
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA I N F O R M A Č N Í C H TECHNOLOGI Í

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV I N F O R M A Č N Í C H SYSTÉMŮ

ANOMALY RECOGNITION OF EXTENDED DETECTION
SYSTEMS
ROZPOZNÁNÍ ANOMÁLIÍ ROZŠÍŘENÝCH DETEKČNÍCH SYSTÉMŮ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR VASIL POPOSKI
AUTOR PRÁCE

SUPERVISOR Mgr. Ing. PAVEL OCENASEK, Ph.D.
VEDOUCÍ PRÁCE

B R N O 2023

T VYSOKÉ UČENÍ FAKULTA B
TECHNICKÉ INFORMAČNÍCH
V BRNĚ TECHNOLOGIÍ I

Zadání bakalářské práce
148445

Ústav:
Student:

Ústav informačních systémů (UIFS)
Poposki Vasil
Informační technologie

Rozpoznání anomálií rozšířených detekčních systémů
Počítačové sítě

Program:

Název:
Kategorie:
Akademický rok: 2022/23

Zadání:

1. Seznamte se s principy analýzy anomálií v prostředí systémů rozšířené detekce (extended
Detection and Response), respektive systémů detekce průniku jak na síti, tak na koncových
bodech.

2. Analyzujte požadavky na systém umožňující analýzu dat z systémů NIPS a HIPS s otevřenou
licencí v rámci vhodného integračního a vyhledávacího systému.

3. Navrhněte systém pro detekci anomálií, který bude založen na umělé inteligenci, dle instrukcí
vedoucího práce.

4. Po konzultaci s vedoucím práce navržený systém implementujte.
5. Implementovaný systém ověřte na vhodně zvolených reálných datech.
6. Diskutujte získané výsledky a možnosti dalšího rozšíření.

Literatura:
• Kurose, J. F. Computer networking: A top-down approach. Pearson, Essex, 2017, ISBN 978-1-

292-15359-9.
• Stallings, W. Network security essentials: Applications and standards. Hoboken, 2016, ISBN 978-

0-13-452733-8.
• Bishop, M. Computer security: Art & Science. Addison-Wesley, Boston, 2003, ISBN 0-201-44099-

7.
• Ahmed, M., Mahmood Naser, A., Hu, J. A survey of network anomaly detection techniques.

Journal of network and computer applications. Elsevier, 2016, 60(C), s. 19-31. ISSN 1084-8045.
• Buczak, A., Guven, E.. A Survey of Data Mining and Machine Learning Methods for Cyber

Security Intrusion Detection. IEEE Communications surveys and tutorials. IEEE, 2016, 18(2), s.
1153-1176.

Při obhajobě semestrální části projektu je požadováno:
Body 1 až 3 zadání.

Podrobné závazné pokyny pro vypracování práce viz https://www.fit.vut.cz/study/theses/
Vedoucí práce: Očenášek Pavel, Mgr. Ing., Ph.D.
Vedoucí ústavu: Kolář Dušan, doc. Dr. Ing.
Datum zadání: 01.11.2022
Termín pro odevzdání: 10.05.2023
Datum schválení: 28.10.2022

Fakulta informačních technologií, Vysoké učení technické v Brně / Božetěchova 1/2 / 612 66 / Brno

https://www.fit.vut.cz/study/theses/

Abstract
The objective of this work is to implement an anomaly detection system using art i f ic ial
intelligence techniques that can detect anomalies by learning the system behavior. The
proposed approach is effective in identifying novel or unknown anomalies that t radi t ional
rule-based methods may miss in network traffic data . However, the implementat ion of such a
system involves addressing challenges such as data processing and feature extract ion. This
work discusses different methods of data analysis and intrusion detection approaches in
Extended Detect ion and Response systems and the challenges we face i n today's expanding
security technologies.

Abstrakt
Cílem této práce je implementovat systém detekce anomálií využívající techniky umělé i n
teligence, který dokáže detekovat anomálie učením chování systému. Navrhovaný přístup je
účinný při identif ikaci nových nebo neznámých anomálií, které tradiční metody založené na
pravidlech mohou postrádat v datech síťového provozu. Implementace takového systému
však zahrnuje i řešení problémů, jako je zpracování dat a extrakce charakteristických rysů.
Tato práce pojednává o různých metodách analýzy dat a přístupech k odhalení průniků v
systémech Extended Detect ion and Response a výzvách, kterým čelíme v dnešních rozšiřu
jících se bezpečnostních technologiích.

Keywords
anomaly, detection, prevention, X D R , I D S , networks, endpoints, neural networks

Klíčová slova
anomálie, detekce, prevence, X D R , IDS , sítě, koncové body, neuronové sítě

Reference
P O P O S K I , Vas i l . Anomaly recognition of extended detection systems. B r n o , 2023. Bache
lor's thesis. B r n o Universi ty of Technology, Facul ty of Information Technology. Supervisor
M g r . Ing. Pavel Ocenäsek, P h . D .

A n o m a l y recognition of extended detection sys
tems

Declaration
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně p o d vedením pana M g r .
Ing. P a v l a Očenáška, P h . D Další informace m i poskyt l pan Ing. Petr Chmelař. U v e d l jsem
všechny literární prameny, publikace a další zdroje, ze kterých jsem čerpal.

V a s i l Poposk i
M a y 9, 2023

Acknowledgements
I express m y gratitude to M g r . Ing. Pavel Očenášek for his expert guidance i n this work
and Ing. Petr Chmelař for consultation on this project and valuable assistance.

Contents

1 I n t r o d u c t i o n 4

2 A n o m a l y a n a l y s i s i n X D R s y s t e m s 5
2.1 Intrusion detection system 5

2.1.1 Network-based Intrusion Detect ion Systems 6
2.1.2 Host-based Intrusion Detection Systems 7

2.2 Rule-Based Analys i s 7
2.3 Stat ist ical Analys is 8
2.4 Machine Learning-Based Methods 9
2.5 O u t p u t of A n o m a l y Detect ion 11
2.6 Eva luat ion of A n o m a l y Detect ion 12

3 A n o m a l y D e t e c t i o n S y s t e m D e s i g n 13
3.1 Requirements 13
3.2 Implementation design 14

4 A n o m a l y D e t e c t i o n S y s t e m I m p l e m e n t a t i o n 15
4.1 Environment 15

4.1.1 Environment Setup 15
4.1.2 Environment Tools 16

4.2 D a t a preparation 18
4.2.1 D a t a collection 18
4.2.2 Feature extraction and data reformatting 19

4.3 Neura l network implementat ion 20
4.3.1 Tensor F l o w framework 20
4.3.2 Autoencoder 20
4.3.3 Neura l network t ra ining 22

5 E x p e r i m e n t s a n d E v a l u a t i o n 24
5.1 Predic t ion 24

5.1.1 Threshold 25
5.2 Replaying P C A P files 25

5.2.1 Experiment 1 26
5.2.2 Exper iment 2 27

5.3 Penetrat ion testing 28
5.3.1 Testing environment 29
5.3.2 A t t a c k launching experiment 29

5.4 Evaluat ion 30

1

5.4.1 Testing data 30
5.4.2 R O C curve 31
5.4.3 N u m e r i c a l evaluation metrics 31

B i b l i o g r a p h y 33

2

List of Figures

2.1 C y b e r crime statistics 2005-2022 6
2.2 Gaussian dis tr ibut ion 9
2.3 E x a m p l e of clusters computed on random data using the £;-means a lgor i thm 10
2.4 The general architecture of A r t i f i c i a l N e u r a l Network 11
2.5 The generic process of anomaly analysis 12

4.1 Security O n i o n Standalone architecture 16
4.2 The setup used dur ing anomaly detection system implementat ion 17
4.3 I l lustrat ion of a computat ional graph i n Tensorflow w i t h defined operations

and data flows 20
4.4 P lots of the act ivation functions used i n neural network layers 22
4.5 Autoencoder architecture used for categorical features 22
4.6 Loss and accuracy progress recorded dur ing 35 epochs of neural network

t ra ining 23

5.1 Exper iment 1 - Reconstruct ion error plot 26
5.2 Exper iment 1 - Classified predict ion outputs 27
5.3 Exper iment 2 - Reconstruct ion error plot 28
5.4 Exper iment 2 - Classified predict ion outputs 28
5.5 A t t a c k launching experiment - Reconstruct ion error plot 30
5.6 Receiver Operat ing Characterist ic (R O C) curve 31
5.7 Eva luat ion - Classified predict ion outputs w i t h an opt imized threshold value. 32

3

Chapter 1

Introduction

W i t h the amount of information roaming the network and the ever-increasing number of
users, the vulnerabi l i ty of various areas of the system infrastructure has increased. Extended
Detection and Response (X D R) aims to provide a unified solution to this problem by
incorporat ing known cybersecurity methods and techniques.

Gartner [13] describes X D R as " a SaaS-based, vendor-specific, security threat detection
and incident response too l that natively integrates mult iple security products into a cohesive
security operations system that unifies a l l licensed security components". T h e m a i n goal
of X D R systems is to provide an enhanced security layer and improve overall detection,
protection, and response capabilities.

