter 1 

Dynamical systems 

A mathematical model of some system that is changing over time is called a 

dynamical system. 

If we are observing evolution of some dynamical system continuously, we are 

talking about a continuous dynamical system. On the other hand, if the evolution 

of dynamical system is observed at separate instants of time, it is known as a 

discrete dynamical system. 

Dynamical systems can also be classified from another point of view, whether 

their states are described by a real number or by an n-dimensional vector of real 

numbers. The system in which only one variable is observed is called a scalar 

dynamical system and is more described in Section 1.1. If we follow the time evo­

lution of two variables, we call such system a planar dynamical system, described 

in Section 1.2. 

Now we wil l introduce the basic terms used in the theory of dynamical sys­

tems 1 . 

Definition 1.1. Let G be an open subset of the space MJ1 and a vector function 

(p(t,x) mapping the set M x G into G. Furthermore, let G (7(M x G) and have 

the following properties: 

• y ( 0 , x ° ) = x° for each x° G G; 

theorems and Definitions are taken from [1]. 
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• (p(t + s, x°) = <p(t, ip(s, x 0 ) ) for each t, s G R, x° G G; 

• for each t 6 1 there is an inverse mapping to the mapping (p(t, •) and is 

equal to (p(—t, •) : G —> G. 

Then the mapping ip : R x G —> G is called a / J W . For each fixed t G R, we wil l 

name a mapping 

: G -> G 

a dynamical system in R n . The space R n wi l l be called a phase space. 

Consider a system of n autonomous ordinary differential equations of the first 

order 

x'i{t) = fi\Xi, . . . , xn), 

: ( i . i ) 

Functions fi, - • • ,fn are functions of n real variables. This system can be equiv­

alent^ written in a vector form of 

At) = f(x(*))> (1-2) 

where f = ( / i , . . . , / „ ) , x = (xl,...,xn), x ' = (x[,..., x'n). 

Definition 1.2. 5?/ a solution of the equation (1.2) on the interval J C R we 

understand a vector function x(t) = ( x i ( t ) , . . . , xn(t)) G G X ( J ) such that the 

equation (1.2) holds for each t G J. 

A basic condition that we can specify for individual solutions of equation (1.2) 

is an initial (Cauchy) condition 

xl(0) = x°1,...,xn(0)=x°n, (1.3) 

where the point x° = (x®,..., xQ

n) G R™ is called an initial point of solution. The 

equivalent vector form of the condition (1.3) is 

x(0) = x° . (1.4) 
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Definition 1.3. Finding the solution of the equation (1.2) under the given initial 

condition (1.4) is called Cauchy('s) initial value problem. We wil l denote it as 

the problem (1.2), (1.4). 

The problem is to find a solution of the equation (1.2) on an interval J C M 

satisfying the condition (1.4). Such solution wil l be marked as y ( » , x ° ) . A c ­

cording to Definition 1.2 and formula (1.4), the function ip satisfies the following 

equalities 

The proof of the following theorem wil l not be included into this thesis, but 

it can be found in [1]. 

Theorem 1.1. (Basic theorem on existence and uniqueness) Let G be an open 

subset in M.n containing point x° . Further let f G C1(G). 

Then the problem (1.2), (1.4) has the unique solution cp(t,x°) defined on a 

maximal interval Ixo = (axo, bxo) c K containing 0. 

Definition 1.4. Let </?(•, x°) be a solution of the Cauchy initial value problem 

(1.2), (1.4). The set {{t, (f(t, x0)) : t G Ixo} is called a graph of the solution. 

Definition 1.5. Let </?(•, x°) be a solution of the Cauchy initial value problem 

(1.2), (1.4). The set {<f(t, x°) : t G Ixo} is called an orbit of the solution. 

Definition 1.6. A critical point of the equation (1.2) is a point x = (x~[,..., x^) G 

W1 satisfying the system of equations 

If a point x is not a critical point, it is called a regular point of the equation (1.2). 

ip(t, x°) = f((p(t, x0)) for each t G J , 

¥>(0,x°) = x ° . 

(1.5) 

(1.6) 
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Definition 1.7. A phase portrait of the equation (1.2) is a set of orbits of all 

equations' solution curves along with arrows indicating variance of point ip(t, x°) 

on the orbit for increasing t. The space W1 containing a phase portrait of the 

equation is called a phase space. 

Definition 1.8. A critical point x G G C R™ of the equation (1.2) is called 

stable, if the following statement holds 

Ve > 0 35 > 0 Vx° G G : || x - x° || < 5 => || cp{t, x°) - x || < e , . 
for each t > 0. 

Definition 1.9. A critical point x G G C R™ of the equation (1.2) is called 

unstable, if the following statement holds 

' 3e > 0 W > 0 3x° G G : || x - x° || < 5 A || cp{t, x°) - x || > e 
f l 8) 

for at least one t > 0. 

Definition 1.10. A critical point x G G C R™ of the equation (1.2) is called 

asymptotically stable, if it is stable and the following statement holds 

3r > 0 Vx° G G : || x - x° || < r => l im || ^(t, x°) - x || = 0. (1.9) 

1.1. Scalar dynamical systems 

If we put a dimension n = 1 in definitions and theorems above, we get dynam­

ical systems in M which are called scalar dynamical systems. The equation (1.2) 

has for n = 1 the following form 

x'(t) = f(x(t)). (1.10) 

Theorem 1.2. Let be f E C ^ R ) . T/ie solution (f(t,x0) of the equation (1.10), 

defined on (axo,bxo), either converge to the critical point of the equation (1.10) 

for t —y oo (if bxo = oo), or has an infinite limit for t —> bxo < oo. 

Theorem 1.3. Let be f G C 1(IR) and x G G be a critical point of the equation 

(1.10). If f'(x) < 0, then x is asymptotically stable. If f'(x) > 0, then x is 

unstable. 
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Definition 1.11. A critical point x G G of the equation (1.10) is called hyperbolic, 

if f'(x) 7̂  0. A critical point x G G of the equation (1.10) is called non-hyperbolic, 

i f / ' ( * ) = 0. 

