

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV MIKROELEKTRONIKY

DEPARTMENT OF MICROELECTRONICS

METODY MĚKKÉHO SPÍNÁNÍ A OPTIMALIZACE VÝSTUPNÍ ČÁSTI BUDIČE MOSFET TRANZISTORŮ

SOFT-SWITCHING METHODS AND OPTIMIZATION OF OUTPUT STAGE OF MOSFET DRIVER

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE AUTHOR Bc. Vladimír Trojan

VEDOUCÍ PRÁCE SUPERVISOR

Ing. Roman Prokop, Ph.D.

BRNO 2023

Diplomová práce

magisterský navazující studijní program Mikroelektronika

Ústav mikroelektroniky

Student: Bc. Vladimír Trojan *Ročník:* 2

ID: 211245 *Akademický rok:* 2022/23

NÁZEV TÉMATU:

Metody měkkého spínání a optimalizace výstupní části budiče MOSFET tranzistorů

POKYNY PRO VYPRACOVÁNÍ:

Prostudujte strukturu a spínací vlastnosti výkonových MOSFET tranzistorů a ve spolupráci s firmou Onsemi se seznamte s principem optimalizovaných struktur výstupní části budiče MOSFET tranzistorů. Navrhněte a porovnejte možné způsoby optimalizace zapojení koncového stupně budiče MOSFET transistorů za účelem dosažení měkkého spínání. Parametry jednotlivých návrhů ověřte v simulátoru Spectre. Jednotlivé struktury zrealizujte v 250 nm procesu firmy Onsemi. Proveďte měření navržených struktur zapojených v pouzdru SOIC-16 a srovnejte naměřené a simulační výsledky.

DOPORUČENÁ LITERATURA:

Podle pokynů vedoucího práce

Termín zadání: 6.2.2023

Vedoucí práce: Ing. Roman Prokop, Ph.D.

doc. Ing. Lukáš Fujcik, Ph.D. předseda rady studijního programu

Termín odevzdání: 23.5.2023

UPOZORNĚNÍ:

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

Abstrakt

Diplomová práce se zabývá návrhem a porovnáním metod optimalizace zapojení koncového stupně budiče MOSFET za účelem snížení rozkmitu napětí na parazitní sériové indukčnosti vývodů pouzdra budiče MOSFET. Navržené metody optimalizace jsou realizovány na čipu a zapojeny do pouzdra SOIC-16. Dále je pak v rámci této práce navržena testovací DPS, na kterou jsou osazeny realizované testovací struktury. Pomocí měřicí sestavy jsou následně zjišťovány reálné parametry navržených metod optimalizace. Návrh metod optimalizace probíhal v prostředí Cadence Virtuoso a testovací DPS byla realizována za pomoci programu Autodesk EAGLE.

Klíčová slova

Spínání MOSFET, diskrétní výkonový MOSFET, měkké spínání, budič MOSFET, parazitní sériová indukčnost vývodů pouzdra, optimalizace *di/dt*, optimalizace rozkmitu napětí na parazitní indukčnosti, metody optimalizace budiče MOSFET, návrh DPS, měření reálných parametrů, testovací DPS, aproximace parazitních vlastností DPS

Abstract

The diploma thesis deals with design and comparison of optimization methods for the circuit of output stage of the MOSFET gate driver, in order to reduce voltage swing induced on the parasitic series inductance of output terminals of the MOSFET gate driver package. The proposed optimization methods are implemented on-chip and integrated into an SOIC-16 package. Implemented test structures are then mounted on test PCB, which is designed as part of the thesis. The real parameters of the proposed optimization methods are then determined using the measurement setup. The design of the optimization methods was carried out in Cadence Virtuoso environment and the test PCB was designed using the Autodesk EAGLE program.

Keywords

MOSFET switching, discrete power MOSFET, soft-switching, MOSFET gate driver, parasitic series inductance of package terminals, optimization of voltage swing on parasitic series inductance, *di/dt* optimization, optimization methods of MOSFET gate driver, test PCB, PCB design, approximation of PCB parasitic properties

Bibliografická citace

TROJAN, Vladimír. *Metody měkkého spínání a optimalizace výstupní části budiče MOSFET tranzistorů* [online]. Brno, 2023 [cit. 2023-05-23]. Dostupné z: <u>https://www.vut.cz/studenti/zav-prace/detail/152480</u>. Diplomová práce. Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav mikroelektroniky. Vedoucí práce Roman Prokop.

Prohlášení autora o původnosti díla

Jméno a příjmení studenta:	Vladimír Trojan			
VUT ID studenta:	211245			
Typ práce:	Diplomová práce			
Akademický rok:	2022/2023			
Téma závěrečné práce:	Metody měkkého spínání a optimalizace výstupní části budiče MOSFET tranzistorů			

Prohlašuji, že svou závěrečnou práci jsem vypracoval samostatně pod vedením vedoucí/ho závěrečné práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené závěrečné práce dále prohlašuji, že v souvislosti s vytvořením této závěrečné práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb.

V Brně dne: 23. května 2023

podpis autora

Poděkování

Děkuji vedoucímu diplomové práce Ing. Romanu Prokopovi, Ph.D. za pedagogickou a odbornou pomoc při psaní této práce. Dále také děkuji vedoucímu práce ve společnosti Onsemi Ing. Karlu Ptáčkovi, Ph.D za metodickou odbornou pomoc, rady při zpracování diplomové práce a ochotu při konzultacích.

V Brně dne: 23. května 2023

podpis autora

Obsah

Ú	VOD	8
1	STRUKTURA MOSFET	9
	 PRINCIP FUNKCE MOSFET DISKRÉTNÍ VÝKONOVÝ MOSFET VODIVOSTNÍ ZTRÁTY VÝKONOVÉHO MOSFET	9 12 14
	1.4 SPINACIZIRATY VYKONOVEHO MOSFET 1.4 I Spinání MOSFET	10
	1.4.2 Spinaci ztráty	20
	1.5 Měkké spínání – soft-switching	21
2	SPÍNANÝ BUDIČ MOSFET	24
	2.1 FUNKCE BUDIČE MOSFET	25
3	NÁVRH OPTIMALIZACE KONCOVÉHO STUPNĚ BUDIČE MOSFET	29
	3.1 PARAZITNÍ INDUKČNOSTI	29
	3.2 SIMULAČNÍ ZAPOJENÍ BUDIČE MOSFET	30
	3.3 Originální obvod budiče MOSFET (ORIG)	33
	3.4 Optimalizace rozměrů budících invertorů (OPT)	37
	3.5 METODA POSTUPNÉHO SPÍNÁNÍ ZPOŽĎOVACÍMI REZISTORY (RES)	42
	3.6 METODA POSTUPNÉHO SPÍNÁNÍ ASYMETRICKÝMI INVERTORY (ASINV)	48
4	REALIZACE TESTOVACÍCH STRUKTUR	54
4	REALIZACE TESTOVACÍCH STRUKTUR 4.1 Testovací obvod	 54 54
4	 REALIZACE TESTOVACÍCH STRUKTUR	 54 54 58
4 5	 REALIZACE TESTOVACÍCH STRUKTUR	54 54 58 61
4 5	 REALIZACE TESTOVACÍCH STRUKTUR	54 54 58 61
4	REALIZACE TESTOVACÍCH STRUKTUR	54 54 58 61 63
4	REALIZACE TESTOVACÍCH STRUKTUR	54 54 58 61 63 70
4	REALIZACE TESTOVACÍCH STRUKTUR	54 54 58 61 63 70 70
4	REALIZACE TESTOVACÍCH STRUKTUR	54 54 58 61 61 63 70 70 73
4	REALIZACE TESTOVACÍCH STRUKTUR	54 54 58 61 63 70 70 73 75
4 5	REALIZACE TESTOVACÍCH STRUKTUR	54 54 58 61 63 70 70 73 75 80
4 5 6 L	REALIZACE TESTOVACÍCH STRUKTUR	54 54 58 61 63 70 70 73 75 80 83
4 5 6 1 5	REALIZACE TESTOVACÍCH STRUKTUR	54 54 58 61 63 70 70 75 80 83 86
4 5 6 L S 1 S	REALIZACE TESTOVACÍCH STRUKTUR	54 54 58 61 61 63 70 73 75 80 83 86 88
4 5 6 12 51 51 51	REALIZACE TESTOVACÍCH STRUKTUR. 4.1 TESTOVACÍ OBVOD	54 54 58 61 61 63 70 73 75 80 83 86 88 88

Úvod

MOSFET, neboli Metal Oxid-Semiconductor-Field-Effect-Transitor, je jednou ze základních částí vysokofrekvenční techniky. Překvapivě tato technologie byla známa již na počátku 30. let minulého století, téměř dvacet let před vynalezením bipolárního tranzistoru. Avšak první MOSFET byl vyroben až na počátku 50. let a jeho výkonová varianta se stala komerčně dostupnou v 70. letech 20. století. Od té doby jsou běžně využívané v širokém spektru elektronických aplikací.

Jejich hlavní výhodou, v současné honbě za efektivitou a spotřebou, je možnost efektivního spínání bez nutnosti kontinuálních napájecích proudů. Tato výhoda je umocněna s rostoucími požadavky na nízkou dobu spínání, která se v současnosti může pohybovat v řádech jednotek a desítek nanosekund. Nevýhodou MOSFET je však parazitní kapacita gate oxidu, která komplikuje dosažení těchto spínaných časů. Za tímto účelem jsou v integrované technice navrhovány spínané budiče MOSFET, které jsou schopné dodat dostatek energie k sepnutí MOSFET při požadovaných frekvencích.

Spínání MOSFET při vysokých frekvencích však může mít svá úskalí, zejména pak kvůli parazitním indukčnostem vznikajícím na všech komerčně prodejných pouzdrech diskrétních MOSFET a jejich budičů. S rychlým průběhem změn napětí a proudu na parazitních sériových indukčnostech vývodů součástek jsou pak spojeny problémy s EMI (elektromagnetická interference) zařízení a zákmity napětí na napájecích výstupech. Ke kompenzaci těchto problémů je pak nutné implementovat vnější diskrétní součástky, kterými je brzděn náběh proudu na výstupu. Jedním z řešení jsou různé způsoby měkkého spínání, které upravují spínací charakteristiky MOSFET.

Tato práce se zabývá návrhem a porovnáním metod optimalizace měkkého spínání koncového stupně budiče MOSFET za účelem snížení úbytků napětí na parazitních indukčnostech vývodů pouzdra budiče MOSFET. Navržené metody jsou realizovány v 250 nm technologii firmy Onsemi a testovány za reálných podmínek na testovacím DPS (deska plošných spojů).

První část práce popisuje technologii, princip funkce a proces spínání MOSFET.

Druhá část popisuje princip funkce budiče MOSFET, uvádí rozbor jeho vnitřní struktury a zapojení jeho koncového stupně, včetně principu spínání.

Třetí část se zabývá problémem parazitní sériové indukčnosti pouzdra, simulačním zapojením pro testování obvodu, rozborem simulačních výsledků, principem originálního zapojení a popisem jednotlivých metod optimalizace koncového stupně budiče MOSFET.

Čtvrtá část je věnována návrhu testovacího obvodu, který je realizován na čip. Součástí kapitoly je rovněž návrh testovacího DPS.

Pátá část popisuje měření reálných parametrů a aproximaci parazitních vlastností testovacích struktur. Měřené výsledky jsou zde pak porovnávány mezi sebou navzájem a simulací.

1 Struktura MOSFET

Tranzistory jsou základními stavebními prvky veškeré analogové a digitální techniky. Lze je na základě využívaných typů nosiče elektrického náboje rozdělit na bipolární tranzistory, které využívají oba typy nosičů (díry, elektrony) zároveň, a unipolární tranzistory, které k přenosu náboje využívají vždy jen jeden typ nosiče. Díky vysoké integraci a nižší spotřebě dané velkým vstupním odporem unipolárních tranzistorů jsou dominantními prvky v digitálních a kombinovaných obvodech s digitální i analogovou částí. V této práci bude řešen princip pouze tranzistoru typu MOSFET.

Struktura MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) se v základu dělí na typ NMOS a PMOS. Rozdíl mezi těmito MOSFET (MOS) tranzistory je v typu nosičů elektrického náboje, které zprostředkovávají vodivý kanál. U NMOS tranzistoru je vodivý kanál tvořen inverzní vrstvou elektronů, zatímco u PMOS ho umožňuje inverzní vrstva děr [1], [2], [3], [4].

1.1 Princip funkce MOSFET

Pro zjednodušení bude k analýze sloužit pouze NMOS tranzistor. U PMOS tranzistoru se aplikují stejné principy, avšak s opačným druhem vodivosti.

Struktura NMOS se vytváří na polovodičovém substrátu typu P s dvěma silně dopovanými oblastmi typu N, které tvoří kontakty source a drain. Na substrátu mezi source a drain je tenká izolační vrstva a nad ní vodivá elektroda, sloužící jako řídicí elektroda – gate (G). Názvy elektrod source (S) a drain (D) jsou dány jejich funkcí. Source je elektroda, která slouží jako zdroj nosičů náboje pro indukovaný kanál, zatímco elektroda drain je místem kam nosiče náboje odtékají. Jako substrát se používá většinou dopovaný monokrystalický křemík. Kontakt na substrát pak tvoří ohmický kontakt přes silně dopovanou p+ oblast, který se nazývá bulk (B). Pro izolační vrstvu se používá jako izolant oxid křemičitý (SiO₂). Řídící elektroda je nejčastěji vyráběna z vodivého, silně dopovaného polykrystalického křemíku (poly-Si). Popsaná základní struktura NMOS je zobrazena na Obr. 1.1.

Obr. 1.1 Základní struktura NMOS tranzistoru [1]

- L zamýšlená vzdálenost oblastí drain a source
- Lef skutečná vzdálenost oblastí drain a source

W – šířka kanálu

tox – tloušťka izolační vrstvy

Vzdálenost mezi drainem a sourcem je ve skutečnosti o něco menší, než je zamýšlená vzdálenost, jak je možné vidět na Obr. 1.1. Ke zkrácení délky dochází kvůli překryvu oblastí drain/source s hradlem. Tento překryv je důležitý pro zabezpečení vzniku vodivého kanálu, avšak v jeho důsledku vzniká parazitní kapacita mezi gate a elektrodami source/drain.

Je-li na řídicí elektrodu přiloženo dostatečné napětí U_{GS} správné polarity, dojde pod vrstvou izolantu k přitažení minoritních nosičů a odpuzení majoritních nosičů p - substrátu. Tím se pod izolační vrstvou SiO₂ vytváří inverzní vrstva elektronů, která vodivě spojí drain a source. Protože jde o rozhraní dielektrikum – polovodič, dojde pod hradlem k vytvoření depletiční oblasti. Přiložením napětí U_{GS} se vytvoří vodivý kanál spojující source a drain elektrodu. Napětí U_{GS} , při kterém se vytvoří pod gate oxidem vodivý kanál spojující drain se source, se nazývá prahové napětí U_{TH} (threshold voltage). Napětí U_{GS} tak určuje, zda MOS tranzistor již může vést proud. Určit na jakém napětí U_{GS} je MOS tranzistor v sepnutém nebo rozepnutém stavu lze však jen na základě proudu I_D , protékajícím mezi drain a source elektrodami. Aby však protékal proud I_D , musí být mezi elektrody drain - source přiloženo napětí U_{DS} . Proud I_D je tak závislý na hodnotě napětí U_{GS} a U_{DS} . Tuto závislost proudu I_D lze popsat na výstupní charakteristice NMOS tranzistoru na Obr. 1.2 [5], [6].

Obr. 1.2 Výstupní charakteristika MOSFET [7]

Z Obr. 1.2 je možné vidět, že MOSFET se v první oblasti své výstupní charakteristiky chová jako odpor řízený napětím, tedy závislost proudu I_D na U_{DS} je téměř lineární. To je způsobeno tím, že se zvyšujícím se napětím U_{DS} se snižuje rozdíl potenciálů mezi hradlem gate a oblastí drain. Tím se indukovaný kanál pod hradlem začne vlivem rozšiřující depletiční oblasti okolo drain elektrody zužovat a rozšiřovat směrem k source elektrodě, protože potenciál přitahující elektrony je v této oblasti nižší než u source elektrody. Zúžením kanálu roste jeho odpor, avšak vlivem zvyšujícího napětí U_{DS} proud I_D stále lineárně roste. Při určitém napětí $U_{DS} \ge U_{GS} - U_{TH}$ dojde k jeho zaškrcení a oddělení od drain elektrody, viz. Obr. 1.3. Toto napětí se nazývá saturační napětí U_{DSsat} . Pro oblast kdy platí $U_{DS} \le U_{GS} - U_{TH}$ jsou tak elektrody drain a source vodivě spojeny kanálem s konečným odporem a proud tranzistorem je řízen napětím U_{DS} . Tato oblast výstupní charakteristiky NMOS se nazývá **lineární (triodový) režim** a MOSFET může fungovat jako odpor řízený napětím. Proud v tomto režimu se řídí rovnicí (1.1):

$$I_D = KP \frac{W}{L} \left[(U_{GS} - U_{TH}) U_{DS} - \frac{1}{2} U_{DS}^2 \right], \qquad (1.1)$$

kde KP je transkonduktanční parametr a W/L poměr šířky a délky tranzistoru [4].

Po dosažení hodnoty napětí $U_{DS} \ge U_{GS} - U_{TH}$ se indukovaný kanál u drain elektrody zaškrtí. Proud I_D nepřestane procházet, avšak již nesleduje průběh lineárního režimu(1.1), ale jeho hodnota se stane téměř konstantní s přechodem do **saturačního režimu**, viz. Obr. 1.2. Důvodem toho je, že po zaškrcení kanálu se již nezvyšuje množství náboje v indukovaném kanálu. Proud protékající kanálem je v tomto případě dán úbytkem napětí na indukovaném kanálu, který je od bodu zaškrcení stále konstantní, daný rozdílem prahového napětí a napětí na source, tedy $U_{TH} - U_S$. Se zvyšujícím napětím U_{DS} se tak již v ideálním případě nezvyšuje proud I_D [3]. Proud I_D je v této oblasti určen rovnicí (1.2):

$$I_D = \frac{1}{2} K P \frac{W}{L} (U_{GS} - U_{TH})^2 , \qquad (1.2)$$

V závislosti na Obr. 1.2 je však vidět, že I_D není zcela konstantní, ale mění se se vzrůstajícím U_{DS} . To je způsobeno jevem modulace délky kanálu, kdy zkreslení elektrického pole okolo source a drain elektrod ovlivňuje elektrické pole v kanálu. Tento jev je možné limitovat zvětšením vzdáleností L obou elektrod.

Nosiče náboje přitažené potenciálem U_{DS} jsou při průchodu kanálem tímto napětím urychlovány. Při jejich přiblížení k bodu zaškrcení kanálu jsou pak ze zaškrcené inverzní vrstvy vystřeleny směrem k drainu skrze depletiční oblast.

Obr. 1.3 Princip zaškrcování kanálu NMOS tranzistoru

Poslední oblast výstupní charakteristiky NMOS na Obr. 1.2 se nazývá **oblast** saturace rychlosti nosičů. V této oblasti výstupní charakteristiky jsou nosiče potenciálem U_{DS} urychleny na svou maximální rychlost a indukovaný kanál je redukován až k elektrodě source. Protože již nemůže narůstat rychlost nosičů náboje, začne být proud I_D lineárně závislý na vzrůstajícím napětí U_{GS} (U_{DS}) [1], [7].

1.2 Diskrétní výkonový MOSFET

Diskrétní výkonové MOSFET tranzistory fungují principiálně stejným způsobem jako MOSFET tranzistory v integrovaných obvodech, avšak liší se jejich struktura. Velikost napětí a proudu při jejich provozu jsou rovněž řádově vyšší než u integrovaných MOSFET. Výkonové MOSFET jsou s výhodou využívány ve vysokofrekvenčních aplikacích díky jejich nízké spotřebě při spínání/vypínání oproti výkonovým bipolárním tranzistorům. Díky možnosti využití NMOS typu tranzistoru je také možné dosáhnout vyšší rychlosti oproti PMOS nebo bipolárním protějškům, které využívají děrové vodivosti. Jejich rychlost je pak limitována pohyblivostí děr, která je nižší než pohyblivost elektronů [8].

Na Obr. 1.4 je uvedena vertikální strukturu diskrétního VD-NMOS (vertically double diffused NMOS) vytvořeném na n+ substrátu. Přiložením napětí $U_{GS} \ge U_{TH}$ na gate elektrodu se vytvoří vodivý kanál mezi silně dopovanými n+ oblastmi a n- epitaxní vrstvou. Do Epitaxní n- vrstvy pak prochází přes vodivý kanál elektrony a je tak vytvořeno vodivé spojení mezi elektrodami source a drain. Odpor přechodu source - drain je minimální díky velké ploše přechodu VD-NMOS. Přenášený náboj využívá k průchodu celou plochu n- epitaxní vrstvy a n+ substrátu, čímž je možné dosáhnout přenosu vysokých proudů a zároveň je zajištěn dostatečný odvod tepla. Rovněž je dosaženo vyšší elektrické pevnosti přechodu drain – source díky jejich větší vzdálenosti oproti laterální struktuře NMOS na Obr. 1.1. Struktura VD-NMOS tranzistoru má parazitní substrátovou diodu, která se vytvoří mezi drain oblastí n+ substrátu a oblastí body p+. Tato dioda je v závěrném směru, avšak při přepólování tranzistoru může dojít k jejímu otevření a tranzistor se pak chová jako PN dioda. Kanál tranzistoru v takovém zapojení má odporový charakter, který je dán odporem v propustném stavu R_{DSON} . Díky tomu je možné výkonové VD-NMOS zapojovat bez problémů do paralelních kombinací [2].

Obr. 1.4 Struktura diskrétního výkonového VD-NMOS [8]

1.3 Vodivostní ztráty výkonového MOSFET

Vodivostní ztráty výkonových MOSFET jsou dány jejich odporem přechodu v sepnutém stavu R_{DSON} , které jsou způsobeny průchodem proudu tranzistorem. Podle ohmova zákona pak pro úbytek napětí na odporu R_{DSON} platí:

$$U_{DS} = I_D \cdot R_{DSON}, \tag{1.3}$$

kde U_{DS} je napětí mezi drain a source a I_D proud do drainu tranzistoru.

Ztrátový výkon lze pak získat ze vztahu pro výkon:

$$P_{RLoss} = I_D \cdot U_{DS} = I_D^2 \cdot R_{DSON}. \tag{1.4}$$

V uvedených rovnicích (1.3) a (1.4) je R_{DSON} , pro zjednodušení pochopení závislosti vodivostních ztrát přechodu, brán jako konstanta, avšak tyto vztahy nevyjadřují jeho přesnou hodnotu. Při spínání výkonového MOSFET prochází tranzistorem proud, který zahřívá přechod, a zároveň jsou využívány v různě teplotně zatěžovaných aplikacích. Přesnější hodnota odporu R_{DSON} může být získána z jeho závislosti na teplotě přechodu T_j , viz. Obr. 1.5.

Odpor sepnutého přechodu drain-source

Obr. 1.5 Odpor sepnutého přechodu drain-source v závislosti na teplotě přechodu T_j [9]

Závislost na Obr. 1.5 však rovněž nevyjadřuje přesnou závislost odporu přechodu R_{DSON} . Nezanedbatelný vliv na odpor přechodu má i přiložené napětí U_{GS} a procházející proud I_D . V obvodech využívajících vysokofrekvenční spínání výkonových MOSFET se procházející proud I_D v čase rychle mění, stejně jako přiložené napětí U_{GS} . Pro přesné určení přechodového odporu R_{DSON} je tedy nutné tyto dvě veličiny uvažovat. Závislost odporu přechodu pro různé hodnoty U_{GS} , I_D a T_j je možné vidět na Obr. 1.6.

Obr. 1.6 Odpor sepnutého přechodu drain-source v závislosti na U_{GS} a I_D pro různé teploty přechodu T_j [9]

Takto definovaný odpor R_{DSON} lze použít pro přesné určení ztrátového výkonu ve spínaných obvodech, protože jej je možné vyjádřit ze závislostí na Obr. 1.5 a Obr. 1.6 v každém pracovním bodě spínaného obvodu.

Protože vodivostní ztráty výkonových MOSFET jsou převážně určeny právě hodnotou R_{DSON} , je snahou ji co nejvíce snížit, často pomocí zapojení několika paralelních výkonových tranzistorů. Přestože dojde ke snížení odporu a většímu rozložení tepla produkovaného ztrátovým výkonem, je tím rovněž dosaženo několikanásobného zvýšení rozměrů obvodu a tím i zvýšení parazitních kapacit, které je nutné při spínání s další ztrátou nabíjet a vybíjet [9], [10].

1.4 Spínací ztráty výkonového MOSFET

Při uvažování rychlého spínání výkonového MOSFET je cílem spínat mezi stavy s nejvyšším a nejnižším odporem R_{DSON} v co nejkratším časovém intervalu. Reálný čas zapínání a vypínání výkonového MOSFET se může pohybovat v řádech desítek nanosekund až po několik mikrosekund. Navzdory těmto krátkým spínacím časům vzniká při spínání další okamžitý ztrátový výkon na kapacitních vlastnostech MOSFET struktury.

Tranzistor MOSFET je nábojem kontrolovaná struktura a jeho stav vodivosti závisí na množství náboje nahromaděného v jeho vodivém kanálu a na gate elektrodě, jak bylo popsáno v kapitole (1.1). Spínací časy jsou pak ovlivňované množstvím hromaděného řídícího náboje. Další hromadění náboje nastává na výstupních parazitních kapacitách a parazitních indukčnostech. Tento náboj je pak neužitečně vybit během spínacího procesu MOSFET a dochází tak k dalším výkonovým ztrátám.

Model spínaného MOSFET s kapacitními parametry je uveden na Obr. 1.7. Uvedené kapacity C_{DG} a C_{GS} vznikají na izolačním oxidu gate elektrody, zatímco kapacita C_{DS} reprezentuje kapacitanci parazitní body diody přechodu MOSFET tranzistoru.

Obr. 1.7 Model MOSFET tranzistoru s kapacitními parametry

Tyto kapacity nebývají běžně přímo uváděny v produktové specifikaci zařízení a jsou převážně uváděny nepřímo pomocí parametrů C_{ISS} (vstupní kapacita při $U_{DS} = 0$ V), C_{RSS} (reverzní kapacita při $U_{GS} = 0$ V) a C_{OSS} (výstupní kapacita při $U_{GS} = 0$ V), které jsou přímo měřitelné na struktuře MOSFET. Jejich vztah mezi kapacitami C_{DG} , C_{GS} a C_{DS} je uveden v rovnicích (1.5),(1.6) a (1.7) [10], [11]:

$$C_{RSS} = C_{DG} , \qquad (1.5)$$

$$C_{ISS} = C_{GS} + C_{DG} \rightarrow C_{GS} = C_{ISS} - C_{RSS} , \qquad (1.6)$$

$$C_{OSS} = C_{DS} + C_{DG} \rightarrow C_{DS} = C_{OSS} - C_{RSS} .$$

$$(1.7)$$

1.4.1 Spínání MOSFET

Pro bližší porozumění spínacích ztrát je nutné prozkoumat spínací charakteristiku MOSFET tranzistoru. Linearizovaný model časového průběhu spínání je možné vidět na Obr. 1.8. Tento model zanedbává parazitní indukčnosti, jimž bude pozornost věnována později, a uvažuje, že výše uvedené kapacity C_{DG} , C_{GS} a C_{DS} jsou konstantní a nezávislé na napětí a teplotě. Tento předpoklad je nerealistický, avšak postačí k aproximaci reálného chování MOSFET při spínání.