Cybersecurity tools have evolved over t ime due to the growth of the Internet and the fact
that attacks became more sophisticated. A n t i v i r u s software was able to detect and remove
malware f rom i n d i v i d u a l computers, while a firewall was introduced to protect the network
from external threats. Intrusion Detect ion Systems and Intrusion Prevention Systems were
designed to detect anomalies and protect the network using various advanced techniques.
W i t h the rising popular i ty of C l o u d C o m p u t i n g , the En dp o in t Detect ion and Response
(E D R) approach was introduced to protect i n d i v i d u a l endpoints like laptops and mobile
phones.

X D R collects and analyzes data f rom the entire infrastructure, inc luding endpoints,
networks, servers, emails, and the c loud. Thus , it enables event management, threat detec
t ion, and incident response i n a single environment [6]. B y improving v i s i b i l i t y and a l e r t
c o r r e l a t i o n , we are able to better understand threats and enable faster actions against
them.

4

Chapter 2

Anomaly analysis in X D R systems

In this chapter, I discuss the basic methods of anomaly analysis i n X D R systems. Since
anomaly analysis is a broad term, I focus on explaining the most commonly used approaches
and methods that are proven to be the most effective i n dealing w i t h anomalies.

2.1 Intrus ion detect ion system

The intrusion detection mechanism is a crucial component of every X D R system. If X D R
is able to detect intrusion quickly enough, attackers can be identified, therefore any risk of
damage w i l l be el iminated, or at least the damage w i l l be reduced. I n t r u s i o n d e t e c t i o n
s y s t e m (IDS) and I n t r u s i o n p r e v e n t i o n s y s t e m (IPS) are both designed to secure
systems f rom outside threats and provide protection to the network and i n d i v i d u a l users.
IDS systems can detect malicious ac t iv i ty and provide alerts, while I P S systems can take
action to prevent malicious activity. The process of anomaly detection is shown i n Figure
2.5.

I n t r u d e r s a n d T h r e a t s

A n intruder is an attacker who tries to gain access to a system and exploit system weak
nesses. Stallings [21] divides intruders into three categories and gives us examples of typica l
intruder behavior patterns:

1. Hacker - Usua l ly hacks into the computer to gain status i n the hacking community.
C a n be benign or malign.

2. C r i m i n a l Enterprise - A n organization or group of hackers w i t h a specific target they
a im to attack.

3. Insider - A n employee using their permissions and knowledge of company systems to
gain valuable information.

M a l i c i o u s s o f t w a r e

Mal ic ious software is any software that can h a r m or damage computer systems. Mal ic ious
software can exploit computer system weaknesses in a variety of ways. Some techniques of
intrusion are far simple and do not require complex intrusion detection systems in order
to detect or prevent them, while other more sophisticated intrusions require distr ibuted
systems that can detect or prevent a large scale of possible attacks.

5

There are several types of malware, inc luding backdoors, Tro jan horses, viruses, and
worms. Viruses and worms are used to spread across networks while exploit ing vulnerable
parts of the infrastructure. Other types of malware include the exploitat ion of authentica
t ion services in order to get access to a specific system. A backdoor is a sort of malware that
circumvents s tandard authentication processes to grant unauthorized access to a computer
system, while Tro jan Horses pretend to be trustworthy software while actual ly performing
malicious actions, such as stealing private information or granting the attacker i l legal access
[21]-

Dis t r ibuted Denia l of Service (DDoS) attack is a type of attack i n which a large num
ber of systems are used to flood a targeted system w i t h traffic, making it unavailable to
legitimate users. In Man- in- the-middle (M i t M) types of attacks, an attacker intercepts
communicat ion between two parties to steal data, such as login credentials, credit card
numbers, or other sensitive information. Cross-site script ing (XSS) attacks are a type of
injections that occur in web applications. Vulnerable web applications allow an attacker to
inject malicious code into a website and exploit its weaknesses. These attacks can occur
when a website accepts user input , such as i n a search box or comment section, without
properly val idat ing the input . In a s imilar manner, S Q L injection is used to inject malicious
code through a web applicat ion form. B y inserting specific S Q L statements, it can trick
the appl icat ion into executing the code.

There is a large scale of possible threats that may occur in the vulnerable parts of
network infrastructure, applications, or on endpoints. The m a i n countermeasure against
these threats is detection and prevention.

Annual number of data compromises and individuals impacted in the United States

f rom 2005 to first half 2022

3 000

2,541.07

2 5 0 0 K 2,227.85

5 1 500

1 ooo 783
656 662 e u

••• Data compromises • • • Number of records exposed in millions Individuals impacted in millions

Source Addliddal Informafen:
Identity Theft Resource Center United States: Identity Theft Resource Center: ZOOS to HI 2022: data ccroorcmises include data bleaches, dataejoosofe
© Statists 2022 impacted may go beyond the Unesd States

Figure 2.1: C y b e r crime statistics 2005-2022 [7].

2 . 1 . 1 N e t w o r k - b a s e d I n t r u s i o n D e t e c t i o n S y s t e m s

Network-based Intrusion Detect ion Systems (NIDS) are designed to detect malicious activ
ities i n network data. It works by constantly monitor ing the network traffic and analyzing
incoming packets. N I D S are typical ly deployed at strategic points in a network, such as
at the perimeter or on specific cr i t ica l servers. It's necessary for these systems to inform
the administrator about suspicious act ivi ty and take countermeasures in order to block
suspicious traffic and secure the network infrastructure.

I.i

Some common examples of attacks that N I D S can detect are Remote C o m m a n d Exe
cut ion (R C E) attacks, D e n i a l of Service (D O S) , Man- in- the-middle (M I T M) , Por t Scans,
and various malware infections such are worms, viruses, and Trojans. For example, N I D S
can detect a series of T C P connections to different ports dur ing a short per iod of t ime and
flag this act iv i ty possible port scan.

2 . 1 . 2 H o s t - b a s e d I n t r u s i o n D e t e c t i o n S y s t e m s

The purpose of Host-based Intrusion Detect ion Systems (HIDS) is to protect i n d i v i d u a l de
vices, i.e., endpoints, such as servers, P C , or mobile devices. H I D S monitors endpoints and
collects data f rom various sources like system logs, event logs, system calls, or performance
data. To indicate the security breach, H I D S creates the baseline of normal behavior and
analyzes collected data to identify suspicious activities.

A more advanced form of H I D S is E n d p o i n t D e t e c t i o n a n d R e s p o n s e (E D R) , which
uses a more proactive approach to collecting and analyzing data . E D R also allows the reme
diat ion and investigation of the endpoint. W a z u h 1 and O S S I M 2 (Open Source Security
Information Management) are two popular security solution used for collecting and ana
lyz ing data on endpoints. Besides real-time protection and incident response capabilities,
they also provide logging and event management.

2.2 R u l e - B a s e d A n a l y s i s

This approach uses predefined signatures to detect malware. Signatures may contain various
information such as IP address, port number, or a specific s tr ing found i n the packet
payload. If a certain pattern is found i n incoming traffic, it may indicate malicious activity.
Rule-based detection does not generate a large number of false alarms, due to the fact that
rules are defined based on previous intrusions. However, this approach is not so effective in
detecting new anomalies for which there are s t i l l no rules defined.

S n o r t ^ is a popular open-source intrusion detection system that uses a pattern-matching
mechanism. It is based on a simple language for specifying rules [12]. Rules are wri t ten in
a specific syntax and are organized into categories such as a l e r t , d r o p , and pass .

S u r i c a t a is a newer intrusion detection system that uses a mult i - threaded architecture
that allows it to process packets i n paral lel . Th is means that more data is processed, making
Suricata a more efficient tool compared to Snort [22]. It is often used in conjunction w i t h
S I E M (Security Information and Event Management) tools to enhance the analysis process.

Rule-based intrusion detection tools have thousands of rules in the database, inc luding
a large number of rules contributed by the community [5]. Therefore, keeping rules up to
date is an important part of mainta ining network security.

E x a m p l e o f S n o r t / S u r i c a t a r u l e

a l e r t t c p $EXTERNAL_NET any -> $H0ME_NET 22
(msg:"SSH l o g i n a t t e m p t " ; s i d : 1 0 0 0 0 0 0 1 ; r e v : l ;)

x h t t p s : //wazuh.com/
https://cybersecurity.att.com/products/ossim

3 h t t p s : //www.snort.org/
4 h t t p s : / / s u r i c a t a . i o /

7

https://cybersecurity.att.com/products/ossim
http://www.snort.org/
https://suricata.io/

This rule w i l l trigger an alert if it detects any T C P traffic going to port 22, which is the
default port for S S H .

2.3 Stat is t ical A n a l y s i s

Statist ical analysis is used to identify deviations f rom normal behavior. The term normal
behavior here is used to describe legitimate or expected behavior. In terms of detection
efficiency, statist ical analysis is more efficient t h a n rule-based analysis in dealing w i t h i n
truders, which are unlikely to m i m i c normal behavior. Stat ist ical analysis methods can be
very useful i n detecting previously unknown threats.

