
BRNO UNIVERSITY OF TECHNOLOGY 
V Y S O K É U Č E N Í T E C H N I C K É V B R N Ě 

FACULTY OF ELECTRICAL ENGINEERING AND 
COMMUNICATION 
DEPARTMENT OF TELECOMMUNICATIONS 
FAKULTA E L E K T R O T E C H N I K Y A K O M U N I K A Č N Í C H 
T E C H N O L O G I Í 
Ú S T A V T E L E K O M U N I K A C Í 

MODERN METHODS OF TIME-FREQUENCY WARPING 
OF SOUND SIGNALS 
M O D E R N Í M E T O D Y B O R C E N Í Č A S O V É A K M I T O Č T O V É OSY Z V U K O V Ý C H 
S I G N Á L Ů 

DOCTORAL THESIS 
D I Z E R T A Č N Í P R Á C E 

AUTHOR Ing. MICHAL TRZOS 
A U T O R P R Á C E 

SUPERVISOR Ing. JIRI SCHIMMEL, PhD. 
V E D O U C Í P R Á C E 

BRNO 2015 



ABSTRACT 
This thesis deals with representation of non-stationary harmonic signals with time-varying 
components. Its main focus is aimed at Harmonic Transform and its variant with sub-
quadratic computational complexity, the Fast Harmonic Transform. Two algorithms 
using the Fast Harmonic Transform are presented. The first uses the gathered log-
spectrum as fundamental frequency change estimation method, the second uses analysis-
by-synthesis approach. Both algorithms are used on a speech segment to compare its 
output. Further the analysis-by-synthesis algorithm is applied on several real sound sig­
nals to measure the increase in the ability to represent real frequency-modulated signals 
using the Harmonic Transform. 
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ABSTRAKT 
Tato práce se zabývá reprezentací nestacionárních harmonických signálů s časově 
proměnnými komponentami. Primárně je zaměřena na Harmonickou transformaci a 
jej i variantu se subkvadratickou výpočetní složitostí, Rychlou harmonickou transformaci. 
V této práci jsou prezentovány dva algoritmy využívající Rychlou harmonickou transfor­
maci. Prvni používá jako metodu odhadu změny základního kmitočtu sbírané logarit­
mické spektrum a druhá používá metodu analýzy syntézou. Oba algoritmy jsou použity 
k analýze řečového segmentu pro porovnání výstupů. Nakonec je algoritmus využíva­
j íc í metody analýzy syntézou použit na reálné zvukové signály, aby bylo možné změřit 
zlepšení reprezentace kmitočtově modulovaných signálů za použití Harmonické transfor­
mace. 
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INTRODUCTION 
From all mechanisms of communication, sound communication is by far the most 

widely used by humans and at the same time easily processed using modern technol­

ogy, namely digital signal processing. Most mammals, including humans, commu­

nicate using air stream modulation ranging in frequency from infrasound (whales) 

to ultrasound (bats). If the air stream modulation is constant, the produced sound 

can be approximated using an impulse train. In the frequency domain, the impulse 

train consists of a fundamenal frequency and harmonics at integer multiplies of the 

fundamental frequency. Such signal can therefore be effectively analyzed using tra­

ditional tools like the Fourier Transform. However if the air stream modulation 

changes in time, as is the case of most real signals, its frequency components also 

change in time. Whi le frequency variance of the fundamental frequency may not be 

significant, it multiplies for each additional harmonic contained in the signal. When 

using Fourier Transform to analyze such singal, the higher harmonics may span over 

several frequency bins of the analyzed time interval depreciating the accuracy of 

harmonic parameters that can be acquired from the signal. 

There are many applications that rely on the analysis of harmonic signals wi th 

time-varying components. Most of them deal with speech signals for speech coding, 

gender and age classification, detection of alcohol intoxication, emotion detection, or 

jitter estimation in Parkinsonian speech. Some musical instruments can be played 

in a way that causes fundamental frequency modulation like viola, violin, trombone, 

or guitar while some instruments create frequency modulation by their nature like 

the Theremin or the Leslie speaker. Also most synthesizers can be modulated using 

the pitch wheel which enables continous variation of the fundamental frequency. 

Analysing such signals may be performed with higher precision wi th a method that 

enables to take time-variant fundamental frequency into account. 

This thesis therefore focuses on the representation of non-stationary signals wi th 

time-varying components. First it provides a summary of the state-of-the-art me­

thods wi th main focus on Fan-Chirp Transform and Harmonic Transform. Then 

the focus turns solely on the Harmonic Transform and its computational demands 

which prevent its efficient use. A prerequisite to computing Harmonic Transform is 

knowledge of fundamental frequency change and an approach to decrease its estima­

tion is presented. However the goal is decrease in computational complexity, which 

is presented as the Fast Harmonic Transform. This introduces some artifacts to the 

signal which is covered in the text. Then two algorithms for fundamental frequency 

estimation are presented. One is based on the gathered log-spectrum and the other 

on analysis-by-synthesis approach. Bo th algorithms are applied to a speech signal 

to compare their output. The thesis finishes wi th experiments on real signals. 
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1 STATE OF T H E ART 

1.1 Introduction 
Many harmonic signals, including speech and music, exhibit frequency modulation 

caused by varying fundamental frequency. A traditional instrument for the analysis 

of speech and musical signals is Fourier Transform (FT) defined as 

The original signal is recovered from the F T by inverse Fourier Transform (IFT) 

The F T is generally able to represent frequency content of a signal, when the sig­

nal is composed of components wi th invariant frequency. Such signals can be called 

stationary harmonic signals and by using F T we can get their frequency represen­

tation with sufficient resolution in a specified frequency band. For shorter analysis 

windows the F T gives better time resolution while sacrificing frequency resolution, 

whereas for longer analysis windows the F T gives better frequency resolution at 

the cost of lower time resolution as seen in F ig . 1.1. The ability of the F T to rep­

resent frequency content of a signal diminishes if the signals contains components 

wi th varying frequency [1, 2]. This is represented in F ig . 1.2 showing a sinusoid 

wi th constant frequency over time and its F T which forms a clearly defined peak, 

whereas for the linearly modulated sinusoid, energy of the signal is spread between 

several frequency bins, which causes difficulties in harmonic parameter estimation. 

Especially if more harmonics are present in the signal. One solution of this problem 

is to use Warped Fourier Transform ( W F T ) [3], where the signal is frequency or 

time warped [4] before applying the F T , giving bir th to warped wavelets [5, 6]. This 

operation can be interpreted as change of the signal's scale for the conversion of 

time-varying frequency components to frequency invariant components. The scaling 

operation can be generalized using the Scale Transform [7-9], where the scale is 

taken as a physical property of the signal, or the scaling operation can be integrated 

into the definition of transformation, as in Harmonic Transform [10]. Speech signals 

and other harmonic signals with a formant structure require a method to preserve 

the formant structure if modified. This can be done efficiently using frequency 

warping [11, 12]. 

There are other means of representation of signals wi th variable frequency com­

ponents which are based on several models of speech. A family of transforms is 

based on the similarity of voiced speech to a chirp-periodic signal. Fan-Chirp Trans­

form [13, 14] is suitable for signals wi th frequency components varying linearly on fan 

13 
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Fig . 1.1: Resolution of time-frequency analysis depending on the length of analysis 

window. 

geometry, a property providing it wi th the best representation of chirp-like signals. 

The Fractional Fourier Transform (FrFT) [15-19] uses rotation of the time-frequency 

distribution to fit a signal with linearly changing frequency components, although 

similar to the Chirp Transform (CT) [20, 21] and Chirplet transform (ChT) [22], 

they cannot provide sufficient resolution for chirp-periodic signals both in lower and 

higher frequency bands at the same time as the Fan-Chirp Transform can. 

A different approach is to consider the speech signal as a sum of periodic and 

aperiodic signals. This model takes into account that even the voiced part of speech 

contains some noise caused by air turbulence, thus making it quasi-periodic. This 

approach is used in P i tch Tracking Modified D F T ( P T D F T ) [23] and Time-Varying 

D F T ( T V D F T ) [24]. The P T D F T uses a pitch detection algorithm and analysis-

by-synthesis approach in a closed loop to determine the fundamental frequency. 

When the fundamental frequency is known at least in two segments, the signal's 

harmonic components are estimated directly in the harmonic domain. The T V D F T 

also requires a pitch detection algorithm but the transformation kernel enables to 

perform tracking of the fundamental frequency and its partials. 

1.2 Quasi-Harmonic Model 
The Quasi-Harmonic Model ( Q H M ) [25] is representation of a signal s(t) consisting 

of K complex sinusoids defined as 

S ( t) = f > f c e 2 ^ < , (1.3) 
k=l 

14 
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Fig . 1.2: Sinusoid wi th constant frequency over time and its F T (top); Linear chirp 

over time and its F T , showing that the signal's energy is spread over several fre­

quency bins (bottom). 
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where and are the frequency and complex amplitude of the k-ih sinusoid. To be 

able to compute complex amplitudes using least squares (LS) approach, estimates of 

frequencies {fk}k=i a r e needed. The frequencies ft are defined from set of frequency 

estimates as 

fk = fk + Vk, (1-4) 

where rjk is the frequency error. If it is high, then the estimation of complex am­

plitudes Cfc through L S wi l l be biased. This has been addressed in [26] by the 

representation of the signal as 

^ ) = E ( « f c + ^ ) e j 2 " / f e < , (1.5) 
k=i 

where and bk denote complex amplitude and complex slope of the fc-th com­

ponent respectively. Parameters {a*,, bk)k=i a r e then computed through iterative 

minimization of the L S criterion Y%=-T ( ( s ( 0 — s(£))iu(£)) 2 , where w(t) is the ana­

lysis window defined on interval [—T, T] . The Q H M is further improved by adaptive 

Quasi-Harmonic Model [27] and enhanced adaptive Quasi-Harmonic Model [28], 

which have been shown to provide better results for A M - F M modulated speech 

signals [27, 28]. 

1.3 Sinusoidal Model 

Sinusoidal model is based on the Fourier's theorem, which states that any periodic 

function can be modeled as a sum of sinusoids at various amplitudes and harmoni­

cally related frequencies [29]. In its most general expression it is a sum of complex 

exponentials (or partials) 

s{t) = j z ^ { t ) ^ k { t \ (1.6) 
k=l 

where auit) and <f>k{t) are the instantaneous amplitude and phase of the fc-th sinusoid, 

respectively [30, 31] and where Uk(t) is the frequency of the fc-th sinusoid defined as 

the first derivative of phase <f>k{t)-

Sinusoidal parameters of s(t) from the observed signal s(t) = s(t) + v(t) in the 

non-stationary case, where v(t) is an additive noise are modeled as [32] 

s(t) = a(t)e j*W, 

a(t) = e x p ( E f = 0 ^ K } £ f c ) , (1.7) 

16 



where ak are the K + 1 complex non-stationary sinusoidal parameters. The am­

plitude is represented by a(t) and frequency is represented by (f>'(t)/2n. The log-

amplitude modulation parameters are given by the real time part of the parameters 

afc,3fř{afc}, and the phase modulation parameters are given by the imaginary part, 

There are several methods for estimating the sinusoidal parameters in (1.7) which 

have been generalized to the non-stationary case [32-37] and some of the significant 

methods are now presented. 

1.3.1 Quadratically Interpolated F F T 

The quadratically interpolated F F T ( Q I F F T ) is a maximum likelihood method that 

has been used for sinusoidal parameter estimation in audio applications by means 

of quadratic peak interpolation in a zero padded F F T [31]. A n improved Q I F F T 

method to estimate first order amplitude and frequency rates of time-varying sinu­

soidal components has been presented in [38]. A sinusoid wi th first-order A M and 

F M can be written as 

s(t) = e

a o t + X o é { P ° t 2 + W o t + M , (1.8) 

where uo is instantaneous frequency at t — 0, Ao is instantaneous log-amplitude at 

t = 0, 0o is instantaneous phase at t — 0, a0 is amplitude change rate, and (30 is 

frequency change rate. The equation (1.8) is equivalent to (1.7) for K = 2. 

The Q I F F T method for estimating sinusoidal parameters from peaks in spectral 

magnitude data can be summarized as follows [38]: 

1. Calculate amplitude and phase spectrum of audio data, by using a zero-padded 

windowed F F T . 

2. F i n d the maximum peak magnitude. 

3. Quadratically interpolate log-amplitude of the peak using two neighboring 

samples. 

4. Estimate the frequency and amplitude from the interpolation. 

5. Estimate the phase, if needed, by quadratically interpolating the phase spec­

t rum based on the interpolated frequency estimate. 

6. Remove the peak from F F T data for subsequent processing. 

7. Repeat steps 2 — 6 above for each peak. 

The Q I F F T can be seen as approximating the nearly parabolic shape of the spectral 

peak of a non-Gaussian window with the truly parabolic shape of a Gaussian window. 

In practice, truncated Gaussian window is used on the observer signal s(t), so the 

log-magnitude and phase are not exactly quadratic. This is called the direct method. 

For other non-Gaussian windows, including Hann, Hamming, and Blackman-Harris, 

17 



an adapted method has been designed in [38]. A n extension of this method for t 7̂  0 

can be found in [39]. 

1.3.2 Distributed Derivative Method 

If we define the inner product of two signals x(t) and y(t) as 

/

oo 
x(r)y*(r)dt, (1.9) 

-00 

then the distributed derivative method ( D D M ) [40] generates parameter estimators 

for a f c using the following system of equations 

K 
-(s,^) = J2®k(kTk-1s,lt), z = l , . . , L , (1.10) 

k=i 

where T is an operator defined by (Tx)(t) = tx(t)) [32]. To solve for the K param­

eters, L > K equations wi th L different atoms 7«(r) are needed to solve the linear 

system of L equations. Generalization of this method for non-stationary signals can 

be found in [41]. 

1.3.3 Generalized Derivative Method 

In generalized derivative method ( G D M ) [42], we generate a linear system of L 

equations by applying L successive derivatives to s(t) and taking the inner products 

wi th only one atom jit) [32]. This results in the following system of equations 

(s^,1) = J2ak((krk-1sf-1\1), i = l , . . , L , (1.11) 
k=l 

where superscript (i) denotes differentiation z-times. This requires signal derivatives 

up to order L, which, in practice, wi l l be estimated wi th first-order differentiator 

filter. W i t h L signal derivatives we have a linear system of L equations from which 

we can solve for K model parameters [32]. 

