
Implementation of the dual permeability model and

application of population-based metaheuristics in inverse

modeling

Johanna R. Blöcher

April 18, 2017

Under supervision of doc. Ing. M. Kuráž

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Environmental Sciences

DIPLOMA THESIS ASSIGNMENT
Johanna Ruth Blöcher

Environmental Modelling

Thesis tle

Implementa on of the dual permeability model and applica on of popula on-based metaheuris cs in
inverse modeling

Objec ves of thesis
Implementa on of dual permeability model into in-house code DRUtES.

Design, implementa on and evalua on of novel and state of the art popula on-based metaheuris c
algorithms for theore cal and real world problems.

Methodology

literature retrieval

research on implemented algorithms in R

code structure of DRUtES

DEBUGGING

benchmark func on evalua ons

Richards equa on model based inverse problems

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 21 Praha 6 - Suchdol

The proposed extent of the thesis
standard

Keywords
standard

Recommended informa on sources
Kogelbauer, I, Batkova, K, Dolezal, F, Matula, S, Loiskandl, W, Preferen al percola on quan fied by large

water content sensors with ar factual macroporous envelopes. HYDROLOGICAL PROCESSES, SEP 15,
2015, DI 10.1002/hyp.10491.

Expected date of thesis defence
2016/17 SS – FES

The Diploma Thesis Supervisor
doc. Ing. Michal Kuráž, Ph.D.

Supervising department
Department of Water Resources and Environmental Modeling

Advisor of thesis
doc. Ing. Michal Kuráž, Ph.D.

Electronic approval: 10. 4. 2017

doc. Ing. Mar n Hanel, Ph.D.
Head of department

Electronic approval: 10. 4. 2017

prof. RNDr. Vladimír Bejček, CSc.
Dean

Prague on 18. 04. 2017

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 21 Praha 6 - Suchdol

Author’s declaration

I hereby declare that this submitted thesis Implementation of the dual permeability model and

application of population-based metaheuristics in inverse modeling is my own work and only

sources listed in the Bibliography were used.

Prague, 18th April 2017

Johanna R. Blöcher

Acknowledgments

I would like to sincerely thank Michal Kuráž, who has been an incredible supervisor. Thank

you for helping me create a somewhat overambitious thesis project and for accommodating

most of my crazy ideas.

I would also like to thank Petr Máca for introducing me to metaheuristics and in particular

Particle Swarm Optimization. His passion for optimization algorithms is truly inspiring. I

would also like to thank the Department of Water Resources and Environmental Modeling, a

great bunch of people!

I would also like to thank František Doležal for providing case study data for this thesis.

I would also like to thank my family for all the support. I would like to especially thank my

husband and personal hero, Mark Thomson, for getting me through the tough times. I would

also like to thank my sister, Solveig Blöcher, for her incredible confidence and her enthusiasm.

Abstract

Soil often exhibits a variety of heterogeneities such as fractures, fissures, cracks, and

macropores, and can show dynamic instabilities of the wetting front during infiltration,

which can lead to preferential flow. Preferential flow can accelerate the movement of

contaminants in the unsaturated zone and is therefore of concern to environmental science.

The dual permeability model after Gerke and Genuchten (1993a, 1993b) can be used to

model preferential flow in soil. It was constructed around the assumption that the soil

medium can be separated into two distinct pore systems. In this approach the matrix and

fracture systems are each treated as homogeneous media with separate hydraulic properties

that can both be described with a Richard’s equation. In this work, the dual permeability

model was implemented in the free software Dual Richards’ Unsaturated Equation Solver

(DRUtES). Different scenarios were designed to test under which conditions preferential

flow occurs.

In order to perform parameter estimation as part of inverse analysis, global metaheuristic

optimization algorithms were reviewed and implemented. Adaptations of Particle Swarm

Optimization (PSO) and Teaching-Learning-Based Optimization (TLBO) were used, which

are population-based metaheuristics with different learning strategies. These are high-level

stochastic-based search algorithms that don not require gradient information or a convex

search space. Introduced variants include a simple bad neighborhood approach and shuffling

complexes inspired by Duan et al. (1993). Despite increasing computing power and parallel

processing, an overly fine mesh is too computationally intensive to be used for parameter

identification. This creates the need to find a mesh that optimizes both accuracy and

simulation time. A bi-objective PSO algorithm was designed and implemented. This

algorithm is based on a dynamic neighborhood approach and can generate a Pareto front of

optimal meshes to account for both objectives. The global optimizers were successfully

tested on commonly used benchmark functions. The created inverse set-up involved the

linking of the software to the optimization algorithms and was tested on both virtual inverse

problems and real data.

Keywords: Dual permeability model, Preferential Flow, Inverse modeling, Population-Based

Metaheuristics, Particle Swarm Optimization, Teaching-Learning-Based Optimization,

Shuffled Complexes, Bad Neighborhood Approach.

CONTENTS

Contents

1 Introduction 1

1.1 Motivation and goals . 1

1.2 Thesis structure . 2

2 Mathematical flow model 3

2.1 Introduction . 3

2.2 Basic governing equations . 3

2.3 Dual permeability model . 6

2.4 Parameterization of hydraulic functions . 9

2.5 Initial and Boundary conditions . 10

3 Dual permeability model implementation 12

3.1 Introduction . 12

3.2 DRUtES . 12

3.3 Implementation . 12

3.4 Test simulations . 17

4 Population-based metaheuristics 22

4.1 Principles of Metaheuristics . 22

4.2 Particle Swarm Optimization . 26

4.2.1 Basic PSO . 26

4.2.2 Implemented modified PSO algorithm 28

4.2.3 Bi-objective PSO . 30

4.3 Teaching-Learning-Based Optimization . 31

4.3.1 Basic TLBO . 31

4.3.2 Implemented modified TLBO . 32

4.4 Implemented variants . 34

4.4.1 Shuffling complexes . 34

4.4.2 Bad neighborhood approach . 34

4.4.3 Summary of variants . 36

4.5 General implementation aspects . 38

4.5.1 Algorithm implementation in R . 38

4.5.2 Random seed . 38

4.5.3 Boundary . 38

4.5.4 Reinitializing the population . 39

4.5.5 Stopping criteria . 39

iii

CONTENTS

4.5.6 Restart . 40

5 Benchmark functions 41

5.1 Introduction . 41

5.2 CEC 2013 real-parameter optimization benchmark functions 42

5.2.1 Description of CEC 2013 real-parameter optimization benchmark

functions . 42

5.3 DRUtES benchmark functions . 47

5.3.1 Set-up of DRUtES benchmark functions 48

5.4 Benchmark results and discussion . 52

5.4.1 Results of CEC 2013 benchmark functions 52

5.4.2 Results of DRUtES benchmark functions 59

5.4.3 Benchmark summary . 62

6 Case study 64

6.1 Introduction . 64

6.2 Mesh optimization . 65

6.2.1 Set-up of mesh optimization . 65

6.2.2 Results of mesh optimization . 67

6.3 Inverse modelling . 72

6.3.1 Project design and data preparation . 72

6.3.2 Results and Discussion . 79

7 Conclusion 84

8 Appendix 90

8.1 Appendix A . 90

8.2 Appendix B . 92

8.3 Appendix C . 93

iv

List of Figures

1 Schematic of a medium representing the dual permeability approach. The white

area represents the highly permeable fracture medium, whereas the shaded area

represents the matrix medium with low permeability. 7

2 Simplified DRUtES file tree relevant to the implemented dual permeability

model, where other represents the rest of the source code 14

3 Simulation output after 0.1, 0.5, 1 and 2 days of scenario 1 (dry initial

condition) with different exchange boundary conductivity terms Ka and

infiltration weights winf , where red colors represent the fracture domain (f)

and blue colors represent the matrix domain (m). 20

4 Simulation output after 0.1, 0.5, 1 and 2 days of scenario 2 (wet initial

condition) with different exchange boundary conductivity terms (Ka) and

infiltration weights (winf), where red colors represent the fracture domain (f)

and blue colors represent the matrix domain (m). 21

5 Different classification of metaheuristics (Dréo (2011), copyright: Creative

Commons Attribution-Share Alike 3.0) . 23

6 Working principle of updating position xi(t) of particle i to xi(t + 1)

depending on the inertia, cognitive and social attractor. The dashed lines

indicate the direction of the attractors and the solid lines indicate the length

of each attracting component leading to the final updated position xi(t+ 1). . 28

7 Flow chart of LETLBO (Zou et al. 2015). 33

8 Simplified flow chart of implemented shuffling mechanism with switch between

population as one complex and population shuffled into m complexes (= multi

complex) after n generations. 35

9 3D maps of 2D benchmark functions . 46

10 Simplified flow chart of the link between R scripts and DRUtES 49

11 Convergence plots of the best run of each algorithm for 10D benchmark functions. 54

12 Boxplots of results over 30 trial runs for 10D benchmark functions. 55

13 Convergence plots of the best run of each algorithm for 30D benchmark functions. 56

14 Boxplots of results over 30 trial runs for 30D benchmark functions. 57

15 Boxplots of the best run of the DRUtES benchmark functions. 60

16 Convergence plot of the best run of DRUtES benchmark functions. 61

17 Conceptual model of the artificial macroporous envelope causing anomalous

TDR readings during rainfall. 64

18 Schematic domain geometry set-up for Gmsh mesh optimization (top) and

additional close-up of TDR probe (bottom) with surrounding anomaly

(magenta) and meshing helper circle (orange). 67

LIST OF FIGURES

19 Evolution of mesh optimization after 200, 300, 400, 600, 800 and 1010

generations. The larger dark red crosses indicate the non-dominated Pareto

front. 69

20 Comparison of four selected meshes from the Pareto front showing the time

series (top) and the difference to the reference mesh (bottom). Mesh id 40

(light blue) resulted in highest accuracy, mesh id 47 (orange) resulted in second

highest accuracy, mesh id 38 (dark blue) represents the middle with medium

accuracy and number of nodes and mesh id 43 (dark red) with lowest number

of nodes and worst accuracy. 70

21 Optimized mesh and close-up of mesh around TDR 71

22 Simplified flow chart of the link between R scripts and DRUtES for inverse

modeling. 74

23 Boundary conditions and material distribution for inverse modeling. The x’s

in the anomaly surrounding the TDR probes indicate 6 observation points,

which were placed in the middle of the anomalous soil shown in magenta. The

anomalous soil was magnified in the close-up and is not true in scale. 76

24 Optimized results with uni-modal standard model and input rainfall intensity

and potential evapotranspiration data . 82

25 Simulation output after 1e-4, 5e-2, 0.5 and 2 days of test scenarios 1, 2 and 3.

The gray lines cannot be recognized because the dual variants and the standard

model align perfectly. 91

26 Simulation output after 6e-8, 1e-3, 5e-3 and 0.1 days of test scenarios 4 with

different set-up . 91

27 Boxplots of 30 runs of 30D benchmark functions without reinitialization. 92

vi

List of Tables

1 Soil hydraulic properties and domain description used for test simulations of

the dual permeability model. 19

2 Boundary and initial conditions for dual permeability test simulations. 19

3 Summary of benchmark functions used from CEC 2013 real-parameter

optimization f1-f5. 44

4 Summary of benchmark functions used from CEC 2013 special session on real-

parameter optimization f6-f10. 45

5 Initial and boundary conditions used for DRUtES benchmark functions. 50

6 Soil hydraulic properties used to generate reference data with standard model

and minimum and maximum boundary values. 50

7 Soil hydraulic properties used to generate reference data with dual permeability

model and minimum and maximum boundary values. 51

8 Best result of all algorithms over 30 trial runs for 10D benchmark function. . . 53

9 10D benchmark functions: Non-parametric Wilcoxon test with best algorithm

(based on best median value). 53

10 Best result of all algorithms over 30 trial runs for 30D benchmark function. . . 58

11 30D benchmark functions: Non-parametric Wilcoxon test with best algorithm

(based on best median value). 58

12 DRUtES benchmark functions: Non-parametric Wilcoxon test with best

algorithm (based on best median value). 59

13 Scoreboard of best algorithms that did not show significant differences in the

best median. 63

14 Initial and boundary conditions used in mesh optimization scenario. 67

15 Number of maximum generations set for each restart. 68

16 Design variables for mesh optimization, assigned boundaries and identified value. 69

17 Computational set-up of 1D and 2D runs. 75

18 X,Z coordinates [cm] of TDRs and observation points in each anomaly. 76

19 Design variables for inverse modeling, assigned boundaries and identified value

for dual permeability model set-up 1. 83

20 Soil hydraulic properties and domain description used in test simulations of the

dual permeability model with the standard model. 90

21 Initial and boundary conditions used for test simulations of the dual

permeability model with the standard model in DRUtES. 90

1 INTRODUCTION

1 Introduction

Soil is not only the growth medium to plants, the very basis for our terrestrial food chain,

but also the connecting layer of the atmosphere, biosphere, lithosphere, hydrosphere and

pedosphere (Nieder 2011). Soil is of immense importance for transport and storage processes

between these spheres.

Heterogeneities such as fractures, fissures, cracks, and macropores in the soil can lead to

preferential flow (Gerke and Genuchten 1993a). Preferential flow can accelerate the

movement of agricultural contaminants and other pollutants through the unsaturated zone

and is therefore of concern to hydrologists, geophysicists and environmental scientists

(Šimůnek et al. 2003). It is therefore important to be able to model preferential flow.

Furthermore, an exact evaluation of experiments under transient flow conditions is only

possible through modeling the flow process in combination with parameter estimation (Iden

and Durner 2007). Estimating soil hydraulic properties from observations or known output

is an inverse analysis. Computational tools have become very important in inverse modeling.

To perform parameter estimation, optimization algorithms can be used to perform the

optimization task. Metaheuristic optimization offers interesting possibilities. Metaheuristics

are high-level stochastic-based search algorithms that don’t require gradient information or

a convex search space. Although they have been utilized in estimating soil hydraulic

properties and calibrating hydrological models (Iden and Durner 2007; Jakubcova et al.

2015; Piotrowski et al. 2017), they are not widely used in soil physics.

1.1 Motivation and goals

The main motivation of this thesis is the implementation of a soil physics model, which is

able to simulate preferential flow, in the open-source objective library Dual Richards’

Unsaturated Equation Solver and to create a set-up for inverse modeling with global

optimization algorithms. For this task, the dual permeability model after Gerke and

Genuchten (1993a) was chosen.

Further aims of this thesis included a review on population-based metaheuristics and the

selection of interesting algorithms and the selection and design of promising modifications.

These modifications include a novel bad neighborhood approach and shuffling complexes

inspired by Duan et al. (1993). Additionally, this work aims to test these modifications on

benchmark functions in order to select the most promising for an inverse modeling case

study.

Lastly, the dual permeability model and the selected algorithm were used to perform

parameter estimation on a case study. In this case study, the Time Domain Reflectometer

(TDR) sensor readings showed a very steep increase during rapid rainfall events and
1

1 INTRODUCTION

subsequent steep decrease. This was theorized to be an effect of artificial macroporous

envelopes surrounding TDR sensors creating an anomalous region with distinct local soil

hydraulic properties and preferential flow. One of the objectives of this thesis is to test how

well the dual permeability model can describe the observed infiltration behavior. Parameter

estimation is also conducted with the standard uni-modal van Genuchten model to analyze

if the dual permeability shows a significantly better description than the standard uni-modal

van Genuchten model. Despite increasing computing power and parallel processing, an

overly fine mesh is not feasible for parameter identification. This creates the need to find a

mesh that optimizes both accuracy and simulation time. A further objective of this thesis

was thus to develop a bi-objective algorithm to generate a Pareto front of optimal meshes to

account for both objectives.

1.2 Thesis structure

Chapter 2 begins with a derivation of the water flow equations in soil and the dual permeability

model approach according to Gerke and Genuchten (1993a). Chapter 3 includes a description

of the model implementation into DRUtES with implemented boundary types and coupling

variants as well as test simulations. Chapter 4 includes a literature review on metaheuristics

with a focus on population-based metaheuristics. Chapter 4 also describes the chosen classes

of algorithms, namely Particle Swarm Optimization (PSO) and Teaching-Learning Based

Optimization (TLBO), their underlying working principles and introduced modifications.

Chapter 4 also includes a description of a bi-objective optimization algorithm, which is able

to find a set of optimal solutions when two objective functions require optimization. Chapter

5 reviews benchmark functions and describes chosen benchmark functions from the CEC 2013

real parameter optimization session and created DRUtES benchmark functions. Chapter 5

also includes a benchmark function results section. This was decided to be more adequate than

placing all results into a single chapter and aimed to improve the structure and readability.

Chapter 6 contains the case study problem and proposed mesh optimization in addition to

the inverse modeling problem. Chapter 7 contains the final conclusions with further research

aims. The most important codes and created software have been made accessible on Github.

Links to the respective repositories can be found in Appendix C.

2

2 MATHEMATICAL FLOW MODEL

2 Mathematical flow model

2.1 Introduction

This chapter derives basic constitutive functions for flow through porous media under variably

saturated conditions. Variably saturated flow occurs in porous systems above aquifers, in soils

and more specifically in the vadose zone. The accurate characterization of hydraulic properties

in unsaturated soils is critical to understand and solve problems in agriculture, hydrology,

environmental sciences and many other disciplines, and knowledge of them is required in many

management tasks (Durner and Flühler 2005). This chapter concludes with a description of

the dual permeability model approach as postulated in Gerke and Genuchten (1993a) and

Gerke and Genuchten (1993b).

2.2 Basic governing equations

A fundamental law describing flow in porous media was discovered and published in 1856

by Henry Darcy. His observations lead to the conclusion that the volume flux density ~q

is proportional to the energy gradient, which is expressed as the gradient of the hydraulic

head (Darcy 1856). His equation underlies the principle of homogenization. The relationship

between the volume flux density and the energy gradient is

~q = �KrH, (2.1)

where ~q is the flux [L T�1], K is saturated hydraulic conductivity [L T�1] and H is the total

hydraulic head [L], which is defined as

H = h+ z, (2.2)

where h is the pressure head [L] and z is the geodetic head z =

⇣
0
0
z

⌘
.

If the coordinate system is positive upward rz =

⇣
0
0
1

⌘
. Darcy’s law can then be described

as

~q = �Kr(h+ z) = �K(rh+rz) = �K(rh+ 1). (2.3)

Originally, this law was derived for a saturated state, where all pores are filled with water

and the pressure head is positive. Edgar Buckingham (1867-1940) derived a similar law

for the unsaturated state, leading to the Darcy-Buckingham law (Buckingham 1907), where

the hydraulic conductivity is dependent on the water content ✓ and thus K(✓) becomes the

unsaturated hydraulic conductivity and equation (2.1) turns into
3

2 MATHEMATICAL FLOW MODEL

~q = �K(✓)rH, (2.4)

where K is dependent on the gravity field, properties of the liquid and porous media and

defined as

K = �kg

�
, (2.5)

where k is permeability [L2], g is gravitational acceleration [L T�2] (9.81 m s�2) and � is the

kinematic viscosity [L2 T�1]. � can be expressed as � =

µ
⇢ , where µ is the dynamic viscosity

[L2 T2 M�1] and ⇢ is the liquid’s density [M L�3].

Darcy-Buckingham law is constrained by the flow regime. The flow regime has to be laminar,

which can be determined using the Reynold’s number (Re). A commonly used threshold is

Re = 10. For Re < 10 we can assume laminar flow in porous media (Czachor 2011). Generally,

one can assume laminar flow for finer soils. However, Re may exceed 10 in macropores, where

when the equivalent grain size is de > 2-3 mm. For the simulations in this thesis we assume

laminar flow.

Re =
qde
�

, (2.6)

where de is the equivalent grain size [L]. K can be considered a second order tensor, so that

K is

K(x, y, z) =

0

BBB@

Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

1

CCCA
. (2.7)

When the principle directions are aligned with the selected global coordinate system it

simplifies to

K(x, y, z) =

0

BBB@

Kxx 0 0

0 Kyy 0

0 0 Kzz

1

CCCA
. (2.8)

The volume flux can be expressed as

~q = �K(x, y, z, ✓)rh+Kzz(✓). (2.9)

In a homogeneous medium K is independent of spatial coordinates and in an isotropic medium

4

2 MATHEMATICAL FLOW MODEL

we can simplify the hydraulic conductivity term to K = Kxx = Kyy = Kzz. The flow in porous

media is described by mass conservation. We assume the flow of an incompressible liquid,

i.e. no change of density, in a non-deformable medium, i.e. no swelling and shrinking of the

soil.

The mass conservation law for incompressible liquids and non-deformable media in soil is

often expressed by the following ordinary differential equation (ODE):

r.~q = �@✓

@t
, (2.10)

where r. denotes the vector operator divergence. Combining the mass conservation law with

the Darcy-Buckingham law, we obtain the mixed-form Richard’s equation for a homogeneous

porous medium. The Richard’s equation is a convection diffusion (reaction) equation. Often,

the Richard’s equation is denoted with an additional sink term S that can represent processes

such as root water uptake. The derived second order partial differential equation (PDE)

is

r.(K(✓)rh) + @K(✓)

@z
� S =

@✓

@t
. (2.11)

Using the chain rule, for a homogeneous medium, @K(✓)
@z can be expressed as @K(h)

@z =

dK(h)
dh

@h
@z .

Here, the primary solved variables are both the pressure head and the water content ✓. The

Richard’s equation can also be formulated as an h-based form and ✓-based form. The h-based

form is implemented in Dual Richards’ Unsaturated Equation Solver (DRUtES).