We can categorize statist ical analysis based on outlier detection techniques into two
categories [21].

• Threshold detection: The number of occurrences of a part icular event is examined
over a certain period of t ime. If this number exceeds the threshold we defined, we
can assume the presence of outliers i n the data. Since it is necessary to define a time
interval and a threshold value for each event, i n larger systems this analysis technique
can produce a large number of false positives and false negatives.

• Profile-based detection: In order to detect anomalous activity, we create the profile
based on previous user behavior. N o r m a l user behavior is defined by a set of met
rics. The detection mechanism compares the created profile w i t h the user's current
activities and determines the degree of deviat ion.

A n example of a statist ical analysis method is the Gaussian dis tr ibut ion model shown in
Figure 2.2. Th is method assumes that the data being analyzed follows a normal dis tr ibut ion
and calculates the probabi l i ty of a given data instance being anomaly-based. We detect
outliers by determining a l l data instances that are more than 3a distance away from the
mean //, where a is the value of the standard deviat ion of the dataset. A b o u t 99.7% of
values are w i t h i n the M l CB. of /x H—3a .

Another method to determine anomalies in operating system data is the % 2 statist ical
test. The output of a test is a measure of the deviat ion between the observed and expected
values:

where O j is the observed value and Ei the expected value of the ith variable [8].

8

Standard Normal Distribution u-0|o-1

a

Figure 2.2: The area under the curve represents the probabi l i ty for any interval of value

[4]-

2.4 M a c h i n e Learning-Based M e t h o d s

Machine learning techniques have become an important part when it comes to anomaly
analysis. T h e y typical ly involve t ra ining a model on normal behavior data and then using
that model to identify deviat ion from the n o r m in the new data. In this subsection, some
of the most commonly used machine learning techniques for anomaly detection w i l l be
discussed.

K- m e a n s

i f -means is a clustering-based method that can be used to group similar data points (in
stances) together. The a lgor i thm first initializes k centroids, where A: is a user-defined
parameter, and assigns the data points to their nearest centroid. The a lgor i thm then com
putes new centroids by tak ing a mean of each defined cluster and repeats this process u n t i l
clusters no longer change or a stopping cri terion is met. B y grouping s imilar points into
clusters we are able to identify clusters that deviate from the n o r m i.e. the outliers (Figure
2.3).

9

• • Anomalies
Norma

• X Centroids

• •
•

» •

•

•

•
•

- 2 - 1 0 1 2

Figure 2.3: E x a m p l e of clusters computed on random data using the £;-means a lgori thm
from the s c i k i t - l e a r n P y t h o n l ibrary w i t h a predefined number of clusters and an anomaly
threshold value.

D e c i s i o n T r e e s

A decision tree a lgor i thm is a supervised a lgor i thm used for classification. Decision trees
consist of nodes, leaves, and edges. The a lgor i thm works by start ing at the root node and
following the edges to the appropriate chi ld node based on the input features. Th is process
is repeated u n t i l a f inal predict ion is reached at a leaf node.

A r t i f i c i a l N e u r a l N e t w o r k s

A r t i f i c i a l N e u r a l Networks (A N N) are computat ional models that are inspired by the struc
ture of biological neurons i n the bra in . A r t i f i c i a l neurons are organized into layers that
have connections w i t h other layers. A r t i f i c i a l N e u r a l Networks are often used i n anomalous
pattern identif ication. B y using reinforcement learning, A N N is able to learn new types
of attacks efficiently [5]. In this approach, the neural network is trained using normal
data and then used to identify anomalous behavior i n new data. In Figure 2.4 the general
architecture of A N N is presented.

The a lgor i thm for neural networks can be div ided into two steps [8]:

• Tra in ing : A neural network is trained on a large dataset containing normal patterns
of network behavior to classify and identify normal patterns. Us ing backpropagation,
the weights of i n d i v i d u a l neurons are adjusted to improve the output results.

• Testing: Test instances of unseen data are provided as input to the neural network.
The neural network then accepts or rejects the input data, based on what it learned
in the t ra ining process. In case of rejection of input data, the instance is classified as
an anomaly.

Each neuron i n an A N N has an associated bias and weight. The bias is a constant that
allows the neuron to adjust its output independently of its inputs . A neuron's weight is a
quantity that measures how strongly its inputs and outputs are connected. To determine
the neuron's output , the weighted sum of a neuron's inputs is first calculated. A bias value

10

is then added, and the result is passed to an act ivat ion function. T h e act ivat ion function
enables the neural network to represent complex interactions between inputs and outputs
and therefore learn complex patterns i n the data . The output of a neuron is passed as an
input to the neurons i n the next layer. Weights and biases are adjusted i n the process of
backpropagation. In this process weights and biases are learned values i n order to minimize
the loss.

Hidden Layer;

Figure 2.4: The general architecture of A r t i f i c i a l N e u r a l Network [1].

2.5 O u t p u t of A n o m a l y Detec t ion

The important part of the anomaly analysis is the output of the anomaly detection process
(see Figure 2.5). Typica l ly , the anomaly detection result can be reported in two ways [8]:

1. S c o r e s : Scores are assigned to each anomaly detection output instance. Typica l ly ,
the higher the score, the higher the probabi l i ty that this part icular instance is t ru ly an
anomaly. Us ing this technique, the administrator is able to see a l l potential anomalies
and manual ly mark some as anomalies, or can automatical ly select anomalies by
defining a threshold value.

2. L a b e l s : O u t p u t instances are marked binary, i.e. using the labels - normal or anoma
lous.

I n s t a n c e S c o r e L a b e l
A 0.4 False
B 0.78 True
C 0.2 False
D 0.35 False
E 0.9 True

Table 2.1: E x a m p l e of instance output using scoring and labeling.

The anomaly score is calculated by a set of metrics and its est imation can be formulated
using several techniques, inc luding distance-based, density based and soft computing based
technique [5].

11

2.6 E v a l u a t i o n of A n o m a l y Detec t ion

Another important aspect is the evaluation of the output . D u r i n g this process, the effec
tiveness of the output results is determined. Us ing the appropriate evaluation measure we
can evaluate the precision of intrusion detection.

Evaluat ion typical ly involves comparing output results w i t h normal or expected behavior
and measuring false a larm rates. Precision, Recall and F-score are commonly used measures
[5].

Evaluat ion is used to help the system achieve better performance i n detecting and
preventing malicious activities and optimize the process of anomaly analysis.

Evaluat ion is an important phase of the implementat ion of the detection system, which
allows us to gain insight and be able to see how well the anomaly detection system works on
different data . Based on this information, the system can be further adjusted and changes
can be made to the system design to maximize the anomaly detection rate.

f ~ ~Data \
I Processing I

I Anomaly \
I Detection J

[supervised J [unsupervised]

("Output^

[Score [[Label]

Figure 2.5: The generic process of anomaly analysis [2].

12

Chapter 3

Anomaly Detection System Design

In this chapter, I w i l l be discussing system requirements to enable the analysis of data
from the Network-based Intrusion Prevention Systems (NIPS) and Host-based Intrusion
Prevention Systems (HIPS) w i t h an open license w i t h i n the appropriate integration and
search system. I w i l l then discuss the in i t i a l design of the system I w i l l be implementing.

3.1 Requirements

In order to maximize the efficiency of anomaly analysis, the m a i n requirement is to have
an I D S / I P S that can recognize both known and unknown anomalies. A hacker w i t h the
intention to breach the system security is able to launch an attack using tools like H O I C
and L O I C [5]. These tools are capable of many sophisticated attacks that can harm security
systems and cause problems. That ' s why the security system has to cover a l l important
areas of infrastructure. The second major problem w i t h today's cybersecurity technologies
is a large number of false alarms. This can be reduced by using an efficient anomaly analysis
method, t ra ining the model appropriately, and constantly keeping track of new potential
threats that may occur.

There are several key requirements that need to be considered here:

• D a t a c o l l e c t i o n : The system should be able to collect data from various sources.
This includes network traffic, endpoints, and servers. D a t a collection provides v is ib i l
i ty and insight into the most vulnerable parts of the system. This often includes data
mirror ing and real-time monitor ing (data capturing) . D a t a is collected using tools
that are capable of accessing and inspecting specific data sources and that are able
to parse this data into a specific format.

• D a t a s t o r a g e : To be able to handle a large amount of incoming data, we need flexible
data storage. Network and endpoint data must be stored and retrieved efficiently for
analysis purposes. Tools that can be used for this purpose are E l a s t i c s e a r c h and
A p a c h e K a f k a . Apache K a f k a is used for data processing as well .

• F e a t u r e e x t r a c t i o n : Relevant data has to be extracted from various sources and
structured into a format that is suitable for anomaly analysis. Th is step also includes
the preparation of data for analysis and normal izat ion. In order to extract and nor
malize features, various tools can be employed. P y t h o n is a wel l -known language used
by machine learning analysts, which provides libraries for data structuring, format-

13

t ing, and normal izat ion. Some of the most common tools used i n P y t h o n for machine
learning analysis are Skit- learn, Pandas, and N u m p y .