1.3.4 General Reassignment Method 

Taking L derivatives of the signal in G D M can be avoided by the use of integration 

by parts to move the differentiation from the signal to the atom ^(t) [32]. If we 

assume the chosen atom is sufficiently continuous and all its derivatives up to order 

L — 1 go to zero at t ± 00 such that the identity (x',y) = — (x,y') holds for each 

successive derivative up to L. Then we get the following system of equations 

- ( s ) i ^ ) = JZak(kTk-1s^-1)) (1.12) 
k=i 

18 



which can be shown equivalent to (1.11), but here we use derivatives of the atom 

rather than derivatives of the signal [32]. This is called the generalized reassignment 

method ( G R M ) [42] and it is based on the earlier reassignment method found in [41]. 

1.3.5 Phase Vocoder for Non-Stationary Sinusoidal Model­
ing 

This analysis method is based on the generalization of the phase vocoder approach 

using signal spectra derivatives [43] to non-stationary sinusoidal modeling presented 

in [44]. It is also the simplest possible method of non-stationary sinusoidal model­

ing [29]. If we consider consecutive signal segments x (e.g. by a sliding F F T ) of 

length iV from the signal s, their discrete spectra X can be obtained by zero-phase 

D F T . Then X(UJ) = Sw(t,u) is the spectrum of the frame centered at the desired 

estimation time and X±(UJ) = Sw(t ± (1/fs),uu) be its left (one sample before) and 

right (one sample after) neighboring spectra. Then the derivative can be approx­

imated by first-order difference. According to the model (1.7), the log-amplitude 

and phase differences correspond to the real and imaginary parts of the logarithm 

of spectral ratios 

AX(X1,X2) = l o g | X i | - l o g | X 2 | 

= K ( i o g ( A y x 2 ) ) , 

= 3 ( i o g ( A y x 2 ) ) , 

where X1 and X 2 denote complex spectra. The amplitude modulation jl0 can be 

estimated from the mean of the left and right estimates by 

^_ = AX(X,X_)fs, 

V+ = AX(X+,X)fs, (1.14) 

Ao = (/x_+/x+)/2. 

Similarly, the instantaneous frequency UQ can be estimated from the left and right 

phase spectra 

u- = u n w r a p ( A 0 ( X , X _ ) / s ) , 

u+ = u n w r a p ( A 0 ( X + , X ) / s ) , (1.15) 

cD0 = (u)_+u)+)/2, 

where unwrap(/3) is a function consisting of adding 2n to j3 if it is lower than 0. 

Using left and right estimates of the frequency, we can estimate the frequency 

modulation by first-order difference 

ipo = (u+ -u-)fs. (1.16) 
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1.4 Estimation of Instantaneous Harmonic Param­
eters Using Frequency-Modulated Bandpass 
Filters 

There are several methods for estimation of instantaneous harmonic parameters. 

Some of them are connected wi th the notion of analytic signal based on the Hilbert 

transform (HT) [45]. A unique complex signal z(t) can be generated from a real one 

s(t) using the Fourier transform [46]. This can be done as a time-domain procedure 

z(t) = s(t) +}H[s(t)] = a ( £ ) e M < ) , (1.17) 

where H is the Hilbert transform defined as 

H[s(t)]=p.v. g ( t ~ T ) d r , (1.18) 
J-oo 7TT 

where p.v. denotes Cauchy principle value of the integral, z(t) is referred to as 

Gabor's complex signal, a(t) and ip(t) can be considered the instantaneous amplitude 

and phase, respectively. Signals s(t) and "H[s(t)] are theoretically in quadrature. 

Signal z(t) can be expressed in polar coordinates, therefore a(t) and ip(t) can be 

calculated as 

a(t) = ^s2(t)+n2[s(t)}, (1.19) 

<p(t) = arctan (^^J • (1-20) 

Another way of estimating the instantaneous harmonic parameters is discrete 

energy separation algorithm ( D E S A ) , which is based on the Teager energy opera­

tor [47]. The energy operator is defined as 

ip[s(n)] = s2(n) - s(n - l)s(n + 1), (1.21) 

where the derivative operation is approximated by the symmetric difference [45]. 

The instantaneous amplitude a{n) and frequency f(n) can be evaluated as 

= m m (1.22, 
yjil>[s(n + l) - s ( n - l ) ] 

f{n) = arcsin 
ip[s(n + 1) — s(n — 1] 

[1.23) 

The Hilbert transform and D E S A can be applied only to monocomponent sig­

nals. For multicomponent signals, the signal should be split into single components 
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before using these techniques [45]. It is possible to use narrow-band filtering for this 

purpose [48]. 

Now wi th the presented methods for estimating instantaneous frequency, am­

plitude and phase of monocomponent signals, we wi l l use a harmonic+noise repre­

sentation of multicomponent speech [49] and audio signals [50] as a combination of 

sinusoids wi th slowly varying amplitudes and frequencies 

K 
s{n) = J2Ak(n) cos Lpk(n)+r(n), (1-24) 

fc=i 

where is the instantaneous amplitude of k-th harmonic, K is the number of 

harmonics present in the signal, r(n) is the noise component, is the instantaneous 

phase of k-th harmonic defined as 

Mn) = t2^T^ + M0), (1-25) 
i=0 Js 

where /& is the instantaneous frequency of the k-th harmonic, / s is the sampling 

frequency and <Pk{0) is the ini t ial phase of the k-th harmonic. The harmonic model 

assumes that the frequencies of the components are integer multiplies of fundamental 

frequency = kfo, where fo is the fundamental frequency. 

The instantaneous frequencies can deviate from the multiples of the fundamental 

frequency for the value less than some specified ftT as 

\fk-kf0\ < / t r . (1-26) 

To separate a certain harmonic from the others, it is necessary to use a bandpass 

filter [47, 51]. The band-pass filters can be used for signal decomposition into non-

stationary periodic components wi th instantaneous frequency, amplitude and phase. 

The method can be used for processing of frequency-modulated signals such as voiced 

speech. Stationary filter can provide accurate results for estimation of the funda­

mental frequency, but it is not suitable for high-order harmonics [52]. The impulse 

response of such filter for k-th signal component can be written as [52] 

{ 2fk n = 0 

A « , S ( ^ / c ' ) s i n ( ^ / S ) , n ? 0 , ( L 2 7 ) 

where fk

c = ( / f e _ i + fk)/2, = (fk - / * _ i ) / 2 and [fk-i,fk] is the band-pass 

filter's pass band. Parameters f£ and correspond to the center frequency of the 

pass band and the half of the filter's bandwidth, respectively. The convolution of 

signal s(n) and the impulse response hk{n) produces a band-limited output signal 

Skin) — s(n) * hk{n) which can be rewritten as [52] 
27T 27T 

sk[n) = Ain) cos(—nfc) + Bin) sin(—nf c), (1.28) 
Is Js 
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I c ; ;i.29) 

where 
A(n) = El-o1 ^ S j sin ( M p l / A ) cos ( ^ p ) / c 

5 (n ) = Ef =oX sin ( M p l / A ) sin ( M p ) / c 

From (1.29), the instantaneous magnitude, phase and frequency can then be calcu­

lated as [52] 

a(n) = ^A2(n) + B2(n), (1.30) 

(p(n) = arctan f—, . . | , (1.31) 
V A(n) J 

fin) = ^ + l ) - ^ n ) u ( L 3 2 ) 

Using instantaneous pitch contour obtained by stationary band-pass filters it 

is possible to ensure appropriate processing of high-order harmonics [45] by using 

frequency-modulated band-pass filters. The band-pass filters have a closed form 

impulse response that can be adjusted according to instantaneous frequencies of the 

harmonics and the fundamental frequency modulations of speech. The frequency 

modulated filter has a warped pass band, aligned to the given frequency contour 

/ c

f c(n), that provides adequate analysis of periodic components wi th rapid frequency 

alterations can be defined as [52] 

A(n) = E f = o 1 ^ s i n ( ^ p ) / A ) c o s ( ^ p ) ^ c ( n , . 
B(n) = E f = o 1 ^ s i n ( ^ p ) / A ) s i n ( ^ p ) ^ c ( n , . 

;i.33) 

EUnfcti), n<i, 

<Pc{n,i) = { -E]=tf*(j), n>i, (1.34) 

0, n = i. 

This approach is an alternative to time warping that is used in Harmonic and 

Fan-Chirp transforms (see below). It has been used for the improvement of the 

R A P T [53] pitch estimation algorithm [54]. In [55] it has been used for pitch, t im­

bre and time-scale modifications, which has been improved and generalized in [56]. 

Further applications involve real-time speech conversion [57], estimation of spec­

tral envelopes by means of linear prediction [58], parametric coding of audio and 

speech [59], and sinusoidal, transient and noise modeling [60]. 
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1.5 Harmonic Transform 
Time-varying harmonic signal generally contains higher harmonics whose nominal 

instantaneous frequencies are expressed by 

ck(t) = (k + l)c0(t), k = 1 ,2 ,3 , . . . (1.35) 

where c 0(t) is the frequency of the fundamental and c^(t) is the frequency of the 

k-th harmonic component. 

Harmonic transform has been introduced in [10] and it is based on [61] [62]. Its 

main difference from Fourier transform is the integrated time-warping function. It 

is defined as 
r+oo 

SMt){w)= / s(t)<t>'u(t)^Mt)dt, (1.36) 

where 4>u(t) is a unit phase function, which is the phase of the fundamental harmonic 

component divided by its nominal instantaneous frequency [10], and <f>'u(t) is first 

derivation of <f>u(t). The <f>u(t) is required to be invertible and differentiable on 

(—oo, +oo). When the 4>n(t) = t, the H T reverts to the F T . The inverse harmonic 

transform (IHT) is defined as [10] 

1 r+oo 

8{t) = —J_^SMt){u)<***Wdu. (1.37) 

The relationship between <f>u(t) and the nominal instantaneous frequency Ckit) as 

represented by a harmonic signal fh(t) wi th instantaneous frequencies given in (1.35) 

is 

+oo 

h(t) = J 2 ^ ( k + 1 ) a ( t \ (1.38) 
fc=0 

where ak is the amplitude of the k-th harmonic and a(t) is the phase function of 

the fundamental. The relationship between a(t) and c 0(t) is 

co{t) = a'(t), (1.39) 

assuming the nominal instantaneous frequency of the fundamental is normalized to 

be one. When <f>u(t) = a(t), the H T of fh(t) is 

J-°° k=0 

= E a W ^ ( f c + 1 " " M < ) d a ( t ) , (1.40) 
fc=o J - ° ° 
+oo 

= E 27rafc5(o; — k — 1), 
fc=0 
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which is an impulse-train for arbitrary Co(£). Therefore wi th a certain unit phase 

function, the H T can provide an impulse-train spectrum for a time-varying harmonic 

signal. 

1.5.1 Short-Time Harmonic Transform 

Time-frequency transforms describe signal in the time-frequency plane. S T F T is 

one of the widely used time-frequency transforms. Many speech and music analysis 

applications based on sinusoidal modeling use the S T F T spectrum for estimation 

of the harmonic parameters at one instant, providing instantaneous parameters and 

assuming the signal is stationary over the length of the segment. A window function 

w(t) is usually used to emphasize the signal around the instant and to suppress 

artifacts caused by spectral leakage 

/

+oo 
S{T)W{T - t ) e" j a j r dr . (1.41) 

-oo 

The S T F T of a time-varying harmonic signal has poor resolution in theme and/or 

frequency domain although there are ways to improve the resolution [10]. 

H T can be used to improve resolution of the S T F T for time-varying harmonic 

signals. After replacing the F T in (1.41) with the H T we get the short-time Harmonic 

transform ( S T H T ) as 

S T H T M t ) ( W , t ) = / S(T)W(T - t ) & ( r ) e - * * » < T > d r , ( L 4 2 ) 

where s(t) is the signal and w(t) is the window function. Linear change of funda­

mental frequency in a given segment is presumed, which is sufficiently satisfied by 

selecting an analysis window of appropriate length [10]. 

Instantaneous phase ip(t) of a sinusoid with linear change of frequency [63] is 

defined as 

<p(t) = 2n(f0t + ?pj, (1.43) 

where / 0 is fundamental frequency and e = Af0/T is the change of fundamental 

frequency divided by length of the segment. Assuming discrete signal segment of 

the length N, where T = N/fs, the discrete phase tp(n) of a sinusoid wi th linear 

frequency variation [49] can be written as 

where / 0 is discrete instantaneous frequency, N is length of the analysis window, 

and fs is sampling frequency (initial phase is disregarded for simplicity). 
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0 N/2 N 

Fig . 1.3: Illustration of the relationship between fundamental frequency /o, central 

fundamental frequency fc, and fundamental frequency change A / 0 in a segment of 

length N. 

Initial fundamental frequency in a given segment can be written as 

fo = fc ~ ~y, a = - — , (1.45) 

where fc is the central fundamental frequency within a segment and a is the slope of 

fundamental frequency change within the segment, see F ig . 1.3. Substituting (1.45) 

to (1.44) we get [49] 

2ir ( a an\ 
<P{n) = ^«(»). aa(n) = n ( v

1 _ 2 + 2~/vJ' ^ ' 

which is a non-linear relationship between the original and time-warped axis which 

depends on the fundamental frequency slope a as shown in F ig . 1.5. 

Frequencies of spectral lines of the Fourier transform are given as 

fc = f , (1-47) 

and from the equation (1.46) it is obvious that the instantaneous phase is 

ip{n) = —a(n). (1.48) 

Discrete harmonic transform ( D H T ) of signals with linear fundamental frequency 

variation [49] is defined as 

N-l 

k=0 

where 

= E s(n)a'(n)^a{n\ (1.49) 

<{n) = 1 - \ + ™ (1.50) 
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n -> 

-201 1 1 

n -> 

Fig . 1.4: Fourier transform spectrum (bottom); Harmonic transform spectrum with 

parameter a = 0.2 (top); of sound sample happy child. 

is first-order derivation of (1.46). 

The difference between D F T and D H T at analysis of non-stationary harmonic 

signals can be seen on a part of speech uttering from the P T D B - T U G 1 database wi th 

frequency modulation. In F ig . 1.4 (bottom) we can see that the higher frequencies 

are smoothed due to frequency modulation. In F ig . 1.4 (top) even high frequency 

peaks are clearly visible. 

1.5.2 Estimation of Fundamental Frequency Change 

Pi tch estimation algorithm proposed in [64] consists of three stages. First , the fun­

damental frequency change rate wi thin a frame is computed, then the best pitch 

candidate is selected by analysis of harmonic spectrum and finally the pitch esti­

mation from several consecutive frames is analyzed in order to correct estimation 

errors. 

The algorithm starts from finding fundamental frequency change by minimizing 

1 P i t c h Track ing Database from G r a z Univers i ty of Technology available at: http: //www. spsc. 
tugraz.at/tools/ptdb-tug 
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Spectral Flatness Measure (SFM) 

arg m m SFM(a) = / J V _ 1 , (1.51) 

where 5 a is harmonic spectrum of given segment for given parameter a and |. | denotes 

absolute value. M i n i m a l spectral flatness value indicated highest concentration, 

which means optimal fit of signal and D H T kernel [64]. 

