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Abstract 
The objective of this work is to implement an anomaly detection system using art i f ic ial 
intelligence techniques that can detect anomalies by learning the system behavior. The 
proposed approach is effective in identifying novel or unknown anomalies that t radi t ional 
rule-based methods may miss in network traffic data . However, the implementat ion of such a 
system involves addressing challenges such as data processing and feature extract ion. This 
work discusses different methods of data analysis and intrusion detection approaches in 
Extended Detect ion and Response systems and the challenges we face i n today's expanding 
security technologies. 

Abstrakt 
Cílem této práce je implementovat systém detekce anomálií využívající techniky umělé i n 
teligence, který dokáže detekovat anomálie učením chování systému. Navrhovaný přístup je 
účinný při identif ikaci nových nebo neznámých anomálií, které tradiční metody založené na 
pravidlech mohou postrádat v datech síťového provozu. Implementace takového systému 
však zahrnuje i řešení problémů, jako je zpracování dat a extrakce charakteristických rysů. 
Tato práce pojednává o různých metodách analýzy dat a přístupech k odhalení průniků v 
systémech Extended Detect ion and Response a výzvách, kterým čelíme v dnešních rozšiřu
jících se bezpečnostních technologiích. 
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Chapter 1 

Introduction 

W i t h the amount of information roaming the network and the ever-increasing number of 
users, the vulnerabi l i ty of various areas of the system infrastructure has increased. Extended 
Detection and Response ( X D R ) aims to provide a unified solution to this problem by 
incorporat ing known cybersecurity methods and techniques. 

Gartner [13] describes X D R as " a SaaS-based, vendor-specific, security threat detection 
and incident response too l that natively integrates mult iple security products into a cohesive 
security operations system that unifies a l l licensed security components". T h e m a i n goal 
of X D R systems is to provide an enhanced security layer and improve overall detection, 
protection, and response capabilities. 

Cybersecurity tools have evolved over t ime due to the growth of the Internet and the fact 
that attacks became more sophisticated. A n t i v i r u s software was able to detect and remove 
malware f rom i n d i v i d u a l computers, while a firewall was introduced to protect the network 
from external threats. Intrusion Detect ion Systems and Intrusion Prevention Systems were 
designed to detect anomalies and protect the network using various advanced techniques. 
W i t h the rising popular i ty of C l o u d C o m p u t i n g , the En dp o in t Detect ion and Response 
( E D R ) approach was introduced to protect i n d i v i d u a l endpoints like laptops and mobile 
phones. 

X D R collects and analyzes data f rom the entire infrastructure, inc luding endpoints, 
networks, servers, emails, and the c loud. Thus , it enables event management, threat detec
t ion, and incident response i n a single environment [6]. B y improving v i s i b i l i t y and a l e r t 
c o r r e l a t i o n , we are able to better understand threats and enable faster actions against 
them. 
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Chapter 2 

Anomaly analysis in X D R systems 

In this chapter, I discuss the basic methods of anomaly analysis i n X D R systems. Since 
anomaly analysis is a broad term, I focus on explaining the most commonly used approaches 
and methods that are proven to be the most effective i n dealing w i t h anomalies. 

2.1 Intrus ion detect ion system 

The intrusion detection mechanism is a crucial component of every X D R system. If X D R 
is able to detect intrusion quickly enough, attackers can be identified, therefore any risk of 
damage w i l l be el iminated, or at least the damage w i l l be reduced. I n t r u s i o n d e t e c t i o n 
s y s t e m (IDS) and I n t r u s i o n p r e v e n t i o n s y s t e m (IPS) are both designed to secure 
systems f rom outside threats and provide protection to the network and i n d i v i d u a l users. 
IDS systems can detect malicious ac t iv i ty and provide alerts, while I P S systems can take 
action to prevent malicious activity. The process of anomaly detection is shown i n Figure 
2.5. 

I n t r u d e r s a n d T h r e a t s 

A n intruder is an attacker who tries to gain access to a system and exploit system weak
nesses. Stallings [21] divides intruders into three categories and gives us examples of typica l 
intruder behavior patterns: 

1. Hacker - Usua l ly hacks into the computer to gain status i n the hacking community. 
C a n be benign or malign. 

2. C r i m i n a l Enterprise - A n organization or group of hackers w i t h a specific target they 
a im to attack. 

3. Insider - A n employee using their permissions and knowledge of company systems to 
gain valuable information. 

M a l i c i o u s s o f t w a r e 

Mal ic ious software is any software that can h a r m or damage computer systems. Mal ic ious 
software can exploit computer system weaknesses in a variety of ways. Some techniques of 
intrusion are far simple and do not require complex intrusion detection systems in order 
to detect or prevent them, while other more sophisticated intrusions require distr ibuted 
systems that can detect or prevent a large scale of possible attacks. 
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There are several types of malware, inc luding backdoors, Tro jan horses, viruses, and 
worms. Viruses and worms are used to spread across networks while exploit ing vulnerable 
parts of the infrastructure. Other types of malware include the exploitat ion of authentica
t ion services in order to get access to a specific system. A backdoor is a sort of malware that 
circumvents s tandard authentication processes to grant unauthorized access to a computer 
system, while Tro jan Horses pretend to be trustworthy software while actual ly performing 
malicious actions, such as stealing private information or granting the attacker i l legal access 
[21]-

Dis t r ibuted Denia l of Service (DDoS) attack is a type of attack i n which a large num
ber of systems are used to flood a targeted system w i t h traffic, making it unavailable to 
legitimate users. In Man- in- the-middle ( M i t M ) types of attacks, an attacker intercepts 
communicat ion between two parties to steal data, such as login credentials, credit card 
numbers, or other sensitive information. Cross-site script ing (XSS) attacks are a type of 
injections that occur in web applications. Vulnerable web applications allow an attacker to 
inject malicious code into a website and exploit its weaknesses. These attacks can occur 
when a website accepts user input , such as i n a search box or comment section, without 
properly val idat ing the input . In a s imilar manner, S Q L injection is used to inject malicious 
code through a web applicat ion form. B y inserting specific S Q L statements, it can trick 
the appl icat ion into executing the code. 

There is a large scale of possible threats that may occur in the vulnerable parts of 
network infrastructure, applications, or on endpoints. The m a i n countermeasure against 
these threats is detection and prevention. 

Annual number of data compromises and individuals impacted in the United States 

f rom 2005 to first half 2022 

3 000 

2,541.07 

2 5 0 0 K 2,227.85 

5 1 500 

1 ooo 783 
656 662 e u 

••• Data compromises • • • Number of records exposed in millions Individuals impacted in millions 

Source Addliddal Informafen: 
Identity Theft Resource Center United States: Identity Theft Resource Center: ZOOS to HI 2022: data ccroorcmises include data bleaches, dataejoosofe 
© Statists 2022 impacted may go beyond the Unesd States 

Figure 2.1: C y b e r crime statistics 2005-2022 [7]. 

2 . 1 . 1 N e t w o r k - b a s e d I n t r u s i o n D e t e c t i o n S y s t e m s 

Network-based Intrusion Detect ion Systems (NIDS) are designed to detect malicious activ
ities i n network data. It works by constantly monitor ing the network traffic and analyzing 
incoming packets. N I D S are typical ly deployed at strategic points in a network, such as 
at the perimeter or on specific cr i t ica l servers. It's necessary for these systems to inform 
the administrator about suspicious act ivi ty and take countermeasures in order to block 
suspicious traffic and secure the network infrastructure. 