Obr. 1.8 Linearizovaný model časového průběhu a) zapínání b) vypínání MOSFET [11]

Zapínání tranzistoru MOSFET je vykresleno na Obr 1.8 a). Během časového intervalu $t_1 - t_2$ proud I_G , tekoucí do gate přes gate odpor R_G , nabíjí vstupní kapacitu MOSFET, danou paralelní kombinací kapacit C_{GS} a C_{DG} (kapacita C_{ISS}), z napětí 0 V na úroveň U_{TH} . Napětí U_{GS} v čase je v této periodě vyjádřeno vztahem:

$$U_{GS}(t) = U_{GS} \cdot \left(1 - e^{-\frac{t}{R_G \cdot C_{ISS}}}\right).$$
(1.8)

Tento interval představuje spínací zpoždění tranzistoru, protože proud I_D přes MOSFET neprotéká a napětí U_{DS} zůstává neměnné. V časovém bodě t_2 dosáhne napětí U_{GS} na gate kapacitě hodnoty U_{TH} a vytvoří se vodivý kanál. Čas t_2 pak lze určit vztahem:

$$t_2 = R_G \cdot C_{ISS} \cdot ln(\frac{U_{GS}}{U_{GS} - U_{TH}}).$$
(1.9)

V průběhu intervalu $t_2 - t_3$ je nadále nabíjena gate kapacita C_{ISS} a napětí U_{GS} je již nad hodnotou prahového napětí U_{TH} . Tranzistorem tak začne protékat proud I_D vlivem rozšiřujícího se vodivého kanálu. V čase t_3 napětí U_{GS} dosáhne takové hodnoty, že dojde k dostatečnému vybuzení vodivého kanálu a proud I_D nabývá své maximální hodnoty. Tato hodnota napětí U_{GS} se nazývá Millerovo napětí $U_{GSMiller}$. Tranzistor pak v čase t_3 přechází do saturačního režimu, protože pro napětí platí $U_{DS} \ge U_{GS} - U_{TH}$. Čas t_3 lze vyjádřit obdobně jako t_2 rovnicí:

$$t_3 = R_G \cdot C_{ISS} \cdot ln(\frac{U_{GS}}{U_{GS} - U_{GSMiller}}).$$
(1.10)

V intervalu $t_3 - t_4$ je napětí U_{GS} na úrovni napětí $U_{GSMiller}$ a tranzistor pracuje v saturačním režimu, pro který platí $U_{GS} \ge U_{GSMiller}$ a $U_{GD} \le U_{GSMiller}$. Proud I_D je v tomto intervalu konstantní. Poklesem napětí U_{DS} dochází k vybíjení drain-gate kapacity C_{DG} (kapacita C_{RSS}) pomocí dostupného gate proudu I_G . Napětí U_{GS} je tak v tomto intervalu konstantní. S vybíjením kapacity C_{RSS} klesá i napětí U_{DS} až do času t_4 , kdy napětí U_{DS} dosáhne minimální hodnoty a kapacita C_{RSS} je zcela vybita. Délku tohoto intervalu lze vyjádřit rovnicí:

$$t_4 - t_3 = \frac{(U_{CC} - U_{DS}) \cdot R_G \cdot C_{RSS}}{U_{GS} - U_{GSMiller}},$$
(1.11)

Časový interval mezi $t_2 - t_4$ lze také označit jako náběžný čas MOSFET t_{rise} , protože v tomto intervalu dochází k náběhu proudu I_D a snižování napětí U_{DS} až na minimální hodnotu. Při tomto procesu se na tranzistoru vytváří náběžná hrana jeho výstupního napětí, které je v případě NMOS odebíráno z jeho drainu. V tomto časovém intervalu rovněž dochází k většině spínacích ztrát.

Čas náběhu *t_{rise}* lze vyjádřit ze vztahů pro časové intervaly dané rovnicemi (1.9),(1.10) a (1.11):

$$t_{rise} = t_4 - t_2 = (t_4 - t_3) + t_3 - t_2,$$
(1.12)

$$t_{rise} = \frac{U_{CC} \cdot R_G \cdot C_{RSS}}{U_{GS} - U_{GSMiller}} + R_G \cdot C_{ISS} \cdot ln(\frac{U_{GS}}{U_{GS} - U_{GSMiller}}) - R_G \cdot C_{ISS} \cdot ln(\frac{U_{GS}}{U_{GS} - U_{TH}}),$$
(1.13)

$$t_{rise} = \frac{U_{CC} \cdot R_G \cdot C_{RSS}}{U_{GS} - U_{GSMiller}} + R_G \cdot C_{ISS} \cdot ln(\frac{U_{GS} - U_{TH}}{U_{GS} - U_{GSMiller}}).$$
(1.14)

V intervalu $t_4 - t_5$ dochází opětovnému nabíjení kapacity C_{ISS} proudem I_G , dokud napětí U_{GS} nedosáhne svého maxima nebo velikosti napájecího napětí U_{CC} . K tomu dojde v časovém bodě t_5 . V tomto bodě je gate kapacita C_{ISS} nabita na maximální potenciál a vodivý kanál MOSFET dosahuje svého minimálního odporu, zatímco napětí U_{DS} ani proud I_D se již nemění.

Vypínání MOSFET tranzistoru je vykresleno na Obr. 1.8 b). Interval $t_6 - t_7$ je možné také nazvat vypínací zpoždění. Vypínací zpoždění reprezentuje čas, který trvá při vypínání tranzistoru vybít gate kapacitu C_{ISS} , z potenciálu získaného v intervalu $t_4 - t_5$, na potenciál $U_{GSMiller}$. Proud I_G v intervalu $t_6 - t_7$ vytéká z kapacity C_{ISS} při jejím vybíjení. Kvůli snižování napětí U_{GS} dochází k mírnému nárůstu napětí U_{DS} , avšak je stále zanedbatelný. Proud I_D v tomto intervalu zůstává stále nezměněn. Čas t_7 , kdy napětí U_{GS} dosáhne hodnoty $U_{GSMiller}$, je možné vyjádřit rovnicí:

$$t_7 = R_G \cdot C_{ISS} \cdot ln(\frac{U_{GS}}{U_{GSMiller}}).$$
(1.15)

V čase t_7 vstoupí MOSFET do saturačního režimu a napětí U_{DS} se začne zvyšovat až na hodnotu napětí U_{CC} v čase t_8 . V tomto časovém intervalu, obdobně jako při spínání MOSFET, je dostupným proudem I_G nabíjena kapacita C_{RSS} mezi gate – drain elektrodami a napětí U_{GS} je tak stále konstantní, dokud není v čase t_8 kapacita C_{RSS} plně nabita. Časový interval $t_7 - t_8$ a čas t_8 lze vyjádřit podle rovnic (1.16),(1.17) a (1.18):

$$t_8 - t_7 = \frac{(U_{CC} - U_{DS}) \cdot R_G \cdot C_{RSS}}{U_{GSMiller}},$$
(1.16)

$$t_8 = (t_8 - t_7) + t_7, \tag{1.17}$$

$$t_8 = \frac{(U_{CC} - U_{DS}) \cdot R_G \cdot C_{RSS}}{U_{GSMiller}} + R_G \cdot C_{ISS} \cdot ln\left(\frac{U_{GS}}{U_{GSMiller}}\right).$$
(1.18)

Po nabití kapacity C_{RSS} v čase t_8 se opět začne vybíjet gate kapacita C_{GS} a napětí U_{GS} začne opět klesat až na hodnotu U_{TH} v čase t_9 . V intervalu $t_8 - t_9$ se tak MOSFET nachází v lineárním režimu a proud I_D klesá v závislosti na U_{GS} , až do času t_9 , kdy je prakticky nulový. Délku časového intervalu $t_8 - t_9$ lze určit rozdílem časů t_9 a t_8 , viz rovnice:

$$t_9 - t_8 = \frac{U_{GSMiller} \cdot R_G \cdot C_{ISS}}{U_{TH}}.$$
 (1.19)

Obdobně jako při spínání MOSFET, většina spínacích ztrát, spolu s nárůstem U_{DS} a poklesem I_D , se odehrává během časového intervalu t_7 - t_9 . Délka tohoto intervalu se nazývá sestupný čas MOSFET t_{fall} . Opět je možné ho vyjádřit pomocí rovnic (1.20),(1.21) a (1.22):

$$t_{fall} = t_9 - t_7 = (t_9 - t_8) + t_8 - t_7, \tag{1.20}$$

$$t_{fall} = \frac{U_{GSMiller} \cdot R_G \cdot C_{ISS}}{U_{TH}} + \frac{U_{CC} \cdot R_G \cdot C_{RSS}}{U_{GSMiller}} + R_G \cdot C_{ISS} \cdot ln\left(\frac{U_{GS}}{U_{GSMiller}}\right) - R_G \cdot C_{ISS} \cdot ln\left(\frac{U_{GS}}{U_{GSMiller}}\right), \quad (1.21)$$

$$t_{fall} = R_G \cdot \left(\frac{U_{GSMiller} \cdot C_{ISS}}{U_{TH}} + \frac{U_{CC} \cdot C_{RSS}}{U_{GSMiller}} \right).$$
(1.22)

V posledním intervalu $t_9 - t_{10}$ se dále vybíjí kapacita C_{ISS} , čímž se dále snižuje napětí U_{GS} pod úroveň U_{TH} , až dosáhne hodnoty 0 V. Vodivý kanál pod hradlem pak zaniká. Přes tranzistor tak v tomto intervalu neteče žádný proud I_D a napětí U_{DS} zůstává na své maximální hodnotě (U_{CC}) [11], [12], [13].

1.4.2 Spínací ztráty

Prvním příspěvkem ke ztrátám během spínání je náboj Q_G , který se nahromadí na gate kapacitě C_{ISS} během nabíjení tranzistoru. Průběh akumulace náboje na gate kapacitě je možné vidět na Obr. 1.9.

Obr. 1.9 Akumulace náboje na gate kapacitě C_{ISS} [12]

Plocha pod křivkou na Obr. 1.9 reprezentuje energii E_G , kterou je nutné dodat k sepnutí tranzistoru. Nahromaděný náboj na gate kapacitě Q_G je následně přes gate odpor R_G vybit při vypínání tranzistoru a při dalším sepnutí je nutné jej znovu dodat. Takto vzniklé ztráty na gate kapacitě lze vyjádřit rovnicí:

$$P_{GLoss} = E_G \cdot f_{SW} = U_{GSamp} \cdot Q_G \cdot f_{SW} = C_{ISS} \cdot U_{GSamp}^2 \cdot f_{SW}, \quad (1.23)$$

kde f_{SW} je frekvence spínání MOSFET a U_{GSamp} amplituda spínacího napětí U_{GS} .

Další příspěvek ke spínacím ztrátám, vlivem zapínání a vypínání MOSFET, lze vyjádřit pomocí získaných časů náběhu t_{rise} a sestupu t_{fall} , jako množství energie spotřebované na výstupu tranzistoru během spínacích procesů. V závislosti na frekvenci jeho spínání f_{SW} , výsledném rozkmitu napětí U_{DS} (U_{CC}) a drain proudu I_D je pak výsledný vztah:

$$P_{OLoss} = \frac{t_{rise} + t_{fall}}{2} \cdot U_{CC} \cdot I_D \cdot f_{SW}.$$
 (1.24)

Výsledná hodnota spínacích ztrát může být pak vyjádřena pomocí součtu těchto dvou dílčích příspěvků:

$$P_{SWLoss} = P_{GLoss} + P_{OLoss} = f_{SW} \cdot \left(C_{ISS} \cdot U_{GSamp}^2 + \frac{t_{rise} + t_{fall}}{2} \cdot U_{CC} \cdot I_D\right).$$
(1.25)

Z popsaných rovnic lze získat přibližnou hodnotu ztrátového výkonu při spínání MOSFET, avšak přesnou hodnotu je prakticky nemožné získat, protože parazitní indukčnosti zařízení mají zásadní vliv na průběh napětí a proudu na součástce, stejně jako na její spínací časy.

Popsané principy počítají s takzvaným "tvrdým" spínáním, kdy je snahou co nejrychleji sepnout tranzistor přes jeho vlastní parametry. Při využití výkonového MOSFET pro vysokofrekvenční aplikace se uplatňují především spínací ztráty. Spolu s nimi se objevují další problémy v podobě rychlých změn napětí a proudu v čase na výstupu tranzistoru, které způsobují rozkmit napětí a proudu na parazitních indukčnostech a kapacitách součástek. Na těchto parazitních vlastnostech pak mohou vznikat další ztráty vlivem vyzáření energie do okolí v podobě elektromagnetického pole. Pro minimalizaci těchto ztrát jsou proto implementovány různé metody "měkkého" spínání, které upravují spínací parametry MOSFET. Těmito parametry jsou především délky spínacích časů *trise* a *tfall*, během kterých dochází k většině spínacích ztrát [10], [11] , [12], [13].

1.5 Měkké spínání – soft-switching

Jak bylo popsáno v předešlé kapitole 1.4.2, při využití výkonového MOSFET ve vysokofrekvenčních aplikacích jsou hlavním zdrojem výkonových ztrát právě spínací ztráty. Zatímco se ztrátami vzniklými v důsledku zapínání a vypínání MOSFET nic nezmůžeme, protože k sepnutí MOSFET je nutné dodat potřený náboj k nabití jeho kapacit, je možné optimalizovat ztráty vzniklé na výstupu tranzistoru v průběhu spínacího procesu. Tyto ztráty převážně vznikají překryvem náběžných a sestupných hran napětí U_{DS} a proudu I_D , viz. Obr. 1.8 a rovnice (1.24). Minimalizace těchto ztrát lze dosáhnout aplikováním tzv. "měkkého" spínání (anglicky soft-switching), které má za úkol tento překryv minimalizovat. Pro tento účel jsou nejrozšířenější dvě metody spínání:

- Spínání při nulovém napětí (ZVS zero voltage switching)
- Spínání při nulovém proudu (ZCS zero current switching)

Fungování těchto dvou metod je popsáno na Obr. 1.10. V případě metody ZCS je při zapínání MOSFET proud I_D zpožděn, např. pomocí sériové indukčnosti, tak aby napětí U_{DS} bylo při jeho náběhu téměř nulové. Při vypínání je pak proud I_D téměř nulový před ukončením náběhu napětí U_{DS} . Při použití metody ZVS je napětí U_{DS} při zapínání MOSFET nulové před dokončením náběhu proudu I_D . Toho může být dosaženo vedením proudu přes bypass diodu. Následné vypínání MOSFET probíhá zpožděním napětí U_{DS} pomocí předřazené kapacity. Náběh U_{DS} je zpožděný ideálně až po ukončení poklesu proudu I_D na výstupu [14].

Obr. 1.10 ZCS a ZVS metoda spínání MOSFET [14]

Obě tyto metody jsou však schopné dosáhnout maximálního potlačení spínacích ztrát jen při jednom z procesů zapínání/vypínání, viz. Obr. 1.11. Proto je využívána kombinace tohoto spínání v tzv. ZVZCS – zero voltage zero current switching. U této metody je využito zapínání MOSFET pomocí metody ZVS, kdy jsou ztráty při spínacím procesu minimální. Minimálních ztrát při vypínání MOSFET je pak dosaženo metodou ZCS.

Obr. 1.11 Srovnání ZVS vs ZCS a princip spínání ZVZCS [15]

Další výhodou užití těchto metod je, že zpomalením náběhu napětí U_{DS} a proudu I_D při zapínání/vypínání MOSFET se zmenšuje změna napětí du/dt a proudu di/dt v čase, které mohou způsobit elektromagnetickou interferenci v obvodu (EMI). Vysoké di/dt mohou indukovat na parazitní indukčnosti, podle vzorce (1.26), rozkmit napětí, který může ovlivnit okolní a přímo připojené obvody.

$$u(t) = L \cdot \frac{di(t)}{dt}.$$
 (1.26)

Obdobně vysoké *du/dt* může v obvodu vyvolat na parazitních kapacitách proudové špičky, viz vzorec (1.27), které mohou negativně ovlivnit spínací obvod, porušit izolaci, nebo vyvolávat další rozkmity napětí na parazitních indukčnostech podle vzorce (1.26) [14], [15].

$$i(t) = C \cdot \frac{du(t)}{dt}.$$
(1.27)

2 Spínaný budič MOSFET

Současným trendem při spínání výkonových MOSFET je zvyšování frekvence spínání, snižování spotřeby, snižování ohřevu součástek a integrace obvodu. Jak bylo popsáno v kapitolách 1.3 a 1.4, zásadní vliv na účinnost procesu spínání MOSFET mají vodivostní a spínací ztráty. Zatímco vodivostní ztráty jsou dány především technologickými parametry MOSFET, spínací ztráty jsou závislé na spínacím procesu, konkrétně pak na spínacích časech t_{rise} a t_{fall} .

Vodivostní ztráty mohou být redukovány zvětšením plochy MOSFET, nebo paralelním zapojením více MOSFET, čímž je dosaženo snížení odporu přechodu v sepnutém stavu R_{DSON} . Tato technika snižování vodivostních ztrát má však za následek zvětšení gate kapacit spínaných MOSFET a tím i spínací ztráty vlivem kumulovaného náboje. Také jsou tímto prodlouženy spínací časy MOSFET.

Pro redukci spínacích časů, zvýšení frekvence spínání a možnost řízení MOSFET nízkovýkonovým kontrolerem je využíváno spínaných budičů MOSFET. Jejich účelem je přivést na gate spínaného výkonového MOSFET s minimálním zpožděním napětí U_{GS} , které bude dostatečně větší než napětí U_{TH} , a dodat v co nejkratším čase proud I_G nutný k nabití gate kapacit. Principiální zapojení je možné vidět na Obr. 2.1, kde budič dodává na gate spínaného MOSFET budící proud I_{DRV} a přivádí napětí U_{GS} , které je v ideálním případě rovno napájecímu napětí budiče U_{CC} [12], [16].

Obr. 2.1 Principiální zapojení budiče MOSFET

2.1 Funkce budiče MOSFET

Výše popsané funkce budiče může být dosaženo zapojením totem-pole, viz Obr. 2.2. V této struktuře je při zapínání výkonového MOSFET jeho kapacita C_{ISS} připojena sepnutím výstupního PMOS přímo na napájecí napětí U_{CC} . Přes PMOS, který je obvykle velikostně navržen pro proudovou schopnost několika ampér, pak projde budící proud I_{DRVon} , který dodá potřebný náboj k nabití gate kapacity C_{ISS} v řádech jednotek až desítek nanosekund. Při následném vypínání výkonového MOSFET je sepnut NMOS na výstupu budiče, který přivede na kapacitu C_{ISS} potenciál země U_{SS} . Přes otevřený tranzistor NMOS se pak vybije kapacita C_{ISS} proudem I_{DRVoff} [16], [17].

Časy sepnutí jednotlivých výstupních tranzistorů jsou řízeny logickým obvodem, který generuje definovaný spínací signál. Nevýhodou však je, že užitím PMOS-NMOS výstupu budič invertuje signál z logického generátoru signálu, a proto je nutné předřadit před výstup invertor. Digitální spínací signál by měl být oddělen od výkonové spínací části, a proto je napájen z vlastního zdroje U_{CC_dig} vůči napětí U_{SS} . Proto musí být spínací signál z generátoru převeden na adekvátní napěťovou úroveň pro spínání výstupního PMOS, resp. NMOS, pomocí převaděčů úrovně napětí. Pro spínání PMOS je nutné signál IN posunout na úroveň napětí $U_{CC} - FGND$. Plovoucí napětí FGND je posunuto vůči U_{CC} tak, aby jejich rozdíl nepřesahoval maximální dovolené napětí na gate výstupního PMOS. Pro spínání NMOS je IN signál nutné převést na úroveň napětí $U_{CCL} - GND$. Do obvodu rovněž může být zaveden spouštěcí signál EN.

Obr. 2.2 Totem pole struktura budiče MOSFET s PMOS a NMOS

Výstupní tranzistory budiče rovněž mají nezanedbatelnou gate kapacitu a logický obvod nemusí mít proudovou schopnost k jejich spínání. Aby tak byla zachována rychlost spínání, je možné pro výstupní tranzistory vytvořit vlastní budič, který bude možné spínat logickým obvodem. Toho může být dosaženo předřazením kaskády postupně se zvětšujících invertorů, které fungují jako invertující budiče MOSFET se stupňující se proudovou schopností [18]. Možné provedení tohoto řešení je vidět na Obr.2.3, kde je naznačeno stupňování velikosti tranzistorů v invertorech. Nejmenší z invertorů M1, M4 je dostatečně malý na to, aby byl rychle spínán nízkovýkonovým logickým signálem. Jeho rozměry však dovolují průchod proudu, který je schopný sepnout stejnou rychlostí již 4x větší invertor M2, M5. Stejným principem je pak sepnut invertor na výstupu M3, M6, který je však již 16x větší než vstupní invertor a dodává tak již dostatečný proud pro

Obr. 2.3 Kaskáda invertorů jako stupňující se budiče MOSFET

Protože proudy výstupními tranzistory budiče se pohybují v řádech jednotek ampér, je nutné brát v potaz ztrátový proud, který přes ně prochází při překlápění výstupního napětí. V tomto ohledu lze pohlížet na budič popsaný na Obr. 2.2 jako na invertor. Při současném zapínání/vypínání PMOS a NMOS se tak oba po dobu spínacího procesu nachází současně v saturačním režimu a mezi U_{CC} a *GND* prochází ztrátový proud I_D . Tento proud pak značně přispívá ke spotřebě obvodu. Pro jeho eliminaci je proto pomocí logického obvodu budiče zaveden tzv. mrtvý čas (anglicky Dead time), který zajistí, že PMOS tranzistor je vždy vypnut dříve, než se zapne tranzistor NMOS a obráceně. Toto spínání je znázorněné na Obr. 2.4.

Obr. 2.4 Napětí U_{GS} na gate výstupních tranzistorů PMOS a NMOS budiče MOSFET s vloženým mrtvým časem mezi jejich spínáním

3 Návrh optimalizace koncového stupně budiče MOSFET

V rámci této kapitoly bude řešen problém rozkmitu napětí na parazitní sériové indukčnosti vývodu pouzdra budiče MOSFET a návrh metod optimalizace tohoto rozkmitu.

3.1 Parazitní indukčnosti

Jak bylo popsáno v kapitole 1.5, měkkého spínání MOSFET lze dosáhnout vnějšími předřazenými prvky před spínaný MOSFET. Cílem této práce je navrhnout optimalizaci koncového stupně budiče MOSFET, tak aby pomocí něj bylo dosaženo měkkého spínání, konkrétně pak snížení rozkmitu napětí u(t) na parazitních indukčnostech vývodů L_{par} budiče MOSFET. Tyto indukčnosti mohou být v jednotkách nH. Adekvátní schéma budiče MOSFET s parazitními indukčnostmi je znázorněno na Obr. 3.1. Spínaný MOSFET byl pro zjednodušení nahrazen kondenzátorem C_{ISS} , který reprezentuje jeho gate kapacitu.

Obr. 3.1 Budič MOSFET s parazitními indukčnostmi

Budič MOSFET při nabíjení gate kapacity C_{ISS} dodává proud I_{DRVon} , který přes něj protéká z napájení U_{CC} . Při následném vybíjení kapacity teče přes budič z kapacity C_{ISS} proud I_{DRVoff} do země GND. V cestě nabíjecího resp. vybíjecího proudu I_{DRV} se tak nachází vždy dvě parazitní indukčnosti vývodů budiče L_{par} , na kterých podle vzorce (3.1) dochází k indukci napětí u(t) v závislosti na změně proudu I_{DRV} v čase di/dt.

$$u(t) = L \cdot \frac{di(t)}{dt}.$$
(3.1)

K největší změně proudu v čase di/dt na indukčnostech, a tedy největšímu rozkmitu napětí u(t), pak bude docházet v momentě, kdy se sepne PMOS resp. NMOS. Přes budič MOSFET tak začne téct rostoucí nabíjecí, resp. vybíjecí, proud I_{DRVon} , resp. I_{DRVoff} , až do bodu jeho ustálení na maximální hodnotě, která je dána proudovou schopností výstupních tranzistorů budiče. Výsledný rozkmit napětí u(t), indukovaný tímto proudem na indukčnostech L_{par} , se pak projeví jako zvlnění napájecího napětí U_{CC} , zemnícího potenciálu *GND*, a výstupu budiče *OUT*. Výsledné zvlnění napětí se může pohybovat v řádech několika voltů, což u některých aplikací může způsobit poškození, generaci falešných signálů a nebo narušení funkce dalších součástek.

Za průběh proudu I_{DRV} a jeho strmosti di/dt je přímo odpovědný spínací proces výstupního PMOS a NMOS tranzistoru budiče MOSFET. Úpravou jejich spínacího obvodu je tak možné upravit velikost di/dt na výstupu budiče a tím i výsledné zvlnění napětí u(t).

3.2 Simulační zapojení budiče MOSFET

Parametry budiče MOSFET budou zjišťovány ze simulačního zapojení na Obr. 3.2 pomocí časové analýzy v rozmezí 30 μ s. Simulace probíhala v prostředí Cadence Virtuoso pomocí simulátoru Spectre. Budič MOSFET je zde napájen pomocí ideálních PWL (piecewise linear) napěťových zdrojů $U_{1,3,4}$. U těchto napěťových PWL zdrojů je předpokládán větší proudový odběr, a proto mají do série zapojenou parazitní indukčnost $L_{par} = 3$ nH. Tato hodnota byla zvolena jako maximální předpokládaná parazitní indukčnost na vývodech pouzdra součástky. Sériová indukčnost L_{par} byla rovněž připojena na vývod *GND*, přes který je sváděn vybíjecí proud I_{DRVoff} .

Jako zdroj vstupního signálu IN pro spínání výstupu byl použit PWM (pulse width modulation) zdroj obdélníkových impulsů U_5 . Pro spouštěcí signál EN byl opět použit ideální PWL napěťový zdroj U_6 . U těchto dvou zdrojů nebyla připojena parazitní indukčnost L_{par} , protože slouží jako nízkovýkonové digitální signály a není na nich očekáván výrazný odběr proudu. Ze stejného důvodu nebyla připojena parazitní indukčnost L_{par} na vývod U_{SS} a zdroj U_2 , který slouží jako zemnící potenciál a napájení pro digitální část obvodu budiče MOSFET.

Výstup budiče MOSFET je připojen přes sériovou parazitní indukčnost vývodů L_{par} na kapacitu C_{ISS} = 1 nF. Tato kapacita má reprezentovat gate kapacitu výkonového MOSFET, který je spínán budičem MOSFET. Kompletní zapojení navržené v prostředí Cadence Virtuoso je pak možné vidět v příloze A.1.

Obr. 3.2 Simulační zapojení pro ověření parametrů budiče MOSFET

Napěťové zdroje PWL byly použity pro účely časové analýzy, aby bylo možné simulovat reálné startování obvodu. Hodnoty napětí u jednotlivých napěťových zdrojů na Obr. 3.2 udávají amplitudu daného zdroje. V případě PWL zdrojů U_1 , U_2 , U_3 , U_4 a U_6 jejich průběh začíná na 0 V a lineárně roste až do jejich uvedené nominální hodnoty napětí, na které setrvají až do konce časového průběhu simulace. Tyto průběhy jsou znázorněny na Obr. 3.3.

Napěťový PWM zdroj U_5 slouží jako generátor signálu *IN*. Jeho počáteční hodnota je na potenciálu 0 V. Na tomto potenciálu setrvává do doby, než dosáhnou všechna napájecí napětí své nominální hodnoty a obvod se neustálí. Poté je na vstupu *IN* v čase 20 µs vygenerován obdélníkový puls o šířce 5 µs. Po zbytek simulace je signál *IN* nulový. Časový průběh signálu *IN* a na něm závislého napětí U_{OUT} je vyobrazen na Obr. 3.3.