After determining / 0 change rate D H T is computed using the estimated pitch 

rate change a and a peak-picking algorithm is used to find local maxima of the 

harmonic spectrum (ideally on an interval suited to the spectral characteristic of 

the analyzed signal). Then the confidence function is computed 

m _ EfcLl \Sa(kf)\2

 ( l r 2 ) 

where TV is the length of the segment. The confidence function is designed to show 

how much energy of the frame is carried by particular pitch and its several first har­

monics. Procedure of selecting best fundamental frequency candidate is as follows: 

take the highest local maximum of r(f), if there is no corresponding local maxima 

in harmonic spectrum, discard it and repeat the procedure, otherwise the frequency 

corresponding to the current local maximum of r(f) is ini t ial fundamental frequency 

estimation. Further, the pitch frequency is refined using method similar to the one 

presented in [65] 
\ "^fc max fn 

fr = — (1-53) 
max 

where / „ is frequency of local maximum of harmonic spectrum corresponding to n-th 

harmonic of the selected candidate in previous step, fr is refined pitch and n f c m a x 

is number of possible harmonics. Fundamental frequency is considered slowly time-

varying and cannot change rapidly between consecutive segments. In the presence 

of noise, there are possible estimation errors. The estimates are held in a buffer 

and tracking algorithm gives the final estimate. In the proposed approach, median 

filtering is used as it has proved robust in the presence of noise [64]. 

1.5.3 Harmonic Parameters Estimation 

The harmonic parameters are estimated on the basis of the harmonic+noise model (1.24), 

which here is defined for the periodic component as [64] 

K 
h(n) = V J 4 cos{kcp{n) + (pk{0)), (1-54) 

k=l 
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where is the amplitude of the fc-th harmonic, kip(n) is the instantaneous phase of 

the k-th harmonic component defined in (1.44) with fc as the fundamental frequency 

and 99(0) is the ini t ial phase of the k-th harmonic component. The pitch harmonics 

are not aligned with the spectral lines and cannot be directly estimated from the 

H T spectrum. The D H T variant aligned with the fundamental frequency is defined 

as [64] 

N-l 
S(k) = s{n)a'{n)e-Jha(n\ (1.55) 

n=0 

where fr is the fundamental frequency and k = 1 , K is the number of harmonics. 

The amplitudes and phases of the harmonics can be computed directly from S(k) 

coefficients 
Ak = y/W3(k)*+^S(k)*, 

^fc(O) = - arctan ( | f ® 2 ) , 

where 3? and 9 stands for the real and the imaginary parts of S(k), respectively. The 

periodic component can then be generated using (1.54) and the noise component 

can be calculated from the input signal s(n) as 

f(n) = s(n) — h(n). (1-57) 
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1.6 Fan-Chirp Transform 
The Fan-Chirp Transform ( F C h T ) has been introduced in [14]. A variation of F C h T 

wi th different properties has been developed independently of the original work 

in [66]. In the F C h T , the basis functions are a set of linear frequency modulated 

sinusoids wi th chirp rate tuned to the given signal [13, 14]. The term fan comes from 

the F C h T ' s property of projecting the Wigner-Vil le distribution according to a fan 

geometry. The set of basis functions in F C h T is consistent with a harmonic signal 

whose fundamental frequency is changing linearly in time [67]. There have been at­

tempts at making sinewave analysis consistent with time-varying sinewave models. 

This is particularly important in high-frequency speech regions where harmonic fre­

quency modulation can be significant. A sinewave analysis/synthesis system based 

on the F C h T has been presented in [67], where the short-time F C h T is compared 

to a S T F T estimation of sinusoidal parameters of time-varying synthetic speech-like 

signal. In [66] the F C h T is used for melody extraction from polyphonic music and 

shows combination of F C h T wi th Constant-Q Transform ( C Q T ) [68]. Performance 

of the presented extraction system is compared to S T F T using M I R E X 2 and R W C 3 

databases. The system has been improved further using spectral clustering [69] of 

local f0 candidates to form pitch contours [70]. In [71] it has been enhanced wi th au­

tomatic detection of singing voice in polyphonic recordings, extraction of harmonic 

sounds from the audio and their classification. A n d [72] presents an application of 

the F C h T based FOgram [73] to musicology. In [74] F C h T is used for estimation of 

pitch and pitch rate analysis of Vietnamese speech and points out an undesired spec­

tral envelope smoothing caused by the F C h T . Another application is in [75], where 

F C h T has been used for hybrid sinusoidal plus noise modeling of polyphonic audio. 

In presence of several musical instruments wi th different pitch variation simulta­

neously, the spectrum wi l l show sharp peaks for instruments wi th the same chirp 

rate. The estimates of individual chirp rates of individual harmonic partials follow a 

multi-modal distribution that is approximated by a Gaussian mixture model. In [76] 

F C h T has been used in an algorithm for monoaural speech separation. 

A fast version of F C h T reduces computation [13] but this algorithm presents two 

factors that affect sinewave parameter estimation. The phase of the fast F C h T does 

not match the phase of the original continuous-time transform and this interferes 

wi th the estimation of sinewave phases. This has been solved in [77]. 

2 avai lab le at http://www.music-ir.org/mirex 
3 avai lab le at http://staff.aist.go.jp/rn.goto/RWC-MDB/ 
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1.6.1 Continuous Fan-Chirp Transform 
The F C h T is defined as 

X(f,a) = r x(t)y/\<j/a(t)\e-M+°Vdt, (1.58) 
J —oo 

where a is the chirp rate, 

^ = {1 + \ai!-\)){t + T 2 ) - T r ( L 5 9 ) 

is the time warping function and 4>'a(t) denotes first derivative of <f>a(t). The param­

eter T in (1.59) is the length of the interval centered at t — 0 where the mapping 

takes effect. Assuming the mapping interval is (—T/2;T/2) the time warping (1.59) 

can written as 

(f>a(t) = (1 + ^at)t. (1.60) 

In order to prevent the derivative of the phase function <f>a(t) (frequency of the 

basis functions) from becoming zero the chirp rate a is constrained to 

H<| . (1-61) 

The computation of F C h T involves the inner product between x(t) and the complex 

signals 

£(t, f, a) = ^/\l + a t \ ^ f i l + i l / 2 ) a t ) \ (1.62) 

which are chirps whose instantaneous frequency, defined as the time derivative of 

the exponent, varies linearly over time as 

v(t) = <t>Z1(t)f = (l + at)f, (1.63) 

where / refers to the instantaneous frequency at t — 0. The signal x(t) can be 

recovered from its F C h T as 

x(t) = r l ( / , a ) ^ i ^ W d / . (1.64) 
•J — oo 

However, there is another condition that has to be met in (1.64) for perfect recon­

struction. According to (1.63), the sign of the instantaneous frequency of all basis 

components switches at the instant t = —1/a which is called 'focal point' instant. 

Therefore x(t) has to fulfill 

x(t) = 0 for t < - - , (1.65) 
a 

otherwise the synthesized signal wi l l be overlaid wi th itself mirrored around the focal 

time instant [13]. Also the chirp rate has to be in the range defined by (1.61) other­

wise the quadratic mapping <f>a(t) would not be bijective, i.e. one-to-one mapping. 
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1.6.2 Discrete-Time Fan-Chirp Transform 
For a signal x(n), which is a discrete-time version of the signal x(t) at sampling 

frequency / s , the discrete-time F C h T is defined as [14] 

N-I , 

X(f,a) = J2 x(n)^'&(n)e-^^n\ (1.66) 
n=0 

where k is the frequency bin index, TV is the number of segment samples, a is related 

to its continuous-time counterpart a = a/fs, and <ft& is the following mapping, 

bijective in [0, N] 

4>& = (l + ^a(n - TV)) n. (1.67) 

The bijectivity of 4>&{n) results in the following limits for the chirp rate a 

- | < * < w (L68) 

The computational load required to implement is TV2 complex multiplications [13]. 

1.6.3 Fan-Chirp Transform as Time-warped Fourier Trans­
form 

While the discrete-time F C h T can be computed directly using (1.66), computational 

load of the direct version is quadratic. A fast version of the F C h T operates refor­

mulating the F C h T as the F F T of a time-warped signal, substituting r = <f>a(t) thus 

significantly reducing computation [13]. The F C h T wi th the variable substitution 

becomes [77] 

X(f,a) = fM~f x(r)p(r)e-^dr, (1.69) 
M - f ) 

«(-?) 

where x{r) is a time-warped version of the signal x{t) and p(r) is a scaling function on 

the time-warped axis. It can be seen, that the equation (1.69) is a Fourier transform 

of the product x{r)p{r). To compute the time-warped input signal x{r) = x(4>a{r)). 

we use inverse of the warping function ipa(T) — (paij)-1- Since <f>a(t) is a quadratic 

function, its inverse function has two solutions. The solution of interest is 

, , , 1 v/1 + 2at 
Mt) = — + • I 1 - 7 0 ) 

a a 
The scaling function p{r) can be shown to be [77] 

P(r) = JWa(MrWa(r), (1-71) 
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which can be expressed as 

«T> = w h s ? - ( L 7 2 > 

This concludes the computation of F C h T by first time warping and scaling the 

input signal using (1.70) and (1.72), respectively and then computing the Fourier 

transform of the result. In discrete time equation (1.69) can be written as 

X(k, a) = J2 x(m)p(m)e-i27T-km, (1.73) 
m 

where the range of m w i l l be defined below. Aga in the equation (1.73) can be 

evaluated using F F T of the product x(m)p(m). The discrete-time signal x(m) is 

created by uniformly sampling the continuous time signal x(r). Due to time warping, 

the signal x(r) has greater bandwidth when a is nonzero. In other words, the 

warping rule has a slope greater than <f>'a(t) > 1 for at < 0. This implies that signal 

x(m) is undersampled on that region, leading to undesired aliasing effects [13]. This 

undesired aliasing is reduced or even suppressed by setting the length M to a proper 

value. It is clear that M > N. In order to have TV aliasing-free bins (out of M), M 

has to be set as 

M > 1 - ' " I ^ V (1.74) 

The range of X(T) is |-) > r > 0 Q ( f ) which can be shown to have duration 

T [77]. In [13] the time warped signal X(T) is sampled at time instants 

-^) + (m+l)jj for 0 < m < M , (1.75) 

where is the sampling period on the time-warped axis. The definition (1.75) 

of time instants rm at which the time-warped signal is sampled, is selected from 

the M samples symmetrically between the endpoints of the time-warped signal. 

Unfortunately this definition has the side effect of adding a delay to the discrete-

time signal x(m) [77]. The delay changes the phase of the F C h T such that it does 

not match the phase of the continuous time F C h T given in (1.69). This introduces 

a phase shift, which has to be removed from the F C h T before it can be used to 

estimate phases of sinewave parameters properly [77]. A n alternative method to 

avoid the need for phase correction is to redefine the samples at which the time-

warped signal is sampled as 

T m = m { j l ) ' (yl'76^ 
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The range of m in (1.76) is derived from the relationship (f>a(—^) > r > 0 Q ( | - ) , 

which yields 

M " I) ~ m ~ M {lm + I) • ( L 7 7 ) 

1.6.4 Fundamental Frequency and Chirp Rate Estimation 

The most important aspect of the F C h T regards the adequacy of the law (1.70) 

to the actual time-frequency characteristics of the signal [13]. Considering segment-

wise processing, the chirp rate a(t) that best matches time-frequency characteristics 

of the segment is doubtlessly the decisive factor on using FChT-based spectrogram 

instead of the STFT-based spectrogram. This estimation can be carried out using 

two methodologies: inter-frame and intra-frame. 

Inter-frame 

Assuming the signal shows a continuous evolution of its fundamental frequency fo(t) 

according to the instantaneous frequency of the fan geometry, the best estimation 

of the pitch rate is [13] 

«(*) = TTTV (1-78) 

Jo{t) 

where /q (£) is time derivative of fo(t). The intuitive approach would be to quantify 

the evolution of pitch f0(t) and then compute the chirp rate using (1.78). Many 

methodologies for estimating / 0 exist [78]. It is common in segment-wise processing, 

that the fo is estimated at instants t = nS, where S is a shift interval between 

segments. After the pitch has been estimated in the neighboring segments around 

the n-th segment, the pitch rate can be obtained as [13] 

= / , ( „ + ! ) - / , ( „ - ! ) 
2Sf0(n) 

where S is the shift interval between segments. Est imation of chirp rate for the n- th 

segment using (1.78) requires the pitch of the next segment. This non-causal method 

implies to step one segment back to recompute the F C h T of the n- th segment once 

that the pitch of the (n + l ) - th segment is available [13]. 

Intra-frame 

While in the inter-frame approach used pitch information from adjacent segments, 

the intra-frame method uses only information from the current segment. One 

method of computing the chirp rate of the current segment is computing a dense 

(a, f) plane. The (a, f) shows spread in the shape of a bow tie, which is typical in 
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chirp-based transforms [13]. The chirp rate best representing the harmonic informa­

tion contained in the signal wi l l be in the place of highest concentration of peaks 

in the (a, f) plane. To skip the large computational load of computing the redun­

dant (a, f) plane, chirp rate can be estimated from L F C h T instances for different 

chirp rates a. It has been shown that three instances (L = 3) are sufficient for that 

purpose [13]. 

The pitch and pitch rate can be both estimated using pitch salience. Its aim is 

to bui ld a continuous function that gives a prominence value for each fundamental 

frequency in a range of interest [66]. Ideally it shows pronounced peaks at the po­

sitions corresponding to the true pitches presented in a signal frame. The salience 

of a given fundamental frequency candidate / 0 can be obtained by gathering the 

log-spectrum at the positions of the corresponding harmonics [14] 

1 ™H 
Po{f) = — £ l o g | S ( z / ) | , (1.80) 

where (S^/)! is the power spectrum, riu is hypothetical number of harmonics in the 

Nyquist band and % is order of harmonic component. Linear interpolation from the 

discrete log-spectrum is applied to estimate the values at arbitrary frequency posi­

tions [66]. Gathering the linear spectrum was ini t ial ly proposed [79] as a method for 

detecting periodic signal when the period is unknown. However, the same gathering 

procedure on the logarithmic power spectrum delivers higher accuracy and noise 

robustness than working on the linear spectrum, as well as robustness against the 

formant structure [14]. Since the harmonic accumulation when using (1.80) shows 

peaks not only at the position of the true pitch, but also at multiples and submulti-

ples. To handle the ambiguity produced by multiples, a simple non-linear processing 

is proposed in [14] 

P{f) = Po(f) ~ m a x g G N p 0 ( / / g ) q= 1,2,3,... (1.81) 

This is effective in removing pitch candidates multiples of the actual one. Submulti-

ple spurious peaks do not affect the estimation because their amplitude is necessarily 

lower than the true pitch for the monophonic case [66]. 
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2 THESIS OBJECTIVES 
From the methods for representation of non-stationary signals wi th time-variant 

frequency components presented in the previous chapter this thesis wi l l deal wi th 

the Harmonic Transform. Specifically with decreasing its computational demands. 

