BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INTELLIGENT SYSTEMS
USTAV INTELIGENTNICH SYSTEMU

IMPROVING SYNTHESIS OF FINITE STATE
CONTROLLERS FOR POMDPS USING BELIEF
SPACE APPROXIMATION

VYLEPSENi SYNTEZY KONECNE STAVOVYCH KONTROLERU PRO POMDP

MASTER’S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. FILIP MACAK
AUTOR PRACE
SUPERVISOR doc. RNDr. MILAN CESKA, Ph.D.

VEDOUCI PRACE

BRNO 2023

BRNO FACULTY
UNIVERSITY | OF INFORMATION
OF TECHNOLOGY | TECHNOLOGY

Master's Thesis Assignment |||||||||||||||||||

146891
Institut: Department of Intelligent Systems (UITS)
Student: Macak Filip, Bc.
Programme: Information Technology and Atrtificial Intelligence
Specialization: Mathematical Methods
Title: Improving Synthesis of Finite State Controllers for POMDPs Using Belief Space
Approximation
Category: Formal Verification

Academic year: 2022/23

Assignment:

1. Study the state-of-the-art controller synthesis methods for Partially Observable MDPs (POMDPs)
with the focus on inductive synthesis and belief space approximation supporting complex
indefinite-horizon specifications.

2. Design an integrated controller synthesis method combining benefits of inductive synthesis and

belief space approximation.

Implement the integrated method within the tool PAYNT.

4. Using suitable benchmarks, perform a detailed experimental evaluation of the integrated method
including a comparison with the state-of-the-art synthesis methods.

w

Literature:

® Kochenderfer, M.J., Wheeler, T.A., and Wray K.H, Algorithms for Decision Making, MIT Press
2021.

* Andriushchenko, R., Ceka, M., Junges, S., and Katoen, J.P. Inductive synthesis of finite-state
controllers for POMDPs. In UAI'22. Proceedings of Machine Learning Research.

® Bork, A., Katoen, J.P, and Quatmann, T. Under-approximating expected total rewards in
POMDPs. In TACAS’22. Springer.

 Andriushchenko, R., Cegka, M., Junges, S., Katoen, J.P. and Stupinsky, S. PAYNT: A Tool for
Inductive Synthesis of Probabilistic Programs. In CAV 2021. Springer.

Requirements for the semestral defence:
Items 1, 2 and partially item 3.

Detailed formal requirements can be found at https://www fit.vut.cz/study/theses/

Supervisor: Ceska Milan, doc. RNDr., Ph.D.
Consultant: Andriushchenko Roman, Ing.
Head of Department: Hanacek Petr, doc. Dr. Ing.
Beginning of work: 1.11.2022

Submission deadline: 24.5.2023

Approval date: 3.11.2022

Faculty of Information Technology, Brno University of Technology / Bozetéchova 1/2 / 612 66 / Brno

Abstract

This work focuses on combining two state-of-the-art controller synthesis methods for partially
observable Markov decision processes (POMDPs), a prominent model in sequential decision
making under uncertainty. A central issue is to find a POMDP controller that achieves a total
expected reward objective. As finding optimal controllers is undecidable, we concentrate
on synthesising good finite-state controllers (FSCs). We do so by tightly integrating
two modern, orthogonal methods for POMDP controller synthesis: a belief-based and an
inductive approach. The former method obtains an FSC from a finite fragment of the
so-called belief MDP, an MDP that keeps track of the probabilities of equally observable
POMDP states. The latter is an inductive search technique over a set of FSCs with a fixed
memory size. The key result of this work is a symbiotic anytime algorithm that tightly
integrates both approaches such that each profits from the controllers constructed by the
other. Experimental results indicate a substantial improvement in the value of the controllers
while significantly reducing the synthesis time and memory footprint.

Abstrakt

Tato praca sa zameriava na kombinaciu dvoch modernych metéd syntézy planovacov pre
Markovské procesy s ¢iastoénym pozorovanim (POMDPs), ktoré st vyznamnym modelom
pre sekven¢né rozhodovanie s neistotou. Hlavnou tilohou je najst planova¢ POMDP, ktory
dosahuje ¢o najlepsiu hodnotu. Kedze hladanie optimalneho planovaca je nerozhodnutelné,
zameriavame sa na syntézu dobrych konecne stavovych kontrolérov (FSCs). V tejto préci
integrujeme dve moderné, ortogonilne metédy pre syntézu kontrolérov POMDP, a to metodu
zalozeni na prehladavani belief priestoru a induktivnu metédu. Prva metdda ziskava
FSC z konecného fragmentu takzvaného belief MDP, ¢o je MDP, ktory udrziava prehlad
o pravdepodobnostiach rovnako pozorovatelnych stavov POMDP. Druhé je induktivna
vyhladavacia technika pre mnozinu FSC s fixnou velkostou paméti. Klicovym vysledkom
tejto prace je symbioticky algoritmus, ktory integruje obidva tieto pristupy tak, aby sa
kazdy dokézal zlepsit z kontrolérov vytvorenych tym druhym. Experimentalne vysledky
naznacuju vyznamné zlepsenie hodnoty kontrolérov pri zna¢nom znizovani ¢asu syntézy a
vyuzitej pamate.

Keywords

Markov models, probabilistic models, automated synthesis, model checking, formal methods,
partial observability

Klic¢ova slova

Markovské modely, pravdepodobnostné modely, automatizovana syntéza, model checking,
formalne metddy, ¢iastocna pozorovatelnost

Reference

MACAK, Filip. Improving Synthesis of Finite State Controllers for POMDPs Using Belief
Space Approximation. Brno, 2023. Master’s thesis. Brno University of Technology, Faculty
of Information Technology. Supervisor doc. RNDr. Milan Ceska, Ph.D.

Rozsireny abstrakt

Nahodnost a neistota sa casto vyskytuju v umelej inteligencii, biologickych systémoch,
distribuovanych algoritmoch a mnohych dalsich oblastiach. Pravdepodobnostné modely
su silnym néastrojom, ktory ndm pomaha uvazovat o ndhodnosti a neistote v systémoch.
Pouzitie tychto modelov nam moéze pomédct dalej analyzovat vlastnosti danych systémov
formalnym spdsobom. Modely zodpovedajice systémom z redlneho zivota mézu byt velmi
komplexné. Ich stavovy priestor moéze byt velky a mozu obsahovat vela casti s neistymi
informéaciami, ktoré moézu byt pre dany model kritické. Preto je dolezité zlepsovat metody,
ktoré sa pouzivaju na analyzu takychto modelov.

Markovské rozhodovacie procesy (MDP) [25] st jednym z najpouzivanejsich modelov
na ziskavanie informécii o systémoch obsahujicich pravdepodobnostné vetvenia s nede-
terministickymi akciami. Sd vyuzivané v automatizovanom pldnovani, planovani tdloh a
formalnej verifikdcii. Pravdepodobnostné modelovacie nastroje, ako napriklad PRISM [22] a
Storm [12], sti schopné efektivne najst riesenia pre MDP. Ciastoéne pozorovatelné Markovské
rozhodovacie procesy (POMDP) [24] predstavuji zovSeobecnenie MDP. Zdedili vSetky vlast-
nosti klasickych MDP, ale ich stavy nie st plne pozorovatelné. To moze byt interpretované
tak, ze vieme identifikovat len urc¢ité aspekty stavov, napriklad farbu stavu, ale nie samotny
stav. To ddva POMDP potrebnu silu na modelovanie urcitych problémov. Napriklad si
predstavme robota, ktorého senzory maju len ¢iastocni spolahlivost. Toto mézeme modelo-
vat pomocou POMDP. Hlavnym cielom rieSenia POMDP je ziskat planovac, teda plan na
riesenie nedeterminizmu modelu pre dany ciel. Rozdielom oproti MDP pri tomto probléme
je, ze POMDP planovace musia svoje rozhodnutia zakladat len na pozorovatelnych aspektoch
stavov, zatial ¢o planovace MDP mo6zu brat do tvahy celi historiu informécii o stavoch. To
znamena, ze v POMDP st cesty s rovnakymi sledmi pozorovani neodlisitelné z pohladu
planovaca.

Problém overenia POMDP s neohrani¢enym horizontom (neobmedzend dosiahnutelnost
alebo odmeny akcii) je vo vSeobecnosti nerozhodnutelny [23]. Jeden priklad takejto Specifiké-
cie je nasledovny: Je mazimdlna ocakdvand celkovd odmena na dosiahnutie daného cielového
stavu v POMDP pod danym prahom? Napriek nerozhodnutelnosti existuje mnoho pris-
tupov, ktoré sa dnes snazia tc¢inne aproximovat rieSenie pre POMDP. Belief-based metédy
st zalozené na preskimani belief priestoru a st jednym z najmodernejsich pristupov pre
analyzu POMDP s neobmedzenym horizontom. “Belief” reprezentuje pravdepodobnostnii
distribiiciu nad stavmi POMDP, ktoré majui rovnaké pozorovanie. Pojem “belief” je dolezity,
pretoze nam umoznuje opisat Ciastoénil pozorovatelnost aktualneho stavu. Tieto metddy
sa snazia odvinut belief priestor daného POMDP a vytvorit takzvany belief MDP, ktory
je mozné nasledne overit. Dokéazu tiez poskytnit dobré vysledky pre vic¢sinu modelov,
ale pouzitie planovaca, ktory vytvoria, je komplikované, pretoze tento planova¢ obvykle
vyzaduje vela paméte a spolieha sa na ndhodné podplanovace. Preto vznikli metédy, ktoré
dokézu produkovat malé a lahko pouzitelné planovace. Jednou z tychto metdd je induktivna
syntéza konecne stavovych kontrolérov (FSC) [4]. FSC st malé koneéné automaty, ktoré
dokazu zakdodovat celé stratégie pre POMDP [13]. Induktivna syntéza iterativne preskiimava
Coraz vicsie rodiny moznych FSC a snazi sa ndjst ten najlepsi. Jednym z problémov induk-
tivnej syntézy je rast priestoru moznych FSC, ktory treba preskiimat. Tato prica sa teda
sustreduje na skiimanie a zlepSovanie dvoch hlavnych metéd: 1) induktivna syntéza FSC
implementovand v nastroji PAYNT [5], a 2) Belief-based metddy [6, 7] implementované v
nastroji Storm [12, 17], ktoré pouzivaju takzvané cut-off aproximéacie nepreskiimaného belief
priestoru. Obidve tieto metédy maji svoje vyhody a nevyhody, preto z hladiska pouzivatela
nemusi byt jednoduché vybrat, ktort z metéd pouzif bez hlbokych znalosti jednotlivych

metdd a skimaného modelu. Tato praca sa zameriava na vyvoj frameworku, kde si tieto
metddy symbioticky poméhaja a st schopné najst lepsie planovace.

V tejto préaci sa budeme zameriavat iba na Specifikdcie s neobmedzenym horizontom.
Ak odstranime tuto poziadavku, existuji aj iné velmi efektivne metédy. Vyznamné priklady
su aproximovang iterdcia hodnot navrhnutd v [15], simuldcie Monte Carlo [27] a pouzitie
strojového ucenia a neurénovych sieti [8]. Pravdepodobne najznamejsi spomedzi tychto
met6d je algoritmus SARSOP [21], ktory produkuje pldnovace ako mnozinu a-vektorov.
Planovace vo forme a-vektorov vedu k zlozitejsiemu naslednému pouzitiu. Vysledné planovace
musia sledovat "belief' a vykondvat niroéné vypocty na vyber akcii. Dalsim vyznamnym
algoritmom je HSVI [18]. Tieto metédy si obvykle velmi silné s vyuzitim skutocnosti, ze sa
umoznuje znizovanie dolezitosti akcii. Niektoré pristupy sa uberali cestou hladania samotnych
planovacov na rozdiel od snahy ziskat planovac¢ s aproximovanej hodnotovej funkcie. Niektoré
z najvyznamnejsich si ndhodné planovace pomocou gradientného zostupu [16] alebo pomocou
konvexnej optimalizdcie [1, 11, 19].

Reinforcement learning (RL) [14, 26] je tiez velmi vyznamnym v probléme hladania
planovacov pre POMDP (prehlad najnovsich pokrokov v RL pre POMPD néajdete v [29]).
Tieto pristupy a iné metoédy strojového ucenia zavadzaju istt polaritu medzi bezpecnostou
vysledku a skalovatelnostou v porovnani s forméalnymi metédami, na ktoré sa zameriavame v
tejto praci. Metdédy zalozené na RL velmi dobre skaluji a mézu byt tiez pouzité na riesenie
neznidmych POMDPs, ale obetuju zaruky bezpecnosti, ktoré poskytuju formalne metddy.
Cielom tejto prace je zmiernit medzeru medzi bezpecnostou a skalovatelnostou, a to tak ze
sa snazime zlepsit efektivnost formalnych metéd na rieSenie POMDP a posilnit ich poziciu
v tejto oblasti.

Hlavnym prinosom tejto préace je symbidza belief-based metdd a vyhladavania planovacov.
Pre tento ucel bolo potrebné vyriesit rézne technické prekazky, ako napriklad ziskanie
planovaca z belief MDP s aproximujicimi planova¢mi, a vyvoj prechodu medzi fazami
prieskumu belief priestoru a vyhladavania planovacov s minimalnymi ndkladmi. Vyhody
navrhovaného symbiotického algoritmu st mnohostranné, ako ukazujeme v nasej empirickej
evaludcii. Symbioticky algoritmus dokaze riesit POMDP, ktoré nemozno riesit ziadnym z
jednotlivych pristupov samostatne. Produkuje planovace, ktoré dosahuju lepsiu hodnotu
(s relativnym zlepSenim az o 40%) ako aj pldnovace, ktoré potrebuji menej paméte (s
redukciou az o dva rady). Okrem toho je tdto integracia schopna znizif pamétové naroky
prieskumu belief priestoru az o faktor 4. Zaver je taky, ze nasa integricia pontka velmi
silny syntetizacny algoritmus, ktory produkuje lepsie a strucnejsie planovace v porovnani s
najnovsimi metédami. Zatial ¢o nasa empirickd evaludcia je Specificka pre dané metody,
ziskané poznatky sa mozu aplikovat aj pri integracii inych metdd.

Improving Synthesis of Finite State Controllers
for POMDPs Using Belief Space Approximation

Declaration

I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of doc. RNDr. Milan Ceska, Ph.D. The supplementary information was
provided by Ing. Roman Andriushchenko. I have listed all the literary sources, publications
and other sources, which were used during the preparation of this thesis.

Filip Macék
May 15, 2023

Acknowledgements

I would like to thank my supervisor Milan Cegka and the consultant for this work Roman
Andriushchenko for their help and guidance during this research. I would also like to thank
Alexander Bork, Sebastian Junges and Joost-Pieter Katoen for helping us with the creation
of an article inspired by this work, that got accepted to CAV’23. I want to thank my parents
for their support and encouragement throughout my whole life and especially during my
time at the university. A big thanks goes to my girlfriend Janka for always being here for
me and being an amazing part of my life. And last but not least, I would like to thank
my friends Dizzax, Poizzi, Radluy and Toaster for all the good times that keep me going
forward.

Contents

1 Introduction

2 Preliminaries and Problem Formulation
2.1 Preliminaries e e e e e
2.2 Partially-observable Markov Decision Processes
2.3 Specification. L
2.4 Finite-state Controllers.
2.5 Problem Statement

3 State-of-the-art Methods
3.1 Belief-based Methods
3.2 Inductive Synthesis of FSCs oL
3.3 Simulation-based and Reinforcement Learning Methods

4 Limitations of State-of-the-art
4.1 Limitation of Alternative Approaches.
4.2 Limits of Belief-based Methods and Inductive Synthesis

5 Integration of Inductive Synthesis and Belief-based Methods
5.1 Using FSCs for Cut-off Values
5.2 Using Reference Policies to Improve Inductive Synthesis
5.3 FSC Overview e
5.4 Symbiotic Policy Synthesis. oL

6 Experimental Evaluation
6.1 Selected Benchmarks and Experiments Setup
6.2 Evaluation of the One-way Integrations
6.3 Evaluation of the Anytime Symbiotic Algorithm

7 Final Considerations
7.1 Future Research
7.2 Conclusions

Bibliography

20
20
21

25
25
27
29
31

35
35
36
38

43
43
44

45

Chapter 1

Introduction

Randomness and uncertainty commonly appear in artificial intelligence, biological systems,
distributed computing and many more fields. Probabilistic models are a powerful tool to help
us reason about both randomness and uncertainty in systems. Using these models can help
us further analyse the properties of given systems in a formal way. Models corresponding to
many real-life systems can be very complex, their state space can be large and there can be
a lot of parts where critical information is uncertain. That’s why improving the methods
that are used for the analysis of such models is important.