• D a t a a n a l y s i s : D a t a analysis requires an intrusion detection mechanism using an
appropriate detection method. This step requires the implementat ion of the intrusion
detection system integrated w i t h existing open license tools. A deep learning model
w i l l be employed for this purpose since it can provide profound analysis and detection
of complex patterns i n large datasets. Open-source libraries such as TensorFlow and
Keras provide access to general A P I s for bui ld ing machine-learning model architecture
and t ra ining. Once the model is trained, it can be used to classify real-time network
traffic and identify potential intrusions.

• D a t a v i s u a l i z a t i o n : The system should include a simple visual izat ion interface for
security events analysis. There are mult iple existing tools that can be used for this
purpose, e.g. K i b a n a , G r a f a n a , and S q u e r t .

3.2 Implementat ion design

For the purpose of this bachelor thesis assignment, I designed the A n o m a l y Detect ion
system, which uses a machine learning approach to learn the normal behavior of the system.
The system w i l l be implemented i n P y t h o n language using appropriate available libraries.
The machine learning model w i l l be based on A r t i f i c i a l N e u r a l Networks and trained on
normal behavior datasets. To test the model's efficiency i n detecting anomalous behavior,
several tools and methods w i l l be employed. The performance of the implemented system
w i l l be evaluated using various classification evaluation techniques.

For the purpose of efficient anomaly analysis, the system w i l l be integrated together
w i t h Suricata, an I D S / I P S too l that contains rules for a large number of possible attacks
and is capable of effective moni tor ing both on the network and endpoints.

For the purpose of data storage and visual izat ion, two open-source E L K 1 products w i l l
be integrated: Elasticsearch and K i b a n a .

Implementation w i l l be focused on detecting different varieties of DoS and brute-force
attacks. The anomaly detection system w i l l be tested on preprocessed data and by using
suitable penetration testing tools.

1 https://www.elastic .co

14

https://www.elastic.co

Chapter 4

Anomaly Detection System
Implementation

In this chapter, I w i l l be discussing the implementat ion of an A n o m a l y Detect ion System
as the m a i n part of m y work on m y bachelor's thesis. I w i l l focus on explaining the key
aspects of bui ld ing an anomaly detection system, such as the implementat ion environment,
tools and techniques, and the data analysis process. I w i l l discuss the process of preparing
data for analysis i n several stages, as well as the process of implementing a neural network
that w i l l be used to detect anomalous behavior. F ina l ly , various testing tools and known
evaluation methods ut i l ized i n anomaly detection system performance assessments w i l l be
employed to examine the implemented system performance.

4.1 E n v i r o n m e n t

To begin, selecting the appropriate implementat ion environment is crucial for the successful
implementat ion of an anomaly detection system. This involves choosing tools and programs
that can handle large volumes of data efficiently A n o m a l y Detect ion System is bui l t w i t h i n
Security O n i o n , a free and open-source security software used for anomaly detection and
prevention. Security O n i o n integrates a number of security tools such as Suricata, Snort,
Zeek, W a z u h , and Osquery among others. It provides a comprehensive monitor ing plat form
that is used by a large number of security teams.

4 . 1 . 1 E n v i r o n m e n t S e t u p

Security O n i o n is installed using Security O n i o n ISO image, which is based on C e n t O S 7
and Oracle's v i r tual izat ion software V i r t u a l B o x . Security O n i o n offers mult iple instal lat ion
options, inc luding mult iple types of deployment. The architecture that was most suitable
for the purpose of efficient implementat ion and testing of the A n o m a l y Detection System
was Standalone architecture shown i n 4.1.

The basic idea behind Standalone architecture is the deployment of a l l components on
a single machine. In this mode, Fi lebeat , a log shipping tool , is responsible for transferring
log files and other files to Logstash, another data processing pipeline tool that is used for
collecting, processing, and forwarding logs to a centralized locat ion for analysis. Logstash
uses two pipelines for data transfer. The first pipeline is used for collecting data from
Filebeat and transferring it to Redis for queuing. The second pipeline extracts data from
Redis and sends them to Elasticsearch for analysis.

15

N e t w o r k C o n f i g u r a t i o n

A n important aspect of environment setup is a network interface controller (NIC) setup.
Security O n i o n Standalone requires two network interfaces:

1. Management interface - Interface used for accessing Security O n i o n Console and over
al l system management. Th is interface is assigned an IP address using D H C P .

2. Sniffing interface - Interface used for monitor ing and capturing network traffic. B y
allowing promiscuous mode on this interface in V i r t u a l B o x , a l l network traffic is
passed through the physical interface and processed by the v i r t u a l interface.

B o t h interfaces are set to Bridged. They are l inked to the host machine's physical
network. T h i s duplicates a network node and allows the v i r t u a l machine to funct ion as
part of the same network as the host machine [5]. It enables the v i r t u a l machine to receive
and send network traffic just like a physical computer would on the network, m a k i n g network
traffic capture and analysis for security monitor ing and analysis simpler.

I I

r ^ 3
Standalone

^

Filebeat *Q Logstash ^

Queue

Q Logstash ^ < — P u l l ^ Redis ^

Parse & Index

Elasticsearch < - - Prune - - - ̂ Curator ^

Secur i ty On ion - Standalone Deployment
Crea ted by Security Onion Solut ions

Figure 4.1: Security O n i o n Standalone architecture [20].

4 . 1 . 2 E n v i r o n m e n t T o o l s

Some of the m a i n tools included in Security O n i o n and used for implementing an A n o m a l y
Detection System are [20]:

• S u r i c a t a : The role of the Suricata Intrusion Detect ion System (IDS) i n Security
O n i o n is real-time traffic analysis and detection of various types of network attacks,

16

Security Onion
Connection

NIC 1 (Bridged)
NIC 2 (Bridged, PROMISC)

— - L j S e i

l_
Security Onion Sensor

10.190.101.23

S B

Figure 4.2: The setup used dur ing anomaly detection system implementation.

inc luding malware, exploits, and brute-force attacks. Suricata generates alerts while
monitor ing network traffic using signature-based detection, i.e. rules that are applied
to incoming traffic to detect known threats and malicious activity. W h e n Suricata
detects a signature match, it generates an alert that can be found immediately in
Alerts interface i n the Security O n i o n Console (S O C) or be visualized using various
visual izat ion tools available i n Security O n i o n like K i b a n a and Grafana.

• O s q u e r y : Osquery is a tool used in Security O n i o n for system inventory and event
monitor ing. It enables analysts to collect and analyze system-level data f rom Security
O n i o n sensors and other endpoints.

• E l a s t i c s e a r c h : Elasticsearch is a distr ibuted, R E S T f u l search and analytics engine
used for log management and analysis in Security O n i o n . It is used to store and index
log data and enables fast and efficient searching and analysis of large data sets. Index
log data is collected using various anomaly detection tools.

• S a l t : Salt is a configuration management and orchestration too l for managing Se
curity O n i o n sensors and other components. It enables centralized management and
configuration.

• K i b a n a : T h e pr imary visual izat ion tool that was used for testing purposes during
the implementat ion of the A n o m a l y Detect ion System. K i b a n a is a data visual izat ion
and explorat ion plat form used to analyze and visualize large data sets. It enables
users to create custom dashboards and charts to gain insights and vis ib i l i ty into log
and performance data. It relies on Elasticsearch A P I to successfully retrieve data for
analysis.

The tools in Security O n i o n were tested for functionali ty using publ ic ly available P C A P
(Packet Capture) files. P C A P files were replayed to the sniffing interface of the Security
O n i o n sensor using the tool developed by Security O n i o n called so-import-pcap. Us ing
this network traffic replaying tool , we can evaluate the functionali ty of Security O n i o n

17

components i n the abi l i ty to analyze traffic and detect malicious activities. The m a i n
advantage of this t o o l is to reproduce the network traffic while preserving the original
t imestamps of the packets. Th is allows the isolation of specific packets or flows from the
rest of the traffic and facilitates analysis.

B y default, the Security O n i o n sensor blocks a l l incoming traffic to ensure m a x i m u m
security. Another useful command line u t i l i t y i n Security O n i o n is so-allow, which al
lows the unlocking of the firewall to connect to Security O n i o n f rom new I P addresses.
Th is u t i l i t y is specifically used for enabling access to the Security O n i o n Console and the
Elasticsearch R E S T A P I .

4.2 D a t a preparat ion

A sizable amount of data must be acquired and thoroughly processed to construct the
deep learning model . To t ra in deep learning models, we require data that is stable and
adequately represented. M u l t i p l e data preparation aspects can leverage the deep learning
model performance and its abi l i ty to detect anomalous behavior [16]. One important aspect
is the data structure, which refers to the format and organization of the data. The data must
be structured to be compliant w i t h the model's architecture and requirements, inc luding
maintaining a consistent size and format. A n o t h e r important aspect is data stability, which
refers to the consistency of the data over t ime. The model needs to be trained on stable
data that represents the normal behavior of the system, to accurately detect anomalous
behavior. T h e availabil i ty of anomaly data is also crucial for improving the performance of
the model . Since the deep learning model is trained only w i t h normal behavior data, we
need anomaly data to be able to test the model and evaluate its performance. A n o m a l y
data should represent a variety of potential threats.