Knowledge of fundamental frequency change is required before computing the Har­

monic Transform. This is done by Spectral Flatness Measure and our first focus wi l l 

be on optimizing its computation. Unfortunately, the Harmonic Transform compu­

tation still employs 0(N2) computational complexity. So the next focus wi l l be on 

obtaining a Harmonic Transform which employs subquadratic computational com­

plexity. This wi l l be attempted substituting the time-warping kernel of Harmonic 

Transform wi th time-warping of the time axis. Since we usually only have discrete 

signals available, it is necessary to use interpolation which introduces noise into 

the signal. This renders Spectral Flatness Measure ineffective for the computation 

of fundamental frequency change as wi l l be shown in the next chapter. Therefore 

a different method of fundamental frequency change estimation is needed. Two 

methods wi l l be presented in this thesis. The first one computes fundamental fre­

quency change using a method which has been used in computation of Fan-Chirp 

Trasnform, the gathered log-spectrum which performs gathering of the logarithm of 

the magnitude spectrum at the places of the fundamental frequency and its mult i­

ples. The second method selects the optimal fit of fundamental frequency change 

by comparing the reconstruction error of the harmonic part of the signal which is 

estimated using the Harmonic Transform centered on the fundamental frequency. 

Both of these methods wi l l be tested on the same speech signal to compare their 

approach. 

Since the Fast Harmonic Transform uses interpolation for its fast computation, 

there wi l l inevitably be artifacts caused by the interpolation. This wi l l be even 

more pronounced in the signal reconstructed using Inverse Fast Harmonic Transform 

from the harmonic domain. The reconstruction error wi l l be measured for several 

interpolation methods. Another artifact present in the Fast Harmonic Transform 

image is aliasing and it wi l l be addressed using oversampling and evaluated for 

different oversampling factors and interpolation methods. 

A l l of the papers dedicated to Harmonic Transform present improvment of rep­

resentation of non-stationary signals wi th time-varying components only on speech 

signals sampled at sampling frequency 8 kHz . One of the goals of this thesis is 

to attempt the application of Harmonic Transform on real signals such as vocals 

or instruments wi th significant frequency modulation which have been sampled at 

sampling frequency 44.1 kHz . 

To summarize the goals of this thesis, they can be divided into these main areas: 

35 



• Fast Harmonic Transform Algor i thm 

• Fast Inverse Harmonic Transform Algor i thm 

• Computational load of the Fast Harmonic Transform 

• Fundamental frequency change estimation using gathered log-spectrum 

• Fundamental frequency change estimation using analysis-by-synthesis approach 

• Aliasing artifacts and anti-aliasing by oversampling 

• Experiments on real frequency-modulated signals 
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3 RESEARCH RESULTS 
This chapter deals with efficient implementation of the Harmonic Transform. The 

original implementation requires 0(N2) operations. The first approach to reduce 

the number of computations required to compute H T is to reduce the number of 

operations for computation of spectral frequency measure. This is done by exploit­

ing redundancy in its algorithm. Since the Harmonic Transform does not produce 

mirrored double-sided spectrum and only the left side spectrum represents the har­

monic information of the analyzed signal, the S F M computation can be carried out 

on half of the spectrum, reducing the number of operations needed. 

This however still leaves an algorithm with quadratic computational complexity, 

so the research is then focused on producing an algorithm with subquadratic com­

putational complexity. This is achieved by time-warping the input signal, where the 

relationship between the warped axis and original axis is given by the transformation 

kernel of the H T . B y this reduction of computational complexity, another problem 

emerges. The interpolation used in time-warping introduces some noise to the signal 

if spectral flatness is used for fundamental frequency change computation. Methods 

which can be used for fundamental frequency change estimation instead of S F M 

have been used wi th the Fan-Chirp Transform and are presented in chapter 1.6.4. 

The general approach is to compute several transformations with different values of 

fundamental frequency and fundamental frequency change where the most suitable 

parameters are picked from a 2D representation of the analyzed data. 

Several audio samples are used for demonstration of the presented methods. 

Their list can be found in appendix A . In some cases a synthetic linear chirp signal 

(test signal) is used for demonstration. It is defined as 

where t e (0 ,T) , T is length of the segment, / 0 is fundamental frequency, % is the 

3.1 Reducing The Number Of Computations Of 
The Harmonic Transform 

One of the crucial steps in computation of the Harmonic Transform is to estimate 

the fundamental frequency change of the analyzed signal. So far, algorithm based 

on S F M has been used and can be found in section 1.5.2. When exploring this algo­

ri thm, several observations have been made. When using (1.51) the S F M has several 

minimums and if a search algorithm was used, it could fall into local minimum. It is 

number of harmonic, and k is the chirp rate defined as k - M. 
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also noteworthy that it is possible the harmonic transform | D H T ( a , fc)| wi l l be equal 

to zero for some values of k, which could mean that the spectral flatness w i l l be 

zero for al l a. Removing zero values solves this problem and leads to band-limited 

spectral flatness measure [80]. 

Harmonic spectrum of the Harmonic Transform computed using (1.49) is not 

complex conjugated even for real signals (which is true for Fourier transform). From 

the frequency axis point of view, the unit phase function <f>u(t) shifts the spectrum 

towards lower frequencies if a is positive, and to higher frequencies if it is negative. 

Using the formula (1.49) we get only one-sided spectrum (see F ig . 3.2), the right part 

wi l l not represent harmonic components of the analysed signal [80]. When estimating 

a, (1.51) has two minimums (see F ig . 3.1). For harmonic signal analysis, only left 

side of the spectrum is useful, because it appropriately represents non-stationary 

harmonic signal. Using the modified spectral flatness measure ( M S F M ) 

a r K m i n M S F M ( V ) = v ' t f i o j D H T ( a , fc)| 
^ £ f i o | D H T ( a , f c ) | 

we can get function of a which has clearly defined minimum [81]. This is caused 

by using only left side of the spectrum when computing S F M and it consequently 

leads to reducing the number of operations needed to compute spectral flatness by 

f - 1 [ 8 1 ] . 

Whi le this approach reduces the number of operations needed to compute the 

Harmonic Transform, it does not reduce the asymptotic computational complexity 

and the computation has 0(N2) complexity. Further research on the reduction of 

the number of operations used to compute Harmonic Transform has been therefore 

focused on developing a subquadratic method of Harmonic Transform computation. 

3.2 Fast Harmonic Transform 
The number of operations in direct computation of the H T from (1.49) raises 

quadratically, similarly to direct computation of Fourier transform. The goal of this 

section is to present an algorithm to compute the H T which shows sub-quadratic 

complexity. When there is a transform wi th quadratic complexity, then its sub-

quadratic form is referred to as the fast version of the transform. In this case it is 

the Fast Harmonic Transform ( F H T ) . One of the ways to produce a fast transform 

of a transform which depends on time-warping of the time axis, is to separate it 

into a time-warping operation and a Fast Fourier Transform. This has been demon­

strated in the case of Fan-Chirp Transform [14] and Mel l in Transform [82]. A n d this 

principle is also used here for devising the F H T . 
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Fig . 3.1: Comparison of spectral flatness measure and modified spectral measure of 

the sound sample soprano short. The analysed segment is 1024 samples long. 
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Fig . 3.2: Harmonic Transform image (harmonic spectrum) of a harmonic chirp signal 

showing one-sided spectrum. 
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B y substituting r = aa(t) in (1.36) it becomes 

S(u, a) = r ( T ) s(r)p(r)e-^dr, (3.3) 

where s{r) is a time-warped version of s(t) and p{r) is a scaling function on the time-

warped axis. To compute the time-warped input signal s{r) we need the inverse of 

the warping function ^ a ( r ) = a ^ ( r ) which then gives s{r) = s(ipa(T)). The inverse 

of a a ( r ) is a quadratic function which has two solutions. The solution of interest is 

,,2 

2 a a 
where T is the length of the analyzed segment. The scaling function is then defined 

as 

p(r) = a'a{A{r)Wa{r). (3.5) 

Equation (3.3) can be seen as Fourier Transform of the product of s{r)p{r). This 

enables efficient implementation in discrete time based on the F F T . Further analysis 

wi l l therefore be focused on the discrete-time F H T . 

Discrete-Time Fast Harmonic Transform 

The equation (3.3) can be written in discrete time as 

N 
S(k, a) = J2 ~s(n)P(n)e-W (3.6) 

n=0 

which is a F F T of the product s(n)p(n) which is the uniformly sampled product 

s ( t ) p ( t ) . Since we usually only have discrete signals available, we wi l l use discrete-

time intervals n even though its value can be non-integer. A n y values at non-integer 

intervals wi l l be enumerated using interpolation from the signal samples. Now to 

get a discrete-time counterpart of (3.4) we take aa(n) which is a quadratic function 

and its inverse a~ 1 (n) yields two results. The result of interest is 

g + " ^ - ' + * + 1>, (3.7) 
2 a a 

where n is sample index and N is number of samples [83]. Plot of the warping 

function aa(n) and its inverse warping function ipa(n) can be seen in F ig . 3.3. A 

demonstration of the warping function (3.7) on a signal with linear frequency change 

can be seen in F ig . 3.4. The warping function is used to time-warp the signal wi th 

linear frequency change to a signal with stationary frequency fc which corresponds 

to the frequency of the signal wi th linear frequency change at time t = 0, or n = N/2 

for discrete-time signals. 
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Fig . 3.3: Mapping from the original time axis to the time-warped axis given by the 

discrete-time warping function ipa(n). 

W i t h (3.7) we can define the discrete-time time-warped signal from (1.49) as 

sa{n) = p(n)s(ipa(n)), (3.1 

where p(n) = 0a(V ;a(^))~ 1 is the scaling factor which can be written as 

p(n) 
( N N , y y « 2 / 4 - a + ^ + i 

~ + 2 a

 N

 a + 1 | (3-9) 

and s(ipa(n)) is the time-warped signal [83]. The last step to compute the H T is 

using F F T on the time-warped signal sa(n) as follows [83] 

N-l 
S(k,a)= J2 sa(n)e-^>. (3.10) 

n=0 

Now we have a Fast Harmonic Transform for harmonic signals with linear frequency 

change which in the next step wi l l be turned into an algorithm which wi l l enable its 

use for analysis and synthesis in the harmonic domain. 

Harmonic Transform Algorithm 

It has been stated in 1.5.2, that fundamental frequency change estimation is needed 

for correct representation of a signal using the H T . The fundamental frequency 
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Time (s)-> 

Fig . 3.4: The solid line represents a linear chirp and the dashed line represents a 

sinusoid wi th frequency equal to the linear chirp's frequency at t — 0 also called the 

central frequency fc. 
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change estimation has been carried out using spectral flatness measure. The search­

ing algorithm for fundamental frequency change estimation is following: It starts by 

searching the fundamental frequency change by measuring harmonic spectrum for 

different unit phase functions, i.e. phase functions wi th different fundamental fre­

quency slope a. The optimal parameter a is defined by the harmonic spectrum with 

the lowest S F M as can be seen in F ig . 3.6. It indicates the highest concentration 

of spectral peaks, an optimal fit of the transformation kernel for the signal. This 

means the optimal fundamental frequency change also has been found. In F H T , 

we are using interpolation to obtain a time-warped version of the analyzed signal. 

The interpolation adds noise and errors to the signal, creating more peaks in the 

spectrum that do not represent the analyzed signal, even when using high-quality 

interpolation, which renders spectral flatness inaccurate as can be seen in F ig . 3.7. 

It is therefore necessary to use a different method for fundamental frequency change 

estimation which wi l l be covered in sections 3.3 and 3.4. Fundamental frequency 

change can also be computed from fundamental frequencies obtained by another 

fundamental frequency estimating algorithm. If we use the estimation algorithm to 

estimate fundamental frequencies at the beginning and at the end of segment, the 

slope of linear frequency change can be computed from (1.45) as 

where / ( 0 ) , f(N/2), and f(N) is the instantaneous frequency of the fundamental 

frequency at the beginning, middle, and the end of the segment respectively [83]. 

Fast implementation of the Harmonic Transformation is based on (3.10), though 

its actual implementation employs several improvements. Block diagram of the 

Harmonic Transform algorithm is shown in F ig . 3.5. The algorithm consists of: 

1. Upsampling - Since the interpolation introduces noise to the signal, which is 

most pronounced in higher frequencies, it may be advantageous, depending on 

the application, to introduce upsampling to increase the quality of the trans­

formed signal. This operation increases the number of samples and operations 

by the upsampling factor. Chapter 3.6 deals with the aliasing problem. 

2. Windowing - Hann window is used for windowing. 

3. Normalization - When the analyzed signal has fundamental frequency change, 

the transformation can introduce energy leakage to neighboring spectral lines. 

To deal wi th this phenomenon, the window is adapted to the frequency change. 

4. Interpolation - Since the phase function ipa(t) wi l l likely not fit the discrete-

time signal sampled at uniform time intervals, interpolation of the signal values 

is necessary. 

5. Zero-phase zero padding - If we want to be able to determine phases of the 

harmonics, we need a zero-phase Fourier Transform implementation. This 

a = 
f(N) - J ( 0 ) 

f(N/2) 
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bounds the transformation length to odd number of samples. In this phase, 

zero samples are appended to the signal buffer. 

6. FFTshif t - This block carries out the actual zero-phase zero padding as defined 

by 

f(n) = \ ( M - i ) i^-, " m V (3-12) I n — v

 2

 1 + 1 tor n > ^y -S 

where M is the input buffer length and TV is the total number of samples 

used for the transform including zero samples from zero-padding. The first 

( M — l ) / 2 samples of the windowed data is stored at the end of the buffer 

from sample TV — ( M — l ) / 2 to TV — 1. The remaining samples wi l l be stored 

starting at the beginning of the buffer from sample 0 to sample (M — l ) / 2 . 

A l l zero padding occurs in the middle of the F F T buffer. 

7. F F T - Preforms the Fast Fourier Transform. 

Now we should have an efficient algorithm to compute the F H T . It is noteworthy 

that the harmonic spectrum of the F H T is double-sided as seen in F ig . 3.8, whereas 

the harmonic spectrum of D H T is one-sided. This allows for modifications in the 

spectrum like linear filtration, convolution, or correlation. After we obtain the 

harmonic spectrum and perform some modifications, an algorithm to return the 

signal to the time domains is required. This wi l l be the contents of the following 

section. 