Markov decision processes (MDPs) [25] are one of the most used models to reason
about systems containing probabilistic branching with controllable actions. They are used
in automated planning, scheduling and formal verification. Probabilistic model checkers
such as PRISM [22] and Storm [12] are able to efficiently find policies for MDPs. Partially
observable Markov decision processes (POMDPs) [24] represent a generalization of MDPs.
They inherit all features of classic MDPs, however, the states are not fully observable. This
can be interpreted as only being able to identify certain aspects of states, but not the
state itself. This gives the POMDPs the needed strength to model certain problems. For
example, imagine a robot whose sensors have only partial reliability, we can model this
using POMDPs. The main goal in POMDP solving is to obtain a scheduler, i.e. a plan for
how to choose actions for a given objective. The difference for this problem between solving
MDPs and POMDPs is that POMDP schedulers must base their decisions solely on the
observable aspects of the states, meanwhile, MDP schedulers can take the entire history of
full state information into consideration. This means that in POMDPs the paths with the
same observation traces are indistinguishable for the scheduler.

The problem of verifying a POMDP with respect to indefinite-horizon specification
(unbounded undiscounted reachability or rewards) is generally undecidable [23]. One
example of such a specification is the following: is the mazimal expected total reward to reach
a given goal state in a POMDP below a given threshold? Despite the undecidability, there
are many approaches today that try to effectively approximate the solution for POMDPs.

The belief-based methods using belief exploration are one of the state-of-the-art ap-
proaches for POMDPs [7]. Beliefs represent the probability distributions over states of
the POMDP that have the same observation and thus allow us to describe the partial
observability of the current state. Belief-based methods try to unfold the belief state space
of a given POMDP and obtain policies from the explored belief space. These methods are
able to provide high-quality schedulers, however, deploying such schedulers is problematic as
they usually require a lot of memory, they are difficult to interpret since very similar beliefs
can lead to different actions, and they rely on randomized sub-schedulers to approximate

unexplored belief space. Alternative approaches that can produce small and easy-to-use
schedulers for complex POMDPs have recently emerged. One of the state-of-the-art ap-
proaches builds on the inductive synthesis of finite-state controllers (FSCs) [4]. FSCs are
small finite-state automata that can encode whole strategies for POMDPs [13]. The inductive
synthesis iteratively explores bigger and bigger families of possible FSCs and tries to find
the best one. The key problem of inductive synthesis is the increasing size of the design
space that needs to be explored. So the two main methods this work will try to examine and
improve are: 1) the inductive synthesis of FSCs implemented in a tool called PAYNT [5], 2)
the belief-based methods [6, 7] implemented in a tool called Storm [12, 17] that use cut-offs
to approximate the unexplored belief space. Both of these methods have their pros and
cons, so from the user’s perspective, it is not convenient to choose between them without
a deep understanding of the methods. This work sets out to develop a framework where
these methods symbiotically alleviate each other’s weaknesses and find better schedulers
than both of them individually.

If we lift the need for undiscounted specification there are alternative methods that
are very efficient. Prominent examples include approximative value iteration proposed
n [15], Monte Carlo simulations [27] and usage of machine learning and neural networks [8].
Probably the most notable of the bunch is algorithm SARSOP [21] which produces policies
as a set of a-vectors. The a-vector policies lead to more complex analysis downstream: the
resulting policies must track the belief and do floating-point computations to select actions.
Another notable algorithm is HSVI [18]. These methods are usually really strong in utilizing
the fact that discounting is allowed. Some approaches go the route of policy search. Some
of the most prominent are randomised controllers via gradient descent [16] or via convex
optimization [1, 11, 19].

Reinforcement learning (RL) [14, 26] is also very prominent in the problem of finding
controllers for POMDPs (for an overview of recent advances in RL for POMPDs see [29]).
These approaches and other machine learning methods introduce a certain polarity between
safety and scalability compared to the formal methods we focus on in this work. The
RL-based methods scale very well and also might be used for solving unknown POMDPs;,
however, they sacrifice the safety guarantees offered by the formal methods. The focus of
this work is on bridging the gap between safety and scalability as we aim to improve the
efficiency of the formal methods for POMDP solving and strengthen their position in this
research area.

Key contributions

This work showcases the issues and limitations of the state-of-the-art methods on tiny
examples and uses this fact to reinforce the need for a symbiotic approach. These tiny
examples provide a good insight into what the methods trying to tackle the indefinite-horizon
specifications for POMDPs need to take into consideration to provide good results for a
variety of problems.

The key contribution of this work is the symbiosis of belief exploration and policy search
methods. Various technical obstacles had to be addressed e.g. obtaining a scheduler from the
belief MDP along the approximating policies for its frontier and developing a back-and-forth
approach that switches between the belief exploration and policy search phases with minimal
overhead. The benefits of the symbiotic algorithm are manifold, as we show by in-depth
empirical evaluation. The symbiotic algorithm is able to solve POMDPs that cannot be
tackled with either of the two approaches alone. It produces schedulers that are superior

in value (with relative improvements of up to 40%) as well as schedulers which take a lot
less memory to store (with a reduction of a factor of up to two orders of magnitude) with
only a small cost on their values. Additionally, the integration is able to reduce the memory
footprint of the belief exploration by a factor of 4. In conclusion, the integration offers a very
powerful push-button, anytime synthesis algorithm producing superior and/or more succinct
schedulers compared to the state-of-the-art methods. While our empirical evaluation is
method-specific, the lessons carry over to integrating other methods.

Another important contribution is the unification of the theory behind representing the
schedulers for POMDPs using FSCs. We define a notion of a general FSC and then we
expand this definition and define various sub-classes of FSCs. This fact allows us to better
reason about the schedulers produced by belief-based methods and also allows us to better
compare the results, especially their size.

Publication

This thesis served as a basis for an article called ,Search and Explore: Symbiotic Policy
Synthesis in POMDPs“. This article was accepted to International Conference on Computer
Aided Verification 2023 (CAV’23) in May 2023. CAV is a CORE A* conference with average
acceptance rate around 25%. I would like to thank the co-authors Roman Andriushchenko,
Alexander Bork, Milan Ceska, Sebastian Junges and Joost-Pieter Katoen for their help
with the publication of this work. In the following paragraph, I tried to summarize my
contribution to this publication:

I significantly contributed to the formulation of the research ideas, namely the proposed
improvements of the inductive synthesis by using different POMDP policies and the whole
symbiotic loop. I designed and implemented the methods for obtaining information from
belief policies, for using this information to enhance inductive synthesis in PAYNT and, for the
analysis of obtained FSCs. I came up with the main design of the symbiotic algorithm (see
Algorithm 1) and was the one implementing it in our tools. I helped with the implementation
of exporting belief policies as well as FSCs found in the inductive synthesis. I performed all
of the experiments and pointed out the interesting facts that we present in our evaluation of
the proposed ideas. I also took an important part in the process of writing the article.

Structure of this thesis

Chapter 2 introduces the important theory behind the analysis of POMDPs and contains the
formulation of the offline synthesis problem for POMDPs this work focuses on. Chapter 3
showcases the current state-of-the-art methods for analysing POMDPs. We focus on
introducing methods capable of working with indefinite-horizon specifications, i.e. the
belief-based methods with cut-off approximations and the inductive synthesis of FSCs. In
Chapter 4 we explore the limitations of the state-of-the-art methods. We showcase the
advantage of representing strategies in the form of FSCs and the importance of improving
the formal methods in the POMDP synthesis problem. We also highlight the limitations of
inductive synthesis and belief-based methods on two simple POMDPs and provide motivation
behind the symbiotic integration. Chapter 5 introduces novel ideas for combining belief-based
and inductive synthesis approaches. We introduce a framework combining tools STORM
and PAYNT. And finally, introduce our proposed push-button anytime symbiotic algorithm
for the synthesis of FSCs in POMDPs. Chapter 6 contains the experimental evaluation
of the implemented integration that shows many practical improvements over the current
state-of-the-art tools. And finally, Chapter 7 contains a conclusion of this work.

Chapter 2

Preliminaries and Problem
Formulation

This chapter serves as an introduction to the fundamental concepts and tools that are
crucial for comprehending the ideas presented in this work. We begin this chapter with
an introduction to probability distribution and the basic stochastic models. The chapter
then shifts its focus to the specific problem that this work aims to address, which involves
synthesizing schedulers for partially-observable Markov decision processes (POMDPs) with
respect to indefinite-horizon specifications. POMDPs are critical models for decision-making
under uncertainty and limited observability, used in planning autonomous agents, solving
games with imperfect information, and medical treatment strategies. The chapter explains
the specifications that the work concentrates on and introduces the vital concept of a
finite-state controller (FSC), which provides a compact way to represent POMDP policies.
Finally, the problem statement for this work is presented.

2.1 Preliminaries

We begin with an explanation of probability distributions, which facilitate reasoning about
uncertainty. The Markov property is then introduced as a vital assumption underlying
the stochastic decision-making models in this work, derived from the notion of the Markov
chain. The chapter proceeds to define Markov decision processes (MDPs), which are an
essential model for reasoning about non-deterministic choices in stochastic environments.
Furthermore, key concepts surrounding MDPs, such as schedulers, memoryless schedulers,
and induced Markov chains, are discussed.

2.1.1 Probability and Markov Property

Probabilistic models are a powerful tool to help us reason about uncertainty, which occurs
in many complex systems. A probability distribution describes the likelihood of uncertain
outcomes. Formally:

Definition 1 (Probability distribution) A (discrete) probability distribution over a
countable set A is a function p: A — [0,1] such that the sum), .4 pu(a) = 1. Let Distr(A)
denote the set of all probability distributions on A. We define the support of a distribution p

as supp(n) = {a € A | u(a) > 0}.

Example 1 Let A = {ag,a1,a2} and let p: A — [0,1] be defined as pu : lag — %, a1 —
%,ag — 0], u € Distr(A), i.e. p is a probability distribution on A. The support of u is

supp(p) = {ao, a1}

Definition 2 (Markov chain) A discrete-time Markov chain (MC) is a tuple D = (S, so,
P), where S is a finite set of states, so € S is an initial state and P : S — Distr(S) is a
transition probability matriz.

One key property of stochastic models that is often considered is the Markov property.
Markov property refers to the memoryless property of stochastic processes. Markov property
states that if the current state is known, then the future states of the system are independent
of its past states. This allows us to adopt a state-based view of the stochastic models.

Definition 3 (Markov property) Let D be an MC. Let X (k) € S be a random variable
describing the current state of D at discrete time k > 0. Markov property is defined as
P(X(k)=sk| X(k—1)=5sk-1,...,X(0) =50) =P(X(k) =5 | X(k—1) = s_1).

2.1.2 Markov Decision Processes

Markov Decision Processes (MDPs) [25] are a widely used framework for modelling decision-
making problems under uncertainty. They introduce a non-deterministic choice into the
states in the form of actions that can be chosen. The Markov chain defined in the previous
section is, in fact, a special case of MDP where in each state there’s only one action that
can be chosen. MDPs have become widely used in AI, robotics, control theory etc. as they
naturally model examples like a robot moving through a stochastic environment.

Definition 4 (MDP) Markov decision process (MDP) is a tuple M = (S, so,Act, P), where
S is a finite set of states, so € S is an initial state, Act is a finite set of actions and
P:Sx Act x S — [0,1] is a transition probability function where for all s € S and a € Act,

ZS’ES P(Sv «, S/) € {07 1}

For each state s we can define set Act(s) = {a € Act | s’ € S,P(s,a,8') > 0}. If
a ¢ Act(s) then we say that action a cannot be played from state s. We call a state s
absorbing if Vo € Act(s) : P(s,a,8) = 1. A path 7 in MDP is defined as a non-empty
(possibly infinite) alternating sequence of states and actions spapsiasaas... such that
Vi € Ny : P(si, i, 8i41) > 0. Let Paths%f(s) be a set of all infinite paths from state s
and Paths%n(s) a set of all finite paths from state s in an MDP M. Then Paths™ (s) =
Paths%f(s) U Paths%n(s). For a finite path m = spagpsia;...sy, let last(m) = s, denote the
last state on the path. The Markov property allows us to compute the probability of an
individual path m = spapsia;...s,, using the probability matrix: P[r] = H?:_OIP(SZ‘, Qy Sit1)-

Schedulers (also known as strategies, policies or adversaries) are used to resolve non-
determinism in MDPs. Simply put schedulers choose what action should be taken based on
path history. In general, we can define a scheduler as:

Definition 5 (Scheduler) A scheduler is a mapping o : Paths%n — Distr(Act) that for
a path 7 yields a probability distribution over actions with supp(o (7)) C Act(last()), where
Paths%n is set of all finite paths in M.

Let XM denote the set of all schedulers for MDP M.

Definition 6 (Memoryless Scheduler) Scheduler o is memoryless if for paths 7, 7' it
holds that: last(7) = last(7') = o(7) = o(7’). For memoryless schedulers we often use
o(last(m)) instead of o (7).

In most of the cases in this work, we will only consider deterministic schedulers, i.e. the
mapping o chooses just one action instead of distribution over actions. Formally, o is
deterministic iff [supp(o(r))| = 1 for all 7 € Paths™. We can say that deterministic
schedulers are therefore of type Paths™ — Act. In general, randomized schedulers are more
powerful, however, they are harder to interpret and are therefore impractical in most cases.
What is really important in the analysis of MDPs is that for most basic specifications we
need to only consider memoryless schedulers to find the minimum and maximum value
schedulers [25]. This makes the set of considered schedulers finite. By applying a memoryless
scheduler to MDP we get an |S|-state induced MC (if we needed memory for the scheduler
we would need to encode it in the induced model). Formally:

Definition 7 (Induced MC) Let M = (S, sp, Act,P) be an MDP. We say that the
scheduler o € Y™ induces an MC M° = (Paths%n(so),so,PU) where P?(m,mo(n)s’) =
P(last(m),o(x),s’).

Example 2 Let’s consider MDP M = ({so, s1, S2, €1, €2,9}, So, {init,l,r},P) where the
transition probability function P (s, init, s1) = %,P(so, init, s9) = %,P(sl,l,el) = 1,P(sy,
r,g) = 1,P(sa,7m,e2) = 1,P(s2,l,9) = 1,P(e1,7,51) = 1,P(ea,l,52) = 1 and state g is
absorbing. MDP M is shown in the form of a state transition graph in Figure 2.10. Let
o be a deterministic memoryless scheduler such that o(s1) =r and o(s2) = 1. If we apply
scheduler o to MDP M we obtain an induced Markov chain that is isomorphic to a four-
state MC' (shown in Figure 2.1a) D = ({so, s1, $2, g}, 0, P) where P(sg) = [s1 — 3,52 —
3 P(s1) = 9= 1], P(s2) = [9 = 1], P(g) = [g— 1]

Figure 2.1: (a) contains a graph representation of MC with 4 states. State G is an absorbing
state (transition probability omitted for clarity). (b) showcases graph representation of
MDP with 6 states and 3 actions. MC depicted in (a) is isomorphic with an induced MC
obtained by applying a scheduler o, o(s1) = r and o(s2) = [, to the MDP depicted in (b).

2.2 Partially-observable Markov Decision Processes

Partially observable Markov decision processes (POMDPs) [24] emerged as a natural ex-
tension of MDPs and are currently widely researched. They help us model another level of

uncertainty in the form of observations. These observations restrict the information about
the current state. Any two states with the same observation are indistinguishable from each
other and we need to remember the history of visited observations to make good choices.

Definition 8 (POMDP) Partially observable MDP (POMDP) is a tuple M = (M, Z,0),
where M = (S, sg, Act,P) is the underlying MDP, Z is a finite set of observations and
O : S — Z is an observation function'.

We can extend the observation function to work on paths. Let m = sgagsiaqsaas... be a path
in a POMDP O'(7) = O(s0)apO(s1)a10(s2)as... in the rest of the paper we will write O(7)
to represent O’'(w). Two paths 71, mo with O(m1) = O(m2) are called observation-equivalent
and are indistinguishable from the decision-making perspective.