For the h-based form, a water retention capacity term C [L�1] is introduced

C(h) =
d✓

dh
, (2.12)

which is valid for ✓ 2 (✓r, ✓s) and for h 2 (�1,1). C(h) = 0, h � 0. Since @✓
@t =

@✓(h)
@t

we can use the chain rule to obtain @✓(h)
@t =

d✓
dh

@h
@t . The capacity term can subsequently be

substituted for @✓
@t

@✓

@t
= C(h)

@h

@t
. (2.13)

Since ✓ is dependent on h, the dependency on ✓ in K can be substituted for h. The h-based

Richards equation can thus be expressed as

r.(K(h)rh) + @K(h)

@z
� S = C(h)

@h

@t
. (2.14)

In terms of the convection-diffusion reaction equation, the r.(K(h)rh) represents the
5

2 MATHEMATICAL FLOW MODEL

diffusion term, @K(h)
@z represents the convective term, which can be non-zero, C(h)@h@t

represents the elasticity, or, as the name already states, capacity term. The sink term S is a

reaction term of the 0th order. However, the Richards equation may contain further reaction

terms of higher order.

2.3 Dual permeability model

Porous media often exhibit a variety of heterogeneities such as fractures, fissures, cracks, and

macropores, and can show dynamic instabilities of the wetting front during infiltration

(Gerke and Genuchten 1993a). This can result in nonuniform flow with widely distinct

velocities. Beven and Germann (2013) state that the primary drivers for interest in

preferential flow and macropores in soils was the problem of explaining how pesticides and

other sorbing pollutants were being transported to field drains, groundwaters and rivers.

Preferential flow and non-equilibrium flow have strong implications in accelerating the

movement of agricultural contaminants, radionuclides and non-aqueous liquids and other

pollutants through the unsaturated zone to underlying groundwater and are therefore of

concern to hydrologists, geophysicists and environmental scientists (Šimůnek et al. 2003).

Common models describing preferential non-equilibrium flow are the dual permeability

model and the dual porosity model. Both approaches divide the soil into a fracture and

matrix domain. The dual permeability model was constructed around the assumption that

the medium can be separated into two distinct pore systems. The dual porosity model

assumes an immobile matrix domain, whereas the dual permeability model assumes a mobile

matrix domain. There are different implementations of the dual permeability model, which

mainly differ in the description of the macroporous or fracture domain (Gerke 2011).

Germann (1985) and Germann and Beven (1985) suggested a kinematic wave approach in

combination with a sorbance factor r, where

@q

@t
+ v

@q

@z
+ vr✓f = 0 (2.15)

and

q = b✓af , v =

@q

@✓f
, (2.16)

where a is a kinematic exponent and b is a macropore conductance parameter [L T�1].

In the Gerke and Genuchten (1993a) approach the matrix and fracture systems are each

treated as homogeneous media with separate hydraulic properties that can both be described

with a Richard’s equation. The dual-permeability model is considered to be a superposition

of these two pore systems. The two media are coupled with a first order transfer coefficient

�w.

Gerke and Genuchten (1993a) describe the dual permeability model as consisting of soil

6

2 MATHEMATICAL FLOW MODEL

aggregates or rock matrix blocks surrounded by inter-aggregate macropores or fractures

which form a more or less continuous network. The matrix medium may contain macropores

or fractures and the fracture medium may also include mesopores and micropores in the

immediate vicinity of the macropores as well as some mineral or organic particles along the

macropore walls.

Figure 1: Schematic of a medium representing the dual permeability approach. The white
area represents the highly permeable fracture medium, whereas the shaded area represents
the matrix medium with low permeability.

The resulting coupled partial differential equation (PDE) is

C(hm)

@hm

@t
= r.(K(hm)rhm) +

@K(hm)

@z
+

�w

1� wf
� Sm

C(hf)
@hf

@t
= r.(K(hf)rhf) +

@K(hf)

@z
� �w

wf
� Sf ,

(2.17)

where wf is the fracture weight, 1 � wf = wm is the matrix weight and �w is a first order

transfer term and proportional to the difference in pressure head between the fracture and

matrix pore system as follows:

�w = aw(hf � hm), (2.18)

where aw is a first-order transfer coefficient for water [L T�
1] defined as

↵w = ↵⇤
wKa (2.19)

with

↵⇤
w =

��w
a2

, (2.20)

where � depends on the geometry of the aggregates (3 for slabs and 15 for spheres), a represents
7

2 MATHEMATICAL FLOW MODEL

the distance form the center of a fictitious matrix block to the fracture boundary [L], �w is

an empirical coefficient found to be 0.4 and Ka is the hydraulic conductivity function of the

boundary or, in other words, the exchange boundary conductivity [L�T].

The soil properties in the dual permeability model relate to each other differently than in

the dual porosity model. The fracture weight wf is defined in Gerke and Genuchten (1993a)

as

wf =

Vt,f

Vt
, (2.21)

where Vt,f is the total fracture volume and Vt is the total volume. The matrix weight wm can

be computed with wm = 1 � wf . The soil properties of the fracture and matrix media and

the superposed total medium are related in the following way

Vt = Vt,f + Vt,m (2.22)

and

Vp = Vp,f + Vp,m, (2.23)

where V is the volume [-], subscript t denotes the total volume and subscript p denotes the

pore volume. The subscripts f and m denote the respective volume of the fracture and matrix

domain. The porosities ✏ = V
p

V
t

[-] relate to each other as follows

✏ = wf · ✏f + wm · ✏m. (2.24)

Similarly, the total volumetric water content ✓ [-] is

✓ = wf · ✓f + wm · ✓m. (2.25)

According to Gerke and Genuchten (1993a) the total volumetric volume flux q [L T�1] is

q = wf · qf + wm · qm, (2.26)

an area-weighted sum where the water flux density in the matrix domain qm is

qm =

Qm

Am
= wm

Qm

A
, (2.27)

where Qm is unit volume flowing through the unit area of the matrix Am and the water flux

density in the fracture domain qf is

qf =

Qf

Af
= wf

Qf

A
, (2.28)

8

2 MATHEMATICAL FLOW MODEL

where Qf is unit volume flowing through the unit area of the fracture Af and

q =

Qm

A
+

Qf

A
=

Qm +Qf

Am +Af
. (2.29)

In the implementation in DRUtES to solve the system, we multiply by the weights. The

total flux is then more accurately described as a sum of qf and qm

q = qf + qm, (2.30)

where qf and qm are either area weighted fluxes of the total assigned flux with

q = wf · q + wm · q, (2.31)

or more general when area-independent infiltration weights winf are used

q = winf · q + (1� winf) · q. (2.32)

2.4 Parameterization of hydraulic functions

In this thesis the parameterization of the van Genuchten model (Genuchten 1980) was used

to parameterize the retention function and the van Genuchten-Mualem model (Mualem 1976)

was used to parameterize the hydraulic conductivity function. The van Genuchten retention

description is a reflection of a unimodal pore size distribution. The van Genuchten-Mualem

hydraulic conductivity model was derived based on a pore bundle model. Mualem (1976)

predicted unsaturated hydraulic conductivity curves by using the moisture content-capillary

head curve and measured the value of the hydraulic conductivity at saturation.

The retention function is parameterized as

✓(h) =

8
><

>:

✓
s

�✓
r

(1+(�↵h)n)m + ✓r, 8 h 2 (�1, 0)

✓s, 8 h 2 h0,+1)

, (2.33)

the retention water capacity functions is parameterized as

C(h) =

8
><

>:

↵mn(�↵h)n�1(✓
s

�✓
r

)
(1+(�↵h)n)1+m

, 8 h 2 (�1, 0)

0, 8 h 2 h0,+1)

(2.34)

and the hydraulic conductivity function is parameterized as

9

2 MATHEMATICAL FLOW MODEL

K(h) =

8
><

>:

Ks
(1�(�↵h)nm(1+(�↵h)n)�m)2

(1+(�↵h)n)
m

2
, 8 h 2 (�1, 0)

Ks, 8 h 2 h0,+1)

, (2.35)

where ↵ is the inverse of the air entry value or bubbling pressure [L�1], m and n define pore-

size distribution and the slope of the retention function and hydraulic conductivity function.

✓s is the saturated water content [-], ✓r is the residual water content [-] and Ks is the saturated

hydraulic conductivity [L T�1].

2.5 Initial and Boundary conditions

The initial condition describes the state of the system at the beginning of a computation. It

is often assumed as a known distribution of the pressure function or water content function

leading to

h(x, t0) = h0(x), 8x 2 ⌦ (2.36)

or

✓(x, t0) = ✓0(x), 8x 2 ⌦, (2.37)

where ⌦ is the computational domain bounded by � = �⌦.

Neumann and Dirichlet type boundary conditions can be applied solving Richard’s equation.

A Dirichlet boundary condition assigns a known pressure head. In some software this type

of boundary condition is termed constant head, but theoretically, we could also assume a

time dependent Dirichlet condition. Dirichlet boundary conditions can be used to simulate

ponding. In our case the Dirichlet condition can be expressed as

h(x, t) = h� ⌘ ✓(x, t) = ✓�, 8(x, t) 2 �⇥ [0, T). (2.38)

A Neumann boundary condition assigns a known flux to the boundary. Neumann boundary

conditions can be used to simulate rainfall intensity and evaporation. It can also be used to

assign no-flow boundaries, where the boundary flux q� is assigned 0. The Neumann condition

can be stated as

�K

✓
@h(x, t)

@~n
+ n3

◆
= q�, 8(x, t) 2 �⇥ [0, T), (2.39)

where n3 is the boundary normal (~n) vertical component.

Free drainage is a special boundary, where the pressure head gradient is zero and only the

geodetic head gradient applies. It is a homogeneous Neumann boundary. In a vertically
10

2 MATHEMATICAL FLOW MODEL

aligned coordinate system the pressure head can be expressed as @h
@z = 0, otherwise @h

@n = 0.

Assuming a vertically aligned coordinate system, this leads to:

@H

@z
=

@h+ z

@z
=

@h

@z
+

@z

@z
= 0 + 1 = 1. (2.40)

11

3 DUAL PERMEABILITY MODEL IMPLEMENTATION

3 Dual permeability model implementation

3.1 Introduction

The dual permeability model was implemented in the Dual Richards’ Unsaturated Equation

Solver (DRUtES) (Kuraz and Mayer 2008), an object oriented library written in Fortran

2003/2008, which can be installed on unix based systems. Dual permeability solute transport

was not implemented as part of this thesis. This chapter briefly describes the implementation

in DRUtES and presents test simulations. It should be noted that DRUtES, like most

software, is under constant development and that this section refers to the implementation of

the dual permeability model in early 2017.

3.2 DRUtES

DRUtES was first created as part of the doctoral research of Doc. Ing. M. Kuráž and is

distributed under the GPL v3 licence. DRUtES is free software and can be redistributed

and modified under the terms of the GNU General Public License. DRUtES can solve the

nonlinear problem both with a standard Picard method and with so called dd-adaptivity.

DRUtES is a command-line software and takes input from configuration files.

3.3 Implementation

The dual permeability model was implemented in total head form and is available in 1D and

2D. Fig. 2 depicts a DRUtES file tree relevant to the dual permeability model. other in

Fig. 2 summarizes all other subroutines and functions, which are naturally vital to the

functioning of the dual permeability model, but would complicate the description too much.

The dual permeability implementation was divided into six separate source code files and

added to the branch models in the DRUtES source code src. The folder containing the dual

permeability source code was named Re_dual, and contains following file structure.

Re_dual_globals.f90 defines global variables that are used specifically in the dual

permeability subroutines. Other global variables defined in DRUtES are also used.

Re_dual_reader.f90 reads the input values from dual permeability configuration files, which

are located in drutes.conf branch. Re_dual_pointers.f90 defines the targets to globally

defined pointers. Here, the respective constitutive functions related to the

convection-dispersion-reaction are pointed to, as are boundary and initial conditions. Case

statements facilitate an easy switch between different boundary conditions and coupling

variants. Re_dual_totH.f90 contains the governing equations for the dual permeability

model. Re_dual_coupling.f90 contains different coupling variants. Re_dual_tab.f90

contains subroutines to tabulate the governing equations. This can speed up the simulation

12

https://www.gnu.org/licenses/gpl-3.0.html

3 DUAL PERMEABILITY MODEL IMPLEMENTATION

considerably. The values between two tabulated entries are linearly approximated.

The range and density of the tabulation can be defined in the configuration input files

dual.conf. Here, the user also sets van Genuchten-Mualem parameters as well as the initial

condition. The initial condition can be set per layer and is a value in pressure heads or total

heads. For 2D computations, a newly added subroutine allows the user to define 1D output

files with coordinates and pressure head information to be vertically mapped onto a 2D mesh

to be used as the initial condition. The boundary conditions can be defined in a separate

configuration file dual_bc.conf. Before running a simulation, the domain needs to be

described and discretized. DRUtES contains a simple 1D and 2D mesh generator, but can

also read Gmsh mesh files for more advanced meshes. Gmsh is a free three-dimensional finite

element mesh generator with built-in pre- and post-processing facilities published under the

GPL v3 licence and developed by Geuzaine and Remacle (2009). A tutorial describing how

to build a Gmsh mesh to use in DRUtES is planned to be made available soon.

To select the dual permeability model, the user has to type the model name Re_dual_totH

into the global configuration file global.conf. The global.conf file lets the user define

computational set-up that is not model specific. Most important to casual users are possibly

time discretization, observation times, observation points and input and output

format.

The user can choose a range of boundary types. For time-varying boundary types additional

data needs to be supplied. For a bottom boundary with id 101 a file with the filename 101.bc

will be read. Following boundary types are currently implemented:

1. Dirichlet condition: constant pressure head;

2. Constant or time-varying flux. This is a Neumann type condition. In the dual

permeability model, this condition assigns a weighted flux according to the domain

weights qf,� = wfq� and qm,� = wmq�;

3. Free drainage (also of type Neumann);

4. Atmospheric boundary condition (also of type Neumann). This requires precipitation

and potential evapotranspiration (PET) data. The evapotranspiration (ET) is assumed

to be ET = PET✓
2
3 . q� = rain�ET . This special Neumann condition is also assigned

weighted;

5. Weighted infiltration. The user can define separate weights for the infiltration. A weight

of 1 assumes all of the water infiltrates into the fractures and a weight of 0 assumes all

water infiltrates into the matrix. This is a modification of boundary type 2.

The coupling term contains an Ka term. Ka can be evaluated in different ways. In Gerke and

Genuchten (1993a) it was evaluated as a function of the average pressure head ¯h. Gerke and

Genuchten (1993b) undertook a more rigorous comparison of implementations of Ka finding

13

https://www.gnu.org/licenses/gpl-3.0.html

3 DUAL PERMEABILITY MODEL IMPLEMENTATION

DRUtES

bin

drutes.conf

global.conf

mesh

REdual

dual.conf

dual_bc.conf

out

src

other

models

Re_dual

Re_dual_globals.f90

Re_dual_reader.f90

Re_dual_pointers.f90

Re_dual_totH.f90

Re_dual_coupling.f90

Re_dual_tab.f90

Figure 2: Simplified DRUtES file tree relevant to the implemented dual permeability model,
where other represents the rest of the source code

significant difference between implementations. They compared five alternative methods with

Ka being a function of

• the matrix pressure head Ka = Ka(hm),

• the fracture pressure head Ka = Ka(hf),

• the arithmetic mean of Ka(hf) and Ka(hm),

• the geometric of Ka(hf) and Ka(hm) and

• the integral of 1
h
f

�h
m

R h
f

h
m

Ka.

They concluded that the arithmetic mean in combination with a scaling coefficient was the

most practical way of evaluating Ka. Gerke and Genuchten (1993b) also introduced an

exponent p for the pressure head difference between the two pore systems. In other

applications the exchange term is simply constant and independent of the pressure head in

the media (Šimůnek et al. 2012). Šimůnek et al. (2012) state that the arithmetic mean is

conceptually attractive, however it may not be identifiable.

14

3 DUAL PERMEABILITY MODEL IMPLEMENTATION

There are five different variants available in the DRUtES implementation, each describing Ka

differently. These require different parameterization and allow different flexibility. There are

five different variants available in the DRUtES implementation.

1. The arithmetic mean of hm and hf :

Ka =

Ka(hf) +Ka(hm)

2

(3.1)

2. The geometric mean of hm and hf :

Ka =

q
Ka(hf) ·Ka(hm) (3.2)

3. Constant conductivity:

Ka = const (3.3)

4. Lowest possible hydraulic conductivity of matrix and fracture domain:

Ka = min(Kf (hf),Kf (hm),Km(hf),Km(hm)) (3.4)

5. Lowest hydraulic conductivity of the weighted pressure heads:

Ka = min(Kf (wf · hf + wm · hm),Km(wf · hf + wm · hm)) (3.5)

Variant 4 and 5 do not require additional parameters for the exchange boundary, but are

solely based on the matrix and fracture description. Variants 3.1, 3.2 and 3.3 allow assigning

extremely small or large exchange boundary conductivity independent on the present system.

These variants make non-equilibrium and interesting bypass flow simulations possible. The

exchange boundary conductivity is likely to be very large when using variant 4 and 5, leading

to relatively fast equilibrium between the two pore systems, however this is dependent on the

simulation and can also be compensated for by other coupling parameters, but one should be

aware of the physical meaning of these parameters. Variants 3.1 and 3.2 use van Genuchten

parameterization and therefore lead to a potentially time-varying and pressure-head dependent

exchange term beyond the dependence on the pressure head difference. Often, the matrix

parameterization is used for the exchange boundary’s van Genuchten parameterization as well.

This is to avoid overparameterization of parameters that are very difficult to identify.

The mathematical subroutines solving the system of partial differential equation (PDE) were

already implemented and are not my work. The following description aims to give a short,

superficial overview. In this implementation, to solve the PDE dual permeability problem,

15

3 DUAL PERMEABILITY MODEL IMPLEMENTATION

we multiply by the weights to reach following form:

(1� wf)C(hm)

@hm

@t
= (1� wf)r.(K(hm)rhm) + (1� wf)

@K(hm)

@z
+ �w

wfC(hf)
@hf

@t
= wfr.(K(hf)rhf) + wf

@K(hf)

@z
� �w

(3.6)

The PDE problems are solved by numerical integration with linear piece-wise Galerkin’s

finite element method. This means that the basis functions are linear, which are evaluated

as a solution to a system of linear equations. The linear coefficients are stored in a sparse

matrix, which is possible to store in computer memory even for huge dimensions. In finite

element approximations, stability issues can occur due to small time steps compared to mesh

size causing a violation of the discrete maximum principle. Stabilization subroutines are

implemented to avoid the violation of the discrete maximum principle first described by Rank

et al. (1983). As the hydraulic conductivity and retention capacity are non-linear functions,

the solution in the elements is approximated using a three-point Gauss-quadrature formula,

which is proven to give an exact integral value for fifth-degree polynomials (Cheney and

Kincaid 2008).

The capacity matrix is assembled using the implicit Euler method. To avoid stability issues,

the capacity matrix can be diagonalized by lumping. The conjugate gradient method is used

to iteratively solve the derived system of equations for 2D problems. LU decomposition is

implemented for 1D problems. The Picard method approximates the non-linear operator at

each time level. The user of DRUtES is able to determine the Picard iteration criterion and

maximum iteration number in the global configuration files global.conf. The dual permeability

problem is solved as a fully coupled problem, creating one stiffness matrix including the matrix

and fracture domain such as

0

BBBBBBBBBBBBBB@

matrix domainz }| {
a1,1 a1,2
a2,1 a2,2 a2,3
. a3,2 a3,3 a3,4

...

. a9,8 a9,9 a9,10

. a10,9 a10,10
a11,1

. a12,2

. . a13,3

...

. a19,9 .

. a20,10

fracture domain

z }| {
a1,11

. a2,12

. . a3,13

...

. a9,19 .

. a10,20
a11,11 a11,12
a12,11 a12,12 a12,13

. a13,12 a13,13 a13,14

...

. a19,18 a19,19 a19,20

. a20,19 a20,20

1

CCCCCCCCCCCCCCA

The system to solve is a combination of two PDE coupled by the exchange term. Therefore

the matrix solution depends on fracture and the fracture’s solution depends on the matrix.

16

3 DUAL PERMEABILITY MODEL IMPLEMENTATION

The above matrix system can therefore be generalized into four blocks

0

BBBBBBB@

matrix domainz }| {
MATRIX DOMAIN

terms in
matrix operator

MATRIX DOMAIN
Coupling term in
fracture operator

fracture domain

z }| {
FRACTUE DOMAIN

terms in
fracture operator

FRACTURE DOMAIN
Coupling term in

matrix operator

1

CCCCCCCA

3.4 Test simulations

The author is not aware of any analytical verification functions that can be used for the

dual permeability model. Nonetheless, attempts were made to prove the implementation is in

working order. The first step in testing the implementation was to undertake a comparison

between the dual permeability model variants and the already implemented and well tested

standard Richard’s total head model with uni-modal van Genuchten parameterization. The

comparison is possible when the fracture and matrix descriptions are identical. With identical

domain descriptions and the same boundary and initial conditions, the results should not

depend on domain weights. 1D simulations with different boundary conditions (Tab. 20) were

created and the outputs compared (Appendix A). The outputs were identical when sufficiently

small time steps and discretization are chosen. Differences can occur due to numerics, when

the set-up is insufficient or the problem is ill-conditioned. When the coupling term is set

to zero, i.e. by setting the exchange boundary conductivity to zero the difference between

the standard model and the dual permeability model may be decreased. Note, including a

coupling term, which is not active, may worsen the conditioning, however it also assures that

no exchange between two identical domains occur. Furthermore, different 1D simulations

were constructed to show a) under which conditions preferential flow through the macropores

occurs and b) the effect of different Ka on the water transfer between the domains and non-

equilibrium.