1.2. Planar dynamical systems 

If we put a dimension n = 2 in definitions and theorems from the beginning 

of Chapter 1, we get planar dynamical systems, which arise from system of two 

autonomous ordinary differential equations of the first order 

fx'1(t) = fl(xl,x2), , i n , 
\x'2(t) = f2(xi,x2), 

where a mapping f = (fi,f2) has continuous partial derivatives on an open set 

G C R2. The system (1.11) can be written in an equivalent vector notation 

At) = f(x(*))- (1-12) 

According to Definition 1.6, the point x = (2:1,2:2) G G is a critical point of the 

equation (1.12), if and only if 

/ l ( ^ l , X 2 ) = 0, f2(Xl,X2) = 0. 

1.2.1. Planar linear dynamical systems with a constant ma­
trix in canonical form 

This chapter includes equations of the form 

x ' = J - x ( t ) . (1.13) 

for any two-dimensional constant matrix J in Jordan canonical form. The phase 

space, as defined in Definition 1.7, is in that case R 2 . 

Theorem 1.4. Let J be a matrix with the complex conjugate eigenvalues X\i2 = a ±i(3, 

where a / 0, / 0. Then the equation (1.13) has one of the four phase portraits 

on Figure 1.1. 
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a > 0, [i > 0 n >()..)' < 0 a < 0, > 0 a < 0,/J < 0 

352 

' c 

Figure 1.1: The picture was taken from [ ]. 

Theorem 1.5. Let J be a matrix with purely imaginary eigenvalues A i ^ = ± i/3, 

where ft ^ 0. TTien i/ie equation (1.13) has one of the four phase portraits on 

Figure 1.2. 

Figure 1.2: The picture was taken from [ ]. 

1.2.2. Planar non-linear dynamical systems 

Definition 1.12. A critical point x G G of the equation (1.12) is called hyperbolic, 

if the Jacobian matrix 

u t W - dh(- - \ dh(- ;i.i4) 

has both eigenvalues with non-zero real components. 

Definition 1.13. A critical point x G G of the equation (1.12) is called non-

hyperbolic, if the Jacobian matrix (1.14) has at least one eigenvalue with zero real 

component. 

Definition 1.14. Let x G G be a critical point of the equation (1.12). The 

equation 

y' = Df(x)y (1.15) 
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is called a linear variational equation to the equation (1.12) at the point x. 

Theorem 1.6. L e t x G G be a hyperbolic critical point of the equation (1.12). If 

the eigenvalues of the lacobian matrix Df (x) have negatives real parts, then the 

critical point x is asymptotically stable. 

Theorem 1.7. Letx G G be a hyperbolic critical point of the equation (1.12). If 

at least one eigenvalue of the Jacobian matrix Df(x) has a positive real compo­

nent, then the critical point x is unstable. 

Definition 1.15. A critical point x of the equation (1.12) is called a source 

(sink), if there exists a neighbourhood U of the point x such that for each point 

x ° G U the entire positive part (negative part) of the orbit of the solution ip(t, x°) 

stays in U and moreover 

Definition 1.16. A critical point x of the equation (1.12) is called a saddle, if 

there exist points x ° and x 1 ^ x such that 

Theorem 1.8. Let x G G be a hyperbolic critical point of the non-linear equa­

tion (1.12). Then the point x is 

• a source, 

• a sink, 

• a saddle 

if the critical point (0,0) of the linear variational equation (1.15) is such. 

l im ip{t, x ) = x and l im ip{t, x ) = x. 
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Definition 1.17. A critical point x of the equation (1.12), which is a sink or a 

source is called a spiral, if there exists a neighbourhood U of the point x such 

that for each point x ° £ U either the positive or the negative part of the orbit of 

the solution ip(t, x° ) circulates around the point x infinitely. It means that when 

transformed into polar coordinates r(t) and 9(t) , 

l im \6(t)\ = 00 or l im \6(t)\ = 00. 
t—>oo t—> — 00 

If the orbits circulate around the point x only a finite number of times, then the 

point x is called a node. 

Theorem 1.9. (Method of linearization) Let f £ C2(G) and let x £ G be a 

hyperbolic critical point of the non-linear equation (1.12). 

Then the point x is 

• a node-source, 

• a spiral-source, 

• a node-sink, 

• a spiral-sink, 

• a saddle 

if the critical point (0,0) of the linear variational equation (1.15) is such. 
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Chapter 2 

Application of scalar dynamical 
systems 

2.1. Exponential growth (Malthusian model) 

Thomas Robert Malthus is largely famous for his idea of limiting the growth 

of the population. In 1798, he published An Essay on the Principle of Population 

where his model, also called Exponential growth, is presented. Malthus' thesis is 

based on the observation that there is an asymmetry between population growth 

and resources production growth. In the mathematical language it means that 

while the population increases exponentially, the resources increase only arith­

metically. So it follows that even though there were not any war or epidemic or 

something different able to decrease the population size, a famine wil l be nec­

essary. This famine could last until the population level decreases below the 

available resources. Malthus also proposed several ways, quite drastic ways, to 

regulate the population. These rules as well as any other policy of demographic 

regulation is called Malthusianism. 

The model assumes that the birth and death rates are proportional to the size 

of the population. The concepts of fertility rate (number of births per unit of 

time and individual) f3 and mortality rate (number of deaths per unit time and 

per individual) 5 are introduced and assumed to be constant in time. 
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The rate of change of population size N(t) is then the difference, i.e 

N'(t) = pN(t) - 5N(t) (2.1) 

but the rate is mostly known in the form of a differential equation 

dN(t) 
dt 

rN(t), r = /3-5, (2.2) 

with an initial condition N(0) = No > 0. 

The differential equation (2.2) is called Exponential growth or Malthusian growth 

model. However the model is better known in the form of the solution of equa­

tion (2.2). 

To find this solution we can use the method of separation of variables 1 . This 

way we get functions 

therefore it makes sense to look for a solution only in the set R 2 . But since this 

is a population model, it only makes sense to consider non-negative N, therefore 

we wil l look for a solution in the set 

Now we need to check if there are any critical points. Definition 1.6 implies that 

a critical point of a differential equation is an expression of a solution whose value 

does not change over time. In other words, we have to find for which iV holds 

/(*) = r and g(N) = N, 

for which we have 

£>(/) = R and D(g) = R, 

S] = R x (0,oo). 

diV 
~dt 

0. 