For the model to be trained to detect a variety of distinct anomalies, data diversity is
crucial . The t ra ining data should comprise several various types of typica l behavior. This
typical ly includes a variety of network communicat ion protocols and different communica
t ion types.

Next , I w i l l explain the two m a i n stages of data preparation for t ra ining a deep learning
model .

4 . 2 . 1 D a t a c o l l e c t i o n

Suricata serves as the pr imary network data collector i n the Security O n i o n environment.
Once the data is collected, it is transferred using Filebeat and Logstash and stored on the
Elasticsearch server. For a l l types of events that occur in the network, Suricata generates a
variety of E V E J S O N logs. These logs include data on network traffic, packet captures, and
specific protocol information. Elasticsearch stores data i n the form of documents, which are
then stored i n the form of indices. E a c h document can have an unl imi ted number of fields
w i t h each field containing a value or an array of values. In addi t ion to the N o S Q L storage
mechanism, Elasticsearch has an effective search engine that enables fast data retrieval
using R E S T A P I [14].

The general structure of the E V E J S O N log consists of several sections which provide
general information about specific events, such as timestamp, event, and network. Sections
source and destination provide information about source and destination IP addresses
and port numbers, as well as geographical information about specific endpoints. Events are
categorized into mult iple datasets, where each dataset corresponds to the network protocol

18

used i n collected traffic. Based on the dataset field value, each log contains an addit ional
section that provides information related to a specific dataset (protocol).

D a t a stored on the Elasticsearch server is collected using the P y t h o n Elasticsearch client
from the elasticsearch l ibrary. The Elasticsearch client allows f lexibil i ty i n accessing the
Elasticsearch R E S P A P I and collecting logs for further processing.

4 . 2 . 2 F e a t u r e e x t r a c t i o n a n d d a t a r e f o r m a t t i n g

To facilitate the process of collecting E V E J S O N logs, as well as parsing and structuring,
a special A P I has been implemented. The FeatureExtraction class is responsible for
both collecting data from the Elasticsearch server using queries and parsing the data into
a format suitable for deep learning analysis.

Based on the data preparation requirements discussed earlier, each collected log was
parsed, and essential features were extracted. Python ' s b u i l t - i n dataclasses module was
ut i l ized to hold general information obtained f rom the logs, as well as properties that are
unique to each dataset of a given log. Once a l l the logs were parsed, and features were
extracted f rom them, the resulting data was in i t ia l ly reformated using the DataFrame f rom
pandas l ibrary. Th is l ibrary is capable of representing data in a tabular format consisting
of rows and columns, w i t h each co lumn capable of containing different data types. For data
preprocessing and analysis in machine learning and deep learning, Pandas and dataframes
are frequently ut i l ized, since they offer convenient methods and techniques for managing
large datasets and performing data transformation.

The f inal stage of data preparation rests on transforming a l l columns into numerical data
types and encoding i n d i v i d u a l columns. Removing any irrelevant information also helps to
reduce noise and improve the accuracy of the model . I P address values are categorized
based on the class the IP address belongs to, while port numbers are categorized according
to known port number ranges.

In addi t ion to encoding numerical data types, the transformation process also involves
converting categorical data into numerical representations through one-hot encoding. One-
hot encoding is one of the most common encoding techniques to handle categorical data . Its
advantage compared to other encoding methods is its abi l i ty to handle non-ordinal features,
by creating a b inary vector. B i n a r y vector w i l l have a length of n where i - t h element is 1
if the data corresponds to the i - t h element and 0 otherwise [16].

protocol protocol_http protocol_ftp protocol_ssh
ht tp 1 0 0
f tp • 0 1 0
ssh 0 0 1

Table 4.1: E x a m p l e of one-hot encoding of a variable.

Normal iza t ion of categorical features is done using M i n - M a x scaling. The M i n - M a x
normal izat ion method transforms numerical features by scaling them into the range [0,1],
where 0 w i l l be the m i n i m u m possible value for a given feature and 1 the m a x i m u m value.
Th is is usually done to guarantee that each feature, regardless of its in i t i a l scale, contributes
equally to the analysis. For this purpose, MinMaxScaler available in skit-learn l ibrary
has been used. The formula for min-max scaling is:

19

x' =
x — min(x)

(4.1)
max(x) — min(x)

where x is the given feature value, min(x) is the m i n i m u m value of the feature, max{x) is
the m a x i m u m value of the feature, and x' is the f inal , normalized value.

The f inal dataframe has a shape of (58908,139), where the first element represents the
number of indices (rows) in the dataframe and the second element represents the total
number of features (columns). O u t of 139 features, 134 features represent one-hot encoded
categorical columns. T h e remaining 5 features are numerical features normalized using
min-max scaling. A l l of the categorical features are now represented using numpy.uint8
data type, while numerical features are represented using numpy.float64 data type.

4.3 N e u r a l network implementa t ion

In this section, I w i l l discuss neural network model implementat ion, as well as a choice of
neural network model architecture. The process of t ra ining the neural network model and
parameter tuning w i l l also be explained i n detail .

4 . 3 . 1 T e n s o r F l o w f r a m e w o r k

TensorFlow is an open-source machine learning framework that offers a wide range of tools
and A P I s for implementing models. It is used i n a variety of fields, inc luding natural lan
guage processing, image, and speech recognition, as well as anomaly detection. TensorFlow
provides a high-level A P I for bui ld ing and t ra ining neural networks.

One of the key aspects of TensorFlow computat ion abi l i ty is a computat ional graph.
The computat ional graph is a way of representing a computat ion as a graph, where graph
nodes represent comput ing operations. Edges of a computat ional graph define the data
(tensor) flows between the nodes i n a directed manner [15].

Figure 4.3: I l lustrat ion of a simple computat ional graph i n TensorFlow w i t h defined oper
ations and data flows [15].

4 . 3 . 2 A u t o e n c o d e r

To implement a neural network-based anomaly detection system, I chose the autoencoder
neural network. Autoencoder is a neural network model that aims to reconstruct input
data. The m a i n task of autoencoder models is to reduce the dimensionality of input data
in the encoding stage and attempt to reconstruct data i n the decoding stage. Accord ing to
[10], autoencoder demonstrates effectiveness in anomaly detection, part icular ly i n resilience

Const

20

against noisy log tra ining data. In their experiment, they tested the accuracy of several
most common neural network models i n anomaly detection. There are several types of
Autoencoder that have been employed for the purpose of detecting anomalous behavior,
besides the standard model , e.g. Var ia t iona l Autoencoder (V A) that adds a probabil ist ic
component to encoding stage and C o n d i t i o n a l Var ia t iona l Autoencoder (C V A) that adds
condit ional components i n encoding or decoding stages based on the context, such as event
type [16].

W h i l e compressing data into smaller dimensionality, the autoencoder aims to preserve as
much information as possible, while also al lowing complex nonlinear transformations. The
optimizer (e.g. Adam, SGD) automatical ly adjusts the weights of the models to minimize
a given loss function dur ing t ra ining [15].

B y reducing the size of each layer i n the encoding stage, input data is represented
by a smaller number of features. In different machine learning models, this approach is
ut i l ized w i t h the a i m of reducing noise f rom data and faci l i tat ing the learning process. The
encoding process ends w i t h bottleneck, a hidden layer that holds the smallest compressed
representation of input data. D u r i n g the decoding process, data is reconstructed f rom the
compressed representation in the bottleneck layer back to its or iginal size.

The determination of the number of layers i n the encoding and decoding phases of the
autoencoder model is based on the shape of the input data . Since the input dataframe
contains both different types of features, i.e. 134 categorical features and 5 numerical
features, the data is part i t ioned, and distinct autoencoder architectures are applied to each
respective part .

For the encoding stage, the part that contains categorical features is passed through
three dense layers, w i t h each layer decreasing the size of the previous layer. A dense layer is
a ful ly connected neural network layer, which means that a l l neurons i n the preceding layer
are connected to a l l neurons i n the following layer. Start ing from the input layer, which
consists of 134 units , the size of subsequent layers is gradually reduced to 128, 64, 32, and
finally 16 units (see Figure 4.5). The activation funct ion used i n the encoding layers and
first two decoding layers is Recti f ied Linear U n i t (R e L U) act ivat ion funct ion. The R e L U
activation funct ion introduces non-linearity and enables a model to discover more complex
data patterns. In the final layer of the decoder, the sigmoid act ivation function is used. A
sigmoid act ivation function can effectively reconstruct the original categorical data because
it outputs values i n the range [0,1], which correspond to the range of values introduced in
the encoder input layer.