W.lo.g., we assume that all states with the same observation have the same set of
enabled actions. Formally, Vs,s’ € S : O(s) = O(s') = Act(s) = Act(s’). This means
that if we consider state s with observation z we can write Act(z) = Act(s).

Schedulers again help us to resolve POMDPs, however, finding the optimal scheduler even
for simple specifications without a discounting factor or a finite step bound is undecidable in
general. This comes from the fact that the optimal scheduler may require infinite memory.
In contrast with MDPs, in POMDPs we have to consider a special case of schedulers called
observation-based schedulers:

Definition 9 (Observation-based Scheduler) Scheduler o is observation-based if for
paths 7, @' it holds that: O(7t) = O(7') = o(7) = o(7)

Observation-based schedulers make a decision based on the history of observations instead
of states as is the case in MDPs. Let Eé\l;ls denote the set of all observation-based schedulers

for a POMDP M. If we take a scheduler o € Eé\gts and apply it to POMDP M we induce
an MC M? in a similar fashion as in MDPs.

Example 3 Let’s consider a POMDP M = (M, {in,mid,left,right,goal}, O) where M
is an MDP from FExample 2 and the observation function is defined in the following way
O = {sp — in,s1 — mid, sy — mid,e; — left,ea — right,g — goal}. The graph
representation for this POMDP is shown in Figure 2.2a. The graph representation is similar
to the MDP graph representation with the exception that we colour states in the graph to
stgnify what is the observation of each state. In Figure 2.2a we assigned the colours in the
following way in — grey, mid — green,left — yellow, right — purple and goal — white.

2.3 Specification

In this work, we consider indefinite-horizon reachability or expected total reward properties.
Formally, let’s consider MC D = (5,s0,P) and let " C S be a set of target states.
PP [s = OT] denotes the probability of reaching T from state s € S. If we use PP [OT]
we mean PP [sg = OT], i.e. the probability of reaching T from the initial state and we
omit the superscript if the MC is clear from the context. Now assume POMDP M with
underlying MDP M = (S, Act, P, sg) and a set T'C S of absorbing target states. W.l.o.g.
we assume that there is a special observation 2z € Z assigned to each of the target states,

We can encode more general observation functions using this formalism

S
S
1\

(a

Figure 2.2: (a) contains an example of a graph representation of a POMDP. The underlying
MDP is taken from Figure 2.1b and is extended with 5 observations (represented by 5
colours). (b) contains a simple 2-state FSC. Each transition is representing a triple prior
observation, chosen action and posterior observation. Transitions that are not feasible
for the POMDP from (a) were omitted. This showcases the fact that the general FSC as
defined in Section 2.4 is not practical in many cases. The FSC from (b) represents the best
observation-based strategy if we want to minimize the number of steps it takes to reach
state G in POMDP from (a).

.
1
1
T 1
0D
2
)

ie. Vs€S:s5€T <= O(s) = z'. The maximal reachability probability of T from
state s € S in M is PM [s = OT] := supaezobSIP’Ma [s = OT]. The minimal reachability
probability PM [s = OT] is defined analogously. These specifications are used for long-term
planning and formal verification.

Some methods for POMDP analysis consider infinite-horizon specifications. These
specifications still consider an unbounded number of decisions, however, they introduce a
discount factor v between 0 and 1. This discount factor means that actions in the present
are more significant than the actions considered in the future. The closer the discount factor
gets to 1, the more we need to consider future decisions. Another possibility is to only
consider bounded reachability or rewards. This means that you only analyse the model
with respect to some number of bounded actions. These specifications are also known as

finite-horizon specifications.

2.4 Finite-state Controllers

Finite-state controllers [2] are mealy automata that encode schedulers in a compact way.
They also have the advantage of being easy to use and verify.

Definition 10 (FSC) Finite-state controller (FSC) for POMDP M is a tuple F =
(N,ng,7,6), where N is a finite set of memory nodes, ng € N is the initial memory
node, v : N x Z — Act is the action mapping function and § : N X Z x Z — N is the
memory update function.

FSCs represent observation-based schedulers for POMDPs and therefore can be used to
induce MC. We call the states of FSC memory nodes (or just nodes) to distinguish them
from POMDP states. The action mapping function selects the actions based on the current
node of the FSC and the current observation, while the memory update function looks

at the current node, current observation and the next observation seen after playing the
action chosen by the action mapping function. So for example for POMDP in state s with
observation z = O(s) an agent following the strategy defined by FSC F executes action
a = v(n, z) associated with the current memory node of the FSC and the current (prior)
observation z. The POMDP state is updated to s’ with P(s,«,s’) > 0 and based on the
next (posterior) observation 2z’ = O(s’), the FSC updates its memory node to n’ = §(n, z,).
In this work, we only consider deterministic FSCs, however, it is possible to define FSCs
whose action mapping function returns a distribution over actions and the memory update
function a distribution over memory nodes in general. For |N| = k we call an FSC a k-FSC.
If £ =1, the FSC encodes a memoryless policy. The induced MC for FSC F and POMDP
M is MF = (S x N, (s0,n0), PF') where for all (s,n),(s',n') € S x N we define

PF((Sv n)’ (3/7 n,)) = [TL/ = 5(”? O(3>7 O(S/))] ’ P(&’V(”? O(S))v 3,)

Example 4 Let’s consider POMDP M from Ezample 3. Let FSC F = ({ng,n1},n0,7,9),
where v = {(ng,in) — init, (ng,mid) — I, (no,left) — r,(n1,mid) — r} and v =
{(no,in, mid) — ng, (ng, mid,left) — ng, (ng, mid, goal) — nyg, (no,left,mid) — ny, (n,
mid, goal) — no}. The state diagram for this FSC is shown in Figure 2.2b.

Definition 11 (Family of FSCs) A family of k-FSCs for POMDP M is a tuple .7-",?" =
(N,ng, K), where N is the set of k nodes, ng € N is the initial node and K = N X Z X Z is
a finite set of parameters each with domain Vi, . . C Act x N.

We can obtain an FSC from a family by choosing the value for each parameter. Families of
FSCs contain O((|Act|- |N|)(INI1Z112D)) many FSCs. A POMDP and a family of FSCs induce
a family of Markov chains. We use F™ to denote the family of all FSCs for POMDP M.

FSCs with £ nodes provide the same amount of memory for every observation, however,
in many practical problems memory is often required only for some of the observations.
Therefore we can consider reduced FSCs given by a memory model p: Z — N, where pu(z2)
determines the number of memory nodes used in the observation z. This way the number
of nodes in the FSC can remain the same, but the parameter domains can be significantly
reduced. The family of reduced FSCs induces a smaller design space. The definition 10
introduces a general form of an FSC also called posterior-aware FSC. In many cases, we
only need to consider a subset of FSCs called posterior-unaware FSCs. We say an FSC
with update function § is posterior-unaware if the posterior observations are not taken into
consideration when updating the memory, i.e. §(n,z,2") = §(n, z,2”) for all n € N and for
all z,2', 2" € Z. This restriction reduces the number of FSCs in the families we consider
(upper bound on the number of FSCs O((|Act| - |N|)(INI12D)). The advantage of the general
FSCs is that they usually need fewer memory nodes to encode the same strategy. We will
get to a proper definition of the so-called u-FSC and belief FSC and overview posterior
aware and unaware FSCs in the Section 5.3.

For MDPs with infinite state space and general POMDPs, an FSC realising the maximal
(minimal) reachability probability generally does not exist. Let’s take FSC F € FM
with memory nodes N. Let PM" [(s,n) = OT] := PM" [(s,n) = O(T x N)] denote the
probability of reaching target states T' from state (s,n) € S X N. And similarly, pM” [0T) :=
PM" [O(T x N)] denotes the probability of reaching target states T' in the MC M¥ induced
by F on M.

10

2.5 Problem Statement

We focus on the indefinite-horizon specifications in this work. We, therefore, focus on
long-term goals. For these specifications, finding the optimal FSC is an undecidable problem.
The classical synthesis problem [23] for POMDPs asks: given a POMDP M, set of target
states T" and a threshold A, find an FSC F' for which it holds that pM” [OT] > A if such an
FSC exists. We focus on a more practical take and aim to optimise the value pM© [OT] in
an anytime fashion: we try to find FSCs with high value and the faster we are able to do it,
the better.

Other variants of the synthesis problem e.g. maximising synthesis problem for the
expected total reward and minimisation variants are defined analogously. For simplicity,
in this work, we will assume that we want to always maximise the value. Of course, the
proposed method works for the minimisation problem as well, which is showcased in the
chapter with experimental evaluation.

The value of the FSC F' is the main objective of our problem statement, however, in
addition to that, we also look at the size of the FSC as a secondary objective and discuss it
in detail in later chapters.

11

Chapter 3

State-of-the-art Methods

In this chapter, we will review the state-of-the-art methods for the analysis of POMDPs.
This work focuses on the offline synthesis problem for indefinite-horizon specifications as was
highlighted in the previous chapter. For this reason, we will mainly focus on introducing
belief-based methods with cut-off approximations and the inductive synthesis of FSCs.
Belief-based methods are a class of methods that operate on probability distributions over
the state space. These distributions are also known as beliefs. Inductive synthesis aims
to find compact FSCs representing good policies. It constructs families of FSCs and tries
to find the best FSC in the given family using the results it computed up to that point.
We also introduce the point-based methods which perform well when a discount factor is
introduced, but struggle in long-term planning. At the end of the chapter, we also review
the simulation-based approach and the reinforcement learning methods. These methods are
strong when we work with prohibitively large or unknown POMDPs and they are typically
used in online planning, however, they tend to be data-intensive, the efficiency of sampling
limits their performance and their results are difficult to interpret and verify compared to
the FSCs we consider in the most of this work.

3.1 Belief-based Methods

This section introduces the methods for POMDP analysis that build on the notion of a
belief. We introduce this very important notion and all the needed theories using it. After
that, we introduce more concepts that are used in state-of-the-art belief-based methods.

3.1.1 Beliefs and Belief MDP

One way of analysing POMDPs is to construct a so-called (fully observable) belief MDP
and perform the analysis on this MDP [28]. The state space of this MDP consists of beliefs:
probability distributions over states of the POMDP M having the same observation. The
notion of belief is therefore really important and it lets us to describe the uncertainty (or
partial observability) of the current state. Let S, := {s € S | O(s) = z} denote the set of all
states in POMDP M having the same observation z € Z. Let the set of all possible beliefs
be B := J, e, Distr(S.). Notice that the set of all possible beliefs is uncountable. For
any belief b € By by O(b) € Z we denote the unique observation O(s) of any s € supp(b).

12

Let P(s,a,2) = Y ,c5lO(s') = 2] - P(s,a,s') denote’ the probability to move to a state
with observation z from state s using action o and let P(b,a,2) = > .gb(s) - P(s,a, 2)
denote the probability to observe z after taking action « in belief . We now can define the
belief obtained by taking action « from belief b conditioned on observing z if P(b,«,2z) > 0

(b a,2)(s) = 0(') = 4] 1?(262%‘? P(s,a,)

for all ' € S,/. If P(b,, z) = 0 the next belief is undefined.

Definition 12 (Belief MDP) The belief MDP of POMDP M = (M, Z,0) is the MDP
MB = (B, bo, Act, PB), where Buq are the beliefs representing the states, by = {so — 1}
is the initial belief, and transition function PB:

P5(b. o, 1) — {P(b,a,ow)) Y = (b]a,00)
otherwise

What is really important about belief MDPs is the fact that they accurately capture
the behaviour in their corresponding POMDP. By analysing belief MDP we are able to get
the scheduler for the POMDP directly. The analysis can be done using the standard MDP
model checking techniques.

The problem that arises in the construction of belief MDPs is the fact that their reachable
state space might be infinite. And this problem shows itself even for very small POMDPs
as will be shown in later chapters. If this is the case then we have to only construct some
finite part of the belief MDP and approximate the rest using appropriate approximation
techniques.

Example 5 Let’s consider POMDP M from Example 5. For this POMDP we can con-
struct a finite belief MDP MP" = ({bo, b1,ba, b3, ba, b5, by}, bo, {init,l,r}, PB) where PB =
{(bg, mnit, bl) — 1, (bl, l, b2) — %, (bl, l, bg) (g %, (bl,r, bg) — %, (bl, r, bg) — %, (bg,’l“, b4) —
1, (bg, l, b5) — 1, (b4, l, bQ) — 1, (b4,7’, bg) — 1, <b5, r, bg) — 1, (b5,l, bg) — 1}. The beliefs
encode following distributions over states: by = [sg — 1],b1 = [s1 — %, S %], by = [e] —
1],b3 = [ea — 1],bs = [s1 +> 1],b5 = [sg > 1],by = [g — 1]. This belief MDP is shown in the
form of a state transition graph in Figure 3.1.

3.1.2 Belief Exploration

We start the exploration of the belief space from the initial belief by = {sg — 1}. Since all
states in a given belief have the same observation we can get the set of actions for belief b
as Act(b) = Act(s) for any s € supp(b). In the exploration, we want to expand all of the
actions of the current belief and get a set of new beliefs which are put in a queue. Each
time a belief is picked from the queue, there is a decision on whether it should be expanded
or left unexplored. Assuming M?Z2 is unfolded up to some depth, let £ C B denote the set
of explored beliefs and let U C Ba\E denote the frontier. Frontier is the set of unexplored
beliefs reachable from £ in one step. The idea of explored belief space £ and of the frontier
U is shown in Figure 3.2a. If we decide to expand a state from the frontier further we
compute the set of new beliefs for each action using the formula presented in Section 3.1.1.

Tverson bracket notation: [x] = 1 if x is true and 0 otherwise

13

init_ 1

Figure 3.1: Belief MDP constructed for POMDP from Figure 2.2a. For every belief there
is a corresponding distribution over original states. This belief MDP is complete, i.e. the
reachable belief space for the considered POMDP is finite. The colours are used only to help
us map the beliefs to the observations of the original POMDP but there are no observations
in the belief MDP itself.

Note that if we are expanding belief b on action « obtaining a set of new beliefs B}}%" then
for each observation z the sum Ebengw [O(b) = z] < 1 which means that no two beliefs
from the set B7" have the same observation. To construct belief MDP we add transitions
from belief b on action « to the new beliefs with their corresponding computed probabilities.
In the set of new beliefs, we might get a belief ¥’ which we explored before meaning that
we add a transition from b to already existing b’ in the belief MDP. If we choose to not
expand a belief from the frontier then we have to approximate its value which is discussed
in the next section. One way to decide what beliefs to explore is to set a depth limit or to
have a heuristic which takes the gap between the fully observable lower bound and upper
bound into consideration. We usually work with a combination of these, i.e. we set a size
for the belief MDP but we want to focus on exploring paths that are important for the
overall result. If there are no beliefs in the frontier, the whole reachable belief space has
been explored so we have constructed a finite belief MDP and we can easily model check it
without any approximations (an example of a finite belief MDP is shown in the Example 5).

Approximating the values of unexplored beliefs is an essential part of the belief-based
methods. There are a lot of models where finite exploration becomes ineffective after a
number of beliefs were explored and the overall result therefore heavily depends on the
approximations. Therefore, there is a lot of focus on coming up with good approximations.

3.1.3 Cut-off Approximation of Unexplored Belief Space

The main idea behind belief cut-offs is that we want to assume a target state is reached
immediately from the frontier (or cut-off) state while achieving sub-optimal value. This
idea can be used for computing both over-approximations described in [6] and under-
approximations described in [7]. In this work, we will focus on under-approximations as we

14

Figure 3.2: (a) showcases the explored part of the belief space £ from initial belief by and the
frontier of the belief MDP U reachable in one step from £. (b) Application of value function
V to compute cut-off values for each belief b € U and obtain a belief MDP abstraction MB.
The states b+ and b; are newly added sink states, where the former is added to the set of
target states. Note that beliefs b € U can have multiple actions but we omitted them for
clarity.

are interested in finding real usable controllers. Let’s say our specification is to maximize
the probability of reaching a target state. One simple way how to approximate cut-off states,
in this case, is to make all of them absorbing and therefore there is no path to the target
states from cut-off states. This gives us a proper under-approximation of the real value. Of
course, we can do better than that by searching for strategies for the unexplored part of
the belief space beyond the cut-off states. Applying cut-offs directly manipulates the belief
MDP and yields a finite model.