Preferential flow

The macroporous or fracture domain is generally parameterized with a higher saturated

hydraulics conductivity Ks than the matrix domain. Under saturated or near-saturated

conditions this leads to faster flow through the macropore or fracture domain. This can

cause infiltrating water to bypass the matrix. Macropores have rather steep retention

properties. This reduces the hydraulic conductivity under unsaturated conditions. Under

sufficiently dry conditions the unsaturated hydraulic conductivity K in the matrix domain

becomes greater than in the fracture domain. When the fracture domain is not connected to

free water, this can lead to an effect often termed "capillary barrier effect" as the capillaries

of the fracture cannot hold water at greater tensions and therefore create a barrier and keep

17

3 DUAL PERMEABILITY MODEL IMPLEMENTATION

the soil dry. This also raises the question if preferential flow through the macropores occurs

under dry antecedent moisture conditions and if so, how it should be described. If one

assumes ponding, a positive Dirichlet boundary condition can be applied, which assigns a

very wet condition to the domain boundary, which can result in an extremely steep hydraulic

gradient. However, when the boundary is of the Neumann type, the situation is quite

different. First, the dual permeability model originally assigns flux according to the volume

of each sub-domain. The volume of the fracture is generally a lot smaller so the fracture will

get a smaller infiltration flux assigned. Second, the pressure head is initially very small

despite assigned fluxes. One way of creating preferential flow under dry initial conditions is

limiting the infiltration boundary flux into the matrix domain. This can be achieved using a

sufficiently high weight with boundary type 5 explained previously. The fracture and matrix

description (Tab. 1) were chosen so that the fracture becomes more conducting than the

matrix domain at pressure heads greater than approximately hintersect=-60 cm.

Coupling variants

The coupling term increases with increasing magnitude of the pressure head difference between

the matrix and fracture domain. Smaller coupling terms lead to slower equilibration between

the two pore systems, whereas greater coupling terms lead to faster equilibration between

the two pore systems as differences in pressure head can be compensated for faster. With

sufficiently large Ka the difference in pressure head can be compensated for quite rapidly. For

soils near equilibrium it may be very difficult to identify Ka as the pressure head difference

is zero or close to zero, which causes the coupling term to vanish. On the contrary, if Ka is

sufficiently small the non-equilibrium can be maintained longer despite a large pressure head

difference between the two pore systems.

Test simulation results

Scenario 1 and 2 were each run with three different infiltration weights and three different Ka.

The simulation results are summarized in Fig. 3 for scenario 1 with dry initial conditions and

Fig. 4 for scenario 2 with wet initial conditions. It becomes evident that larger infiltration

weights with smaller exchange boundary conductivity Ka cause more water to bypass the

matrix. This leads to minimal change of water content in the matrix. This effect can be

compensated for by assigning greater exchange conductivity, which can annihilate the effect

of bypass flow. The fracture parameterization exhibits medium steep retention properties.

The fracture domain does not need to be fully saturated to conduct the simulated infiltrating

water. This shows, if we allow infiltration flux, which is below the fracture’s capacity, to bypass

the matrix and mainly infiltrate into the fracture, the overall water content of the system does

not necessarily need to increase. On the contrary, rapid changes in water content can indicate

18

3 DUAL PERMEABILITY MODEL IMPLEMENTATION

Table 1: Soil hydraulic properties and domain description used for test simulations of the
dual permeability model.

Domain Parameter Symbol Value

Matrix inverse of air entry value [cm�1] ↵

m

0.05
shape parameter [-] n

m

1.8
sat. water content [-] ✓

s,m

0.45
res. water content [-] ✓

r,m

0.05
sat. hydraulic conductivity [cm d�1] K

s,m

5
matrix weight [-] w

m

0.7

Fracture inverse of air entry value [cm�1] ↵

f

0.1
shape parameter [-] n

f

2.5
sat. water content [-] ✓

s,f

0.45
res. water content [-] ✓

r,f

0.0
sat. hydraulic conductivity [cm d�1] K

s,f

1000
fracture weight [-] w

f

0.3

Exchange boundary distance to center of aggregate [cm] a 1
material parameter [-] � 0.4
material parameter [-] � 15
exchange boundary conductivity [cm d�1] K

a

1e-2 1e-4 1e-6 a

All domain length [cm] L 10
spatial discretization [cm] dx 0.05
simulation time [days] t 2
minimum time step [days] dt

min

5e-8
maximum time step[days] dt

max

0.1

aconstant exchange conductivity

Table 2: Boundary and initial conditions for dual permeability test simulations.

Top bc Bottom bc Initial h
pres

typea value w
inf

typea value

scenario 1 a 2 -
b 5 0.5 cm d�1 0.7 1 -500 cm -500 cm
c 5 0.95

scenario 2 a 2 -
b 5 2 cm d�1 0.7 1 -60 cm -60 cm
c 5 0.95

a1=Dirichlet, 2= Volume weighted flux, 3=Free drainage, 4=Atmospheric, 5=Weighted infiltration

that either the majority of the water is infiltrating into the matrix or that the exchange

boundary conductivity is rather large resulting in fast equilibration of the two pore systems,

but no bypass flow through the fracture domain. Furthermore, it becomes evident that the

soil system becomes independent of the weighted infiltration boundary conditions when a

sufficiently large exchange boundary conductivity is assigned resulting in fast equilibration and

19

3 DUAL PERMEABILITY MODEL IMPLEMENTATION

the same water content and pressure head distribution in the different test simulations.

Scenario 1
Ka = 1e�6, winf = wf

Ka = 1e�6, winf = 0.7

Ka = 1e�6, winf = 0.95

Ka = 1e�4, winf = wf

Ka = 1e�4, winf = 0.7

Ka = 1e�4, winf = 0.95

Ka = 1e�2, winf = wf

Ka = 1e�2, winf = 0.7

Ka = 1e�2, winf = 0.95

Figure 3: Simulation output after 0.1, 0.5, 1 and 2 days of scenario 1 (dry initial condition)
with different exchange boundary conductivity terms Ka and infiltration weights winf , where
red colors represent the fracture domain (f) and blue colors represent the matrix domain (m).

20

3 DUAL PERMEABILITY MODEL IMPLEMENTATION

Scenario 2
Ka = 1e�6, winf = wf

Ka = 1e�6, winf = 0.7

Ka = 1e�6, winf = 0.95

Ka = 1e�4, winf = wf

Ka = 1e�4, winf = 0.7

Ka = 1e�4, winf = 0.95

Ka = 1e�2, winf = wf

Ka = 1e�2, winf = 0.7

Ka = 1e�2, winf = 0.95

Figure 4: Simulation output after 0.1, 0.5, 1 and 2 days of scenario 2 (wet initial condition)
with different exchange boundary conductivity terms (Ka) and infiltration weights (winf),
where red colors represent the fracture domain (f) and blue colors represent the matrix domain
(m).

21

4 POPULATION-BASED METAHEURISTICS

4 Population-based metaheuristics

This section describes principles of metaheuristics with a focus on population-based

metaheuristics. In this thesis two classes of population-based metaheuristics, namely

Particle Swarm Optimization (PSO) (Eberhart and Kennedy 1995) and Teaching-Learning

Based Optimization (TLBO) Rao et al. (2012) were used. Descriptions of basic PSO and

TLBO algorithms and modifications used in this thesis are given. This section concludes

with a description of adaptations aiming at an increase of diversity and handle premature

convergence.

4.1 Principles of Metaheuristics

Metaheuristics summarize high level concepts for exploring search spaces by using different

learning strategies to find near-optimal solutions. The different strategies should be chosen

to balance exploitation and exploration to quickly identify regions with high quality solution

and not waste time searching regions that don’t provide high quality solutions (Blum and Roli

2003 in Bianchi et al. 2009). An important part is the incooperation of structured randomness.

In principle, algorithms of metaheuristic nature sample a set of potential solutions instead of

the entire search space to find the optimal solution. In a minimization problem, where G(x)

is the cost function, the goal is to find min G(x), where x 2 S and S is the search space.

The global optimal solution at x⇤ can be defined as

G(x⇤) G(x) 8 x 2 S. (4.1)

Whereas exact optimization guarantees to find the optimal solution in a finite amount of time,

in heuristics, the best solution might not be the global best solution (Sörensen 2015). There

are many hard optimization problems where it would be unfeasible to use exact methods and

heuristics are needed. Bianchi et al. (2009) describe several optimization problems where

metaheuristics were superior to exact methods. It is not easy to theoretically prove the

efficiency of metaheuristic algorithms and studies usually rely on empirical results. One great

advantage of metaheuristic algorithms is the variety of objective functions that can be used.

The objective functions can be non-smooth and discontinuous. Furthermore, no gradient

information or Hessian matrix are used. Information on the objective function’s derivative is

therefore not necessary.

There are several ways to update solutions. Bianchi et al. (2009) distinguish between two

groups of heuristic algorithms, constructive and local search algorithms. Constructive

algorithms build a solution by joining together pieces that are added one after the other

until a solution is complete. Local search algorithms try to improve a current solution by

modifying some of its components.

22

4 POPULATION-BASED METAHEURISTICS

Metaheuristics often require parameter tuning that can highly influence the quality of the

search (Das and Suganthan 2011, Boussaïd et al. 2013).

Several concepts or classifications of metaheuristic optimization algorithms exist. The

groups often overlap or are a subset of one another but also stress different aspects of their

optimization approach; or are named to distinguish between entirely different optimization

techniques. Terminologies of these groups include soft computing, evolutionary optimization

algorithms (Simon 2013) or evolutionary computing (Bianchi et al. 2009), random search

methods (Amaran et al. 2015), bio-inspired optimization (Kar 2016), population-based

optimization and computational swarm intelligence (Engelbrecht 2005). One classification

example was created by Dréo (2011) (Fig. 5).

Figure 5: Different classification of metaheuristics (Dréo (2011), copyright: Creative
Commons Attribution-Share Alike 3.0)

Gogna and Tayal (2013) compare characteristics of metaheuristics and classify them as

follows:

• Nature-inspired vs. non-nature-inspired

This distinguishes the algorithm based on where the idea for the algorithm comes from. It

can also give insight on the working principle. For nature-inspired algorithms these are often

metaphor-based, whereas for non-nature-inspired algorithms they are more descriptive.

• Population-based vs. single-solution-based

Single-solution-based methods manipulate a single solution, whereas population-based

methods iterate and manipulate a whole set of solutions.

23

4 POPULATION-BASED METAHEURISTICS

• Iterative vs. greedy

Iterative algorithms start from a solution that is then manipulated in the search process,

whereas greedy algorithms start with an empty solution, and at each stage, a decision variable

is added to the solution set.

• Memory usage vs. only Current State

Current State only uses information about the current state of the search, while others use

information gathered through the iterative search.

• One neighborhood vs. multiple neighborhoods

Algorithms can make use of one or multiple neighborhood structures.

In population-based metaheuristics, swarm intelligence is a fundamental concept.

Engelbrecht (2005) describes the very basic principle of swarm intelligence with a simple

treasure hunt analogy. In this illustration, the approximate area, but not the exact location,

of the treasure is known (search space). Each person is equipped with a metal detector and

and can communicate the strength of the signal (evaluation of the objective function) and

the current location. The basic underlying assumption is that communicating with your

peers increases the chance of finding the treasure (optimum).

The reasons why the two classes of algorithms, PSO and TLBO, were chosen has partly

to do with current trends in metaheuristics and the different design approaches of the two,

which will be explained in the following. The author decided to focus on population-based

metaheuristics and chose, on the one hand, a well established class of algorithms, namely

PSO, which was first introduced in 1995 by Eberhart and Kennedy (1995) and on the other

hand, a relatively new class of algorithms, TLBO introduced in 2012 by Rao et al. (2012),

which has received increasing attention. One might argue that PSO and TLBO only refer

to algorithms and not a class per se. However, due to the manifold of improvements and

modifications of these two algorithms, it appears appropriate to to use a wider term such as

class.

Metaheuristics is still a growing field. Improvements of algorithms are generally

accomplished by implementing modifications or by hybridizing different algorithms. Overall,

to determine which metaheuristic optimization algorithms are state of the art proved to be a

challenge. In recent years there has been a notable increase in metaphor-based metaheuristic

algorithms. Seemingly anything, from insects to groups of animals and even jazz music are

chosen as metaphors for new algorithms (Sörensen 2015). On top of the vast quantity of

algorithms, there appears to be an issue with the reinvention of already existing algorithms

(Weyland 2010). Sörensen (2015) details how metaphor-based algorithms have contributed

rather little to the scientific field and how the research is difficult to follow when

metaphor-based terminologies, such as pheromones, waggle dance or note are used instead of

24

4 POPULATION-BASED METAHEURISTICS

understandable terminologies, such as solution or objective function. For an overview on

algorithms, the author would like to refer to following review papers: Bäck and Schwefel

(1993), Bianchi et al. (2009), Das and Suganthan (2011), Boussaïd et al. (2013), Gogna and

Tayal (2013) and Amaran et al. (2015) and following book: Simon (2013). This is by far not

a complete selection but provides great starting material.

Despite the above criticism, some algorithm specific terminologies are used. For PSO the

terminologies swarm or population are used for a set of potential solutions. The term particle

denotes one specific solution at a given time or iteration. For TLBO the term class is used to

denote a set of potential solutions, the term teacher is used to refer to the global best solution

and the term learner is used for one potential solution at a given time or iteration.

25

4 POPULATION-BASED METAHEURISTICS

4.2 Particle Swarm Optimization

The PSO algorithm consists of a swarm of particles, where each particle represents a potential

solution (Engelbrecht 2005). The particles move through the search space and adjust their

position based on both their own experience and the experience of the neighborhood. In

parameter optimization a particle at a given time represents a parameter set for the given

problem.

4.2.1 Basic PSO

When xi(t) = (xi
1, x

i
2, ...x

i
dim) is the position of particle i in the multi-dimensional search

space at time t, the position is changed by adding a velocity term vi(t) = (vi1, v
i
2, ..., v

i
dim), so

that xi(t+ 1) is

xi(t+ 1) = xi(t) + vi(t+ 1). (4.2)

The velocity term for dimension d is updated using inertia, cognitive and social components,

which act as attractors (Fig. 6). The updated velocity is given by

vid(t+ 1) = wvid(t) + c1r1d(t)[P
i
d(t)� xi

d] + c2r2d(t)[G(t)� xi
d], (4.3)

where c1 and c2 are acceleration constants and r1,r2 ⇠ U(0,1). The previous velocity term wvid

of particle i in dimensions d = 1, ..., dim serves as a memory of previous flight direction and

is often referred to as inertia component. c1r1d[P i
d(t)� xi

d] represents a cognitive component

retaining information that was best for the particle. c2r2d(t)[G(t)�xi
d] is a social component,

which draws particle i towards the best particle in the neighborhood. The personal best Pi(t)

of a particle i is the best position a particle has visited since the initialization. It is only

updated when a better personal best position was found. For a minimization problem, where

f(x) represents a function evaluation, the personal best position at time t can be formulated

so that

Pi(t)|f(Pi(t)) f(xi(T)) 8 T 2 [0, t]. (4.4)

For global best or gbest model the global best position G is stored. The global best can be

defined as the best personal best position in the swarm, for a minimization problem the global

position at time t can be defined as

G(t) 2 {P0(t), ..., Pn(t)}|f(G(t)) = min{f(P0(t)), ..., f(Pn(t))} (4.5)

where n denotes the number of particles in the swarm. This definition is the best position

discovered by any particles so far. Engelbrecht (2005) suggests that the global best position

26

4 POPULATION-BASED METAHEURISTICS

can also be calculated from the current swarm

G(t) 2 {x0(t), ..., xn(t)}|f(G(t)) = min{f(x0(t)), ..., f(xn(t))}. (4.6)

For local best or lbest model the local best position L is stored. The swarm is divided into

neighborhoods and each particle is connected to k particles. The local best can be defined as

the best position in the neighborhood. For a minimization problem the local position at time

step t can be defined as

L(t) 2 {x0(t), ..., xk+1(t)}|f(L(t)) = min{f(x0(t)), ..., f(xk+1(t))} (4.7)

when a particle is connected to k particles, the neighborhood consists of k + 1. Different

numbers of k can lead to varying topologies, e.g. k = 2 creates a ring structure. The velocity

term of a local best PSO would be updated with the social component containing L(t) instead

of G(t):

vid(t+ 1) = vid(t) + c1r1d(t)[P
i
d(t)� xi

d] + c2r2d(t)[L(t)� xi
d]. (4.8)

The initial velocities were set to zero, i.e.

v(t) = vinit = 0, if t = 0 (4.9)

to simulate a stationary initial condition. It is also possible to initialize velocities at random,

which violates the assumed stationary initial condition. Furthermore randomly initialized

velocities can cause large velocities, which in return can cause particles to leave search space

boundaries and may result in large position updates. This can cause the swarm to require

more iterations before settling on a single solution (Engelbrecht 2005).

Algorithm 1 Generalized basic PSO
1: procedure PSO
2: Uniformly initialize each particle in the swarm S
3: Evaluate swarm S
4: P S
5: Compute global best or local best
6: repeat
7: for each particle in i=1,...,n do
8: Update velocity according to Eq. 4.3
9: Update position according to Eq. 4.2

10: Evaluate fitness value
11: Update personal best if new particle is better than current personal best
12: Update global best or local best if new particle is better than current global best

or local best
13: until stopping criterion is true

27

4 POPULATION-BASED METAHEURISTICS

Figure 6: Working principle of updating position xi(t) of particle i to xi(t + 1) depending
on the inertia, cognitive and social attractor. The dashed lines indicate the direction of the
attractors and the solid lines indicate the length of each attracting component leading to the
final updated position xi(t+ 1).

4.2.2 Implemented modified PSO algorithm

Common modifications include velocity clamping, modifications of the inertia term w and

the acceleration constants c1 and c2. It is with these modifications where tuning parameters

becomes important. All modifications aim at improving the exploration-exploitation trade-

off. It is often desired to have high exploration in the beginning with increased exploitation

towards the end.

For all PSO algorithms a maximum velocity vmax was assigned. The maximum velocity helps

to slow down particles that are too fast and are likely to overshoot an optimum. vmax has

distinct value for all dimensions. If a particle is too fast the updated velocity vi(t+ 1) is set

equal the maximum velocity. Note, depending on the direction of the particle, vi can also be

negative and velocity clamping has to be applied in two directions.

Assuring exploration in the beginning and exploitation as the search proceeds, vmax decreases

linearly with time. In this thesis the following condition applied, where vmax was set relative

to the dimension space:

vmax(t) = (vmax_ini � vmax_end)
tmax � t

tmax
+ vmax_end. (4.10)

where vmax_ini =

x
max

�x
min

2 and vmax_end =

x
max

�x
min

20 . In this thesis the results where

ranked. When ties occurred the tied particles were ranked randomly. The rank of each

particle was then used to further refine vmax. Particles with worse results would be allowed

to be faster and explore, whereas particles with better results would be slowed down and

motivated to exploit. The particle’s vimax is

vimax(t) =
vmax(t)

n� ranki + 1

(4.11)
28

4 POPULATION-BASED METAHEURISTICS

where n denotes the total number of particles in the swarm and ranki is the rank of the

particle.

Often, high level problems have local minima. It is desirable to get the particles out of the

minima. The gbest PSO algorithms in this thesis were modified in order to increase their

vmax when the global best position has not changed for 10 consecutive generations. The

terminology generation originates from evolutionary algorithms and refers to iteration of an

updating cycle. vmax continues to increase as long as no improvement occurs. However, vmax

was not allowed to become greater than the initial vmax.

Self-adapting and time-varying inertia weights and acceleration coefficients have been

suggested by various authors (Shi and Eberhart 1998, Ratnaweera et al. 2004, Naka et al.

2003). Similarly to the implemented velocity clamping, the inertia term w and the

acceleration constants c1 decrease linearly with time. Acceleration constant c2 increases

linearly with time to create increasing attracting to the global best. The linear decrease for

the inertia term is

w(t) = (wmax � wmin)
tmax � t

tmax
+ wmin (4.12)

which was first suggested by Shi and Eberhart (1998) with recommended wmin = 0.4 and

wmax = 0.9. This was modified to wmin = 0.2 as it improved the performance.

The linearly decreasing acceleration constant simulating the cognitive component c1 was

implemented as follows

c1(t) = (c1,max � c1,min)
tmax � t

tmax
+ c1,min, (4.13)

where c1,max = 1.5 and c1,min = 0.1, which were found to be a working boundaries by trial

and error.

The linearly increasing acceleration constant simulating the social component was set as

follows

c2(t) = (c2.max � c2,min)
t

tmax
+ c2,min. (4.14)

where c2,max = 2.5 and c2,min = 0.5 as suggested by Ratnaweera et al. (2004).

The idea behind the linearly changing acceleration coefficients is, again, to allow exploration

and wandering of particles in the beginning and an increasingly stronger attraction to the

global best as time passes allowing exploitation of the most feasible region found. These

modifications are hoped to be somewhat problem independent without the need for much

parameter tuning.