Explanation of method of separation of variables can be found in [2 
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The equality applies only for iV = 0, i.e. the system has one critical point iV = 0, 

which is anyway outside the investigated space Q. 

Let write the equation (2.2) in the form 

N'(t) = rN(t), r G R, t G R. 

After modification it is possible to apply integration 

/ S I * - / - * 
In order to proceed, we use a substitution OJ = N(t) and do; 

quently we have 

/ — =rt + cu ci e l . 

Then we can continue by logarithmization 

In |iV(t)| = r t + c i , C i G R . 

Since iV(£) > 0, Vt G R, we can remove the absolute value, thus 

\n(N(t))=rt + c1, c i G R . 

B y expressing N(t) from the equation we get a general solution 

N(t) = ert+Cl, teR, c i G R , 

or otherwise 

N(t) = cert, teR, c G R + . 

But we need to find such solution suiting the initial condition iVo = N(0). If we 

compute N(0), we get such c = A^ 0, which suits the initial condition. Hence the 

wanted solution of the equation (2.2) is 

N(t) = N0ert, t G R, (2.3) 

= N (t) dt, conse-

where 
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• N(0) = N0 is the initial population size, 

• r = (3 — 5 is the population growth rate, sometimes called Malthusian 

parameter, 

• t is the time. 

We know that the parameter r is equal to the difference f3 — 5. It implies 

that if fertility exceeds mortality, i.e. /3 > 5, the Malthusian model predicts 

exponential population growth, shown in Figure 2.1. Contrariwise if f3 < S, the 

population must decrease until it is extinguished. This type of the model is called 

Exponential decay and is represented on Figure 2.2. 

Figure 2.1: Exponential growth Figure 2.2: Exponential decay 
N(t) = N0ert,r > 0, with an initial N(t) = N0ert,r < 0, with an init ial 
population N0 population N0 

In the real world, examples of exponential growth are very limited, because 

expansion runs into other real-world constraints such as space and food resources. 

Nevertheless, this principle can be observed, for example, in Radioactive decay. 

Or the model can be used, for example, to model the initial growth phase of 

bacterial populations in an optimal environment or as a basic model of economic 

growth. However, this model is quite simple to be considered for populations 

interacting with their environment, such as ours. 
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2.2. Logistic growth 

In 1838, Pierre Frangois Verhulst, inspired by Malthus, proposed his own 

model called Logistic growth. Whereas Malthus introduced fertility and mortality 

rates to be constant, Verhulst came with an idea that the larger the population, 

the lower fertility rate and the higher death rate. It means that if the growth 

reaches maximum rate for a certain size of population, then the rate begins to 

slow down until it stops completely when the population reaches a critical size K. 

The parameter K is interpreted as the maximum number of individuals that the 

environment is able to support. 

The model considers a non-constant intrinsic growth rate 

where we can see that the rate g(N) depends on the population size N. We also 

see that as the population size iV increases, the rate g(N) decreases. Once the 

critical population size K is reached, the growth rate wil l be null, because the 

• N(t) represents the size of the population over time, 

• r > 0 is a growth rate per capita, 

• K is a critical size of the population, also known as carrying capacity, 

• iVo represents the initial population. 

The solution of the model and its properties are studied and shown in Exam­

ple 2.2.1 originally from [3]. 

(2.4) 

term ( l — ^ ) wi l l be equal to zero. 

The model is mathematically described by the following equation 

(2.5) 

where 
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Problem 2.2.1. Let's consider the following equation 

i N r ( l - ? ) N . (2.6) 
dt \ K 

(a) Assuming that iV(0) = iVo, integrate equation (2.6) and show that its solution 

is given by 

(b) Show that the solution given by (2.7) has the following properties: 

(1) UmN{t) = K, 

(2) the graph is convex for t such that N0 < N(t) < K/2, 

(3) the graph is concave for t such that K/2 < N{t) < K, 

(4) if No > K, the graph is convex. 

Solution 

ad(a): The equation (2.6) can be solved by the method of separation of vari­

ables 2 . Thus we obtain functions 

/(*) = r and g(N) = (l - ^ \ N 

for which we have 

D(f) = R and D(g) = R. 

It follows that it makes only sense to find a solution in the set R 2 . However, we 

are investigating a population model, therefore we wil l look for a solution only in 

the set 

S] = R x (0,oo). 

In order to solve the equation (2.6), we must find its critical points. According 

to Definition 1.6, the critical point is the point at which the population reaches 

an equilibrium. It means we solve 

dt 
2 Explanation of method of separation of variables can be found in [ ] 
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We found that it holds if and only if iV = 0 or 1 — ^ = 0, which implies that we 

have two critical points iV = 0 and N = K. 

First, we wil l focus on finding the solution in Q.\ = R x (0,K), it means we 

have to find a function iV whose graph is a subset of Qi. We come out of the 

equation (2.6) which wil l be denoted as N'(t) in the following part. Thus we have 

The equation must be rearranged, so that it could be integrated. So we acquire 

The absolute values can be removed because the following conditions are satisfied 

1. N(t) > 0 W e K , 

2. (1 — ^ ^ ) > 0, this condition applies, since N(t) < K suits 

To find out the solution N(t), we need to rearrange the equation (2.8) which 

yields 

If we use a substitution u = N(t) and doo = N'(t) dt, we have 

rt + c, c e l . (2.8) 

Then we need to find an antilogarithm and simplify so that we get 
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and finally express N(t) which leads to 

grt+c KertJrC 

We found a general solution, but now we want to find such value of K for which 

the solution suits the initial condition N0 = N(0). Thus we make the substitu­

tion N(0) and then, we can express K = e^°e^o • If we put this found K into N(t), 

we obtain the required solution 

m = NQ + i K K N ^ t € A -

Then, we wil l focus on finding the solution in ^2 = 1 x (K, oo), it means that 

we wil l search for a function iV whose graph is a subset of 1̂ 2- Using similar 

procedures as in the previous part, we obtain 

\n\N(t)\ - In 
N(t) 

K 
rt + c, 

where c £ l . There we can also remove the absolute values, because the following 

conditions are satisfied 

1. N(t) > 0 W e K , 

2. (1 — < 0, this condition applies, as N(t) > K suits 172. 