I.i 



Some common examples of attacks that N I D S can detect are Remote C o m m a n d Exe
cut ion ( R C E ) attacks, D e n i a l of Service ( D O S ) , Man- in- the-middle ( M I T M ) , Por t Scans, 
and various malware infections such are worms, viruses, and Trojans. For example, N I D S 
can detect a series of T C P connections to different ports dur ing a short per iod of t ime and 
flag this act iv i ty possible port scan. 

2 . 1 . 2 H o s t - b a s e d I n t r u s i o n D e t e c t i o n S y s t e m s 

The purpose of Host-based Intrusion Detect ion Systems (HIDS) is to protect i n d i v i d u a l de
vices, i.e., endpoints, such as servers, P C , or mobile devices. H I D S monitors endpoints and 
collects data f rom various sources like system logs, event logs, system calls, or performance 
data. To indicate the security breach, H I D S creates the baseline of normal behavior and 
analyzes collected data to identify suspicious activities. 

A more advanced form of H I D S is E n d p o i n t D e t e c t i o n a n d R e s p o n s e ( E D R ) , which 
uses a more proactive approach to collecting and analyzing data . E D R also allows the reme
diat ion and investigation of the endpoint. W a z u h 1 and O S S I M 2 (Open Source Security 
Information Management) are two popular security solution used for collecting and ana
lyz ing data on endpoints. Besides real-time protection and incident response capabilities, 
they also provide logging and event management. 

2.2 R u l e - B a s e d A n a l y s i s 

This approach uses predefined signatures to detect malware. Signatures may contain various 
information such as IP address, port number, or a specific s tr ing found i n the packet 
payload. If a certain pattern is found i n incoming traffic, it may indicate malicious activity. 
Rule-based detection does not generate a large number of false alarms, due to the fact that 
rules are defined based on previous intrusions. However, this approach is not so effective in 
detecting new anomalies for which there are s t i l l no rules defined. 

S n o r t ^ is a popular open-source intrusion detection system that uses a pattern-matching 
mechanism. It is based on a simple language for specifying rules [12]. Rules are wri t ten in 
a specific syntax and are organized into categories such as a l e r t , d r o p , and pass . 

S u r i c a t a is a newer intrusion detection system that uses a mult i - threaded architecture 
that allows it to process packets i n paral lel . Th is means that more data is processed, making 
Suricata a more efficient tool compared to Snort [22]. It is often used in conjunction w i t h 
S I E M (Security Information and Event Management) tools to enhance the analysis process. 

Rule-based intrusion detection tools have thousands of rules in the database, inc luding 
a large number of rules contributed by the community [5]. Therefore, keeping rules up to 
date is an important part of mainta ining network security. 

E x a m p l e o f S n o r t / S u r i c a t a r u l e 

a l e r t t c p $EXTERNAL_NET any -> $H0ME_NET 22 
(msg:"SSH l o g i n a t t e m p t " ; s i d : 1 0 0 0 0 0 0 1 ; r e v : l ; ) 

x h t t p s : //wazuh.com/ 
https://cybersecurity.att.com/products/ossim  

3 h t t p s : //www.snort.org/  
4 h t t p s : / / s u r i c a t a . i o / 
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This rule w i l l trigger an alert if it detects any T C P traffic going to port 22, which is the 
default port for S S H . 

2.3 Stat is t ical A n a l y s i s 

Statist ical analysis is used to identify deviations f rom normal behavior. The term normal 
behavior here is used to describe legitimate or expected behavior. In terms of detection 
efficiency, statist ical analysis is more efficient t h a n rule-based analysis in dealing w i t h i n 
truders, which are unlikely to m i m i c normal behavior. Stat ist ical analysis methods can be 
very useful i n detecting previously unknown threats. 

We can categorize statist ical analysis based on outlier detection techniques into two 
categories [21]. 

• Threshold detection: The number of occurrences of a part icular event is examined 
over a certain period of t ime. If this number exceeds the threshold we defined, we 
can assume the presence of outliers i n the data. Since it is necessary to define a time 
interval and a threshold value for each event, i n larger systems this analysis technique 
can produce a large number of false positives and false negatives. 

• Profile-based detection: In order to detect anomalous activity, we create the profile 
based on previous user behavior. N o r m a l user behavior is defined by a set of met
rics. The detection mechanism compares the created profile w i t h the user's current 
activities and determines the degree of deviat ion. 

A n example of a statist ical analysis method is the Gaussian dis tr ibut ion model shown in 
Figure 2.2. Th is method assumes that the data being analyzed follows a normal dis tr ibut ion 
and calculates the probabi l i ty of a given data instance being anomaly-based. We detect 
outliers by determining a l l data instances that are more than 3a distance away from the 
mean //, where a is the value of the standard deviat ion of the dataset. A b o u t 99.7% of 
values are w i t h i n the M l CB. of /x H—3a . 

Another method to determine anomalies in operating system data is the % 2 statist ical 
test. The output of a test is a measure of the deviat ion between the observed and expected 
values: 

where O j is the observed value and Ei the expected value of the ith variable [8]. 
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Standard Normal Distribution u-0|o-1 

a 

Figure 2.2: The area under the curve represents the probabi l i ty for any interval of value 

[4]-

2.4 M a c h i n e Learning-Based M e t h o d s 

Machine learning techniques have become an important part when it comes to anomaly 
analysis. T h e y typical ly involve t ra ining a model on normal behavior data and then using 
that model to identify deviat ion from the n o r m in the new data. In this subsection, some 
of the most commonly used machine learning techniques for anomaly detection w i l l be 
discussed. 

K- m e a n s 

i f -means is a clustering-based method that can be used to group similar data points (in
stances) together. The a lgor i thm first initializes k centroids, where A: is a user-defined 
parameter, and assigns the data points to their nearest centroid. The a lgor i thm then com
putes new centroids by tak ing a mean of each defined cluster and repeats this process u n t i l 
clusters no longer change or a stopping cri terion is met. B y grouping s imilar points into 
clusters we are able to identify clusters that deviate from the n o r m i.e. the outliers (Figure 
2.3). 

9 



• • Anomalies 
Norma 

• X Centroids 

• • 
• 

» • 

• 

• 

• 
• 

- 2 - 1 0 1 2 

Figure 2.3: E x a m p l e of clusters computed on random data using the £;-means a lgori thm 
from the s c i k i t - l e a r n P y t h o n l ibrary w i t h a predefined number of clusters and an anomaly 
threshold value. 

D e c i s i o n T r e e s 

A decision tree a lgor i thm is a supervised a lgor i thm used for classification. Decision trees 
consist of nodes, leaves, and edges. The a lgor i thm works by start ing at the root node and 
following the edges to the appropriate chi ld node based on the input features. Th is process 
is repeated u n t i l a f inal predict ion is reached at a leaf node. 

A r t i f i c i a l N e u r a l N e t w o r k s 

A r t i f i c i a l N e u r a l Networks ( A N N ) are computat ional models that are inspired by the struc
ture of biological neurons i n the bra in . A r t i f i c i a l neurons are organized into layers that 
have connections w i t h other layers. A r t i f i c i a l N e u r a l Networks are often used i n anomalous 
pattern identif ication. B y using reinforcement learning, A N N is able to learn new types 
of attacks efficiently [5]. In this approach, the neural network is trained using normal 
data and then used to identify anomalous behavior i n new data. In Figure 2.4 the general 
architecture of A N N is presented. 