In the case of numerical inputs, two dense layers are employed to compress the data into
a smaller representation. Th is compressed representation is then used as input to another
two dense layers that are used to decompress the data back to its or iginal size. The number
of neurons i n the first dense layer is decreased f rom 5 units (the size of the input layer) to 3,
and f inally 2 units . The act ivat ion funct ion used in the encoding layers is Recti f ied Linear
U n i t (R e L U) , while the sigmoid act ivation funct ion is used i n the final layer of decoding
numerical inputs.

To improve the performance of our model , the dropout regularization technique was
employed. This technique is used to ensure that the neural network distributes the learned
representations of the data across a l l the neurons by randomly deactivating a fraction
of them dur ing t ra ining. B y placing dropout layers inside the encoder and decoder, the
network is forced to learn a robust representation that can generalize well on new, unseen
data. This regularization technique is p r i m a r i l y used to improve the model's generalization
[15].

21

Figure 4.5: Autoencoder architecture used for categorical features.

4 . 3 . 3 N e u r a l n e t w o r k t r a i n i n g

The bui l t neural network was trained on chosen normal network traffic logs that have
been obtained over the course of two weeks using Suricata. D a t a was fetched from m u l
tiple Elasticsearch indices and was extracted and preprocessed using the implemented
FeatureExtraction class.

The f inal output of the autoencoder is created by concatenating the reconstructed cat
egory and numerical features. The decoded layers are combined using the concatenate ()
method to merge the decoded numerical and category features. The f inal decoder layer has
the same shape as the input data, which is the goal of the autoencoder - to reconstruct the
input data as precisely as possible.

Before the model is trained, it is configured using the compile () method. T h e compile ()
method is used to configure the model for t ra ining. Here, the model is compiled using the
mean squared error (M S E) loss function and the Adam optimizer . M S E measures the av
erage squared difference between the predicted output and the actual output . The m a i n
purpose of the mean squared error loss funct ion is to minimize the difference between the
input and the output . The A d a m optimizer is a stochastic gradient descent opt imizat ion
algori thm that updates the learning rate adaptively based on the gradient of the loss func-

22

t ion [19]. Addi t iona l ly , the model is configured to calculate the accuracy metric during
tra ining.

Input data is d iv ided into a t ra ining set and a val idat ion set, for the purpose of t ra ining
and val idat ing implemented machine learning model . Us ing sample () function, the fraction
which includes 80% of input dataframe is selected for tra ining, while the remaining 20% of
data is set for val idation.

The model was trained for 35 epochs w i t h a batch size of 16. The loss and accuracy
metrics for bo th the t ra ining and val idat ion datasets at each epoch are included i n the
history object that the f i t () funct ion returns, as shown i n Figure 4.6. T h i s object
provides information about the t ra ining process. Us ing this data , it is possible to assess the
model's effectiveness dur ing the process of model implementat ion and adjust the model's
architecture or hyper parameters.

0 10 20 30 0 10 20 30

Figure 4.6: Loss and accuracy progress recorded dur ing 35 epochs of neural network t ra in
ing.

23

Chapter 5

Experiments and Evaluation

In this section, I w i l l outline the steps involved i n testing and evaluating the neural network
model that has been implemented. This process can be div ided into three parts. In the
first part , w h i c h includes defining a threshold for generating output predictions, the neural
network is used on new non-anomalous data. In the second part , various experiments were
conducted to see how well the neural network model performs on anomalous data. For this
part , data from external sources is collected and various testing tools were ut i l ized. In the
final , t h i r d part , an evaluation of the neural network model is performed. The results of
the evaluation are then analyzed to determine whether the model is performing well and
meeting the desired criteria.

5.1 P r e d i c t i o n

To measure how well the neural network is able to reconstruct the original input data ,
output predictions are generated for the new input samples. Since the autoencoder is
trained on normal , non-anomalous data, the level of how good the data reconstruction
is w i l l determine, if the input data is indeed normal , or is anomalous. Autoencoder was
trained to minimize the reconstruction error and therefore improve the qual i ty of decoding
the encoded data. In theory, the autoencoder should reconstruct the normal data w i t h a
m i n i m u m loss, since it is trained to be able to successfully encode network traffic data and
decode it back to its or iginal size. Mos t of the anomalous data contains patterns that are
not frequent in normal network traffic data , therefore autoencoder w i l l have worse results in
reconstructing this k i n d of data. Th is higher reconstruction error can indicate anomalous
behavior and potential threat.

Output predictions are generated using predict () method, which takes input dataframe
and computes predictions using the trained neural network model . Next , reconstruction
error is calculated for each row i n the predicted data . Predic ted data is compared to
the actual data to calculate the loss. The reconstruction error is a measure of how well
the autoencoder is able to reconstruct the original input data. Reconstruct ion error is
calculated by taking the mean square error between the predicted data and the actual data
for each dataframe row. This is done by calculat ing the square of the difference between
the predicted data and the actual data and then tak ing a mean of this value for each row.
W h e n the reconstruction error is lower, the model is performing better at recreating the
input data , and when the reconstruction error is higher, the model is performing worse.

24

reconstruction_error = — (predicted _datai — datai)2 (5-1)
m ^—' i=l

5 . 1 . 1 T h r e s h o l d

A n important aspect of anomaly detection using an autoencoder is determining the opt imal
threshold value. The threshold value is used to classify data points w i t h a reconstruction
error above the threshold as anomalous and data points w i t h a reconstruction error below
the threshold as normal . There are several methods that can be used to define a threshold
value. One of the most common methods includes calculating the mean and standard
deviat ion of the reconstruction error. This method is defined as:

threshold = f + k • s (5-2)

where f is a sample mean of the reconstruction error, s is a s tandard deviat ion of the
reconstruction error, and k is the standard deviat ion mult ipl ier .

Another method for defining the threshold value is the percentile method. B y calculating
the n - t h percentile of the reconstruction error, the reconstruction error value which lies
above n% of the data points in the reconstruction error array w i l l be used as a threshold
value. In the process of testing the autoencoder performance, this method is used to
determine the base value of a threshold.

For the purpose of defining the threshold value, normal network traffic data was ex
tracted f rom the Elasticsearch index and analyzed using the trained neural network model .
Th is data is new and has not been used dur ing the neural network t ra ining process. Us ing
the 99th percentile value of the reconstruction error array, a value of 0.03612 was obtained.
Us ing this value, 99% of the input samples were classified as normal , which indicates the
precision of 99% when analyzing new normal data using the autoencoder.

5.2 R e p l a y i n g P C A P files

In this stage, the performance of neural network performance w i l l be tested using the anoma
lous data samples, which were obtained by impor t ing publ ic ly available P C A P files. Packet
capture files are obtained f rom [3], a website whose authors provide a large amount of packet
capture files and malware samples for testing and analysis purposes. The effectiveness of
the neural network model was tested i n two experiments. The purpose of this evaluation is
to ascertain how well the neural network can identify unusual network traffic. P C A P files
were replayed on Security O n i o n v i r t u a l machine using Security O n i o n so-import-pcap
uti l i ty. A f t e r they were analyzed by Suricata, logs were stored on a separate Elasticsearch
index, w i t h preserved timestamps. Us ing the Elasticsearch client, documents from a specific
index were collected and processed. In order to extract the relevant feature f rom obtained
data, FeatureExtraction class was used. D a t a is processed in a s imilar manner as the
data used for neural network tra ining, except for the addit ional data preparation step that
was done i n order to format data to suit autoencoder input dimensionality. In order for
input data to match the expected input dimensionality of the autoencoder, missing columns
were added to the input dataframe, and addit ional columns were removed.

To be able to validate the predict ion for each log sample (normal /anomaly) , output
predictions were correlated w i t h Suricata alerts. V a l i d a t i o n of the neural network predic
t ion requires labels. Us ing the combinations of source and destination IP addresses from

25

alert dataset category, which was generated by Suricata, input samples were labeled using
boolean value True, if a sample is anomalous and False if it is normal . W h e n a certain rule
is triggered, Suricata generates an alert log that contains information such as source/des
t inat ion IP address, source/destination port , protocol , and more. This allows certain flows
to be labeled as either anomalous or normal . The label array is removed from the input
data w i t h order preserved and saved for the post-predict ion step.

After the predict ion has been conducted, the True Posit ive Rate (T P R) and False
Posit ive Rate (F P R) are calculated to evaluate the performance of the autoencoder. T P R
measures the percentage of correctly identified positive samples (anomalies), while F P R is
used to measure the percentage of samples that were incorrectly identified as anomalies.

5 . 2 . 1 E x p e r i m e n t 1

In the first experiment, P C A P file 2018-06-30-traff ic-analysis-exercise .pcap was
replayed using so-import-pcap command. D a t a containing 1653 logs i n tota l is stored in
a separate Elasticsearch index. D a t a is extracted and prepared for neural network analysis.
The Suricata rule ET POLICY Data POST to an image file (gif) was triggered when the
P C A P file was replayed. Suricata identified malware i n the analyzed data and categorized
this event as Network Trojan w i t h high severity. Based on the obtained alerts, labels were
created for each sample and 9 rows in the input dataframe were categorized as anoma
lies. In the predict ion phase, the reconstruction error array was obtained using a trained
autoencoder.