3.2.1 Inverse Fast Harmonic Transform 
Inverse Fast Harmonic Transform ( IFHT) is the inverse transform to the Fast Har­

monic Transform. It can be used to obtain a time domain signal from a harmonic 

spectrum and its estimated fundamental frequency slope a. The I F H T is defined as 

1 N-l 
s(n) = - J 2 S ( k , a ) e ^ n . (3.13) 

J V n=0 

A n algorithm to compute the I F H T is very similar to the algorithm of F H T wi th 

reversed block order. The block diagram is in F ig . 3.9. Description of the blocks 

follows. 

Inverse Harmonic Transform Algorithm 

1. I F F T - Performs the inverse Fast Fourier Transform. 

2. FFTshif t - Returns the shifted samples in the buffer to their correct order. 

This is done simply by applying the formula (3.12) again. A n y added zeroes 

are simply discarded if zero padding was used. 
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Fig . 3.5: Block diagram of the forward Fast Harmonic Transform. 
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Fig . 3.6: Spectral flatness measure obtained using Harmonic Transform for a voiced 
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F ig . 3.7: Spectral flatness measure obtained using Fast Harmonic Transform wi th 

linear interpolation for a voiced speech segment happychild wi th frequency modula­

tion. 
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Fig . 3.8: Discrete Harmonic Transform of happy child sound sample shows that its 

double-sided harmonic spectrum is not mirrored, while the Fast Harmonic Transform 

wi th linear interpolation shows mirrored two-sided spectrum with aliasing. 

3. Interpolation - Since mapping from the warped time axis ipa(t) to the natural 

time axis t wi l l likely not fit the discrete-time signal sampled at time-warped 

intervals, interpolation of the signal values is necessary. 

4. Normalization - This is the inverse of the normalization operation in the for­

ward Fast Harmonic Transform. It simply relieves the fundamental frequency-

adapted windowing of the forward Fast Harmonic Transform. 

5. Downsampling - If upsampling has been used in the forward harmonic trans­

form, the time domain signal is downsampled. 

Tab. 3.1: S N R (dB) of a speech signal micf01sa02 reconstructed using I F H T from 

a harmonic spectrum obtained by F H T . 

interpolation 

method 

oversampling interpolation 

method l x 2x 4x 

linear 17.9 28.0 37.1 

cubic 22.0 37.7 42.6 

spline 28.0 42.4 42.9 
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Fig . 3.9: Block diagram of the Inverse Fast Harmonic Transform computation. 
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Fig . 3.10: Reconstruction error of a segment of a speech signal micf01sa02; a) ori£ 

inal signal; b) reconstructed signal; c) residual signal. 

The interpolation methods used for linear, cubic, and spline interpolation are 

the matlab i n t e r p l parameters 'linear', 'cubic', and 'spline', respectively. Since 

the I F H T contains a second interpolation (the first one is used in obtaining the 

harmonic spectrum using F H T ) , the reconstructed signal is quite likely to have 

more noise than the input signal. This is depicted in F ig . 3.10, where the input 

and reconstructed signals are subtracted to obtain the noise signal. To quantify the 

reconstruction error, we have enumerated the S N R of reconstructed signals using 

I F H T for different interpolations and several oversampling factors for the signal 

micf'01sa02 in Tab. 3.1. It can be seen from the table that we can use a cheaper 

interpolation method if we use oversampling. The relationship betwen noise in the 

reconstructed signal and oversampling factor is further explored in section 3.6. 

The signal-to-noise ratio (SNR) is computed using 

S N R = 10 log (3.14) 

where Ps is the power of measured signal and Pn is the power of noise. The power 

is computed using 
N-l 

N E x 2(n)-< (3.15) 
n—l 

where P is the power, x(n) is the signal sample, TV is the signal length. The actual 

implementation of signal power estimation employs the Mat lab function NORM which 
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computes the signal power through C2 

\x\ P = ^ , (3.16) 

wi th the norm defined as 

fN-l \ v 
x p 

sn=0 / 

The £ 2 norm can also be viewed as the Euclidean distance. 

3.3 Estimation of Fundamental Frequency Change 
Using Gathered Log-Spectrum 

If the Harmonic Transform is to accurately represent a harmonic signal wi th linear 

frequency change, estimation of the signal's fundamental frequency is its indispens­

able part. This method for fundamental frequency estimation is inspired by the 

method used in Fan-Chirp Transform which is presented in Section 1.6.4. A block 

diagram of this method can be seen in F ig . 3.11. Its principle is computation of 

gathered log-spectrum (1.80) for a predefined range of fundamental frequencies and 

fundamental frequency changes based on the nature of the analyzed signal. Then 

(a, /o) plane is constructed from the gathered log-spectrum values (as shown in F ig . 

3.12) which represent pitch salience and the most likely candidates for fundamental 

frequency are represented as peak values. For signals wi th dominant first harmonic 

component the first candidate wi th highest value is usually equal to the fundamental 

frequency in the analyzed signal. The resulting fundamental frequency /o and its 

slope a is taken from the maximum value of the gathered log-spectrum. 

The equation (1.80) computes logarithm of the magnitude spectrum, where the 

logarithm provides better results compared to the gathering of the linear spectrum 

making it more robust against formant structure [66]. In [66] p-norm wi th 0 < p < 1 

has been used to obtain similar results. Therefore the gathered log-spectrum used 

here is defined as 
1 ™H 

Po(f) = — £ l o g 7 | S ( t / ) | + l , (3.18) 

where higher 7 tends to 0-norm and lower 7 tends to 1-norm. 

During experiments wi th this method, it has been observed that the number of 

harmonics rin used in computation of (3.18) influences fundamental frequency esti­

mation. A t higher rin, the fo estimation precision improved at the cost of increased 

noise sensitivity. A t lower n H , the / 0 estimation was less sensitive to noise at the 

cost of decreased f0 estimation precision. The same conclusion can be reached by 
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Fig . 3.12: P i tch salience on (a, / 0 ) plane for a speech signal micf01sa02 at t — 359.6 

ms, M = 255, NFFT = 255, / s = 8000 Hz, n H = 4, wi th estimated / 0 = 212.8 Hz 

and a = —0.17. 

reasoning. Considering we are analyzing speech signals, the presence of a Gaussian 

noise in the signal could mask higher harmonic components as they tend to have 

lower energy, while the lower harmonic components can still be prominent in the 

magnitude spectrum since most of the speech signals' energy is concentrated in the 

lower frequencies. Now if we take the same speech signal wi th higher harmonic 

components unaffected by noise and take a sum of several harmonic components, 

the fundamental frequency estimate wi l l have to be more precise to hit the peak in 

gathered log-spectrum plane, as the higher frequency components wi l l have greater 

frequency fluctuation and wi l l require more precise input fundamental frequency 

in (3.18) to fit the higher frequency component. 

Algorithm outline 

The algorithm consists of several steps defined as follows: 

1. Segmentation - The audio signal is divided into segments for segment-wise 

processing. Length of the segments depends on the analyzed signal, specifically 

on its fundamental frequency change. It is necessary to adjust the length 

of the segment so that the fundamental change throughout the segment is 

approximately linear. This wi l l make sure the harmonic transform wi l l give a 
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fine representation of the frequency-modulated harmonic content of the signal. 

2. Windowing - is usually used to suppress spectral leakage on the borders of the 

segment. Hann and Hamming windows have given good results. 

3. Harmonic Transform - computes the harmonic transform using the algorithm 

presented in 3.2. 

4. Gathered log-Spectrum - computes the pitch salinity on (a, / 0 ) plane. This 

method is based on the gathered log-spectrum introduced in section 1.6.4 for 

F C h T , but uses the harmonic spectrum instead. The number of harmonics 

used for computation of gathered log-spectrum % has an impact on / 0 es­

timation. For lower the fo estimation is less precise but has a higher 

resistance to noise, whereas for higher % the / 0 estimation is more precise 

though the resistance to noise is lower. 

5. Argmax - denotes an operation which chooses the highest pitch salinity as a 

maximum of the (a, fo) plane, giving the most likely values of fo and a. 

6. Harmonic Spectrum - is the output of the harmonic transform for the estimated 

fundamental frequency change a. 

Using the estimated values a and fo we can compute the harmonic parameters of 

the fundamental frequency and its harmonics using (1.55) and (1.56). The harmonic 

part of the analyzed segment can then be constructed using (1.54). 

To show a typical output of the presented algorithm, it has been run on a signal 

micf'01sa02 wi th parameters M = 511, NFFT = 511, overlap = 5 ms, fs — 8 kHz, 

nn = 4, for f0 G< 80; 350 > and a G< —0.3; 0.3 > without oversampling. F ig . 3.13 

shows the pitch salience where the fundamental frequency contour can be seen as 

peak values. The maximum values of pitch salience for each segment are shown in 

F ig . 3.14. It should be noted many of the values are indeed maximum values though 

they represent a non-voiced segment, which does not have any fundamental. Spec­

trogram constructed from the outputs of Harmonic Transform is shown in F ig . 3.15 

and a S T F T spectrogram is shown in F ig . 3.16 for reference. It is evident the 

Harmonic Transform based spectrogram has sharper peaks without spectral smear­

ing where a harmonic structure is present in the signal, specifically in the higher 

frequencies. F ig . 3.17 represents fundamental frequency change a which is one of 

the input parameters of the H T . Only values corresponding to voiced segments are 

meaningful. Even though there are several octave errors in estimating the funda­

mental frequency as can be seen at time between 2.3 s and 2.5 s in F ig . 3.14, the 

fundamental frequency slope is correctly estimated as there are sharp continuous 

peaks at the same time interval in F ig . 3.15. 
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Fig . 3.15: Spectrogram of the micf01sa02 signal obtained using Fast Harmonic 

Transform wi th gathered log-spectrum as the /o change estimation algorithm. 
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Fig . 3.17: Fundamental frequency slope of the signal micf01sa02 obtained from each 

segment using the gathered log-spectrum based method. 

3.4 Estimation of Fundamental Frequency Change 
Using Analysis-by-Synthesis Approach 

In this approach we wi l l use the (a, / 0 ) plane to estimate the fundamental frequency 

as in 3.3 but wi th harmonic-to-noise ratio instead of pitch salinity. This approach 

assumes analysis of signals which are composed of a fundamental frequency and 

its harmonics. We wi l l t ry to estimate harmonic parameters of each harmonic of 

such signal using (1.55), where the hypothetical number of harmonics rin, range of 

fundamental frequencies /o and range of fundamental frequency changes a is based 

on previous knowledge of the nature of the analyzed signal. After the harmonic 

parameters have been estimated, they are used to construct the harmonic part of 

the analyzed signal which is then subtracted from the analyzed signal to get the 

residual signal. Then harmonic-to-noise ratio is computed from the harmonic and 

residual signal for all values of a and f0 which are then assembled on the (a, f0) 

plane as can be seen in F ig . 3.18. For a and /o that match the analyzed signal there 

wi l l be a peak in the (a, f0) plane and these values are evaluated as the final values. 

F F T cannot be used to compute (1.55) though its computational complexity is 

O(kN), where k is the number of harmonic components and TV is length of the 

transformation. Computational requirements can be kept reasonable through suit-
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Fig . 3.18: H N R (dB) of speech signal micf01sa02 estimated using at t — 359.6 ms. 

M = 255, NFFT = 255, / s = 8000 Hz, n H = 4, wi th estimated /„ = 212.4 Hz, 

a = —0.17, and H N R = 5.16 dB at the peak. 

able choice of input parameters. 

Algorithm outline 

Block diagram of the algorithm can be seen in F ig . 3.19. Block diagram description 

is as follows: 

1. Segmentation - The audio signal is divided into segments for segment-wise 

processing. Length of the segments depends on the analyzed signal, specifically 

on its fundamental frequency change. It is necessary to adjust the length 

of the segment so that the fundamental change throughout the segment is 

approximately linear. This wi l l make sure the harmonic transform wi l l give a 

fine representation of the frequency-modulated harmonic content of the signal. 

2. Windowing - is usually used to suppress spectral leakage on the borders of the 

segment. Hann and Hamming windows have given good results. 

3. Harmonic transform aligned at fo - is performed by the D H T aligned wi th 

the fundamental frequency fo using (1.55). The transformation is performed 

several times for a range of fundamental frequencies and a range of funda­

mental frequency slopes. The fundamental frequency and fundamental fre­

quency slope ranges are chosen so they are sensible to the analyzed data (e.g. 

57 



fo G< 80; 450 > Hz for adult speech). The transform is performed over fun­

damental frequency and a selected number of harmonics. The output consists 

of harmonic coefficients of each harmonic. 

4. Sinusoidal generator - generates the harmonic signal from its harmonic param­

eters. Amplitudes and phases of the harmonics can be computed directly from 

the S(k) coefficients using (1.56) and the periodic component of the signal is 

computed using (1.54). The noise signal f(n), required for the next step is 

computed by subtracting the reconstructed harmonic component h(n) from 

the input signal s(n) as in (1.57). 

5. A r g m a x ( H N R ) - denotes the maximum value on the (a, fo) plane which is 

constructed using harmonic-to-noise ratios ( H N R ) where the harmonic signal 

is constructed using values from the previous step and the residual signal is 

computed using (3.19). This value should represent the best fit of fundamental 

frequency fo and its change a for the analyzed segment. If the fundamental fre­

quency /o of the analyzed signal is absent, the fundamental frequency change 

a can still be estimated accurately. The succeeding steps are performed wi th 

the a and fo parameters found at the peak of the (a, fo) plane. 

6. Harmonic transform - performs F H T with a and fo parameters obtained from 

the previous step. 

7. Harmonic parameters - outputs the harmonic parameters of the estimated 

harmonic signal wi th a and fo parameters from step 5. 

8. Harmonic spectrum - outputs the amplitude-frequency and phase-frequency 

spectrum of the transform from step 6. 

Harmonic-to-noise ratio ( H N R ) is a ratio between the energy of the harmonic com­

ponent of a signal and its noise component. It can be computed as 

H N R = 1 0 log (3.19) 

where Ea is energy of synthesized harmonic component h(n) and En is energy of 

the noise-like component r(n). The noise-like component or the residual signal f(n) 

is defined as the difference between original signal and the synthesized harmonic 

component. 