The a lgor i thm for neural networks can be div ided into two steps [8]: 

• Tra in ing : A neural network is trained on a large dataset containing normal patterns 
of network behavior to classify and identify normal patterns. Us ing backpropagation, 
the weights of i n d i v i d u a l neurons are adjusted to improve the output results. 

• Testing: Test instances of unseen data are provided as input to the neural network. 
The neural network then accepts or rejects the input data, based on what it learned 
in the t ra ining process. In case of rejection of input data, the instance is classified as 
an anomaly. 

Each neuron i n an A N N has an associated bias and weight. The bias is a constant that 
allows the neuron to adjust its output independently of its inputs . A neuron's weight is a 
quantity that measures how strongly its inputs and outputs are connected. To determine 
the neuron's output , the weighted sum of a neuron's inputs is first calculated. A bias value 
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is then added, and the result is passed to an act ivat ion function. T h e act ivat ion function 
enables the neural network to represent complex interactions between inputs and outputs 
and therefore learn complex patterns i n the data . The output of a neuron is passed as an 
input to the neurons i n the next layer. Weights and biases are adjusted i n the process of 
backpropagation. In this process weights and biases are learned values i n order to minimize 
the loss. 

Hidden Layer; 

Figure 2.4: The general architecture of A r t i f i c i a l N e u r a l Network [1]. 

2.5 O u t p u t of A n o m a l y Detec t ion 

The important part of the anomaly analysis is the output of the anomaly detection process 
(see Figure 2.5). Typica l ly , the anomaly detection result can be reported in two ways [8]: 

1. S c o r e s : Scores are assigned to each anomaly detection output instance. Typica l ly , 
the higher the score, the higher the probabi l i ty that this part icular instance is t ru ly an 
anomaly. Us ing this technique, the administrator is able to see a l l potential anomalies 
and manual ly mark some as anomalies, or can automatical ly select anomalies by 
defining a threshold value. 

2. L a b e l s : O u t p u t instances are marked binary, i.e. using the labels - normal or anoma
lous. 

I n s t a n c e S c o r e L a b e l 
A 0.4 False 
B 0.78 True 
C 0.2 False 
D 0.35 False 
E 0.9 True 

Table 2.1: E x a m p l e of instance output using scoring and labeling. 

The anomaly score is calculated by a set of metrics and its est imation can be formulated 
using several techniques, inc luding distance-based, density based and soft computing based 
technique [5]. 
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2.6 E v a l u a t i o n of A n o m a l y Detec t ion 

Another important aspect is the evaluation of the output . D u r i n g this process, the effec
tiveness of the output results is determined. Us ing the appropriate evaluation measure we 
can evaluate the precision of intrusion detection. 

Evaluat ion typical ly involves comparing output results w i t h normal or expected behavior 
and measuring false a larm rates. Precision, Recall and F-score are commonly used measures 
[5]. 

Evaluat ion is used to help the system achieve better performance i n detecting and 
preventing malicious activities and optimize the process of anomaly analysis. 

Evaluat ion is an important phase of the implementat ion of the detection system, which 
allows us to gain insight and be able to see how well the anomaly detection system works on 
different data . Based on this information, the system can be further adjusted and changes 
can be made to the system design to maximize the anomaly detection rate. 

f ~ ~Data \ 
I Processing I 
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("Output^ 

[ Score [ [ Label ] 

Figure 2.5: The generic process of anomaly analysis [2]. 
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Chapter 3 

Anomaly Detection System Design 

In this chapter, I w i l l be discussing system requirements to enable the analysis of data 
from the Network-based Intrusion Prevention Systems (NIPS) and Host-based Intrusion 
Prevention Systems (HIPS) w i t h an open license w i t h i n the appropriate integration and 
search system. I w i l l then discuss the in i t i a l design of the system I w i l l be implementing. 

3.1 Requirements 

In order to maximize the efficiency of anomaly analysis, the m a i n requirement is to have 
an I D S / I P S that can recognize both known and unknown anomalies. A hacker w i t h the 
intention to breach the system security is able to launch an attack using tools like H O I C 
and L O I C [5]. These tools are capable of many sophisticated attacks that can harm security 
systems and cause problems. That ' s why the security system has to cover a l l important 
areas of infrastructure. The second major problem w i t h today's cybersecurity technologies 
is a large number of false alarms. This can be reduced by using an efficient anomaly analysis 
method, t ra ining the model appropriately, and constantly keeping track of new potential 
threats that may occur. 

There are several key requirements that need to be considered here: 

• D a t a c o l l e c t i o n : The system should be able to collect data from various sources. 
This includes network traffic, endpoints, and servers. D a t a collection provides v is ib i l 
i ty and insight into the most vulnerable parts of the system. This often includes data 
mirror ing and real-time monitor ing (data capturing) . D a t a is collected using tools 
that are capable of accessing and inspecting specific data sources and that are able 
to parse this data into a specific format. 

• D a t a s t o r a g e : To be able to handle a large amount of incoming data, we need flexible 
data storage. Network and endpoint data must be stored and retrieved efficiently for 
analysis purposes. Tools that can be used for this purpose are E l a s t i c s e a r c h and 
A p a c h e K a f k a . Apache K a f k a is used for data processing as well . 

• F e a t u r e e x t r a c t i o n : Relevant data has to be extracted from various sources and 
structured into a format that is suitable for anomaly analysis. Th is step also includes 
the preparation of data for analysis and normal izat ion. In order to extract and nor
malize features, various tools can be employed. P y t h o n is a wel l -known language used 
by machine learning analysts, which provides libraries for data structuring, format-
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t ing, and normal izat ion. Some of the most common tools used i n P y t h o n for machine 
learning analysis are Skit- learn, Pandas, and N u m p y . 

• D a t a a n a l y s i s : D a t a analysis requires an intrusion detection mechanism using an 
appropriate detection method. This step requires the implementat ion of the intrusion 
detection system integrated w i t h existing open license tools. A deep learning model 
w i l l be employed for this purpose since it can provide profound analysis and detection 
of complex patterns i n large datasets. Open-source libraries such as TensorFlow and 
Keras provide access to general A P I s for bui ld ing machine-learning model architecture 
and t ra ining. Once the model is trained, it can be used to classify real-time network 
traffic and identify potential intrusions. 

• D a t a v i s u a l i z a t i o n : The system should include a simple visual izat ion interface for 
security events analysis. There are mult iple existing tools that can be used for this 
purpose, e.g. K i b a n a , G r a f a n a , and S q u e r t . 

3.2 Implementat ion design 

For the purpose of this bachelor thesis assignment, I designed the A n o m a l y Detect ion 
system, which uses a machine learning approach to learn the normal behavior of the system. 
The system w i l l be implemented i n P y t h o n language using appropriate available libraries. 
The machine learning model w i l l be based on A r t i f i c i a l N e u r a l Networks and trained on 
normal behavior datasets. To test the model's efficiency i n detecting anomalous behavior, 
several tools and methods w i l l be employed. The performance of the implemented system 
w i l l be evaluated using various classification evaluation techniques. 

For the purpose of efficient anomaly analysis, the system w i l l be integrated together 
w i t h Suricata, an I D S / I P S too l that contains rules for a large number of possible attacks 
and is capable of effective moni tor ing both on the network and endpoints. 