700 -

600 -

B 500 -

I
£ 400 -

-| 300 -

Z
200 -

0.02 0.04 0.06 0.08 0.10
Train loss

Figure 5.1: Exper iment 1 - Reconstruct ion error plot.

Each sample i n the reconstruction error array is compared to the threshold value cal
culated on a set of normal network traffic data earlier. Predict ions for each sample i n the
reconstruction error array are represented as boolean values, where value True indicates
that the reconstruction error is higher than a threshold and value False indicates that
the reconstruction error is lower than a threshold. A t this point , the predicted values can
be compared w i t h the previously created labels. The evaluation of predict ion is based on
the determination of True Posit ive Rate (T P R) and False Posit ive Rate (F P R) . Us ing the
defined threshold value, a l l anomalous samples were successfully identified. Some of the
samples were also incorrectly identified as anomalies. Increasing the threshold value by
0.01 managed to reduce the F P R while mainta ining the m a x i m u m T P R value (Figure 5.2),
as shown in the table below.

26

Threshold T P R F P R
0.03612 1.0 0.3449
0.04612 1.0 0.1867

Table 5.1: Exper iment 1 - True Posit ive Rate (T P R) and False Posit ive Rate (F P R) .

Reconstruction error for normal and anomalous samples

• h * « • • • • •
" • • • " •

- 1 " * • « - • . . •
• . 4 ' * • . . ^ . • • « • M

• Normal
• Anomalous

Threshold

mm »*

V .
• •

U.00 1 1 1 1 i i i '
0 250 500 750 1000 1250 1500

Sample index

Figure 5.2: Exper iment 1 - Classified predict ion outputs.

5 . 2 . 2 E x p e r i m e n t 2

In the second experiment, P C A P file 2020-09-16-Qakbot-infection-traffic .pcap was
downloaded and replayed using so-import-pcap command. Af ter it was analyzed by Suri -
cata, logs were stored in the Elasticsearch index, 184 in tota l . Compared to the first replayed
P C A P file, this dataset contains a far less number of samples. However, these P C A P files
triggered a much larger number of rules:

• ET J A3 Hash - [Abuse, ch] Possible Quakbot

. ET MALWARE Observed Qbot Style SSL Certificate

. ET INFO EXE - Served Attached HTTP

• ET J A3 Hash - [Abuse.ch] Possible Gozi

. ET MALWARE JS/WSF Downloader Dec 08 2016 M4

. ET MALWARE Likely Evil EXE download from MSXMLHTTP non-exe extension
M2

. ET POLICY PE EXE or DLL Windows file download HTTP

Suricata was able to successfully identify Quakbot malware. Quakbot (Qbot) is a com
mon trojan-type malware that was to designed to monitor infected machines and misuse
private and valuable information. Malware has been active since 2008 [9].

After the data is collected f rom the Elasticsearch index and prepared for neural network
analysis, alerts were analyzed to identify a l l anomalous flows. In tota l 47 anomaly samples
were identified i n the test data using alerts and labels used for model evaluation were
obtained. Using the defined threshold value, predict ion for each sample is determined.

27

Figure 5.3: Exper iment 2 - Reconstruct ion error plot.

F inal ly , the True Posit ive Rate and False Posit ive Rate were calculated to evaluate model
performance. Calculated results were significantly worse compared to the first experiment.
Defining a different threshold improved the results. In this case, a lower threshold value
has better results in detecting anomalies but also increases the false positive rate, as shown
in the table below.

T h r e s h o l d T P R F P R
0.03612 0.04256 0.49635
0.01 0.97872 0.7153

Table 5.2: Exper iment 2 - True Posit ive Rate (T P R) and False Posit ive Rate (F P R) .

Reconstruction error for normal and anomalous samples

• Norma
• Anomalous

Threshold

50 75 100 125 150 175
Sample index

Figure 5.4: Exper iment 2 - Classified predict ion outputs.

5.3 Penet ra t ion test ing

For the second part of the autoencoder performance evaluation, a special security envi
ronment is set up to test a real-life attack scenario. For this purpose, the Metasploit
framework was installed on a local machine. Metasploi t [17] is an open-source penetration
testing plat form that helps in identifying and exploit ing vulnerabil it ies in computer systems

28

and networks. It provides a large number of at tacking tools that can be ut i l ized for testing
purposes.

5 . 3 . 1 T e s t i n g e n v i r o n m e n t

This experiment aims to simulate an attack scenario that w i l l exploit potential weaknesses.
Metasploit provides auxiliaries, which are scripts that contain code for exploit ing certain
services.

The target of this attack w i l l be a vulnerable v i r t u a l machine. Metasploitable is a
L i n u x v i r t u a l machine, that is created for testing purposes. It contains several known
vulnerabilit ies that can be efficiently exploited using penetration testing tools. Th is v i r t u a l
machine has been installed on V i r t u a l B o x and connected to Security O n i o n v i r t u a l machine
using so-allow command line ut i l i ty . The traffic to and from the Metasploitable v i r t u a l
machine is a l l visible to Security O n i o n . The environment is now ready to be used for
penetration testing. In this experiment, three roles were defined:

• Metasploi t : Attacker

• Metasploitable: V i c t i m

• Security O n i o n : IDS

To simulate an attack scenario, the experiment used Metasploit as the attacker, Metas
ploitable as the v i c t i m , and Security O n i o n to monitor the traffic for suspicious activity.
D a t a that was collected by Security O n i o n w i l l be analyzed using the trained neural network
model .

5 . 3 . 2 A t t a c k l a u n c h i n g e x p e r i m e n t

Two brute-force attacks were conducted on Metasploitable v i r t u a l machine using the Metas
ploit framework. The pr imary goal of a brute-force attack is to gain control over a host
or service. Th is attack typica l ly involves scanning the running services on a target ma
chine. The first attack was an S S H login brute-force attack and the second attack is a
M y S Q L login brute-force attack. E a c h attack requires certain settings to be made, which
include setting the target host IP address, usernames, and passwords that w i l l be used for
at tempting to break into the target's machine and attack-specific services. S S H service uses
well -known port 22, while the default port for M y S Q L service is 3306. The second attack
was conducted a few minutes after the first one finished.

Security O n i o n collected network traffic information and stored it i n the Elasticsearch
index. Packets were analyzed by Suricata, which was able to identify threats and raised
alerts about two specific events. Rules that were triggered this t ime were:

• ET SCAN Suspicious inbound to mySQL port 3306

• ET SCAN Multiple MySQL Login Failures Possible Brute Force Attempt

. ET SCAN Potential SSH Scan

. ET SCAN Potential SSH Scan OUTBOUND

29

After the index data is parsed and processed, labels were extracted using Suricata alerts,
and an input dataframe was prepared for neural network analysis. Reconstruct ion error
was computed using a trained autoencoder and input dataframe. A f t e r comparing samples
from the reconstruction error array w i t h the threshold, the following results were obtained:

• 1807 samples were classified as normal .

• 240 samples were classified as anomalies.

0.05 0.06 0.07
Train loss

Figure 5.5: A t t a c k launching experiment - Reconstruct ion error plot.

In this experiment, the True Posit ive Rate (T P R) and False Posit ive Rate (F P R) were
calculated to evaluate the performance of the neural network i n detecting brute-force at
tacks. The results of T P R and F P R were encouraging, indicat ing that the neural network
has performed well i n identifying brute-force attacks. T P R and F P R for this experiment
are shown in the table below.

T h r e s h o l d T P R F P R
0.04612 0.9864 0.0121

Table 5.3: Exper iment 2 - True Posit ive Rate (T P R) and False Posit ive Rate (F P R) .

5.4 E v a l u a t i o n

In the f inal part of testing the implemented neural network model , the performance of
the model w i l l be tested using t radi t ional model evaluation techniques. M o d e l evaluation
techniques are used to assess the performance of a trained model on unseen data . Some
commonly used evaluation techniques include confusion matr ix analysis, precision, recall ,
F l - score , and receiver operating characteristic (R O C) curves. These methods can guide
future improvements in the form of changes to the architecture or the learning process and
provide information about the strengths and l imitat ions of the model .

5 . 4 . 1 T e s t i n g d a t a

To assess neural network performance, an evaluation dataset was created. Th is dataset has
anomalous samples obtained dur ing the previous experiment. D a t a from a specific t ime
range was collected f rom the Elasticsearch server and prepared for analysis. Aler ts , that
were raised in the same period were also collected. These alerts w i l l be used to correlate

30

the autoencoder predict ion outputs w i t h the anomalies that Suricata has identified using
the rules.