The algorithm has been tested on a signal micf01sa02 wi th the same parame­

ters as in case of the method presented in Section 3.3: M = 511, NFFT = 511, 

overlap = 5 ms, fs = 8 kHz , rin = 4, for / 0 G< 80; 350 > and a G< —0.3; 0.3 > 

without oversampling. F ig . 3.20 shows H N R of each analyzed segment wi th the 

fundamental frequency slope selected for that segment. M a x i m u m values of H N R of 

each analyzed segment form the fundamental frequency in F ig . 3.21. Compared to 

fundamental frequency obtained using gathered log-spectrum in F ig . 3.14 we can see 
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Fig . 3.19: Block diagram of Fast Harmonic Transform algorithm using harmonic 

parameters for f0 change estimation. 

the former has a smoother contour while the latter is usually much faster to com­

pute. From F ig . 3.22 we can see the harmonic spectrogram provides much sharper 

peaks compared to the S T F T spectrogram in F ig . 3.16 and it is very similar to 

the harmonic spectrogram obtained using gathered log-spectrum as can be seen in 

F ig . 3.15. There are also parts where the harmonic spectrogram provides doubtful 

results occuring usually at transients e.g. at time intervals (0.8 s; l s) and (2.3 s; 

2.5 s). F ig . 3.23 shows the fundamental frequency slope a selected for each segment 

from maximum values of the (a, fo) plane for each segment. It is only meaningful 

for voiced segments. 
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Fig . 3.20: H N R (dB) of the synthesized harmonic component from the signal 

micf01sa02 wi th harmonic parameters extracted using the analysis-by-synthesis 

method. 
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Fig . 3.21: Fundamental frequency of the signal micf01sa02 extracted using the the 

analysis-by-synthesis method. 
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Fig . 3.23: Fundamental frequency slope of segments of the signal micf01sa02 ex­

tracted using the analysis-by-synthesis method. 
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Tab. 3.2: Computational steps of the Fast Harmonic Transform algorithm 

Operation Description Operations 

Normalization ~ („\ — x(n)w(n) 
*a\">) — 2N 

Warped index N 

sa(n) = za(ra) 
Resampling Hermite spline interpolation [13] AN 

linear interpolation [13] 2N 

D F T S(k,a) = D F T ( s a ( n ) ) TV log TV 

3.5 Computational Load 
The computational load of the fast algorithm can be enumerated using the number 

of operations required for analysis of one segment of length N. The algorithm can 

be divided into: normalization, warped index computation, resampling, and F F T . 

In normalization stage, the input signal x(n) is multiplied by the window function 

which has been divided by the scaling factor <p'{n). Warped index computation 

estimates time instants of the signal time-warped according to the warping function 

ipa{n)- The time-warped discrete-time signal sa(n) is obtained using interpolation 

from the normalized input signal za(n). F ina l ly the output harmonic spectrum 

S(k,a) is computed using F F T , assuming the length of analyzed segment TV is 

power of two. Each step of the algorithm is summarized in Table 3.2 together 

wi th the number of operations involved for every length of analyzed segment. The 

resulting computational load is 7V(log7V + 7) for the Hermite spline interpolation 

and 7V(log N + 5) for the linear interpolation. 

Computational load of the gathered log-spectrum computation depends on the 

number of analyzed fundamental frequencies, the range of fundamental frequency 

change, length of the F F T , choice of interpolation method, and number of pre­

sumed harmonics in the signal. Analyzing the computational load of a fundamental 

frequency estimation algorithm is out of scope of this thesis. 

3.6 Effect of Aliasing 

Spectrum of a linear chirp signal test signal obtained using Harmonic Transform 

computed directly from the equation (1.49) is without artifacts (as can be seen 

in F ig . 3.8), except the usual artifacts caused by windowing. The Fast Harmonic 

Transform uses interpolation of the input signal which introduces errors, namely, 

aliasing. To demonstrate the effect of aliasing we have used test signal which is a 
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linear chirp wi th 17 harmonics. Its S T F T spectrum can be seen in F ig . 3.25 where 

the spectral smearing can be seen as wider peaks wi th lower magnitude which blend 

together, specifically towards higher frequencies. 

Time warping performed using (3.7) maps one axis wi th equidistant intervals to 

a time-warped axis where the intervals between samples get shorter towards one of 

the ends of analysis segment as shown in F ig . 3.24. This causes the signal on the 

warped axis to be undersampled. Al ias ing can be seen in F ig . 3.26 as a noise floor 

which increases wi th frequency. F ig . 3.27 shows the contribution of each harmonic 

of the test signal to the noise floor caused by aliasing. 

One of the straightforward means of diminishing aliasing is oversampling. Over-

sampling consists of increasing the sampling frequency by adding zeroes to the signal 

and then filtering the signal by a low-pass filter to eliminate mirroring artifacts. The 

resulting signal wi l l have a multiple number of samples which in principle reduces 

the intervals between samples of the signal on the original axis and therefore the 

time-warped signal is interpolated wi th higher precision. This also allows us to use 

a cheaper interpolation method, if advantageous. A case where linear interpolation 

was used on the test signal wi th 2x and 4x oversampling is shown in F ig . 3.28. 

In the case of test signal, the 4x oversampling is performing close to D H T which 

can be seen in F ig . 3.26. A more thorough analysis has been performed on signal 

micf01sa02 as shown in Tab. 3.1. 

This section addresses the similarity between P i tch Tracking Modified D F T ( P T D F T ) 

and Harmonic Transform. The P T D F T is a modified D F T transform for analysis 

in harmonic domain. It is enumerated by direct computation and its computational 

complexity is therefore quadratic. It can be shown that the transformation kernel of 

P T D F T and H T is identical for linear frequency change over the length of analyzed 

segment. The P T D F T is defined as [23] 

where Sj(ra) is n-th sample of the i - th frame, / 0 fundamental frequency, A / 0 fun­

damental frequency change, Wi(n) time window of i - th frame. It can be seen, that 

after substitutions from (1.44), the phase of a linear chirp signal can be written as 

3.7 P T D F T and HT 

(3.20) 
n 
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Fig . 3.24: Relationship between the original and warped axis showing the distance 

between samples gets smaller at the end of segment for a = 0.9. 

n —> 

Fig . 3.25: Magnitude spectrum of the test signal, a linear chirp wi th 17 harmonics. 
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Fig . 3.26: Spectra comparison of linear chirp test signal between Fast Harmonic 

Transform with linear interpolation and aliasing and Discrete Harmonic Transform. 
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Fig . 3.27: Contribution of each harmonic to aliasing in Fast Harmonic Transform 

wi th linear interpolation to the spectrum of linear chrip test signal. 

65 



-10 

-20 

-30 

-40 

-50 

-60 

-70 

-80 

-90 

-100 

-110 

No oversampling 
2x oversampling 

-4x oversampling 

Fig . 3.28: The effect of oversampling on aliasing. Fast Harmonic Transform wi th 

linear interpolation was used on test signal. 

which is the transformation kernel of P T D F T and wi th substitutions from (1.45). 

/ x 2im f afc fcn\ 
v ( n ) = jr[f*-^+™)- ( 3 2 2 ) 

2irnfc ( a an-
tP(n) = — z — 1 - - + 2 27V 

and since fc = y , which is shown in transition from (1.43) to (1.44), the result is 

<p(n) = ^ a ( n ) , (3.23) 

which is the Harmonic transform kernel from (1.48). 

This enables to apply methods presented in this thesis to increase performance 

of algorithms based on the P T D F T . Simultaneously, many of the improvements and 

applications of P T D F T such as time-varying Kaiser window design, fundamental 

frequency estimation based on cross-correllation, or real-time speech coding that 

have been successfully proven to work with P T D F T , can be applied to H T . 

It should be noted, that the P T D F T is a special case of H T for linear frequency 

change of fundamental frequency. The H T is designed to represent any general form 

of continuous fundamental frequency change (e.g. quadratic). 
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3.8 Experiments 
The purpose of this chapter is to present use of the algorithm presented in 3.4 on real 

audio signals. From now on it wi l l be referred to as the A B S (analysis-by-synthesis) 

algorithm. Since we are analyzing real signals, there is no ground truth for the 

signal's harmonic parameters at each instant as opposed to analyzing synthesized 

signals, where the parameters are known and can be directly compared. Therefore we 

wi l l analyze the signal using the A B S algorithm and use it to extract the fundamental 

frequency which wi l l be used as input to harmonic parameter estimation. The 

signal wi l l then be reconstructed using the harmonic parameters when using the 

knowledge of fundamental frequency slope and without this knowledge. This wi l l 

produce a synthetic harmonic signal, an estimate of the input signal, with (further 

referred to as A B S - F M ) and without frequency modulation (ABS-S) . The A B S - S 

algorithm is essentially the same algorithm as A B S - F M wi th a = 0. This synthetic 

harmonic signal wi l l then be subtracted from the input signal, leaving a residual 

signal. The better the harmonic parameter estimation, the lesser the residual signal 

energy. B y measuring the harmonic-to-noise ratio for different signals wi th frequency 

modulation while using the knowledge of fundamental frequency change and without 

it, we can quantify the increase of harmonic parameter estimation accuracy which 

we get by using A B S - F M algorithm. 

So far, the Harmonic Transform has been used on speech signals which are usu­

ally conveniently sampled at 8 kHz . Yet, for many applications higher sampling 

frequencies are required. Experiments in this section are done on audio signals wi th 

sampling frequency 44.1 kHz . This causes two effects that change the efficiency of 

Harmonic Transform. First , the analysis windows used for audio signals sampled at 

44.1 kHz are only two to four times longer, while the sampling frequency is more 

than five times higher. The fundamental frequency change of the same signal in the 

analysis window wi l l therefore be smaller. Second, energy of the audio signals is 

still mostly in the lower frequency region so the improvement in terms of energy wi l l 

likely be subtle. These two factors are going to diminish the H N R gain of signals 

reconstructed using the knowledge of fundamental frequency slope and without it. 

3.8.1 V io la 
This experiment has been performed on a viola sound sample. It contains glissando 

and vibrato, which are both frequency modulation techniques on stringed instru­

ments. Spectrogram of this sound is shown in F ig . 3.29 where we can see most of 

the signals energy lies bellow 5 kHz though there is more spectral content in higher 

frequencies. The improvement in resolution of the harmonic spectrogram can be 

67 



4 
x 10 

1.5 

N 
X 

0.5 

50 100 150 200 250 
'(-)-> 

Fig . 3.29: Spectrogram of viola sound sample. 

seen in F ig . 3.30, specifically between the 180-th and 190-th segment where the 

glissando takes place. In F ig . 3.29 the spectral lines around 5 kHz are considerably 

smeared while in F ig . 3.30 they follow the change of the fundamental frequency 

which can be seen in F ig . 3.31. Fundamental frequency change a shown in F ig . 3.32 

has the shape of a fundamental frequency differential. F ig . 3.33 shows the H N R 

of the reconstructed harmonic part over the residual signal. The sharp notches in 

H N R are due to poor spectral content caused by string damping when using the 

glissando technique. A n d it can be seen from Fig . 3.34 the highest increase in H N R 

of the A B S - F M is at time intervals where glissando and vibrato (i.e. intervals wi th 

the highest frequency modulation) takes place. 

3.8.2 Artif icial vibrato 

In this experiment we would like to apply frequency modulation on a harmonic signal 

wi th known and nearly stationary fundamental frequency to compare the ability to 

estimate harmonic parameters from a signal in our system from section 3.4 when 

using A B S - F M and A B S - S . The selected harmonic signal is a vocal excerpt. The 

frequency modulation is created using a vibrato audio effect. 

Modulat ion frequency used in this experiment is 6 Hz, which is well wi thin the 
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Fig . 3.30: Harmonic spectrogram of viola sound sample. 

F ig . 3.31: Fundamental frequency of viola sound sample. 
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Fig . 3.32: Fundamental frequency change of m'oia sound sample. 
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Fig . 3.34: Increase of H N R when using A B S - F M over A B S - S on sound sample viola. 
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Fig . 3.35: Phase modulation by delay line modulation [85]. 

range of what the combination of vocalis muscle and diaphragm allows and it is 

also within the range of modulation frequencies for phase modulation algorithms in 

terms of musicality [84]. 

The vibrato used in this experiment is a simple delay line modulation based phase 

modulator [85]. This technique periodically changes the frequency of the fundamen­

ta l and its harmonics. Whi le it is easy to implement, it has some disadvantages. If 

the signal has spectral content close to half of the fundamental frequency, it may 

cause aliasing after applying the vibrato. It also changes the frequency of harmonic 

components without regard for spectral envelope of the instrument or vocal tract. 

Accordingly, the resulting modulated signal may not sound natural. This, however, 

should not interfere with this experiment. 

A s stated above, the vibrato used in this experiment is implemented using phase 
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modulation (see F ig . 3.35 for block diagram) by a modulation signal m(n) and 

y(n) = x(n — m(n)), (3.24) 

where y{n) is the vibrato output and m{n) is a continuous variable, which changes 

for every signal sample [85]. It is therefore decomposed into integer and fractional 

part [86] where the integer part is implemented using unit delays and the fractional 

part is implemented using interpolation. For sinusoidal modulation, the modulation 

signal is defined as 

m{n) = L + D E P T H • s in (u;MnT) , (3.25) 

where D E P T H is modulation depth in samples, uu is angular modulation frequency, 

L is the number of unit delays, and T is the sampling period. The resulting fun­

damental freuqency is a product of the fundamental frequency and fundamental 

frequency ratio 

P(n) = — = 1 - D E P T H • coMTcos(ujMnT), (3.26) 
to 

where oo\ is instantaneous phase, where (3(n) is also the resampling factor of the 

fractional part of the modulation signal. 

If we now apply the vibrato on a harmonic signal wi th quasi-stationary fun­

damental frequency, we can predict the expected fundamental frequency at each 

moment using (3.26) and compare it wi th the output of our algorithm. Spectro­

gram of the salvation sound sample without modulation is shown in F ig . 3.36. It 

is a decaying vocal sample of average fundamental frequency 392 Hz . When using 

depth of modulation 1 ms, the resulting maximal and minimal frequency ratio is 

1.04 and 1/1.04 , giving high an low extreme of the vibrato which is at 407.9 Hz 

and 376.8 Hz respectively. This can also be observed from Fig . 3.37 which shows 

the computed vibrato as the predicted sinusoid and the estimated sinusoid shows 

the estimated fundamental frequency from the A B S - F M algorithm. Spectrogram of 

the sound sample wi th vibrato is shown in F ig . 3.38. The harmonic spectrogram 

in F ig . 3.39 has more clearly defined peaks wi th less noise, especially around 1 kHz 

when compared to the S T F T spectrogram. The H N R in F ig . 3.40 is copying the 

decaying tendency of the sound sample by decreasing in time. Again , the difference 

between A B S - F M and A B S - S as shown in F ig . 3.41 shows increase in harmonic 

component separation at intervals whith frequency modulation. 