For the purpose of data storage and visual izat ion, two open-source E L K 1 products w i l l 
be integrated: Elasticsearch and K i b a n a . 

Implementation w i l l be focused on detecting different varieties of DoS and brute-force 
attacks. The anomaly detection system w i l l be tested on preprocessed data and by using 
suitable penetration testing tools. 

1 https://www.elastic .co 
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Chapter 4 

Anomaly Detection System 
Implementation 

In this chapter, I w i l l be discussing the implementat ion of an A n o m a l y Detect ion System 
as the m a i n part of m y work on m y bachelor's thesis. I w i l l focus on explaining the key 
aspects of bui ld ing an anomaly detection system, such as the implementat ion environment, 
tools and techniques, and the data analysis process. I w i l l discuss the process of preparing 
data for analysis i n several stages, as well as the process of implementing a neural network 
that w i l l be used to detect anomalous behavior. F ina l ly , various testing tools and known 
evaluation methods ut i l ized i n anomaly detection system performance assessments w i l l be 
employed to examine the implemented system performance. 

4.1 E n v i r o n m e n t 

To begin, selecting the appropriate implementat ion environment is crucial for the successful 
implementat ion of an anomaly detection system. This involves choosing tools and programs 
that can handle large volumes of data efficiently A n o m a l y Detect ion System is bui l t w i t h i n 
Security O n i o n , a free and open-source security software used for anomaly detection and 
prevention. Security O n i o n integrates a number of security tools such as Suricata, Snort, 
Zeek, W a z u h , and Osquery among others. It provides a comprehensive monitor ing plat form 
that is used by a large number of security teams. 

4 . 1 . 1 E n v i r o n m e n t S e t u p 

Security O n i o n is installed using Security O n i o n ISO image, which is based on C e n t O S 7 
and Oracle's v i r tual izat ion software V i r t u a l B o x . Security O n i o n offers mult iple instal lat ion 
options, inc luding mult iple types of deployment. The architecture that was most suitable 
for the purpose of efficient implementat ion and testing of the A n o m a l y Detection System 
was Standalone architecture shown i n 4.1. 

The basic idea behind Standalone architecture is the deployment of a l l components on 
a single machine. In this mode, Fi lebeat , a log shipping tool , is responsible for transferring 
log files and other files to Logstash, another data processing pipeline tool that is used for 
collecting, processing, and forwarding logs to a centralized locat ion for analysis. Logstash 
uses two pipelines for data transfer. The first pipeline is used for collecting data from 
Filebeat and transferring it to Redis for queuing. The second pipeline extracts data from 
Redis and sends them to Elasticsearch for analysis. 
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N e t w o r k C o n f i g u r a t i o n 

A n important aspect of environment setup is a network interface controller (NIC) setup. 
Security O n i o n Standalone requires two network interfaces: 

1. Management interface - Interface used for accessing Security O n i o n Console and over
al l system management. Th is interface is assigned an IP address using D H C P . 

2. Sniffing interface - Interface used for monitor ing and capturing network traffic. B y 
allowing promiscuous mode on this interface in V i r t u a l B o x , a l l network traffic is 
passed through the physical interface and processed by the v i r t u a l interface. 

B o t h interfaces are set to Bridged. They are l inked to the host machine's physical 
network. T h i s duplicates a network node and allows the v i r t u a l machine to funct ion as 
part of the same network as the host machine [5]. It enables the v i r t u a l machine to receive 
and send network traffic just like a physical computer would on the network, m a k i n g network 
traffic capture and analysis for security monitor ing and analysis simpler. 

I I 

r ^ 3 
Standalone 

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

Filebeat *Q Logstash ^ 

Queue 

Q Logstash ^ < — P u l l ^ Redis ^ 

Parse & Index 

Elasticsearch < - - Prune - - - ̂  Curator ^ 

Secur i ty On ion - Standalone Deployment 
Crea ted by Security Onion Solut ions 

Figure 4.1: Security O n i o n Standalone architecture [20]. 

4 . 1 . 2 E n v i r o n m e n t T o o l s 

Some of the m a i n tools included in Security O n i o n and used for implementing an A n o m a l y 
Detection System are [20]: 

• S u r i c a t a : The role of the Suricata Intrusion Detect ion System (IDS) i n Security 
O n i o n is real-time traffic analysis and detection of various types of network attacks, 
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Figure 4.2: The setup used dur ing anomaly detection system implementation. 

inc luding malware, exploits, and brute-force attacks. Suricata generates alerts while 
monitor ing network traffic using signature-based detection, i.e. rules that are applied 
to incoming traffic to detect known threats and malicious activity. W h e n Suricata 
detects a signature match, it generates an alert that can be found immediately in 
Alerts interface i n the Security O n i o n Console ( S O C ) or be visualized using various 
visual izat ion tools available i n Security O n i o n like K i b a n a and Grafana. 

• O s q u e r y : Osquery is a tool used in Security O n i o n for system inventory and event 
monitor ing. It enables analysts to collect and analyze system-level data f rom Security 
O n i o n sensors and other endpoints. 

• E l a s t i c s e a r c h : Elasticsearch is a distr ibuted, R E S T f u l search and analytics engine 
used for log management and analysis in Security O n i o n . It is used to store and index 
log data and enables fast and efficient searching and analysis of large data sets. Index 
log data is collected using various anomaly detection tools. 

• S a l t : Salt is a configuration management and orchestration too l for managing Se
curity O n i o n sensors and other components. It enables centralized management and 
configuration. 

• K i b a n a : T h e pr imary visual izat ion tool that was used for testing purposes during 
the implementat ion of the A n o m a l y Detect ion System. K i b a n a is a data visual izat ion 
and explorat ion plat form used to analyze and visualize large data sets. It enables 
users to create custom dashboards and charts to gain insights and vis ib i l i ty into log 
and performance data. It relies on Elasticsearch A P I to successfully retrieve data for 
analysis. 

The tools in Security O n i o n were tested for functionali ty using publ ic ly available P C A P 
(Packet Capture) files. P C A P files were replayed to the sniffing interface of the Security 
O n i o n sensor using the tool developed by Security O n i o n called so-import-pcap. Us ing 
this network traffic replaying tool , we can evaluate the functionali ty of Security O n i o n 
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components i n the abi l i ty to analyze traffic and detect malicious activities. The m a i n 
advantage of this t o o l is to reproduce the network traffic while preserving the original 
t imestamps of the packets. Th is allows the isolation of specific packets or flows from the 
rest of the traffic and facilitates analysis. 

B y default, the Security O n i o n sensor blocks a l l incoming traffic to ensure m a x i m u m 
security. Another useful command line u t i l i t y i n Security O n i o n is so-allow, which al 
lows the unlocking of the firewall to connect to Security O n i o n f rom new I P addresses. 
Th is u t i l i t y is specifically used for enabling access to the Security O n i o n Console and the 
Elasticsearch R E S T A P I . 

4.2 D a t a preparat ion 

A sizable amount of data must be acquired and thoroughly processed to construct the 
deep learning model . To t ra in deep learning models, we require data that is stable and 
adequately represented. M u l t i p l e data preparation aspects can leverage the deep learning 
model performance and its abi l i ty to detect anomalous behavior [16]. One important aspect 
is the data structure, which refers to the format and organization of the data. The data must 
be structured to be compliant w i t h the model's architecture and requirements, inc luding 
maintaining a consistent size and format. A n o t h e r important aspect is data stability, which 
refers to the consistency of the data over t ime. The model needs to be trained on stable 
data that represents the normal behavior of the system, to accurately detect anomalous 
behavior. T h e availabil i ty of anomaly data is also crucial for improving the performance of 
the model . Since the deep learning model is trained only w i t h normal behavior data, we 
need anomaly data to be able to test the model and evaluate its performance. A n o m a l y 
data should represent a variety of potential threats. 