Obr. 3.3 Časový průběh napájecích napětí *U_{CC}*, *U_{CC_dig}*, *FGND_ref*, signálů *IN* a *EN* a výstupního napětí budiče *U_{OUT}*

Na výše popsaném simulačním zapojení bude testován originální obvod koncového stupně budiče MOSFET a navržené metody optimalizace.

3.3 Originální obvod budiče MOSFET (ORIG)

Účelem optimalizace koncového stupně budiče MOSFET v této práci je snížení rozkmitu napětí u(t) na parazitních indukčnostech L_{par} vývodů pouzdra budiče. Toho je dosaženo úpravou časového průběhu proudu I_{DRV} , a tím i di/dt, na výstupu budiče MOSFET, který je závislý na parametrech spínání výstupních tranzistorů PMOS a NMOS budiče.

Aby bylo možné určit efektivitu navržených metod optimalizace koncového stupně budiče, je nutné je srovnat s parametry originálního optimalizovaného obvodu.

Originální obvod určený pro optimalizaci byl budič MOSFET s PMOS – NMOS výstupem, spínaným pomocí budících invertorů. Schematické zapojení originálního koncového stupně budiče MOSFET je znázorněno na Obr. 3.4. Budič je zde rozdělen na horní stranu s budícími invertory pro PMOS a obdobně na dolní stranu pro výstupní NMOS. Budící invertor pro výstupní PMOS je tvořen kaskádou dvou invertorů M1, M2 a M3, M4 se stupňující se proudovou schopností. Obdobně je tvořen budící invertor pro výstupní NMOS tranzistory M5, M6 a M7, M8. Takto navržená kaskáda budicích invertorů přenáší signál k výstupním tranzistorům nezměněný. Proto jsou jejich vstupní signály *IN_PMOS* a *IN_NMOS* invertovány oproti vstupnímu signálu *IN* již na výstupu převaděčů úrovně napětí.

Rozměry jednotlivých tranzistorů jsou uvedeny v tabulce 3.1. Parametry Wg, Ng, W_{tot} a Lg zde reprezentují šířku gate segmentu tranzistoru, počet gate segmentů tranzistoru, celkovou šířku tranzistoru a délku gate segmentu tranzistoru.

Obr. 3.4 Originální zapojení výstupní části budiče MOSFET

Horní strana budiče				Dolní strana budiče					
	<i>Wg</i> [µm]	ng [-]	Wtot [µm]	<i>Lg</i> [µm]		<i>Wg</i> [µm]	ng [-]	Wtot [µm]	<i>Lg</i> [µm]
M1	10	3	30	0,5	M5	8,06	6	48,36	0,5
M2	8,2	2	16,4	0,5	M6	6,75	4	27	0,5
M3	12	24	288	0,5	M7	8	35	280	0,5
M4	10	10	100	0,5	M8	10	13	130	0,5
MP1	53	48	2544	0,6	MN1	53	48	2544	0,6

Tabulka 3.1 Parametry součástek originálního zapojení budiče MOSFET

Originální obvod je simulován v simulačním zapojení popsaném v kapitole 3.2. Velikost rozkmitu napětí u(t), vyvolaném na parazitních indukčnostech L_{par} průchodem proudu I_{DRV} , byla sledována na časových průbězích napětí U_{CC} a GND. Dále byl sledován signál IN a výstupní napětí budiče U_{OUT} , které byly vloženy do jednoho grafu pro porovnání. Byl rovněž sledován časový průběh proudu I_{DRV} . Derivací časového průběhu proudu I_{DRV} byla pak určena jeho strmost změny proudu v čase di/dt, která je podle vzorce (3.1) přímo zodpovědná za zvlnění napětí na výstupu U_{OUT} a napájecích napětích U_{CC} a GND. Popsané časové průběhy je možné vidět na Obr 3.5 při změně napětí U_{OUT} z LO do HO, a na Obr. 3.6 při změně z HO do LO..

Obr. 3.5 Časové průběhy napájecích napětí U_{CC} , *GND*, výstupního napětí budiče U_{OUT} , signálu *IN*, budicího proudu I_{DRV} a jeho změna proudu v čase di/dt při změně napětí U_{OUT} z **LO do HO** pro zapojení **ORIG**

Při změně napětí U_{OUT} z LO do HO je zapínán výstupní PMOS budiče MOSFET a výstupní NMOS je vypnut. Z časových průběhů na Obr. 3.5 je možné vidět, že při sepnutí PMOS začne narůstat proud I_{DRV} , který je sváděn z napájení U_{CC} do kapacity C_{ISS} přes sériovou parazitní indukčnost L_{par} vstupu U_{CC} a výstupu U_{OUT} budiče MOSFET. Na těchto indukčnostech pak vlivem změny proudu v čase di/dt vzniká úbytek napětí, což se na U_{CC} projeví jako zvlnění napětí. Z časového průběhu di/dt je zřejmé, že největší strmost změny proudu v čase nastává právě při počátku náběhu I_{DRV} do své maximální hodnoty. V čase, kdy je di/dt maximální, je rovněž možné vidět maximální zvlnění napětí na časovém průběhu U_{CC} . Paralelně s napětím U_{CC} je možné vidět i zvlnění napětí na výstupním průběhu U_{OUT} .

Zvlnění napětí na U_{CC} a *GND* před náběhem proudu I_{DRV} je způsobeno kapacitními proudy z parazitních kapacit výstupních MOSFET budiče a spínáním budících invertorů předřazených před výstupní PMOS a NMOS.

Obr 3.6 Časové průběhy napájecích napětí U_{CC} , GND, výstupního napětí budiče . U_{OUT} , signálu IN, budicího proudu I_{DRV} a jeho změna proudu v čase di/dtpři změně napětí U_{OUT} z HO do LO pro zapojení ORIG

Při změně napětí U_{OUT} z HO do LO je zapínán výstupní NMOS, zatímco výstupní PMOS je vypnutý. Z časových průběhů na Obr. 3.6 je zřejmé, že při sepnutí výstupního NMOS začne z kapacity C_{ISS} téct přes budič proud I_{DRV} . Proud I_{DRV} je sváděn do GNDa protéká přes budič a jeho sériové parazitní indukčnosti připojené na GND a U_{OUT} . Ze závislosti na Obr. 3.6 je vidět, že amplituda proudu I_{DRV} je při vybíjení kapacity C_{ISS} větší než při jejím nabíjení přes výstupní PMOS. To je dáno tím, že rozměry W_{tot} výstupních PMOS a NMOS jsou stejné, avšak proudová schopnost výstupního PMOS je až 3x nižší než proudová schopnost výstupního NMOS vlivem nižší pohyblivosti děr oproti elektronům. Časová změna proudu di/dt, vznikající na tomto proudu I_{DRV} , tak vyvolá větší úbytek napětí na parazitních indukčnostech, než v případě průběhu při změně napětí U_{OUT} z LO do HO. To je možné vidět na časových průbězích napětí U_{OUT} a *GND* je zřejmé, že největší zvlnění napětí vzniká na počátku náběhu proudu I_{DRV} , když je jeho di/dt maximální.

Zvlnění napětí na U_{CC} a GND před náběhem proudu I_{DRV} je opět způsoben kapacitními proudy a spínáním budicích invertorů pro PMOS a NMOS.

Ze závislostí pro náběžnou hranu, resp. sestupnou hranu, na Obr. 3.5, resp. Obr. 3.6, byly následně určeny parametry propagačního zpoždění D_{rise} , resp. D_{fall} . Jejich hodnota byla odečtena jako časový rozdíl mezi úrovní, kdy signál *IN* dosáhne 50 % (2,5 V) své nominální hodnoty (5 V), a úrovní, kdy napětí U_{OUT} vzroste, resp. poklesne, o 10 % (2 V pro nástupnou hranu, 18 V pro sestupnou hranu) své nominální hodnoty (20 V).

Dále byla rovněž odečtena amplituda rozkmitu napětí na napětích U_{CC} a GND.

Posledním odečteným parametrem byla hodnota di/dt_{rise} a di/dt_{fall} při změně napětí U_{OUT} z LO do HO a z Ho do LO. Na rozdíl od závislosti di/dt v časových průbězích na Obr. 3.5 a Obr. 3.6, nebyla vypočtená hodnota di/dt zjištěna derivací proudu I_{DRV} . Odečtená hodnota di/dt je zjištěna jako změna proudu I_{DRV} mezi 10 % a 60 % jeho maximální hodnoty (nejstrmější část náběhu proudu I_{DRV}), podělená časem uplynulým mezi těmito hodnotami, viz. následující rovnice:

$$\frac{di}{dt} = \frac{I_{60\%} - I_{10\%}}{t_{60\%} - t_{10\%}}.$$
(3.2)

Popsané vypočtené parametry originálního obvodu koncového stupně budiče MOSFET jsou uvedeny v tabulce 3.2.

Parametry originálního zapojení budiče MOSFET								
D _{rise} [ns]	D _{fall} [ns]	$U_{CC}[V]$	GND [V]	<i>di/dt_{rise}</i> [A/ns]	<i>di/dt_{fall}</i> [A/ns]			
13,97	7,19	1,15	3,48	0,278	0,709			

Tabulka 3.2 Odečtené parametry originálního obvodu zapojení budiče MOSFET
3.4 Optimalizace rozměrů budících invertorů (OPT)

Rozkmit napětí u(t) na parazitních indukčnostech L_{par} je možné snížit redukcí di/dt na výstupu budiče MOSFET při jeho spínání. Toho může být dosaženo úpravou spínacích parametrů výstupních PMOS a NMOS tranzistorů originálního budiče MOSFET. Metody optimalizace jsou tak zaměřené na úpravu spínacího obvodu (budící invertory) pro výstupní tranzistory budiče.

Optimalizace rozměrů tranzistorů budících invertorů pro výstupní PMOS a NMOS tranzistory budiče přímo neupravuje schéma originálního obvodu. Zapojení koncového stupně je tak stejné jako u obvodu ORIG, viz. Obr. 3.7. Srovnání rozměrů jednotlivých tranzistorů vůči originálnímu zapojení je uvedeno v tabulce 3.3.

Zmenšením tranzistorů budících invertorů je dosaženo snížení proudové schopnosti jednotlivých invertorů M1, M2 a M3, M4, resp. M5, M6 a M7, M8. Tím se zpomalí proces spínání výstupních tranzistorů budiče a invertorů M3, M4 a M7, M8. Výsledkem je pomalejší nárůst proudu I_{DRV} na výstupu budiče, čímž se sníží i di/dt.

Obr. 3.7 Zapojení koncového stupně budiče MOSFET pro metodu OPT

	Originální zapojení budiče MOSFET											
	Hori	ní stran	na budiče				Dolní strana budiče					
	<i>Wg</i> [µm]	ng [-]	W _{tot} [µm]	<i>Lg</i> [µm]			<i>Wg</i> [µm]	ng [-]	W _{tot} [µm]	<i>Lg</i> [µm]		
M1	10	3	30	0,5		M5	8,06	6	48,36	0,5		
M2	8,2	2	16,4	0,5		M6	6,75	4	27	0,5		
M3	12	24	288	0,5		M7	8	35	280	0,5		
M4	10	10	100	0,5		M8	10	13	130	0,5		
MP1	53	48	2544	0,6		MN1	53	48	2544	0,6		
		Zap	oojení optin	nalizace ro	DZ	měrů	budících in	vertor	ů			
	Hori	ní stran	na budiče			Dolní strana budiče						
	<i>Wg</i> [µm]	ng [-]	W _{tot} [µm]	<i>Lg</i> [µm]			<i>Wg</i> [µm]	ng [-]	W _{tot} [µm]	<i>Lg</i> [µm]		
M1	5,5	2	11	0,5		M5	7	3	21	0,5		
M2	6	2	12	0,5		M6	4	2	8	0,5		
M3	14	6	84	0,5		M7	6,1	5	30,5	0,5		
M4	5	Δ	20	0.5		M8	6	5	30	0.5		
	5	-	20	0,5		1.10	0	5	50	0,5		

Tabulka3.3Srovnání parametrů součástek originálního zapojení a zapojení OPT
budiče MOSFET

Návrh rozměrů jednotlivých tranzistorů optimalizovaného zapojení probíhal na základě simulace krokováním jejich parametrů šířky W_{tot} . Zmenšováním rozměru Wg tranzistorů docházelo ke zpomalování procesu spínání výstupních PMOS a NMOS, čímž byl zpomalován i náběh proudu I_{DRV} . Zpomalením náběhu proudu I_{DRV} se ovšem zpomaluje i nabíjení kapacity C_{ISS} , což zvětšuje délku náběžné a sestupné hrany výstupního napětí U_{OUT} a prodlužuje propagačním zpoždění D_{rise} a. D_{fall} . Optimalizace je tak kompromisem mezi propagačním zpožděním obvodu a redukcí di/dt na výstupu budiče.

Protože při tomto způsobu optimalizace platí, že čím menší rozměry Wg tranzistorů v invertorech budou, tím menší bude di/dt na výstupu, byl jejich rozměr Wg omezen hodnotou propagačního zpoždění D_{rise} a. D_{fall} . Jako omezení pro rozměry byl zvolen nárůst propagačního zpoždění D_{rise} a. D_{fall} o cca 1 ns při náběžné i sestupné hraně oproti D_{rise} a. D_{fall} v originálnímu zapojení.

Zmenšování tranzistorů v zapojení na Obr. 3.7 probíhalo následovně. Tranzistory M4 a M7 nabíjí gate kapacitu výstupních tranzistorů MP1 a MN1. Tím řídí jejich zapínání a strmost náběhu proudu I_{DRV} na výstupu budiče, a tedy i propagační zpoždění D_{rise} a D_{fall} . Jejich šířka W_{tot} tak byla zmenšována dokud propagační zpoždění D_{rise} a. D_{fall} nenarostlo o 1 ns oproti originálnímu zapojení. Velikost tranzistorů MP1 a MN1 zůstala nezměněna.

Tranzistory M3 a M8 vybíjí gate kapacitu výstupních tranzistorů MP1 a MN1, čímž řídí jejich vypínání. Zmenšováním jejich rozměru *Wg* se prodlužuje vypínání tranzistorů MP1 a MN1. Tím se zkracuje vložená prodleva, tzv. mrtvý čas, mezi vypnutím tranzistoru MP1 a zapnutím tranzistoru MN1, a obráceně. Jejich rozměry Wg tak byly zmenšovány tak, aby mezi sepnutím tranzistoru MP1 a MN1 byl stále vložen mrtvý čas alespoň 1 ns. Tím bylo zajištěno, že při spínání výstupu budiče neproteče žádný proud mezi U_{CC} a *GND*.

Tranzistory M1, M2 a M5, M6 nabíjí a vybíjí gate kapacity invertorů M3, M4 a M7, M8. Protože již přímo neřídí spínání tranzistorů MP1 a MN2, byly rozměry *Wg* těchto tranzistorů zmenšeny tak, aby neovlivnily rychlost spínání tranzistorů M3, M4, M7, a M8.

Parametry optimalizovaného obvodu byly následně simulovány na simulačním zapojení popsaném v kapitole 3.2. Výsledky časových průběhů optimalizovaného obvodu při změně napětí *U*_{OUT} z LO do HO a z HO do LO jsou uvedeny v závislostech na Obr. 3.8 a Obr. 3.9 Časové průběhy optimalizovaného obvodu jsou zde porovnány s časovými průběhy originálního obvodu.

Obr. 3.8 Srovnání časových průběhů napětí U_{CC} , GND, U_{OUT} , IN, proudu I_{DRV} a jeho změny proudu v čase di/dt při změně napětí U_{OUT} z LO do HO mezi zapojením **OPT** a ORIG

Na časových průbězích při změně napětí U_{OUT} z LO do HO, na Obr. 3.8, je možné vidět, že popsaným zmenšením rozměru Wg tranzistorů horní strany budiče MOSFET bylo dosaženo snížení strmosti di/dt nárůstu proudu I_{DRV} při nabíjení kapacity C_{ISS} oproti originálnímu zapojení. Toho bylo dosaženo při zachování stejné nominální hodnoty

proudu I_{DRV} . Snížením hodnoty di/dt bylo dosaženo výrazného snížení zvlnění napětí U_{CC} a *GND* oproti originálnímu zapojení. Zpoždění výstupního napětí U_{CC} oproti originálnímu zapojení je zde 1,1 ns, což je z pohledu aplikace zanedbatelné.

Obr. 3.9 Srovnání časových průběhů napětí U_{CC} , GND, U_{OUT} , IN, proudu I_{DRV} a jeho změny proudu v čase di/dt při změně napětí U_{OUT} z HO do LO mezi zapojením OPT a ORIG

Z časových průběhů při změně napětí U_{OUT} z HO do LO, na Obr. 3.9, je rovněž možné vidět, že zmenšením rozměru Wg tranzistorů v dolní straně budiče bylo dosaženo zpomalení náběhu proudu I_{DRV} ve srovnání s originálním zapojením. Amplituda proudu I_{DRV} při vybíjení kapacity C_{ISS} přes výstupní NMOS byla rovněž zachována na původní hodnotě. Tímto byla výrazně snížena i velikost di/dt. Na napájecích napětích U_{CC} a GND je možné vidět, že metoda OPT při změně výstupu z HO do LO téměř eliminovala zvlnění napětí na U_{CC} a na GND je snížen téměř na třetinu oproti originálnímu zapojení. Zpoždění sestupné hrany U_{CC} oproti originálnímu zapojení je zde 1,02 ns.

Z časových průběhů Obr. 3.8 a Obr. 3.9 byly odečteny parametry D_{rise} , D_{fall} , amplitudy rozkmitu napětí na U_{CC} a PGND, di/dt_{rise} a di/dt_{fall} pro zapojení metody OPT. Jejich hodnoty a srovnání s parametry originálního obvodu jsou uvedeny v tabulce 3.4.

	Parametry originálního zapojení budiče MOSFET									
D _{rise} [ns]	Drise [ns] Dfall [ns] Ucc [V] GND [V] di/dtrise [A/ns] di/dtfall [A/ns]									
13,97	7,19	1,15	3,48	0,278	0,709					
		Paran	netry meto	dy OPT						
D _{rise} [ns]	D _{fall} [ns]	$U_{cc}[V]$	GND [V]	<i>di/dt_{rise}</i> [A/ns]	<i>di/dt_{fall}</i> [A/ns]					
15,07	8,21	0,35	1,05	0,104	0,333					

Tabulka	3.4	Srovnání parametrů	zapojení	metody	OPT	S	originálním	zapojenín	m
		budiče MOSFET							

3.5 Metoda postupného spínání zpožďovacími rezistory (RES)

Tato metoda spínání koncového stupně budiče upravuje spínací charakteristiku výstupních PMOS a NMOS tranzistorů pomocí zpožďovacích rezistorů vložených do struktury budících invertorů. Pro účely této metody jsou původní výstupní tranzistory PMOS a NMOS rozděleny na čtyři paralelně zapojené tranzistory MP1, MP2, MP3, MP4 a MN1, MN2, MN3, MN4 s odstupňovanou velikostí. Tato úprava již výrazně mění zapojení koncového stupně budiče MOSFET oproti originálnímu zapojení. Schematické zapojení metody RES je na Obr. 3.10. Parametry jednotlivých součástek zapojení jsou pak uvedeny v tabulce 3.5.

Obr. 3.10 Zapojení koncového stupně budiče MOSFET pro metodu RES

Za	Zapojení optimalizace spínáním odstupňovaného výstupu zpožďovacími rezistory										
	Ho	rní stran	a budiče			Dolní strana budiče					
	<i>Wg</i> [µm]	ng [-]	W _{tot} [µm]	<i>Lg</i> [µm]			<i>Wg</i> [µm]	ng [-]	W _{tot} [µm]	<i>Lg</i> [µm]	
M1	7	3	21	0,5		M5	6	4	24	0,5	
M2	6,2	2	12,4	0,5		M6	5	4	20	0,5	
M4	10	10	100	0,5		M7	7	30	210	0,5	
MRP1	9,5	2	19	0,5		MRN1	3,4	1	3,4	0,5	
MRP2	9,5	4	38	0,5		MRN2	3,4	2	6,8	0,5	
MRP3	9,5	6	57	0,5		MRN3	3,4	3	10,2	0,5	
MRP4	9,5	8	76	0,5		MRN4	3,4	4	13,6	0,5	
MP1	6,4	20	128	0,6		MN1	4,8	20	96	0,6	
MP2	25,4	20	508	0,6		MN2	25,1	20	502	0,6	
MP3	38,3	20	766	0,6		MN3	40	20	800	0,6	
MP4	57,1	20	1142	0,6		MN4	57,3	20	1146	0,6	
Cel	ková šíř	ka <i>W</i> výs	tupních			Celková šířka W výstupních					
	PM	OS [µm]		2544			NM	OS [μm]		2544	
		Rezisto	ory	_				Rezisto	ory		
	<i>W</i> [µm]	<i>L</i> [μm]	Odpor $[\Omega]$				<i>W</i> /µm]	<i>L</i> [µm]	Odpor $[\Omega]$		
R1	15,36	3,82	90			R4	4,8	3	240		
R2	15,36	2,23	60			R5	38,32	7	60		
R3	15,36	3,29	80			R6	7,06	10	450		

Tabulka 3.5 Parametry součástek zapojení metody RES

Snížení strmosti proudu I_{DRV} na výstupu budiče, tedy di/dt, zde bylo dosaženo pomocí rozložení výstupních tranzistorů na čtyři paralelně zapojené odstupňované segmenty (MP1-4 a MN1-4) a jejich postupným spínáním. Součet jejich velikostí je stejný jako velikost originálních výstupních tranzistorů budiče. Tím byla zachována stejná proudová schopnost budiče MOSFET jako u originálního zapojení. Velikost jednotlivých segmentů tranzistorů MP1-4 a MN1-4 byla odstupňována cca podle poměru 1/20, 4/20, 6/20 a 9/20. Tento poměr byl určen experimentálně za pomoci simulátoru. Velikosti jednotlivých tranzistorů pak byly ještě mírně upraveny na základě výsledků simulací, aby bylo dosaženo ideálního výsledku. Takto odstupňovaný výstup byl následně postupně spínán vložením zpoždění mezi sepnutím jednotlivých segmentů MP1-4 a MN1-4. Jako první byly spínány bez zpoždění tranzistory MP1 a MN1, které mají nejmenší rozměr W_{tot} a jejich sepnutím je dodána na výstup budiče pouze cca 1/20 nominální hodnoty proudu *I_{DRV}*. Se stupňujícím zpožděním mezi jednotlivými segmenty jsou následně spínány zbylé tranzistory MP2-4 a MN2-4, které postupně dodávají 4/20, 6/20 a 9/20 nominálního proudu *I*_{DRV} na výstup budiče. Postupné spínání výstupních tranzistorů je vyobrazeno v grafu na Obr. 3.11.

Obr. 3.11 Časový průběh postupného spínání proudů přes tranzistory MP1-4 a MN1-4 v zapojení metody <u>RES</u>

Spínáním odstupňovaného výstupu je tak dosaženo postupného náběhu proudu I_{DRV} na výstupu budiče.

Zpoždění mezi sepnutím jednotlivých tranzistorů je vytvářeno vložením zpožd'ovacích rezistorů mezi gate jednotlivých výstupních tranzistorů MP1-4 a MN1-4. Princip spínání spočívá ve vytvoření RC článků, které jsou složeny z gate kapacit výstupních tranzistorů a vložených zpožďovacích odporů R1, R2, R3 a R4, R5, R6.

Aby byly jednotlivé gate výstupních PMOS a NMOS od sebe odděleny zpožďovacím odporem, byly rovněž rozděleny a odstupňovány jejich vypínací tranzistory MRP1-4 a MRN1-4. Vypínací tranzistory byly rozděleny na čtyři odstupňované segmenty se stejnou šířkou gate segmentů *Wg* gate, avšak s násobným růstem počtu gate segmentů *ng*. Celková velikost tranzistorů MRP1-4 a MRN1-4 je stejná jako velikost původních tranzistorů M3 a M8. Velikost jednotlivých tranzistorů MRP1-4 a MRN1-4 je pak dána poměrem velikosti segmentu výstupního tranzistoru, který je jimi vypínán, vůči celkové velikosti výstupního tranzistoru.

Na vytvořených RC článcích vzniká zpoždění vlivem zpomaleného nabíjení gate kapacity tranzistoru přes vložený odpor. Protože gate kapacita výstupních tranzistorů je dána jejich velikostí, bylo zpoždění řízeno hodnotou odporu zpožďovacích rezistorů. Hodnota odporu jednotlivých rezistorů byla určena na základě simulace jeho krokováním.

Optimálního výsledku redukce strmosti proudu *I*_{DRV} na výstupu budiče bylo pak dosaženo rovněž za pomoci simulátoru, kde bylo krokováno zpoždění mezi sepnutím jednotlivých tranzistorů MP1-4 a MN1-4.

Tranzistory M4 a M7, zodpovědné za zapínání výstupních PMOS a NMOS, zůstaly nezměněny. Tranzistory M1, M2 a M5, M6 tvořící první budící invertor v kaskádě, byly zmenšovány podle simulačních výsledků do bodu, kdy jejich rozměry W_{tot} neovlivnily rychlost spínání výstupních tranzistorů PMOS a NMOS.

Aby bylo možné porovnat použitou metodu postupného spínání oproti dalším použitým metodám, byla rovněž zvolena mezní hodnota nárůstu propagačního zpoždění D_{rise} a D_{fall} o 1 ns oproti originálnímu zapojení. Velikost redukce di/dt na výstupu budiče tak byla rovněž omezena hodnotou propagačního zpoždění D_{rise} a D_{fall} .

Parametry obvodu byly opět ověřovány na simulačním zapojení popsaném v kapitole 3.2. Výsledky časových průběhů napětí U_{OUT} při změně z LO do HO i z HO do LO u metody RES jsou uvedeny v závislostech na Obr. 3.12 a Obr. 3.13. Výsledky jsou zde opět srovnány s výsledky originálního zapojení budiče MOSFET.

Obr. 3.12 Srovnání časových průběhů napětí U_{CC} , GND, U_{OUT} , IN, proudu I_{DRV} a jeho změny proudu v čase di/dt při změně napětí U_{OUT} z **LO do HO** mezi zapojením **RES** a ORIG

Z časových průběhů při změně U_{OUT} z LO do HO u metody RES, na Obr. 3.12, je zřejmé, že postupné spínání proudů na výstupních PMOS (MP1-4) budiče snížilo strmost

di/dt náběhu proudu I_{DRV} , zatímco amplituda proudu byla zachována. Zvlnění napětí na GND tak při změně výstupu z LO do HO bylo téměř eliminováno, zatímco zvlnění napětí na U_{CC} bylo sníženo oproti originálnímu průběhu na polovinu. Zvlnění na výstupním napětí U_{OUT} bylo rovněž téměř eliminováno. Nárůst zpoždění náběžné hrany napětí U_{OUT} oproti originálnímu zapojení je zde 1,29 ns.

Obr. 3.13 Srovnání časových průběhů napětí U_{CC} , GND, U_{OUT} , IN, proudu I_{DRV} a jeho změny proudu v čase di/dt při změně napětí U_{OUT} z HO do LO mezi zapojením **RES** a ORIG

Z časového průběhu metody RES při změně napětí U_{OUT} z HO do LO, na Obr. 3.13, je možné opět pozorovat výrazné snížení strmosti di/dt proudu I_{DRV} na výstupu budiče oproti originálnímu zapojení. Proudová schopnost odstupňovaného NMOS výstupu (MN1-4) je zde v porovnání s originálním zapojením rovněž zachována. Snížením di/dt touto metodou pak bylo při změně výstupu z HO do LO téměř eliminováno zvlnění napětí na U_{CC} , zatímco zvlnění napětí na GND bylo oproti originálnímu zapojení zredukováno na třetinu. Tento trend sleduje i zvlnění napětí U_{OUT} . Zpoždění výstupu při sestupné hraně je zde 1,08 ns.