Let V : By — [0, 1] be a function where Vb € By : V(b)) < V*(b). We call V and under-
approximative value function and V (b) the cut-off value of belief b. The under-approximative
function can be defined for maximizing/minimizing rewards as well. By applying this function
to all unexplored beliefs from the frontier we not only under-approximate their values but
we also under-approximate values of all the explored beliefs in the belief MDP. With this we
obtain a finite approximation MZB. Figure 3.2b shows an example of applying function V/
to state in the frontier. The question of finding an adequate under-approximative function
V is crucial for the cut-off approach. One simple approach was explained in the previous
paragraph but if we want a better approximation a more sophisticated approach is needed.
One such approach is to assign some arbitrary fixed observation policy o € 2?,;‘8. Let
U? : S — [0,1] such that for all s € S we have U%(s) = PM? [s |= OT]. Then we can define
the function U” : Bag — [0,1] as U7 (D) := 3 cquppv) 0(s) - U7 (s).

Lemma 1 [7] The function U° is an under-approximative value function, i.e. for all
be Buy:
w(b) = b(s)-U(s) < V*(b).

s€supp(b)

By Lemma 1 we know that finding an adequate under-approximative value function reduces
to finding ,,good“ observation-based controllers for M. We will use this fact to enhance the

15

belief-based algorithm proposed in [7], where function U is given by heuristic which uses
values obtained from the fully observable underlying MDP.

Belief clipping

An alternative method for approximating unexplored beliefs called belief clipping was
introduced in [7], however, in the experiments we showcase that this method brings practical
benefits only for a very limited selection of models. Therefore we will not explain this
method in detail in this work and only give the high-level ideas behind it. The intuition
behind belief clipping is that we shift some of the probability mass of a belief b in order to
transform b to a new belief 5. We then want to connect b with b in a way that the accuracy
of approximation of the value V*(b) depends only on the approximation of V*(g) and a
so-called clipping value which represents a notion of distance between beliefs b and . We
can then explore the successors of b to obtain good approximations for both b and b.

3.1.4 Point-based Approximations

Point-based approximations work by discretizing the belief space into a set of representative
belief points. These points are used to approximate the optimal value function and policy.
The algorithm iteratively updates the value function and policy at each point until conver-
gence. The belief points are chosen based on their ability to improve the approximation
of the value function and policy. This approach reduces the computational complexity
of solving POMDPs by focusing on a smaller set of belief points rather than the entire
belief space. The most notable point-based algorithm is SARSOP [21]. SARSOP uses a
tree-based data structure to efficiently search the near-optimal belief space and select the
most promising actions.

3.2 Inductive Synthesis of FSCs

In this section, we recap a recent inductive approach [4] for finding FSCs for POMDPs that
builds on inductive methods for synthesis of probabilistic programs [3] First, we showcase
the overall synthesis framework for POMDPs, and then we introduce abstraction refinement
as one of the main methods for the exploration of the family of FSCs, lastly, we discuss the
importance of memory injection in inductive synthesis.

3.2.1 Synthesis Framework

The inductive synthesis framework works in two stages, the inner stage and the outer stage.
The overall framework is showcased in Figure 3.3. Let’s first discuss the outer stage. The
main part of the outer stage is called the learner. Learner constructs a family of FSCs also
called the design space. From this design space, a part called teacher provides the best
FSC and potentially some additional information about the result. The learner receives the
candidate FSC and either accepts it as the final result or adapts the design space and the
loop continues. Naturally, the teacher will provide results faster when the design space is
small, however, when constructing small design spaces we have to be careful not to prune
potentially good FSCs. So the main objective of the outer loop is to start with a small
design space and strategically adapt it based on the results from the teacher.

The internals of the Teacher is called the inner stage of the synthesis. Its task is to
determine the best FSC within the given design space. A naive implementation of the

16

|

design space design space

Learner

value bounds ‘
I e e = = = - — - — C

(sub)design space FSC

value bounds ! value & conflicts
L

Abstr Oracle

|

Figure 3.3: Nested inductive synthesis framework with an abstraction oracle. The framework
takes a POMDP and a specification and finds an FSC that satisfies the specification. The
learner is responsible for creating a design space of candidate FSCs. The teacher finds the
best FSC from the suggested family of FSCs. This Figure is taken from [4].

teacher enumerates all FSCs in the design space. The inductive synthesis we consider in
this work realizes the teacher through another inductive synthesis loop. It uses abstraction
refinement (see Section 3.2.2) to search the design space effectively. Both learning stages
have access to an oracle that over-approximates the design space. This larger abstract design
space can be analysed efficiently as the underlying problem. This resembles the analysis
of fully observable schedulers. Therefore, the oracle yields a constraint on what the best
FSC from the original design space can achieve. This information is essential for guiding
the search in both stages.

We assume an inductive synthesis for finding deterministic posterior-unaware FSCs
in this work. Deterministic FSCs are beneficial in terms of the reproducibility of their
behaviour, which makes working with them easier and more practical. Moreover, finding
randomised FSCs is a more complex problem?.

3.2.2 Abstraction Refinement

Consider a finite family of FSCs]-",'CM of k-FSCs with memory nodes N = {ng,n1,...,ng_1}
and the associated family M7i" = {MF | F € FM3 of induced MCs. The states of each
MC are tuples (s,n) € S x N. We can create an MDP abstraction of the family MT of
MCs to help us reason about the whole family. Informally, the MDP abstraction of the family
MZ" is an MDP MDP(F{M) with the set S x NN of states such that, if some MC M € MFL
executes action o in state (s,n) € S x N, then this action is also enabled in the state
(s,n) of MDP(F{M) with the same effect. This means that MDP(F{"') over-approximates
the behaviour of all the MCs in the family M7%" (all FSCs in the family FM). It is an
over-approximation as in every step an arbitrary family member is simulated and it may
switch between steps. MDP abstraction formally:

Definition 13 (MDP abstraction) MDP abstraction for POMDP M and family]-",é\’l =
{F\, Fy,...Fy} of k-FSCs is the MDP MDP(FM) := (S x N, (s0,n0),{1,2, ..., m}, PFi")
where _

P7i" ((s,n),i) = P

Even though this MDP has m actions, practically, many actions may coincide. Let’s
observe that this abstract MDP definition represents a proper abstraction:

Finding randomised FSCs is ETR-complete, meanwhile finding deterministic FSCs is NP-complete [20].
3In our formal definition of a MC we do not include actions, however, you can think of MC as an MDP
where each state has one action enabled.

17

MDP(F}M)

min

MDP(FM)

Lemma 2 [10] For all F € FM, P [0T] < pM” [OT] < Prmax [OT].

By this lemma, we know that the analysis of the abstraction MDP gives us bounds on the
best FSC from the family]-",?/‘. This fact is an important part of abstraction refinement.
Because the abstraction MDP over-approximates the behaviour of FSCs in family]:,?’t,
not every scheduler o induces an FSC. We say that a scheduler o is consistent if O(s) =
O(s") = o((s,n)) =0((s',n)) forall s, s’ € S and n € N. The set of consistent schedulers
in MDP(F}M) corresponds to the family F{*.

The main idea behind abstraction refinement is that if the best policy in the abstraction
MDP is worse than the given bound then all the FSCs in the original family violate the
bound. Assume we want to maximise the constraint P>,[0T] for some target set 7. Let
the scheduler o* be the optimal scheduler for the given constraint in our MDP MDP(F)
and let its achieved probability be P? . If P°" < X then it holds that all F' € F violate the
constraint and the whole family can be pruned. Otherwise, if o* is a consistent scheduler
then it represents a valid FSC satisfying our constraint which is what we wanted to find.
The last possibility is that the analysis of MDP(F) is inconclusive and the family F needs
to be refined. Additionally, this analysis also provides bounds that are used in both the
inner and the outer synthesis loops.

The refinement strategy drives the exploration of family]:,ﬁ‘/l. It decomposes a given
family into smaller subfamilies by splitting the domain of selected parameters from K. The
key idea is to examine the inconsistencies of the scheduler ¢*. The refinement strategy
estimates the significance of each inconsistent parameter p € K for ¢* by examining the
impact of changing p and this impact is weighted by the expected occurrence frequency
of the decisions corresponding to p. The most significant parameter p is selected. Assume
(inconsistent) p with domain V,, = {v,v2,...,v,} and scheduler o* selected options v;
and v;. The refinement partitions V, into three subdomains V! = {v;}, V7 = {v;} and
VZD?’ = V,\{vi,v;} corresponding to three new subfamilies. This removes the inconsistency
and the process of analysing families continues until the best FSC from the original family
is found.

3.2.3 Memory Injection Strategy

Memory injection strategy dictates how the outer stage of the synthesis constructs the design
space. The design space represents a subset of FSCs and is passed to the teacher for analysis.
This construction assumes access to the bounds of the abstraction presented in the previous
section as is outlined in the scheme from Figure 3.3. The learner processes this information
and derives a new design space. It does this by adding memory. By adding memory we
mean considering FSCs with more states, i.e. the FSCs can store more information. This
helps FSCs to represent better strategies, however, it (dramatically) increases the size of the
design space which is one of the big challenges in inductive synthesis. To combat this, the
inductive synthesis we consider in this work allows increasing the memory locally and keeps
the growth of the design space somewhat manageable. Note that increasing the memory
might introduce symmetries in the design space as is highlighted in [4] and we can introduce
symmetry reduction techniques to make the design spaces smaller, however, this topic will
not be further discussed in this work as we will introduce our own memory injection strategy
in the later chapters where the symmetry reduction did not prove to be helpful.

Let’s first consider a memory injection strategy where we want to analyse families
.7:1/\/‘,.7:2/‘4, .7-",?4 in this order. This means we first consider 1-state FSCs representing
memoryless strategies, then we consider all 2-state FSCs and so on. This memory injection

18

strategy is very simple, however, from a practical point of view it’s still useful as we cannot
be sure what number of states we should start with and the analysis of small families like
]-"{V‘ is cheaper and we will use the bounds learned in each stage to make the next ones
faster. The size of the design space grows exponentially with respect to the number of
memory nodes so exploring families with big k usually is not even feasible. Of course, it
holds that .7-'1M -]_-2/\/1 c..C .7-",?/‘ so by exploring bigger families we also explore the ones
with smaller k. These two facts need to be considered when coming up with a memory
injection strategy for inductive synthesis.

3.3 Simulation-based and Reinforcement Learning Methods

We give brief summaries for both simulation-based and reinforcement learning methods.
They are used for planning in complex domains [26].

3.3.1 Simulation-based methods

Simulation-based methods can be used to solve POMDPs by simulating the environment
and the agent’s interactions with it. Specifically, the agent’s policy is evaluated by running
simulation runs of the POMDP and computing the expected reward obtained under that
policy. One common simulation-based method for solving POMDPs is Monte Carlo Tree
Search (MCTS) [27]. MCTS builds a search tree that represents possible sequences of actions
and observations, and the expected rewards associated with each sequence. MCTS uses a
simulation-based approach to estimate the value of each node in the tree and then selects
actions to maximize the expected reward. Overall, simulation-based methods are useful
for solving POMDPs because they allow the agent to evaluate policies without having to
explicitly compute the probability distributions over states and observations. Instead, the
agent can use simulations to estimate the expected reward associated with different actions
and observations and then select the action that maximizes the expected reward.

3.3.2 Reinforcement Learning

Reinforcement learning (RL) can be used to solve POMDPs by iteratively interacting with
the environment, receiving rewards based on its actions, and updating its policy based
on the received rewards and observations. Approaches based on RL provide very strong
scalability. One common RL algorithm for solving POMDPs is deep Q-learning [14]. In
deep Q-learning, the agent maintains Q-values, which estimate the expected reward of
taking a particular action in a given state. The Q-values are updated based on the observed
rewards and transitions between states. Learning the Q-values for POMDPs this way is
intractable because a Q-value would be needed for each possible belief or for arbitrary long
observation-based histories. We can use a function approximator, such as a neural network,
to approximate the Q-values. The Q-values can be parameterized by either the belief and
the action or the observation-based history and the action. Sometimes RL uses MCTS
(or other simulations) to estimate the expected rewards that can be used for the learning
process. The overall goal of RL-based methods in POMDPs is to learn functions that can
be used to choose actions for the current belief. For an overview of recent advances in the
RL approach for POMDPs see [29].

19

Chapter 4

Limitations of State-of-the-art

In this chapter, we present the limitations of the state-of-the-art methods introduced in the
previous chapter. Firstly, we look at point-based methods, simulation-based methods and
reinforcement learning methods to explain why we do not consider them in the remainder of
this work from the perspective of our problem statement. That is the perspective of offline
synthesis in POMDPs with indefinite-horizon specifications. We also include a discussion
on why FSCs are a go-to representation for POMDP schedulers. In the second part of this
chapter, we present the limitations of belief-based methods with cut-off approximations and
the inductive synthesis of FSCs on two small POMDPs. These examples show that even
current state-of-the-art methods struggle with seemingly simple problems. This motivates
the improvements we propose in the next chapter as we seek ways to improve both belief-
based methods and inductive synthesis. We also introduce a synthetic POMDP called
Lanes+ which showcases the struggles of both of the methods combined and serves as a
motivation for closed-loop integration.

4.1 Limitation of Alternative Approaches

We focus on belief-based methods and inductive synthesis in this work. In this section,
we give reasons as to why other methods are not suitable when we consider our problem
statement. We also explain the importance of FSCs as a means of representing schedulers
compared to other representations.

Point-based methods

Point-based methods allow us to efficiently approximate the value function. However, they
have two main drawbacks. Firstly, they often require a discount factor to work and have a
guarantee of fast convergence. We do not work with specifications that allow discounting in
this work. Secondly, they represent the computed policy as a set of a-vectors. This set is
not convenient to use. To compute what action to play, we need to remember our current
belief and perform a number of vector multiplications to find out which a-vector produces
the best value. Once we find the best a-vector for the current belief we can play the action
assigned to this vector and perform a belief update. And for every new belief we have to
repeat this process. You can compare this process to using FSCs. If we encode the functions
of an FSC and store them in a hash table for example we can obtain what action to play in
constant time for every observation-based history.

20

Simulation-based methods

Simulations allow us to obtain a lot of information about the model without the need to
unfold the possibly complex belief space. This provides an advantage for the online planning
problem. However, in this work, we focus on the offline synthesis problem. This means
that a lot of simulations are required to obtain a good picture of what the policy should
look like. This limits the effectiveness of simulations which are typically good for obtaining
approximations quickly. Another problem is that simulations themselves do not provide
a clear way how to obtain a full policy. That’s why they are usually used in tandem with
other methods.

Reinforcement learning

RL and other machine learning approaches proved useful for many practical POMDP
problems. They tend to learn a neural network that is used to obtain what actions to choose,
effectively it encodes the policy. They are able to solve big problems. Their drawback is
that they are very intensive on computational resources and the computation itself is not
easy to verify. The policy represented by a neural network is not easy to understand and
verify. Compare that to the policies represented as FSCs, where each state clearly defines
the considered actions and memory updates. This can be crucial when we want to use
these policies in safety-critical systems. We believe that our focus on improving the formal
approach to the synthesis problem will prove beneficial for such applications. Additionally,
the produced neural networks can be pretty large.

4.2 Limits of Belief-based Methods and Inductive Synthesis

We will first introduce a simple POMDP example where belief exploration struggles, then we
give a small example where inductive synthesis struggles and we indicate how both of these
approaches can help each other to overcome these struggles. By the combination of these
simple POMDPs, we get a POMDP that is difficult to solve for either of the two approaches
but a combined symbiotic approach can efficiently tackle this problem. We showcase the
full potential of this symbiosis on a new synthetic POMDP called Lanes—+.

Challenging POMDP for belief exploration approach

Consider POMDP from Figure 4.1a. Let’s call it M,. The objective is to minimise the
expected number of steps needed to reach target state T,. There are two optimal policies for
this specification in model M,. One policy always takes action «, the other policy always
takes action . Both policies yield 4 expected steps. An FSC realising one of these policies
can be found using the policy search approach under 1s.

Let’s analyse the structure of the belief MDP M?5 closer. The initial belief is {S + 1}.
By taking action « (the case for taking action /3 is symmetric), 'yellow’ observation is
observed and the belief is updated to {L — %, R — 1}. Detailed inspection shows that
the set of reachable beliefs is infinite rendering M5 to be infinite. The belief exploration
can only construct a finite approximation of the belief space /\/TGB by exploring M5 up to
some depth and applying cut-offs at the frontier states. We can then analyse this finite
approximation using off-the-shelf tools yielding the minimising policy op assigning to each
belief state the optimal action.