After removing the absolute values and simplification, we have 

l n ( m t i ) = r t + c' 

which can be further modified so that we get the general solution 

_ert+c -Kert+C 

N(t) 
^ _ ert + c j£ _ ert+c 

25 



Again, we operate with the initial condition NQ = N(0) and we want to find a 

solution suiting that condition. Thus, after expressing K = from N(0) and 

substituting it in N(t), the wanted solution is acquired 

N(t) = — , tern. 

ad(b): 

To confirm the property (1), we have to compute 

Hm ^ - ^ - Jf. 
t^oo N0 + (K - N0)e-rt N0 

Thus the statement of the model, that the population size tends to its maximum 

number K over time t, is proved. 

The proof of properties (2), (3), (4) requires calculation of second derivative of 

the function N(t), i.e. we need to compute 

N"(t) = (W))' (l " ^ ) + rN(t) (l - ^)') (N'(t))2, 

which can be simplified by expanding and rearranging, hence we get 

Then it is necessary to find inflexion points and, for each interval, determine 

concavity or convexity. To find inflexion points, we have to solve N"(t) = 0, 

which is satisfied for N(t) = 0, N(t) = K or N(t) = f. Now it remains 

to take any value of variable iV from each interval, ( 0 ; y ) , (K;oo), 

substitute it in N"(t) and find out the sign of the result. It can be written in a 

table for clarity, as shown in Figure 2.3. 
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N 0 \ K +co 

N' + -

_____ - * 
N" + - + 

N—y 

Figure 2.3: The sign table for function N where N' = N'(t) and A^" = N"(t) 

Now we are able to make following conclusions. 

For t such that iV 0 < N{t) < y , the value of N"{t) is positive, so the graph is 

convex. In Figure 2.4 it applies for t G (0;£j). 

For t such that y < N{t) < K, the value of N"(t) is negative, so the graph is 

concave. In Figure 2.4 it applies for t G (tf, oo). 

For t such that K < N(t), the value of N"(t) is positive, so the graph is convex. 

In Figure 2.4 it applies for t G (0, oo). 

K 

K 
2 

0 

CO 

Figure 2.4: Representation of the size of the population iV over time t, where ti 
is an inflexion point of the function iV 

In example 2.2.1, we have derived the solution of the Logistic growth model 
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together with its properties. Its graphical representation can be seen in Figure 2.5, 

which shows the population dynamics given by the model. 

N 

t 

Figure 2.5: Representation of the population size iV over time t where K = 120 
and r = 1.2 

This model is already more suitable for modelling population growths than 

the Exponential growth model, because it takes into account environmental con­

straints. For example, yeast, a microscopic fungus used to make bread and alco­

holic beverages, can produce a classic S-shaped curve when grown in a test tube. 

Yeast growth levels off as the population hits the limit of the available nutrients. 

But we can also mention an example from the real world where a logistic growth 

curve fits the population dynamics, and that is the population growth of the 

harbor seal in Washington State in the 1980s and 1990s 3 . 

3This phenomenon is discussed in the survey [9]. 
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Chapter 3 

Application of planar dynamical 
systems 

3.1. Lotka-Volterra model 

It is a mathematical model describing oscillations in a biological system, where 

one species is a prey and the second one is a predator. 

The dynamics of predator-prey system is mathematically expressed by a pair 

of first-order non-linear differential equation developed independently by Alfred 

J . Lotka and Vi to Volterra. 

The model was initially proposed by Alfred J . Lotka in the theory of autocat-

alytic chemical reactions in 1910. In 1920, Lotka extended the model, via Andrey 

Kolmogorov, to "organic systems" using a plant species and a herbivorous animal 

species as an example and in 1925 he used the equations to analyse predator-prey 

interactions in his book on biomathematics. 

In 1926, Voltera developed the same set of equations to describe maritime phe­

nomenon observed by Umberto D'Ancona - D'Ancona studied the fish catches in 

the Adriat ic Sea and he had noticed that the percentage of predatory fish caught 

had increased during the years of World War I (1914-18). This puzzled him, as 

the fishing effort had been very much reduced during the war years. 

The Lotka-Volterra model has been used to explain the dynamics of natural 

populations of predators and prey, such as the lynx and snowshoe hare data of 

the Hudson's Bay Company, that traded in animal furs in Canada, and the moose 
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and wolf populations in Isle Royale National Park. 

List of simplifying assumptions made by Volterra: 

1. Prey population have an unlimited supply of food at all time. 

2. Prey grow in an unlimited way when predators do not keep them under 

control. 

3. Predators depend on the presence of their prey to survive, because the 

growth rate of the predator population is proportional to food intake (the 

rate of predation). 

4. The rate of predation depends on the likelihood that a vict im is encountered 

by a predator. 

As we are interested in evolution over time, we notice X(t) number of preys 

and Y(t) number of predators over time t. Both are therefore functions from 

1R+ to N , but in order to have mathematical tools we prefer to work with contin­

uous variables. This is why we consider two new quantities 

x(t) = ^ and y(t) = ^ , (3.1) 

where XQ (respectively YQ) is a fixed number of prey (respectively predators). 

The quantities x and y are therefore proportions of prey and predators. The 

variations of x(t) and y(t) are hence small quantities, so that we can assume that 

x(t) and y(t) are continuous functions from M + to BL 

For the rest, we wil l make the additional regularity presumption by assuming 

these functions are differentiable. Consider the rates of change over an interval A t 

Ax(t) AX(t)  
At _ At / „ q \ 

x(t) X(t) ' 1 ' 

If we suppose that the variations of x(t) are small compared to X(t), we can go 

to the limit 

^ r'(t) 
ton £ i*Z. (3.3) 

At^O x(t) x(t) 
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In the absence of predators, the prey have a constant growth rate (we assume 

abundant food and lack of competition) and it is represented by 

After rearrangement we acquire a Malthus-type equation ^ = ax, a > 0, which 

gives by integration the geometrical law of increase x{t) = xoeat 1 . This corre­

sponds to assumption 2, i.e. the prey grow in an unlimited way when predators 

do not keep them under control. 