Z časových průběhů Obr. 3.12 a Obr. 3.13 byly opět vypočteny parametry D_{rise} , D_{fall} , amplituda rozkmitu na U_{CC} a PGND, di/dt_{rise} a di/dt_{fall} pro zapojení metody RES. Jejich hodnoty a srovnání s parametry originálního obvodu jsou uvedeny v tabulce 3.6.

Parametry originálního zapojení budiče MOSFET										
D _{rise} [ns]	D _{fall} [ns]	$U_{cc}[V]$	GND [V]	<i>di/dt_{rise}</i> [A/ns]	<i>di/dt_{fall}</i> [A/ns]					
13,97	7,19	1,15	3,48	0,278	0,709					
		Paran	netry meto	dy RES						
D _{rise} [ns]	D _{fall} [ns]	$U_{cc}[V]$	GND [V]	<i>di/dt_{rise}</i> [A/ns]	di/dt _{fall} [A/ns]					
15,26	8,27	0,45	0,81	0,106	0,261					

Tabulka	3.6	Srovnání parametrů	zapojení	metody	RES	a	originálním	zapojením
		budiče MOSFET						

3.6 Metoda postupného spínání asymetrickými invertory (AsInv)

Metoda postupného spínání asymetrickými invertory využívá obdobné úpravy spínací charakteristiky výstupních PMOS a NMOS tranzistorů, jako v případě metody RES z předešlé kapitoly 3.5. Výstupní tranzistory jsou v případě tohoto řešení rovněž rozděleny do čtyř paralelně zapojených segmentů MP1-4 a MN1-4. s odstupňovanou velikostí. Rozdílem oproti metodě RES je, že zpoždění mezi spínáním jednotlivých výstupních tranzistorů je vkládáno pomocí separátních budících invertorů pro daný výstupní tranzistor. Zpoždění mezi spínáním výstupních tranzistorů je tak místo zpožďovacích rezistorů řízeno odporem kanálu tranzistorů v budících invertorech. Upravené zapojení koncového stupně budiče MOSFET je znázorněno na Obr. 3.14. Parametry jednotlivých součástek jsou pak uvedeny v tabulce 3.7.

Obr. 3.14 Zapojení koncového stupně budiče MOSFET pro metodu AsInv

Z	Lapojení op	otimali	zace spínái	ním odstu	pi	ňovanéł	no výstupu	a budi	ících invert	orů	
	Horn	í stran	a budiče			Dolní strana budiče					
	<i>Wg</i> [µm]	ng [-]	W _{tot} [µm]	<i>Lg</i> [µm]			<i>Wg</i> [µm]	ng [-]	W _{tot} [µm]	<i>Lg</i> [µm]	
M1	5,5	3	16,5	0,5		M5	4	2	8	0,5	
M2	5	2	10	0,5		M6	3,5	2	7	0,5	
MSP1	9	2	18	0,5		MSN1	1,6	1	1,6	0,5	
MSP2	9	4	36	0,5		MSN2	3,1	2	6,2	0,5	
MSP3	9	6	54	0,5		MSN3	3,1	3	9,3	0,5	
MSP4	9	8	72	0,5		MSN4	3,52	4	14,08	0,5	
MSP5	5	2	10	0,5		MSN5	7	2	14	0,5	
MSP6	3,9	2	7,8	0,5		MSN6	7	2	14	0,5	
MSP7	3,8	2	7,6	0,5		MSN7	4,6	2	9,2	0,5	
MSP8	3,7	2	7,4	0,5		MSN8	4,3	2	8,6	0,5	
MP1	12,7	20	254	0,6		MN1	6,4	20	128	0,6	
MP2	25,4	20	508	0,6		MN2	25,4	20	508	0,6	
MP3	38,1	20	762	0,6		MN3	38,2	20	764	0,6	
MP4	51	20	1020	0,6		MN4	57,2	20	1144	0,6	
Celková šířka <i>W</i> výstupních PMOS [µm] 2544				Celková šířka <i>W</i> výstupních NMOS [µm]				2544			

Tabulka 3.7 Parametry součástek zapojení metody AsInv

Redukce *di/dt* na výstupu budiče MOSFET je zde rovněž dosaženo postupným spínáním paralelně zapojených výstupních tranzistorů MP1-4 a MN1-4 budiče. Celková kombinovaná šířka výstupních tranzistorů MP1-4 a MN1-4 je rovněž zachována. Tím je opět zajištěno, že nominální hodnota proudu *I*_{DRV} bude stejná jako u originálního zapojení. Poměr odstupňování výstupních tranzistorů zde byl zvolen pro horní a dolní stranu budiče jiný. Důvodem je jiná proudová schopnost výstupních PMOS tranzistorů MP1-4 v horní straně budiče a výstupních NMOS tranzistorů MN1-4 v dolní straně budiče. Při vybíjení kapacity C_{ISS} má tak proud I_{DRV}, tekoucí budičem přes výstupní NMOS, až dvojnásobnou amplitudu, než při nabíjení kapacity C_{ISS} přes výstupní PMOS. V důsledku toho je strmost *di/dt* proudu *I*_{DRV} při vybíjení kapacity *C*_{ISS} vyšší než při jejím nabíjení přes PMOS. Z toho důvodu byl poměr pro odstupňování výstupních tranzistorů MP1-4 zvolen 1/10, 2/10, 3/10 a 4/10, zatímco pro tranzistoryMN1-4 tento poměr byl 1/20, 4/20, 6/20 a 9/20. Výhodou tohoto odstupňování dolní strany je, že tranzistor MN1, který je ze čtveřice nejmenší, je sepnut jako první bez zpoždění a dodá pouze 1/20 nominální hodnoty proudu IDRV. Tím je dodatečně zredukována hodnota di/dt při počátku spínání NMOS výstupu budiče MOSFET.

Stejně jako v případě předešlé metody RES, popsané v kapitole 3.5, jsou odstupňované tranzistory postupně spínány vložením zpoždění mezi jednotlivé segmenty tranzistorů MP1-4 a MN1-4. Výsledná sekvence spínání výstupních tranzistorů je zobrazena na Obr. 3.15. Postupným spínáním výstupních tranzistorů MP1-4 a MN1-4 je tak dosaženo postupného náběhu proudu I_{DRV} .

Obr. 3.15 Časový průběh postupného spínání proudů přes tranzistory MP1-4 a MN1-4 v zapojení metody <u>AsInv</u>

U metody AsInv je však zpoždění mezi sepnutím jednotlivých výstupních tranzistorů vytvářeno separátními budícími invertory. Místo aby byly odstupňované výstupní tranzistory MP1-4 a MN1-4 spínány pouze jedním předřazeným budícím invertorem, jako v případě předešlých metod, byl pro každý výstupní tranzistor navržen vlastní budící invertor. Pro výstupní PMOS tranzistory MP1-4 tvoří separátní budící invertory tranzistory MSP1-8 a pro výstupní MN1-4 jsou to tranzistory MSN1-8, viz Obr. 3.14. Velikost zpoždění mezi sepnutím jednotlivých výstupních tranzistorů pak byla ovládána velikostí zapínacích tranzistorů MSP1-4 a MSN5-8. Princip tohoto spínání je, že zmenšováním rozměru *Wg* tranzistorů MSP1-4 a MSN5-8 je snižována maximální hodnota proudu, kterým je nabíjena gate kapacita jednotlivých segmentů výstupního tranzistorů MSP1-4 a MSN5-8 nastaven ideální rozestup mezi spínáním výstupních PMOS a NMOS tranzistorů.

Vypínací tranzistory MSP5-8 a MSN1-4 byly rovněž odstupňovány v závislosti na velikosti výstupního tranzistoru, který vypínají. Jejich rozměry *Wg* pak byly zmenšovány tak aby byl zachován dostatečný mrtvý čas mezi sepnutím MP1 a vypnutím MN4, resp. sepnutím MN1 a vypnutím MP4. Jejich celkový rozměr *Wg* byl tak oproti originálnímu zapojení zmenšen.

Při návrhu metody AsInv byl rovněž zvolen mezní povolený 1 ns nárůst propagačního zpoždění D_{rise} a D_{fall} oproti originálnímu obvodu. Snižování di/dt tak bylo omezeno tímto parametrem.

Tranzistory M1, M2 a M5, M6 byly následně krokováním jejich rozměru *Wg* za pomoci simulátoru zmenšovány do bodu, kdy jejich rozměr *Wg* stále neovlivňoval spínání výstupních tranzistorů MP1-4 a MN1-4.

Parametry navržené metody AsInv byly následně ověřovány na simulačním zapojení popsaném v kapitole 3.2. Výsledky časových průběhů při změně napětí U_{OUT} z LO do HO i z HO do LO jsou vyneseny v Obr. 3.16 a Obr. 3.17. Časové průběhy jsou zde porovnány s průběhy originálního obvodu.

Obr. 3.16 Srovnání časových průběhů napětí U_{CC} , GND, U_{OUT} , IN, proudu I_{DRV} a jeho změny proudu v čase di/dt při změně napětí U_{OUT} z LO do HO mezi zapojením AsInv a ORIG

Časové průběhy při změně napětí U_{OUT} z LO do HO na Obr. 3.16 ukazují, že touto metodou bylo dosaženo dosud nejvýraznějšího snížení *di/dt* vlivem postupného náběhu proudu I_{DRV} . Je rovněž možné vidět, že amplituda proudu I_{DRV} zůstala v porovnání s originálním zapojením nezměněna. Zvlnění na napětí U_{OUT} a *GND* je téměř eliminováno, zatímco zvlnění napětí U_{CC} je oproti originálu sníženo na čtvrtinu. Zpoždění náběžné hrany napětí U_{OUT} oproti originálu je zde 1,18 ns.

Obr. 3.17 Srovnání časových průběhů napětí U_{CC} , GND, U_{OUT} , IN, proudu I_{DRV} a jeho změny proudu v čase di/dt při změně napětí U_{OUT} z HO do LO mezi zapojením AsInv a ORIG

Z průběhů při změně napětí U_{OUT} z HO do LO, na Obr. 3.17, je opět možné vidět výrazné snížení strmosti *di/dt* proudu I_{DRV} oproti originálnímu průběhu. Ve srovnání s ostatními metodami optimalizace tím bylo dosaženo doposud nejlepší redukce *di/dt* při změně výstupu z HO do LO. Z průběhu proudu I_{DRV} je rovněž možné vidět, že jeho amplituda zůstala zachována. Zvlnění napětí na U_{OUT} a U_{CC} je opět téměř eliminováno, zatímco na průběhu napětí *GND* je redukováno na čtvrtinu originální hodnoty. Zpoždění výstupního napětí U_{OUT} oproti originálu zde dosahuje 1,01 ns.

Z výše uvedených časových průběhů na Obr. 3.16 a Obr. 3.17 byly opět vypočteny parametry obvodu D_{rise} , D_{fall} , amplituda rozkmitu napětí na U_{CC} , PGND, di/dt_{rise} a di/dt_{fall} . Jejich hodnoty jsou uvedeny v tabulce 3.8.

Parametry originálního zapojení budiče MOSFET										
D _{rise} [ns]	D _{fall} [ns]	$U_{cc}[V]$	GND [V]	<i>di/dt_{rise}</i> [A/ns]	<i>di/dt_{fall}</i> [A/ns]					
13,97	7,19	1,15	3,48	0,278	0,709					
		Paran	netry meto	dy AsInv						
D _{rise} [ns]	D _{fall} [ns]	$U_{cc}[V]$	GND [V]	di/dt _{rise} [A/ns]	di/dt _{fall} [A/ns]					
15,15	8,20	0,34	0,68	0,097	0,230					

Tabulka	3.8	Srovnání parametrů zapojení metody AsInv s originálním zapojením
		budiče MOSFET

4 Realizace testovacích struktur

Parametry navržených optimalizačních struktur byly simulovány v zapojení s ideálními zdroji napětí, viz. Obr. 3.2. Budiče MOSFET používané v reálných aplikacích jsou však napájeny pomocí reálných zdrojů napětí a proudu s parazitními vlastnostmi a neideálními průběhy napětí a proudu. Parazitní indukčnosti vývodu pouzdra, v zapojení na Obr. 3.2, jsou rovněž pouze odhadem reálných hodnot. Aby bylo možné ověřit reálné parametry a funkčnost optimalizačních metod, je nutné navrhnout testovací obvod s reálnými prvky a neideálními zdroji napájení. Tento obvod by měl být vyroben v 250 nm technologii firmy Onsemi a zapojen do vývodového pouzdra, v tomto případě SOIC-16, s reálnou parazitní sériovou indukčností vývodů. Takto vyrobený a zapouzdřený obvod je pak implementován na testovací desku plošných spojů (DPS), na níž budou měřeny reálné parametry obvodu.

4.1 Testovací obvod

Za účelem ověření reálných parametrů simulovaných optimalizačních metod, byl navržen testovací obvod, který je možné vidět na Obr. 4.1. Oproti simulačnímu zapojení z Obr. 3.2 je zde budič MOSFET napájen reálným stabilizovaným zdrojem napětí, který nahrazuje ideální PWL zdroje napětí. Vnitřní struktura tohoto zdroje byla převzata od firmy Onsemi a její návrh nebyl řešen v rámci této diplomové práce.

Aby bylo možné bezpečně připojit testovací obvod na vnější stabilizovaný zdroj napětí a generátor signálu, je nutné funkční součásti chránit před ESD. Za tímto účelem je mezi napájení budiče U_{CC} , resp. napájení stabilizovaného zdroje napětí U_{CC} supp. a uzemění USS, spojené se substrátem, připojena ESD ochrana napájení. Tato ESD ochrana je rovněž převzata od firmy Onsemi a je určena pro spínaný budič MOSFET s napájením do 25 V. Bylo rovněž nutné ochránit před ESD napájecí vstupy budiče U_{CCL}, resp. U_{CC_dig}, které jsou napájeny stabilizovaným zdrojem napětí z výstupů U5U, resp. U51. Stejně jako v kapitole 3.2, je pro vstupy budiče U_{CCL} a U_{CC} dig počítáno s napětím 5,2 V, a proto byly jako ESD ochrana použity 5,5 V zenerovy diody ZD2 a ZD3, které jsou připojeny mezi napájecí výstupy U5U, U51 a zemění USS. Tyto diody jsou součástí 250 nm technologie Onsemi, v níž byly navrhovány optimalizované struktury. Stejné zenerovy diody ZD1 a ZD4 byly využity i jako ESD ochrana vstupu pro signál EN a referenční napětí FGND ref, protože pro signál EN je ze stabilizovaného zdroje dodáváno napětí 5 V a referenční napětí FGND ref má odstup od U_{CC} rovněž přibližně 5 V. Ochranná dioda ZD1 je tak zapojena mezi vstup FGND ref a napájení U_{CC}. Dioda ZD4 pak mezi vstup pro signál EN a zemění U_{SS} . Protože vstup U_{CCL} slouží jako napájení pro digitální část obvodu, je paralelně k diodě ZD3 rovněž připojen kondenzátor C1 s kapacitou 10 pF, který slouží k odfiltrování rušení z napájecího zdroje.

Obr. 4.1 Schéma zapojení testovacího obvodu budiče MOSFET

ESD ochrana je rovněž připojena na vývod pro signál IN. Vnitřní strukturu této ESD ochrany je zobrazena na Obr. 4.2. Vstupní signál IN je zde přiváděn na dvě paralelně zapojené zenerovy diody, které jsou oddělené rezistorem. Použité zenerovy diody ZD1 a ZD2 jsou stejného typu jako v případě Obr. 4.1. První zenerova dioda ZD1 má za úkol v případě ESD výboje na IN svést většinu vygenerovaného proudu na Uss. Pokud dioda ZD1 není schopná přes svůj dynamický odpor svést veškerý proud vygenerovaný ESD výbojem, vyvolá zbylý proud úbytek napětí na R1. Pokud pak napětí na ZD2 přesáhne průrazné napětí, je zbylý proud z výboje sveden přes ni. Protože dioda ZD1 odvádí většinu proudu vygenerovaného výbojem, je navržena jako 10x větší než dioda ZD2. Takto navržená ESD ochrana zabraňuje poškození schmittova komparátoru, který vstupní IN signál převede na obdélníkový signál mezi potenciály U51 a USS. Komparátor také funguje jako impedanční oddělení vstupu IN od digitálního vstupu budiče MOSFET. Struktura schmittova komparátoru je rovněž převzata od firmy Onsemi. Signál ze schittova komparátoru je následně výkonově zesílen pomocí proudového budiče, aby byl schopný dodat dostatečný proud pro rychlé spínání tranzistorů v logickém obvodu budiče MOSFET. Proudový budič může být opět ve formě kaskády dvou invertorů s požadovanou proudovou schopností.

Obr. 4.2 Schéma zapojení ESD ochrany vstupu

Aby bylo možné při měření ověřit všechna nastavená napětí a signály na vstupech budiče MOSFET, jsou všechny jeho vstupní piny vyvedeny, včetně napájecích výstupů ze stabilizovaného zdroje napětí. Jak je možné vidět na Obr. 4.1, piny U_{CC} , PGND, a OUT mají přidružený druhý paralelně zapojený pin. Tyto piny slouží jako kelvinův kontakt, přes které bude možné měřit diferenčně hodnoty rozkmitu napětí na parazitní indukčnosti vývodu pouzdra. Kelvinovy kontakty byly k těmto vývodům přidány, protože právě na těchto vývodech budou měřeny reálné parametry budiče MOSFET.

Do obvodu na Obr. 4.1 byl rovněž přidán pin RES_IN , přes který je spojen rezistor R1 se zeměním U_{SS} . Rezistor R1 slouží jako rozlišovací rezistor pro struktury jednotlivých typů optimalizace, které mají přiřazenou svou specifickou hodnotu odporu uvedenou v tabulce 4.1. Připojením ohmmetru na tento pin pak bude možné určit

strukturu, která je v daném pouzdře zapojena v případě, že by došlo k chybě při pouzdření vyrobených struktur a byly zapojeny pod jiným názvem. V takovém případě by jinak nebylo možné žádným jednoduchým způsobem z vnějšku určit, jaká struktura se v pouzdře nachází.

Tabulka	4.1	Specifické	hodnoty	rozlišovacích	rezistorů	pro	jednotlivé	typy
		optimalizac	e					

Obvod	Hodnota odporu R1 [Ω]
ORIG	10k
OPT	20k
RES	30k
AsInv	40k

Takto navržený testovací obvod byl následně verifikován na simulačním zapojení na Obr. 4.3. Budič MOSFET zde má méně vývodů, než je naznačeno v zapojení na Obr. 4.1, protože k ověření parametrů budiče MOSFET jsou nutné pouze vývody U_{CC} , U_{CC_SUPP} , IN, OUT, U_{SS} a PGND. Zbylé vývody jsou tak v rámci simulace nevyvedeny a jsou jen naznačeny pomocí vývodových plošek. Realizaci tohoto testovacího zapojení v prostředí Cadence Virtuoso je možné vidět v příloze A.2.

Jako v případě simulačního zapojení pro obvody s ideálními zdroji napětí na Obr. 3.2, je zde počítáno s parazitní sériovou indukčností vývodů o hodnotě 3 nH a zatěžovací kapacitou 1 nF. Indukčnost napájecích vývodů U_{CC_SUPP} a U_{SS} byla zanedbána, protože přes ně neprotéká proud I_{DRV} odebíraný koncovým stupněm budiče. Budič MOSFET je zde napájen jedním ideálním PWL zdrojem napětí $U_I = 20$ V. Jako zdroj signálu opět slouží ideální PWM zdroj napětí U_2 .

Obr. 4.3 Simulační zapojení testovacího obvodu

Na základě simulačních výsledků z tohoto zapojení byly následně upraveny navržené struktury koncového stupně budiče MOSFET tak, aby dosahovaly optimálních výsledků při napájení ze stabilizovaného zdroje napětí namísto ideálních zdrojů napětí. Upravené struktury a jejich rozměry jsou pak ukázány v přílohách A.3 až A.8.

Testovací obvody s navrženými optimalizačními strukturami byly následně vyrobeny v 250 nm technologii firmy Onsemi. Vyrobené obvody byly následně zapojeny do pouzdra SOIC-16. Výsledné rozložení pinů na vývodech pouzdra SOIC-16 je na Obr. 4.4.

Obr. 4.4 Rozložení pinů testovacího obvodu na pouzdře SOIC-16

4.2 Testovací DPS

Aby bylo možné změřit vlastnosti navržených struktur s reálnými parazitními vlastnostmi pouzdra, byl vytvořen testovací substrát, na kterém budou testovací struktury osazeny a měřeny.

Návrh testovacího DPS probíhal v prostředí programu Autodesk Eagle. Schematické znázornění navrženého obvodu na testovacím DPS je na Obr. 4.5. Obvod se zde skládá z pouzdra SOIC-16, ve kterém je zapojen vyrobený testovací obvod s příslušnou optimalizační strukturou. Na napájecí vývody pouzdra U_{CC} a U_{CC_SUPP} jsou zde připojeny tři 100 nF blokovací kondenzátory C1, C2 a C3, které redukují potenciální rušení na napájecím napětí. Výstup budiče MOSFET *OUT* je připojen na zatěžovací kondenzátory C4, C5 a C6. Ačkoli je počítáno, že na výstupu bude jen jeden 1 nF zatěžovací kondenzátor, jsou zde připojeny tři kondenzátory, aby bylo možné v případě potřeby připojit na výstup libovolnou paralelní kombinaci zatěžovacích kondenzátorů. Mezi vývod *OUT* a zatěžovací kondenzátory C4, C5 a C6 je pak připojen snímací rezistor R_SENSE, na kterém má být diferenčně měřen úbytek napětí pří průchodu proudu z budiče MOSFET do zatěžovací kapacity. Velikost rezistoru R_SENSE byla zvolena

1,5 Ω. Na základě ohmova zákona, viz rovnice (4.1), bude časový průběh úbytku napětí na rezistoru R_SENSE odpovídat 1,5 násobku procházejícího proudu I_{DRV} z budiče MOSFET do kapacitní zátěže C_{ISS} .

$$i(t) = \frac{du(t)}{dt} \cdot \frac{1}{R_{SENSE}}.$$
(4.1)

Vývody testovací DPS pro napájení, generátor signálu i pro měřicí sondy jsou realizovány pomocí kolíkových lišt. Pro měřící vývody U_{CC} a $U_{CC_{KELV}}$ je použita kolíková lišta 4x1 (lišta $U_{CC_{KELV}}$). Na měřicí vývod $PGND_{KELV}$ a stejně tak na zatěžovací kondenzátory C4-6 jsou připojeny kolíkové lišty 2x1 (lišty PGND_KELV a OUT_MES), přes které je možné měřit dané signály vůči potenciálu analogové země GND. Stejné kolíkové lišty 2x1 jsou použity i pro připojení napájení U_{CC} (lišta SUPP) a pro generátor vstupního signálu IN (lišta IN). Pro měření výstupního signálu budiče MOSFET ještě před rezistorem R_SENSE je pak připojena kolíková lišta 2x2 na výstupy OUT a OUT_KELV (lišta OUT_KELV). Vnitřní napájecí signály U51, U5U, refP, EN a vývod RES_{IN} jsou připojeny na kolíkovou lištu 5x2, přes níž bude možné rovněž dané signály měřit vůči analogové zemi. Ke každému kontaktu na napájení U_{CC} a GND byly vytvořeny pájecí plošky U_{CC} , GND a PGND1-5, aby v případě potřeby bylo možné připájet dodatečné vývody nebo drátky pro měření.

Obr. 4.5 Schematické zapojení obvodu na testovacím DPS

Následně byly pro navržený obvod zvoleny pouzdra součástek a navržen layout testovací DPS, který je možné vidět na Obr. 4.6. Pro blokovací kondenzátory C1-3 a zatěžovací kondenzátory C4-6 bylo zvoleno SMD pouzdro C1210. Pouzdro snímacího rezistoru R_SENSE pak bylo zvoleno R2512. Velikost tohoto pouzdra byla zvolena s ohledem na maximální proudovou zatížitelnost, jelikož proud na výstupu budiče MOSFET v pulsním režimu dosahuje až 700 mA. V tomto případě vybraný rezistor disponoval maximální výkonovou zatížitelností 2 W.

Při návrhu rozložení součástek na desce byl kladen důraz na co nejkratší vodivé cesty mezi měřicími vývody a pouzdrem budiče MOSFET. Z toho důvodu byly kolíkové lišty

 U_{CC_KELV} , OUT_KELV a PGND_KELV umístěny co nejblíže k pouzdru budiče MOSFET. Rovněž kolíkové lišty pro napájení byly umístěny co nejblíže blokovacím kondenzátorům. Tímto rozmístěním má být dosaženo minimalizace parazitních indukčností a kapacit na desce. Rozměry navrženého testovacího substrátu jsou 5,6 x 5,1 cm. Kompletní layout testovací DPS včetně rozlité vrchní a spodní vrstvy je uveden v příloze A.9. Dodatečně pak byla na pájecí plošky pro rezistor R_SENSE připájena 2x1 kolíková lišta, aby přes ni bylo možné měřit rozkmit napětí na rezistoru pomocí diferenciální napěťové sondy. To je možné vidět na obrázku osazeného substrátu v příloze A.10.

Obr. 4.6 Layout testovacího substrátu

5 Měření reálných parametrů

Měření vyrobených struktur v reálných podmínkách s reálnými parazitními vlastnostmi probíhalo na navrženém testovacím substrátu, který je popsán v kapitole 4.2. Na základě naměřených časových průběhů signálů na výstupech reálných struktur budiče MOSFET je pak možné vyhodnotit efektivitu jednotlivých metod optimalizace srovnáním měřených výsledků mezi sebou navzájem. Aby však bylo možné srovnat měřené výsledky s výsledky simulace a potvrdit, že navržené metody skutečně fungují, je třeba odhadnout a následně aproximovat parazitní vlastnosti obvodu na testovací DPS. Pro jednodušší analýzu naměřených dat a následné srovnání pak je možné výsledky z osciloskopu importovat do prostředí Cadence Virtuoso v podobě CSV souboru. Zjištěné parazitní vlastnosti je pak nutné implementovat do simulačního zapojení pro testovací obvod. Simulační výsledky z tohoto zapojení pak mohou být porovnány s naměřenými výsledky.

5.1 Měřicí sestava

Parametry struktur osazených na testovacím DPS byly měřeny pomocí testovací sestavy na Obr. 5.1. Sestava se skládá z testovací DPS s osazeným testovacím obvodem v pouzdře SOIC-16, generátoru signálu UNI-T UTG962E [19], laboratorního napájecího zdroje N6705A DC power Analyzer [20], osciloskopu Tektronix DPO7254 Digital Phosphor Oscilloscope [21], 500 MHz diferenční napěťové sondy TIVH05 [22] a speciálních nasazovacích nástavců pro sondy osciloskopu na připravené vývody z lištových kolíků.

Obr. 5.1 Sestava pro měření reálných parametrů budiče MOSFET

Obvod je zde napájen z napájecího zdroje připojeného pomocí háčků na vodivé drátky, které jsou připájeny k nasazovací dutinkové liště 2x1. Takto připravené nasazovací dutinky jsou nasazeny na připravenou 2x1 kolíkovou lištu SUPP. Díky tomu, že napájecí vývody jsou jednoduše nasazeny na připravenou lištu SUPP, je možné snadno přepojovat napájecí zdroj z jedné testovací DPS na druhou.

Jako zdroj signálu pro budič MOSFET slouží frekvenční generátor, který dodává obdélníkový signál se střídou 50% a frekvencí 100 kHz. Signál je na testovací DPS přiváděn přes BNC kabel. Využitý BNC kabel je na jednom konci uříznut a odizolován. Na odhalený zemnící drát a signálový drát je pak připájena stejná nasazovací kruhová dutinka jako v případě napájecího zdroje. Pomocí připájených nasazovacích dutinek je pak BNC kabel nasazen na připravenou kolíkovou lištu IN.