29

4 POPULATION-BASED METAHEURISTICS

4.2.3 Bi-objective PSO

There are several ways to adapt PSO algorithms to solve bi-objective and multi-objective

problems, where bi-objective is the simplest multi-objective. These algorithms are termed

Multi-objective Particle Swarm Optimization (MOPSO). The difference to single-objective

problems is the need to optimize two (bi) or more (multi) objectives at the same time. A global

optimizer can still be used when a weighting scheme is applied, where the objective function

becomes a weighted sum of all objective functions in question. Multi-objective optimization

often does not result in a single solution, but a set of equally optimal non-dominant solutions

called a Pareto front. Only in rare cases are multi-objective solutions single-dominant leading

to one solution. A Pareto front with global optimization can be obtained by changing weights

and rerunning the optimization.

The bi-objective algorithm implemented is a modified version of the dynamic neighborhood

MOPSO developed by Hu and Eberhart (2002) and described in Engelbrecht (2005). New

neighborhoods are chosen every iteration. Each particle has two neighboring particles. In

the original approach neighborhoods are determined on the basis of the simplest objective

function f1. Neighbors are the two closest particles based on the objective function value

f1. The different neighborhoods therefore overlap to allow information to flow through the

swarm. The best neighborhood particle is determined by the second objective function f2 and

replaces the position of the gbest particle in equation 4.3 for particle i. The personal best of

particle i is only updated when both objective function values have improved. This way the

personal bests of the swarm converge towards the Pareto front.

vid(t+ 1) = wvid(t) + c1r1d(t)[P
i
d(t)� xi

d] + c2r2d(t)[Nbesti(t)� xi
d], (4.15)

The original dynamic neighborhood MOPSO is sensitive to ordering of the objectives.

Therefore the ordering was swapped every iteration to assure that both objectives are

treated equally. The neighborhood particles were chosen on the basis of ranks, where the

neighborhood of particle i of rank k, had one neighbor of rank k � 1 and one neighbor of

rank k + 1. The particles at the outer edges were assigned neighbors of rank n� 1 and n� 2

for the worst particle, where n denotes the number of particles in the swarm, and the ranks

2 and 3 for the best particle. The pseudocode of the bi-objective PSO is presented in

algorithm 2.

30

4 POPULATION-BASED METAHEURISTICS

Algorithm 2 bi-objective PSO
1: procedure bi-objective PSO
2: Uniformly initialize each particle in the swarm S
3: Evaluate swarm S for f1 and f2
4: Set order of objective function
5: Rank swarm S based on first objective function
6: repeat
7: for each particle in i=1,...,n do
8: Find neighbors based on rank
9: Compute neighborhood best based on second objective function

10: Update velocity according to Eq. 4.15
11: Update position according to Eq. 4.2
12: Evaluate fitness value for f1 and f2
13: Only update personal best if both f1 and f2 improved
14: Swap order of objective function
15: Rank swarm S based on first objective function
16: until stopping criterion is true

4.3 Teaching-Learning-Based Optimization

Generally, metaheuristic algorithms contain parameters that require tuning to work optimally.

The TLBO is an algorithm that was designed as a global search optimization algorithm

without additional tuning parameters (Rao et al. 2012). The TLBO method is based on the

philosophy of teaching and learning, where the teacher is considered a highly learned person

(best solution) sharing knowledge with learners. Additionally, learners learn from interactions

with others. To be in accordance with literature, we will use following analogies. Learners

are the analogy for a current solution. The entire set of current solutions make up a class.

The global or local best solution is the teacher.

4.3.1 Basic TLBO

The algorithm is divided into a teacher’s and a learners’ phase. The basic idea is that the

teacher can change the mean of the class. In the teacher’s phase the ith learner xi is updated

using

xi(t+ 1) = xi(t) + r(T (t)� TFmean(t)). (4.16)

with T is the teacher at time t, r ⇠ U(0, 1), TF is a teaching factor and heuristically computed

as TF = round[1 + r(0, 1){2 1}] and mean is the mean of each design variable.

In the learners’ phase, two other random learners xj , xk are selected, where xi 6= xj . If xj is

better than xi, xi is updated

xi(t+ 1) = xi(t) + r(xj � xi) (4.17)

and if xj is better than xi,

xi(t+ 1) = xi(t) + r(xi � xj). (4.18)

31

4 POPULATION-BASED METAHEURISTICS

The objective function is evaluated after each phase and the solution is only accepted when

it has improved.

Algorithm 3 Generalized basic TLBO

1: procedure TLBO
2: Uniformly initialize each learner in class C
3: Evaluate class C
4: Find teacher
5: repeat
6: for all learners in i=1,...,n do
7: Calculate teaching factor TF = round(1 + r(0, 1))
8: Update position according to Eq. 4.16
9: Evaluate new learners

10: Accept new solution if it’s better than the old one
11: for all learners in i=1,...,n do
12: Randomly select different learner
13: Update learner according to Eq. 4.17 or 4.18
14: Evaluate new learners
15: Accept new solution if it’s better than the old one
16: until stopping criterion is true

4.3.2 Implemented modified TLBO

Zou et al. (2015) proposed additional strategies for the teacher’s and learners’ phase to

increase learning efficiency that outperformed the basic TLBO. The modified TLBO

algorithm with the learning experience of other learners, namely Learning experience

Teaching-Learning Based Optimization (LETLBO) was used in this thesis.

During the teaching phase, Zou et al. (2015) introduced an area copying operator, which is

also used in Producer-Scrounger model. This area copying operator is applied stochastically.

Two randomly generated values a and b are compared, where a, b ⇠ U(0, 1). If a < b, Eq. 4.16

is used. If b > a, another learner xj is selected, where xj 6= xi, is chosen and the position is

updated based on previous results of xi and xj . If f(xj) < f(xi) the ith learner xi is updated

using

xi(t+ 1) = xi(t) + r(T (t)� xj(t)) (4.19)

and if f(xi) < f(xj) the ith learner xi is updated using

xi(t+ 1) = xi(t) + r(T (t)� xi(t)) (4.20)

where r ⇠ U(0, 1).

Similarly to the teacher’s phase, two learning strategies are applied stochastically. Two

randomly generated values a and b are compared, where a, b ⇠ U(0, 1). If a < b, Eq. 4.17 or

4.18 are used to update the ith learner. If b > a, two random learners xj , xk are selected,

32

4 POPULATION-BASED METAHEURISTICS

Figure 7: Flow chart of LETLBO (Zou et al. 2015).

where xi 6= xj 6= xk. If xj is better than xk, xi is updated with

xi(t+ 1) = xi(t) + r(xj � xk) (4.21)

and if xj is better than xk, xi is updated with

xi(t+ 1) = xi(t) + r(xk � xj). (4.22)

Utilizing a difference operator can be found in other algorithms such as differential

evolution.

33

4 POPULATION-BASED METAHEURISTICS

4.4 Implemented variants

Two variants were developed and applied to modified PSO and TLBO algorithms. The

first variant aims to utilize different neighborhood topologies by dividing the population into

complexes. The second variant aims to utilize the result space to improve the population by

determining bad neighborhoods.

4.4.1 Shuffling complexes

Shuffling complexes is a well applied mechanism. It is part of the Shuffled Complex Evolution

Approach developed by Duan et al. (1993), who combined elements of evolutionary algorithms

with a partition of the particles into complexes. The algorithm developed by Duan et al.

(1993) is often referred to as Shuffled Complex Evolution University of Arizona (SCE�UA).

Each complex is treated as a separate population and evolved separately. Yan et al. (2007)

developed a Shuffled Complex Evolution (SCE) algorithm for the PSO algorithm.

The clustering or the division of the population of complexes can be realized in different

ways. The complexes can be created using random permutation or using rank information.

Jakubcová et al. (2014) compared both shuffling variants in PSO algorithms and reported

that rank based complexes performed better at most tested benchmark functions. In this

thesis the complexes were created based on the rank.

The shuffling can occur after each generation or after a set number of generations. In this

thesis a set generation of 10 was used. This means that for 10 generations the population is

evaluated as one. Then the population is shuffled into complexes based on rank, where they

would remain for 10 generations. This is depicted in Fig. 8.

4.4.2 Bad neighborhood approach

In inverse modeling, a function evaluation can take a very long time, which created the

motivation to create a strategy that utilizes the result of the function evaluation to improve

the location of particles. In this variant bad neighborhoods are determined. The bad

neighborhoods are determined after each population evaluation based on the result of the

function evaluation. The algorithm then performs the position update. With the updated

position, the bad neighborhood strategy checks whether a particle landed in a bad

neighborhood and if so, is motivated to move towards the global or complex best as

follows

xnew = xinbadhood + r(G� xinbadhood) (4.23)

where r ⇠ U(0, 1) and G denotes the global best or complex best.

34

4 POPULATION-BASED METAHEURISTICS

Start

Evaluate and
rank population

for n generations do

Apply strategy
to population evaluate

Stopping criterion true?

Rank and
shuffle

population into
m complexes

for n generations do

Apply strategy
to each complex evaluate

Stopping criterion true?

Stop

yes

no

yes

no

Figure 8: Simplified flow chart of implemented shuffling mechanism with switch between
population as one complex and population shuffled into m complexes (= multi complex) after
n generations.

35

4 POPULATION-BASED METAHEURISTICS

This was thought to be a simple mechanism to improve a particle’s or learner’s location. The

worst half of the population is considered to create a bad neighborhood. The neighborhood can

be imagined as a bubble surrounding each bad particle. The worst particle creates the greatest

bad neighborhood. The radius of the bad neighborhood decreases linearly with decreasing

rank. In this implementation bad neighborhoods are allowed to overlap. If the neighborhood

radius is too large, this mechanism facilitates a social component, where the entire population

is drawn towards the global best, which can cause premature convergence. Whereas, if the

neighborhood radius is too short, this mechanism has no effect. It was decided to start with

greater bad neighborhood radii to leave unpromising areas quickly and subsequently decrease

the bad neighborhood radii with each iteration. The decrease in bad neighborhood radii is

hoped to counteract the likelihood of premature convergence.

Algorithm 4 bad neighborhood approach
1: procedure Bad Neighborhood
2: Uniformly initialize population
3: Evaluate population
4: Rank population
5: Determine bad neighborhoods
6: for all bad neighborhoods in j=1,...,n/2 do
7: calculate bad neighborhood radius(j) for all design variables based on rank
8: spheremin(j) = xj � radius(j)
9: spheremax(j) = xj + radius(j)

10: repeat
11: for all particles in i=1,...,n do
12: Update position according to algorithm strategy
13: if xi is in any bad neighborhood then
14: Update position according to Eq. 4.23
15: Rank population
16: Determine bad neighborhoods
17: for all bad neighborhoods in j=1,...,n/2 do
18: calculate bad neighborhood radius(j) for all design variables based on rank and

iteration
19: spheremin(j) = xj � radius(j)
20: spheremax(j) = xj + radius(j)

21: until stopping criterion is true

4.4.3 Summary of variants

Eight different global search algorithms were implemented

• modified PSO (PSO)

• modified Particle Swarm Optimization with a bad neighborhood approach (PSObn)

• modified Particle Swarm Optimization with a shuffling complexes approach (PSOsce)

• modified Particle Swarm Optimization with a bad neighborhood and shuffling complexes

approach (PSOscebn)

• Learning experience TLBO (TLBO)
36

4 POPULATION-BASED METAHEURISTICS

• Learning experience Teaching-Learning Based Optimization with a bad neighborhood

approach (TLBObn)

• Learning experience Teaching-Learning Based Optimization with shuffling complexes

approach (TLBOsce)

• Learning experience Teaching-Learning Based Optimization with a bad neighborhood

and shuffling complexes approach (TLBOscebn)

37

4 POPULATION-BASED METAHEURISTICS

4.5 General implementation aspects

4.5.1 Algorithm implementation in R

The algorithms were developed in the R language (R Core Team 2015) in R studio (RStudio

Team 2015). They are all functions that can be called with the following input parameters:

population size, complexes, dimension of problem, minimum boundary, maximum boundary,

generation, reinitialization limit and a printing option (total population or only global best).

R is usually considered a slow language, however it also allows relatively quick development

and debugging. There’s a certain understanding that for-loops, particularly over data frames,

are somewhat slow. In this thesis, attempts were made to preallocate vectors and matrices,

to vectorize operations and to use the apply family instead of for-loops where appropriate to

speed up the computation. There was also an attempt to use byte-code compilation using

the compiler package and the cmpfun() function. After algorithms performance were very

slow, system.time() analysis was conducted of the algorithms with and without usage of the

cmpfun() function. It turned out that the cmpfun() function slowed down the computation

tremendously and was therefore not used. At this stage, the implemented algorithms are

set-up to solve minimization problems only.

4.5.2 Random seed

To avoid resulting differences between the optimization algorithms based on random variation

of the number generation, the random seed was set before the start of each algorithm run.

A list of random integer seeds was generated on www.random.org (Haahr and Haahr 2017).

RANDOM.ORG is a true random number service that generates randomness via atmospheric

noise. www.random.org has been used in peer-reviewed research Biggar et al. (2008). This

means that for the first benchmark run, the random seed was set to k. The same seed k was

set to all algorithms for the first benchmark run before the algorithm was called. This way, it

can be assumed that only the design of the algorithm influenced the differences between the

algorithms for the first run and not random variation. This is further important as it assures

reproducibility of the presented results.

To generate (pseudo-)random uniform numbers, R’s default Marsenne-Twister algorithm,

developed by Matsumoto and Nishimura (1998) for generating uniform pseudorandom

numbers, was used.

4.5.3 Boundary

There are several ways how to deal with particles leaving the search space. Particles leaving

the search space can remain at their previous location, or the particles remain at the boundary

of the search space or the particles bounce or reflect back into the search space. It was decided
38

www.random.org
www.random.org

4 POPULATION-BASED METAHEURISTICS

that particles should be reflected back into the search space. For a particle that has left the

boundary, it is reflected back into the search space before evaluation of the objective function

so that

xi,reflected = boundary � (xi,outside � boundary). (4.24)

If the upper boundary is 5, and the particle’s position is xi,outside = 7, the xi,reflected =

5� (7� 5) = 3.

4.5.4 Reinitializing the population

Reinitializing can be a powerful tool to increase population diversity and avoid premature

convergence. A reinitialization probability was introduced that affects the worst half of the

population. For PSO algorithms the reinitialization does not affect the personal best found

so far as this information is stored independent of the current location. However, for TLBO

algorithm, reinitialization overwrites the affected worst half of the population.

The user of the algorithm can set a reinitialization limit, which is reduced every generation.

At the end of each generation, a random variable a is generated, where a ⇠ U(0, 1). If

a > reinitialization limit, reinitialization takes place and the reinitialization limit is set to

its initial value. If the user wants to avoid reinitialization, the reinitialization limit can be

set extremely high, so that the reinitialization value, despite reduction, will never decrease

below 1, so that the if statement never becomes true. On the contrary, if the user wishes

reinitialization to take place every iteration, the reinitialization limit can be set to 0. During

testing of the algorithms with benchmark functions, the algorithms were calibrated using

different reinitialization limits.

4.5.5 Stopping criteria

The stopping criteria are usually a mix of maximum allowed function evaluations or iterations

and convergence criteria. If the allowed number of iterations is reached, the algorithm stops.

The convergence criteria are manifold. We can stop the algorithm when an acceptable solution

was found. This can be considered the maximum allowed error. When the solution has

converged on the basis of lack of change of the global best solution we can also stop the

algorithm. This does not necessarily mean the solution has converged to a global optimum.

Convergence can be assumed when following condition holds (Engelbrecht 2005):

f(xt�1)� f(xt) < ✏(1 + |f(xt)|). (4.25)

Stopping criteria for multi-objective problems are more difficult. In this work, bi-objective

39

4 POPULATION-BASED METAHEURISTICS

optimization was stopped after a set number of generations.

4.5.6 Restart

Especially with limited computer or server capacity, or when one cannot estimate how many

function evaluations are required, it is useful to be able to restart the computation with partly

optimized values. Being able to restart an optimization also allows tuning parameters in the

process. This was highly utilized with bi-objective optimization.

40

5 BENCHMARK FUNCTIONS

5 Benchmark functions

5.1 Introduction

Benchmark functions and benchmark problems are widely used to compare algorithms. The

no-free-lunch theorem is a mathematical theorem that was first formalized by Wolpert and

Macready (1997). They state, "that for any algorithm, any elevated performance over one

class of problems is offset by performance over another class." An algorithm can therefore

perform better over a set of objective functions or benchmark functions but not over all

possible problems. This is independent of the chosen performance metric. A lot of

optimization algorithm research is based on competitiveness and providing better solutions

than other optimization algorithms. However, with the no-free-lunch theorem it becomes

clear that algorithm A cannot be universally better than algorithm B. Nonetheless,

algorithm A might perform better than algorithm B on a set of objective functions or a

real-life problem.

Simon (2013) (Appendix B) contains a very detailed section on the no-free-lunch theorem

and its implications. Included are also examples showing that the usage of different

performance metrics can lead to contradicting conclusions making it important to show a

range of performance matrices. Benchmark functions are useful to compare metaheuristic

algorithms. A wide range of benchmark functions and problems exist. Benchmark functions

can be of different dimensions, uni-modal or multimodal, static or dynamic, single or

multi-objective. Many benchmark functions are biased towards certain types of search

spaces and so are certain optimization algorithms. They may be biased towards the center

or towards feasible regions laying parallel to each other. It is therefore important when

testing benchmark functions to have an understanding of the behavior of the algorithms.

Biased benchmark functions can be adapted to unbias the search space by using offset of

independent variables and rotation matrices such as in the problem definition of the CEC

2013 special session on real-parameter optimization (Liang et al. 2013). Using offsets and

rotation matrices can make the benchmark function more difficult to solve (Simon 2013).

This can be an advantage when benchmark functions are used as proxies for selecting the

best algorithm for a real-world problem. It can also be a disadvantage when reviewing the

performance of different optimization algorithms from different authors as the same names

are used for offset benchmark functions and standard benchmark functions. Furthermore,

often success rates in respect to certain benchmark functions are reported that are based on

relatively high acceptance values and should thus be treated with a critical eye. If the

benchmark functions are used to select algorithms for real-world problems, it becomes

evident that the benchmark function should at least in part represent certain aspects of the

real-world problem. A detailed list of benchmark definitions, including a discussion, can be

found in Simon (2013) (Appendix C).

41

5 BENCHMARK FUNCTIONS

For the global optimization algorithms, 10 benchmark functions were selected from the CEC

2013 Real Parameter Optimization Competition and evaluated in 10D and 30D.

Furthermore, two Dual Richards’ Unsaturated Equation Solver (DRUtES) benchmark

functions were evaluated presented. The bi-objective Particle Swarm Optimization (PSO)

algorithm was tested on the bi-objective benchmark function DTLZ2 and reached sufficient

convergence (not shown), but was not tested further on other benchmark functions.

5.2 CEC 2013 real-parameter optimization benchmark

functions

5.2.1 Description of CEC 2013 real-parameter optimization benchmark

functions

The CEC 2013 Real Parameter Optimization Competition provides popular benchmark

functions that are published on several platforms, including as an R package, which made

them easily available for testing algorithms in the R environment. In this thesis, ten CEC

benchmark functions were selected to cover a range of different search spaces. The

mathematical description of the selected benchmark functions and their optimal value can

be found in Tab. 3 and Tab. 4. All functions are shifted to shifting operator o = [o1, ..oD].

M1 and M2 are rotation matrices. ⇤

↵ is a diagonal matrix in D dimensions with the iith

diagonal element as �ii = ↵
i�1

2(D�1) , i = 1, .., D. T �
asy is a conditional operator: If

xi > 0, xi = x
1+� i�1

D�1

p
x
i

i . Tosz is an oscillation operator. While working on the algorithms,

the author made use of different dimensions provided in the R package. Presented are the

results from 30D benchmark function runs, as these provide challenging complexity, and 10D

benchmark function runs. 30D benchmark functions are often used to test optimization

algorithms. The search range for all functions is [100,-100]D. The function description are

kept in accordance with the CEC 2013 real-parameter optimization competition explained in

Liang et al. (2013). Each benchmark function run was repeated 30 times. The 30D

benchmark functions were run with 8 different calibration sets, where the initial

reinitialization probability was changed, resulting in 8x30x10 = 2400 optimization runs. The

10D benchmark functions were run with 3 different calibration sets, where the initial

reinitialization probability was changed, resulting in 8x30x3 = 720 optimization runs. One

of the calibration runs used a very high reinitialization limit, so that no reinitialization took

place. This was done to create a reference run. The maximum function evaluation was kept

in accordance with the competition guideline and set to evalmax = D · 10000, but stopping

criteria were also applied, leading to less function evaluation if a) the global best position

has not changed significantly for 100 iterations (10000 function evaluations) or b) if the error

criterion was met. The solution was found when the error value obtained was less than 10�8.

This acceptance value in combination with the shifting operator and transformation

42

5 BENCHMARK FUNCTIONS

matrices is rather strict. Each run was started with a swarm size of 100. The sce variants

were split into two sub complexes. The PSO variants could have been split into more

complexes, however, the design of the Teaching-Learning Based Optimization (TLBO)

algorithms in completely vectorized form caused an extreme increase of computational time

for smaller sub-swarm sizes. To maintain comparability, a low number of complexes with 50

particles each was chosen.

43

5 BENCHMARK FUNCTIONS

Table 3: Summary of benchmark functions used from CEC 2013 real-parameter optimization
f1-f5.