3.8.3 Soprano 

This is an analysis of the soprano sound sample. It is a sound of a female opera 

singer singing a vowel / i : / . From spectrogram in F ig . 3.43 it is clear most of the sig­

nals energy is concentrated below 5 kHz . The harmonic spectrogram (see F ig . 3.42) 
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Fig . 3.36: Spectrogram of the sound sample salvation without modulation. 
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Fig . 3.37: Fundamental frequency of vocal sample salvation wi th artificial vibrato. 
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Fig . 3.38: Spectrogram of the sound sample salvation wi th frequency modulation. 
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Fig . 3.39: Harmonic spectrogram of the sound sample salvation wi th frequency mod­

ulation. 
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Fig . 3.40: H N R of reconstructed harmonic part of the sound sample salvation for 

A S B - F M and A B S - S . 

F ig . 3.41: H N R increase of A B S - F M over A B S - S of reconstructed harmonic part of 

the sound sample salvation. 
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Fig . 3.42: Spectrogram of the sound sample soprano. 

in this case provides some reduction of noise which can be seen as vertical lines in 

F ig . 3.43. However at around 44-th and 75-th segment, there is an error in fun­

damental frequency estimation which can be seen in F ig . 3.44 as a sharp spikes in 

fundamental frequency at around 44-th and 75-th segment. This error can also be 

seen in fundamental frequency change estimation in F ig . 3.45 where the fundamental 

frequency change at 44-th and 75-th segment is too steep for a voice signal. This 

error of fundamental frequency estimation is most likely due to amplitude modu­

lation. F ig . 3.48 shows the 44-th analyzed segment and its reconstruction. The 

reconstruction does not represent the amplitude modulation well which decreases 

the H N R of the reconstructed harmonic part. The H N R is shown in F ig . 3.46 which 

shows that both algorithms perform similarly well which is confirmed in F ig . 3.47 

where the increase of H N R for the A B S - F M algorithm is mostly under 1 d B . This 

is most likely due to lack of high frequency content in the analyzed signal. 
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Fig . 3.43: Harmonic spectrogram of the sound sample soprano. 
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Fig . 3.45: Fundamental frequency slope of the sound sample soprano estimated using 

A B S - F M . 
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Fig . 3.46: H N R of the reconstructed harmonic part of the sound sample soprano for 

A B S - F M and A B S - S . 
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Fig . 3.47: H N R increase of A B S - F M over A B S - S of the reconstructed harmonic part 

of the sound sample soprano. 
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Fig . 3.48: Reconstruction of the 44-th segment of the soprano sound sample using 

A B S - F M . 
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4 CONCLUSION 
This thesis was focused on methods for representation of harmonic signals wi th 

time-varying frequency components. In section 1.1 a problem which occurs when 

such signals are analyzed using traditional methods is presented as well as state-

of-the-art methods which aim at accurate representation of these signals. Most of 

the focus of this section is on the Fan-Chirp Transform and Harmonic Transform 

which are both generalizations of the Fourier Transform for harmonic signals wi th 

time-varying frequency components and therefore they share some resemblances. 

The chapter 3.1 is dedicated to Harmonic Transform and its computation speed. 

Fundamental frequency estimation is a prerequisite to computing the Harmonic 

Transform which has so far been computed using Spectral Flatness Measure. A n 

algorithm to decrease the number of operations needed for S F M computation is pre­

sented based on the fact that the Harmonic Transform's image is one-sided. However 

the Harmonic Transform is enumerated using direct computation from (1.49) which 

employs 0(N2) computational complexity. Therefore further research was aimed at 

decreasing the computational complexity of Harmonic Transform. 

Section 3.2 introduces the Fast Harmonic Transform. The fast transform has 

been designed by splitting the Harmonic Transform into time-warping of the input 

signal and performing F F T . This allows for subquadratic computational complexity. 

Analysis of the number of operations requred to compute F H T can be found on Ta­

ble 3.2. However the time-warping operation involves interpolation which introduces 

noise to the signal and renders S F M ineffective as fundamental frequency change es­

t imation algorithm. It also introduces aliasing which is dealt with in section 3.6 

using oversampling and different interpolation methods. 

Since S F M cannot be used as a fundamental frequency change algorithm for 

F H T , we have introduced two methods of its estimation. First method is based 

on computing a gathered log-spectrum on a range of fundamental frequencies and 

its changes. This method is rather fast though it suffers in fundamental frequency 

resolution. Second method is based on reconstruction error of harmonic part of 

the signal using harmonic parameter estimation. This method is slower than the 

first method, though it offers better resolution in fundamental frequency estimation. 

Both of these methods have been run on a speech signal micf01sa02 to compare their 

results. 

Finally, since unti l now all papers published on the H T have been applied on 

speech signals sampled at 8 kHz , we wanted to analyze real signals wi th frequency 

modulation sampled at 44.1 kHz , which is a common sampling frequency in digital 

audio. The selected signals are composed of vocal and instrument samples and the 

results can be seen in section 3.8. Generally it can be said that the H T decreases re-
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construction error (i.e. the abili ty to represent the signal) for signals with frequency 

modulation. 

Another transform, P i tch Tracking Modified D F T , introduced concurrently wi th 

the H T is analyzed in this thesis and section 3.7 provides proof it is equivalent to 

the H T . 
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LIST OF SYMBOLS, PHYSICAL CONSTANTS 
AND ABBREVIATIONS 

F T Fourier Transform 

I F T Inverse Fourier Transform 

F r F T Fractional Fourier Transform 

H T Harmonic Transform 

F C h T Fan-Chirp Transform 

C T Chirp Transform 

C h T Chirplet Transform 

P T D F T P i t ch Tracking Modified Fourier Transform 

T V D F T Time-Varying Discrete Fourier Transform 

Q H M Quasi-Harmonic Mode l 

L S Least Squares 

A M Ampli tude Modulat ion 

F M Frequency Modulat ion 

S M Sinusoidal Mode l 

Q I F F T Quadratically Interpolated Fast Fourier Transform 

D D M Distributed Derivative Method 

G D M Generalized Derivative Method 

G R M General Reassignment Method 

D E S A Discrete Energy Separation Algor i thm 

I H T Inverse Harmonic Transform 

S T H T Short-Time Harmonic Transform 

D H T Discrete Harmonic Transform 

C Q T Constant-Q Transform 
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I F H T Inverse Fast Harmonic Transform 

W F T Warped Fourier Transform 

GlogS Gathered log-Spectrum 

H N R Harmonic to Noise Ratio 

S F M Spectral Flatness Measure 

M S F M Modified Spectral Flatness Measure 

n, m discrete-time index 

t time 

T length of a segment in seconds 

N, M length of a segment in samples 

L delay line length in samples 

fs sampling frequency 

Ts sampling period 

u angular frequency 

UJI instantaneous angular frequency 

/o fundamental frequency 

fc central frequency 

s(t) continuous-time signal 

s(t) estimation of the continuous-time signal s(t) 

S(-) complex spectrum 

Cfc complex amplitude of the fc-th sinusoid 

fk frequency of the fc-th sinusoid 

fk estimated frequency of the fc-th sinusoid 

fjk error of frequency estimation of the fc-th sinusoid 

fk frequency of the fc-th sinusoid 
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w(t) continuous-time analysis window 

0^ instantaneous amplitude of the k-th sinusoid 

4>k instantaneous phase of the k-th. sinusoid 

v(t) additive noise 

ot\. complex non-stationary sinusoidal parameters of the k-th sinusoid 

OOQ instantaneous frequency of the k-th sinusoid 

(•, •) dot product 

Hilbert transform 

ip[-] Teager energy operator 

(f>u(t) unit phase function 

(f)'u(t) first derivative of the unit phase function 

e fundamental frequency change rate 

a slope of fundamental frequency change 

aa(n) unit phase function for fundamental frequency slope a 

Sa(-) complex harmonic spectrum for fundamental frequency slope a 

4>a(t) time-warping function wi th chirp rate a 

Ak amplitude of the k-th harmonic 

t/?fc(0) ini t ial phase of the k-th harmonic 

h(n) estimated harmonic component 

r(f) pitch refinement score 

a chirp rate 

a discrete-time chirp rate 

X(T) time-warped version of the signal x(t) 

p(r) time-warped version of the scaling function p(t) 

ipa(t) time-warping function, inverse of <f>a(t) 
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Po(f) gathered log-spectrum at frequency / 

p(f) refined gathered log-spectrum 

Ps signal power 

Pn noise power 

£ h energy of harmonic component 

En energy of noise component 
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A SOUND SAMPLES 
A list of the sound samples used in this thesis and their location on the included 

D V D in the /samples directory. 

• happychild.wav 

• viola.wav 

• salvation.wav 

• salvationmod.wav 

• soprano.wav 

• sopranoshort.wav 

• micf01sa2.wav 
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B M A T L A B SCRIPTS OF T H E PRESENTED 
ALGORITHMS 

1 f u n c t i o n [ S ] = DHT( x , a ) 
2 %DHT Summary of t h i s f u n c t i o n goes here 
3 % D e t a i l e d e x p l a n a t i o n goes here 
4 % x — i n p u t s i g n a l 
5 % a — phase f u n c t i o n 
(i 

7 % l e n g t h of t h e segment 
8 N = l e n g t h ( x ) ; 

9 

io % i n p u t samples i n d i c e s 
n n = 0:N-1; 
12 % phase f u n c t i o n 
13 a l p h a = n . * (1—a/2+a . *n/ (2*N) ) ; 
14 % n o r m a l i z a t i o n — d e r i v a t i v e of t h e phase f u n c t i o n 
15 a l p h a d = 1—a/2+ (a . *n) /N; 
16 

17 % p r e a l l o c a t e t h e o u t p u t b u f f e r 
is S = z e r o s (N, 1) ; 
19 % compute t h e d i r e c t Harmonic t r a n s f o r m 
2 0 p a r f o r k = 0:N—1 
21 f o r n = 0:N—1 
22 S (k+1) = S (k+1) + . . . 

a l p h a d ( n + 1 ) . * x ( n + 1 ) . * e x p ( ( ( — l j * 2 * p i * k ) / N ) * a l p h a ( n + 1 ) ) ; 
2 3 end 
24 end 
25 

26 end 

1 f u n c t i o n [ S ] = DHTFO( x, a, f r , f s , nh ) 
2 %DHTF0 Computes nh harmonics s t a r t i n g from fundamental f r e q u e n c y f r 
3 % D e t a i l e d e x p l a n a t i o n goes here 
4 % x — i n p u t s i g n a l 
5 % a — phase f u n c t i o n 
6 % f r — f undamental f r e q u e n c y 
7 % f s — s a m p l i n g f r e q u e n c y 
8 % nh — number of harmonics 
9 

io % l e n g t h of t h e segment 
n N = l e n g t h ( x ) ; 
12 
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13 % i n p u t samples i n d i c e s 
14 n = 0:N-1; 
15 % phase f u n c t i o n 
16 a l p h a = n . * (1—a/2+a . *n/ (2*N) ) ; 
17 % n o r m a l i z a t i o n — d e r i v a t i v e o f t h e phase f u n c t i o n 
is a l p h a d = 1—a/2+ (a . *n) /N; 
19 

2 0 % p r e a l l o c a t e t h e o u t p u t b u f f e r 
21 S = z e r o s (nh, 1) ; 
22 % compute t h e fundamental f r e q u e n c y a l i g n e d d i r e c t Harmonic ... 

t r a n s f o r m 
2 3 p a r f o r k = l : n h 
24 f o r n = 0:N—1 
25 S(k) = S(k) + alphad(n+1).*x(n+1) .* ... 

e x p ( ( ( — l j * 2 * p i * k * f r ) / f s ) * a l p h a ( n + 1 ) ) ; 
26 end 
2 7 end 
28 end 

1 f u n c t i o n [ sfm ] = SFM( S, s f s c a l e ) 
2 %SFM Computes S p e c t r a l f l a t n e s s measure f o r doub l e s i d e d spectrum 
3 % i n p u t — S d o u b l e — s i d e d spectrum 
4 % s f s c a l e ' l i n ' f o r SFM 
5 % ' l o g ' f o r SFM_dB 
(i 

7 % i n p u t spectrum l e n g t h 
8 N = l e n g t h ( S ) ; 
9 

io % t a k e t h e a b s o l u t e v a l u e o f t h e spectrum and t a k e o n l y t h e ... 
p o s i t i v e v a l u e s 

n absS = a b s ( S ) ; 
12 absS = absS (absS>0) ; 
13 

14 % compute t h e nominator of t h e SFM 
15 num = exp ( (1/N) *sum ( l o g (absS) ) ) ; 
16 % compute t h e denominator of t h e SFM 
17 den = (1/N) * sum(absS); 
18 

19 % S e l e c t l i n e a r o r l o g a r i t h m i c s c a l e 
2 0 s w i t c h s f s c a l e 
21 case ' l o g ' 
22 sfm = 2 0 * l o g l 0 ( n u m / d e n ) ; 
2 3 case ' l i n ' 
24 sfm = num/den; 
25 o t h e r w i s e 

98 



26 sfm = 20*loglO(num/den); 
2 7 end 

1 f u n c t i o n [ msfm ] = MSFM( S, s f s c a l e ) 
2 %MSFM Computes M o d i f i e d S p e c t r a l f l a t n e s s measure f o r s i g n l e ... 

s i d e d spectrum 
3 % i n p u t — S d o u b l e — s i d e d spectrum 
4 % s f s c a l e ' l i n ' f o r MSFM 
5 % ' l o g ' f o r MSFM_dB 
(i 

7 % number of samples o f t h e f i r s t h a l f o f t h e i n p u t spectrum 
8 N = (length(S) 1 2 ) +1; 
9 % t a k e h a l f o f t h e i n p u t spectrum 

10 S = S (1 :N) ; 
n 
12 % t a k e t h e a b s o l u t e v a l u e o f t h e spectrum and t a k e o n l y t h e ... 

p o s i t i v e v a l u e s 
13 absS = abs (S) ; 
14 absS = absS (absS>0) ; 
15 

16 % compute t h e nominator of t h e SFM 
17 nom = e x p ( ( 1 / N ) * s u m ( l o g ( a b s S ) ) ) ; 
is % compute t h e denominator o f t h e SFM 
19 den = (1/N) * sum(absS); 
20 

21 % S e l e c t l i n e a r o r l o g a r i t h m i c s c a l e 
22 s w i t c h s f s c a l e 
2 3 case ' l o g ' 
24 msfm = 2 0 * l o g l 0 ( n o m / d e n ) ; 
25 case ' l i n ' 
26 msfm = nom/den; 
2 7 o t h e r w i s e 
28 msfm = 2 0 * l o g l 0 ( n o m / d e n ) ; 
2 9 end 

1 f u n c t i o n [ S ] = FHT( x , a, O S , NFFT ) 
2 %FHT Computation o f F a s t Harmonic T r a n s f o r m 
3 % x — i n p u t s i g n a l 
4 % a — phase f u n c t i o n 
5 % os — o v e r s a m p l i n g f a c t o r 
6 % NFFT - l e n g t h o f f f t 
7 % zero—phase z e r o — p a d d i n g = M—1/2+1:N—(M—l)/2—1 
8 

9 % number of i n p u t samples m u l t i p l i e d by t h e o v e r s a m p l i n g f a c t o r 
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M = l e n g t h ( x ) * o s ; 

% f i l l i n m i s s i n g arguments 
i f n a r g i n < 4 

N = l e n g t h ( x ) * o s ; 
e l s e 

N = NFFT; 
end 

% r e s a m p l i n g o f t h e i n p u t s i g n a l 
x = r e s a m p l e ( x , os, 1 ) . / o s ; 
% i n d i c e s o f t h e i n p u t samples 
n = 0:M-1; 

% i n v e r s e phase f u n c t i o n 
a l p h a = M/2 - M/a + (M* (a^2/4 - a + (2*a*n)/M + 1) . A ( 1 / 2 ) ) / a ; 
% i n v e r s e n o r m a l i z a t i o n f u n c t i o n 
a l p h a d = l . / ( ( a * ( M / 2 - M/a + (M*(a A2/4 - a + (2*a*n)/M + ... 