Měření časových průběhů na měřicích výstupech budiče MOSFET probíhalo pomocí osciloskopu s 500 MHz napěťovými sondami. K měření byl použit hrot sondy, který byl zasunut do dutinového nástavce připájeného k malé destičce s připojenou dutinkovou lištou 2x1. Dutinková lišta má jeden z kolíků připojený k hrotu sondy a slouží jako snímací vývod. Druhý kolík dutinkové lišty je pak připojen na rozlitou zem na destičce a slouží jako kontakt na zemnící potenciál pro sondu. Takto připravená destička se zasunutou sondou je pak pomocí dutinkové lišty nasazována na připravené měřicí kolíkové lišty. Tím je dosaženo jednoduchého připojení sond osciloskopu k testovací DPS a je možné je snadno přepojovat mezi různými vývody.

Fotografie provedení těchto připojení je uvedena v příloze A.11.

Dále byla za účelem měření průběhu proudu na výstupu budiče MOSFET použita 500 MHz diferenční napěťová sonda TIVH05 od firmy Tektronix. Za tímto účelem byla na pájecí plošky snímacího rezistoru R_SENSE připájena kolíková lišta 2x1, jejíž provedení je možné vidět na obrázku osazené DPS v příloze A.10. Na tuto kolíkovou lištu byla následně nasazena diferenční napěťová sonda, jejíž výstup byl pak připojen do osciloskopu. Průběh napětí na diferenční napěťové sondě pak dle ohmova zákona reprezentuje průběh proudu na rezistoru, který je znásobený velikostí jeho odporu.

5.2 Aproximace parazitních vlastností obvodu

Na měřicí sestavě popsané v předešlé kapitole byly následně měřeny reálné průběhy napětí na vývodech pouzdra vyrobených struktur. Vlivem parazitních vlastností testovací DPS jsou však naměřené průběhy značně zarušené a rozkmitávají se na parazitních indukčnostech a kapacitách DPS. Kvůli rozkmitanému průběhu pak není možné přímo odečíst parametr *di/dt* na výstupu budiče MOSFET a ani věrně porovnat výsledky s původní simulací. Nejlépe je vliv parazitních vlastností obvodu možné vidět na průbězích napětí naměřených na testovacím DPS s originálním obvodem koncového stupně budiče MOSFET. Nejvíce se pak zarušení projevuje při změně výstupu budiče z HO do LO, kdy je spínána dolní strana koncového stupně budiče MOSFET, která se vyznačuje vyšší proudovou schopností. Ukázky naměřených průběhů na testovacím DPS s originálním obvodem jsou uvedeny na Obr. 5.2, 5.3 a 5.4. Kompletní výčet naměřených výsledků z osciloskopu je pak uveden v přílohách B.1-B.16.

Obr. 5.2 Průběh napětí na vývodu *OUT* (tyrkysová) a *IN* (červená) při změně výstupu budiče MOSFET z HO do LO

Obr. 5.3 Průběh napětí na rezistoru R_SENSE při změně výstupu budiče MOSFET z HO do LO

Obr. 5.4 Průběh napětí na vývodu U_{CC} (fialová) a *PGND* (modrá) při změně výstupu budiče MOSFET z HO do LO

V rámci měření parametrů byla sledována napětí na OUT, IN, U_{CC}, a PGND vývodech budiče MOSFET. Dále byl měřen diferenčně úbytek napětí na rezistoru R_SENSE, který reprezentuje průběh proudu I_{DRV} . Tyto průběhy napětí byly sledovány pro případy změny napětí výstupu *OUT* z LO do HO i z HO do LO.

Aby bylo možné vyhodnotit naměřené výsledky a srovnat je se simulací, je nutné aproximovat parazitní vlivy na testovacím DPS a zanést jejich vliv i do simulačního zapojení, které bylo uvedeno na Obr. 4.3.

Za účelem analýzy a vyhodnocení výsledků byly časové průběhy naměřené na osciloskopu vyexportovány v podobě CSV souboru, pomocí nichž pak mohou být vloženy do prostředí Cadence Virtuoso. S vloženými průběhy je pak možné zacházet jako s jakýmkoli jiným simulovaným výsledkem. Pro importování časových průběhů napětí z osciloskopu byl užit obvod na Obr. 5.5.

Soubory CSV jsou zde importovány pomocí ideálního zdroje napětí PWLF, který svůj výstupní průběh napětí určuje na základě dat ve vloženém CSV souboru. Zdroj je připojen na RC filtr, jehož mezní frekvence $f_c = 795,8$ MHz, viz. rovnice (5.1):

$$f_c = \frac{1}{2\pi R_F C_F} = \frac{1}{2\pi \cdot 200 \cdot 1p} = 795, 8 MHz.$$
(5.1)

Filtr je zde využit za účelem omezení frekvence signálu generovaného z CSV souboru, který jej definuje pomocí bodů na časové ose. Simulátor pak při vytváření průběhu napětí na PWLF tyto body spojuje přímými spojnicemi. Tím je generován signál s ostrými hranami, který je tvořen vysokofrekvenčními složkami v řádech až desítek GHz. Takovýto signál pak neodpovídá realitě a má za následek problémy s konvergencí výpočtů při simulaci. Omezením frekvenční složky signálu PWLF zdroje na 795,8 MHz jsou tak tyto problémy odstraněny a zároveň nedochází ke zkreslení průběhu signálu, jelikož maximální měřitelná frekvence sondy osciloskopu byla 500 MHz.

Signál z filtru je pak převáděn přes ideální zdroj napětí řízený napětím VCVS na výstup, ze kterého je vložený průběh napětí snímán.

Tímto způsobem pak byly importovány do prostředí Cadence Virtuoso všechny naměřené průběhy napětí u jednotlivých testovacích struktur.

Aby bylo možné porovnat naměřené výsledky se simulací, bylo nutné odhadnout velikost parazitních indukčností a kapacit na testovacím DPS a implementovat je do simulačního obvodu. Za tímto účelem byla provedena DFT analýza diferenčního napětí naměřeného na rezistoru R_SENSE pro všechny vyrobené struktury. Srovnání výsledků pro jednotlivé struktury je uvedeno na Obr. 5.6.

Obr 5.6 Výsledky DFT analýzy průběhu napětí na rezistoru R_SENSE pro všechny . měřené struktury při změně výstupu budiče z LO do HO (vlevo) a z HO do LO (vpravo)

Na základě porovnání výsledků DFT analýzy mezi jednotlivými strukturami je možné vidět, že dominantní frekvenční složka se nachází na nejnižších kmitočtech. Tato složka reprezentuje náběh proudu *I*_{DRV}, kdy je na rezistoru R_SENSE generován největší úbytek napětí. V ideálním případě je tento náběh plynulý bez vysokofrekvenčních kmitů, a proto bude rozložen na nejnižších frekvencích spektra.

Zbylé frekvenční složky jsou pak kmity vyvolané parazitními vlastnostmi obvodu a kmitají okolo hladiny průběhu proudu I_{DRV} . Tyto parazitní vlivy by měly být společné pro všechny testovací struktury. Dominantní složka parazitních kmitů pak má frekvenci od 200 MHz do 400 MHz, přičemž zákmity s nejvyšší amplitudou mají frekvenci cca 400 MHz. Toto je možné vidět na Obr. 5.6 hlavně při změně výstupu z LO do HO (vlevo). Stejný výsledek je možné pozorovat i v grafu při změně výstupu z HO do LO (vpravo), ale kvůli vyšší amplitudě náběhu proudu I_{DRV} je zde výrazná hlavně dominantní složka signálu , zatímco ostatní složky jsou nevýrazné. Tyto kmity pak vznikají na kombinaci parazitních indukčností a kapacit součástek na DPS, které tvoří rezonanční LC články. Na základě toho je pak možné podle vzorce (5.2) odhadnout reálnou hodnotu parazitních indukčností a kapacit.

$$f_R = \frac{1}{2\pi\sqrt{LC}} \to LC = \left(\frac{1}{2\pi f_R}\right)^2.$$
(5.2)

Po dosazení do rovnice pak:

$$LC = \left(\frac{1}{2\pi \cdot 400M}\right)^2 = 1,58 \cdot 10^{-19} \, FH.$$
 (5.3)

Z výsledku rovnice (5.3) je pak možné odhadnout kombinaci parazitní kapacity a indukčnosti v cestě měřeného signálu. V tomto případě je možná kombinace kapacity 50 - 150 pF, resp. 1 - 3 nF, a indukčnosti v řádu 1 - 3 nH, resp. 50 - 150 pH. S ohledem na fyzikálně reálné parazitní vlastnosti součástek je tímto vyloučena možnost vzniku takovéhoto parazitního LC článku na indukčností vývodů pouzdra budiče MOSFET, pro něž je tato kombinace kapacity a indukčnosti nereálná. Parazitní kmity na LC článku vývodů pouzdra by se pak projevovaly až v řádu GHz. Tato kombinace však může vznikat na parazitních vlastnostech zatěžovacího SMD kondenzátoru, jehož kapacita má velikost $C_{ISS} = 1$ nF. Velikost jeho parazitní sériové indukčnosti L_{ESL} pak může dosahovat až 0,5 nH. Parazitní sériový odpor kapacitoru R_{ESR} má pak velikost v řádu miliohmů, zatímco parazitní paralelní odpor R_{Leak} je v řádech gigaohmů [23]. Požadované frekvenci pak odpovídá kombinace $C_{ISS} = 1$ nF a $L_{ESL} = 0,15$ nH.

Další zdrojem parazitních kmitů může být LC článek tvořený kombinací kapacity diferenční sondy a sériové indukčnosti SMD rezistoru R_SENSE. Kapacita diferenční napěťové sondy dle katalogového listu může být v řádech $C_{dif} = 35 - 70$ pF. Vzhledem k tomu, že velikost odporu rezistoru R_SENSE je pouze 1,5 Ω , je možné jeho chování přiblížit chování vodiče. V takovém případě po dosazení do rovnice (5.4) vyplývá, že

indukčnost SMD rezistoru při použití pouzdra R2512, s rozměry 6,4 x 3,1 mm, může dosahovat až 2 nH [24].

$$L_{SENSE} = 2l \cdot \left\{ ln \left[\left(\frac{2l}{d} \right) \cdot \left(1 + \sqrt{1 + \left(\frac{d}{2l} \right)^2} \right) \right] - \sqrt{1 + \left(\frac{d}{2l} \right)^2} \cdot \frac{1}{4} + \frac{d}{2l} \right\}, \quad (5.4)$$

kde *d* je průměr rezistoru a *l* délka rezistoru.

Na základě těchto předpokladů byla pomocí krokování parametrů parazit stanovena ze simulace hodnota parazitní indukčnosti $L_{SENSE} = 1,7$ nH a kapacita diferenční napěťové sondy $C_{dif} = 65$ pF. Konečné velikosti parazitních vlastností R_SENSE a zatěžovací kapacity C_{ISS} byly určeny porovnáváním simulovaných výsledků s naměřenými průběhy diferenčního napětí U_{SENSE} na testovacích strukturách. Výsledné parametry pak odpovídají hodnotám, kdy se frekvence parazitních kmitů přibližně shodovala s frekvencí kmitů na naměřených průbězích napětí U_{SENSE} .

Zjištěné hodnoty parazitních vlastností testovací DPS byly následně zakomponovány do simulačního zapojení pro testovací struktury. Výsledné simulační zapojení s implementovanými parazitními vlastnostmi je na Obr. 5.7.

Dalším krokem při aproximaci parazitních vlastností testovacích struktur bylo určení parazitní sériové indukčnosti vývodů pouzdra budiče MOSFET. Stejně jako v původních simulačních zapojeních na Obr. 3.2 a 4.3 je zde použit prvotní odhad sériové indukčnosti vývodů L_{par} jako 3 nH. Velikost hodnoty L_{par} pak byla krokována od 1 nH do 4 nH. Následně byly porovnávány výsledky simulovaných průběhů napětí na vývodech U_{CC} a *PGND* s měřenými průběhy napětí z osciloskopu. Podle bonding diagramu, uvedeném v příloze A.13, však vyplývá, že délky vývodů a bondovacích drátků nejsou zcela stejné, a proto se může parazitní indukčnost na jednotlivých vývodech lišit. Z toho důvodu byla na základě porovnání amplitud rozkmitu napětí na parazitní sériové indukčnosti vývodů pouzdra budiče MOSFET stanovena odpovídající hodnota L_{par} pro vývody *PGND* a U_{CC} separátně. Pro vývod *PGND* nejlepší shody dosáhla amplituda rozkmitu napětí pro hodnotu $L_{par} = 3$ nH, což s výhodou koresponduje s původním odhadem použitým v simulačních zapojeních na Obr. 3.2 a 4.3. Pro vývod U_{CC} pak bylo dosaženo nejlepší shody při hodnotě $L_{UCC} = 2,8$ nH.

Dále pak byla stanovena parazitní sériová indukčnost vývodu OUT. Její hodnota byla stanovena shodně s jako $L_{par} = 3$ nH. Tato hodnota byla určena na základě bonding diagramu v příloze A.13. Jelikož piny *PGND* i *OUT* mají stejně dlouhé bondovací drátky i vývody, je tak možné předpokládat, že jejich parazitní sériová indukčnost bude stejná.

Zakomponované parazitní sériové indukčnosti vývodů pouzdra je pak opět možné vidět na Obr. 5.7.

Obr. 5.7 Simulační zapojení testovacího obvodu s implementovanými parazitními vlastnostmi součástek na DPS

Simulační obvod s implementovanými parazitními vlastnostmi součástek na DPS, viz. Obr. 5.7, byl následně použit pro porovnání simulovaných průběhů s naměřenými.

Na rozdíl od reálného měření, kde je frekvence měřených průběhů omezena maximální snímací frekvencí napěťových sond na 500 MHz, však simulátor Spectre takové omezení nemá. V rámci simulovaných průběhů se tak projevují do výsledku vysokofrekvenční složky v řádu jednotek GHz, které vznikají na kombinaci parazitních kapacit součástek uvnitř budiče MOSFET a parazitních sériových indukčností přidaných do simulačního obvodu.

Pro další aproximaci podmínek simulace je tak využit obvod ideálního filtru s butterworthovou aproximací, který je uveden na Obr. 5.8. Obvod se skládá ze dvou zdrojů napětí řízenými napětím VCVS, které slouží jako impedanční oddělení filtru od simulovaného obvodu. Signál ze zdroje E1 je parametrem gain 2x zesílen a následně přenášen přes ideální filtr s butterworthovou aproximací 5. řádu, u nějž byla zvolena vstupní i výstupní impedance 50 Ω . Dvojnásobné zesílení zdroje E1 je zvoleno za účelem zachování stejné amplitudy filtrovaného signálu, protože filtr s butterworthovou aproximací dosahuje maximálního přenosu -6 dB (0,5) [25]. Přivedením signálu s dvojnásobnou amplitudou na vstup filtru je zajištěno, že na jeho výstupu bude mít signál amplitudu původního signálu *IN*. Mezní frekvence filtru je nastavena na 800 MHz, stejně jako v případě filtru pro importování signálů z CSV souboru. Tímto způsobem je zajištěno, že vysokofrekvenční GHz složky signálu, vznikající na vnitřních kapacitách budiče MOSFET, budou odfiltrovány, zatímco složky do 500 MHz, které by byly jinak změřeny i pomocí napěťových sond použitých při měření, budou neovlivněny. Signál z výstupu filtru je pak přenášen zdrojem E2 na výstup.

Obr. 5.8 Ideální filtr s Butterworthovou aproximací pro odfiltrování GHz složek ze simulovaného průběhu napětí

Simulované průběhy napětí na vývodech U_{CC} , *PGND*, *OUT* a U_{SENSE} pak byly převáděny přes tento filtr a až následně srovnány s měřenými průběhy. Kompletní zapojení simulačního obvodu s implementovanými aproximačními parametry je možné vidět v příloze A.12.

5.3 Srovnání naměřených výsledků

Výsledky průběhu napětí naměřených na měřicí sestavě, popsané v kapitole 5.1, byly následně porovnávány s výsledky simulovaných průběhů napětí. Simulované průběhy pak vychází ze simulačního zapojení, popsaného v kapitole 5.2, které aproximuje podmínky simulace vůči reálným podmínkám měření.

5.3.1 Průběhy napětí na vývodech U_{CC} a PGND

Hlavní parametr určující efektivitu optimalizace je rozkmit napětí na parazitní sériové indukčnosti napájecích vývodů budiče MOSFET. Tento rozkmit může ovlivnit další součástky obvodu (např. napěťového regulátoru nebo převaděč úrovně napětí) omezením jejich napěťového prostoru

Jednotné porovnání naměřeného a simulovaného rozkmitu napětí na jednotlivých testovacích strukturách je pak ukázáno na Obr. 5.9. Uvedené průběhy napětí jsou výsledky měření pomocí osciloskopu, které byly importovány do prostředí Cadence Virtuoso, a odpovídající průběhy aproximovaného simulačního zapojení.

Obr. 5.9 Srovnání reálných a simulovaných průběhů napětí na vývodu U_{CC} při změně výstupu budiče MOSFET z LO do HO (vlevo) a na vývodu *PGND* při změně výstupu z HO do LO (vpravo) pro všechny testovací struktury

Pro změnu výstupu budiče MOSFET z LO do HO je uveden (vlevo) průběh napětí na vývodu U_{CC} , protože je v této fázi zatěžovací kapacita C_{ISS} nabíjena přes horní stranu budiče MOSFET a výstupní proud I_{DRV} je odebírán z napájení U_{CC} . Z toho důvodu je v této fázi největší rozkmit napětí na parazitní sériové indukčnosti vývodu U_{CC} . Pro

změnu výstupu budiče z HO do LO je pak uveden (vpravo) průběh napětí na *PGND*, protože je v této fázi zatěžovací kapacita C_{ISS} vybíjena přes dolní stranu budiče MOSFET do analogové země *PGND*. Největší rozkmit napětí při průchodu proudu I_{DRV} pak bude právě na vývodu *PGND*.

Pojmenování průběhů na Obr. 5.9 pak koresponduje s názvem optimalizačních metod, kde **ORIG** značí strukturu s originálním obvodem budiče MOSFET, **OPT** je struktura s obvodem optimalizace rozměrů budících invertorů, **RES** reprezentuje strukturu s metodou postupného spínání zpožďovacími rezistory a **AsInv** pak strukturu s metodou postupného spínání asymetrickými invertory. Přívlastek **OSC** pak značí, že tento průběh je importován z osciloskopu. Obdobně pak přívlastek **SIM** bude označovat simulované průběhy. Ty jsou navíc v každém z vyobrazených průběhů vyznačeny **bledě modrou** barvou. Tento typ značení je použit u všech ukázaných průběhů v této i dalších kapitolách.

Podle vyznačených hodnot napětí na U_{CC} je amplituda původního rozkmitu 0,72 V. Na základě odečtených hodnot amplitudy rozkmitu napětí na ostatních strukturách pak vychází, že vlivem optimalizace došlo ke snížení amplitudy rozkmitu až na 0,33 V v případě metody OPT. Pro metodu RES, resp. AsInv, je pak amplituda rozkmitu napětí 0,41 V, resp. 0,38 V. Vzhledem k tomu, že se tyto hodnoty liší jen o 0,08 V, lze prohlásit, že dosahují srovnatelného výsledku při optimalizaci horní strany budiče MOSFET. Je nutné však podotknout, že horní strana budiče MOSFET má nižší proudovou schopnost a tudíž je na jejím výstupu i nižší hodnota *di/dt*, než na dolní straně budiče.

Rozdíl efektivity optimalizací je pak možné vidět právě na průbězích napětí na *PGND*, kdy je aktivní právě dolní strana budiče MOSFET s vyšší proudovou schopností. Amplituda rozkmitu na parazitní sériové indukčnosti vývodu originálního obvodu zde dosáhla 1,45 V. Nejlepšího výsledku pak dosáhly metody RES a AsInv, u kterých amplituda rozkmitu napětí dosáhla 0,44 V a 0,41 V. Metoda OPT pak zredukovala amplitudu rozkmitu na 0,65 V, což je o 0,21 V, resp. 0,24 V, méně, než zbylé dvě metody.

Porovnáním průběhů napětí z osciloskopu spolu se simulovanými průběhy pak ukazuje, že amplitudy rozkmitu napětí na U_{CC} a *PGND* se téměř shodují. Lze tak prohlásit, že měřené výsledky rozkmitu napětí souhlasí se simulovaným předpokladem a navržené metody optimalizace fungují dle stanovených parametrů. Bližší porovnání simulovaných a měřených průběhů *PGND* a U_{CC} je uvedeno v přílohách C.1 - C.4.

Porovnání efektivity jednotlivých metod optimalizace je možné vidět i na Obr. 5.10, kde jsou průběhy napětí z osciloskopu uvedeny v jednom grafu. Z obrázku je zde zřejmé, že v porovnání s průběhem napětí na U_{CC} a *PGND* originálního obvodu (červená) dosáhly použité metody optimalizace výrazného snížení rozkmitu napětí. V případě napětí U_{CC} pak dosahuje nejnižší amplitudy metoda OPT (zelená) druhá pak metoda AsInv (tyrkysová) a poslední metoda RES (modrá) V případě napětí na vývodu *PGND* nejlepšího výsledku dosáhla metoda AsInv, srovnatelného výsledku pak metoda RES a nejhůře si vedla metoda OPT.

Obr. 5.10 Vzájemné porovnání simulovaných resp. reálných průběhů napětí na vývodu *U_{CC}* při změně výstupu budiče MOSFET z LO do HO (vlevo) a na vývodu *PGND* při změně výstupu z HO do LO (vpravo) pro všechny testovací struktury

Porovnáním naměřených amplitud rozkmitu napětí pak vychází, že nejlepšího výsledku dosahuje metoda postupného spínání asymetrickými invertory (AsInv), která dosáhla nejlepšího výsledku při redukci rozkmitu napětí na PGND, zatímco při rozkmitu napětí na U_{CC} dosáhla jen o 0,05 V nižší redukce než metoda OPT. Metoda OPT však dosáhla o 0,24 V horšího výsledku při redukci rozkmitu napětí na vývodu PGND. Srovnatelných výsledků jako metoda AsInv pak dosahovala i metoda RES. Toto porovnání pak koresponduje s výsledky z kapitoly 3, kde nejlepšího výsledku při redukci rozkmitu napětí na PGND a U_{CC} dosáhla rovněž metoda AsInv. Srovnání měřených výsledků amplitudy rozkmitu napětí na vývodech U_{CC} a PGND je pak uvedeno v tabulce 5.1.

	ORIG	ОРТ	RES	AsInv
Ucc [V]	0,72	0,33	0,41	0,38
U_{CC_diff} [V]	-	0,39	0,31	0,34
PGND [V]	1,45	0,65	0,44	0,41
PGND _{diff} [V]	-	0,8	1,01	1,04

Tabulka 5.1 Amplitudy rozkmitu napětí na vývodech U_{CC} a *PGND* a rozdílu velikosti amplitudy vůči originálnímu obvodu
5.3.2 Průběh napětí na rezistoru R_SENSE

Efektivitu optimalizace lze nepřímo zhodnotit i z průběhu napětí na snímacím rezistoru R_SENSE, tedy z průběhu napětí U_{SENSE} . Toto napětí reprezentuje průběh proudu I_{DRV} na výstupu budiče MOSFET, který protéká přes rezistor R_SENSE a vytváří úbytek napětí U_{SENSE} . Protože je R_SENSE zvolen 1,5 Ω , odpovídá průběh napětí U_{SENSE} podle ohmova zákona 1,5 násobku proudu I_{DRV} , viz. rovnice (4.1). Jak bylo vysvětleno v kapitole 3.1, rozkmit napětí na parazitní sériové indukčnosti vývodů pouzdra je způsoben průchodem proudu I_{DRV} a je přímo úměrný jeho strmosti nárůstu di/dt. Navržené metody optimalizace tak cílí právě na redukci di/dt a byly podle něj rovněž nastavovány jejich parametry. Strmost di/dt proudu I_{DRV} je tak také ukazatelem efektivity optimalizace.

Na rozdíl od simulačních výsledků ideálního obvodu zapojení budiče MOSFET, který je popsán v kapitole 3.2, však u naměřených výsledků není možné odečíst přesnou hodnotu di/dt vlivem zarušení a parazitních kmitů. Vyhodnocení redukce di/dt tak může být provedeno jen na základě srovnání průběhů napětí U_{SENSE} naměřených na testovacích strukturách. Porovnáním jednotlivých průběhů U_{SENSE} je pak možné určit, zda je náběžná hrana proudu na výstupu optimalizačních struktur pomalejší než u struktury originálního obvodu. Srovnání měřených i simulovaných průběhů napětí U_{SENSE} je uvedeno na Obr. 5.11.

Obr. 5.11 Vzájemné porovnání simulovaných, resp. reálných průběhů napětí *U*_{SENSE} při změně výstupu budiče MOSFET z LO do HO (vlevo) a při změně výstupu z HO do LO (vpravo) pro všechny testovací struktury

Barevné rozlišení i značení jednotlivých průběhů je na Obr. 5.11 stejné jako v předešlé podkapitole 5.3.1.

Z výsledků na Obr. 5.11 vyplývá, že v porovnání s průběhem napětí U_{SENSE} pro ORIG (červená) dosáhly jednotlivé metody snížení strmosti nárůstu di/dt proudu I_{DRV} . To je pak nejzřetelnější na průbězích pro změnu výstupu budiče MOSFET z HO do LO, kdy je amplituda proudu na výstupu největší.

Stejně jako v případě pro průběhy napětí na vývodech *PGND* a U_{CC} , uvedených v podkapitole 5.3.1, je zde možné vidět, že metody RES (**modrá**) a AsInv (**tyrkysová**) sledují podobný průběh a výrazně zpomalují náběh proudu. Za povšimnutí pak stojí počátek náběhu proudu I_{DRV} u těchto dvou metod, kdy v porovnání s originálním průběhem startuje náběh proudu I_{DRV} dříve. To je způsobeno právě odstupňováním výstupního tranzistoru, kdy jeho nejmenší segment je spínán jako první bez zpoždění a stejným ekvivalentním proudem jako u originálního zapojení. Gate kapacita tohoto segmentu je však mnohem nižší než u originálního zapojení, a proto dochází ke zkrácení spínacích period t_1 a t_2 , které jsou popsány v kapitole 1.4.1. Tento jev je možné vidět u měřeného i simulovaného průběhu U_{SENSE} . Tyto metody tak dosahují sepnutí výstupu dříve než originální zapojení. Dodatečný čas, který je tímto získán, lze využít pro brždění náběhu proudu I_{DRV} , aniž by tím došlo ke zvýšení zvoleného dodatečného 1 ns propagačního zpoždění.

Naproti tomu metoda OPT (zelená) sleduje náběh proudu pro originální zapojení a postupně ho zpomaluje, tím jak je zpomalováno spínání výstupního tranzistoru, čímž je omezena na 1 ns dodatečného propagačního zpoždění.

Porovnáním jednotlivých průběhů U_{SENSE} tak rovněž vyplývá, že, stejně jako v předešlé podkapitole, dosáhly při změně výstupu budiče MOSFET z LO do HO všechny typy optimalizace přibližně stejného snížení *di/dt*. Při změně výstupu z HO do LO pak nejlepšího výsledku dosáhly srovnatelně metody RES a AsInv. Metoda OPT pak rovněž dosáhla snížení *di/dt*, avšak ne tak výrazného jako zbylé metody.