ID
N

am
e

Fu
n
ct

io
n

f

⇤
i

=
f
(x

o
p
t

)

f 1
Sp

he
re

Fu
nc

ti
on

f

1
(x
)
=

P
D i
=
1
z

2
i

+
f

⇤ 1
,
z
=

x
�

o
-1

40
0

f 2
R

ot
at

ed
H

ig
h

C
on

di
ti

on
ed

E
lli

pt
ic

Fu
nc

ti
on

f

2
(x
)
=

P
D i
=
1
(1
06
)

i
�

1
D

�
1
z

2
i

+
f

⇤ 2
,
z
=

T

o
s
z

(M
1
(x

�
o
))

-1
30

0

f 3
R

ot
at

ed
R

os
en

br
oc

k’
s

Fu
nc

ti
on

f

3
(x
)
=

P
D

�
1

i
=
1
(1
00

(z
2
i

�
z

i
+
1
)
+

(z
i

�
1)

2
)
+

f

⇤ 3
-9

00
z
=

M

1
(
2
.
0
4
8
(x

�
o
)

1
0
0

)
+

1

f 4
R

ot
at

ed
A

ck
le

y’
s

Fu
nc

ti
on

f

4
(x
)
=

�
20

e
x
p
(�

0.
2q

1
D

P
D i
=
1
z

2
i

)
�

e
x
p
(

1
D

P
D i

1
c
o
s
(2
⇡
z

i

))
+

20
+

e
+

f

⇤ 4
-7

00
z
=

⇤
1
0
M

2
T

0
.
5

a
s
y

(M
1
(x

�
o
))

f 5
R

ot
at

ed
W

ei
er

st
ra

us
s

Fu
nc

ti
on

f

5
(x
)
=

P
D i
=
1
(P

2
0

k
=
0
[0
.
5k

c
o
s
(2
⇡
3k

(z
i

+
0.
5)
)]
)
�

D

P
2
0

k
=
0
[0
.
5k

c
o
s
(2
⇡
3k

0.
5)
]+

f

⇤ 5
-6

00
z
=

⇤
1
0
M

2
T

0
.
5

a
s
y

(M
1
0
.
5
(x

�
o
)

1
0
0

)

44

5 BENCHMARK FUNCTIONS

Table 4: Summary of benchmark functions used from CEC 2013 special session on real-
parameter optimization f6-f10.

ID
N

am
e

Fu
n
ct

io
n

f

⇤
i

=
f
(x

o
p
t

)

f 6
R

ot
at

ed
G

ri
ew

an
k’

s
Fu

nc
ti

on
f

6
(x
)
=

P
D i
=
1

z

2
i

4
0
0
0
�

Q
D i
=
1
c
o
s
(
z

i

p
i

)
+

f

⇤ 6
,
z
=

⇤
1
0
0
(M

1
6
0
0
(x

�
o
)

1
0
0

)
-5

00

f 7
R

as
tr

ig
in

’s
Fu

nc
ti

on
f

7
(x
)
=

P
D i
=
1
(z

2
i

�
10

c
o
s
(2
⇡
z

i

)
+

10
)
+

f

⇤ 7
,
z
=

⇤
1
0
T

0
.
2

a
s
y

(T
o
s
z

5
.
1
2
(x

�
o
)

1
0
0

)
-4

00

f 8
R

ot
at

ed
R

as
tr

ig
in

’s
Fu

nc
ti

on
f

8
(x
)
=

P
D i
=
1
(z

2
i

�
10

c
o
s
(2
⇡
z

i

)
+

10
)
+

f

⇤ 8
-3

00
z
=

M

1
⇤

1
0
M

2
T

0
.
2

a
s
y

(T
o
s
z

M

1
5
.
1
2
(x

�
o
)

1
0
0

)

f 9
Sc

hw
ef

el
’s

Fu
nc

ti
on

f

9
(x
)
=

41
8.
98

29
D

�
P

D i
=
1
g
(z

i

)
+

f

⇤ 9
-1

00
z
=

M

1
⇤

1
0
1
0
0
0
(x

�
o
)

1
0
0
0

+
4.
20

96
87

46
22

75
03

6e
+

00
2

f 1
0

C
om

po
si

ti
on

fu
nc

ti
on

f

1
0
(x
)
=

P
n i
=
1
(!

⇤
i

[�
i

g

i

(x
)
+

b
i
a
s

i

])
+

f

⇤ 1
0

14
00

(g
1
=

R
ot

at
ed

ex
pa

nd
ed

G
ri

ew
an

k+
R

os
en

br
oc

k,
w

i

=
1

q
P

D j
=

1
(x

j

�
o

i
j

)2
e
x
p
(�

P
D j
=

1
(x

j

�
o

i
j

)2

2
D

�

2
i

),
!

i

=
w

i

P
n i

w

i

g 2
=

R
ot

at
ed

Sc
ha

ffe
rs

,g
3
=

R
ot

at
ed

Sc
hw

ef
el

,
g 4

=
R

ot
at

ed
ex

pa
nd

ed
Sc

ha
ffe

rs
,g

5
=

f 1
)

n
=

5,
�
=

[1
0,
20

,
30

,
40

,
50

],
�
=

[2
.
5,
2.
5e

�
3
,
2.
5,
5e

�
4
,
0.
1]
,
b
i
a
s
=

[0
,
10

0,
20

0,
30

0,
40

0]

45

5 BENCHMARK FUNCTIONS

Figure 9: 3D maps of 2D benchmark functions

46

5 BENCHMARK FUNCTIONS

5.3 DRUtES benchmark functions

DRUtES benchmark functions were created to test the algorithms on the DRUtES

environment. Different reference simulations were conducted and used to design simple

inverse problems. It was tested how well the algorithms can find the parameters to lead to

the known output. An inverse analysis can be described as a problem, where the output is

known, i.e. a time series or measurements, so that

Output = Experiment(Input) (5.1)

and using the inverse approach, the aim is to find the correct input

Input = Inverse(Output). (5.2)

We obtain the correct input by minimizing an error function. The error function is the

objective function, where we compare the output of our model with the estimated input

parameters to the known reference output. A commonly used error function is the Root

Mean Squared Error (RMSE). Inverse problems can be extremely challenging, when the

model describing the input-output relation is not known or if the output is of very bad quality

with high uncertainties.

The CEC benchmark functions have the same boundary in all dimensions, which is not the

case for DRUtES benchmark functions. Therefore DRUtES benchmark functions are also

important for testing the performance of algorithms on problems with different dimensional

boundaries. Furthermore the boundaries of the dual permeability model benchmark function

were set challenging with the boundary set to the real parameter, which makes the parameter

difficult to identify. Additionally, we assume that we only know the water content data of the

reference solution and that pressure head information is unknown. This was considered to

improve the complexity of the created benchmark functions and make it more realistic, as the

same conditions apply for the case study in this thesis. Overall, these benchmark functions

are easier to solve than real problems as we assume perfect knowledge of initial and boundary

conditions, and we know for certain that our artificial reference data can be described by

the selected model. No noise was added to the reference simulation data, however one set

of trial benchmark simulation runs were conducted with noise. All optimization algorithms

performed equally well (not shown), which was assumed to be due to impossible parameter

identification due to overambitious noise. Three DRUtES benchmark functions were created

in 1D. The first and second benchmark functions were created using the standard total head

model and the third benchmark function was created with the implemented dual permeability

model.

47

5 BENCHMARK FUNCTIONS

5.3.1 Set-up of DRUtES benchmark functions

To execute the benchmark functions the algorithms had to be linked to DRUtES and a

set-up had to be found to use several computer cores to evaluate several population

members in parallel. Each algorithm was called from a set-up script feeding it population

size, complexes, dimension, minimum and maximum boundary, maximum number of

generations, reinitialization limit and number of available cores. The set-up also created

numbered folders containing copies of DRUtES equal to the number of cores. When the

algorithm evaluates the found parameters, R writes an input file pars.in with n parameter

sets, where n denotes the number of cores. For the evaluation another R script is called.

This was done to keep the algorithm itself as clean as possible and only link the evaluation

script to the algorithm. The evaluation script makes a system call and executes a bash

script. The bash script then reads the created file pars.in and uses the bash sed function to

update a previously prepared configuration file with the new estimated parameters, before

copying this new configuration file into the appropriate drutes.conf directory. DRUtES can

then be executed. The bash script waits until all processes have finished. The R evaluation

script then reads the DRUtES output file and compares it to reference data. The DRUtES

benchmark functions were evaluated using the water content data only. The mean of the

logged (base 10) RMSE for selected observation points was chosen as the objective function

criterion, which can be written as

logRMSE = log

⌃

n
i=1(Obs(i)� Sim(i))2

n
, (5.3)

where Obs is the the observation at i, Sim is the simulation at i and n denotes the number

of observations.

The result is then fed back to the algorithm to apply its strategy and start the next generation

if the stopping criterion is not true. Each benchmark function was repeated 10 times for each

algorithm per calibration run. Due to time limitations, only the more simple first benchmark

function could be run with several different reinitialization probabilities, the second benchmark

function was run with two different reinitialization probabilities including an extremely high

limit and thus prohibiting any reinitialization. The dual permeability model benchmark was

run with algorithm specific reinitialization limits that presented best guesses based on the

30D CEC benchmark function performance of each algorithm.

48

5 BENCHMARK FUNCTIONS

set-up computation

R script: algorithm

Stopping
criterion

true?

R script: evaluation script

Bash script: create input files, wait
for completion of parallel execution

DRUtES
execution

DRUtES output

stop

call evaluation function

call bash

call DRUtES

yes

waitforallparallelprocesses

read DRUtES output and evaluate

return fitness value

no

Figure 10: Simplified flow chart of the link between R scripts and DRUtES

49

5 BENCHMARK FUNCTIONS

Observation points were placed at a depth of 2.5, 5 and 7.5 cm. Only a small number of

observation points were used to, again, create more realistic conditions. The Picard iteration

criterion was set high as we were not interested in an accurate solution of the soil physics

problem and because this generated output at exactly the same time steps. This assures that

all parameter sets run quickly. Parameters ✓r and l were not optimized. m was calculated

based on n. Other model set-ups are depicted in Tab. 5. For the 1D standard DRUtES

benchmark function a scenario with a constant infiltration flux from (1) the bottom and

(2) the top boundary with four unknowns was created, thereby creating low-dimensional 4-

D benchmark problems. The maximum number of function evaluations was set to 32000.

Tab. 6 shows the soil hydraulic properties and boundaries for the standard model benchmark

functions. For the 1D dual permeability DRUtES benchmark function, a ponding scenario

was chosen with an arithmetic mean as the exchange boundary conductivity in the coupling

term (variant 1) and thirteen unknowns was created, which made it a medium-dimensional

13-D benchmark problem. However, for a 1D soil physics problem this is already a large

number of parameters. The maximum number of function evaluations was set to 48000.

Tab. 7 shows the soil hydraulic properties and boundaries for the dual permeability model

benchmark function.

Table 5: Initial and boundary conditions used for DRUtES benchmark functions.

Parameter Symbol Standard Dual

Domain length L 10 cm
Spatial discretization dx 0.1 cm
Simulation time t 2 days 0.5 days
Minimum time step dt

min

1e-7 days
Maximum time step dt

max

5e-3 days
Initial pressure head h

ini

-100 cm -50 cm
top bottom top bottom

Boundary condition 1 -100 cm 0.5 cm d�1 0 cm free drainage
2 0.5 cm d�1 -100 cm

Table 6: Soil hydraulic properties used to generate reference data with standard model and
minimum and maximum boundary values.

Parameter Symbol Value Min Max

Inverse of air entry value [cm�1] ↵ 0.1 0.05 0.15
Shape parameter n 2 1.5 2.5
Sat. water content [-] ✓

s

0.45 0.3 0.7
Residual water content [-] ✓

r

0 - -
Sat. hydraulic conductivity [cm d�1] K

s

200 10 500

50

5 BENCHMARK FUNCTIONS

Table 7: Soil hydraulic properties used to generate reference data with dual permeability
model and minimum and maximum boundary values.

Domain Parameter Symbol Value Min Max

Matrix inverse of air entry value [cm�1] ↵

m

0.005 0.001 0.01
shape parameter [-] n

m

1.5 1.3 1.8
sat. water content [-] ✓

s,m

0.5 0.4 0.5
res. water content [-] ✓

r,m

0.105 - -
sat. hydraulic conductivity [cm d�1] K

s,m

1.05 0.1 2
matrix weight [-] w

m

a 0.5 - -

Fracture inverse of air entry value [cm�1] ↵

f

0.1 0.05 0.15
shape parameter [-] n

f

2.5 2 3
sat. water content [-] ✓

s,f

0.5 0.3 0.7
res. water content [-] ✓

r,f

0 - -
sat. hydraulic conductivity [cm d�1] K

s,f

600 500 800
fracture weight [-] w

f

0.5 0.1 0.5

Exchange boundary distance to center of aggregate [cm] a 1.0 0.4 0.6
material parameter [-] � 3 - -
material parameter [-] � 0.4 - -
sat. hydraulic conductivity [cm d�1] K

a

0.01 0.001 0.1
inverse of air entry value [cm�1] alpha

ex

0.005 0.001 0.01
shape parameter [-] n

e

x 1.5 1.3 1.8

a
w

m

was calculated based on w

f

estimation

51

5 BENCHMARK FUNCTIONS

5.4 Benchmark results and discussion

For statistical analysis, the paired non-parametric Wilcoxon test was used to compare

algorithms. It is analogous to the paired student T-test, but does not require the data to be

normally distributed. It tests if the difference of the median between two algorithms is zero

and thereby aims to detect significant differences between two algorithms. The R function

wilcox.test() with the options paired=TRUE and alternative="two.sided" was used for the

compute the paired two-sided Wilcoxon test. For this, the best algorithm based on the

median value (indicated as best) was compared to all other algorithms. This was considered

preferable to the overall lowest value, as the lowest value was often an outlier and the best

median was hoped to represent a more robust solution. Algorithms which are not

significantly different to the lowest median (at level p-value=0.05 and ↵=0.025 for two-sided

test) are indicated in bold. The results were also evaluated graphically using box plots of

the best calibration run and using convergence plots of the best run.

5.4.1 Results of CEC 2013 benchmark functions

Table 8 shows the best result of each algorithm over 30 simulation runs for each 10D benchmark

function. Table 9 shows the Wilcoxon test of each 10D benchmark function. Figure 11 shows

convergence plots of the best algorithm run and Fig. 12 shows boxplots. For 30D benchmark

functions, table 10 shows the best result for each algorithm over 30 simulation runs, and table

11 shows the result of the Wilcoxon test for each 30D benchmark. The best values in Tab.

8 and 10 are also indicated in bold. For this, 8 decimal places were considered, but only 2

decimal places were printed in the tables and therefore not all of the same values are printed in

bold. Figure 13 shows convergence plots of the best algorithm run and Fig. 14 shows boxplots

of the best calibration. The optimum was only found for two 10D benchmark functions, f1

and f3, and two 30D benchmark functions, f1 and f6. The 10D benchmark functions were

not calibrated as thoroughly and would probably perform better with ideal reinitialization

limits.

As the CEC benchmark functions were used, it is difficult to compare the results with other

results found in the literature. The aim of the thesis was also to compare the algorithms

with common modifications to new variants. Therefore, we can consider the PSO and

TLBO variant as our base line. 10D CEC benchmark functions were used by Maca and

Pech (2015) and the results are overall similar. For proper comparison, more data would

need to be available to conduct statistical analysis. Simon (2013) recommends the use of

statistical F-tests to test, whether differences between results are due to different random

number generations. Each benchmark repetition was seeded with the same integer for all

algorithms, which made this problem negligible. To be clear, different seeds were used for

every repetition. The TLBO variants significantly outperformed the PSO variants for

52

5 BENCHMARK FUNCTIONS

benchmark function f2 in 10D, however the opposite effect is visible in 30D. The

Teaching-Learning Based Optimization with a bad neighborhood and shuffling complexes

approach (TLBOscebn) algorithm was the overall most successful algorithm, particularly on

30D functions. The TLBO variants showed overall faster convergence in most benchmark

functions (not shown).

Table 8: Best result of all algorithms over 30 trial runs for 10D benchmark function.

ID f(xopt) PSO PSObn PSOsce PSOscebn TLBO TLBObn TLBOsce TLBOscebn

f1 -1400.00 -1400.00 -1400.00 -1400.00 -1400.00 -1400.00 -1400.00 -1400.00 -1400.00
f2 -1300.00 2363.95 1829.05 -645.45 5115.35 -1101.02 -1299.80 -1299.97 -578.37
f3 -900.00 -900.00 -899.99 -900.00 -899.98 -900.00 -900.00 -900.00 -900.00
f4 -700.00 -679.78 -679.81 -679.72 -679.85 -679.82 -679.80 -679.77 -679.71
f5 -600.00 -596.68 -595.21 -597.02 -595.98 -597.15 -596.93 -596.39 -598.28
f6 -500.00 -499.77 -499.77 -499.85 -499.87 -499.95 -499.91 -499.91 -499.92
f7 -400.00 -392.04 -380.10 -391.66 -390.05 -393.02 -393.04 -392.03 -390.05
f8 -300.00 -290.99 -279.11 -289.91 -288.06 -293.98 -291.04 -295.03 -290.05
f9 -100.00 28.58 351.60 -81.43 36.98 265.61 169.71 223.83 348.17

f10 1400.00 1500.00 1500.00 1500.00 1500.30 1500.00 1500.00 1500.00 1500.00

Table 9: 10D benchmark functions: Non-parametric Wilcoxon test with best algorithm (based
on best median value).

ID PSO PSObn PSOsce PSOscebn TLBO TLBObn TLBOsce TLBOscebn

f1 6.91E-07 2.19E-03 2.61E-08 4.78E-01 1.86E-09 9.31E-09 2.05E-07 best
f2 5.59E-09 6.15E-08 5.14E-06 1.86E-09 7.32E-02 best 3.09E-01 1.72E-03
f3 3.84E-02 7.67E-02 9.93E-03 2.08E-02 4.73E-02 best 7.61E-01 5.29E-01
f4 7.11E-03 1.77E-01 9.93E-03 1.89E-04 4.16E-01 2.80E-01 best 4.77E-01
f5 2.69E-05 2.61E-08 2.99E-03 3.13E-04 5.01E-03 4.66E-03 9.98E-07 best
f6 9.98E-07 9.31E-09 6.91E-07 1.30E-08 3.45E-05 7.61E-03 3.74E-03 best
f7 best 3.54E-08 8.71E-03 7.06E-05 1.45E-02 6.99E-02 1.77E-01 2.62E-02
f8 8.55E-01 2.35E-06 2.45E-01 1.97E-02 7.15E-01 9.35E-01 best 7.77E-01
f9 best 6.15E-08 9.19E-01 7.32E-02 9.31E-09 1.30E-07 2.76E-06 1.68E-06

f10 1.72E-03 2.99E-03 1.70E-04 3.45E-02 7.15E-01 2.62E-02 2.77E-02 best

53

5 BENCHMARK FUNCTIONS

Figure 11: Convergence plots of the best run of each algorithm for 10D benchmark functions.

54

5 BENCHMARK FUNCTIONS

Figure 12: Boxplots of results over 30 trial runs for 10D benchmark functions.

55

5 BENCHMARK FUNCTIONS

Figure 13: Convergence plots of the best run of each algorithm for 30D benchmark functions.

56

5 BENCHMARK FUNCTIONS

Figure 14: Boxplots of results over 30 trial runs for 30D benchmark functions.

57

5 BENCHMARK FUNCTIONS

Table 10: Best result of all algorithms over 30 trial runs for 30D benchmark function.

ID f(xopt) PSO PSObn PSOsce PSOscebn TLBO TLBObn TLBOsce TLBOscebn

f1 -1400.00 -1400.00 -1400.00 -1400.00 -1400.00 -1399.94 -1399.94 -1399.90 -1400.00
f2 -1300.00 258826 534223 144859 396932 1650464 1659264 782187 80531
f3 -900.00 -898.55 -899.92 -899.54 -899.65 -890.59 -883.80 -898.99 -891.89
f4 -700.00 -679.21 -679.14 -679.15 -679.07 -679.20 -679.11 -679.21 -679.13
f5 -600.00 -576.53 -576.33 -573.80 -575.61 -574.67 -577.09 -575.44 -574.91
f6 -500.00 -499.97 -499.94 -499.96 -499.96 -497.89 -497.84 -498.37 -500.00
f7 -400.00 -239.63 -180.11 -257.71 -318.35 -282.52 -274.55 -267.11 -308.46
f8 -300.00 -107.41 -55.24 -126.30 -150.14 -219.98 -181.82 -176.17 -211.45
f9 -100.00 1233.22 2550.82 1311.74 952.34 2423.44 2732.81 2748.53 2265.59

f10 1400.00 3650.09 2505.11 3489.86 1720.62 1507.30 1509.45 1713.81 1501.63

Table 11: 30D benchmark functions: Non-parametric Wilcoxon test with best algorithm
(based on best median value).