1) . A ( 1 / 2 ) ) /a))/M - a/2 + 1) ; 

% of t h e phase f u n c t i o n i s z e r o , do not i n t e r p o l a t e 
i f a == 0 

xa = x'; 
e l s e 
% n o r m a l i z e and i n t e r p o l a t e t h e i n p u t segment a t i n d i c e s o f the 

warped t i m e a x i s g i v e n by t h e phase f u n c t i o n 
x = x . * a l p h a d ' ; 
xa = i n t e r p l ( n , x , a l p h a , ' s i n e ' , ' e x t r a p ' ) ; 

end 

% I f we a r e u s i n g z e r o — p a d d i n g , i n s e r t t h e zer o samples i n t h e . 
m i d d l e o f t h e segment 

i f N > M % z e r o — p a d d i n g 
i f -.rem ( (M-l) , 2) 

Mo = ( M - l ) / 2 ; 
xa = [xa(Mo+1:M) zeros(1,N—M) x a ( l : M o ) ] ; 

e l s e 
Mo = c e i l ( ( M - l ) 1 2 ) ; 

xa = [xa(Mo+1:M) zeros(1,N—M) x a ( l : M o ) ] ; 
end 

e l s e 
% i f we a r e not u s i n g z e r o — p a d d i n g , do o n l y f f t s h i f t 

xa = f f t s h i f t ( x a ) ; 
end 

% p e r f o r m FFT a l g o r i t h m 
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5 3 S = f f t (xa, NFFT) ; 
54 

55 end 

1 f u n c t i o n [ x ] = IFHT ( S, a, O S , NFFT ) 
2 %IFHT Computation of I n v e r s e Harmonic T r a n s f o r m 
3 % D e t a i l e d e x p l a n a t i o n goes here 
4 % x — i n p u t s i g n a l 
5 % a — phase f u n c t i o n 
6 % os — o v e r s a m p l i n g f a c t o r 
7 % NFFT - l e n g t h o f f f t 
8 

9 % t a k e l e n g t h of t h e i n p u t segment 
10 M = l e n g t h (S) ; 
n NFFT = M; 
12 % p e r f o r m t h e i n v e r s e F o u r i e r t r a n s f o r m 
13 xa = r e a l ( i f f t (S) ) ; 
14 

15 % I f we a r e u s i n g z e r o — p a d d i n g , remove t h e ze r o samples from t h e ... 
m i d d l e o f t h e segment 

16 i f NFFT > M 
17 i f -.rem ( (M-l) , 2) 
is % z e r o — p a d d i n g f o r even segment l e n g t h s 
19 Mo = ( M - l ) / 2 ; 
2 0 xa = [xa(Mo+l:M) zeros(1,N—M) x a ( l : M o ) ] ; 
21 e l s e 
22 % z e r o — p a d d i n g f o r odd segment l e n g t h s 
2 3 Mo = c e i l ( (M-l) 12) ; 
24 xa = [xa(Mo+l:M) zeros(1,N—M) x a ( l : M o ) ] ; 
25 end 
26 e l s e 
2 7 % i f we a r e not u s i n g z e r o — p a d d i n g , do o n l y f f t s h i f t 
28 xa = f f t s h i f t (xa) ; 
2 9 end 
30 

31 % i n p u t samples i n d i c e s 
32 n = 0:M—1; 
33 

34 % phase f u n c t i o n 
35 a l p h a = M/2 - M/a + (M*(a A2 /4 - a + (2*a*n)/M + 1) . A ( 1 / 2 ) ) / a ; 
36 % n o r m a l i z a t i o n f u n c t i o n 
3 7 a l p h a d = 1./ ( (a - 2)."2/4 + (2*a.*n)/M) . A ( 1 / 2 ) ; 
38 

3 9 % i f t h e phase f u n c t i o n i s z e r o , do not p e r f o r m i n t e r p o l a t i o n 
4 0 i f a == 0 
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41 xa = xa ' ; 
42 e l s e 
4 3 % i n t e r p o l a t e t h e i n p u t segment a t t h e samples i n d i c e s o f t h e ... 

o r i g i n a l s i g n a l and n o r m a l i z e 
44 x = i n t e r p l ( a l p h a , x a , n , ' c u b i c ' , ' e x t r a p ' ) ; 
45 x = x . / a l p h a d ; 
46 end 
4 7 

48 % resample t h e s i g n a l t o i t s o r i g n a l l e n g t h 
4 9 x = resample (x, 1, os) . *os; 
50 

si end 

1 %% S c r i p t f o r c o m p u t a t i o n o f Harmonic t r a n s f o r m u s i n g g a t h e r e d ... 
lo g — S p e c t r u m as t h e fundamental f r e q u e n c y e s t i m a t i n g a l g o r i t h m 

2 c l e a r a l l ; 
3 

4 os = 2; % o v e r s a m p l i n g f a c t o r 
5 M = 512; % segment l e n g t h 
6 NFFT = 1024; % a n a l y s i s window l e n g t h 
T FMIN = 40; % minimum a n a l y z e d fundamental f r e q u e n c y 
8 FMAX = 450; % maximum a n a l y z e d fundamental f r e q u e n c y 
9 

10 [x, f s ] = wavread('mic_F01_sa2_8k'); 
11 

12 hops = c e i l ( (5e—3) * f s) ; 
13 hop = M—hops; 
14 Z=segmentace (x, M, hop) ; 
is [M, N] = s i z e (Z) ; 
16 N = 1 : N; 
17 

is win = hamming (M) ; 
19 nwin = win./sum(win); % n o r m a l i z e t h e window 
2 0 a r = —0.3:0.01:0.3; % range o f fundamental f r e q u e n c y change 
21 

22 f = o s * f s / 2 * l i n s p a c e ( 0 , l , N F F T / 2 + l ) ; 
2 3 f r e q s = ( l o g s p a c e ( l o g l O ( F M I N ) , l o g l O ( F M A X ) , 1 0 0 0 ) ) ; % 1000 ... 

l o g a r i t h m i c a l l y spaced v a l u e s between FMIN and FMAX 
24 

25 nh = 4 ; % number of h y p o t h e t i c a l harmonics i n t h e a n a l y z e d segment 
26 b t = l : n h ; 
2 7 Sharma = z e r o s ( l e n g t h ( f r e q s ) , l e n g t h ( a r ) ) ; 
28 Sharmaout = z e r o s ( l e n g t h ( f r e q s ) , l e n g t h ( N ) ) ; 
2 9 Sout = zero s ( N F F T , N ) ; % o u t p u t s p e c t r o g r a m 
3 0 Hout = Sout; % 
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31 Aout = z e r o s (1,N); % 
32 fOout = Aout; 
3 3 S = z e r o s ( N F F T , l e n g t h ( a r ) ) ; 
34 f o r g = N 
35 Zx = Z ( : , g) . *win; 
36 f o r i = 1: l e n g t h (ar) 
3 7 S ( : , i ) = FHT(Zx, a r ( i ) , os, NFFT); % F a s t Harmonic T r a n s f o r m 
38 end 
3 9 

40 Sx = S ( 1 : f l o o r ( N F F T / 2 + 1 ) , : ) ; % t a k e l e f t s i d e of t h e spectrum 
41 absS = abs (S x ) ; % i t s magnitude v a l u e 
42 p a r f o r fOs = 1 : l e n g t h ( f r e q s ) % f o r a l l i n p u t fundamental ... 

f r e q u e n c i e s 
4 3 Sharma (f Os, : ) = (1/nh) * ... 

s u m ( l o g ( l + 1 0 * i n t e r p l ( f , a b s S , f r e q s ( f O s ) . * b t , ' l i n e a r ' ) ) ) ; . . 
% g a t h e r e d l o g — S p e c t r u m 

44 end 
45 

46 [G, I] = max(Sharma); 
4 7 [H, Y] = max(G); % f i n d t h e maximum v a l u e of t h e glogS 
48 Aout(g) = a r ( Y ) ; % s e l e c t e d f undamental f r e q u e n c y change 
4 9 fOout (g) = f r e q s ( I ( Y ) ) ; % s e l e c t e d f undamental f r e q u e n c y 
so Sharmaout(:,g) = Sharma(:,Y); % glogS of s p e c t r o g r a m w i t h t h e ... 

s e l e c t e d f undamental f r e q u e n c y change 
51 Sout(:,g) = FHT(Zx, a r ( Y ) , os, NFFT); % o u t p u t s p e c t r o g r a m 
52 

5 3 end 

1 %% S c r i p t f o r c o m p u t a t i o n of Harmonic t r a n s f o r m u s i n g ... 
a n a l y s i s — b y — s y n t h e s i s as t h e fundamental f r e q u e n c y ... 
e s t i m a t i n g a l g o r i t h m 

2 M = 512; % segment l e n g t h 
3 NFFT = 512; % a n a l y s i s window l e n g t h 
4 FMIN = 80; % minimum a n a l y z e d fundamental f r e q u e n c y 
5 FSTEP = 0 . 5 ; 
6 FMAX = 450; % maximum a n a l y z e d fundamental f r e q u e n c y 
7 
8 [x, f s ] = wavread('mic_M01_sa2_8k'); 
9 

10 hops = c e i l ( (5e—3) * f s) ; % hop s i z e 
11 o v l = M—hops; % o v e r l a p from hop s i z e 
12 hop = o v l ; 
13 Z=segmentace(x,M,ovl); 
14 [M, N] = s i z e (Z) ; 
15 N = 1:N; 
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win = hann(M); % a n a l y s i s window 

win = win./sum(win); % window n o r m a l i z a t i o n 

a r = —0.05:0.001:0.05; % fundamental f r e q u e n c y change range 

f = f s / 2 * l i n s p a c e ( 0 , l , N F F T / 2 + l ) ; 
f r e q s = FMIN:FSTEP:FMAX; % i n p u t fundamental f r e q u e n c i e s 
nh = 6; % h y p o t h e t i c a l harmonics i n t h e a n a l y z e d segment 
bt = l : n h ; 
Sharma = z e r o s ( l e n g t h ( f r e q s ) , l e n g t h ( a r ) ) ; 
Sout = z e r o s ( N F F T , l e n g t h ( N ) ) ; 
Hout = Sout; 
Aout = z e r o s ( 1 , l e n g t h ( N)); 
fOout = Aout; 
S = z e r o s ( N F F T , l e n g t h ( a r ) ) ; 
St = z e r o s ( n h , 1 ) ; 
SNRe = z e r o s ( l e n g t h ( f r e q s ) , l e n g t h ( a r ) ) ; 
SNReout = z e r o s ( l e n g t h ( f r e q s ) , l e n g t h ( N ) ) ; 

k = 0:M-1; 
f o r i = 1 : l e n g t h ( a r ) 

a ( : , i ) = k . * ( 1 — a r ( i ) / 2 + a r ( i ) . * k / ( 2 * M ) ) ; % p r e c o m p u t a t i o n of 
the phase m o d i f i e r f o r i n p u t fundamental f r e q u e n c y ... 
change range 

end 

f o r g = N 
Zx = Z ( :,g) .*win; 
sumZx = sum(Zx. A2) ; 
f o r i = 1 : l e n g t h ( a r ) 

a l p = ar ( i ) ; 
p a r f o r fOs = 1 : l e n g t h ( f r e q s ) 

St = D H T F 0 ( Z x , a l p , f r e q s ( f O s ) , f s , n h ) ; % complex ... 
c o e f f i c i e n t s o f t h e fundamental and i t s harmonics 

A = s q r t ( r e a l ( S t ) . A 2 + imag(St) . A2) ; % a m p l i t u d e of 
t h e harmonics 

phiO = a t a n 2 ( i m a g ( S t ) , r e a l ( S t ) ) ; % phase of t h e ... 
harmonics 

phiO = unwrap(phiO); 

R = z e r o s ( 1 , M ) ; 
ph = ( 2 * p i * f r e q s ( f 0 s ) / f s ) . * a ( : , i ) ' ; % phase 
f o r k = l : l e n g t h ( S t ) 

R = R + 2*A(k) * c o s ( k . * p h + p h i O ( k ) ) ; % ... 
r e c o n s t r u c t i o n of t h e i n p u t s i g n a l from t h e . 
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harmonic parameters 
56 end 
5 7 HNRe (f Os, i ) = . . . 

1 0 * l o g l 0 ( s u m Z x / ( s u m ( ( Z x - w i n . * R ' ) . A 2 ) ) ) ; % HNR ... 
c o m p u t a t i o n 

58 end 
5 9 end 
60 

61 [maxhnrval, i n d ] = max(HNRe(:)); 
62 [ f r e q s i n d , a r i n d ] = i n d 2 s u b ( s i z e ( H N R e ) , i n d ) ; 
63 

64 Aout(g) = a r ( a r i n d ) ; % o u t p u t fundamental f r e q u e n c y change 
65 fOout (g) = f r e q s ( f r e q s i n d ) ; % o u t p u t fundamental f r e q u e n c y 
66 Hr(g) = m a x h n r v a l ; % o u t p u t HNR v a l u e 
67 HrO(g) = HNRe(freqsind,ar==0); % o u t p u t HNR v a l u e f o r a s i g n a l ... 

r e c o n s t r u c t e d w i t h o u t account f o r f r e q u e n c y m o d u l a t i o n 
68 Sout(:,g) = FHT(Zx, a r ( a r i n d ) , 1, NFFT); % o u t p u t s p e c t r o g r a m 
69 

70 end 
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