21

112 a 12

Figure 4.1: (a) and (b) contain two example POMDPs. Colours encode observations.
Unlabelled transitions have probability 1. Omitted actions (e.g. 7, in state Bs) execute a
self-loop. (a) contains 4 states, 3 observations and 5 actions. This model is used to showcase
one of the main weaknesses of belief exploration. (b) contains 9 states, 5 observations and
20 actions. This model’s structure causes issues for inductive policy search.

3/4 asme. L 7/8
4

L2 X L3 X 2B /L34 _
R: 1/2 R: 1/3 R: 1/4 > R 18
1/3
318
1) -
T,:1 1

F [+p steps]

Figure 4.2: Markov chain (MC) induced by the minimising policy o in the finite approxi-
mation M5B of the POMDP from Figure 4.1a. In the rightmost state, policy F is used to
compute the cut-off value represented by p.

A simple way to compute cut-off values is to use an arbitrary controller F and compute
the expected number of steps needed under F. This operation is cheap if F is compact.
Figure 4.2 shows a MC induced by o in MB. The belief {L — £, R~ 1} is cut off using
controller F'. If we consider the belief exploration implemented in STORM [12], unfolding
1000 states and using heuristics to obtain controller F', we obtain a sub-optimal controller
Fj that reaches target in ~ 4.1 steps. If we instead used better F' (not necessarily optimal)
computed by some efficient policy search implementation we would only need to explore
a few states to beat Fg. This might not seem like a big issue for the belief exploration,
however, we can scale the model from Figure 4.1a to contain 100 intermediate (yellow)
states and the belief space for this new model becomes much more complicated and the
need for good approximation grows. If we use STORM to explore 1 million belief states for
this new model and apply its heuristic controllers as cut-offs we obtain the value of over
2100 steps meanwhile the policy search is able to find an FSC with the optimal value of
98 steps almost instantly. Again we can use this FSC provided by policy search to help
belief exploration construct a better finite approximation and also find the optimal strategy.
Generally, structures similar to the one presented here can appear in practical models, and
in some cases can render the belief exploration very inefficient.

22

Challenging POMDP for policy search approach

Consider POMDP M, from Figure 4.1b. The objective is to minimise the expected number
of steps to Tj. The reachable belief space for this model is finite, it consists of 9 states to
be more precise, and therefore solving this POMDP is trivial for the methods using belief
exploration. The optimal controller o first picks action 7, on observing 'yellow’ observation
it plays B twice, otherwise it always picks a. An FSC with 3 memory nodes realises this
strategy. The inductive policy search implemented in PAYNT [5] can find the optimal
policy as well, however, it has to consult about 20 billion candidate policies. This requires
545 model-checking queries; the optimal FSC is found after 105 queries and the remaining
queries prove that no better 3-state FSC exists.

We can use reference policies to guide the policy search, the policy search we considered
uses the fully observable MDP policy which in this case picks (senseless) action § in By first.
This action is not good in My, even though it’s the optimal action in the underlying MDP,
as we will not be able to avoid reaching fail state F' from the ’purple’ states as we cannot
tell in which state we are exactly. Using policy op obtained by the belief-based approach
instead, action ¢ is not considered. As op picks 3 different actions in states with ’blue’
observation, we know that an FSC mimicking this strategy will need at least three memory
nodes. This means we can skip a family of 2-FSCs. Using these facts in the inductive policy
search we can reduce the total number of required model-checking queries by a factor of
ten and we are able to find the optimal 3-state FSC after just 23 queries. This shows that
considering better reference policies can lead to significant speedup. More importantly, it
shows that considering (even non-optimal) POMDP policies has benefits compared to the
fully observable policies which are standardly used.

4.2.1 The potential of symbiotic approach

Using the models from Figure 4.1 we can construct a model where both belief exploration
and inductive policy search struggle, by putting the two models sequentially one after
another. These combinations, however, are not enough to show that a closed-loop symbiotic
approach can be beneficial. For this, we introduce one more synthetic model called Lanes+
which will be used in the experimental evaluation as well.

New POMDP Lanes+

The structure of the Lanes+ model is illustrated in Figure 4.3a. It is a sequential composition
of a Lanes POMDP (see Figure 4.3b) repeated 100 times, followed by the POMDP from
Figure 4.1a extended to 100 states, followed by the POMDP from Figure 4.1b. The core
component — Lanes model — was designed with two main goals in mind: i) the optimal
FSC F7 requires several memory nodes and ii) the model can be easily scaled up such that
an exhaustive policy search is not feasible. When combining Lanes with POMDPs from
Figure 4.1, we obtain a model which is difficult for both standalone approaches as well
as their one-way integrations and the two-way symbiotic integration is required to find a
good controller. The optimal FSC for the Lanes+ model requires 8 memory nodes. The
corresponding family .7-"/{‘4 contains ~ 10% candidate controllers, which is unattainable for
inductive search.

23

S

Lanes+
1/3 13 13

100x Lanes POMDP B 1 Pu |
from Fig. 5.3 ; a y ;a v Dy
‘W, [T
¢ Du Pu
POMDP 2 T 2%
from Fig. 5.1a ,8@ Bi“
extended to 100
states 3 3
v : : s |Pu
: : » :
POMDP \3\ 3 ‘ }

from Fig. 5.1b ot

a slow moderate B fast
(+5) (+3) (+1)

(a) (b)

Figure 4.3: (a) Overall structure of the Lanes+ POMDP. (b) The Lanes POMDP. The
POMDP consists of three lanes and the objective is to cross the lanes from left to right with
the minimum amount of actions. The lanes are cyclic meaning when the last state of a lane
is reached the next state is the first state of that given lane. Playing actions in the slow
lane gives you reward 5, moderate lane 3, and fast lane 1, so the faster you get to faster
lanes the better. When performing the upgrading action (e.g. action « in the first state of
the slow lane), the lane is upgraded with probability p,; with probability 1—p, the agent
moves to the next state of the lane.

o) (g (g

[

Symbiotic approach on Lanes+ model

We consider minimisation of the expected reward for the model Lanes+ with a 15-minute
timeout. The belief-based approach implemented in STORM yields the value 18870, because
the intermediate extended model from Figure 4.1a makes the reachable belief space difficult
to explore. The policy search method implemented in PAYNT finds an FSC with 2 memory
nodes achieving value 8223 and is unable to search the bigger families because of the state-
space explosion. This sub-optimal FSC significantly improves the belief MDP approximation
and enables the implementation from STORM to find a controller with value 6471. The
symbiotic synthesis loop finds the optimal FSC with the value 4805 after two full iterations
of the algorithm discussed in later chapters. This shows the potential of a symbiosis between
inductive synthesis and belief exploration. In the experimental evaluation, we confirm this
potential on more practical models.

24

Chapter 5

Integration of Inductive Synthesis
and Belief-based Methods

This chapter starts by introducing two main novel ideas: i) we improve the approximations
of the unexplored belief space, a crucial part of the belief-based approach, by using FSCs
at cut-off beliefs ii) we improve the inductive synthesis approach by considering reference
POMDP strategies obtained from other sources and using them to steer the search within
the families of FSCs as well as creating more suitable families of FSCs. We then unify the
theory of FSCs to include special cases of FSCs such as p-FSCs of belief FSCs. We also
give formulas on how to compute the sizes of FSCs for different types. These formulas will
be used to compare the sizes of solutions obtained in the experimental section. Lastly, we
present the main innovation proposed in this work. We introduce a novel symbiotic policy
synthesis algorithm called SAYNT. This algorithm iteratively combines the inductive search
of FSCs and belief exploration. We presented a need for such combination in the previous
chapter and we will present the improvements this algorithm brings in Chapter 6.

5.1 Using FSCs for Cut-off Values

Before we introduce the main idea of using FSCs for computing cut-off values, we showcase
how we can derive FSCs from the belief MDPs. This process is important for our work
as we focus on synthesising compact policies that are easy to use. We look at two cases
considering finite and infinite belief MDPs.

Finite belief MDPs Let 75 := {b € By | O(b) = 2T} denote the set of target beliefs. If
the reachable state space is finite and we constructed the finite belief MDP M5, we can use
the standard model checking techniques to compute the memoryless policy og : By — Act
that maximises P[b = OT%] for each b € Bp. We can translate this deterministic, memoryless
policy o into the corresponding FSC Fg = (B, bo, v, 0) with action function v(b, z) = o5(b)
and update function 0(b, z,2") = (b | o5(b), 2') for all 2,2’ € Z.

Infinite or not fully explored belief MDPs In case the reachable belief space is
infinite or too large so we cannot unfold it completely, a finite approximation W, based
on techniques discussed in the previous chapters, is used instead. Let’s have some set
of explored beliefs £ and the frontier beliefs ¢/. To complete the finite abstraction we
will assign a cut-off value V(b) for each b € U. Ultimately, we define a finite MDP

25

MB = (EUUU{bT,b1 }, by, Act, Pg) with the transition function: Pg(b,a) := Pp(b, o) for
explored belief b € £ for all a € Act, and Pg(b,) := {bt — V(b),by — 1 — V(b)} for
frontier beliefs b € U and all o € Act, where bt and b, are fresh sink states, i.e. they are
absorbing for all actions o € Act. The reachable state space of M5B is finite and therefore a

policy maximising pMZ [O(T® U {br})] induces an FSC for the original POMDP M.

max

FSC Cut-offs

In Chapter 3, we discussed why and how to approximate the unexplored belief space. We
also observed that finding good observation-based controllers is crucial to obtain good
approximations. We can use an observation-based controller to compute suitable cut-off
values. The closer the cut-off value is to the actual optimum in a belief, the better the
approximation we obtain. In particular, if the cut-off values coincide with the optimal value,
cutting off in the initial state is optimal. Obviously, finding a good (optimal) approximation
this way is as hard as solving the original POMDP. We consider under-approximative value
functions by applying any FSC to the POMDP and lifting the results to the belief MDP. So
we want to find good a FSC to get good cut-off values. We note here that implementation
in [7] considers simple memoryless FSCs. We generalise belief exploration with cut-offs such
that arbitrary sets of FSCs are supported.

Let’s consider an arbitrary, but fixed FSC Fr € FM for POMDP M. Let Dsn =
PM™[(s,n) = OT) for state (s,n) € S x N in the corresponding induced MC. We denote
the cut-off value V' (b,n) := Zseso b(s) - psn for belief b and memory node n. This value

corresponds to the probability of reaching a target state in M*Z when starting from state
s € § according to the probability given by belief b with memory node n € N. We define
the overall cut-off value for belief b induced by controller F' as V (b) := max,cnV (b,n). We
can clearly see that V (b) < P%ﬁ[b = OT®]. Computing V (b) for a given belief b is relatively
simple as the values p; , only need to be computed once. However, the complexity of the
FSC-based cut-off approach depends on the size of the induced MC which means that it is
essential that the FSC used to compute the cut-off values is concise.

Model checking the finite approximation MDP MB with cut-off values induced by an
FSC F7 yields a maximising memoryless policy og. We want to use the formalism of FSC
to represent this policy. We will use Fp to denote this belief FSC. We construct Fp by
considering both Fr used to compute cut-off values and the necessary memory nodes for
each explored belief b € £. Concretely, we introduce a corresponding memory node for each
explored belief. In each such node the action og(b) is selected. For the memory update,
we distinguish between two cases based on the next belief after executing action oz (b) in
MB. Given 2’ € Z, if the successor belief ¥’ = (b | 03(b), 2') € &, the memory is updated
to the corresponding node. Otherwise, ¥’ € U must hold, which means the successor is
part of the frontier. The memory is then updated to the memory node n of FSC Fr that
maximises the cut-off value V(b',n). This corresponds to the notion of switching to the
strategy represented by FSC Fr once a belief from the frontier is encountered. So overall
we follow two policies, op for explored belief and F7 from frontier beliefs onward. This is
formalised as:

Definition 14 (Belief FSC with FSC cut-offs) Let Fz = (N, ng,~z,07) and let MB
be the finite approxzimation defined as before. The belief-based FSC with cut-offs is Fg =
(€ U N,by,v,d) with action function v(b,z) = op(b) for b € £ and y(n,z) = yz(n,2)
for n € N and arbitrary z € Z. The update function 6 is defined for all z,2' € Z by

26

o(n,z,2")=0z(n,z,2") if n € N, and for b € & with b/ = (b | op(b),2’) by:
8(b,z,2") =V ift\ € E, and 6(b, z,2") = argmax,c yV (b',n) otherwise.

This definition provides us with insight into how the actual strategy works, but if we want to
compute the value of this strategy we want to construct induced MC. The reachable segment
of the explored belief space with strategy Fpi will represent the backbone of the induced
MC. We have to evaluate the states from the frontier & and assign each state its cut-off
value based on FSC Fz. To do this we compute the probability P[s = OT] (or rewards
depending on our original specification) of reaching the target states when starting in state
s and executing FSC Fr for each s € S in the original POMDP. Let’s denote this value
p'Z(s). Then if we take a belief b € U its value according to FSC Fr is Y ¢ b(s) - p™(s).
If we add direct transitions with the computed probabilities from each frontier state to the
target state we can directly get the value of the strategy by checking the MC given by the
belief space exploration and controller Fi for specification P(|= Obr).

5.2 Using Reference Policies to Improve Inductive Synthesis

We want to improve the inductive synthesis approach presented in Chapter 3. Consider
the search for the optimal k-FSC F €]-',é\" for POMDP M. To accelerate the search for
F within the given family, we can use a reference policy. One example of such policy is
the policy op extracted from a (finite approximation of the) belief MDP. This reference
policy can be used to shrink the FSC family. For each observation z € Z, we collect the set
Actlog](z) := {oB(b) | b € Ba,O(b) = z} of actions that were selected by o in beliefs with
observation z. Simply put, the set Act[op](z) contains the actions used by the reference
policy in states with observation z. It holds that Act[op](z) C Act(z). These subsets are
significant as they contain only the actions that are important for executing policy op.
Since o is an observation-based policy it provides valuable insight into what actions are
likely not important for finding good policies. The better this reference policy is the better
information we can extract, however, finding a good policy requires solving the POMDP
which is a difficult problem as we already discussed in this work. Note here, that the
policy op can be replaced by any other observation-based policy. We want to focus on
these important actions while searching for a good FSC by constructing a subset of FSCs
{(N,ng,7,6) € FM | ¥n € N,Vz € Z,v(n, 2) € Actlog](2)}.

Restricting the action selection may exclude the optimal k-FSC and we need to keep this
in mind. It also does not guarantee that the optimal FSC in the restricted family achieves
the same value as the reference policy op as replicating o may require more memory nodes
than we have currently available in the family, i.e. more than & memory nodes. We first
search the restricted space of FSCs given by the reference policy before completely searching
the rest of the design space. This also accelerates the search as the earlier a good policy is
found, the easier it is to discard other candidate FSCs as we can prove that they are not
optimal. Furthermore, in case the algorithm terminates earlier (notice the anytime aspect
given in our problem statement), we are more likely to have found a reasonable policy.

Let’s have two families of FSCs F, and F;. Informally, we say that F, is subfamily of F
if every FSC in F, is also in F;. Let’s consider family .7-",?4 and say JF; is one of its subfamilies.
By F; we denote the complement subfamily, i.e. 7; N F; =0 and F; UF; =]-",?/t. To ensure
we search a given family completely after we go through the main restricted family of FSCs
Fm, we have to also search subfamilies F1, 7o, ..., F; such that |JF; = Fm- The number

27

of these subfamilies is equal to the number of restricted states in the MDP abstraction
MDP(.F,'C/V‘). Let’s say we have 2 restricted states sg, s; in the abstraction MDP representing
the same observation z with enabled actions Act(sg) = Act(s1) = {«, f}. Assume that for
our reference policy o it holds that Act[op|(z) = {a}. Then our main restricted family
only allows action « in both states. The first subfamily will allow action 8 in sg and both
actions «, 8 in s1. The lat subfamily will allow « in sy and £ in s;. This way we covered
all possible FSCs from our initial family. This process is illustrated in Figure 5.1 on an
example with three abstraction states.

(a)

Figure 5.1: Let’s say we have a reference policy o, which chooses action g for abstraction
states sg, s1 and actions ¢, k for abstraction state s;. Each cube represents one choice of
actions for the abstraction states. (a) shows the main restricted family JF,, given by policy
op. Here we can see that the reference policy might significantly reduce the size of the
important part of the design space. (b) shows the subfamilies that remain after we explored
Fm. We can clearly see that when we explore all the families F,,, F1, F2, F3 we explored
the whole original family. We also see that we do not consider any action assignment twice.
So it holds that F,, = F; U Fo U F3 and F; N F; = 0 for any two constructed subfamilies.