Likewise, predators tend to disappear in the absence of prey for lack of food. 

This mortality rate is expressed by 

It remains to take into account the interactions between the two species. 

The predation rate (the rate of decline of prey due to predators) is assumed to be 

proportional to the number of predators. Hence the equation (3.4) has the form 

x'(t) 
-A± = a-by(t), a,b>0. (3.6) 

The rate of change in the number of predators is proportional to the amount of 

food available to them, i.e. the number of prey. Adequate form of the equa­

tion (3.5) is then 

= -c + dx(t), c,c!>0. (3.7) 
v{t) 

B y adding the initial conditions (beginning population of each species) we obtain 

set of equations called Lotka-Volterra equations 

y'Zyl-c^dx) a n d = ( xo,yo), x 0 , y 0 > 0 , (3.8) 

1 Malthusian exponential growth is discussed in Section 2.1. 

31 



which can be written into the more known form 

, , r — ax — bxy 
dt 
J = -cy + dxy 

and (x(0),y(0)) = (x0,y0), x 0 , y 0 > 0. (3.9) 

The term xy approximates the likelihood of an encounter between predators and 

prey since both species move about randomly and are uniformly distributed over 

their habitat. The ratio b/d is analogous to predation efficiency, i.e. the efficiency 

of converting a unit of prey mass into a unit of predator mass. 

To summarize the meaning of each parameter of the Lotka-Volterra equations: 

• a > 0 represents growth rate of preys, 

• b > 0 represents predation coefficient, 

• c > 0 represents mortality rate of predators, 

• d > 0 represents reproductive rate of the predator per prey. 

The system of Lotka-Volterra equations has two steady states 

( x l , y l ) = (0,0), (3.10) 

Here we can see that the steady-state level of prey is not dependent on its own 

growth rate or mortality, but rather on parameters associated with the predator 

(x~2 = c/d). Inversely, the same applies for predator. 

To find out a character of the steady states (x~i, yi) and (xl>, 2/2), we use the 

Jacobian matrix of partial derivatives of the right part of the system 

Let us consider the critical point (x l , y~\). If we substitute the critical point in 

the Jacobian matrix (3.12), we get 

J{xl,Vl)= (o_° c ) (3-13) 
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and we are able to compute eigenvalues of the matrix 

Ai = a and A2 = —c. 

The critical point is hence hyperbolic by Definition 1.12. It suggests that we can 

apply Theorem 1.7, according to which the critical point is unstable. 

According to the classification of phase portraits in [ ], Chapter 6, the critical 

point (xY, yi) appears to be a saddle, because it satisfies the condition A1A2 < 0, 

by which the saddle point is characterized there. To verify this statement, if we 

set x = 0, 4 | wi l l be negative, therefore y decline Vt > 0. However, if we set 

y = 0, ĵf wi l l be positive, therefore x increases Vt > 0. These two cases are shown 

in Figure 3.1. Based on these behaviours, and the assertion of Definition 1.16, 

we can certainly say that the critical point (0, 0) is a saddle. 

c o 
•4—I 

ro 

o 0 
O 
-I—I 03 
"D <D s 

CL 

0 
Prey population x 

Figure 3.1: The saddle critical point (0,0). 

Consequently, it is easy to conclude that the natural extinction of the prey pop­

ulation is not possible. This follows already from the very nature of the critical 

point, which is instability, i.e. for populations sizes however close to this critical 

point, there wil l be no extinction, the populations wil l always recover. 
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Let us now consider the second critical point (x 2 ,y2) = (§ , §)• We again substi­

tute the critical point into the Jacobian matrix (3.12), so we get 

J(xi,W)=(^~^), (3-14) 

which allows us to calculate the eigenvalues 

Ai 2 = ±iy/ca. 

The critical point is hence non-hyperbolic by Definition 1.13. Since the eigenval­

ues of J(x2, y2~) are pure imaginary and det J(x~[, yi) > 0, the critical point (x~[, y{) 

appears to be a center, following the classification of phase portraits in [1], Chap­

ter 6. A verification can be done simply by resolving the system (3.9). If we take 

the equations of the system (3.9) and divide the second equation by the first one, 

we acquire 

dy y dx — c 
dx a — by x 

Using the method of separation of variables 2 we have 

a — by f dx — c 
dy = / dx, 

V J x 

which yields 

a l n |y| — by = dx — c l n \x\ + c i , c\ G R. (3.15) 

Since the model is the population one, we are only interested in solutions for 

which x > 0 and y > 0 hold. Consequently we can remove the absolute value 

from (3.15) and after rearrangement we get 

a m y + c l n x — by — dx = c i , c\ G R. (3.16) 

Let us denote 

L(x, y) = a In y + c In x — by — dx. 

2 Explanation of method of separation of variables can be found in [ ] 
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Then obviously, the solution of the system (3.9) is a pair (x(t),y(t)), satisfying 

x(t) > 0 and y(t) > 0, so that there exists ci G l such that 

L(x(t),y(t)) = c i , W e i . 

In other words, the orbits of the system lie at the levels of the function L(x, y) 

and are represented in Figure 3.2. 

o ' 1 = 
P r e y population x 

Figure 3.2: A neutral stability predicted by Lotka-Volterra equation. 

We can clearly see that the orbits oscillate periodically around the critical point ( | , 

These periodicity is better illustrated in Figure 3.3. 
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Figure 3.3: a = 1, b = 0.03, c=l,d = 0.04 

Already according to Figure 3.2, the critical point (A, | ) seems to be a center. 

However, we can also check it by considering how many times an orbit of the 

system (3.9) intersects the line x = ^. O n the nullcline x = we observe that 

L i l , y ) = a l n y ~by + cln~i ~c-

Let us denote 

and examine the monotony of the function / on its domain (0, oo), which is at the 

same time the interval of our interest because, as already mentioned, we are only 

interested in positive values of y. Thus we need to compute its first derivative 

™ 
Obviously, 

• f ( y ) > 0 for y G (0 , f ) , 
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• < 0 for y e (f,oo), 

thus the function f(y) is increasing on the interval (0, | ) and decreasing on ( | , oo), 

and the point | is therefore a point at which the function f(y) has a strict local 

maximum. Moreover 

l im f(y) = —oo, 

l im f(y) = - o o . 