ID PSO PSObn PSOsce PSOscebn TLBO TLBObn TLBOsce TLBOscebn

f1 1.86E-09 1.31E-01 1.86E-09 best 1.86E-09 1.86E-09 1.86E-09 5.45E-02
f2 6.67E-02 8.71E-03 2.29E-01 1.34E-03 3.73E-09 1.86E-09 1.86E-09 best
f3 1.42E-06 6.06E-02 2.32E-04 2.32E-04 9.31E-09 1.60E-05 7.99E-06 best
f4 2.37E-03 2.02E-03 4.03E-03 3.80E-04 1.84E-01 2.02E-03 best 1.82E-05
f5 3.22E-03 4.03E-03 4.27E-02 3.49E-01 best 2.45E-01 2.08E-02 4.52E-01
f6 best 8.72E-04 3.39E-01 7.32E-02 1.86E-09 1.86E-09 1.86E-09 1.86E-09
f7 8.71E-01 1.82E-05 8.87E-01 2.05E-01 5.84E-01 best 9.84E-01 7.77E-01
f8 2.83E-04 6.91E-07 1.60E-05 9.93E-03 9.52E-01 7.15E-01 best 1.00E+00
f9 best 3.73E-09 9.03E-01 5.43E-01 3.73E-09 1.86E-09 1.86E-09 5.59E-09

f10 5.59E-09 1.86E-08 3.79E-06 6.29E-05 2.62E-02 best 2.48E-02 1.35E-01

58

5 BENCHMARK FUNCTIONS

5.4.2 Results of DRUtES benchmark functions

Fig. 15 shows boxplots of the best median calibration run and 16 shows convergence plots

of the best run of each benchmark function with each algorithm. For the first benchmark

function it may seem as if the TLBO algorithm performed best and is robust, but it performed

much worse in other calibration runs (not shown), whereas the Teaching-Learning Based

Optimization with shuffling complexes approach (TLBOsce) algorithm was overall much more

robust and reached the acceptable error in every calibration run for at least some of the

repetitions. Comparing the boxplots in Fig. 15, for the well calibrated first benchmark the

algorithms showed much better performance than for benchmark function 2 and 3. This can

also indicate that the correct reinitialization is very important for these problem.

Table 12: DRUtES benchmark functions: Non-parametric Wilcoxon test with best algorithm
(based on best median value).

ID PSO PSObn PSOsce PSOscebn TLBO TLBObn TLBOsce TLBOscebn

standard 1 3.91E-03 1.95E-03 3.91E-03 1.95E-03 7.70E-01 1.95E-03 best 1.95E-03
standard 2 2.03E-01 6.45E-02 1.93E-01 1.95E-03 3.75E-01 3.91E-03 best 3.91E-03

dual 3.91E-03 3.91E-03 7.42E-02 7.42E-02 3.91E-03 3.91E-03 3.91E-03 best

59

5 BENCHMARK FUNCTIONS

Figure 15: Boxplots of the best run of the DRUtES benchmark functions.

60

5 BENCHMARK FUNCTIONS

Figure 16: Convergence plot of the best run of DRUtES benchmark functions.

61

5 BENCHMARK FUNCTIONS

5.4.3 Benchmark summary

Tab. 13 translates the results into a scoreboard to gain an overview of the general

performance of each algorithm. An algorithm gets a point for each benchmark that was not

significantly different to the best performing algorithm in respect to the median. It becomes

evident that for different dimensional problems and benchmark functions the algorithms’

performances can differ significantly. Furthermore the performance of the algorithms on the

CEC benchmark functions is not necessarily a reflection of the performance of the

algorithms on the DRUtES benchmark functions. It is therefore important to test

algorithms on the DRUtES environment to deduct which algorithm should be chosen for

the actual inverse modeling task, even though the DRUtES benchmark functions could be

improved to include a greater variety of soil textures and uncertainty of reference data,

initial and boundary conditions. Based on the results, it would be recommendable to use

TLBOsce for low dimensional problems, but not for high dimensional problems. Throughout

the calibration and algorithm testing, it became evident that reinitialization can be very

useful in enhancing the performance. Fig. 27 (appendix B) shows boxplots of 30D CEC

benchmark function without any reinitialization resulting in an overall worse performance.

Overall, the TLBO algorithms required more frequent reinitialization than PSO algorithms,

except for TLBOscebn, where it was problem dependent. This can be explained in the

convergence structure of each class of algorithms. PSO algorithms permit particles to roam

around in the search space, especially bad solutions, whereas TLBO algorithms converge

quickly towards the global best and only improved solutions are stored storing only

improved solutions and discarding bad solutions. This presents the need for diversity

enhancement, which is given by frequent reinitialization.

62

5 BENCHMARK FUNCTIONS

Table 13: Scoreboard of best algorithms that did not show significant differences in the best
median.

Benchmark PSO PSObn PSOsce PSOscebn TLBO TLBObn TLBOsce TLBOscebn

10D f1 0 0 0 1 0 0 0 1
10D f2 0 0 0 0 1 1 1 0
10D f3 0 1 0 0 0 1 1 1
10D f4 0 1 0 1 1 1 1 1
10D f5 0 0 0 0 0 0 0 1
10D f6 0 0 0 0 0 0 0 1
10D f7 1 0 0 0 0 1 1 0
10D f8 1 0 1 0 1 1 1 1
10D f9 1 0 1 1 0 0 0 0
10D f10 0 0 0 0 1 0 0 1
⌃ 3 2 2 3 4 5 5 7

30D f1 0 0 0 1 0 0 0 1
30D f2 1 0 1 0 0 0 0 1
30D f3 0 1 0 0 0 0 0 1
30D f4 0 0 0 0 1 0 1 0
30D f5 0 0 0 1 1 1 0 1
30D f6 1 0 1 1 0 0 0 0
30D f7 1 0 1 1 1 1 1 1
30D f8 0 0 0 0 1 1 1 1
30D f9 1 0 1 1 0 0 0 0
30D f10 0 0 0 0 0 1 0 1
⌃ 4 1 4 5 4 4 3 7

DRUtES standard 1 0 0 0 0 1 0 1 0

DRUtES standard 2 1 1 1 0 1 0 1 0

DRUtES dual 0 0 1 1 0 0 0 1

63

6 CASE STUDY

6 Case study

6.1 Introduction

Data from three water content AQUA-TEL-TDR (Automata, Inc., now McCrometer

CONNECT) sensors were used in this study. They were installed horizontally at depth of

10, 20 and 30 cm. The field soil was loamy Chernozem on a carbonate-rich loess substrate.

Sensor installation, data sampling and Time Domain Reflectometer (TDR) data calibration

were not part of this thesis and were provided from previous field research conducted in

Prague-Suchdol (50°80N, 14°230E, 286 m a.s.l). A detailed description of the site, field

measurements and TDR calibration can be found in Doležal et al. (2012) and Doležal et al.

(2015). The TDR readings resulted in anomalously high water content readings during

rainfall events. The effects were very pronounced in the upper TDR readings. During the

installation of the TDR probe, a slurry was prepared with local native soil. This slurry was

applied around the TDR probes in order to close the gaps between the TDR probes and the

soil. When the slurry dried and shrank, cracks appear around the TDR probes. As a result,

Doležal et al. (2012, 2015) and Kogelbauer et al. (2015) hypothesized that a very thin layer

of extremely high porosity, an artificial macroporous envelope, surrounded the TDR probe

(Fig. 17). It was concluded that the high TDR readings during the passing of the wetting

front were caused by local soil hydraulic properties. The steep increase was assumed to be

due to preferential flow. There were previous attempts to simulate and quantify percolation

fluxes with the measured data with two different manually calibrated models with moderate

success. A more detailed description of previous simulations can be found in Kogelbauer

et al. (2015). Furthermore, Kogelbauer et al. (2015) describe that during dry spells, cracks

at the surface 1 to 3 mm wide appear. The preferential flow was possible due to a connected

network of macropores that exists in the upper soil layer, which was also confirmed by visual

inspection during the uninstallation of the TDR sensors (Doležal et al. 2012).

Figure 17: Conceptual model of the artificial macroporous envelope causing anomalous TDR
readings during rainfall.

64

6 CASE STUDY

6.2 Mesh optimization

The presented problem requires a 2D description, which has to represent processes of different

spatial magnitude. The overall domain can be represented by a soil bock of 75 cm width and

100 cm depth. The heterogeneities around the TDR are only assumed to be 2.5 mm wide

and are assumed to require additional soil hydraulic properties (SHP) description. The

mesh therefore has to be of quite fine resolution close to the TDR. The finer the mesh, the

more unknowns have to be solved numerically, which increases the computational time. It

is therefore desirable to find a mesh that reduces the number of degrees if freedom, while

maintaining high accuracy. This optimization problem is somewhat contradictory as higher

mesh resolution will lead to higher accuracy and coarser mesh resolution will lead to a smaller

number of degrees of freedom and less unknowns to be solved numerically. Therefore a set of

optimal solution sunder constraint conditions is desired, which can be obtained using multi-

objective optimization. The modified dynamic neighborhood Multi-objective Particle Swarm

Optimization (MOPSO) algorithm was used to solve this multi-objective problem.

6.2.1 Set-up of mesh optimization

First, a very fine reference mesh was created using Gmsh (Geuzaine and Remacle 2009)

covering the main properties of the problem. Only the upper 35 cm were of interest, which

was reflected by the non-uniform discretization of the created mesh. Using the standard

total head model, a simple infiltration simulation was constructed (Tab. 14). The great

advantage of Gmsh is the ability to create a mesh with parameter inputs from a

configuration file (mesh.geo), which can be compiled to create a mesh file (mesh.msh). The

configuration file contains contains geometry information and initial mesh size information,

but also information on mesh progressions along transfinite lines, which can overwrite the

initial mesh size information. With a transfinite line, the number of nodal points along a

line can be defined, and with a progression parameter the distribution of these lines can be

defined, where 1 represents a uniform distribution. Basic uniform meshes can thus be easily

refined where necessary and complex meshes can be generated. The geometry as depicted in

Fig. 18, meaning the size of the soil box, the position and size of the TDR probes, anomalies

and helper lines, was considered static.

Seven parameters were identified defining the mesh. The optimization task thus became a

7D problem. Fig. 18 shows the schematic of the mesh creation. The domain box was defined

through 6 points (1-6). The TDRs (gray) and the anomaly borders (red) were defined by

4 arches creating circles, which were constructed through 4 points. To make sure the same

number of elements surround each anomaly, helper circles (orange) were constructed close to

the anomaly.

Each point in Gmsh is defined by a coordinate and a mesh size. Point 1, Point 2, TDRs,

65

6 CASE STUDY

anomaly borders and their helpers were assigned a parameter mesh size 1 with their point

definition. For TDRs, anomalies and helpers, this definition was overwritten using transfinite

lines creating three further parameters TDR, anomaly and helper to refine the mesh and to

specify the number of nodal points in each arch. Points 3 and 4 were assigned parameter mesh

size 2 and points 5 and 6 were assigned parameter mesh size 3. The top line indicated in black

was also overwritten using transfinite line definition creating the last parameter top.

These definitions were sufficient to create a sufficiently complex mesh. The effects of the

parameters can be described as follows. Lines connecting two points are automatically

assigned the points’ mesh size definition as long as no other mesh definition overwrites this

statement. If the two points have different definitions, the mesh size along the line is linearly

increasing or decreasing. The green line therefore automatically gets assigned mesh size 3,

which is quite coarse. The cyan line connecting point 5 and 6 automatically gets assigned

mesh size 2, which is smaller than mesh size 3. The actual element size of the mesh between

the light blue line and green line is linearly increasing towards the bottom. The top

transfinite line also decreases the size of mesh elements near the top. The element size

decreases towards the helper circles and more so towards the anomaly. The mesh is finest in

the area defining the anomalies.

The computational set-up is similar to the Dual Richards’ Unsaturated Equation Solver

(DRUtES) benchmark function depicted in Fig. 10, except that in this case, Gmsh

configuration files were created and new meshes were computed based on the optimization

output. The optimization was constrained by a time limit that was set upon the DRUtES

execution. Only meshes needing less than 5 minutes for the given simulation were considered

further. This was realized with a punishment function, which created artificially high Root

Mean Squared Error (RMSE) values for mesh parameter sets taking longer. The mesh

optimization was started on two computers, each containing 8 cores, to test the influence of

population size. One mesh optimization was started with a population size of 48 and

another with a population size of 80. The accuracy of each simulation was computed using

the RMSE of the water content data of the simulation output and the reference simulation.

For this, three observation points directly above the TDRs were chosen. The degrees of

freedom were estimated using the number of nodes created in each Gmsh mesh. The

personal best information was saved after each generation, which made it possible to follow

the optimization output constantly and to restart optimization when necessary. The

optimization would only stop if the maximum number of generations was reached. As it was

unknown how many generations would suffice, the number of generations was set quite low.

The result of the last generation was then used to restart the next run.

66

6 CASE STUDY

Geometry description of case study problem for mesh optimization

3 4

21

65

75 cm

100 cm

12.5 cm

10 cm

37.5 cm

20 cm

62.5 cm

30 cm

TDR and surrounding anomaly boundary and meshing helper circle

TDR 2 cm 2.5 cm3.5 cm

Figure 18: Schematic domain geometry set-up for Gmsh mesh optimization (top) and
additional close-up of TDR probe (bottom) with surrounding anomaly (magenta) and meshing
helper circle (orange).

Table 14: Initial and boundary conditions used in mesh optimization scenario.

Model Sim. time Min dt Max dt Initial h
pres

Top bc Bottom bc Sides bc Picard criterion

standard 100 d 0.5 d 0.5 d -100 cm 30 cm d�1 -100 cm 0 cm d�1 1e10

6.2.2 Results of mesh optimization

After a number of restarts, it became apparent that the optimization run with a population

of 80 coverged much more slowly, despite significantly greater number of function evaluations

(not shown). Although a greater population assures that a greater area of the search space

67

6 CASE STUDY

Table 15: Number of maximum generations set for each restart.

Run Initial 1 2 3-5 6-13 14-17 18-23 24-25 ⌃ gen. ⌃ eval.

48 particles 100 200 50 50 25 15 25 50 1010 48480
80 particles 100 200 50 28 a - - - - 378 30240

aRestart 3 only

is covered initially, it takes much longer to transfer information to distant neighborhoods.

This is due to the low number of neighbors in a neighborhood. The implemented switch

in the objective function order may actually help counteract this affect as the basis for the

neighborhood formation changes. The mesh optimization was discontinued after two and a

half weeks due to time limitations of this project. This was considered acceptable as only more

potential meshes joined the Pareto front, but the Pareto front itself did not seem to move. Fig.

19 depicts the evolution of the mesh optimization. Note, comparing the result after 800 and

1010 generations may seem like a deterioration at first sight, but the effect is false as simply

more members of the population joined the suitable search space. In the beginning, first none

and then only a small number of particles have reached the non-punishable search space. As

the optimization commences, more particles find mesh solutions within the time constraints

and join the Pareto front. The Pareto front itself appears to be non-convex, although as

the entire population has not fully converged this cannot be said for certain. It may seem

as if the particles seem to converge towards attractors. Interestingly, the mesh set-up was

unintentionally set-up so that different combinations of the chosen design parameters can in

fact result in meshes with a very similar number of nodes and similar accuracy. This may

in part be due to the chosen observation points. Mentioning this, it should be stressed that

this work was not conducted to find the single-best mesh or to claim the existence of such,

but to find an appropriate mesh that has the ability to reduce the computational time while

maintaining high accuracy, which certainly allows the existence of different combination of

design parameters to create similar meshes.

With the Pareto front a set of optimal solutions was found. It is now up to the scientist or

engineer to choose the most suitable solution. In this case, 4 meshes were selected. Namely,

the meshes with the highest (id 40) and the second highest accuracy (id 47), a mesh from the

middle (id 38) and the mesh with the lowest number of nodes (id 43). These were run again

to obtain time series, as only parameter sets are stored during the mesh optimization, but not

the actual output. The time series were compared to the reference mesh (Fig. 20). Simple

paired T-test and Wilcoxon test were conducted to see if the differences between the selected

meshes and the reference mesh were statistically significant. Only the first observation point

presented significant differences between the meshes (not shown). At this stage, the scientist

or engineer has to make a decision on which objective function outweighs the other and it

68

6 CASE STUDY

Figure 19: Evolution of mesh optimization after 200, 300, 400, 600, 800 and 1010 generations.
The larger dark red crosses indicate the non-dominated Pareto front.

may also be perfectly valid to conclude that a decrease in computational time outweighs small

differences. Nonetheless, it was decided to use the mesh with the highest accuracy (Fig. 21).

The parameters identified for the mesh considered most appropriate can be found in Tab.

16

Table 16: Design variables for mesh optimization, assigned boundaries and identified value.

Parameter Symbol Kind Min Max Identified value

Mesh size 1 ms1 size 5 10 6.02
Mesh size 2 ms2 size 5 10 7.05
Mesh size 3 ms3 size 15 20 16.42
Helper help number of nodesa 6 12 6.613
Anomaly boundary anom number of nodesa 10 20 10.60
TDR boundary TDR number of nodesa 10 15 11.37
Top boundary top number of nodes 20 50 27.03
RMSE - - - 4.3e-4
Number of nodes - - - 1268

aper quarter circle arch. Number of nodes for entire circle is four times greater.

69

6 CASE STUDY

Figure 20: Comparison of four selected meshes from the Pareto front showing the time series
(top) and the difference to the reference mesh (bottom). Mesh id 40 (light blue) resulted in
highest accuracy, mesh id 47 (orange) resulted in second highest accuracy, mesh id 38 (dark
blue) represents the middle with medium accuracy and number of nodes and mesh id 43 (dark
red) with lowest number of nodes and worst accuracy.

70

6 CASE STUDY

Figure 21: Optimized mesh and close-up of mesh around TDR

71

6 CASE STUDY

6.3 Inverse modelling

6.3.1 Project design and data preparation

Estimating initial condition

The calibration data made available covered rainfall events from the 16th until the 21st

November 2010 and contained precipitation data and water content TDR measurements.

Later, data over two years were made available that were used to update assumptions on the

presented problem. One major unknown was the initial condition. To obtain an acceptable

initial condition, it was decided to use the meteorological data available from the weather

station on the grounds of the Czech University of Life Sciences, Prague-Suchdol, to perform

an initialization run starting two weeks prior to the actual start of the calibration time period.

As the anomalous heterogeneities were considered negligible to obtain initial pressure head

values, the initialization run was set-up in 1D. The final vertical pressure head distribution

was mapped on to the 2D domain and used as the initial condition. This caused the initial

condition and the pressure head range to be different for every parameter set.

Data preparation for atmospheric boundary

As the initialization run was of considerable length, evaporation could not be neglected. The

meteorological data from the weather station was also used to calculate hourly potential

evaporation fluxes using the Penman’s Monteith equation according to Allen et al. (1998),

with assumptions concerning the soil heat flux and resistance terms recommended by the

Food and Agriculture Organization (FAO) for hourly estimates. The Penman-Monteith form

of the evaporation flux ET is

ET =

�(Rn �G) + ⇢acp
e
s

�e
a

r
a

fac

(�+ �(1 + r
s

r
a

))�
, (6.1)

where Rn is net radiation [MJ h�1 m�2], G is soil heat flux [MJ h�1 m�2], ⇢a is the mean

air density [kg m�3], cp is specific heat of the air 1.013e-3 kJ kg�1 K�1, � is the slope of the

saturation vapor pressure temperature relationship[kPa K�1], � is the psychometric constant

[kPa K�1], es� ea is the vapor pressure deficit [kPa], ra is the aerodynamic resistance [s m�]

approximated by 208
u2

with u2 as the wind speed at two meters height, rs is the bulk surface

resistance assumed to be 70 s m�1, fac is a conversion factor to obtain the correct time units

and � is latent heat 2.45 MJ kg�1. The unit used in this simulation were cm for length and

hours for time. To convert the wind dependent part of the ET flux to the desired time units

fac was set to 3600 s h�1. Obviously, if the time unit conversion is not accounted for, the

wind effect is hugely underestimated. With the above equation this results in m�2 h�1 kg.

Dividing by the liquid water’s density (⇠ 1000 kg m�3) and multiplying by 1000 converts
72

http://meteostanice.agrobiologie.cz/export.php
http://meteostanice.agrobiologie.cz/export.php

6 CASE STUDY

length units from m to mm, and results inresults in more commonly used units for the ET

flux, despite not having stated this explicitly in the equation. The computed ET flux was

divided by 10 to obtain cm h�1. According to Allen et al. 1998, for hourly values the soil heat

flux G can be approximated using Rn data with

G =

8
><

>:

0.1 ·Rn, during daytime

0.5 ·Rn, during nighttime
(6.2)

where daytime was assumed to last from 7 am to 6 pm in October and from 8 am to 5 pm in

November. For all other equations concerning the ET flux I refer to Allen et al. 1998.

Project design

When modeling infiltration, there is a risk to create an ill-posed or even singular problem

when only assigning Neumann conditions. The inverse problem can become ill-posed when

the soil becomes near-saturated resulting in the retention capacity becoming extremely small

and possibly vanishing. This causes the system to lose connection to the initial condition

defined at t=0. When the retention capacity term is zero, the system becomes singular and

no exact solution can be found. When the connection to the initial condition is lost and

only Neumann conditions are assigned, the system is only defined by first derivatives and

therefore not fully defined. To avoid this, a Dirichlet condition, which assigns the solution

to a boundary, was assigned to the bottom boundary. As the bottom boundary was located

relatively far away from the area of interest, it was hoped this wouldto not falsify the solution

significantly. To obtain the best possible Dirichlet condition for the 2D simulation, the 1D

domain of the initialization was extended to cover 200 cm, which was initialized hydrostatically

with Hinit = 0 cm resulting in a linear pressure head gradient htop = �200 cm at the top and

hbottom = 0 cm.

The inverse modeling was conducted using both the standard uni-modal van Genuchten

model and the dual permeability model. This was done to see if the dual permeability model

with additional parameters improves the standard model’s parameterization of the problem.