Improving Memory Injection Strategy

We can improve the memory injection strategy to obtain FSCs that are more compact and
create families that are smaller but still contain the important FSCs. For this, let’s define a
new type of FSC:

Definition 15 (u-FSC) A memory model for POMDP M is a function p: Z — N. Let
k =maz,czu(z). The k-FSC F € FM with nodes N = {ng,n1, ...,n_1} is a u-FSC iff for
all z € Z and for all i > u(z) it holds: y(n;, z) = v(no, z) and §(n;, z,2") = 6(no, 2,2") for
any 2 € Z.

Let 7 denote the family of all u-FSCs for given memory function y. Informally, we can
say that the memory model p dictates that for prior observation z only p(z) memory nodes
are utilised, while the rest of the nodes behave exactly as the default memory node ng. If
we are using a memory model p where p(z) < k for some observations z € Z, we greatly
reduce the number of candidate FSCs in the family. We will use u-FSCs in our improved
version of inductive synthesis as well as our symbiotic algorithm.

28

With p-FSCs defined, we can consider an improved version of the memory injection
strategy. The memory nodes are used to store information to improve decisions, however,
if we have a state s € S with observation z € Z from POMDP M such that Vs’ € S :
s=5 <= O(s) = O(s') we know that when we see observation z on some path we are
in state s and therefore we do not need to remember any information to make a decision
for this observation. This allows us to reduce the design space. So the improved memory
injection strategy starts with family .7-"{\" but then creates a family FM where u(z) = 1
for all observations z where only one state in the model has this observation, otherwise
p(z) = 2 and so on for bigger k.

We can improve this strategy further by using the reference policies to perform more
educated decisions on where we need to add memory. To be more precise we can use sets
Act[op] to determine the k we want to search. If in some observation z € Z the belief policy
op uses |Actlog](z)| distinct actions, then we for sure know that in order to enable the use
of all of these actions, we require at least k = max,cz|Act[og](z) memory nodes. This fact
stems from the definition of FSC as the action mapping function v can only choose one
action for each (n,z) pair. However, we have to be careful with adding a lot of memory
because it might become infeasible to search the constructed families even with our proposed
restrictions. For this reason, we use a more refined view. We consider FSCs from family
]-'lj\/(given by memory function p as per definition 15. This helps us reduce the size of the
abstraction even if the reference policy requires a lot of memory nodes.

Posterior-aware or posterior-unaware FSCs

The inductive synthesis presented in Chapter 3 considers posterior-unaware FSCs. As a
reminder, posterior-unaware FSC is an FSC where §(n, z, 2') = §(n, z,2") for all n € N and
2,2',72" € Z. The advantage of using posterior-unaware FSCs is that the MDP abstraction
corresponding to a family of posterior-unaware FSCs is smaller as fewer parameters have to
be considered. It is easy to see that the posterior-unaware FSCs are a special case of the
general posterior-aware ones. On the other hand, the posterior-aware FSCs typically need
fewer memory nodes to denote the same strategy. This fact can sometimes be beneficial for
the inductive synthesis approach.

5.3 FSC Overview

We wish to compare the sizes of all different controller types as one of our goals given in the
problem statement is to find concise strategies. For FSC F' = (N, ng,~,d) we define its size
size(F) := size(vy) + size(d), i.e. the memory required to encode functions v and 6'. The
sizes for each FSC type are shown in Table 5.1. Before we showcase how to obtain the sizes
of FSCs we want to discuss the flexibility of general FSCs compared to belief FSCs. Belief
FSCs contain states that coincide with the explored beliefs £. This means that in certain
states only a limited amount of actions can be considered. If we change the POMDP such
that the new reachable belief space does not correspond one-to-one with the states of belief
FSC, this belief FSC becomes unusable as it would get stuck. Meanwhile, the more general
FSCs produced by the inductive synthesis can be used as long as the set of observations
and actions does not change in the POMDP. This also explains why we can use the more
general form of a FSC to compute cut-off approximations.

'Remember: v: N x Z — Actand 6 : N x Zx Z — N

29

FSC class size(y) size(d)

k-FSC k- ’Z’ 2- ZnGN ZZEZ ‘pOSt(T% Z)’
z)—1
/’L'FSC EZEZ ,U(Z) 2- ZZGZ 52(0) |p08t(ni7 Z)‘
posterior-unaware u-FSC | Y~ u(z2) Yoz i(2)

Fp using Fr for cut-offs | size(yz) +|&| | size(d7) +2 - ¢ [post(b, O(D))]

Table 5.1: Sizes for all different types of FSCs introduced in this work. The overall size of
an FSC F is size(F) = size(y) + size(d).

Assume a POMDP M, a k-FSC F with memory nodes N = {ng,n1,...,nx—1} and an
induced MC M = (8 x N, (s0,n0), PF'). Encoding the function v of a general k-FSC
requires size(y) = Y ey 2o.ez L = k- |Z| memory. Encoding function § might require
k-|Z|?, however, it’s rare that in each state-memory pair (s,n) all posterior observations can
be observed. We, therefore, encode §(n, z,-) as a sparse adjacency list. To define the size
of such a list properly, consider the induced MC M. Let post(n,z) := {O(s') | Is € S :
(s',-) € supp(P¥(s,n))} denote the set of posterior observations reachable when making a
transition in a state (s,n) of M¥ with O(s) = z. Then, 6(n, z,-) can be encoded as a list
{(/,0(n,z,2")) | 2’ € post(n, z)} of posterior observation and memory node pairs. Thus we

get:
size(d) = Z Z 2 - |post(n,z)| =2 - Z Z |post(n,)|

neN zeZ neN zeZ

If we use memory model p instead of considering the full k-FSCs we have pu(z) distinct
memory nodes for each observation z € Z. Therefore the needed memory changes:

w(z)—1
size(1) =30 3 1= u2)

z€Z 1=0 2€Z
m(z)—1
size(d) =2 - Z Z |post(n;,)|
z€Z =0

If we consider posterior-unaware p-FSC we can limit the size of the FSC further. For each
z € Z and n; € {ng,...,n (Z),l} we only need to store single value d(n;, z,-). We get:

n(z)—1
size(d) = Z Z 1= Zu(z)

zeZ =0 2€Z

i

and size(y) remains the same as for the general p-FSCs. Lastly, let’s consider the belief FSC
F = (EUN, by, 7, 6) obtained with applying FSC Fr = (N, ng, vz, d7) at frontier states. Each
non-frontier state b € £ is associated with the unique prior observation O(b). Therefore, for
every b € £ we must store exactly one action and a list {(2/,5(b, O(b), 2")) | 2’ € post(b, O(b))}
of posterior observation and belief pairs. Of course, we have to also include the size of the
FSC Fr used to compute the cut-off values at the frontier states. Overall, we obtain:

size(y) = size(yz) + Z 1 = size(yr) + |€|
be&

size(d) = size(dr) + 2 - Z |post (b, O(b))|
bef

30

5.4 Symbiotic Policy Synthesis

We introduce a symbiotic approach for finding good FSCs for POMDPs with indefinite-
horizon specifications. Our symbiotic approach combines tools PAYNT [5] and STORM [12]
which represent two state-of-the-art tools for this problem. The important underlying
notions of these tools were introduced in Chapter 3. We would like to note here that the
potential advantages this symbiosis brings are not strictly tied to these two tools and might
be applicable to other combinations of approaches. We call our symbiotic approach SAYNT in
the remainder of this work. Firstly, we introduce the overall structure of SAYNT showcasing
how these tools can work together and then we provide the anytime symbiotic algorithm for
finding good FSCs.

5.4.1 Overall framework

The main idea behind the symbiotic approach is essentially the fact that a policy found by
one of the methods can be used to boost the other method either in the sense of finding
a policy with better value or finding said policy faster. The key observation is that these
policies can be beneficial even if they are sub-optimal in terms of the objective at hand.
This is crucial as both methods are trying to tackle the same difficult problem and therefore
both of them might fail to find near-optimal solutions on their own and symbiosis might be
the key. We’ve shown this potential in Section 4.2.1. The symbiotic approach combining
PAYNT and STORM is sketched in Figure 5.2. The orange part represents the inner workings
of the inductive synthesis implemented in PAYNT. PAYNT works with families of FSCs. It
constructs MDP abstraction for a given family and performs MDP model checking on the
abstraction. If the specification is violated we know that the whole family violates it and we
can prune it. If the specification holds we obtain some potentially good policy but we have to
check if this policy is observation-based or not. If this policy is not observation-based we have
to refine the current family to obtain better abstraction. If the policy is observation-based
we’ve found new improving FSC Fr and we can update the specification. This part is
described in detail in Section 3.2. The blue part represents belief exploration from STORM.
STORM tries to find POMDP policies by unfolding belief space. It unfolds a finite fragment
of the belief MDP and computes heuristic bounds that are used to approximate unexplored
belief space. This process produces a finite approximation of the complete belief MDP. We
can perform MDP model checking on this approximation and the obtained policy is a valid
observation-based FSC Fi. A detailed explanation is provided in Section 3.1. The red
arrows highlight where and how the two methods communicate. How the methods use the
provided policies to boost their respective performance is explained in the previous sections
of this chapter. In short, the FSCs Fr obtained by policy search are used to guide the
partial belief MDP to the target, allowing us to compute values of unexplored belief states.
Meanwhile, the FSCs F obtained by the belief exploration are used to shrink the set of
considered policies and steer the abstraction as we are able to extract better information
compared to the fully-observable MDP strategies.

5.4.2 Anytime Symbiotic Algorithm

We now use the structure shown in Figure 5.2 as a base for our algorithm. In the previous
sections, we showed how inductive synthesis can benefit from policies obtained by belief
exploration and how belief exploration can use FSCs produced by inductive synthesis to
achieve better results. A natural is to use improved inductive synthesis results to further

31

PAayNT

M abstr " MDP spec holds
Fit ={F,...,Fn} MDP MDP(F;") model checking
I pruning of family }<—‘ spec violated
shrink
fi t of famil | candidate FSC
4' nomen o Y | NO observation-based?
FSC Fp provide bounds YES
[
obs.-based cut off
MDP
policy on del checki unexplored unfold 'fragment
belief MDP fmodel checking beliefs of belief MDP

STORM T—' heuristic bounds

Figure 5.2: Schematic depiction of the symbiotic approach. The orange part represents the
inductive synthesis implemented in PAYNT and the blue part represents belief exploration
implemented in STORM. The red arrows show how the two approaches communicate using
their FSCs.

improve belief exploration and improved belief exploration to provide even better reference
policies to the inductive synthesis, i.e. to alternate between these approaches and in each
step let them share the found FSCs. This symbiotic approach is captured in Algorithm 1.

We iterate until a global timeout ¢ is reached. In each iteration, we make both controllers
available to the user as soon as they are computed. We start the symbiotic algorithm with
the inductive mode (1. 3-8), where we initially consider 1-FSCs represented in F, l{” Method
search(l. 8) investigates given family F and outputs the new maximising FSC Fr (if it
exists). If the timeout ¢z interrupts the synthesis process, the method additionally outputs
yet unexplored parameter assignments F. If family F is fully explored within the timeout
tz (1. 4), we increase k and continue the synthesis with a new family of FSCs. After the
timeout tz7, we run the belief exploration method explorefor ¢z seconds, where we use
FSC F7 for computing cut-off values. Fr is used in tandem with the heuristic strategies
computed by belief exploration. After the timeout ¢z is reached the exploration stores its
current configuration (so that it knows where to continue in the next iteration). Then
the exploration proceeds to obtain the cut-off values at unexplored states using F7 and
computes the optimal policy oM from which we extract the belief FSC Fp incorporating
the FSC F7. Before we continue with the next iteration we check whether the belief FSC
gives better value than F7 and whether this FSC gives any reason to update the memory
model (1. 10). If we determine that the memory should be updated, i.e. whether there’s
any observation for which the current memory value is smaller than the number of distinct
actions considered by op, we update p and continue with new family F (1. 11-12).

Now we would like to highlight some of the decisions we had to make in the design of
this algorithm. We wanted a simple push-button algorithm that is powerful for the general
class of POMDPs and the choices we made led to this goal as we will show in the next
chapter. These decisions were made based on our initial experiments with the integration.
The main decisions we discuss here: i) the order of the used methods in the algorithm, ii) the
timeout for inductive search and belief exploration, iii) complete search vs. family pruning,

32

Algorithm 1: Anytime symbiotic algorithm for finding FSCs for POMDPs
Input :POMDP M, set T of target states, timeout values t,tz,tp
Output : Best FSCs Fr and Fp found so far

1 Fre L, FFM k0, pue{2—1|2€2Z}, Fg+ L, og+ L
2 while not timeout t do

3 while not timeout t7 do
4 if 7 =0 then
5 kk+1
6 Vz € Z: pu(z) « max{u(z), k}
7 F — F)M
8 F, Fr + search(F, Fr, Act|og] if PMZ[OT] > PME[OT] else L)
9 o, Fg < explore(tp, Fr)
10 | if PMZOT) <PME[OT] and 3z € Z: u(z) < |Act[os](z)| then
11 Vz € Z: u(z) < |Actlog](z)]
12 F]:lf‘/’

13 yield F7, Fi

iv) considering non-FSC cut-offs in reference policies. The implementation of our algorithm
allows the user to set the pruning of non-main subfamilies and consider the non-FSC cut-offs
(discussed below) if they want but we will not consider these settings in the remainder of
this work. The timeouts we used for our experiments will be discussed in the experimental
evaluation chapter.

The order of the methods

Starting the symbiotic iteration with policy search is the preferred way to combine these
methods. While it is possible to start the loop with belief exploration, it does not provide
any lasting advantages and might in fact hinder the performance. The reason is that if
the initial belief-based method produces a bad policy then it might negatively impact the
inductive synthesis by steering the search to unimportant families that contain bad FSCs.
Finding bad Fr then further slows down the improvement of the belief-based method as the
cut-off values are not good. On the other hand, bad FSCs obtained by inductive synthesis
do not hinder the belief exploration in any way and actually still provide better bounds
than the heuristically computed strategies in most cases.

Setting the timeouts

An important part of the algorithm is the setting of the two timeouts t7 and tg. We leave
these values as parameters in the algorithm as it’s easy to see that these have a great
impact on the overall result. But there are general rules on how to set these. The inductive
synthesis usually takes longer to obtain good FSCs on more complex models. Also, the
belief exploration timeout does not include the time needed to obtain the belief policy, i.e.
the belief MDP model checking. These facts mean that we usually want to have tz > tg.
We also want to ensure that multiple iterations are allowed to finish as we have shown in
our motivation section and will show in experiments. Therefore the sum of these timeouts
should be at least 3-4x less than the overall time we want to run the algorithm for.

33

Complete search of the families

We discussed the use of reference policies to help us find good FSCs more quickly by
prioritizing the search in the main restricted subfamily. One approach would be to only
focus on these main families in the inductive synthesis, search in them quickly and go to
bigger families quickly. However, we outlined that it might be important to perform the
complete search, i.e. also searching for solutions in the other subfamilies as showcased in
Figure 5.1. The reason for this is that the reference policy might not be entirely correct
and can have some biases that come from the method used to obtain them. The complete
search ensures that even when the reference policy is bad we still get a good FSC and might
outperform the method used to get the reference policy.

Considering non-FSC cut-offs

The belief-based method from STORM computes memoryless probabilistic policies to be used
at cut-offs which we replace by FSCs computed by inductive synthesis. We’ve observed that
the small FSCs computed very quickly by inductive synthesis are able to beat these policies
but sometimes one of these policies might be good for some belief and we are left with the
choice of including this policy in the context of the reference policy. The difficult part is
that they are probabilistic and it’s hard to quantify what actions are actually important.
That’s why we do not consider these policies by default even if they produce good cut-off
values for some of the frontier beliefs. This in most cases leads to better results as the main
family is more true to the reference policy and contains only the important restrictions.