Hence it must be true that the equation f(y) = C has at most two solutions for 

any given constant C 6 t . Specifically 

• no solution, if C > f (|), 

• one solution, if C = f (|), 

• two solutions, if C < f (|). 

Consequently, trajectory of the orbits of the system (3.9), defined by the prescrip­

tion (3.16), intersects the line x = ^ at most twice for any value of the constant C\. 

Therefore, the trajectory cannot be a spiral because the set of the solutions of 

the equation f(y) = C is not infinite, and hence the critical point | ) must be 

a center. 

To interpret the model, let us recall that the size of the predator population 

is completely dependent on the size of the prey population, and vice versa. 

If there is enough prey, the predator population begins to grow. As the number 

of predators increases, the amount of prey caught increases so that the prey does 

not reproduce fast enough and the prey population starts to decrease. This fact 

means that predators wil l die out due to lack of food. This wil l eventually benefit 

the prey, as the environment wi l l again be safer for them and their population 

will start to grow again. A n d so the whole scenario repeats periodically. 

In this model, therefore, natural extinction of populations is not possible. 
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The model is the simplest one from predator-prey models and its idea consists 

of the interaction of two populations in a permanent environment. Even if we 

don't find many such environments in the real life, the model can be used as a 

helpful diagnostic tool. For example, as noted in [ ], we could use this model 

together with minor variants to test out a set of assumptions and so identify 

stabilizing and destabilizing influences. Moreover, the model served as a basis for 

other models that were created by modifying this model. 
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3.2. Lotka-Volterra model with a refuge 

It may be interesting to consider that some prey may hide from predators. 

Such a model can be conceived in several ways, especially in terms of how we 

define the amount of prey that can be hidden. Here we wil l analyse one of the 

possible models. 

Problem 3.2.1. Suppose that prey have a refuge from predators into which they 

can retreat. Assume the refuge can hold a fixed number of prey. How would you 

model this situation and what predictions can you make? 

Solution 

Already known parameters: 

• a ... growth rate of preys, 

• b ... predation coefficient, 

• c . . . mortality rate of predators, 

• d ... reproductive rate of the predator per prey. 

We consider a new parameter: 

• p ... the amount of prey that the refuge can hold. 

We define a function 

representing the amount of prey available for predation. 

Thus our model has the following form 

— = ax — Mr{x)y, 

^ = -cy + d&(x)y. 
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Here we can notice that the right-hand sides of the system are not from C 1 , it 

means for the right sides of the equations in the system above holds / ^ C 1(1R 2). 

However as the function \P{x) is Lipschitz continuous, it also applies for the right-

hand sides / on M?. A n d therefore the assertion of Theorem 1.1 is valid in this 

case. 

As we are analysing a population model, we are interested in results for x > 0 

and y > 0. 

First, we analyse the model having presumptions 

0 < x < p, 

y > o , 

which lead us to consider following form of the system of equations 

dx 
— = ax, (3.17) 

| = - * (3.18) 

This means that since the entire prey amount can be hold by the refuge, we 

do not assume any predation. Thus the prey population increases, however, the 

predator population declines due to lack of food. 

The equilibrium in the model occurs when the amount of both populations does 

not change, thus we can easily deduce that the corresponding critical point is 

(x~i, y{) = (0, 0). The Jacobian matrix of partial derivatives of the system's right 

sides 

'a 0 
0 -c) • <3'19> 

will help us to investigate stability of this critical point. Normally the next step 

is to substitute the point into the equation (3.19), but we already have the matrix 

in required form. Afterwards, we have to compute eigenvalues of the matrix, 

(a - A ) ( - c - A) = 0 A i = a V A 2 = - c . 
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In this case, we can just claim that the critical point is a saddle, because we 

already proved it for the critical point (3.10), in the previous model, having the 

same eigenvalues of the Jacobian matrix. We can also make the same conclu­

sion as for the critical point (3.10), which is that the natural extinction of the 

populations is not possible. 

The solution of the system wil l be found by resolving 

Using logarithmization we get 

In \x\ = at + q, 

In \y\ = —ct + r, 

where q, r G R . The absolute value can be removed because, as mentioned in the 

beginning, we are only interested in x > 0 and y > 0. A n d after rearranging the 

expression we arrive to the solution 

Therefore, the dynamics of this model is possible to illustrate by Figure 3.4. 

x = ,at+q 

y = 
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P r e y population x 

Figure 3.4: The phase portrait of the system (3.17), (3.18) under conditions 
0 < x < p and y > 0. Used values of parameters are a = 1, c = 1. 

Now, we focus on the model assuming 

x > p, 

y > o , 

thus our system of equations has a form 

As we are mainly interested in the stability analysis, it is mandatory to find 

critical points of the system. We already know from Definition 1.6 that a system 

achieves its equilibrium in moment when the amount of the population does not 

change. Therefore we solve 

dx 
~dt 
dy 
dt 

ax — b(x — p)y, 

cy + d(x — p)y. 

(3.20) 

(3.21) 

ax — b(x — p)y = 0, 

cy + d(x — p)y = 0. 

(3.22) 

(3.23) 
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The solution of the equality (3.22) can be found simply. It applies for y = 0 or 

x = 1+P-

However, finding the solution of (3.23) is no longer so trivial. But we can take 

benefit of the fact, that it makes sense to look for solutions only for x and y such 

that 4 | = 0, i.e. for y = 0 and x = % + p. 

This way, we discovered following critical points 

( x l , y l ) = (0,0), 

(c ac + adp 
(x^)={-d

+P^—b-c— 

But due to given assumptions, x > p, y > 0, we are interested only in the second 

critical point (T2, yi)• 

In order to examine the stability and the type of the critical point (X2, y^), let 

us linearize the system of equations (3.20), (3.21). It means that we first compute 

the Jacobian matrix of the system 

, ,_fa — by —bx + bp 

[x,y) - y^y dx - c - dp 

and then determine the value of J(x2, JJ2), which is 

adp be adp be \ 

aed+ad^p q * J 
be / be 

The non-linear system (3.20), (3.21), can be now locally, i.e. about the steady 

state (X2,2 /2) , replaced by the linear variational equation, as defined by Defini­

tion 1.14. 