This resulted in 2 inverse problems of different dimensionality. The Teaching-Learning

Based Optimization with a bad neighborhood and shuffling complexes approach

(TLBOscebn) algorithm was selected for both optimization tasks with a population of 64

and 2 complexes. Despite TLBOscebn being a global optimizer, population-based

metaheuristics offer evaluation of and information from the entire population. TLBOscebn

compared to Particle Swarm Optimization (PSO) is quite strong at getting the entire

population of potential solutions into feasible space within a few iterations. The total

number of iterations was set to 1000, but the state of the optimization was saved after each

iteration and the approximated simulated water content time series was saved after each

73

6 CASE STUDY

function evaluation.

set-up computation

R script: algorithm

Stopping
criterion

true?

R script: evaluation script

Bash script: create input files, wait
for completion of parallel execution

1D DRUtES
execution

1D DRUtES
output

2D DRUtES
execution

2D DRUtES
output

stop

call evaluation function

call bash

call DRUtES

map

yes

wait

read DRUtES output and evaluate

return fitness value

no

Figure 22: Simplified flow chart of the link between R scripts and DRUtES for inverse
modeling.

Domain description and number of estimated soil materials

Fig. 23 shows the domain setup with boundary conditions and assumed soil material

distribution. Soil 1, covering the top 15 cm, was considered to contain a dual pore system

and therefore has the potential to create bypass or preferential flow. Soil 2, covering the rest

of the soil, was described as compacted and originally only covered a depth of 15 to 25 cm.

Based on the calibrated TDR data, it was assumed that the compaction affects the third

TDR as well and that it is therefore acceptable to extend the soil definition. No dual pore

system is assumed for soil 2. Soil 3, covering a thin layer of 2.5 mm surrounding the TDR,

was assumed to be described by macropores with extremely high porosity. After preliminary

runs and access to more data, it was concluded that two descriptions of the anomalous

regions are necessary, namely anomaly 1 and anomaly 2. If only one anomalous region is

defined, the mean water content of TDR 1 is underestimated with correct estimation of the

74

6 CASE STUDY

water contents of TDR 2 and TDR 3, or alternatively the mean water contents of TDR 2

and TDR 3 are overestimated while the mean water content of TDR 1 is correctly

estimated. Therefore, one set of parameters was estimated to describe the upper TDR

anomalous region surrounding the TDR at -10 cm depth (anomaly 1) and another set of of

soil hydraulic parameters were estimated to describe the TDR anomalous regions at -20 and

-30 cm depth (anomaly 2). The fracture and matrix definitions were identical for soil 2 and

the anomaly regions, respectively, with Ka set relatively high in these uni-modal regions to

achieve instant equilibrium in the dual permeability run in these soils. Note, the exchange

boundary conductivity in soil 1 was set low, so that non-equilibrium caused by the

preferential flow in the upper soil layer is still present.

Table 17: Computational set-up of 1D and 2D runs.

Parameter Dual Standard

1D 2D 1D 2D
Domain ⌦ 100 cm 75 cm x 100 cm 100 cm 75 cm x 100 cm
Discretization dx 1.5 cm variable 0.5 cm variable
Initial time step dt 1e-5 h
Minimum time step dt

min

1e-7h 1e-5 h
Maximum time step dt

max

0.1 h 0.15 h 0.05 h 0.02 h
Simulation time t 326 h 26 h 710 h 26 h

75

6 CASE STUDY

Domain description

h� = hinit,�

q� = 0

q� = atmospheric

q� = 0

soil 1

soil 2

anomalyTDR

q� = 0

anomalyx

x

x

x

x

x

Figure 23: Boundary conditions and material distribution for inverse modeling. The x’s in
the anomaly surrounding the TDR probes indicate 6 observation points, which were placed
in the middle of the anomalous soil shown in magenta. The anomalous soil was magnified in
the close-up and is not true in scale.

Table 18: X,Z coordinates [cm] of TDRs and observation points in each anomaly.

10 cm depth 20 cm depth 30 cm depth

TDR 12.500, -10.000 37.500, -20.000 62.500, -30.000
Observation point 1 12.500, -8.875 37.500, -18.875 62.500, -28.875
Observation point 2 12.500, -11.125 37.500, -21.125 62.500, -31.125
Observation point 3 11.530, -10.563 36.530, -20.563 61.530, -30.563
Observation point 4 11.530, -9.438 36.530, -19.438 61.530, -29.438
Observation point 5 13.470, -10.563 38.470, -20.563 63.470, -30.563
Observation point 6 13.470, -9.438 38.470, -19.438 63.470, -29.438

76

6 CASE STUDY

Finding search space ranges

Certain assumptions concerning the range of the estimated regions were partly based on

Kogelbauer et al. (2015) soil description and the TDR data.

1. The saturated hydraulic conductivity was reported to vary over several orders of

magnitude between 6x10�4 and 0.4 cm min�1, where the lower end seems extremely

slow and the higher end seems extremely fast for a loamy soil. The lower end would be

more representative of a clay soil and the higher end is more representative of a sand.

The soil was, however, reported to be highly heterogeneous.

2. The mean value of the of the soil’s porosity is ✏ = 0.457 cm3 cm�3. This was assumed

to be a good approximation of the saturated water content ✓s for both soil 1 and soil 2.

3. The calibrated TDR data time series were used to estimate the saturated water content

✓s of the anomalies and to identify knees ,in order to estimate the water content at

field capacity. To avoid making grave assumptions on whether field capacity is more

representative at pF 1.8 or 2.5, the range of parameters was chosen to be flexible enough

to allow for both. The saturated water content was estimated to be ✓s,anomaly1=0.7 [-]

with water content at field capacity (FC) at approximately ✓anomaly1(FC)=0.48 [-] for

anomaly 1 and saturated water content ✓s,anomaly2=0.5 [-] for anomaly 2.

4. The fine earth of the soil contains 22-32.5% sand, 39.5-54% silt and 22-28% clay.

To estimate ranges, it is essential to understand the physical meaning of the retention curve.

Hillel (2004) explains that if a slight suction is applied to water in a saturated soil, no outflow

may occur until a critical value is exceeded, at which point the largest surface pore begins

to empty and its water content is displaced by air corresponding to the air-entry value of a

soil. We assume capacity retention function is proportional to the particle size distribution.

Coarser soils tend to be more uniformly distributed with greater pores. This causes the air

entry point to be at low suction and the coarser soils to exhibit steeper retention properties,

where a significant proportion of the water drains suddenly at a certain suction due to the

the uniform particle size distribution. Finer soils with smaller pores tend to exhibit flatter

retention properties and tend to hold water at greater tensions, as capillary action is greater

in capillaries of smaller diameter. Looking at the TDR data, we observe a rapid increase and

decrease in water content in TDR 1, which suggests that a significant part of the anomalies

pores are filled and drained rapidly indicating steep retention properties. However the anomaly

during the November event does not fall below ✓min,anomaly1 = 0.48. As the anomalous regions

are assumed to be extremely thin, these changes in water content do not necessarily indicate

changes in the overall water content of the entire soil system. The first inverse run indicated

that the variance cannot be predicted in the assumed ranges (set-up 1, Tab. 19). This suggests

that the retention curve should be even steeper. However, keeping the field capacity constraint

in mind, this also suggests an air entry at greater suction, resulting in rather soil-unusual van
77

6 CASE STUDY

Genuchten parameterization for the anomaly (set-up 2, Tab. 19). Overall, the search space

ranges are quite difficult to determine as no pressure head information is available.

Evaluation criteria

Each TDR water content reference data was compared to the mean of the water content of

six observation points placed within each anomaly (Tab. 18). This was thought to sufficiently

represent the anomaly, creating three mean water content time series. The coordinates of each

observation point can be found in Tab. 18 and are depicted in Fig. 23. The objective function

chosen for the optimization was the the mean of the logged RMSE. This means that each

TDR’s time series was treated as equally important. As the RMSE only serves as an error

criterion and does not serve as an indicator for the shape of the solution, several other criteria

were additionally evaluated and stored in output files. Each anomaly was evaluated separately

using logged RMSE, the Pearson’s correlation coefficient, the ratio of the means and the ratio

of the variance. R functions cor(), mean() and var() from the stats and base packages were

used to evaluate the correlation coefficient, the means and the variances. Before evaluation

took place, the simulated output was approximated by linear interpolation to match the

hourly TDR output times using R’s approx() function from the stats package. This assured

that the number of compared values are the same and that there is no bias due to changing

time steps.

The ratio of the means can be expressed as

ratiomeans =
⌃

t
i=1Simi

⌃

t
i=1Obsi

=

Sim

Obs
(6.3)

where Sim is the mean of the simulated value, Simi is the simulated value at time i, Obs is

the mean of the observed value and Obsi is the observed value at time i. The mean is usually

the sum of all values divided by the number of values. Since the number of values is identical,

they cancel each other out. The ratio of the variance can be expressed as

ratiovariance =
⌃

t
i=1(Simi � Sim)

2

⌃

t
i=1(Obsi �Obs)2

=

�2
Sim

�2
Obs

, (6.4)

where �2
Sim is the variance of the simulated data and �2

Obs is the variance of the observed

data. Again, the number of values is identical and therefore cancel each other out in this

expression.

The Pearson’s correlation coefficient for our case is

r =

⌃

t
i=1(Simi � Sim)(Obsi �Obs)q

⌃

t
i=1(Simi � Sim)

2
q
⌃

t
i=1(Obsi �Obs)2

. (6.5)

78

6 CASE STUDY

6.3.2 Results and Discussion

The inverse modeling task could not be fully completed as simulation time of the dual

permeability model took too long and due to necessary modifications of the project design.

However, the preliminary results and the preliminary runs already raise interesting

questions. Fig. 24 depicts the results for the optimized standard model with two different

parameter ranges. It was decidednot to show the dual permeability estimates, as these were

still too preliminary to provide meaningful information on the fit of the model. The

standard model with set-up 1 (std 1 depicted in blue) has already converged and the global

best does not change, however standard model with set-up 2 (std 2 depicted in blue) is still

improving and finding better parameter combinations to fit the observations. The results

indicate that the presented case study with physical van Genuchten parameters cannot be

simulated with a uni-modal model. The adapted boundary did improve the fit for TDR1

slightly, however the identified van Genuchten parameters might not be physical.

Nonetheless, it raises the question: Do artificial slurries made of native soil and exhibiting

cracks modify physically meaningful ranges of van Genuchten parameterization? Moreover,

it also raises the question: How do water retention properties change? More precisely, is

water in cracks within these slurries, which contain a moderate clay content, held longer or

held at greater tensions, when compared to water in pores of equivalent diameter in natural

soils? And would this explain unusual van Genuchten parameterization? Furthermore,

despite the different set-ups, very similar parameters were identified for soil 1 and soil 2. In

both set-ups the saturated hydraulic conductivity in the upper soil was identified to be 24.53

and 22.76 cm h�1 (588 and 546 cm d�1). Although these values are still in the upper range

suggested by Kogelbauer et al. (2015), it is unlikely that the soil, a loamy Chernozem, truly

exhibits these conductivities. It can be seen as another indication that fractures and cracks

must play an important role in the water transport. Results presented in Kogelbauer et al.

(2015) using a mobile-immobile dual porosity model showed a much better fit.

As the inverse modeling with the dual permeability model is still on-going, we cannot yet

say whether the dual permeability model is able to improve the simulation outcome. To

increase variance in the artificial envelope, the fracture definition of the upper soil can be

influential. With high infiltration weights, the fracture in this set-up represents the main

conducting domain in the dual permeability approach. It still needs to be analyzed if the

fracture definition in the top soil is adequate. The location of the population of potential

solutions can be an indication that the optimal values lie outside of the chosen range. If the

majority of the population, the set of potential solutions, is very close to the boundary the

range should be adapted. However, the optimization has not progressed far enough to be able

to tell.

Furthermore, since the shape of the water content seemed to be the biggest challenge, it

might be advisable to use a different, more holistic, optimization criterion, which also takes
79

6 CASE STUDY

variance into account, such as the Kling-Gupta-Efficiency (KGE). The KGE is a maximization

criterion, so either the negative KGE would need to be optimized or the algorithms need to

be restructured in order to allow for maximization problems as well. It is already extremely

helpful to evaluate different evaluation criteria.

The TDR sensor readings were calibrated with water content data from undisturbed soil

samples. Only samples under medium wet conditions were considered to not violate the

hypothesis of preferential flow and anomalous TDR readings under wet conditions. An

F-test was conducted to test if the variance of the water content measurements of the

undisturbed samples and the TDR readings are significantly different. The F-test did not

result in significant differences, which lead to the conclusion that the slope of the linear

TDR calibration function is best described by unity (Doležal et al. 2012, 2015). Considering

the low sample size (4-7) and the limited moisture range covered by the calibration, the

conclusion that the TDR readings and the water content of undisturbed samples are best

related to each other with a slope of unity for the entire moisture range may have to be

revisited. Especially when deviating form physical-based parameterization ranges, there is a

certain risk of simulating a TDR sensor artifact rather than true soil hydraulic

properties.

The rain event in November was not particularly strong and with additional data, it would

be more interesting to calibrate more intense rain events. It is out of the question that after

calibration is completed, the results require validation. If the dual permeability model is

significantly superior in other calibration events, it would be useful to calculate percolation

fluxes as suggested in Pirastru and Niedda (2010) and compare these to the saturated hydraulic

conductivity in the matrix to analyse the importance of bypass flow compared to matrix driven

flow.

To reduce the simulation time of the dual permeability model, attempts were made to change

the project design and numerics. For the 1D simulation, implemented changes reduced the

simulation time tremendously. Although more work is required to reduce the simulation

time for 2D runs, some progress has been made to reduce the simulation time in 2D. The

calibration time was reduced to only cover one rain event instead of a series of three rain events

in November. The Picard iteration criterion was set high (M. Kuraz, oral communication).

It was assumed that the high Picard criterion can help to find more appropriate ranges for

later optimization runs with a lower Picard iteration criterion. Nonetheless, the high Picard

criterion lead to unrealistic results and some oscillation. With a low Picard criterion the

simulation takes several hours, with some exceptions taking more than 12 hours with the

optimized mesh. Not all parameter sets require a long period of time, however the algorithm

cannot commence before all simulations have finished. Computers with 32 cores were used

and the population was set to 64. The minimum population should not be lower than 40

for TLBOscebn. Each evaluation call therefore takes two sets of parallel runs. The algorithm

80

6 CASE STUDY

requires two evaluation for each iteration, which would have resulted in an iteration taking

48 hours. Even with a low iteration number of 100, this would have resulted in a simulation

time of several months. Despite intensive efforts, the issues could not be resolved in time and

were out of scope for this thesis. An ideal set-up is yet to be found and will be part of future

research. The uni-modal problem, in contrast, was run on computers with 8 cores. Despite

the limited number of cores, the computation time of one iteration with the standard model

is significantly faster. This allowed the use of a low Picard criterion, a finer 1D mesh, a longer

pre-initialization time and smaller maximum time step. Generally, we can conclude that with

the present set-up, 2D non-coupled problems are more suitable when using population-based

metaheuristics and feasible ranges of parameters can be found quite quickly.

Changing the evaluation set-up may also help reduce the simulation time. To improve the

simulation, a time punishment factor for computations exceeding a maximum time can be

introduced. If the maximum simulation time is reached and the simulation has not finished,

the error criterion can be set artificially high. For this it is necessary to know what simulation

time can be considered appropriate. The introduction of a punishment factor may cause good

solutions to be punished when the maximum simulation time is set inappropriately. This

approach is therefore not recommended when the ranges of the design parameters are not

known at all.

81

6 CASE STUDY

Figure 24: Optimized results with uni-modal standard model and input rainfall intensity and
potential evapotranspiration data

82

6 CASE STUDY

Table 19: Design variables for inverse modeling, assigned boundaries and identified value for
dual permeability model set-up 1.

Material Parameter Symbol Min Max Identified value

std 1 std 2
Soil 1 dual inverse of air entry value in matrix [cm�1] ↵

m

0.005 0.05 - -
shape parameter in matrix [-] n

m

1.3 2.3 - -
sat. water content in matrix [-] a

✓

s,m

- - - -
res. water content in matrix [-] ✓

r,m

- - 0
sat hydraulic conductivity of matrix [cm h�1] K

s,m

0.1 5 - -
inverse of air entry value in fracture [cm�1] ↵

f

0.01 0.15 - -
shape parameter in fracture [-] n

f

2 3 - -
sat. water content in fracture [-] ✓

s,f

0.3 0.5 - -
res. water content in fracture [-] ✓

r,f

- - 0
sat hydraulic conductivity of fracture [cm h�1] K

s,f

15 30 - -
fracture weight w

f

0.05 0.3 - -
infiltration weight w

inf

0.5 0.95 - -
distance from center of aggregates [cm] a 0.5 1.5 - -
exchange boundary conductivity [cm h�1] K

a

1e-7 1e-4 - -

Soil 1 uni-modal inverse of air entry value [cm�1] ↵ 0.01 0.1 0.01003 0.01003
shape parameter[-] n

m

1.8 2.5 2.472 2.217
sat. water content [-] ✓

s

- - 0.457
res. water content [-] ✓

r

- - 0
sat hydraulic conductivity [cm h�1] K

s

0.1 25 24.53 22.76

Soil 2 b fracture weight c
w

f

- - 0.5
distance from center of aggregates [cm] c

a - - 1
exchange boundary conductivity [cm h�1] c

K

a

- - 0.1
inverse of air entry value [cm�1] ↵ 0.01 0.1 0.076 0.037
shape parameter n [-] 5 10 1.500 1.506
sat. water content [-] ✓

s

- - 0.457
res. water content [-] ✓

r

- - 0
sat hydraulic conductivity [cm h�1] K

s

0.1 20 6.23 4.12

Anomaly 1 b fracture weight [-] c
w

f

- - 0.5
distance from center of aggregates [cm] c

a - - 1
exchange boundary conductivity [cm h�1] c

K

a

- - 0.1
set-up 1 inverse of air entry value [cm�1] ↵ 0.01 0.07 0.0154 -
set-up 2 inverse of air entry value [cm�1] ↵ 0.003 0.015 - 0.0056
set-up 1 shape parameter [-] n 1.3 2 1.3167 -
set-up 2 shape parameter [-] n 2 4.5 - 4.45
set-up 1 dual inverse of air entry value [cm�1] ↵ 0.01 0.07 - -
set-up 2 dual inverse of air entry value [cm�1] ↵ 0.005 0.03 - -
set-up 1 dual shape parameter [-] n 1.3 2 - -
set-up 2 dual shape parameter [-] n 2.5 3.5 - -

sat. water content [-] ✓

s

0.68 0.72 0.6831 0.71
res. water content [-] ✓

r

- - 0
sat hydraulic conductivity [cm h�1] K

s

0.1 10 8.312 8.912

Anomaly 2 b fracture weight [-] c
w

f

- - 0.5
distance from center of aggregates [cm] c

a - - 1
exchange boundary conductivity [cm h�1] c

K

a

- - 0.1
set-up 1 inverse of air entry value [cm�1] ↵ 0.01 0.07 0.045 -
set-up 2 inverse of air entry value [cm�1] ↵ 0.005 0.05 - 0.046
set-up 1 shape parameter [-] n 1.3 2 1.306 -
set-up 2 shape parameter [-] n 1.3 2.5 - 1.307

sat. water content [-] ✓

s

0.45 0.52 0.52 0.519
res. water content [-] ✓

r

- - 0
sat hydraulic conductivity [cm h�1] K

s

0.1 10 9.962 9.484

acomputed from ✓

s,f

and total ✓
s

=0.457, where ✓

s,m

=
✓

s

�✓

s,f

·w
f

1�w

f

bFracture and matrix domains have same properties to simulate uni-modal soil
cOnly dual

83

7 CONCLUSION

7 Conclusion

In this thesis the dual permeability model was implemented in the open free software Dual

Richards’ Unsaturated Equation Solver (DRUtES) and test simulation were presented to

show when preferential bypass flow can occur. Additionally, population-based metaheuristic

algorithms were presented that can be used for global optimization and bi-objective

optimization. Due to numerical difficulties and long simulation time of the dual permeability

model, the inverse modeling could only be set-up, but not completed. Nonetheless,

important questions could be raised on the basis of preliminary results.

The main further research aims include:

• Better understanding of when simulations with the dual permeability become

ill-conditioned and how to treat this.

• Better numerical treatment of the dual permeability model implementation in 2D to

decrease computational time and thus increase usability for inverse modeling.

• Enhanced verification of the dual permeability model with more appropriate real data.

• The creation of tutorials on how to use DRUtES and the mesh generator in combination

with DRUtES to increase accessibility and usability of DRUtES.

• Improved understanding of retention properties of artificial macropores with moderate

clay content.

• Validation of the presented case study.

84

REFERENCES

References

Allen, Richard G., L. S. Pereira, D. Raes, and M. Smith. 1998. FAO Irrigation and drainage

paper No. 56. FAO - Food / Agriculture Organization of the United Nations. isbn: 92-5-

104219-5.

Amaran, Satyajith, Nikolaos V. Sahinidis, Bikram Sharda, and Scott J. Bury. 2015.

“Simulation optimization: a review of algorithms and applications”. Annals of Operations

Research 240, no. 1 (): 351–380. issn: 0254-5330, 1572-9338.

doi:10.1007/s10479-015-2019-x.

Beven, Keith, and Peter Germann. 2013. “Macropores and water flow in soils revisited”. Water

Resources Research 49, no. 6 (): 3071–3092. issn: 1944-7973. doi:10.1002/wrcr.20156.