34

Chapter 6

Experimental Evaluation

In this chapter, we present an experimental evaluation of the proposed improvements from
the previous chapter. We first introduce the considered POMDPs and discuss the setup of
the experiments. We then showcase our proposed ideas for improving cut-off approximations
in belief-based methods and improving inductive synthesis work with just simple additional
computations. These results directly motivate the proposed symbiotic algorithm which is
evaluated at the end of this chapter. We focus on our main goal, i.e. finding good FSCs
quickly. However, we also evaluated the memory usage of the algorithm, the sizes of the
found FSCs and we also discuss the advantage of producing two FSCs in SAYNT. With the
results presented in this chapter, we show that our proposed improvements and especially
the symbiotic algorithm SAYNT beats the current state-of-the-art methods for the synthesis
problem in POMDPs with indefinite-horizon specifications.

6.1 Selected Benchmarks and Experiments Setup

With the focus being on indefinite-horizon specifications, our baselines are the recent belief
exploration technique [7] implemented in STORM [17] and the inductive synthesis method [4]
implemented in PAYNT [5]. PAYNT uses STORM for parsing the input POMDPs and for model
checking MDPs, but not for solving POMDPs. Our symbiotic framework (see Figure 5.2
and Algorithm 1) has been implemented on top of PAYNT and STORM, combining them in
a closed-loop fashion. In the rest of this chapter, we will use STORM and PAYNT to refer to
the implementation of belief exploration and inductive synthesis respectively. We will use
SAYNT to refer to our proposed symbiotic framework.

Setup All of the experiments are run on a single core of a machine equipped with an
Intel i5-12600KF @4.9GHz CPU and 64GB of RAM. PAYNT searches for posterior-unaware
FSCs using abstraction refinement (explained in Section 3.2), as suggested by [4]. The
default setting of STORM is to apply cut-offs as presented in Section 3.1. SAYNT uses the
default settings for both PAYNT and STORM. The parameters from Algorithm 1 were set
to tz = 60s and tp = 10s by default. At the end of this chapter, we discuss how changing
these values affects the performance.

Benchmarks We consider models from Al and formal verification communities obtained
from [4, 6, 7, 9]. We evaluate the methods on a selection of these models, supplemented by
larger variants of these models (Drone-8-2 and Refuel-20), by one model from [15] (Milos-97)

35

Model ||S| S Act |Z||Spec. aggf; Model | [S] S Act |Z| |Spec. ag;f;{.

4x3-95 | 22 82 9 | Rmax| < 2.24 || Drone-4-2 [1226 2954 761 | Ppax| < 0.98
4x5x2-95| 79 310 7 |Rpmax| <3.26 || Drone-8-2 | 13k 32k 3195| Ppax| < 0.99
Hallway | 61 301 23| Ry | > 11.5 Lanes+ [2741 5285 11 | Ruyin| > 4805
Milos-97 (165 980 11 |Rpax| < 80 |[Netw-3-8-20| 17k 30k 2205| Rpyin| > 4.31
Network | 19 70 5 |Rmax| <359 || Refuel-06 | 208 565 50 | Puax| < 0.78
Query-s3|108 320 6 |Rpax| <600 || Refuel-20 (6834 25k 174 | Ppax| < 0.99
Tiger-95| 14 50 7 |Rpax| <159 Rocks-12 6553 32k 1645| Ryin| > 17.8

=1

Table 6.1: Information about the benchmark POMDPs.

and by the synthetic model explained in Section 4.2.1 (Lanes+). We excluded benchmarks
for which PAYNT or STORM finds trivial (expected) optimal solutions in a matter of seconds.
The reason for this is that if PAYNT or STORM finds a solution in a trivial fashion, SAYNT is
also able to find and the comparison is pointless. The benchmarks were selected to illustrate
the advantages as well as the drawbacks of all three synthesis approaches: belief exploration,
inductive search, and the symbiotic technique. Table 6.1 lists for each POMDP the number
of states |S|, the total number of actions) Act :=) |Act(s)|, the number of observations
|Z], the specification (either maximising or minimising a reachability probability P or
expected reward R), and a known over-approximation on the optimal value computed using
the technique from [6]. These over-approximations are solely used as rough estimates of the
optimal values and for most of these models, we do not know how close to the optimum
we are.

6.2 Evaluation of the One-way Integrations

We want to showcase that the main ideas presented in Chapter 5 can be used to improve
the state-of-the-art tools. We first look at improving belief approximations by using FSC
cut-offs. Secondly, we showcase the improvements in the inductive synthesis with belief-based
reference policies.

6.2.1 FSCs Improving Approximations of the Belief MDP

In these experiments. PAYNT is used to obtain a sub-optimal FSC Fr within 10s (or the
first found if a bigger time limit is needed) which is then used by STORM to compute better
cut-offs. We ask the question (Q1): Do the FSCs from inductive synthesis raise the accuracy
of the belief MDP? Table 6.2 (left) lists the results. From these results, we get the following
observation:

Observation 1 Belief exploration can yield better FSCs (and sometimes even faster) using
FSCs from PAYNT even if the latter FSCs are from optimal.

For instance, STORM with provided Fr finds an FSC with value 0.97 for the Drone-4-2
benchmark within a total of 10s (1s+9s for obtaining F7), compared to obtaining an FSC of
value 0.95 in 56s on its own. A value improvement is also obtained if STORM runs longer.
For the Network model, the value improves with 37% (short-term) and 47% (long-term)
respectively, at the expense of investing 3s to find Fz. For the other models, the relative
improvement ranges from 3% to 25%. A further value improvement can be achieved when

36

PaynNT||Short STORM||Long STORM STOrRM|| PAYNT
Model Fr ‘ + Fr ‘ +Fr Model Fx ‘—f— Fp
Drone-4-2 0.94|| 0.92 0.97|| 0.95 0.97 4x5%x2-95 2.08|| 0.94| 2.03
Priax 9s 1s 1s|| 5b6s 57s Riax <1s|| 258s| 38s
Network || 266.1||186.7| 274.5|[202.1] 277.1 Refuel-20 0.09][<0.01| 0.19
Rmax 3s|| <1s <1s|| 26s 33s Prax 1s|| 10s| 11s
Drone-8-2 0.9] 0.6 0.96|| 0.68] 0.97 Tiger-95 50.38|| 2.99|28.73
Priax 28s 3s 3s|| 101s| 103s Rinax <ls|| 14s| 23s
4x3-95 1.66| 1.62 1.82]| 1.84 1.88 4x3-95 1.62|| 1.75| 1.84
Rmax 7s|| <1s <1s|| 60s 72s Riax <1ls|| 14s| 238s
Query-s3 || 425.2|(417.4| 430.0//419.6] 432.0 Refuel-06 0.67|| 0.35| 0.67
Riax s 2s 2s|| 91s 94s Priax <ls|| <1s| 42s
Milos-97 || 31.56(|37.15| 39.15|(38.35| 40.64 Milos-97 37.15|| 31.56(39.29
Rmax 3s|| <1s <ls|| 42s 42s Riax <ls 3s| 215s
Hallway || 16.05|[13.07| 12.63||12.55| 12.55| |Netw-3-8-20|| 11.93|| 11.07/10.95
Ruin 9s 1s 1s|| 160s| 167s Ruin 1s|| 185s| 271s
Rocks-12 42 38| 31.89| 20* 20* Rocks-12 38 42| 38
Ruin <ls|| <1s <1s|| 10s 10s Ruin <ls|| <1s| <l1s

Table 6.2: Left (Q1): Experimental results on how a (quite sub-optimal) FSC Fr computed
by PAYNT within 10s impacts STORM. (For Drone-8-2, the largest model in our benchmark,
we use 30s). The “PAYNT* column indicates the value of Fr and its run time. The “Short
STORM,, column runs storm for 1s and compares the value of FSC Fp found by STORM alone
to STORM using F7. The “Long STORM®“ column is analogous, but with a 300s timeout for
STORM. In the last row, * indicates that clipping was used. Right (Q2): Experimental
results on how an FSC Fp obtained by a shallow exploration of the belief MDP impacts
the inductive synthesis by PAYNT. The “STORM,, column reports the value of Fz computed
within 1s. The “PAYNT* column compares the values of the FSCs Fr obtained by PAYNT
itself to PAYNT using the FSCs Fi within a 300s timeout.

using better FSCs F7 from PAYNT; see Section 6.3. Sometimes, belief exploration does not
profit from F7. For Hallway, the unexplored part of the belief MDP becomes insignificant
rather quickly, and so does the impact of Fr. Clipping [7], a computationally expensive
extension of cut-offs, is beneficial only for Rocks-12, rendering F7 useless. Though even in
this case, using F7 significantly improves Short STORM that did not have enough time to

apply clipping.

6.2.2 Belief-based FSCs Improving Inductive Synthesis

In these experiments, we run STORM for at most 1s, and use the result as a reference policy
in PAYNT. We ask the question (Q2): Does the exploration of the belief MDP boost the
inductive synthesis of FSCs? Table 6.2 (right) lists the results. From these results we make
another important observation:

Observation 2 Inductive synthesis can find much better FSCs (and sometimes much faster)
when using FSCs obtained from belief exploration as reference policies to steer the search.

For instance, for the 4x5x2 benchmark, an FSC is obtained about six times faster while
improving the value by 116%. On some larger models, PAYNT alone struggles to find any
good F7 and using Fp boosts this; e.g., the value for the Refuel-20 model is raised by a

37

factor 20 at almost no run time penalty. For the Tiger benchmark, a value improvement of
860% is achieved (albeit not as good as Fp itself) at the expense of doubling the run time.
Thus: even a shallow exploration of the belief MDP pays off in the inductive synthesis. The
inductive search typically profits even more when exploring the belief MDP further. This
is demonstrated, e.g., in the Rocks-12 model: using the FSC Fi computed using clipping
(see Table 6.2 (left)) enables PAYNT to find FSC Fr with the same (optimal) value 20 as
F within 1s. Similarly, for the Milos-97 model, running STORM for 45s (producing a more
precise F) enables PAYNT to find an FSC Fr achieving a better value than controllers
found by STORM or PAYNT alone within the timeout. (These results are not reported in the
tables.) However, as opposed to Q1, where a better FSC F7 naturally improves the belief
MDP, longer exploration of the belief MDP does not always yield a better Fr: a larger MB
with a better Fp may yield a larger memory model pu, thus inducing a significantly larger
family where PAYNT struggles to identify good FSCs.

6.3 Evaluation of the Anytime Symbiotic Algorithm

We know focus on evaluating the proposed symbiotic approach. We ask the question (Q3):
Is the symbiotic approach improving run time, controller’s values and size? Thus the goals of
the experiments presented in this section are to investigate whether the symbiotic approach
improves the run time (can FSCs of a certain value be obtained faster?), the memory
footprint (how is the total memory consumption of the methods affected?), the controller’s
value (can better FSCs be obtained with the same computational resources?), and the
controller’s size (are more compact FSCs obtained?).

Value of the synthesized FSCs

Figure 6.1 plots the value of the FSCs produced by STORM, PAYNT, and SAYNT versus the
computation time. Note that for maximal objectives, the aim is to obtain a high value (the
first 4 plots) whereas for minimal objectives a lower value prevails. From the plots, we make
the following observation:

Observation 3 The FSCs from the symbiotic approach are superior in value to the ones
obtained by the standalone approaches.

The relative improvement of the value of the resulting FSCs differs across individual models,
similar to the trends in Q1 and Q2. When comparing the best FSC found by STORM or
PAYNT alone with the best FSC found by SAYNT, the improvement ranges from negligible
(4x3-95) to around 3%-7% (Netw-3-8-20, Milos-97, Query-s3) and sometimes goes over 40%
(Refuel-20, Lines+). We note that the distance to the (unknown) optimal values remains
unclear. Recall that SAYNT returns two FSCs: Fr found during the inductive phase and
Fp (that incorporates F7) found during the belief phase. That’s why there are two lines
associated with the results of SAYNT. The FSC value never decreases but sometimes does
also not increase, as indicated by Hallway and Rocks-12 (see also Section 6.2.2). Some plots
in Fig. 6.1 also include the FSC value by the one-shot combination of STORM and PAYNT.
By comparing these FSCs we observe:

Observation 4 SAYNT can improve the FSC value over the one-shot combinations whose
ideas are presented in Sections 5.1 and 5.2.

38

This is illustrated in, e.g., the 4x3-95 and Lanes+ benchmarks, see the 1st and 3rd plots in
Figure 6.1 (left).

‘ =~ SAYNT Fp == SAYNT F7 = 4= STORM - ®= PAYNT Q1 STORM Q2 PAYNT ‘

4x3-95 o Milos-97 ¢

-
-
-

-
-
-
-
-
-

Refuel-20

2 e;" r ‘ | 17

10 Network-3-8-20 - 1 Drone-8-2
. . O—{—0 o o
é 1041 w* ?Eé 0.9 (o o—o-

1081

% b —to-o——e-s—o > 0 &8t
g1z o
< < 0.7}
116 2071y s

12. | | | | | | | 0'6 | | | | | | |

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Time [min] Time [min]

Figure 6.1: Value of the generated FSCs over time. We compare SAYNT with our two
baselines STORM and PAYNT. Note that SAYNT produces two FSCs (blue and green lines).
We also include comparisons with the proposed one-way improvements discussed in the
previous sections 6.2.1 (Q1) and 6.2.2 (Q2). The lines ending before the timeout indicate
that the 64GB memory limit was hit. e indicates that PAYNT and SAYNT synthesized
posterior-aware FSCs. ¢ indicates that SAYNT ran with ¢z =90s.

39

Total synthesis time

From Figure 6.1 we see that SAYNT initially needs some time to complete the first iteration
(one inductive and one belief phase) in Algorithm 1 and thus during the beginning of the
synthesis process, the standalone tools may provide FSCs of a certain value faster. However,
we observe that:

Observation 5 After the first iteration, SAYNT typically provides better FSCs in a shorter
time and quickly overtakes both baselines.

For instance, for the Refuel-20 benchmark SAYNT swiftly overtakes STORM after the first
iteration. The only exception is Rocks-12 (discussed in the previous sections), where SAYNT
with the default settings needs significantly more time than STORM to obtain an FSC of the
same value.

Memory footprint

Belief exploration typically has a large memory footprint: STORM quickly hits the 64GB
memory limit on exploring the belief MDP. This is indicated in the various plots of Fig. 6.1
by the purple dashed line that ends before the timeout. However, if we consider SAYNT we
observe:

Observation 6 SAYNT reduces the memory footprint of STORM alone by a factor of 3 to 4
while producing better FSCs.

See Figure 6.2 for the comparison of average memory usage between STORM and SAYNT.
The average memory footprint of running PAYNT standalone quickly stabilises around
700MB-1GB (for the largest models). The memory footprint of SAYNT is thus dominated
by the restricted exploration of the belief MDP.

Average memory usage comparison

PN Bl SAYNT
"' ¢ STORM

64

w
[\)

Memory usage [GB]
—_
D

0 2 4 6 8 10 12 14

Time [min]

Figure 6.2: Comparison of average memory usage between STORM and SAYNT. The y-axis
is logarithmic. We observe that SAYNT dramatically reduces the memory footprint of the
belief exploration despite the fact that it produces better FSCs.

40

Models:|| Lanes+ |Hallway |Netw-3-8-20| Query-s3¢ [Refuel-06|Drone-8-2|Refuel-20
Fp ||4805/8.1k[12.55/2k| 10/40k [511.32/7.7k| 0.67/84 |0.96/237k|0.24/1.5k
Fr 6591/34 |15.46/86| 11.04/4.8k | 509.49/26 |0.67/156|0.90/6.4k| 0.2/362

Table 6.3: Trade-offs between the value and size in the resulting FSCs Fr and F found by
SAYNT. Each cell reports value/size. The first three models have a minimising objective. ¢
indicates that SAYNT ran with ¢z =90s.

The size of the synthesised FSCs

For selected models, Tab. 6.3 shows the trade-offs between the value and size of the resulting
FSCs Fr and Fj found by SAYNT. From the experiments we observe:

Observation 7 The FSCs Fr provided by the inductive synthesis in SAYNT are typically
about one to two orders of magnitude smaller than the belief-based FSCs Fg with only a
small penalty in their values

There are models (e.g. Refuel-06) where a very small Fj, having an even slightly smaller
size than F7, does exist. The integration mostly reduces the size of F due to the better
approximation of the belief MDP by up to a factor of two. This reduction has a negligible
effect on the size of F7. This observation further strengthens the usefulness of SAYNT that
jointly improves the value of Fr and Fp. Hence, SAYNT gives users a unique opportunity to
run a single, time-efficient synthesis and select the FSC according to the trade-off between
its value and size.