Snížení di/dt je také možné odvodit na základě amplitudy kmitů napětí na průběhu U_{SENSE} , kde optimalizované metody tuto amplitudu mají výrazně nižší než originální obvod. To je rovněž důsledkem snížení di/dt výstupního proudu I_{DRV} . Tento jev však není možné porovnat se simulovaným průběhem, protože se nepodařilo vystihnout všechny parazitní vlastnosti reálného obvodu a amplituda kmitů simulovaných průběhů U_{SENSE} se výrazně liší od těch měřených. Názornější srovnání simulovaných a měřených průběhů U_{SENSE} je na Obr. 5.12. Z uvedených průběhů je pak možné vidět, že věrně aproximovat průběh napětí U_{SENSE} se podařilo pouze u originálního obvodu. Zbylé aproximované průběhy U_{SENSE} pak pouze sledují frekvenci kmitů reálných průběhů naměřených na osciloskopu, avšak amplituda kmitů se výrazně liší. Bližší porovnání měřených a simulovaných průběhů je uvedeno v přílohách C.5 - C.8.

Obecně však lze prohlásit, že měřené průběhy U_{SENSE} sledují průběhy simulované a rovněž potvrzují, že metody optimalizace snižují strmost nárůstu proudu di/dt.

Obr. 5.12 Srovnání reálných průběhů napětí *U*_{SENSE} se simulovanými při změně výstupu budiče MOSFET z LO do HO (vlevo) a při změně výstupu z HO do LO (vpravo) pro všechny testovací struktury

5.3.3 Průběh napětí na vývodu OUT a propagační zpoždění

Dalším určujícím parametrem budiče MOSFET je propagační zpoždění D_{rise} , resp. D_{fall} , pro náběžnou, resp. sestupnou, hranu napětí na výstupu *OUT*. Navržené metody optimalizace jsou však kompromisem mezi snížením *di/dt* výstupního proudu I_{DRV} a nárůstem propagačního zpoždění D_{rise} , resp. D_{fall} . Proto byl v rámci návrhu metod optimalizace zvolen limitní nárůst propagačního zpoždění 1 ns oproti originálnímu zapojení. Nárůst D_{rise} , resp. D_{fall} , o 1 ns oproti originálu byl zvolen, aby byl stanoven limitní parametr pro optimalizaci a jednotlivé metody bylo možné mezi sebou porovnat. Dalším důvodem bylo, že nárůst o 1 ns nepředstavuje velkou změnu propagačního zpoždění a tento nárůst spadá stále do rozsahu změn, které mohou být způsobeny i změnou operační teploty, reálnými parazitními vlastnostmi nebo odchylkou výrobního procesu. Právě kvůli těmto odchylkám se však reálná hodnota nárůstu zpoždění u jednotlivých testovacích struktur může lišit.

Propagační zpoždění je určováno z průběhů napětí na vývodech budiče *IN* a *OUT*. Hodnoty D_{rise} , resp. D_{fall} , byly odečteny jako časový rozdíl mezi úrovní, kdy signál na vývodu *IN* dosáhne 50 % (2,5 V) své nominální hodnoty (5 V), a úrovní, kdy napětí vývodu *OUT* vzroste, resp. poklesne, o 10 % (2 V pro nástupnou hranu, 18 V pro sestupnou hranu) své nominální hodnoty (20 V). Průběhy napětí na vývodech *IN* a *OUT* a odečtené hodnoty na těchto hladinách pro všechny měřené struktury jsou uvedeny na Obr. 5.13.

Obr. 5.13 Srovnání reálných průběhů napětí na vývodech *IN* a *OUT* při změně výstupu budiče MOSFET z LO do HO (vlevo) a při změně výstupu z HO do LO (vpravo) pro všechny testovací struktury

Odečtené hodnoty z průběhů napětí na *IN* a *OUT* pak ukazují, že měřené propagační zpoždění originálního obvodu je $D_{rise} = 12,46$ ns, resp. $D_{fall} = 14,37$ ns. Ze srovnání odečtených hodnot při náběžné hraně napětí na vývodu *OUT* vyplývá, že metody OPT a AsInv dosahují přibližně stejného nárůstu propagačního zpoždění $D_{rise_dif} = 0,5$ ns a 0,59 ns oproti originálnímu obvodu. Struktura s metodou RES pak dosahuje hodnoty $D_{rise_dif} = 1,3$ ns, což je výrazně horší výsledek. V případě sestupné hrany napětí na vývodu *OUT* pak dosahují přibližně stejného výsledku metody AsInv a RES, kdy jejich nárůst propagačního zpoždění oproti originálnímu obvodu byl $D_{fall_dif} = 0,66$ ns a 0,79 ns. Zde naopak metoda OPT dosáhla výrazně horšího výsledku $D_{fall_dif} = 1,41$ ns.

Takto naměřené nárůsty propagačního zpoždění neodpovídají přesně navržené hodnotě 1 ns, ale jak bylo uvedeno, tento parametr může být ovlivněn výrobními odchylkami i vlivem parazitních vlastností na desce. Pokud však vezmeme v potaz výsledky pro všechny měřené optimalizační struktury, lze pak prohlásit, že hodnota parametrů D_{rise_dif} a D_{fall_dif} se vždy nachází okolo hodnoty 1 ns s odchylkou ±0,5 ns. Zároveň nenastala situace, že by se hodnoty propagačního zpoždění optimalizovaných struktur blížily originálnímu obvodu, nebo ho dokonce předbíhaly. Na základě toho lze

pak říci, že optimalizační metody s určitou odchylkou odpovídají navrženému předpokladu.

Správné nastavení nárůstu propagačního zpoždění je pak možné vidět na srovnání simulovaných a měřených průběhů na Obr. 5.14. Z průběhů na obrázku je viditelné, že simulované i reálné průběhy napětí na vývodu *OUT* jsou oproti struktuře s metodou ORIG (červená) posunuty o cca stejný časový interval. Porovnání jednotlivých průběhu s aproximovanými simulačními průběhy je pak uvedeno v přílohách C.9 - C.12.

Obr. 5.14 vzájemné porovnání simulovaných a reálných průběhů napětí na vývodech *IN* a *OUT* při změně výstupu budiče MOSFET z LO do HO (vlevo) a při změně výstupu z HO do LO (vpravo) pro všechny testovací struktury

Protože se naměřené hodnoty nárůstu propagačního zpoždění oproti originálu u jednotlivých metod liší, je pro jejich porovnání možné zavést parametr Ef_{rise} pro náběžnou hranu a Ef_{fall} , pro sestupnou hranu napětí na vývodu OUT. Za předpokladu, že vyrobené struktury dosáhly redukce rozkmitu napětí, uvedených v tabulce 5.1, při odečteném nárůstu propagačního zpoždění D_{rise_dif} a D_{fall_dif} , lze pak stanovit efektivitu využití tohoto nárůstu propagačního zpoždění vůči dosažené redukci amplitudy rozkmitu napětí na vývodech U_{CC} a PGND. Tento přepočet je uveden v rovnici (5.5):

$$Ef_{rise} = \frac{U_{CC_dif}}{D_{rise_dif}}, Ef_{fall} = \frac{PGND_{dif}}{D_{fall_dif}},$$
(5.5)

kde U_{CC_dif} , resp. $PGND_{dif}$, je rozdíl amplitudy rozkmitu napětí U_{CC} , resp. PGND, u optimalizovaných struktur vůči originálnímu obvodu. Hodnoty tohoto rozdílu jsou uvedeny v souhrnu v tabulce 5.2.

Na základě tohoto výpočtu pak byly určeny hodnoty efektivity využití nárůstu propagačního zpoždění Ef_{rise} a Ef_{fall} jednotlivých testovacích struktur. Z hodnot, uvedených v souhrnné tabulce 5.2, vyplývá, že nejlepšího výsledku pak dosahovala metoda AsInv, která v případě redukce rozkmitu napětí na vývodu U_{CC} dosáhla jen o 0,21 V/ns horší efektivity než metoda OPT, avšak s hodnotou $Ef_{fall} = 1,58$ V/ns při redukci rozkmitu napětí na vývodu PGND dosáhla zdaleka nejlepšího výsledku, zatímco metoda OPT dosáhla jen $Ef_{fall} = 0,57$ V/ns. Z tohoto porovnání pak vyplývá, že nejlepší se z hlediska redukce rozkmitu napětí na parazitní sériové indukčnosti vývodů jeví metoda AsInv, která podává při nižší proudové schopnosti srovnatelné výsledky s ostatními metodami, zatímco se zvyšující se proudovou schopností dolní strany budiče je zdaleka nejlepší.

Špatné výsledky metody RES jsou pak pravděpodobně ovlivněny výrobním rozptylem použitých rezistorů a špatnou nastavitelností rozestupu mezi spínáním segmentů výstupních tranzistorů.

Výsledky idealizované simulace								
Obvod:	ORIG	OPT	RES	AsInv				
Propagační zpoždění								
Drise[ns]	13,97	15,07	15,26	15,15				
Drise_dif[ns]	-	1,10	1,29	1,18				
D _{fall} [ns]	7,19	8,21	8,27	8,20				
D _{fall_dif} [ns]	-	1,02	1,08	1,01				
Roz	kmit napětí	na <i>U_{CC}</i> a <i>G</i> l	ND					
Ucc [V]	1,15	0,35	0,45	0,34				
U _{CC_diff} [V]	-	0,80	0,70	0,81				
GND [V]	3,48	1,05	0,81	0,68				
GND _{diff} [V]	-	2,43 2,67		2,80				
Stri	nost nárůst	u proudu <i>di</i>	/dt					
di/dt _{rise} [A/ns]	0,278	0,116	0,160	0,108				
<i>di/dt</i> rise_dif [A/ns]	-	0,162	0,118	0,170				
di/dt _{fall} [A/ns]	0,709	0,342 0,287		0,235				
<i>di/dt_{fall_dif}</i> [A/ns]	-	0,367	0,422	0,474				

Tabulka	5.2	Shrnutí	parametrů	idealizované	simulace	optimalizačních	metod
a reálných měřených parametrů							

Výsledky měření testovacích struktur							
Struktura s obvodem:	ORIG	ОРТ	RES	AsInv			
	Propagačni	í zpoždění					
D _{rise} [ns] 12,46 12,96 13,76 13,05							
Drise_dif[ns]	-	0,5	1,3	0,59			
D _{fall} [ns]	14,37	15,78	15,16	15,03			
D _{fall_dif} [ns]	-	1,41	0,79	0,66			
Rozk	amit napětí i	na <i>U_{CC}</i> a <i>PG</i>	ND				
Ucc [V]	0,72	0,33	0,41	0,38			
U _{CC_diff} [V]	-	0,39	0,31	0,34			
PGND [V]	1,45	0,65	0,44	0,41			
PGND _{diff} [V]	-	0,8	1,01	1,04			
Efektivita optimalizačních metod							
Efrise [V/ns]	-	0,78	0,24	0,58			
Effall [V/ns]	-	0,57	1,28	1,58			

6 Závěr

Cílem této diplomové práce bylo navrhnout a otestovat metody optimalizace koncového stupně budiče MOSFET od firmy Onsemi. Účelem optimalizace bylo snížení rozkmitu napětí na parazitní sériové indukčnosti vývodů pouzdra budiče. Návrh a ověřování parametrů navržených metod probíhalo v programu Cadence Virtuoso za pomoci simulátoru Spectre.

Rešerše diplomové práce obsahuje popis struktury a spínacích vlastností MOSFET. Následně zde byla rozebrána vnitřní struktura koncového stupně budiče MOSFET, který byl určen k optimalizaci. V kapitole 3.1 je pak nastíněn problém rozkmitu napětí na parazitní sériové indukčnosti vývodů pouzdra budiče MOSFET a jeho příčiny.

Dále byl v kapitole 3.2 navržen a popsán ideální simulační obvod spolu s jeho parametry zátěže a předpokládané parazitní sériové indukčnosti pouzdra. Na tomto testovacím obvodu byly v kapitole 3.3 charakterizovány vlastnosti originálního obvodu (ORIG). Součástí kapitoly pak bylo popsání parametrů jako di/dt výstupního proudu I_{DRV} , propagační zpoždění D_{rise} a D_{fall} , které jsou klíčové pro návrh optimalizace. Tato diplomová práce celkem představuje tři navržené metody optimalizace koncového stupně budiče MOSFET.

První navržená metoda je Optimalizace rozměrů budících invertorů (OPT), která je podrobně popsaná v kapitole 3.4. Tato metoda optimalizace využívá zmenšování rozměrů tranzistorů spínajících výstupní PMOS a NMOS budiče MOSFET. Tím je dosaženo zpomalení spínacího procesu výstupních tranzistorů budiče a snížení *di/dt* na výstupu budiče.

Jako druhá byla navržena Metoda postupného spínání zpožďovacími rezistory (RES), jejíž návrh je nastíněn v kapitole 3.5. Tato metoda využívala rozložení výstupních tranzistorů na čtyři menší paralelně zapojené segmenty. Mezi spínání jednotlivých segmentů je pak vloženo zpoždění dané RC články, které jsou tvořeny zpožďovacími rezistory a gate kapacitami segmentů výstupních tranzistorů budiče. Tím je dosaženo postupného náběhu výstupního proudu I_{DRV} a redukce di/dt.

Třetí navrženou optimalizací byla Metoda postupného spínání asymetrickými invertory (AsInv), která je popsána v kapitole 3.6. Stejně jako metoda RES, i tato metoda využívá postupného spínání segmentů výstupních tranzistorů budiče. Zpoždění mezi spínáním jednotlivých segmentů výstupních tranzistorů je však vloženo separátními budícími invertory, které jsou navrženy pro každý segment zvlášť.

Všechny navržené metody představují kompromis mezi snížením rozkmitu napětí na parazitní indukčnosti a nárůstem propagačního zpoždění. Proto byly optimalizační metody navrženy tak, aby jejich propagační zpoždění vzrostlo oproti originálnímu zapojení cca o 1 ns.

Ze simulovaných hodnot, uvedených v tabulce 5.2 a popsaných v kapitole 3.2, pak vyplývá, že všechny navržené metody optimalizace dosáhly značného snížení rozkmitu

napětí na parazitních sériových indukčnostech vývodů pouzdra. Z porovnání jednotlivých metod optimalizace však vychází, že nejlepších výsledků dosahuje metoda AsInv, která rozkmit napětí U_{CC} redukuje o 0,81 V a *GND* o 2,8 V, přičemž zachovává nastavený mezní nárůst propagačního zpoždění.

Tyto optimalizační metody byly následně realizovány v 250 nm procesu firmy Onsemi a zapojeny do pouzdra SOIC-16. Pro tento účel byl pro jejich implementaci na čip navržen v kapitole 4.1 testovací obvod se zavedenými ESD ochranami a napájením ze stabilizovaného zdroje napětí, jehož struktura byla převzata od firmy Onsemi. Ověření funkčnosti testovacího obvodu pak bylo prováděno na upraveném simulačním zapojení, které již počítá jen s vnějším zdrojem napětí a generátorem signálu.

Zapouzdřený testovací obvod pak byl osazen na testovací DPS, která je popsána v kapitole 4.2. Návrh testovací DPS probíhal v programu Autodesk Eagle. Tato testovací struktura se skládá z osazeného testovacího obvodu v pouzdře SOIC-16, ze tří 100 nF blokovacích kondenzátorů, 1 nF zatěžovacího kondenzátoru a snímacího 1,5 Ω rezistoru na výstupu budiče MOSFET. Napájecí a měřicí vývody zde byly realizovány pomocí kruhových kolíkových lišt.

Na této testovací struktuře byly zjišťovány reálné vlastnosti navržených optimalizačních metod pomocí měřicí sestavy. Měřicí sestava byla tvořena osciloskopem s 500 MHz napěťovými sondami, 500 MHz diferenční napěťovou sondou, generátorem signálu a stabilizovaným napájecím zdrojem. Součástí sestavy jsou rovněž speciální dutinové nástavce na hrot sondy osciloskopu, které je možné nasadit na osazené kruhové kolíkové lišty. Přes kolíkové lišty byl rovněž přiváděn vstupní signál z generátoru a napájecí napětí ze zdroje. Celkové složení měřicí sestavy je pak popsáno v kapitole 5.1.

Zhodnocení funkčnosti a měřených parametrů vyrobených testovacích struktur proběhlo na základě porovnání měřených výsledků mezi sebou navzájem a simulovanými výsledky. Za tím účelem byl navržen testovací obvod s aproximovanými parazitními vlastnostmi reálné testovací struktury. Postup aproximace je popsán v kapitole 5.2. Do simulačního zapojení testovacího obvodu pak byly zakomponovány parazitní sériové indukčnosti $L_{par} = 3$ nH u vývodů *PGND* a *OUT*, $L_{UCC} = 2,8$ nH pro vývod U_{CC} . Dále byly přidány parazitní vlastnosti SMD snímacího rezistoru $L_{SENSE} = 1,7$ nH a $C_{dif} = 65$ pF. Parazitní sériová indukčnost zatěžovací SMD kapacity byla zvolena $L_{ESL} = 0,15$ nH. Výsledky simulace z takto upraveného simulačního obvodu byly srovnány s měřenými výsledky, které byly importovány do prostředí Cadence Virtuoso pomocí CSV souborů.

Na konci diplomové práce v kapitole 5.3 je ukázáno porovnání měřených a simulovaných výsledků získaných na testovacích strukturách. Z porovnání průběhů napětí na vývodech U_{CC} a *PGND* vyplynulo, že měřené výsledky odpovídají simulovanému předpokladu a lze tak návrh z hlediska redukce rozkmitu napětí na parazitních indukčnostech považovat za funkční. Měřená amplituda rozkmitu napětí pro originální obvod dosáhla hodnot $U_{CC} = 0,72$ V a *PGDN* = 1,45 V. Porovnáním průběhů napětí jednotlivých metod vůči sobě pak vyplývá, že stejně jako v případě simulace idealizovaného obvodu dosahuje nejlepších výsledků metoda AsInv, která dosáhla snížení amplitudy rozkmitu napětí o $U_{CC \ dif} = 0.34 \text{ V}$ a $PGND_{dif} = 1.04 \text{ V}$.

Dále byly srovnány průběhy diferenčního napětí U_{SENSE} (proud I_{DRV}) na snímacím rezistoru. Simulované a měřené průběhy se zde však výrazně liší, protože se nepodařilo věrně aproximovat parazitní vlastnosti reálné testovací struktury. Z měřených průběhů však vyplývá, že s výjimkou kmitů na parazitních LC článcích přibližně sledují simulované průběhy. Na základě toho lze opět prohlásit, že jsou vyrobené struktury funkční.

Sledováním průběhů napětí na vývodu *OUT* pak byly zjištěny reálné hodnoty nárůstu propagačního zpoždění oproti originálnímu obvodu D_{rise_dif} a D_{fall_dif} . Srovnáním odečtených hodnot lze říci, že všechny vyrobené testovací struktury si zachovaly svůj nárůst propagačního zpoždění s odchylkou ±0,5 ns. Porovnáním parametru efektivity optimalizace Ef_{rise} a Ef_{fall} , pak vyplývá, že opět nejlepšího výsledku dosáhla metoda AsInv, jež dosáhla na hodnoty $Ef_{rise} = 0,58$ V/ns a $Ef_{fall} = 1,58$ V/ns. Souhrnné srovnání všech metod je pak uvedeno v tabulce 5.2.

V diplomové práci tak byly úspěšně navrženy, vyrobeny a otestovány funkční metody optimalizace koncového stupně budiče MOSFET. Tyto metody úspěšně redukují rozkmit napětí na parazitní sériové indukčnosti vývodů pouzdra budiče. Všechny body zadání diplomové práce tak byly splněny.

LITERATURA

- TROJAN, Vladimír. DESIGN OF DIFFERENTIAL DIFFERENCE AMPLIFIER IN CMOS TECHNOLOGY [online]. Brno, 2021 [cit. 2022-10-20]. Dostupné z: <u>https://www.vutbr.cz/studenti/zav-prace/detail/134684</u>. BACHELOR'S THESIS. BUT. Vedoucí práce Ing. Vilém Kledrowetz, Ph.D.
- [2] BOUŠEK, Jaroslav, Petr KOSINA a Barbora MOJROVÁ. *Elektronické součástky*. Brno, 2015. Skriptum. Vysoké učení technické v Brně.
- [3] COLINGE, J. a C. COLINGE. *PHYSICS OF SEMICONDUCTOR DEVICES*. XIII. USA: Kluwer Academic Publishers, 2002. ISBN 1-4020-7018-7.
- [4] SZE, S.M. a K.Ng. KWOK. *Physics of Semiconductor Devices*. Third edition. San Jose, California: A JOHN WILEY & SONS, INC., PUBLICATION, 2006. ISBN 978-0-47 1-1 4323-9.
- [5] RAZAVI, Behzad. Design of CMOS analog integrated circuits. 2. vydání. Los Angeles, California, USA: byMcGraw-Hill Education, 2017. ISBN 978-0-07-252493-2.
- [6] ALLEN, Phillip a Douglas HOLBERG. CMOS Analog Circuit Design. 2nd Edition. New York: University Press, 2002. ISBN 0-19-511-644-5.
- [7] CARUSONE, Tony, David JOHNS a Kenneth MARTIN. *Analog integrated circuit design*. Second edition. USA: John Wiley & Sons, Inc., 2012. ISBN 978-0-470-77010-8.
- [8] BARKHORDARIAN, Vrej. Power MOSFET Basics [online]. USA, 2015
 [cit. 2022-11-05]. Dostupné z: https://www.infineon.com/dgdl/mosfet.pdf?fileId=5546d462533600a4015357
 444e913f4f FJ-. Manual. El Segundo, Ca.
- [9] GLITZ, Ettore, Matthieu AMYOTTE, Maria PEREZ a Martin ORDONEZ. LLC converters: Beyond datasheets for MOSFET power loss estimation. In: 2018 IEEE Applied Power Electronics Conference and Exposition (APEC)
 [online]. San Antonio, TX, USA: IEEE, 2018, s. 464-468 [cit. 2022-11-19]. ISBN 978-1-5386-1180-7. ISSN 2470-6647. Dostupné z: doi:10.1109/APEC.2018.8341052
- [10] PTÁČEK, Karel. *HIGH-VOLTAGE STRUCTURES FOR GALVANIC ISOLATION IN INTEGRATED CIRCUITS* [online]. Brno, 2021 [cit. 2022-11-10]. Dostupné z: <u>https://www.vut.cz/studenti/zav-prace/detail/122324</u>. Doctoral Thesis. Brno University of Technology, Faculty of Electrical Engineering and Communications. Vedoucí práce Jaroslav Boušek.

- BALOGH, Laszlo. Fundamentals of MOSFET and IGBT Gate Driver Circuits [online]. Bedford, New Hampshire, USA, 2018 [cit. 2022-11-20]. Dostupné z: <u>https://www.ti.com/lit/slua618</u> Application Report. Texas Instruments.
- [12] MOSFET Gate Drive Circuit [online]. USA, 2018 [cit. 2022-11-22].
 Dostupné z: <u>https://toshiba.semicon-storage.com/info/docget.jsp?did=59460</u>
 Application Note. TOSHIBA.
- [13] *Properly Sizing MOSFETs for PWM Controllers*. USA, 2006. Application Note. Sipex Corporation.
- [14] BOSE, Bimal K. *Modern power electronics and AC drives*. Upper Saddle River, NJ: Prentice Hall, 2002. ISBN 0-13-016743-6.
- [15] ROY, Abhishek a Mukti BARAI. Study and Design of Soft-Switched PWM DC-DC Buck Converter. In: 2019 International Conference on Power Electronics Applications and Technology in Present Energy Scenario (PETPES) [online]. Mangalore, India: IEEE, 2019, s. 1-6 [cit. 2022-12-04]. ISBN 978-1-7281-2655-5. Dostupné z: doi:10.1109/PETPES47060.2019.9003758
- [16] D. PATHAK, Abhijit. MOSFET/IGBT DRIVERS THEORY AND APPLICATIONS. USA, 2001. Dostupné také z: <u>https://www.ixys.com/Documents/AppNotes/IXAN0010.pdf</u>. Application Note. IXYS.
- [17] ZOREJ, Bernhard. CoolMOS[™] gate drive and switching dynamics [online]. Munich, Germany, 2020 [cit. 2022-12-05]. Dostupné z: <u>https://www.infineon.com/dgdl/Infineon-</u> <u>MOSFET_CoolMOS_gate_drivce_switching_dynamics-ApplicationNotes-</u> <u>v01_00-EN.pdf?fileId=5546d4626f229553016fb392d5e7749f</u>. Infineon Technologies AG.
- [18] ZHOU, Zekun, Junyuan RONG, Jianwen CAO, Dengwei LI, Bo ZHANG a Yue SHI. A Fully Integrated Floating Gate Driver with Adaptive Gate Drive Technique for High-Voltage Applications. In: 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS) [online]. China: IEEE, 2018, s. 109-112 [cit. 2022-12-06]. ISBN 978-1-5386-7392-8. ISSN 1558-3899. Dostupné z: doi:10.1109/MWSCAS.2018.8624041
- [19] UNI-T UTG962E Generátor. *Promertech.cz* [online]. Česká republika:
 Promertech.cz, 2023 [cit. 2023-05-15]. Dostupné z: https://promertech.cz/unit-utg962e-generator
- [20] N6700 Modular Power System Family. In: . USA: Keysight Technologies,
 2023, ročník 2017-2023, 5989-6319EN. Dostupné také z:

https://www.keysight.com/us/en/assets/7018-01522/data-sheets/5989-6319.pdf

- [21] DPO7000 Series. *Tektronix* [online]. USA: TEKTRONIX, 2023 [cit. 2023-05-15]. Dostupné z: https://www.tek.com/en/datasheet/dpo7000-series
- [22] Isolated Measurement Systems. *Tek* [online]. USA: Textronik, 2023 [cit. 2023-05-05]. Dostupné z: <u>https://www.tek.com/en/datasheet/isolated-measurement-systems-0</u>
- [23] LALLÉCHÈRE, Sébastien, Blaise RAVELO a Atul THAKUR. Statistical Performances of Resistive Active Power Splitter. IOP Conference Series: Materials Science and Engineering [online]. 2016, 120(1), 3 [cit. 2023-05-06]. ISSN 1757-8981. Dostupné z: doi:10.1088/1757-899X/120/1/012015
- [24] GROVER, F. W. Inductance Calculations: Working Formulas and Tables.1946 ed. USA: Dover Publications, 2004. ISBN 0486495779.
- [25] Butterworth Filter Design. ElectronicsTutorials [online]. USA: AspenCore,
 2023 [cit. 2023-05-07]. Dostupné z: <u>https://www.electronics-</u> tutorials.ws/filter/filter_8.html