For the model to be trained to detect a variety of distinct anomalies, data diversity is 
crucial . The t ra ining data should comprise several various types of typica l behavior. This 
typical ly includes a variety of network communicat ion protocols and different communica
t ion types. 

Next , I w i l l explain the two m a i n stages of data preparation for t ra ining a deep learning 
model . 

4 . 2 . 1 D a t a c o l l e c t i o n 

Suricata serves as the pr imary network data collector i n the Security O n i o n environment. 
Once the data is collected, it is transferred using Filebeat and Logstash and stored on the 
Elasticsearch server. For a l l types of events that occur in the network, Suricata generates a 
variety of E V E J S O N logs. These logs include data on network traffic, packet captures, and 
specific protocol information. Elasticsearch stores data i n the form of documents, which are 
then stored i n the form of indices. E a c h document can have an unl imi ted number of fields 
w i t h each field containing a value or an array of values. In addi t ion to the N o S Q L storage 
mechanism, Elasticsearch has an effective search engine that enables fast data retrieval 
using R E S T A P I [14]. 

The general structure of the E V E J S O N log consists of several sections which provide 
general information about specific events, such as timestamp, event, and network. Sections 
source and destination provide information about source and destination IP addresses 
and port numbers, as well as geographical information about specific endpoints. Events are 
categorized into mult iple datasets, where each dataset corresponds to the network protocol 
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used i n collected traffic. Based on the dataset field value, each log contains an addit ional 
section that provides information related to a specific dataset (protocol). 

D a t a stored on the Elasticsearch server is collected using the P y t h o n Elasticsearch client 
from the elasticsearch l ibrary. The Elasticsearch client allows f lexibil i ty i n accessing the 
Elasticsearch R E S P A P I and collecting logs for further processing. 

4 . 2 . 2 F e a t u r e e x t r a c t i o n a n d d a t a r e f o r m a t t i n g 

To facilitate the process of collecting E V E J S O N logs, as well as parsing and structuring, 
a special A P I has been implemented. The FeatureExtraction class is responsible for 
both collecting data from the Elasticsearch server using queries and parsing the data into 
a format suitable for deep learning analysis. 

Based on the data preparation requirements discussed earlier, each collected log was 
parsed, and essential features were extracted. Python ' s b u i l t - i n dataclasses module was 
ut i l ized to hold general information obtained f rom the logs, as well as properties that are 
unique to each dataset of a given log. Once a l l the logs were parsed, and features were 
extracted f rom them, the resulting data was in i t ia l ly reformated using the DataFrame f rom 
pandas l ibrary. Th is l ibrary is capable of representing data in a tabular format consisting 
of rows and columns, w i t h each co lumn capable of containing different data types. For data 
preprocessing and analysis in machine learning and deep learning, Pandas and dataframes 
are frequently ut i l ized, since they offer convenient methods and techniques for managing 
large datasets and performing data transformation. 

The f inal stage of data preparation rests on transforming a l l columns into numerical data 
types and encoding i n d i v i d u a l columns. Removing any irrelevant information also helps to 
reduce noise and improve the accuracy of the model . I P address values are categorized 
based on the class the IP address belongs to, while port numbers are categorized according 
to known port number ranges. 

In addi t ion to encoding numerical data types, the transformation process also involves 
converting categorical data into numerical representations through one-hot encoding. One-
hot encoding is one of the most common encoding techniques to handle categorical data . Its 
advantage compared to other encoding methods is its abi l i ty to handle non-ordinal features, 
by creating a b inary vector. B i n a r y vector w i l l have a length of n where i - t h element is 1 
if the data corresponds to the i - t h element and 0 otherwise [16]. 

protocol protocol_http protocol_ftp protocol_ssh 
ht tp 1 0 0 
f tp • 0 1 0 
ssh 0 0 1 

Table 4.1: E x a m p l e of one-hot encoding of a variable. 

Normal iza t ion of categorical features is done using M i n - M a x scaling. The M i n - M a x 
normal izat ion method transforms numerical features by scaling them into the range [0,1], 
where 0 w i l l be the m i n i m u m possible value for a given feature and 1 the m a x i m u m value. 
Th is is usually done to guarantee that each feature, regardless of its in i t i a l scale, contributes 
equally to the analysis. For this purpose, MinMaxScaler available in skit-learn l ibrary 
has been used. The formula for min-max scaling is: 
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x' = 
x — min(x) 

(4.1) 
max(x) — min(x) 

where x is the given feature value, min(x) is the m i n i m u m value of the feature, max{x) is 
the m a x i m u m value of the feature, and x' is the f inal , normalized value. 

The f inal dataframe has a shape of (58908,139), where the first element represents the 
number of indices (rows) in the dataframe and the second element represents the total 
number of features (columns). O u t of 139 features, 134 features represent one-hot encoded 
categorical columns. T h e remaining 5 features are numerical features normalized using 
min-max scaling. A l l of the categorical features are now represented using numpy.uint8 
data type, while numerical features are represented using numpy.float64 data type. 

4.3 N e u r a l network implementa t ion 

In this section, I w i l l discuss neural network model implementat ion, as well as a choice of 
neural network model architecture. The process of t ra ining the neural network model and 
parameter tuning w i l l also be explained i n detail . 

4 . 3 . 1 T e n s o r F l o w f r a m e w o r k 

TensorFlow is an open-source machine learning framework that offers a wide range of tools 
and A P I s for implementing models. It is used i n a variety of fields, inc luding natural lan
guage processing, image, and speech recognition, as well as anomaly detection. TensorFlow 
provides a high-level A P I for bui ld ing and t ra ining neural networks. 

One of the key aspects of TensorFlow computat ion abi l i ty is a computat ional graph. 
The computat ional graph is a way of representing a computat ion as a graph, where graph 
nodes represent comput ing operations. Edges of a computat ional graph define the data 
(tensor) flows between the nodes i n a directed manner [15]. 

Figure 4.3: I l lustrat ion of a simple computat ional graph i n TensorFlow w i t h defined oper
ations and data flows [15]. 

4 . 3 . 2 A u t o e n c o d e r 

To implement a neural network-based anomaly detection system, I chose the autoencoder 
neural network. Autoencoder is a neural network model that aims to reconstruct input 
data. The m a i n task of autoencoder models is to reduce the dimensionality of input data 
in the encoding stage and attempt to reconstruct data i n the decoding stage. Accord ing to 
[10], autoencoder demonstrates effectiveness in anomaly detection, part icular ly i n resilience 
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against noisy log tra ining data. In their experiment, they tested the accuracy of several 
most common neural network models i n anomaly detection. There are several types of 
Autoencoder that have been employed for the purpose of detecting anomalous behavior, 
besides the standard model , e.g. Var ia t iona l Autoencoder ( V A ) that adds a probabil ist ic 
component to encoding stage and C o n d i t i o n a l Var ia t iona l Autoencoder ( C V A ) that adds 
condit ional components i n encoding or decoding stages based on the context, such as event 
type [16]. 