Now we need to know the eigenvalues of the matrix J(x2, yi) to be able to decide 

about the stability and type of the critical point (x~2, JJ2). So, if we put 

d e t ( J ( z £ , y j ) - XE) = 0, 

where E is the identity matrix, we get the quadratic equation 

A 2 + A — +ac + adp = 0, (3.24) 
c 
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whose discriminant is 

(adp)2 — 4c 2 (ac + adp) 
A 

c2 

Obviously we cannot make any decision about the sign of the discriminant at 

this moment, consequently we need to make an examination to be able to decide 

whether the eigenvalues A i , A2 of the matrix J(x~2, JJ2) are real numbers or complex 

numbers. So, let us examine whether A < 0, i.e. 

(adp)2 — 4c2(ac + adp) ^ ^ 
c2 

that is 

(adpf 
Aac2(c + dp) 

< 1. (3.25) 

Hence, clearly, if the inequality (3.25) holds, the eigenvalues 

adp 1 / 2 
Ai = — h — V (adp) - Ac2(ac + adp), 

2c 2c 
adp 1 / 2 

A 2 = — — V (adp) - Ac2(ac + adp), 
2c 2c v 

would not be real numbers. In such case, the eigenvalues Ai ,A2 have the form 

a ± Pi, where a < 0 and f3 > 0 . 

Otherwise, when the condition (3.25) is not met, the eigenvalues A i , A2 would 

be real. But what about their signs? Naturally, the eigenvalue A2 is always a 

negative number. However concerning the eigenvalue A i , its sign is not apparent 

at first sight. So let us assume that the eigenvalue A i is negative, then it would 

have to be true that 

adp 1 / 2 
, +7T\KadP) - 4c 2(ac + adp) < 0, 
2c 2c 

which can be modified such that 

adp)2 — Ac2(ac + adp) < adp, 
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that is 

4c2(ac + adp) > 0. (3.26) 

Which we know is true since a,c,d,p G IR + . Therefore, we can conclude that if 

the condition (3.25) does not hold, then Ai ,A2 G M~. 

Now, let us focus on the first case, where A i , A 2 = a ± /3i, a < 0, j3 > 0. Since 

these critical points have non-zero real components, clearly, by Definition 1.12, 

they are hyperbolic. Consequently we can apply Theorem 1.6, according to which 

Ai ,A2 are asymptotically stable. 

Following the classification of phase portraits in [1], Chapter 6, the critical point 

(x2,1/2) w e c a n n n d out type of the critical point. As 

detJ(x2,2/2) > 0 and trJ(x2, yo) < 0, 

the critical point is a sink. Concretely, it is a spiral-sink point, since the charac­

teristic condition 

4detJ(x2",y2~) > (tr J(xt,y£))2 

holds and it is true that 

Xii2 = a±i/3, a < 0, f3 ^ 0. 

According to Theorem 1.9, we can assert that also the critical point of the non­

linear system (3.20), (3.21) is a spiral-sink point, because the type of the critical 

point of the non-linear system is same as the type of the null critical point of the 

corresponding linearized system. 

The phase portrait of the system around this critical point is represented in 

Figure 3.5. 
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Figure 3.5: The phase portrait of the system (3.20), (3.21), under conditions 
x > p and y ^ 0, in the case when A < 0. Used values of parameters are a = 1, 
b = 0.03, c = 1, d = 0.04, p = 10. 

The representation of the population dynamics of this system is shown by 

Figure 3.6. It is obvious that the population stabilizes over time, since the critical 

point 0^2,2/2) is a spiral-sink. This behaviour is clearly visible in Figure 3.7. 
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Figure 3.6: Representation of the population dynamics of the system (3.20), 
(3.21), under conditions x > p and y 0, in the case when A < 0. Used values 
of parameters are a = 1, b = 0.03, c = 1, d = 0.04, p = 10. 
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Figure 3.7: Oscillations of populations in population dynamics of the system 
(3.20), (3.21), under conditions x > p and y ^ 0, for initial populations 
^0)2/0 = 10, in the case when A < 0 . Used values of parameters are a = 1, 
b = 0.03, c=l,d= 0.04, p = 10. 

Now, let examine the case where Ai ,A2 G M - . Also these critical points have 

non-zero real components, thus, by Definition 1.12, they are hyperbolic. This 

allows us to apply Theorem 1.6, according to which Ai ,A2 are asymptotically 

stable. If we use again the classification of phase portraits in [1], Chapter 6, we 

realize that the critical point is a sink since 

detJ(x2, > 0 and trJ(x2, JJ2) < 0. 

Moreover, 

4detJ(x2",y2~) < (trJ(x^,m)) 2 

and 

A i , A 2 < 0 , A i ^ A 2 , 

48 



holds, which suggests that the critical point is a node-sink type. 

Also there we can claim that the critical point of the non-linear system (3.20), 

(3.21) is of the same type as the one of the linearized system, i.e. a node-sink, 

which is guaranteed by Theorem 1.9. 

The phase portrait of the neighbourhood of the critical point is shown by Fig­

ure 3.8. 

Figure 3.8: The phase portrait 
of the system (3.20), (3.21), un­
der conditions x > p and y ^ 0, 
in the case when A > 0. Used 
values of parameters are a = 1, 
b = 0.03, c = 1.5, d = 0.09, 
p = 150. 

o 
Prey population x 

The population dynamics of this system is depicted in Figure 3.9. Also in 

this case the stabilisation of the population occurs. Moreover, it happens much 

faster than in the previous system, i.e. the system (3.20), (3.21), where Ai,A2 

are complex numbers in form a ± f3i, a < 0, f3 > 0. It is well illustrated in 

Figure 3.10. 
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Figure 3.9: Representation of the population dynamics of the system (3.20), 
(3.21), under conditions x > p and y ^ 0, in the case when A > 0. Used values 
of parameters are a = 1, b = 0.03, c = 1.5, d = 0.09, p = 150. 
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Figure 3.10: Oscillations of populations in population dynamics of the system 
(3.20), (3.21), under conditions x > p and y ^ 0, for initial populations Xo,yo = 
10, in the case when A > 0. Used values of parameters are a = 1, b = 0.03, 
c = 1.5, d = 0.09, p = 150. 