Seznam obrázků

1.1	Základní struktura NMOS tranzistoru [1]	.10
1.2	Výstupní charakteristika MOSFET [7]	.11
1.3	Princip zaškrcování kanálu NMOS tranzistoru	.12
1.4	Struktura diskrétního výkonového VD-NMOS [8]	.13
1.5	Odpor sepnutého přechodu drain-source v závislosti na teplotě přechodu T_i [9]	.14
1.6	Odpor sepnutého přechodu drain-source v závislosti na U_{GS} a I_D pro různé teploty přechodu T_i [9]	115
1.7	Model MOSFET tranzistoru s kapacitními parametry	.16
1.8	Linearizovaný model časového průběhu a) zapínání b) vypínání MOSFET [11]	.17
1.9	Akumulace náboje na gate kapacitě C_{ISS} [12]	.20
1.10	ZCS a ZVS metoda spínání MOSFET [14]	.22
1.11	Srovnání ZVS vs ZCS a princip spínání ZVZCS [15]	.23
2.1	Principiální zapojení budiče MOSFET	.24
2.2	Totem pole struktura budiče MOSFET s PMOS a NMOS	.26
2.3	Kaskáda invertorů jako stupňující se budiče MOSFET	.27
2.4	Napětí U_{GS} na gate výstupních tranzistorů PMOS a NMOS budiče MOSFET s vloženým mrtvým	L
	časem mezi jejich spínáním	.28
3.1	Budič MOSFET s parazitními indukčnostmi	.29
3.2	Simulační zapojení pro ověření parametrů budiče MOSFET	.31
3.3	Časový průběh napájecích napětí U _{CC} , U _{CCL} , U _{CC dig} , FGND_ref, signálů IN a EN a výstupního	
	napětí budiče U_{OUT}	.32
3.4	Originální zapojení výstupní části budiče MOSFET	.33
3.5	Časové průběhy napájecích napětí U _{CC} , GND, výstupního napětí budiče U _{OUT} , signálu IN, budicíl	ho
	proudu I_{DRV} a jeho změna proudu v čase di/dt při změně napětí U_{OUT} z LO do HO pro zapojení	
	ORIG	.34
3.6	Časové průběhy napájecích napětí U_{CC} , GND, výstupního napětí budiče U_{OUT} , signálu IN, budicíl	ho
	proudu I_{DRV} a jeho změna proudu v čase di/dt při změně napětí U_{OUT} z HO do LO pro zapojení	
	ORIG	.35
3.7	Zapojení koncového stupně budiče MOSFET pro metodu OPT	.37
3.8	Srovnání časových průběhů napětí U _{CC} , GND, U _{OUT} , IN, proudu I _{DRV} a jeho změny proudu v čase	:
	di/dt při změně napětí U_{OUT} z LO do HO mezi zapojením OPT a ORIG	.39
3.9	Srovnání časových průběhů napětí U _{CC} , GND, U _{OUT} , IN, proudu I _{DRV} a jeho změny proudu v čase	;
	<i>di/dt</i> při změně napětí U _{OUT} z HO do LO mezi zapojením OPT a ORIG	.40
3.10	Zapojení koncového stupně budiče MOSFET pro metodu RES	.42
3.11	Časový průběh postupného spínání proudů přes tranzistory MP1-4 a MN1-4 v zapojení metody	
	RES	.44
3.12	Srovnání časových průběhů napětí U_{CC} , GND, U_{OUT} , IN, proudu I_{DRV} a jeho změny proudu v čase	;
	<i>di/dt</i> při změně napětí U _{OUT} z LO do HO mezi zapojením RES a ORIG	.45
3.13	Srovnání časových průběhů napětí U _{CC} , GND, U _{OUT} , IN, proudu I _{DRV} a jeho změny proudu v čase	;
	<i>di/dt</i> při změně napětí U _{OUT} z HO do LO mezi zapojením RES a ORIG	.46
3.14	Zapojení koncového stupně budiče MOSFET pro metodu AsInv	.48
3.15	Časový průběh postupného spínání proudů přes tranzistory MP1-4 a MN1-4 v zapojení metody	
	AsInv	.50
3.16	Srovnání časových průběhů napětí U _{CC} , GND, U _{OUT} , IN, proudu I _{DRV} a jeho změny proudu v čase	;
	<i>di/dt</i> při změně napětí U _{OUT} z LO do HO mezi zapojením AsInv a ORIG	.51
3.17	Srovnání časových průběhů napětí U_{CC} , GND, U_{OUT} , IN, proudu I_{DRV} a jeho změny proudu v čase	;
	di/dt při změně napětí U _{OUT} z HO do LO mezi zapojením AsInv a ORIG	.52

4.1	Schéma zapojení testovacího obvodu budiče MOSFET	55
4.2	Schéma zapojení ESD ochrany vstupu	56
4.3	Simulační zapojení testovacího obvodu	57
4.4	Rozložení pinů testovacího obvodu na pouzdře SOIC-16	58
4.5	Schematické zapojení obvodu na testovacím DPS	59
4.6	Layout testovacího substrátu	60
5.1	Sestava pro měření reálných parametrů budiče MOSFET	61
5.2	Průběh napětí na vývodu OUT (tyrkysová) a IN (červená) při změně výstupu budiče MOSFET	
	z HO do LO	63
5.3	Průběh napětí na rezistoru R_SENSE při změně výstupu budiče MOSFET z HO do LO	63
5.4	Průběh napětí na vývodu U_{CC} (fialová) a <i>PGND</i> (modrá) při změně výstupu budiče MOSFET z	HO
	do LO	64
5.5	Obvod pro importování průběhů napětí z osciloskopu do Cadence Virtuoso	64
5.6	Výsledky DFT analýzy průběhu napětí na rezistoru R_SENSE pro všechny měřené struktury při	
	změně výstupu budiče z LO do HO (vlevo) a z HO do LO (vpravo)	65
5.7	Simulační zapojení testovacího obvodu s implementovanými parazitními vlastnostmi součástek	na
	DPS	68
5.8	Ideální filtr s Butterworthovou aproximací pro odfiltrování GHz složek ze simulovaného průběh	u
	napětí	69
5.9	Srovnání reálných a simulovaných průběhů napětí na vývodu U_{CC} při změně výstupu budiče	
	MOSFET z LO do HO (vlevo) a na vývodu PGND při změně výstupu z HO do LO (vpravo) pro)
	všechny testovací struktury	70
5.10	Vzájemné porovnání simulovaných resp. reálných průběhů napětí na vývodu U_{CC} při změně	
	výstupu budiče MOSFET z LO do HO (vlevo) a na vývodu PGND při změně výstupu z HO do J	LO
	(vpravo) pro všechny testovací struktury	72
5.11	Vzájemné porovnání simulovaných, resp. reálných průběhů napětí USENSE při změně výstupu bud	diče
	MOSFET z LO do HO (vlevo) a při změně výstupu z HO do LO (vpravo) pro všechny testovací	
	struktury	73
5.12	Srovnání reálných průběhů napětí U_{SENSE} se simulovanými při změně výstupu budiče MOSFET	
	z LO do HO (vlevo) a při změně výstupu z HO do LO (vpravo) pro všechny testovací struktury	75
5.13	Srovnání reálných průběhů napětí na vývodech IN a OUT při změně výstupu budiče MOSFET z	LO
	do HO (vlevo) a při změně výstupu z HO do LO (vpravo) pro všechny testovací struktury	76
5.14	vzájemné porovnání simulovaných a reálných průběhů napětí na vývodech IN a OUT při změně	
	výstupu budiče MOSFET z LO do HO (vlevo) a při změně výstupu z HO do LO (vpravo) pro	
	všechny testovací struktury	77

SEZNAM TABULEK

3.1	Parametry součástek originálního zapojení budiče MOSFET	34
3.2	Odečtené parametry originálního obvodu zapojení budiče MOSFET	36
3.3	Srovnání parametrů součástek originálního zapojení a zapojení OPT budiče MOSFET	38
3.4	Srovnání parametrů zapojení metody OPT s originálním zapojením budiče MOSFET	41
3.5	Parametry součástek zapojení metody RES	43
3.6	Srovnání parametrů zapojení metody RES a originálním zapojením budiče MOSFET	47
3.7	Parametry součástek zapojení metody AsInv	49
3.8	Srovnání parametrů zapojení metody AsInv s originálním zapojením budiče MOSFET	53
4.1	Specifické hodnoty rozlišovacích rezistorů pro jednotlivé typy optimalizace	57
5.1	Amplitudy rozkmitu napětí na vývodech U_{CC} a PGND a rozdílu velikosti amplitudy vůči	
	originálnímu obvodu	72
5.2	Shrnutí parametrů idealizované simulace optimalizačních metod a reálných měřených parame	trů .79

SEZNAM SYMBOLŮ A ZKRATEK

Symbol/zkratka	Popis	Jednotka
AsInv	Metoda postupného spínání asymetrickými invertory	-
C_{DS}	Drain-source kapacita MOSFET	[nF]
C_{GD}	Gate-drain kapacita MOSFET	[nF]
C_{GS}	Gate-source kapacita MOSFET	[nF]
CISS	Vstupní kapacita MOSFET	[nF]
Coss	Výstupní kapacita MOSFET	[nF]
C_{RSS}	Reverzní kapacita MOSFET	[nF]
CSV	Typ souboru s hodnotami oddělenými čárkami(Coma Separated Values)	-
D_{fall}	Propagační zpoždění při sestupné hraně napětí U_{OUT}	[ns]
D_{fall_dif}	Nárůst propagačního zpoždění optimalizační metody vůči originálnímu obvodu při změně výstupu budiče z HO do LO	[ns]
DFT	Diskrétní fourierova analýza	-
di/dt	Změna proudu v čase (derivace časového průběhu proudu)	[A/s]
di/dt _{fall}	Strmost proudu I_{DRV} mezi 10 % a 60 % jeho maximální hodnoty při sestupné hraně napětí U_{OUT}	[A/ns]
di/dt _{rise}	Strmost proudu I_{DRV} mezi 10 % a 60 % jeho maximální hodnoty při náběžné hraně napětí U_{OUT}	[A/ns]
DPS	Deska plošných spojů	-
Drise	Propagační zpoždění při náběžné hraně napětí U_{OUT}	[ns]
D _{rise_dif}	Nárůst propagačního zpoždění optimalizační metody vůči originálnímu obvodu při změně výstupu budiče z LO do HO	[ns]
du/dt	Změna napětí v čase (derivace časového průběhu napětí)	[V/s]
Ef _{fall}	Efektivita využití nárůstu propagačního zpoždění pro redukci rozkmitu napětí na parazitní indukčnosti při výstupu budiče z HO do LO	[V/ns]
Efrise	Efektivita využití nárůstu propagačního zpoždění pro redukci rozkmitu napětí na parazitní indukčnosti při výstupu budiče z LO do HO	[V/ns]
E_g	Energie nutná k dodání celkového náboje gate	[J]
EMI	Elektromagnetická interference	-
EN	Spouštěcí signál budiče MOSFET	[V]
FGND	Plovoucí zemnící potenciál	[V]
FGND_ref	Referenční napětí pro plovoucí zemnící potenciál	[V]
fsw	Frekvence spínání MOSFET	[Hz]
GND	Zemnící potenciál	[V]
НО	Logická hodnota výstupu je na High (High output)	-
I_D	Proud do drainu	[A]
I _{DRV}	Budící proud budiče MOSFET	[A]
IDRVoff	Vypínací proud budiče MOSFET	[A]
IDRVon	Zapínací proud budiče MOSFET	[A]

I_G	Proud od gate	[A]
IN	Vstupní řídicí signál budiče MOSFET	[V]
IN_NMOS	Řídicí signál pro výstupní NMOS	[V]
IN_PMOS	Řídicí signál pro výstupní PMOS	[V]
L	Zamýšlená vzdálenost oblastí drain a source	[µm]
L _{ef}	Skutečná vzdálenost oblastí drain a source	[µm]
Lg	Délka gate segmentu	[µm]
LO	Logická hodnota výstupu je na Low (Low output)	-
Lpar	Parazitní indukčnost vývodu pouzdra budiče MOSFET	[nH]
L _{UCC}	Parazitní sériová indukčnost vývodu U_{CC}	[nH]
MOSFET	Metal-Oxid-Semiconductor-Field-Effect-Transistor	-
Ng	Počet gate segmentů	-
OPT	Optimalizace rozměrů budicích invertorů	-
ORIG	Originální obvod	-
P_{GLoss}	Spínací ztráty na gate kapacitě	[W]
PGND	Výkonová analogová zem	[V]
$PGND_{dif}$	Rozdíl amplitudy rozkmitu napětí optimalizační metody na vývodu <i>PGND</i> vůči originálnímu obvodu	[V]
P_{Loss}	Ztrátový výkon	[W]
P _{OLoss}	Spínací ztráty na výstupu tranzistoru	[W]
P_{RLoss}	Vodivostní ztrátový výkon	[W]
PSWLoss	Spínací ztrátový výkon	[W]
PWL	Zdroj tvarových impulsů (piecewise linear)	-
PWLF	Zdroj tvarových pulsů definovaný souborem (PWL-File)	-
PWM	Zdroj obdélníkového signálu (pulse width modulation)	-
Q_g	Náboj na gate	[nC]
R_SENSE	Snímací rezistor	$[\Omega]$
R_D	Odporová zátěž	$[\Omega]$
R _{DSON}	Odpor sepnutého přechodu drain-source	$[\Omega]$
RES	Metoda postupného spínání zpožďovacími rezistory	-
R_{ESR}	Parazitní sériový odpor kapacitoru	$[\Omega]$
R_F	Odpor RC filtru	$[\Omega]$
R_G	Vstupní odpor gate	$[\Omega]$
R _{IN}	Vstupní impedance filtru	$[\Omega]$
R _{Leak}	Parazitní paralelní odpor kapacitoru	$[\Omega]$
Ro	Výstupní odpor	$[\Omega]$
R _{OUT}	Výstupní impedance filtru	$[\Omega]$
<i>t</i> _{fall}	Sestupný čas MOSFET	[ns]
T_j	Teplota přechodu	[°C]
tox	Tloušťka izolační oxidové vrstvy	[µm]
t _{rise}	Náběžný čas MOSFET	[ns]
u(t)	Časová závislost napětí	[V]
U_{CC}	Napájecí napětí	[V]

U_{CC_dif}	Rozdíl amplitudy rozkmitu napětí optimalizační metody na	[V]
	vývodu U_{CC} vůči originálnímu obvodu	
U_{CC_dig}	Napájecí napětí logického obvodu budiče MOSFET	[V]
U_{CC_SUPP}	Napájecí napětí pro stabilizovaný zdroj	[V]
U_{CCL}	Napájecí napětí spodní strany budiče MOSFET	[V]
U_{DS}	Napětí mezi drain-source	[V]
U_{DSsat}	Saturační napětí mezi drain-source	[V]
U_{GD}	Napětí gate-drain	[V]
U_{GS}	Napětí mezi gate-source	[V]
$U_{GS,NMOS}$	Napětí U_{GS} na výstupním NMOS	[V]
$U_{GS,PMOS}$	Napětí U_{GS} na výstupním PMOS	[V]
U_{GSamp}	Amplituda napětí U_{GS}	[V]
$U_{GSMiller}$	Millerovo napětí gate-source	[V]
U _{NMOS,OFF}	Hladina napětí U_{GS} při vypnutém NMOS	[V]
U _{NMOS,ON}	Hladina napětí U_{GS} při zapnutém NMOS	[V]
U_{OUT}	Výstupní napětí budiče MOSFET	[V]
$U_{PMOS,OFF}$	Hladina napětí U_{GS} při vypnutém PMOS	[V]
Upmos, on	Hladina napětí U_{GS} při zapnutém PMOS	[V]
U_S	Napětí přiložené na source	[V]
U_{SS}	Zemnící potenciál pro nízkovýkonové komponenty	[V]
U_{TH}	Prahové napětí	[V]
W	Šířka kanálu	[µm]
Wg	Šířka gate segmentu	[µm]
W _{tot}	Celková šířka tranzistoru	[µm]
ZCS	Spínání při nulovém proudu (Zero current switching)	-
ZVS	Spínání při nulovém napětí (Zero voltage switching)	-
ZVZCS	Spínání při nulovém napětí a proudu (Zero voltage zero	-
	current switching)	

SEZNAM PŘÍLOH

A.1	SIMULAČNÍ ZAPOJENÍ S IDEÁLNÍMI ZDROJI	
A.2	ZAPOJENÍ TESTOVACÍHO OBVODU	
A.3	ZAPOJENÍ ORIGINÁLNÍHO OBVODU KONCOVÉHO STUPNĚ BUDIČE MOSFET A OBVODU	
OPTIMA	ALIZACE ROZMĚRŮ BUDÍCÍCH INVERTORŮ	
A.4	PARAMETRY OBVODU V PŘÍLOZE A.3	
A.5	ZAPOJENÍ METODY POSTUPNÉHO SPÍNÁNÍ ZPOŽĎOVACÍMI REZISTORY	
A.6	PARAMETRY OBVODU V PŘÍLOZE A.1	100
A.7	ZAPOJENÍ METODY POSTUPNÉHO SPÍNÁNÍ ASYMETRICKÝMI INVERTORY	101
A.8	PARAMETRY OBVODU V PŘÍLOZE 0	103
A.9	LAYOUT TESTOVACÍ DPS	104
A.10	VYROBENÁ TESTOVACÍ DPS	105
A.11	Upravený BNC kabel, napájecí vývody a dutinový nástavec na sondu oscilo 106	OSKOPU
A.12	KOMPLETNÍ TESTOVACÍ OBVOD S IMPLEMENTOVANÝMI PARAZITNÍMI VLASTNOSTMI OF	BVODU
NA DPS	S 107	
A.13	BONDING DIAGRAM TESTOVACÍHO OBVODU V POUZDŘE SOIC-16	108
ŘÍLOH	A B - VÝSLEDKY MĚŘENÍ A SIMULACÍ	109
B.1	Průběh napětí na vývodech IN (červená), OUT (tyrkysová) a rezistoru R_S	ENSE
(MODR	Á) PŘI ZMĚNĚ VÝSTUPU BUDIČE Z LO DO HO PRO OBVOD ORIG	109
B.2	Pr ůběh napětí na vývodech U_{CC} (fialová) a PGND (modrá) při změně výstup	U
BUDIČE	Z LO DO HO PRO OBVOD ORIG	109
B.3	Průběh napětí na vývodech IN (červená), OUT (tyrkysová) a rezistoru R_S	ENSE
(MODR	Á) PŘI ZMĚNĚ VÝSTUPU BUDIČE Z HO DO LO PRO OBVOD ORIG	110
B.4	Pr ůběh napětí na vývodech $U_{CC}\left(\textbf{FIALOVÁ}\right)$ a $PGND\left(\textbf{modrá}\right)$ při změně výstup	U
BUDIČE	Z LO DO HO PRO OBVOD ORIG	110
B.5	Průběh napětí na vývodech IN (červená), OUT (tyrkysová) a rezistoru R_S	ENSE
(MODR	Á) PŘI ZMĚNĚ VÝSTUPU BUDIČE Z LO DO HO PRO OBVOD S METODOU OPT	111
B.6	Pr ůběh napětí na vývodech U_{CC} (fialová) a PGND (modrá) při změně výstup	U
BUDIČE	Z LO DO HO PRO OBVOD S METODOU OPT	111
B.7	Průběh napětí na vývodech IN (červená), OUT (tyrkysová) a rezistoru R_S	ENSE
(MODR	Á) PŘI ZMĚNĚ VÝSTUPU BUDIČE Z HO DO LO PRO OBVOD S METODOU OPT	112
B.8	Pr ůběh napětí na vývodech U_{CC} (fialová) a $PGND$ (modrá) při změně výstup	U
BUDIČE	Z HO DO LO PRO OBVOD S METODOU OPT	112
B.9	Průběh napětí na vývodech IN (červená), OUT (tyrkysová) a rezistoru R_S	ENSE
(MODR	Á) PŘI ZMĚNĚ VÝSTUPU BUDIČE Z LO DO HO PRO OBVOD S METODOU RES	113
B.10	Pr ůběh napětí na vývodech U_{CC} (fialová) a PGND (modrá) při změně výstup	U
BUDIČE	Z LO DO HO PRO OBVOD S METODOU RES	113
B.11	Průběh napětí na vývodech IN (červená), OUT (tyrkysová) a rezistoru R S	ENSE
(MODR	Á) PŘI ZMĚNĚ VÝSTUPU BUDIČE Z HO DO LO PRO OBVOD S METODOU RES	114
B.12	Průběh napětí na vývodech U_{CC} (fialová) a PGND (modrá) při změně výstup	U
v	Z HO DO LO PRO OBVOD S METODOU RES	114
BUDICE		
BUDICE B.13	PRŮBĚH NAPĚTÍ NA VÝVODECH IN (ČERVENÁ), OUT (TYRKYSOVÁ) A REZISTORU R S	ENSE

B.14	Průběh napětí na vývodech U _{cc} (fialová) a PGND (modrá) při změně výstupu	
BUDI	ČE Z LO DO HO PRO OBVOD S METODOU ASINV	115
B.15	Průběh napětí na vývodech IN (červená), OUT (tyrkysová) a rezistoru R_SENS	E
(MOI	DRÁ) PŘI ZMĚNĚ VÝSTUPU BUDIČE Z HO DO LO PRO OBVOD S METODOU ASINV	116
B.16	Průběh napětí na vývodech U _{cc} (fialová) a PGND (modrá) při změně výstupu	
BUDI	ČE Z HO DO LO PRO OBVOD S METODOU ASINV	116
PŘÍLO	HA C - SROVNÁNÍ MĚŘENÝCH A SIMULOVANÝCH VÝSLEDKŮ	117
C.1	Srovnání měřeného (červená) a simulovaného (tyrkysová) průběhu napětí na	
PGN	D (VLEVO) A U _{CC} (VPRAVO) PRO OBVOD ORIG	117
C.2	SROVNÁNÍ MĚŘENÉHO (ČERVENÁ) A SIMULOVANÉHO (TYRKYSOVÁ) PRŮBĚHU NAPĚTÍ NA	
PGN	D (VLEVO) A U _{CC} (VPRAVO) PRO OBVOD OPT	117
C.3	SROVNÁNÍ MĚŘENÉHO (ČERVENÁ) A SIMULOVANÉHO (TYRKYSOVÁ) PRŮBĚHU NAPĚTÍ NA	
PGN	D (VLEVO) A U _{CC} (VPRAVO) PRO OBVOD RES	118
C.4	SROVNÁNÍ MĚŘENÉHO (ČERVENÁ) A SIMULOVANÉHO (TYRKYSOVÁ) PRŮBĚHU NAPĚTÍ NA	
PGN	D (VLEVO) A U _{CC} (VPRAVO) PRO OBVOD ASINV	118
C.5	SROVNÁNÍ MĚŘENÉHO (ČERVENÁ) A SIMULOVANÉHO (TYRKYSOVÁ) PRŮBĚHU NAPĚTÍ U_{SEN}	\SE
PRO O	DBVOD ORIG	119
C.6	SROVNÁNÍ MĚŘENÉHO (ČERVENÁ) A SIMULOVANÉHO (TYRKYSOVÁ) PRŮBĚHU NAPĚTÍ U_{SEN}	\SE
PRO O	DBVOD OPT	119
C.7	SROVNÁNÍ MĚŘENÉHO (ČERVENÁ) A SIMULOVANÉHO (TYRKYSOVÁ) PRŮBĚHU NAPĚTÍ U_{SEN}	\SE
PRO O	DBVOD RES	120
C.8	SROVNÁNÍ MĚŘENÉHO (ČERVENÁ) A SIMULOVANÉHO (TYRKYSOVÁ) PRŮBĚHU NAPĚTÍ U_{SEN}	/SE
PRO O	DBVOD RES	120
C.9	SROVNÁNÍ MĚŘENÉHO (ČERVENÁ) A SIMULOVANÉHO (TYRKYSOVÁ) PRŮBĚHU NAPĚTÍ NA	
VÝVO	DDU <i>OUT</i> pro obvod ORIG	121
C.10	SROVNÁNÍ MĚŘENÉHO (ČERVENÁ) A SIMULOVANÉHO (TYRKYSOVÁ) PRŮBĚHU NAPĚTÍ NA	
VÝVO	DDU <i>OUT</i> pro obvod OPT	121
C.11	SROVNÁNÍ MĚŘENÉHO (ČERVENÁ) A SIMULOVANÉHO (TYRKYSOVÁ) PRŮBĚHU NAPĚTÍ NA	
VÝVO	DDU <i>OUT</i> pro obvod RES	122
C.12	SROVNÁNÍ MĚŘENÉHO (ČERVENÁ) A SIMULOVANÉHO (TYRKYSOVÁ) PRŮBĚHU NAPĚTÍ NA	
VÝVO	DDU <i>OUT</i> pro obvod AsInv	122

Příloha A - Schémata, návrhy, struktury a DPS

A.1 Simulační zapojení s ideálními zdroji

A.3 Zapojení originálního obvodu koncového stupně budiče MOSFET a obvodu optimalizace rozměrů budících invertorů

	Originální zapojení budiče MOSFET									
	Hor	ní strar	na budiče		Dolní strana budiče					
	<i>Wg</i> [µm]	ng [-]	Wtot [µm]	<i>Lg</i> [µm]		$Wg [\mu m] ng [-] W_{tot} [\mu m] Lg$				
M1	10	3	30	0,5		M5	8,06	6	48,36	0,5
M2	8,2	2	16,4	0,5		M6	6,75	4	27	0,5
M3	12	24	288	0,5		M7	8	35	280	0,5
M4	10	10	100	0,5		M8	10	13	130	0,5
M9	53	24	1272	0,6		MLD1	53	24	1272	0,6
M10	53	24	1272	0,6		MLD2	53	24	1272	0,6
Zapojení metody OPT					- idealiz	ované zapo	jení			
	Hor	ní strar	na budiče				Doln	í strana	u budiče	
	<i>Wg</i> [µm]	ng [-]	W _{tot} [µm]	<i>Lg</i> [µm]			<i>Wg</i> [µm]	ng [-]	W _{tot} [µm]	<i>Lg</i> [µm]
M1	5,5	2	11	0,5		M5	7	3	21	0,5
M2	6	2	12	0,5		M6	4	2	8	0,5
M3	14	6	84	0,5		M7	6,1	5	30,5	0,5
M4	5	4	20	0,5		M8	6	5	30	0,5
M9	53	24	1272	0,6		MLD1	53	24	1272	0,6
M10	53	24	1272	0,6		MLD2	53	24	1272	0,6
		Zapoje	ení metody (OPT - reál	né	e parame	try testovad	eí struk	tury	
	Hor	ní strar	na budiče				Doln	í strana	budiče	
	<i>Wg</i> [µm]	ng [-]	Wtot [µm]	<i>Lg</i> [µm]			<i>Wg</i> [µm]	ng [-]	Wtot [µm]	<i>Lg</i> [µm]
M1	5,5	2	11	0,5		M5	7	3	21	0,5
M2	6	2	12	0,5		M6	4	2	8	0,5
M3	14	6	84	0,5		M7	6,1	5	30,5	0,5
M4	5	4	20	0,5		M8	6	5	30	0,5
M9	53	24	1272	0,6		MLD1	53	24	1272	0,6
M10	53	24	1272	0,6		MLD2	53	24	1272	0,6

A.4 Parametry obvodu v příloze A.3

A.5 Zapojení metody postupného spínání zpožďovacími rezistory <u>Horní strana budiče MOSFET</u>