W h i l e compressing data into smaller dimensionality, the autoencoder aims to preserve as 
much information as possible, while also al lowing complex nonlinear transformations. The 
optimizer (e.g. Adam, SGD) automatical ly adjusts the weights of the models to minimize 
a given loss function dur ing t ra ining [15]. 

B y reducing the size of each layer i n the encoding stage, input data is represented 
by a smaller number of features. In different machine learning models, this approach is 
ut i l ized w i t h the a i m of reducing noise f rom data and faci l i tat ing the learning process. The 
encoding process ends w i t h bottleneck, a hidden layer that holds the smallest compressed 
representation of input data. D u r i n g the decoding process, data is reconstructed f rom the 
compressed representation in the bottleneck layer back to its or iginal size. 

The determination of the number of layers i n the encoding and decoding phases of the 
autoencoder model is based on the shape of the input data . Since the input dataframe 
contains both different types of features, i.e. 134 categorical features and 5 numerical 
features, the data is part i t ioned, and distinct autoencoder architectures are applied to each 
respective part . 

For the encoding stage, the part that contains categorical features is passed through 
three dense layers, w i t h each layer decreasing the size of the previous layer. A dense layer is 
a ful ly connected neural network layer, which means that a l l neurons i n the preceding layer 
are connected to a l l neurons i n the following layer. Start ing from the input layer, which 
consists of 134 units , the size of subsequent layers is gradually reduced to 128, 64, 32, and 
finally 16 units (see Figure 4.5). The activation funct ion used i n the encoding layers and 
first two decoding layers is Recti f ied Linear U n i t ( R e L U ) act ivat ion funct ion. The R e L U 
activation funct ion introduces non-linearity and enables a model to discover more complex 
data patterns. In the final layer of the decoder, the sigmoid act ivation function is used. A 
sigmoid act ivation function can effectively reconstruct the original categorical data because 
it outputs values i n the range [0,1], which correspond to the range of values introduced in 
the encoder input layer. 

In the case of numerical inputs, two dense layers are employed to compress the data into 
a smaller representation. Th is compressed representation is then used as input to another 
two dense layers that are used to decompress the data back to its or iginal size. The number 
of neurons i n the first dense layer is decreased f rom 5 units (the size of the input layer) to 3, 
and f inally 2 units . The act ivat ion funct ion used in the encoding layers is Recti f ied Linear 
U n i t ( R e L U ) , while the sigmoid act ivation funct ion is used i n the final layer of decoding 
numerical inputs. 

To improve the performance of our model , the dropout regularization technique was 
employed. This technique is used to ensure that the neural network distributes the learned 
representations of the data across a l l the neurons by randomly deactivating a fraction 
of them dur ing t ra ining. B y placing dropout layers inside the encoder and decoder, the 
network is forced to learn a robust representation that can generalize well on new, unseen 
data. This regularization technique is p r i m a r i l y used to improve the model's generalization 
[15]. 
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Figure 4.5: Autoencoder architecture used for categorical features. 

4 . 3 . 3 N e u r a l n e t w o r k t r a i n i n g 

The bui l t neural network was trained on chosen normal network traffic logs that have 
been obtained over the course of two weeks using Suricata. D a t a was fetched from m u l 
tiple Elasticsearch indices and was extracted and preprocessed using the implemented 
FeatureExtraction class. 

The f inal output of the autoencoder is created by concatenating the reconstructed cat
egory and numerical features. The decoded layers are combined using the concatenate () 
method to merge the decoded numerical and category features. The f inal decoder layer has 
the same shape as the input data, which is the goal of the autoencoder - to reconstruct the 
input data as precisely as possible. 

Before the model is trained, it is configured using the compile () method. T h e compile () 
method is used to configure the model for t ra ining. Here, the model is compiled using the 
mean squared error ( M S E ) loss function and the Adam optimizer . M S E measures the av
erage squared difference between the predicted output and the actual output . The m a i n 
purpose of the mean squared error loss funct ion is to minimize the difference between the 
input and the output . The A d a m optimizer is a stochastic gradient descent opt imizat ion 
algori thm that updates the learning rate adaptively based on the gradient of the loss func-
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t ion [19]. Addi t iona l ly , the model is configured to calculate the accuracy metric during 
tra ining. 

Input data is d iv ided into a t ra ining set and a val idat ion set, for the purpose of t ra ining 
and val idat ing implemented machine learning model . Us ing sample () function, the fraction 
which includes 80% of input dataframe is selected for tra ining, while the remaining 20% of 
data is set for val idation. 

The model was trained for 35 epochs w i t h a batch size of 16. The loss and accuracy 
metrics for bo th the t ra ining and val idat ion datasets at each epoch are included i n the 
history object that the f i t ( ) funct ion returns, as shown i n Figure 4.6. T h i s object 
provides information about the t ra ining process. Us ing this data , it is possible to assess the 
model's effectiveness dur ing the process of model implementat ion and adjust the model's 
architecture or hyper parameters. 

0 10 20 30 0 10 20 30 

Figure 4.6: Loss and accuracy progress recorded dur ing 35 epochs of neural network t ra in
ing. 
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Chapter 5 

Experiments and Evaluation 

In this section, I w i l l outline the steps involved i n testing and evaluating the neural network 
model that has been implemented. This process can be div ided into three parts. In the 
first part , w h i c h includes defining a threshold for generating output predictions, the neural 
network is used on new non-anomalous data. In the second part , various experiments were 
conducted to see how well the neural network model performs on anomalous data. For this 
part , data from external sources is collected and various testing tools were ut i l ized. In the 
final , t h i r d part , an evaluation of the neural network model is performed. The results of 
the evaluation are then analyzed to determine whether the model is performing well and 
meeting the desired criteria. 

5.1 P r e d i c t i o n 

To measure how well the neural network is able to reconstruct the original input data , 
output predictions are generated for the new input samples. Since the autoencoder is 
trained on normal , non-anomalous data, the level of how good the data reconstruction 
is w i l l determine, if the input data is indeed normal , or is anomalous. Autoencoder was 
trained to minimize the reconstruction error and therefore improve the qual i ty of decoding 
the encoded data. In theory, the autoencoder should reconstruct the normal data w i t h a 
m i n i m u m loss, since it is trained to be able to successfully encode network traffic data and 
decode it back to its or iginal size. Mos t of the anomalous data contains patterns that are 
not frequent in normal network traffic data , therefore autoencoder w i l l have worse results in 
reconstructing this k i n d of data. Th is higher reconstruction error can indicate anomalous 
behavior and potential threat. 

Output predictions are generated using predict () method, which takes input dataframe 
and computes predictions using the trained neural network model . Next , reconstruction 
error is calculated for each row i n the predicted data . Predic ted data is compared to 
the actual data to calculate the loss. The reconstruction error is a measure of how well 
the autoencoder is able to reconstruct the original input data. Reconstruct ion error is 
calculated by taking the mean square error between the predicted data and the actual data 
for each dataframe row. This is done by calculat ing the square of the difference between 
the predicted data and the actual data and then tak ing a mean of this value for each row. 
W h e n the reconstruction error is lower, the model is performing better at recreating the 
input data , and when the reconstruction error is higher, the model is performing worse. 
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reconstruction_error = — (predicted _datai — datai)2 (5-1) 
m ^—' i=l 

5 . 1 . 1 T h r e s h o l d 

A n important aspect of anomaly detection using an autoencoder is determining the opt imal 
threshold value. The threshold value is used to classify data points w i t h a reconstruction 
error above the threshold as anomalous and data points w i t h a reconstruction error below 
the threshold as normal . There are several methods that can be used to define a threshold 
value. One of the most common methods includes calculating the mean and standard 
deviat ion of the reconstruction error. This method is defined as: 

threshold = f + k • s (5-2) 

where f is a sample mean of the reconstruction error, s is a s tandard deviat ion of the 
reconstruction error, and k is the standard deviat ion mult ipl ier . 