Bianchi, Leonora, Marco Dorigo, Luca Maria Gambardella, and Walter J. Gutjahr. 2009. “A

survey on metaheuristics for stochastic combinatorial optimization”. Natural Computing 8

(2): 239–287. issn: 1567-7818, 1572-9796. doi:10.1007/s11047-008-9098-4.

Biggar, Paul, Nicholas Nash, Kevin Williams, and David Gregg. 2008. “An Experimental

Study of Sorting and Branch Prediction”. J. Exp. Algorithmics 12 (): 1.8:1–1.8:39. issn:

1084-6654. doi:10.1145/1227161.1370599.

Blum, Christian, and Andrea Roli. 2003. “Metaheuristics in Combinatorial Optimization:

Overview and Conceptual Comparison”. ACM Comput. Surv. 35, no. 3 (): 268–308. issn:

0360-0300. doi:10.1145/937503.937505.

Boussaïd, Ilhem, Julien Lepagnot, and Patrick Siarry. 2013. “A survey on optimization

metaheuristics”. Information Sciences, Prediction, Control and Diagnosis using Advanced

Neural Computations, 237:82–117. issn: 0020-0255. doi:10.1016/j.ins.2013.02.041.

Buckingham, Edgar. 1907. “Studies on the movement of soil moisture”.

Bäck, Thomas, and Hans-Paul Schwefel. 1993. “An Overview of Evolutionary Algorithms for

Parameter Optimization”. Evolutionary Computation 1, no. 1 (): 1–23. issn: 1063-6560,

visited on 10/12/2016. doi:10.1162/evco.1993.1.1.1. http://dx.doi.org/10.1162/

evco.1993.1.1.1.

Cheney, Elliott Ward, and David Ronald Kincaid. 2008. Numerical Mathematics and

Computing. 6th ed. Brooks/Cole. isbn: 978-0-495-38472-4.

Czachor, Henryk. 2011. “Laminar and Turbulent Flow in Soils”. In Encyclopedia of

Agrophysics, ed. by Jan Gliński, Józef Horabik, and Jerzy Lipiec, 413–413. Encyclopedia

of Earth Sciences Series. DOI: 10.1007/978-90-481-3585-1_80. Springer Netherlands. isbn:

978-90-481-3584-4 978-90-481-3585-1.

Darcy, Henry. 1856. Les fontaines publiques de la ville de Dijon.

Das, S., and P. N. Suganthan. 2011. “Differential Evolution: A Survey of the State-of-the-

Art”. IEEE Transactions on Evolutionary Computation 15, no. 1 (): 4–31. issn: 1089-778X.

doi:10.1109/TEVC.2010.2059031.

85

http://dx.doi.org/10.1007/s10479-015-2019-x
http://dx.doi.org/10.1002/wrcr.20156
http://dx.doi.org/10.1007/s11047-008-9098-4
http://dx.doi.org/10.1145/1227161.1370599
http://dx.doi.org/10.1145/937503.937505
http://dx.doi.org/10.1016/j.ins.2013.02.041
http://dx.doi.org/10.1162/evco.1993.1.1.1
http://dx.doi.org/10.1162/evco.1993.1.1.1
http://dx.doi.org/10.1162/evco.1993.1.1.1
http://dx.doi.org/10.1109/TEVC.2010.2059031

REFERENCES

Doležal, František, Svatopluk Matula, and J. M. Moreira Barradas. 2012. “Percolation in

macropores and performance of large time-domain reflectometry sensors”. Plant, Soil and

Environment 58:503–507.

– . 2015. “Rapid percolation of water through soil macropores affects reading and calibration

of large encapsulated TDR sensors”. Soil and Water Research 10 (3): 155–163. doi:10.

17221/177/2014-SWR.

Dréo, Johann. 2011. Different classifications of metheuristics. Visited on 10/16/2016. https:

//commons.wikimedia.org/wiki/File:Metaheuristics_classification.svg.

Duan, Q. Y., V. K. Gupta, and S. Sorooshian. 1993. “Shuffled complex evolution approach

for effective and efficient global minimization”. Journal of Optimization Theory and

Applications 76 (3): 501–521. issn: 0022-3239, 1573-2878, visited on 10/31/2016.

doi:10.1007/BF00939380.

Durner, Wolfgang, and Hannes Flühler. 2005. “Soil hydraulic properties”. Encyclopedia of

Hydrological Sciences.

Eberhart, RC, and J Kennedy. 1995. “A new optimizer using particle swarm theory,

Proceedings of the Sixth International Symposium on Micro Machine and Human Science:

Oct 1995”.

Engelbrecht, Andries P. 2005. Fundamentals of Computational Swarm Intelligence. Wiley.

isbn: 978-0-470-09191-3.

Genuchten, M.Th. van. 1980. “Closed-form equation for predicting the hydraulic conductivity

of unsaturated soils”. Soil Science Society of America Journal 44 (5): 892–898.

Gerke, H. H., and M. T. van Genuchten. 1993a. “A dual-porosity model for simulating the

preferential movement of water and solutes in structured porous media”. Water Resources

Research 29 (2): 305–319.

– . 1993b. “Evaluation of a first-order water transfer term for variably saturated dual-porosity

flow models”. Water Resources Research 29, no. 4 (): 1225–1238. issn: 1944-7973. doi:10.

1029/92WR02467.

Gerke, Horst H. 2011. “Bypass Flow in Soil”. In Encyclopedia of Agrophysics, ed. by Jan

Gliński, Józef Horabik, and Jerzy Lipiec, 100–105. Encyclopedia of Earth Sciences Series.

DOI: 10.1007/978-90-481-3585-1_23. Springer Netherlands. isbn: 978-90-481-3584-4 978-

90-481-3585-1.

Germann, Peter F. 1985. “Kinematic wave approach to infiltration and drainage into and from

soil macropores”. Transactions of the ASAE 28 (3): 745–0749.

Germann, Peter F., and Keith Beven. 1985. “Kinematic Wave Approximation to Infiltration

Into Soils With Sorbing Macropores”. Water Resources Research 21, no. 7 (): 990–996. issn:

1944-7973. doi:10.1029/WR021i007p00990.

Geuzaine, Christophe, and Jean-François Remacle. 2009. “Gmsh: A 3-D finite element mesh

generator with built-in pre- and post-processing facilities”. International Journal for

86

http://dx.doi.org/10.17221/177/2014-SWR
http://dx.doi.org/10.17221/177/2014-SWR
https://commons.wikimedia.org/wiki/File:Metaheuristics_classification.svg
https://commons.wikimedia.org/wiki/File:Metaheuristics_classification.svg
http://dx.doi.org/10.1007/BF00939380
http://dx.doi.org/10.1029/92WR02467
http://dx.doi.org/10.1029/92WR02467
http://dx.doi.org/10.1029/WR021i007p00990

REFERENCES

Numerical Methods in Engineering 79, no. 11 (): 1309–1331. issn: 1097-0207.

doi:10.1002/nme.2579.

Gogna, Anupriya, and Akash Tayal. 2013. “Metaheuristics: review and application”. Journal

of Experimental & Theoretical Artificial Intelligence 25, no. 4 (): 503–526. issn: 0952-813X.

doi:10.1080/0952813X.2013.782347.

Haahr, Mads, and Sven Haahr. 2017. RANDOM.ORG - True Random Number Service. Visited

on 03/04/2017. https://www.random.org/.

Hillel, Daniel. 2004. Soil and Water: Physical Principles and Processes. New York: American

Press. isbn: 978-0-323-15670-7.

Hu, Xiaohui, and R. Eberhart. 2002. “Multiobjective optimization using dynamic

neighborhood particle swarm optimization”. In Proceedings of the 2002 Congress on

Evolutionary Computation, 2002. CEC ’02, 2:1677–1681.

doi:10.1109/CEC.2002.1004494.

Iden, S. C., and W. Durner. 2007. “Free-form estimation of the unsaturated soil hydraulic

properties by inverse modeling using global optimization” [inlangen]. Water Resources

Research 43, no. 7 (): W07451. issn: 1944-7973, visited on 10/12/2016.

doi:10.1029/2006WR005845.

Jakubcova, Michala, Petr Maca, and Pavel Pech. 2015. “Parameter Estimation in

Rainfall-Runoff Modelling Using Distributed Versions of Particle Swarm Optimization

Algorithm”. WOS:000363210700001, Mathematical Problems in Engineering : 968067.

doi:10.1155/2015/968067.

Jakubcová, Michala, Petr Máca, and Pavel Pech. 2014. “A comparison of selected modifications

of the particle swarm optimization algorithm”. Journal of Applied Mathematics 2014.

Kar, Arpan Kumar. 2016. “Bio inspired computing – A review of algorithms and scope of

applications”. Expert Systems with Applications 59 (): 20–32. issn: 0957-4174. doi:10.1016/

j.eswa.2016.04.018.

Kogelbauer, Ilse, Kamila Bát’ková, František Doležal, Svatopluk Matula, and

Willibald Loiskandl. 2015. “Preferential percolation quantified by large water content

sensors with artifactual macroporous envelopes”. Hydrological Processes 29, no. 19 ():

4325–4338. issn: 1099-1085, visited on 10/04/2016. doi:10.1002/hyp.10491.

Kuraz, Michal, and Petr Mayer. 2008. DRUtES – an opensource library for solving coupled

nonlinear convection-diffusion-reaction equations. http://www.drutes.org.

Liang, J. J., B. Y. Qu, P. N. Suganthan, and Alfredo Hernándes-Diaz. 2013. Problem

Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter

Optimization. Tech. rep.

Maca, Petr, and Pavel Pech. 2015. “The Inertia Weight Updating Strategies in Particle

Swarm Optimisation Based on the Beta Distribution”. WOS:000353804300001,

Mathematical Problems in Engineering : 790465. doi:10.1155/2015/790465.

87

http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.1080/0952813X.2013.782347
https://www.random.org/
http://dx.doi.org/10.1109/CEC.2002.1004494
http://dx.doi.org/10.1029/2006WR005845
http://dx.doi.org/10.1155/2015/968067
http://dx.doi.org/10.1016/j.eswa.2016.04.018
http://dx.doi.org/10.1016/j.eswa.2016.04.018
http://dx.doi.org/10.1002/hyp.10491
http://www.drutes.org
http://dx.doi.org/10.1155/2015/790465

REFERENCES

Matsumoto, Makoto, and Takuji Nishimura. 1998. “Mersenne twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator”. ACM Transactions on Modeling

and Computer Simulation (TOMACS) 8 (1): 3–30.

Mualem, Y. 1976. “A new model for predicting the hydraulic conductivity of unsaturated

porous media”. Water Resources Research 12 (3): 513–522. doi:10.1029/WR012i003p00513.

Naka, S., T. Genji, T. Yura, and Y. Fukuyama. 2003. “A hybrid particle swarm optimization

for distribution state estimation”. IEEE Transactions on Power Systems 18, no. 1 (): 60–68.

issn: 0885-8950. doi:10.1109/TPWRS.2002.807051.

Nieder, Rolf. 2011. Bodenkunde I. Grundlagen der Bodenkunde für 3. Semester Geoökologie

und Umweltingenieurwesen. TU Braunschweig, Institut für Geoökologie, Abteilung für

Bodenkunde und Bodenphysik.

Piotrowski, Adam P., Maciej J. Napiorkowski, Jaroslaw J. Napiorkowski, Marzena Osuch, and

Zbigniew W. Kundzewicz. 2017. “Are modern metaheuristics successful in calibrating simple

conceptual rainfall–runoff models?” Hydrological Sciences Journal 62, no. 4 (): 606–625.

issn: 0262-6667. doi:10.1080/02626667.2016.1234712. http://dx.doi.org/10.1080/

02626667.2016.1234712.

Pirastru, Mario, and Marcello Niedda. 2010. “Field monitoring and dual permeability

modelling of water flow through unsaturated calcareous rocks”. Journal of Hydrology 392,

no. 1–2 (): 40–53. issn: 0022-1694. doi:10.1016/j.jhydrol.2010.07.045.

R Core Team. 2015. R: A Language and Environment for Statistical Computing. Vienna,

Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Rank, Ernst, Casimir Katz, and Heinrich Werner. 1983. “On the importance of the discrete

maximum principle in transient analysis using finite element methods”. International

Journal for Numerical Methods in Engineering 19, no. 12 (): 1771–1782. issn: 1097-0207.

doi:10.1002/nme.1620191205.

Rao, R. V., V. J. Savsani, and D. P. Vakharia. 2012. “Teaching–Learning-Based

Optimization: An optimization method for continuous non-linear large scale problems”.

Information Sciences 183, no. 1 (): 1–15. issn: 0020-0255.

doi:10.1016/j.ins.2011.08.006.

Ratnaweera, Asanga, Saman K. Halgamuge, and Harry C. Watson. 2004. “Self-organizing

hierarchical particle swarm optimizer with time-varying acceleration coefficients”. IEEE

Transactions on evolutionary computation 8 (3): 240–255.

RStudio Team. 2015. RStudio: Integrated Development Environment for R. Boston, MA:

RStudio, Inc. http://www.rstudio.com/.

Shi, Yuhui, and Russell Eberhart. 1998. “A modified particle swarm optimizer”. In

Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational

Intelligence., The 1998 IEEE International Conference on, 69–73. IEEE.

Simon, Dan. 2013. Evolutionary Optimization Algorithms. Wiley. isbn: 978-0-470-93741-9.

88

http://dx.doi.org/10.1029/WR012i003p00513
http://dx.doi.org/10.1109/TPWRS.2002.807051
http://dx.doi.org/10.1080/02626667.2016.1234712
http://dx.doi.org/10.1080/02626667.2016.1234712
http://dx.doi.org/10.1080/02626667.2016.1234712
http://dx.doi.org/10.1016/j.jhydrol.2010.07.045
https://www.R-project.org/
http://dx.doi.org/10.1002/nme.1620191205
http://dx.doi.org/10.1016/j.ins.2011.08.006
http://www.rstudio.com/

REFERENCES

Sörensen, Kenneth. 2015. “Metaheuristics—the metaphor exposed”. International

Transactions in Operational Research 22, no. 1 (): 3–18. issn: 1475-3995.

doi:10.1111/itor.12001.

Weyland, Dennis. 2010. “A Rigorous Analysis of the Harmony Search Algorithm: How the

Research Community can be Misled by a “Novel” Methodology”. International Journal of

Applied Metaheuristic Computing 1 (2): 50–60. issn: 1947-8283, 1947-8291. doi:10.4018/

jamc.2010040104.

Wolpert, D. H., and W. G. Macready. 1997. “No free lunch theorems for optimization”. IEEE

Transactions on Evolutionary Computation 1, no. 1 (): 67–82. issn: 1089-778X. doi:10.

1109/4235.585893.

Yan, Jiang, Hu Tiesong, Huang Chongchao, Wu Xianing, and Gui Faling. 2007. “A Shuffled

Complex Evolution of Particle Swarm Optimization Algorithm”. In Adaptive and Natural

Computing Algorithms, ed. by Bartlomiej Beliczynski, Andrzej Dzielinski,

Marcin Iwanowski, and Bernardete Ribeiro, 341–349. Lecture Notes in Computer

Science 4431. DOI: 10.1007/978-3-540-71618-1_38. Springer Berlin Heidelberg. isbn:

978-3-540-71589-4 978-3-540-71618-1.

Zou, Feng, Lei Wang, Xinhong Hei, and Debao Chen. 2015. “Teaching–learning-based

optimization with learning experience of other learners and its application”. Applied Soft

Computing 37 (): 725–736. issn: 1568-4946. doi:10.1016/j.asoc.2015.08.047.

Šimůnek, J., M Šejna, and M. Th van Genuchten. 2012. The DualPerm Module for HYDRUS

(2D/3D) Simulating Two-Dimensional Water Movement and Solute Transport in Dual-

Permeability Porous Media, Version 1.0. Prague: PC Progress.

Šimůnek, Jirka, Nick J. Jarvis, M. Th. van Genuchten, and Annemieke Gärdenäs. 2003.

“Review and comparison of models for describing non-equilibrium and preferential flow

and transport in the vadose zone”. Journal of Hydrology, Soil Hydrological Properties and

Processes and their Variability in Space and Time, 272, no. 1–4 (): 14–35. issn: 0022-1694.

doi:10.1016/S0022-1694(02)00252-4.

89

http://dx.doi.org/10.1111/itor.12001
http://dx.doi.org/10.4018/jamc.2010040104
http://dx.doi.org/10.4018/jamc.2010040104
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1016/j.asoc.2015.08.047
http://dx.doi.org/10.1016/S0022-1694(02)00252-4

8 APPENDIX

8 Appendix

8.1 Appendix A

Comparison of dual permeability model with standard model

The dual permeability model with all five hydraulic conductivity variants were compared to

the standard model by setting the fracture and matrix domain the same with parameterization

in Tab. 20. Fig. 25 shows the results of the scenarios. The dual permeability models outputs

are identical to the standard output. Simulation output in Fig. 25 make it hard to identify

any gray lines indicating the dual permeability model as the alignment with the standard

model is too good. The exchange boundary conductivity Ka is non-zero for scenario 1, 2 and

3. Fig. 26 shows a ponding scenario with free drainage (scenario 4) at the bottom for the set

up as in Tab. 20. The output times reflect the beginning of the simulation, where deviations

between the standard model and the dual permeability model are noticeable. The modified

set-up included a decreased Picard iteration criterion, decreased maximum time-step and

direct evaluation of the constitutive equations. The modified set-up improved the simulation.

In both set-ups the dual permeability model converges towards the standard model.

Table 20: Soil hydraulic properties and domain description used in test simulations of the
dual permeability model with the standard model.

Parameter Symbol Value

Inverse of air entry value [cm�1] ↵ 0.05
Shape parameter n 2
Sat. water content [-] ✓

s

0.45
Residual water content [-] ✓

r

0
Sat. hydraulic conductivity [cm d�1] K

s

200
Domain length [cm] L 10
Spatial discretization [cm] dx 0.1
Simulation time [days] t 2
Minimum time step [days] dt

min

5e-8
Maximum time step [days] dt

max

0.1

Table 21: Initial and boundary conditions used for test simulations of the dual permeability
model with the standard model in DRUtES.

Scenario Initial h
pres

Top bc Bottom bc

1 -100 cm -50 cm -50 cm
2 -100 cm 0.5 cm d�1 -100 cm
3 -10 cm -0.2 cm d�1 -10 cm
4 -50 cm 0 cm free drainage

90

8 APPENDIX

Scenario 1 Scenario 2 Scenario 3

Figure 25: Simulation output after 1e-4, 5e-2, 0.5 and 2 days of test scenarios 1, 2 and 3.
The gray lines cannot be recognized because the dual variants and the standard model align
perfectly.

Scenario 4 Scenario 4 modified set-up

Figure 26: Simulation output after 6e-8, 1e-3, 5e-3 and 0.1 days of test scenarios 4 with
different set-up

91

8 APPENDIX

8.2 Appendix B

Fig. 27 depicts boxplots of 30D CEC Benchmark functions without any reinitialization during

the optimization. Comparing these to calibrated optimization output, it becomes evident

that, generally, reinitialization can enhance the optimization result immensely in most cases.

Figure 27: Boxplots of 30 runs of 30D benchmark functions without reinitialization.

92

8 APPENDIX

8.3 Appendix C

The Github repositories were solely created with the aim to make code used in this thesis

accessible.Following codes are accessible on Github.

1. The DRUtES version containing the dual permeability model implementation:

https://github.com/Jorub/dual_permeability

2. The CEC benchmark function set-up: https://github.com/Jorub/CEC_opti

3. The mesh optimization set-up: https://github.com/Jorub/mesh_opti

4. The DRUtES benchmark set-up: https://github.com/Jorub/bench_drutes_setup

5. The DRUtES inverse modeling set-up for the dual permeability model:

https://github.com/Jorub/inverse_dual

93

https://github.com/Jorub/dual_permeability
https://github.com/Jorub/CEC_opti
https://github.com/Jorub/mesh_opti
https://github.com/Jorub/bench_drutes_setup
https://github.com/Jorub/inverse_dual

	Introduction
	Motivation and goals
	Thesis structure

	Mathematical flow model
	Introduction
	Basic governing equations
	Dual permeability model
	Parameterization of hydraulic functions
	Initial and Boundary conditions

	Dual permeability model implementation
	Introduction
	DRUtES
	Implementation
	Test simulations

	Population-based metaheuristics
	Principles of Metaheuristics
	Particle Swarm Optimization
	Basic PSO
	Implemented modified PSO algorithm
	Bi-objective PSO

	Teaching-Learning-Based Optimization
	Basic TLBO
	Implemented modified TLBO

	Implemented variants
	Shuffling complexes
	Bad neighborhood approach
	Summary of variants

	General implementation aspects
	Algorithm implementation in R
	Random seed
	Boundary
	Reinitializing the population
	Stopping criteria
	Restart

	Benchmark functions
	Introduction
	CEC 2013 real-parameter optimization benchmark functions
	Description of CEC 2013 real-parameter optimization benchmark functions

	DRUtES benchmark functions
	Set-up of DRUtES benchmark functions

	Benchmark results and discussion
	Results of CEC 2013 benchmark functions
	Results of DRUtES benchmark functions
	Benchmark summary

	Case study
	Introduction
	Mesh optimization
	Set-up of mesh optimization
	Results of mesh optimization

	Inverse modelling
	Project design and data preparation
	Results and Discussion

	Conclusion
	Appendix
	Appendix A
	Appendix B
	Appendix C