To summarize, the examined type of Lotka-Volterra model with a refuge sta­

bilizes over time for any initial population xo,yo > 0, i.e. the population size 

converges to the steady state value (A +p, ££±£*). Even when the population is 

anywhere close to 0, there is always a recovery and stabilization. The final repre­

sentation of the model having parameters a, b, c, d, p such that the condition (3.25) 

holds is shown in Figure 3.11. On the other hand, when the condition (3.25) is 

not satisfied, the final representation of the model is depicted in Figure 3.12. 
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Figure 3.11: Representation of the population dynamics in the Lotka-Volterra 
model with a refuge in the case when A < 0. Used values of parameters are 
a = 1, b = 0.03, c=l,d = 0.04, p = 10. 

166.67 
Prey population x 

Figure 3.12: Representation of the population dynamics in the Lotka-Volterra 
model with a refuge in the case when A > 0. Used values of parameters are 
a = 1, b = 0.03, c = 1.5, d = 0.09, p = 150. 
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What is interesting in this model is that when the prey population size ex­

ceeds the number of prey that the refuge can hold, the amount of prey is never 

again reduced below that number. This can be verified by substituting of x = p 

in (3.20), (3.21), which yields 

d.x 
dt 
dy 
dt 

ap, 

-cy. 

As a,p > 0, then ^ > 0. It follows that if the function x{t) reaches the value p, it 

is only possible that the function is increasing, never decreasing. This behaviour 

is marked by red arrows in Figures 3.13 and 3.14. 
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Figure 3.13: Representation of the population dynamics in the Lotka-Volterra 
model with a refuge in the case when A < 0. Used values of parameters are 
a = 1, b = 0.03, c=l,d = 0.04, p = 10. 
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Figure 3.14: Representation of the pop­
ulation dynamics in the Lotka-Volterra 
model with a refuge in the case when 
A < 0. Used values of parameters are 
a = 1, b = 0.03, c=l,d= 0.04, p = 10. 

150 166.67 
Prey population x 

Finally, if we compare the Lotka-Volterra model with a refuge and the neutral 

Lotka-Volterra stability model, described in Section 3.1, we can notice several 

differences. 

First one can be found in the parameters on which the equilibrium of a population 

depends. Let us recall the populations steady state in the neutral Lotka-Volterra 

stability model 

Id' b) 

and in Lotka-Volterra model with a refuge 

c a adp\ 
d + P ' b + ^ ) -
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For the prey population it is almost the same, the equilibrium is still related 

only to the parameters associated with predators, only shifted by the value of the 

number of prey that the refuge can hold. But, concerning the equilibrium of the 

predator population, this state of the population depends on the parameters as­

sociated with the prey as well as the predators, i.e. in addition to the parameters 

a and 6, it also depends on c and d. A n d , moreover, it depends on parameter p 

too. In other words, in that case, the behaviour of predator population influences 

their own steady state value. 

Second difference is quite obvious from the above analysis. The populations 

which oscillate and never stabilize in the neutral Lotka-Volterra model, in the 

case of the model with a refuge finally find an equilibrium point and stabilize. 

However, what they have in common is that the natural extinction is not pos­

sible. No matter how small the populations are, there wil l always be a recovery. 
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Conclusion 

We have presented several models describing a population dynamics. It should 

be noted that these were continuous models. The first part of the thesis consists 

of some theory of dynamical systems. In the second part, the reader could get 

acquainted with two scalar models, namely the Exponential growth and the Logis­

tic growth. A n d finally, the Lotka-Volterra model was introduced, together with 

its modification, in which the model considers the prey refuge, where the refuge 

can hold a fixed number of prey. 
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Contents of the attached C D 

The enclosed C D contains the M A T L A B source codes of the images that ap­
pear in the thesis. This section provides the mapping of the files to figures in the 
thesis. 

The file 

* ExponentialGrowth_l .m refers to Figure 2.1, 

* ExponentialGrowth_2 .m refers to Figure 2.2, 

* LogisticGrowth.m refers to Figure 2.5, 

* LotkaVolterra_CPl_SaddlePoint .m refers to Figure 3.1, 

* LotkaVolterra_OrbitsWithDirections .m refers to Figure 3.2, 

* LotkaVolterra_PopulationsOverTime .m refers to Figure 3.3, 

* LotkaVolterraRef uge_OtoP_PhasePortrait .m refers to Figure 3.4, 

* LotkaVolterraRef uge_PtoInf _CPSpiral_PhasePortrait .m refers to Fig­
ure 3.5, 

* LotkaVolterraRef uge_PtoInf_CPSpiral_OrbitsWithDirections . m refers 
to Figure 3.6, 

* LotkaVolterraRef uge_PtoInf_CPSpiral_PopulationsOverTime .m refers to 
Figure 3.7, 
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LotkaVolterraRef uge_Pto!nf _CPNode_PhasePortrait .m refers to Figure 3.8, 

LotkaVolterraRef uge_PtoInf _CPNode_OrbitsWithDirections .m refers to 
Figure 3.9, 

LotkaVolterraRef uge_PtoInf _CPNode_PopulationsOverTime .m refers to 

Figure 3.10, 

LotkaVolterraRef uge_OtoInf_CPSpiral_OrbitsWithDirections . m refers 
to Figure 3.11, 

LotkaVolterraRef uge_0tolnf _CPNode_OrbitsWithDirections .m refers to 
Figure 3.12, 

LotkaVolterraRef uge_OtoInf_CPSpiral_OrbitsWithDirections_Hgh.ltArrows . 
refers to Figure 3.13, 

LotkaVolterraRef uge_OtoInf_CPNode_OrbitsWithDirections_Hgh.ltArrows .m 
refers to Figure 3.14. 
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