Another method for defining the threshold value is the percentile method. B y calculating 
the n - t h percentile of the reconstruction error, the reconstruction error value which lies 
above n% of the data points in the reconstruction error array w i l l be used as a threshold 
value. In the process of testing the autoencoder performance, this method is used to 
determine the base value of a threshold. 

For the purpose of defining the threshold value, normal network traffic data was ex
tracted f rom the Elasticsearch index and analyzed using the trained neural network model . 
Th is data is new and has not been used dur ing the neural network t ra ining process. Us ing 
the 99th percentile value of the reconstruction error array, a value of 0.03612 was obtained. 
Us ing this value, 99% of the input samples were classified as normal , which indicates the 
precision of 99% when analyzing new normal data using the autoencoder. 

5.2 R e p l a y i n g P C A P files 

In this stage, the performance of neural network performance w i l l be tested using the anoma
lous data samples, which were obtained by impor t ing publ ic ly available P C A P files. Packet 
capture files are obtained f rom [3], a website whose authors provide a large amount of packet 
capture files and malware samples for testing and analysis purposes. The effectiveness of 
the neural network model was tested i n two experiments. The purpose of this evaluation is 
to ascertain how well the neural network can identify unusual network traffic. P C A P files 
were replayed on Security O n i o n v i r t u a l machine using Security O n i o n so-import-pcap 
uti l i ty. A f t e r they were analyzed by Suricata, logs were stored on a separate Elasticsearch 
index, w i t h preserved timestamps. Us ing the Elasticsearch client, documents from a specific 
index were collected and processed. In order to extract the relevant feature f rom obtained 
data, FeatureExtraction class was used. D a t a is processed in a s imilar manner as the 
data used for neural network tra ining, except for the addit ional data preparation step that 
was done i n order to format data to suit autoencoder input dimensionality. In order for 
input data to match the expected input dimensionality of the autoencoder, missing columns 
were added to the input dataframe, and addit ional columns were removed. 

To be able to validate the predict ion for each log sample (normal /anomaly) , output 
predictions were correlated w i t h Suricata alerts. V a l i d a t i o n of the neural network predic
t ion requires labels. Us ing the combinations of source and destination IP addresses from 
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alert dataset category, which was generated by Suricata, input samples were labeled using 
boolean value True, if a sample is anomalous and False if it is normal . W h e n a certain rule 
is triggered, Suricata generates an alert log that contains information such as source/des
t inat ion IP address, source/destination port , protocol , and more. This allows certain flows 
to be labeled as either anomalous or normal . The label array is removed from the input 
data w i t h order preserved and saved for the post-predict ion step. 

After the predict ion has been conducted, the True Posit ive Rate ( T P R ) and False 
Posit ive Rate ( F P R ) are calculated to evaluate the performance of the autoencoder. T P R 
measures the percentage of correctly identified positive samples (anomalies), while F P R is 
used to measure the percentage of samples that were incorrectly identified as anomalies. 

5 . 2 . 1 E x p e r i m e n t 1 

In the first experiment, P C A P file 2018-06-30-traff ic-analysis-exercise .pcap was 
replayed using so-import-pcap command. D a t a containing 1653 logs i n tota l is stored in 
a separate Elasticsearch index. D a t a is extracted and prepared for neural network analysis. 
The Suricata rule ET POLICY Data POST to an image file (gif) was triggered when the 
P C A P file was replayed. Suricata identified malware i n the analyzed data and categorized 
this event as Network Trojan w i t h high severity. Based on the obtained alerts, labels were 
created for each sample and 9 rows in the input dataframe were categorized as anoma
lies. In the predict ion phase, the reconstruction error array was obtained using a trained 
autoencoder. 
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Figure 5.1: Exper iment 1 - Reconstruct ion error plot. 

Each sample i n the reconstruction error array is compared to the threshold value cal
culated on a set of normal network traffic data earlier. Predict ions for each sample i n the 
reconstruction error array are represented as boolean values, where value True indicates 
that the reconstruction error is higher than a threshold and value False indicates that 
the reconstruction error is lower than a threshold. A t this point , the predicted values can 
be compared w i t h the previously created labels. The evaluation of predict ion is based on 
the determination of True Posit ive Rate ( T P R ) and False Posit ive Rate ( F P R ) . Us ing the 
defined threshold value, a l l anomalous samples were successfully identified. Some of the 
samples were also incorrectly identified as anomalies. Increasing the threshold value by 
0.01 managed to reduce the F P R while mainta ining the m a x i m u m T P R value (Figure 5.2), 
as shown in the table below. 

26 



Threshold T P R F P R 
0.03612 1.0 0.3449 
0.04612 1.0 0.1867 

Table 5.1: Exper iment 1 - True Posit ive Rate ( T P R ) and False Posit ive Rate ( F P R ) . 
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Figure 5.2: Exper iment 1 - Classified predict ion outputs. 

5 . 2 . 2 E x p e r i m e n t 2 

In the second experiment, P C A P file 2020-09-16-Qakbot-infection-traffic .pcap was 
downloaded and replayed using so-import-pcap command. Af ter it was analyzed by Suri -
cata, logs were stored in the Elasticsearch index, 184 in tota l . Compared to the first replayed 
P C A P file, this dataset contains a far less number of samples. However, these P C A P files 
triggered a much larger number of rules: 

• ET J A3 Hash - [Abuse, ch] Possible Quakbot 

. ET MALWARE Observed Qbot Style SSL Certificate 

. ET INFO EXE - Served Attached HTTP 

• ET J A3 Hash - [Abuse.ch] Possible Gozi 

. ET MALWARE JS/WSF Downloader Dec 08 2016 M4 

. ET MALWARE Likely Evil EXE download from MSXMLHTTP non-exe extension 
M2 

. ET POLICY PE EXE or DLL Windows file download HTTP 

Suricata was able to successfully identify Quakbot malware. Quakbot (Qbot) is a com
mon trojan-type malware that was to designed to monitor infected machines and misuse 
private and valuable information. Malware has been active since 2008 [9]. 

After the data is collected f rom the Elasticsearch index and prepared for neural network 
analysis, alerts were analyzed to identify a l l anomalous flows. In tota l 47 anomaly samples 
were identified i n the test data using alerts and labels used for model evaluation were 
obtained. Using the defined threshold value, predict ion for each sample is determined. 
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Figure 5.3: Exper iment 2 - Reconstruct ion error plot. 

F inal ly , the True Posit ive Rate and False Posit ive Rate were calculated to evaluate model 
performance. Calculated results were significantly worse compared to the first experiment. 
Defining a different threshold improved the results. In this case, a lower threshold value 
has better results in detecting anomalies but also increases the false positive rate, as shown 
in the table below. 

T h r e s h o l d T P R F P R 
0.03612 0.04256 0.49635 
0.01 0.97872 0.7153 

Table 5.2: Exper iment 2 - True Posit ive Rate ( T P R ) and False Posit ive Rate ( F P R ) . 
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Figure 5.4: Exper iment 2 - Classified predict ion outputs. 