5 . 4 . 2 R O C c u r v e

A Receiver Operat ing Characterist ic (R O C) curve is a graphical representation of a relation
between True Posit ive Rate (T P R) and False Posit ive Rate (F P R) . It is used to i l lustrate
the predict ion performance of a neural network using a range of values for the threshold.
R O C is used as a probabi l i ty curve. Another performance measurement indicator is A r e a
Under The Curve (A U C) , which represents the degree or measure of separability [18]. A
high A U C indicates high performance i n identifying anomalous samples and a low False
Posit ive Rate .

A n array of threshold values ranging from 0 to 1 w i t h a step of 0.01 is created. For
each threshold value i n the array, T P R and F P R are calculated. Addi t iona l ly , the A r e a
Under The Curve (A U C) is calculated using lists containing T P R and F P R values for a l l
threshold values.

Receiver operat ing characterist ic (ROC) curve

0.2 0.4 o.e o.a
False Positive Rate

Figure 5.6: Receiver Operat ing Characterist ic (R O C) curve.

5 . 4 . 3 N u m e r i c a l e v a l u a t i o n m e t r i c s

Besides the Receiver Operat ing Characterist ic (R O C) curve, that are other evaluation met
rics that can be ut i l ized to assess the performance of the neural network, specifically the
binary classification model . Metr ics , that were used for model evaluation are available in
sklearn l ibrary. Eva luat ion metrics used for this purpose are [11]:

• A c c u r a c y : Accuracy represents the percentage of correct predictions out of a l l pre
dictions made by the neural network model .

• P r e c i s i o n : Precis ion is the percentage of true positive predictions out of a l l positive
predictions made by the neural network model . It measures the model's abi l i ty to
avoid false positives.

31

• R e c a l l : Reca l l represents the percentage of true positive predictions out of a l l actual
positive samples i n the data. It measures the model's abi l i ty to identify a l l positive
samples.

• F l s c o r e : The F l score is the harmonic mean of the precision and recall.

F l score was used to calculate the opt imized value for the threshold (see 5.7). In order
to determine the most acceptable threshold value, the F l score is calculated against the
array of threshold values in the range [0,1] w i t h a step of 0.01 for each value.

M e t r i c V a l u e
Accuracy 0.9832
Precis ion 0.4005
Reca l l 0.95
F l score 0.5634

Table 5.4: Eva luat ion metrics - calculated values.

C 0>:

5 0.04

0.02 - -

0.00

Reconstruction error for normal and anomalous samples

•••• *mm+

• Normal
• Anomalous

— Threshold

• • • M • » •

• v -

0 2000 4000 6000 8000 10000 12000 14000 16000
Sample index

Figure 5.7: Eva luat ion - Classified predict ion outputs w i t h an opt imized threshold value.

32

Bibliography

[1] A H M A D , Z . , S H A H I D K H A N , A . , N I S A R , K . , H A I D E R , I., H A S S A N , R . et a l . A n o m a l y

Detection Us ing Deep N e u r a l Network for IoT Archi tecture . Applied Sciences. 2021,
vo l . 11, no. 15. D O I : 10 .3390/appl l l57050 . I S S N 2076-3417. Available at:
https://www.mdpi.com/2076-3417/ll/15/7050.

[2] A H M E D , M . , N A S E R M A H M O O D , A . and H u , J . A survey of network anomaly
detection techniques. Journal of Network and Computer Applications. 2016, vol . 60,
p. 19-31. D O I : ht tps : / /doi .Org /10 .1016/ j . jnca .2015 . l l .016. I S S N 1084-8045. Available
at: ht tps : / /www.sciencedirect .com/science/art ic le/pi i/S1084804515002891.

[3] A N A L Y S I S , M . T . Malware Traffic Analysis [online], [cit. 2023-05-08]. Available at:
h t t p s : / / w w w . m a l w a r e - t r a f f i c - a n a l y s i s . n e t / .

[4] B E R G , R . G . van den. Normal Distribution - Quick Introduction [online]. S P S S [cit.
2023-01-29]. Available at: h t t p s : / / w w w . s p s s - t u t o r i a l s . c o m / n o r m a l - d i s t r i b u t i o n / .

[5] B H A T T A C H A R Y Y A , D . K . and K A L I T A , J . K . Network Anomaly Detection: A Machine
Learning Perspective. 1st ed. C h a p m a n and H a l l / C R C , 2013. I S B N 1466582081.

[6] B R A N D A O , P . R . and N U N E S , J . Extended Detect ion and Response Importance of
Events Context . Kriativ-tech. 2021, vol . 1, no. 15. D O I :
10.31112/kriativ-tech-2021-10-58. I S S N 1646-9976. Available at:
h t t p s : / / w w w . k r i a t i v - t e c h . com/?p=66381.

[7] C E N T E R , I. T . R . Annual number of data compromises and individuals impacted in
the United States from 2005 to first half 2022 [Graph] [online]. 2022 [cit. 2023-01-30].
Available at: h t t p s : / /www.stat i s ta .com/stat i s t ics/273550 /data-breaches-
r e c o r d e d - i n - t h e - u n i t e d - s t a t e s - b y - n u m b e r - o f - b r e a c h e s - a n d - r e c o r d s - e x p o s e d / .

[8] C H A N D O L A , V . , B A N E R J E E , A . and K U M A R , V . A n o m a l y Detect ion: A Survey. ACM
Comput. Surv. Univers i ty of Minnesota . July 2009, vol . 41. D O I :
10.1145/1541880.1541882.

[9] C H A N D R A , A . and A R Y A , S. K . Demystifying Qbot Malware [online]. Trel l ix , august
2022 [cit. 2023-05-08]. Available at: ht tps : / /www.tre l l ix .com/en-us/about/newsroom/
s tor ies / research/demyst i fy ing-qbot -malware .h tml .

[10] C H E N , Z . , L I U , J . , G u , W . , S u , Y . and L Y U , M . R . Experience Report: Deep
Learning-based System Log Analysis for Anomaly Detection. 2022.

[11] C Z A K O N , J . 24 Evaluation Metrics for Binary Classification [online], neptune.ai ,
apr i l 2023. Available at:
h t t p s : / / n e p t u n e . a i / b l o g / e v a l u a t i o n - m e t r i c s - b i n a r y - c l a s s i f i c a t i o n .

33

https://www.mdpi.com/2076-3417/ll/15/7050
https://doi.Org/10.1016/j.jnca.2015.ll.016
https://www.sciencedirect.com/science/article/pii/S1084804515002891
http://www.malware-traffic-analysis.net/
https://www.spss-tutorials.com/normal-distribution/
http://www.kriativ-tech
http://www.statista.com/statistics/273550/data-breaches-
https://www.trellix.com/en-us/about/newsroom/

[12] D U F F I E L D , N . , H A F F N E R , P . , K R I S H N A M U R T H Y , B . and R I N G B E R G , H . Rule-Based

A n o m a l y Detect ion on I P Flows. In: IEEE INFOCOM 2009. 2009. D O I :
10.1109/LNFCOM.2009.5061947.

[13] F I R S T B R O O K , P . and L A W S O N , C . Innovation Insight for Extended Detection and
Response [online]. 2020 [cit. 2023-01-30]. Available at:
https: //www.gartner.com/en/documents/3982247.

[14] G O R M L E Y , C . and T O N G , Z . Elasticsearch: The Definitive Guide. 1st ed. O ' R e i l l y
M e d i a , Inc., 2015. I S B N 9781449358549.

[15] H O P E , T . , R E S H E F F , Y . S. and L I E D E R , I. learning TensorFlow: A Guide to Building

Deep learning Systems. 1st ed. O ' R e i l l y M e d i a , Inc., 2017. I S B N 9789352136100.

[16] L A N D A U E R , M . , O N D E R , S., S K O P I K , F . and W U R Z E N B E R G E R , M . Deep learning for

Anomaly Detection in log Data: A Survey. 2022.

[17] L L C , R . Metasploit [online], [cit. 2023-05-08]. Available at:
https: //www.metasploit. com/.

[18] N A R K H E D E , S. Understanding AUC - ROC Curve [online]. Towards D a t a Science,
June 2016. Available at:
https: //towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5.

[19] P A T I L , S. U . loss Functions and Optimizers in MI models [online]. GeekCul ture ,
January 2023 [cit. 2023-05-08]. Available at: https://medium.com/geekculture/loss-
functions-and-optimizers-in-ml-models-bl25871ffOde.

[20] S O L U T I O N S , S. O . Security Onion Documentation Release 2.3 [online]. 2023 [cit.
2023-05-08]. Available at: https://docs.securityonion.net/en/2.3/.

[21] S T A L L I N G S , W . Network Security Essentials: Applications and Standards (4th
Edition). 4th ed. Pearson, 2010. I S B N 0-13-610805-9.

[22] V I G L I O N E , M . Suricata: What is it and how can we use it [online]. I N F O S E C , march
2022 [cit. 2023-01-28]. Available at: https://resources.infosecinstitute.com/topic/
suricata-what-is-it-and-how-can-we-use-it/.

34

http://www.gartner.com/en/documents/3982247
http://www.metasploit
https://medium.com/geekculture/loss-
https://docs.securityonion.net/en/2.3/
https://resources.infosecinstitute.com/topic/