Zapojení metody RES - ideálizované zapojení										
Ho		Dolní strana budiče								
<i>Wg</i> [µm]	ng [-]	W _{tot} [µm]	<i>Lg</i> [µm]		<i>Wg</i> [µm]	ng [-]	W _{tot} [µm]	<i>Lg</i> [µm]		
M5 7	3	21	0,5	M1	6	4	24	0,5		
M6 6,2	2	12,4	0,5	M2	5	4	20	0,5		
M11 10	10	100	0,5	M3	7	30	210	0,5		
M7 9,5	2	19	0,5	M4	3,4	1	3,4	0,5		
M8 9,5	4	38	0,5	M5	3,4	2	6,8	0,5		
M9 9,5	6	57	0,5	M6	3,4	3	10,2	0,5		
M10 9,5	8	76	0,5	M7	3,4	4	13,6	0,5		
M1 6,4	20	128	0,6	MLD1	4,8	20	96	0,6		
M2 25,4	20	508	0,6	MLD2	25,1	20	502	0,6		
M3 38,3	20	766	0,6	MLD3	40	20	800	0,6		
M4 57,1	20	1142	0,6	MLD4	57,3	20	1146	0,6		
Celková šířka J		Celko	Celková šířka W výstupních NMOS							
	2544	[µm]				2544				
			Rezistory							
<i>W</i> [µm]	<i>L</i> [µm]	Odpor [Ω]			<i>W</i> [µm]	<i>L</i> [µm]	Odpor [Ω]			
R0 15,36	3,82	90		R0	4,8	3	240			
R1 15,36	2,23	60		R1	38,32	7	60			
R2 15,36	3,29	80		R2	7,06	10	450			
	Zapo	jení metody l	RES - reáln	é parame	try testova	cí strukt	ury			
Ho		_	Dolni strana budiče							
<i>Wg</i> [µm]	ng [-]	W _{tot} [µm]	<i>Lg</i> [µm]		<i>Wg</i> [µm]	ng [-]	W _{tot} [µm]	<i>Lg</i> [µm]		
M5 10	3	30	0,5	M1	7	4	28	0,5		
M6 5,2	2	10,4	0,5	M2	6,75	4	27	0,5		
M11 10	10	100	0,5	M3	8	19	152	0,5		
M7 6,2	2	12,4	0,5	M4	6,2	1	6,2	0,5		
M8 6,2	4	24,8	0,5	M5	6,2	2	12,4	0,5		
M9 6,2	6	37,2	0,5	M6	6,2	3	18,6	0,5		
M10 6,2	8	49,6	0,5	M7	6,2	4	24,8	0,5		
M1 42,4	6	254,4	0,6	MLDI	42,4	6	254,4	0,6		
M2 42,4	12	508,8	0,6	MLD2	42,4	12	508,8	0,6		
M3 42,4	18	763,2	0,6	MLD3	42,4	18	763,2	0,6		
M4 42,4	24	1017,6	0,6	MLD4	42,4	24	1017,6	0,6		
Celková šířka W výstupních PMOS			2544	Celko	vá šířka <i>W</i>	výstupn	ich NMOS	2544		
			2544		μm] 2544					
	Doriet	0.111				Doriete	1417			
Wiumi	Rezist	Ory			Wuml	Rezisto	Odner [O]			
<i>W</i> [μm] R0 15.36	Rezist <i>L</i> [μm]	ory Odpor [Ω]		PO	<i>W</i> [μm]	Rezisto <i>L</i> [μm] 7.89	ory Odpor [Ω] 200			
<i>W</i> [μm] R0 15,36 R1 15,36	Rezist <i>L</i> [μm] 3,82 2,23	Odpor [Ω] 90 60		R0 R1	<i>W</i> [μm] 12,8 5.92	Rezisto <i>L</i> [μm] 7,89 5.16	Odpor [Ω] 200 300			

A.6 Parametry obvodu v příloze A.1

A.7 Zapojení metody postupného spínání asymetrickými invertory <u>Horní strana budiče MOSFET</u>

Dolní strana budiče MOSFET

Zapojení metody AsInv - idealizované zapojení										
Horní strana budiče				Dolní strana budiče						
	<i>Wg</i> [µm]	ng [-]	Wtot [µm]	<i>Lg</i> [µm]		<i>Wg</i> [µm]	ng [-]	W _{tot} [µm]	<i>Lg</i> [µm]	
M5	5,5	3	16,5	0,5	M1	4	2	8	0,5	
M6	5	2	10	0,5	M2	3,5	2	7	0,5	
M7	9	2	18	0,5	M3	1,6	1	1,6	0,5	
M8	9	4	36	0,5	M4	3,1	2	6,2	0,5	
M9	9	6	54	0,5	M5	3,1	3	9,3	0,5	
M10	9	8	72	0,5	M6	3,52	4	14,08	0,5	
M11	5	2	10	0,5	M7	7	2	14	0,5	
M12	3,9	2	7,8	0,5	M8	7	2	14	0,5	
M13	3,8	2	7,6	0,5	M9	4,6	2	9,2	0,5	
M14	3,7	2	7,4	0,5	M10	4,3	2	8,6	0,5	
M1	12,7	20	254	0,6	MLD1	6,4	20	128	0,6	
M2	25,4	20	508	0,6	MLD2	25,4	20	508	0,6	
M3	38,1	20	762	0,6	MLD3	38,2	20	764	0,6	
M4	51	20	1020	0,6	MLD4	57,2	20	1144	0,6	
Celková šířka W výstupních PMOS					Celko	Celková šířka Wv ýstupních NMOS				
[µm]			2544		[µm]					
-										
		Zapoje	ní metody As	sInv - reáln	né param	etry testovac	cí strukt	ury		
Horní strana budiče					Dolní strana budiče					
	<i>Wg</i> [µm]	ng [-]	W _{tot} [µm]	<i>Lg</i> [µm]		<i>Wg</i> [µm]	ng [-]	W _{tot} [µm]	<i>Lg</i> [µm]	
M5	10	2	20	0,5	M1	4,5	2	9	0,5	
M6	4	1	4	0,5	M2	3	2	6	0,5	
M7	7	2	14	0,5	M3	4	1	4	0,5	
M8	7	4	28	0,5	M4	4	2	8	0,5	
M9	7	6	42	0,5	M5	4	3	12	0,5	
M10	7	8	56	0,5	M6	4	4	16	0,5	
MII M12	3	2	10	0,5	M/	12	2	24	0,5	
M12	4,3	2	8,6	0,5	M8	/	Z	14	0,5	
MIT3	25	2	7	0.5		5	2	10	ΛE	
	3,5	2	7	0,5	M9	5	2	10	0,5	
M14	3,5 2,5	2 2 6	7 5 254.4	0,5 0,5	M9 M10	5 3 42.4	2 2 6	10 6 254.4	0,5 0,5	
M14 M1 M2	3,5 2,5 42,4 42,4	2 2 6	7 5 254,4 508.8	0,5 0,5 0,6	M9 M10 MLD1 MLD2	5 3 42,4 42,4	$\begin{array}{c} 2\\ 2\\ 6\\ 12 \end{array}$	10 6 254,4 508.8	0,5 0,5 0,6	
M14 M1 M2 M3	3,5 2,5 42,4 42,4 42,4	2 2 6 12	7 5 254,4 508,8 763.2	0,5 0,5 0,6 0,6	M9 M10 MLD1 MLD2 MLD2	5 3 42,4 42,4 42,4	2 2 6 12	10 6 254,4 508,8 763.2	$ \begin{array}{r} 0,5 \\ 0,5 \\ 0,6 \\ 0,6 \\ 0,6 \\ 0.6 $	
M14 M1 M2 M3 M4	3,5 2,5 42,4 42,4 42,4 42,4	2 2 6 12 18 24	7 5 254,4 508,8 763,2 1017.6	$ \begin{array}{r} 0,5 \\ 0,5 \\ 0,6 \\ 0,6 \\ 0,6 \\ 0.6 $	M9 M10 MLD2 MLD3 MLD3	$ \begin{array}{c} 5 \\ 3 \\ 42,4 \\ $	2 2 6 12 18 24	10 6 254,4 508,8 763,2 1017.6	$ \begin{array}{r} 0,5 \\ 0,5 \\ 0,6 \\ 0,6 \\ 0,6 \\ 0,6 \\ 0,6 \\ 0.6 $	
M14 M1 M2 M3 M4	3,5 2,5 42,4 42,4 42,4 42,4 42,4	2 2 6 12 18 24 vístur	7 5 254,4 508,8 763,2 1017,6	$ \begin{array}{r} 0,5 \\ 0,5 \\ 0,6 \\ 0,6 \\ 0,6 \\ 0,6 \\ 0,6 \\ \end{array} $	M9 M10 MLD1 MLD2 MLD3 MLD4	5 3 42,4 42,4 42,4 42,4 42,4 42,4	2 2 6 12 18 24	10 6 254,4 508,8 763,2 1017,6	$ \begin{array}{c} 0,5 \\ 0,5 \\ 0,6 \\ 0,6 \\ 0,6 \\ 0,6 \\ 0,6 \\ \end{array} $	
M14 M1 M2 M3 M4 Celko	3,5 2,5 42,4 42,4 42,4 42,4 42,4 ová šířka <i>W</i>	2 6 12 18 24 výstupr	7 5 254,4 508,8 763,2 1017,6 ních PMOS	0,5 0,5 0,6 0,6 0,6 0,6 2544	M9 MLD1 MLD2 MLD3 MLD4 Celko	5 3 42,4 42,4 42,4 42,4 42,4 42,4 42,4 42	2 2 6 12 18 24 výstupní ml	10 6 254,4 508,8 763,2 1017,6 ich NMOS	0,5 0,5 0,6 0,6 0,6 0,6 2544	

A.8 Parametry obvodu v příloze 0

A.9 Layout testovací DPS

A.10 Vyrobená testovací DPS

A.11 Upravený BNC kabel, napájecí vývody a dutinový nástavec na sondu osciloskopu

A.12 Kompletní testovací obvod s implementovanými parazitními vlastnostmi obvodu na DPS

A.13 Bonding diagram testovacího obvodu v pouzdře SOIC-16
Příloha B - Výsledky měření a simulací

B.1 Průběh napětí na vývodech IN (červená), OUT (tyrkysová) a rezistoru R_SENSE (modrá) při změně výstupu budiče z LO do HO pro obvod ORIG

B.2 Průběh napětí na vývodech U_{CC} (fialová) a PGND (modrá) při změně výstupu budiče z LO do HO pro obvod <u>ORIG</u>

File	Ed	lit	Ар	plica	tions		U	tility	1	H	Help	,																																																		_	Te	ktr	on	nix	¢
Wavefo	rm V	lew																E	_	_	_	_		_	_	_	_	_	-	Ŭ.	_	_	_	_	_	_	_	_	_	_	3																							dd N	lew.		
																													Ģ	þ																															2	ł	Curi	ors	Cal	llou	n
																																																													24 1	v	Mea	ure	Se	arch	5
																																																													23 1	v	Rest Tab	ilts le	P	lot	
																																																													22 1	v	i.		Mo	pre.	
																																																													21 1	v					
C 4 20 \)~		-			_		<u> </u>	4					~	~		_	 								-					~~.,		~	\sim	A	N	~-		~				4	-			~		-	_	-	 _		~	4						20-1						
																																			ų, v																										19 \	v					
																																																													18 \	v					
																																																													17 \	v					
																																																													16 \						
					_			_										 																		-							-		_							 			-	_						1					
																																																													2.51	Ĭ.					
																																																													21	×					
																																																													1.5 \	v.					
																																			Å																										11	×					
																																			۸,	A	۸.																							51	00 ml	Y					
C5	~~~														_			 -							-	~							~	V		1	V	~	~	~	~	-	Ĩ		~~~							 		~~~	÷						~ 01	7					
																																			V	V																								-51	00 ml	ľ					
																																																													-1 \	۲					
																																																													-1.5 \	۲.					
			-80	ns -					-60	ns			_	_		-40	ns		_			-20	ns			_			0	5			_	_		20-1	ns			-		. 4	i0-ns		1.0				60	ns			_	. 1	80- ns		_	1.000			-21	ý.		_			
200 mW/d 50 Ω D 500 MHz	iv Sa	1 V/dh 1 MΩ 500 M	, 1Hz =	50 11 50	0 mN MQ 0 Mi	oda tz ¶																												2	2	3		6		Ade Nev Mat	i v i h	Add New Ref	A N B	dd ew lus		-107 20 m SR: 6 RL: 1	s/div 5.25 1.25	GSA kpts		200 160 149	ns os/pt .6%		1 <u>99</u>	r ./	600	πW		A Si 3	uto, ampi .058	nsiti xio: 8 5 kA	B bits	Analy i	/ze	5	topp	ed	

B.3 Průběh napětí na vývodech IN (červená), OUT (tyrkysová) a rezistoru R_SENSE (modrá) při změně výstupu budiče z HO do LO pro obvod <u>ORIG</u>

B.4 Průběh napětí na vývodech U_{CC} (fialová) a PGND (modrá) při změně výstupu budiče z LO do HO pro obvod ORIG

File		Edit		Appli	cations	5	Utili	ity	Н	elp																																Tek	ronix	C
Wave	form	n Vie	w											E	 	_	 	 	-	<u>0</u> —								3														Add	New	
																			Ę	5																					2	Cursors	Callou	n
																																									24 V	Measure	Search	h
																																									23 V	Results Table	Plot)
																																									22 V	0	More.	
																																									21 V			
									_								 			~^	٨٨				~										_									
C4 2	<u></u>																				J.v.		- •																		20 V			
																																									19 V			
																																									18 V			
																																									17 V			
				-80 ns				-60	ns			40 ne				-20 (20					40 ns				. 60	15			R0 ns				16 V	:		
													-			-				_																						•		
																																									2.5 V			
																																									2 V			
																				Á																					1.5 V			
																																									1 V			
																					٨·																				500 mV			
C5>											 				 		 	 		J	VV	W	\sim	\sim												 					- a v			
																										_																		
																																									-1 V			
																																									-1.5 V			
				-	Ch P			46.3	_	_		1											_														:				-2 V			
200 m	v/div DS		V/div MO		500 mV	//div	200 7 k																2	з	6	5	Add	Ado	d Ai V Ne	dd Sw	20 m SR: 6	zenta s/div 525.64	i.A	200 ns	ot –	ger C	600 m	N	Ac Au Sar	ejelisti ito, mole:	An An 8 bits	alyze	Stopped	
500 M	Hz N	50	X0 MH	2 •	500 Mi	łz 🗣	[""	10 H D															-				Math	Ret	B	us	RL: 1	.25 kp	ts I	49.6	6				453	3 Acq	5 5			

B.5 Průběh napětí na vývodech IN (červená), OUT (tyrkysová) a rezistoru R_SENSE (modrá) při změně výstupu budiče z LO do HO pro obvod s metodou OPT

B.6 Průběh napětí na vývodech U_{CC} (fialová) a PGND (modrá) při změně výstupu budiče z LO do HO pro obvod s metodou <u>OPT</u>

File		Edi	it	App	olicati	ions	l	Utility	у	He	lp																													Tel	tronio	¢
Way	efor	n Vie	ew												E	 				 	Ŭ.	 				 														Ad	New	
																					¢.																		. 2	Curso	Callou	.rt
																																							24.1	Measu	e Searc	h
																																								Result		F.
																																							23 V	Table	Plot	
																																							- 22 V	0	More.	
																																										-
																																							21 0			
C 4	20 V)			· · ·			~~~				 		~~~~		 	÷		~~~	 	+	 ~	~	i~		 		÷				<u></u>		 	-		~~~~					
																																							19 V			
																																							· 18 V			
																																							17 V			
																					1																		16 V			
				-80 r	16				-60 n	15		 	-40	ns		 	-20 n	8		 	0,5	 		20	ns	 	41	0 ns				60 ns		 	80	ns				:		
																																							2.5 V			
																																							20			
																																							1.5 V			
																																							1 V			
																																							500 m/V			
C 5				-					÷			 	-			 • • • •	÷			 		 	لمم	۲Ð	~	 		-						 								
																								V.															-500 mM			
																					1																		-1 V			
																																							-1.5 V			
		_																																								
Ch 1	ping	1	3h 4		Ch	5		Matl	h 1														_			_		-	E	orizo	ntal			rigger				Acqui	isition		Providence	
200 n 50 O		1	EV/div EMO		500 1 M) mV/d 10	ŧv																2	3	6	Add New	Add New	Add New	20 51	0 ns/di 2: 6.25	v GSA	200	ns ps/pt	2	60	0 mV		Auto, Samol	A lo: 8 bits	alyze	review	-
500 h	1Hz	•	500 M	Hz N	500) MHz	۰.																			Math	Ref	Bus	RL	: 1.25	kpts	9 4	9.6%					0 Acq	5			

B.7 Průběh napětí na vývodech IN (červená), OUT (tyrkysová) a rezistoru R_SENSE (modrá) při změně výstupu budiče z HO do LO pro obvod s metodou OPT

B.8 Průběh napětí na vývodech U_{CC} (fialová) a PGND (modrá) při změně výstupu budiče z HO do LO pro obvod s metodou <u>OPT</u>

File	Ed	lit	Ap	plica	tions		Utility		Hel	p																																	Ţ	e k t	roni	x
Wavefor	m V	lew													E												-	3																Add	New	
																				¢																						R	Cu	rsors	Call	but
																																										24 V	Me	asure	Sea	ch
																																										22.14	Re	sults	Ple	ot
																																												io:		F
																																										22 V		<u>.</u>	INIO	e
																																										21 V				
C 4 20 V)		·			<u> </u>	~~~~	-		~~~	~	~		-	 	~	÷	~	 · .	 ~+	~~^	~			-			~~~~						-		 	·	÷	~—,			20 V				
																																										19 V				
																																										18 V				
																																										17 V				
																	-																									16 V	:			
																																										2.5 V				
																																										2				
																																										1.5 V				
																																										1 V				
																					A	2																			5	Vm 00				
C 5															 		 		 	 -	٨.						 							_		 						~ 0 V				
_																																									5	00				
																																										-1 V				
																																										-1.5 V				
Ch 1 🔶		_	-80	ns -				-60 ns				_	-4() ns			 -20 ns			0,s					20-r	s ·			40-ns				- 6	0 ns			- 80	ns				-2 V				
Cippine 200 mW/di		Ch 4 1 V/d	iv.	50	1 5 10 mW	div																	ſ	_	2		Add	Add	Ac	id	Hor 20 n	izont s/div	al	200	15	Triggi	~ 6	00 mV		Acq	uisit 2,	ion An	alyze		Stoppe	d
	•	1 MC 5001	∑ VIHz '	∎ 50	MQ Ю MHJ	•																		2	3	6	Math	Ref	BL	JS	SR: 6 RL: 1	6.25 C 1.25 k	iSA: pts	160 949	os/pt .6%					Sam 903.	ple: 8 Acqs	3 bits i				

B.9 Průběh napětí na vývodech IN (červená), OUT (tyrkysová) a rezistoru R_SENSE (modrá) při změně výstupu budiče z LO do HO pro obvod s metodou <u>RES</u>

B.10 Průběh napětí na vývodech U_{CC} (fialová) a PGND (modrá) při změně výstupu budiče z LO do HO pro obvod s metodou <u>RES</u>

File	-	Edit	Δ	Applic	ations	;	Utilit	ty	He	lp																														Tel	tronix
Wave	orm	Viev	N											E	 		 	 _	Ŭ.	 																				Ad	New
																		- 6	ţ,																				2	Curso	Callout
																																								Measu	e Search
																																							29.9	Revel	
$\sim 10^{-1}$																																							23 V	Table	Plot
																																							. 22 1	:0:	More
1.1																																							21 V		
C 4 2	v)			÷				÷		<u> </u>	 <u></u>	4			 	4_	 	 ·		 	24	ŝ									_	·			÷.				- 20 V		
	_																				V																				
																			1																				19 V		
1.1																																							18 V		
																																							17 V		
1.1																																							16 V	:	
											 				 		 	 	1	 											1									1	
																																							2.5 V		
																																							2.4		
																																							1.5 V		
																																							1.1		
																			1																				500 mV		
C5		~~~				·					 ·				 	1	 	 	-	 	n f	1									i.										
-																					V																				
																																							500 mV		
																																							-1 V		
																																							-1.5 V		
Ch 1 -				80 ns				-60 r	15			-40 r	15 ·			20 ns		. () s			20-r	IS -			4()-ns -			. (60-ns				80-ns				-2 V		
A Clipp	ng	Ch	4		Ch 5	a li a	Mat													ſ	-				Add	Add	Add	He	orizon	ntal	202		Tr	igger		-24	A	cquis	ition		Triggered
50 Q		10	dΩ		I MΩ		Chi														2	3	6	į	New	New	New	SR:	6.25		160 p	is is/pt	1				Sa	imple.		naiyze	
500 M	2 84	50	0 MHz	<u>-</u> 1	500 Mi	12 %][viath	Twr	BUS	RL	1.25	kpts	¥ 49.	.6%					1.	261 k	Acqs		

B.11 Průběh napětí na vývodech IN (červená), OUT (tyrkysová) a rezistoru R_SENSE (modrá) při změně výstupu budiče z HO do LO pro obvod s metodou <u>RES</u>

B.12 Průběh napětí na vývodech U_{CC} (fialová) a PGND (modrá) při změně výstupu budiče z HO do LO pro obvod s metodou <u>RES</u>

Fil		Ed	it	Aj	pplica	tions		Util	ity	1	Help	,																																						Tel	(tro	nix
Wa	efor	m Vi	lew														E			_			 											-																Ad	d Ne	w
																									¢																								P	Curso	rs (Callout
																																																	24 V	Measu	ire S	Search
																																																	23 V	Result	5	Plot
																																																		100		More
																																																	22.0			
																																																	21 V			
C 4	20 V)	~~								~~~					i.	 -	~~~~	-		-	-	 	-		~	~	~~~	~ .					~			 				-	~				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-	20 V			
																																																	19 V			
																																																	18 V			
																																																	17.9			
	-			-80	ns				-61) ns			-		-4	HO INS				-20	ns				0 s			- 1		20	ns				40	15	 		60	ns				80	ns				16 V	:		
																																																	2.5 V			
																																																	2 V			
																																																	1.5 V			
																																																	1 V			
																										7	~																					5	Vm 00			
C 5				^												-	 						 		-	<i>s</i>						1					 												- 0 V			
																																																-5	Vm 00			
																																																	-1 V			
																																																	-1.5 V			
Ch 1	↓ nine		Ch 4		í c	15		í Ma	th 1					-	-	-				_					- 1				_							_	loriz	ontal				T	inner			-	àra.	n nisit	-2 V		_	_
200 i 50 C			1 V/d 1 MG		50	Min 00 MQ	/div	200 Ch																					2	3		6	Ad	d A av N	Add Jew	Add New	0 ns/ R: 6.	div 25 G S	: د ه	200 ns 160 ps	Jot	ļ	2	6 6	30 mV		Auto Sam	o, ple <u>:</u> :	An 8 bits	alyze	Trig	gered
500	1Hz	».	500 N	лНz	⊷ s	0 MH	2 %																							JĽ			Mat	th	Ref	Bus	£: 1.2	25 kpt	s s	49.6	196						991	Acqs	5			

B.13 Průběh napětí na vývodech IN (červená), OUT (tyrkysová) a rezistoru R_SENSE (modrá) při změně výstupu budiče z LO do HO pro obvod s metodou <u>AsInv</u>

B.14 Průběh napětí na vývodech U_{CC} (fialová) a PGND (modrá) při změně výstupu budiče z LO do HO pro obvod s metodou <u>AsInv</u>

Wordom View	File	E	Edit		App	icatio	ons	Utilit	y	Н	elp																																	Tek t	ronix	(
Image: state of the state	Wavef	orm	View	N											E	 			 	 _	<u>0</u> —	 					-]																Add	New	
Image: Second																				Ę	j .																						?	Cursors	Callou	t
Image: Sector																																										. 2	4	Aeasure	Search	,
Image: Second																																											n	Results	Plot	ň
Image: state of the state	1																																									· 2	3 V	Table	FIOT	2
Image: state of the state																																										· 2	2 V	0	More.	
Image: state of the state																																										· 2	1 V			
Image: state of the state	(_						 				 				 						 																								
••••• ••••• ••••• ••••• ••••• ••••• ••••• ••••• •••••• •••••• •••••• •••••• ••••••• •••••••• •••••••• ••••••••••••••••••••••••••••••••••••	C 4 20	<u> </u>																					. M	M.																		2	9 V			
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •																																										· 1	9 V			
Image: state of the state																																										· 1	8 V			
••••••••••••••••••••••••••••••••••••																																														
••••••••••••••••••••••••••••••••••••																																										. 1				
																																										· 1	6 V			
200 30 15 15 10 500000 500000 500000 50000 50000 50000 50000																																														
■																																										. 2.	5 Y			
■																																											2 V			
■ 11 Sconv 90 300 mv 410 410 413 413																																										+ 13	5 V			
Some Some Some																																											1 V			
50 m/ 90 300 m/ - 4 v - 4 v - 4 v																																														
Image: contract of the second secon																																										500	mV			
900000 1	C5	- •						 	-			 	 			 	-		 	 -		 	-1	Ŵ	~~				÷					-									0 V -			
· · · · · · · · · · · · · · · · · · ·																							V																			-500	mV			
																																											1 V			
																																										-1.	5 V			
	Ch 1 ♦				-80 ns			-	-60	ns ·			 40 ns	s .			-20 r	15 .		0	s -			20	ns ·		-		40-ns				· 61) ns			_	80	ns -				2 V			
Acception 0.4 Control Proceedings 0.4 Control Proceedi	ACippi	ng	(O	4		Ch 5	5 mitte	Mat 200	h 1													ſ	-				Add	Add	A	td	Hori 20 m	zonta	อไ	200 m		Tr	rigger	1 C 60	0 mb/	T	Acqu	isitior	n Analuro		Stopped	1
Robert Start Sta Start Start S	50 Q 0		11	dΩ n Mu		1 M	0																2	3	6	5	New Math	Ref	/ Ne Bu	AVV JS	SR: 6	25 G	SAs.	160 p	s/pt 6%						Samp	le: 8 b				٢.

B.15 Průběh napětí na vývodech IN (červená), OUT (tyrkysová) a rezistoru R_SENSE (modrá) při změně výstupu budiče z HO do LO pro obvod s metodou <u>AsInv</u>

B.16 Průběh napětí na vývodech U_{CC} (fialová) a PGND (modrá) při změně výstupu budiče z HO do LO pro obvod s metodou <u>AsInv</u>

File	Ec	lit	A	pplic	ation	s	U	tility		Hel	lp																																		1	ek t	ron	ix
Wavefo	rm V	/lew														E	 				 		Ū							 1																Add	New	-
																							¢.																					R	Ci	irsors	Call	out
																																												24 V	M	easure	Sea	rch
																																													R	esults	P	ot
																																												23 V		able		
																																												22 V		$\mathcal{D}_{\mathbf{k}}$	Mo	e
																																												21 V				
C 4 20 V	<u>}</u>			<u>.</u>					4			_	 	4	.,		 _				 		in	\sim				÷		 						- <u>-</u>	4-	<u> </u>			<u> </u>	 		20 V				
																																												19.4				
																																												18 V				
																																												17 V				
																																												16 V				
				-					-				 				 				 		1							 		1							 			 		- 1	1			
																																												2.5 V				
																																												2 V				
																																												1.5 V				
																																												1 V				
																								ŗ.	2																		-	Vm 00i				
C5	~~~			÷					÷			·	 	+			 			~~~	 	-0-	÷							 		<u>.</u>			~~~				 			 		- 0 V				
																																												Vm 00i				
																																												-1 V				
																																												-1.5 V				
(h 1 ∳			8	0 ns					60 ns					40 n	ş .			-20	ns				0,s					20-ns				40-ns				. 6	50 ns			- 80	l-ns			-2 V				
A Clippin 200 mM/d	2	Ch 4	iv.		1 h 5 100 m		ľ																			-				Add	Add	Ac	id	Hor 20 n	izont s/div	tal	200	ns _	Trigg	er <u> 6</u>	00 mM	Acc Aut	quisit D,	tion Ar	alyze		Stoppe	d
50 Ω D: 500 MHz		1 M 500	n MH≥	•	I MΩ i00 M	Hz •																					2	3	6	New Math	New Ref	Bu	JS	SR: 6 RL: 1	5.25 C 1.25 k	asia apts	160 949					San 709	nple: Acq	8 bits s				

Příloha C - Srovnání měřených a simulovaných výsledků

C.1 Srovnání měřeného (červená) a simulovaného (tyrkysová) průběhu napětí na PGND (vlevo) a U_{CC} (vpravo) pro obvod <u>ORIG</u>

C.2 Srovnání měřeného (červená) a simulovaného (tyrkysová) průběhu napětí na PGND (vlevo) a U_{CC} (vpravo) pro obvod <u>OPT</u>

C.4 Srovnání měřeného (červená) a simulovaného (tyrkysová) průběhu napětí na PGND (vlevo) a U_{CC} (vpravo) pro obvod <u>AsInv</u>

C.6 Srovnání měřeného (červená) a simulovaného (tyrkysová) průběhu napětí U_{SENSE} pro obvod <u>OPT</u>

119

C.8 Srovnání měřeného (červená) a simulovaného (tyrkysová) průběhu napětí U_{SENSE} pro obvod <u>RES</u>

120

C.12 Srovnání měřeného (červená) a simulovaného (tyrkysová) průběhu napětí na vývodu *OUT* pro obvod <u>AsInv</u>