5.3 Penet ra t ion test ing 

For the second part of the autoencoder performance evaluation, a special security envi
ronment is set up to test a real-life attack scenario. For this purpose, the Metasploit 
framework was installed on a local machine. Metasploi t [17] is an open-source penetration 
testing plat form that helps in identifying and exploit ing vulnerabil it ies in computer systems 
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and networks. It provides a large number of at tacking tools that can be ut i l ized for testing 
purposes. 

5 . 3 . 1 T e s t i n g e n v i r o n m e n t 

This experiment aims to simulate an attack scenario that w i l l exploit potential weaknesses. 
Metasploit provides auxiliaries, which are scripts that contain code for exploit ing certain 
services. 

The target of this attack w i l l be a vulnerable v i r t u a l machine. Metasploitable is a 
L i n u x v i r t u a l machine, that is created for testing purposes. It contains several known 
vulnerabilit ies that can be efficiently exploited using penetration testing tools. Th is v i r t u a l 
machine has been installed on V i r t u a l B o x and connected to Security O n i o n v i r t u a l machine 
using so-allow command line ut i l i ty . The traffic to and from the Metasploitable v i r t u a l 
machine is a l l visible to Security O n i o n . The environment is now ready to be used for 
penetration testing. In this experiment, three roles were defined: 

• Metasploi t : Attacker 

• Metasploitable: V i c t i m 

• Security O n i o n : IDS 

To simulate an attack scenario, the experiment used Metasploit as the attacker, Metas
ploitable as the v i c t i m , and Security O n i o n to monitor the traffic for suspicious activity. 
D a t a that was collected by Security O n i o n w i l l be analyzed using the trained neural network 
model . 

5 . 3 . 2 A t t a c k l a u n c h i n g e x p e r i m e n t 

Two brute-force attacks were conducted on Metasploitable v i r t u a l machine using the Metas
ploit framework. The pr imary goal of a brute-force attack is to gain control over a host 
or service. Th is attack typica l ly involves scanning the running services on a target ma
chine. The first attack was an S S H login brute-force attack and the second attack is a 
M y S Q L login brute-force attack. E a c h attack requires certain settings to be made, which 
include setting the target host IP address, usernames, and passwords that w i l l be used for 
at tempting to break into the target's machine and attack-specific services. S S H service uses 
well -known port 22, while the default port for M y S Q L service is 3306. The second attack 
was conducted a few minutes after the first one finished. 

Security O n i o n collected network traffic information and stored it i n the Elasticsearch 
index. Packets were analyzed by Suricata, which was able to identify threats and raised 
alerts about two specific events. Rules that were triggered this t ime were: 

• ET SCAN Suspicious inbound to mySQL port 3306 

• ET SCAN Multiple MySQL Login Failures Possible Brute Force Attempt 

. ET SCAN Potential SSH Scan 

. ET SCAN Potential SSH Scan OUTBOUND 
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After the index data is parsed and processed, labels were extracted using Suricata alerts, 
and an input dataframe was prepared for neural network analysis. Reconstruct ion error 
was computed using a trained autoencoder and input dataframe. A f t e r comparing samples 
from the reconstruction error array w i t h the threshold, the following results were obtained: 

• 1807 samples were classified as normal . 

• 240 samples were classified as anomalies. 
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Train loss 

Figure 5.5: A t t a c k launching experiment - Reconstruct ion error plot. 

In this experiment, the True Posit ive Rate ( T P R ) and False Posit ive Rate ( F P R ) were 
calculated to evaluate the performance of the neural network i n detecting brute-force at
tacks. The results of T P R and F P R were encouraging, indicat ing that the neural network 
has performed well i n identifying brute-force attacks. T P R and F P R for this experiment 
are shown in the table below. 

T h r e s h o l d T P R F P R 
0.04612 0.9864 0.0121 

Table 5.3: Exper iment 2 - True Posit ive Rate ( T P R ) and False Posit ive Rate ( F P R ) . 

5.4 E v a l u a t i o n 

In the f inal part of testing the implemented neural network model , the performance of 
the model w i l l be tested using t radi t ional model evaluation techniques. M o d e l evaluation 
techniques are used to assess the performance of a trained model on unseen data . Some 
commonly used evaluation techniques include confusion matr ix analysis, precision, recall , 
F l - score , and receiver operating characteristic ( R O C ) curves. These methods can guide 
future improvements in the form of changes to the architecture or the learning process and 
provide information about the strengths and l imitat ions of the model . 

5 . 4 . 1 T e s t i n g d a t a 

To assess neural network performance, an evaluation dataset was created. Th is dataset has 
anomalous samples obtained dur ing the previous experiment. D a t a from a specific t ime 
range was collected f rom the Elasticsearch server and prepared for analysis. Aler ts , that 
were raised in the same period were also collected. These alerts w i l l be used to correlate 

30 



the autoencoder predict ion outputs w i t h the anomalies that Suricata has identified using 
the rules. 

5 . 4 . 2 R O C c u r v e 

A Receiver Operat ing Characterist ic ( R O C ) curve is a graphical representation of a relation 
between True Posit ive Rate ( T P R ) and False Posit ive Rate ( F P R ) . It is used to i l lustrate 
the predict ion performance of a neural network using a range of values for the threshold. 
R O C is used as a probabi l i ty curve. Another performance measurement indicator is A r e a 
Under The Curve ( A U C ) , which represents the degree or measure of separability [18]. A 
high A U C indicates high performance i n identifying anomalous samples and a low False 
Posit ive Rate . 

A n array of threshold values ranging from 0 to 1 w i t h a step of 0.01 is created. For 
each threshold value i n the array, T P R and F P R are calculated. Addi t iona l ly , the A r e a 
Under The Curve ( A U C ) is calculated using lists containing T P R and F P R values for a l l 
threshold values. 
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Figure 5.6: Receiver Operat ing Characterist ic ( R O C ) curve. 

5 . 4 . 3 N u m e r i c a l e v a l u a t i o n m e t r i c s 

Besides the Receiver Operat ing Characterist ic ( R O C ) curve, that are other evaluation met
rics that can be ut i l ized to assess the performance of the neural network, specifically the 
binary classification model . Metr ics , that were used for model evaluation are available in 
sklearn l ibrary. Eva luat ion metrics used for this purpose are [11]: 

• A c c u r a c y : Accuracy represents the percentage of correct predictions out of a l l pre
dictions made by the neural network model . 

• P r e c i s i o n : Precis ion is the percentage of true positive predictions out of a l l positive 
predictions made by the neural network model . It measures the model's abi l i ty to 
avoid false positives. 

31 



• R e c a l l : Reca l l represents the percentage of true positive predictions out of a l l actual 
positive samples i n the data. It measures the model's abi l i ty to identify a l l positive 
samples. 

• F l s c o r e : The F l score is the harmonic mean of the precision and recall. 

F l score was used to calculate the opt imized value for the threshold (see 5.7). In order 
to determine the most acceptable threshold value, the F l score is calculated against the 
array of threshold values in the range [0,1] w i t h a step of 0.01 for each value. 

M e t r i c V a l u e 
Accuracy 0.9832 
Precis ion 0.4005 
Reca l l 0.95 
F l score 0.5634 

Table 5.4: Eva luat ion metrics - calculated values. 
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Figure 5.7: Eva luat ion - Classified predict ion outputs w i t h an opt imized threshold value. 
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