6.3.1 More Results

In the previous sections, we presented results that helped us answer all of the important
questions surrounding our proposed ideas and the proposed algorithm SAYNT. We showcased
that the ideas from sections 5.1 and 5.2 can be used to obtain strong one-way integrations
that outperform the base methods. We then showed that the proposed symbiotic algorithm
SAYNT outperforms our baselines from multiple perspectives. Table 6.4 shows more results
from our experiments, where we can compare the sizes of FSCs from different methods and
the impact of using default versus non-default settings.

6.3.2 Customising the SAYNT Setup

In contrast to the stand-alone approaches as well as to the one-way integrations presented
in Section 6.2, we observe that:

Observation 8 SAYNT provides a single synthesis method that is efficient for a general
class of models without tuning its parameters.

Although SAYNT includes parameters that affect the interplay between the standalone
approaches (see Algorithm 1 with the paragraphs discussing design choices and the paragraph
on parameter settings), the experiments confirm that the default strategy provides superior
and stable performance across all considered models. Below, we discuss some results when
using a non-default setup, see the captions in Figure 6.1, Table 6.3, and Table 6.4. Using
posterior-aware FSCs mostly significantly slows down the synthesis process. For Network
and 4x3-95, it does improve the value of the default posterior-unaware FSCs by 2% to 4%.

41

For the former model, a better F7 also improves Fg about a similar value. In some cases
(e.g. Query-s3), it is beneficial to increase the parameter t7 to 90s, giving PAYNT enough
time to search for a good FSC Fr (the relative improvement is 6%) which also improves the
value of the resulting FSC Fp about a similar value. t7 and tg also determine if the size or
the value of the FSCs is preferred. A detailed analysis of the experimental results suggests
that it is more effective to invest time into searching for F7 approximating the belief MDP
rather than into its deeper exploration.

Benchmark ||Model Size|| PAYNT STORM SAYNT
Model Spec.||S/Act Z Fr \Size g ‘Size Fg ‘Size‘ Fr ‘Size
4x3 R 22 9 1.81| 36 1.87| 999 1.89| 968| 1.87e| 126
95 max 82 764s 414s 283s 120s
4x3 R 22 9 1.81] 36| 1.87| 999 1.89| 869 1.79] 36
95 max 82 7645 414s 303s 678s
4x5x2 R 79 7 0.94| 26| 2.08| 102 2.08| 102 2.03| 38
95 max 310 305s 3s T1ls 378s
Drone p 1226 761 0.95(1.5k 0.95] 135k 0.97(140k 0.94(1.5k
4-2 max\ 3026 900s 110s 194s 1s
Drone p 13k 3195 0.9/6.4k 0.68] 280k 0.96(140k 0.9/6.4k
8-2 max 32k 260s 98s 247s 30s
Hallway R 61 923 15.54| 66]|| 12.55| 1.9k 12.55| 1.8k| 15.46| 86
mim 301 26s 916s 263s 293s
Lanes+ R 2741 11 8223| 42| 18870| 8.1k 4805| 8.1k 6591| 34
mum 5289 118s 376s 173s 114s
Milos—97R 165 1 31.56| 40|| 39.03| 823| 41.99¢| 692| 35.82¢| 40
max 980 4s 88s 370s 185s
Milos—97R 165 11 31.56] 40| 39.03| 823 41.55| 290| 35.41] 40
max 980 4s 88s 270s 114s
Network R 19 5 280.33| 22{/209.71| 2.4k||289.18e| 2k|287.23e| 54
max 70 38s 110s 395s 106s
NetworkR 19 5 280.33| 22{|209.71| 2.4k| 284.51|1.8k| 280.33| 22
max 70 38s 110s 85s 41s
Netw R 17k 9905 11.04|4.4k|| 10.27| 64k 10| 38k| 11.04|4.8k
3-8-20 ~mn 30k 638s 238s 742s 379s
Query R 108 6 502.3| 28([420.11|12.9k||511.32¢| 7.7k|509.49¢| 26
s3 max 320 931s 184s 5665 362s
Query R 108 6 502.3| 28/(420.11|12.9k|| 482.21|7.7k| 478.59| 28
s3 max 320 931s 184s 700s 610s
Refuel P 208 50 0.35| 100|| 0.67| 343 0.67| 84 0.67| 156
06 max 565 <1s 182s 178s 84s
Refuel p 6834 174 0.02] 348 0.15] 1.2k 0.24| 1.5k 0.2| 360
20 max 24k 922s 468s 386s 173s
Tiger R 14 7 7.93| 34| 50.38| 58 50.38| 58| 31.61| 48
95 max 50 5475 <1s Tls 513s

Table 6.4: The quality and size of resulting FSCs provided by PAYNT, STORM, and SAYNT
within the 15-minute timeout. The run times indicate the time needed to find the best
FSC. Non-default settings: e marks experiments where PAYNT synthesized posterior-aware
FSCs, ¢ marks experiments where integration parameter t7 was set to 90 seconds.

42

Chapter 7

Final Considerations

7.1 Future Research

This work opens up a lot of avenues for further research in the POMDP synthesis. We
proposed two ideas for improving belief approximations and the inductive policy search
respectively. In the case of belief approximations, we showcased that using simple FSCs can
greatly improve state-of-the-art approaches. It is desirable to explore other methods and see
if there are possible ways to improve them using these simple FSCs as they are compact and
hold a lot of information about the POMDP and its specification. In the case of improved
inductive synthesis, we can look into extracting more information from the reference policies.
Currently, we only look at the considered set of actions for different observations but there
might be more information about for example the needed memory, or the dependencies
between different actions in the reference policies. We also might consider reference policies
from different sources. As we said the idea of using a reference policy is not tool specific,
however, in the experimental evaluation we only considered reference policies from belief
exploration in STORM.

If there’s any progress in these mentioned areas, we directly improve the proposed
symbiotic algorithm SAYNT. While this algorithm already outperforms the state-of-the-art
we believe that further improvements are possible with more fine-tuned parameters. It
might be also interesting to try and come up with different integrations e.g. including
simulation-based and reinforcement learning methods. The motivation here is the fact that
the POMDP synthesis question is a difficult one, and while coming up with new ideas on
how to tackle it is important, there will always be some inherent flaws that might only be
avoided by looking at the problem from multiple angles at once.

In this work, we considered indefinite-horizon specifications. The AI community prefers
using infinite-horizon specifications with discounting. In many cases, the algorithms only
work if a discount factor strictly less than 1 is used. We believe this topic surrounding the
use of a discount factor is not explored properly. We think there are real-world practical
problems where the use of a discount factor is inappropriate. While we can set the discount
very close to 1, we observed in our initial experiments (not included in this work) that by
doing so the performance of the algorithms drops to a point where the benefits of approaches
that support indefinite-horizon specifications become clear. Future research in this area
should focus on explaining the need for a discount factor and how the methods considering
different specifications can help each other.

This work tries to bridge the safety-scalability gap that currently occurs in the POMDP
synthesis problem. We believe that the discussion on this topic is an important one.

43

Reinforcement learning and other machine learning approaches provide good scalability,
however, offer little safety guarantees compared to formal methods. This problem is
prominent in a lot of areas of modern computer science and we believe that future research
in the POMDP synthesis problem should focus on this important problem.

Finally, SAYNT produces two FSCs Fr and Fi and we observed interesting trade-offs
between the size and the quality of these FSCs (see Observation 7), where their values
can be close but their sizes vary a lot. This indicates that sometimes the produced FSCs
are unnecessarily large. Future research might focus on developing algorithms for the
minimisation of the FSCs. This could lead to an approach where we find a good FSC first
and then make it as compact as possible using some external algorithm.

7.2 Conclusions

This work focused on the synthesis problem in POMDPs with indefinite-horizon specifications.
We considered two main state-of-the-art approaches for this problem: i) belief exploration
with cut-off approximations implemented in tool STORM, ii) the inductive synthesis of FSCs
implemented in tool PAYNT. We showed clear limitations of state-of-the-art approaches
on simple POMDP examples. We used the shown limitations to directly motivate two
novel ideas. Firstly, we can improve the belief exploration by using FSCs to obtain better
cut-off approximations. Secondly, we can improve the inductive synthesis approach by using
information from reference policies to steer the search. With these ideas, it became clear
that an interplay between belief exploration and inductive synthesis is possible. We proposed
SAYNT, a symbiotic closed-loop integration of the two main approaches for controller synthesis
in POMDPs. Using a wide class of models, we demonstrated that SAYNT substantially
improves the value of the resulting controllers. It does so while also reducing the memory
footprint of the belief exploration and improving the overall synthesis time. SAYNT works
in an iterative fashion. After each iteration, two FSCs F7 and Fp are produced. This gives
the user a unique choice between the small FSC Fr or better but much larger FSC Fg.
Another advantage of SAYNT is that it provides a single synthesis method for a general class
of models without the need for tuning its parameters. This work strengthens the position of
formal methods for the POMDP synthesis problem.

This thesis served as a basis for an article called ”Search and Explore: Symbiotic Policy
Synthesis in POMDPs“ This article was accepted to International Conference on Computer
Aided Verification 2023 (CAV’23), a CORE A* conference, in May 2023.

44

Bibliography

1]

[10]

[11]

[12]

AMATO, C., BERNSTEIN, D. S. and ZILBERSTEIN, S. Optimizing fixed-size stochastic
controllers for POMDPs and decentralized POMDPs. Autonomous Agents and
Multi-Agent Systems. Springer. 2010, vol. 21, no. 3, p. 293-320.

AmaTo, C., BONET, B. and ZILBERSTEIN, S. Finite-State Controllers Based on Mealy
Machines for Centralized and Decentralized POMDPs. In: AAAIL AAAI Press, 2010,
p- 1052-1058.

ANDRIUSHCHENKO, R., CESKA, M., JUNGES, S. and KATOEN, J.-P. Inductive synthesis

for probabilistic programs reaches new horizons. In: Springer. TACAS. 2021, vol.
12651, p. 191-209. LNCS.

ANDRIUSHCHENKO, R., CESKA, M., JUNGES, S. and KATOEN, J.-P. Inductive Synthesis
of Finite-State Controllers for POMDPs. In: UAL. PMRL, 2022, vol. 180, p. 85-95.

ANDRIUSHCHENKO, R., CESKA, M., JUNGES, S., KATOEN, J.-P. and STUPINSKY, S.
PAYNT: a tool for inductive synthesis of probabilistic programs. In: Springer. CAV.
2021, vol. 12759, p. 856-869. LNCS.

BORK, A., JUNGES, S., KATOEN, J.-P. and QUATMANN, T. Verification of
indefinite-horizon POMDPs. In: Springer. ATVA. 2020, vol. 12302, p. 288-304. LNCS.

BORK, A., KATOEN, J.-P. and QUATMANN, T. Under-Approximating Expected Total
Rewards in POMDPs. In: TACAS (2). Springer, 2022, vol. 13244, p. 22-40. LNCS.

CARR, S., JANSEN, N., WIMMER, R., SERBAN, A., BECKER, B. et al.
Counterexample-Guided Strategy Improvement for POMDPs Using Recurrent Neural
Networks. In: International Joint Conference on Artificial Intelligence. August 2019,
p. 5532-5539. DOI: 10.24963 /ijcai.2019/768.

CASSANDRA, T. Tony Cassandra’s POMDP File Repository Page
[https://pomdp.org/examples/]. Accessed: 2023-01-23.

CESKA, M., JANSEN, N., JUNGES, S. and KATOEN, J.-P. Shepherding hordes of
Markov chains. In: Springer. TACAS. 2019, vol. 11428, p. 172-190. LNCS.

CUBUKTEPE, M., JANSEN, N., JUNGES, S., MARANDI, A., SUILEN, M. et al. Robust
Finite-State Controllers for Uncertain POMDPs. In: AAAIL AAAI Press, 2021,
p. 11792-11800.

DEHNERT, C., JUNGES, S., KATOEN, J.-P. and VOLK, M. A Storm is Coming: A
Modern Probabilistic Model Checker. In: CAV. Springer, 2017, vol. 10427, p. 592-600.
LNCS.

45

https://pomdp.org/examples/

[13]

[14]

[15]

[16]

[17]

[18]

[19]

HANSEN, E. A. Solving POMDPs by searching in policy space. In: UAL 1998,
p. 211-219.

HAUSKNECHT, M. and STONE, P. Deep Recurrent Q-learning for Partially Observable
MDPs. In: 2015 AAAI Fall Symposium Series. 2015.

HAUSKRECHT, M. Value-Function Approximations for Partially Observable Markov
Decision Processes. J. Artif. Int. Res. Al Access Foundation. aug 2000, vol. 13, no. 1,
p- 33-94. ISSN 1076-9757.

HEeck, L., SPEL, J., JUNGES, S., MOERMAN, J. and KATOEN, J. Gradient-Descent for
Randomized Controllers Under Partial Observability. In: VMCAI Springer, 2022, vol.
13182, p. 127-150. LNCS.

HENSEL, C., JUNGES, S., KATOEN, J.-P., QUATMANN, T. and VOLK, M. The

probabilistic model checker Storm. International Journal on Software Tools for
Technology Transfer. august 2022, vol. 24, p. 1-22. DOI: 10.1007/s10009-021-00633-z.

HorAK, K., BOSANSKY, B. and CHATTERJEE, K. Goal-HSVI: Heuristic Search Value
Iteration for Goal POMDPs. In: IJCAIL AAAI Press, 2018, p. 4764-4770.

JUNGES, S., JANSEN, N., WIMMER, R., QUATMANN, T., WINTERER, L. et al.
Finite-state Controllers of POMDPs via Parameter Synthesis. In: UAIL 2018,
p- 519-529.

JUNGES, S., KATOEN, J., PEREZ, G. A. and WINKLER, T. The complexity of

reachability in parametric Markov decision processes. J. Comput. Syst. Sci. 2021,
vol. 119, p. 183-210.

KurNiawATi, H., Hsu, D. and LEe, W. S. SARSOP: Efficient Point-Based POMDP
Planning by Approximating Optimally Reachable Belief Spaces. In: Robotics: Science
and Systems. MIT Press, 2008.

KWIATKOWSKA, M. Z., NORMAN, G. and PARKER, D. PRISM 4.0: Verification of
Probabilistic Real-Time Systems. In: CAV. Springer, 2011, vol. 6806, p. 585-591.
LNCS.

MADANI, O., HANKS, S. and CONDON, A. On the undecidability of probabilistic

planning and related stochastic optimization problems. Artificial Intelligence. 2003,
vol. 147, no. 1, p. 5-34.

MYKEL J. KOCHENDERFER, K. H. W. Algorithms for Decision Making. MIT Press,
2022. ISBN 9780262047012.

PUTERMAN, M. L. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 1994.

SCHRITTWIESER, J. et al. Mastering Atari, Go, chess and shogi by planning with a
learned model. Nature. Springer Science and Business Media LLC. dec 2020, vol. 588,
no. 7839, p. 604-609. DOI: 10.1038/s41586-020-03051-4.

SILVER, D. and VENESS, J. Monte-Carlo planning in large POMDPs. In: NIPS.
Curran Associates, Inc., 2010, p. 2164-2172.

46

[28] SMALLWOOD, R. D. and SONDIK, E. J. The optimal control of partially observable
Markov processes over a finite horizon. Oper. Res. INFORMS. 1973, vol. 21, no. 5,
p- 1071-1088.

[29] X1aNG, X. and Foo, S. Recent Advances in Deep Reinforcement Learning
Applications for Solving Partially Observable Markov Decision Processes (POMDP)
Problems: Part 1—Fundamentals and Applications in Games, Robotics and Natural
Language Processing. Machine Learning and Knowledge Extraction. 2021, vol. 3, no. 3,
p. 554-581. DOI: 10.3390/make3030029. ISSN 2504-4990.

47

	Introduction
	Preliminaries and Problem Formulation
	Preliminaries
	Partially-observable Markov Decision Processes
	Specification
	Finite-state Controllers
	Problem Statement

	State-of-the-art Methods
	Belief-based Methods
	Inductive Synthesis of FSCs
	Simulation-based and Reinforcement Learning Methods

	Limitations of State-of-the-art
	Limitation of Alternative Approaches
	Limits of Belief-based Methods and Inductive Synthesis

	Integration of Inductive Synthesis and Belief-based Methods
	Using FSCs for Cut-off Values
	Using Reference Policies to Improve Inductive Synthesis
	FSC Overview
	Symbiotic Policy Synthesis

	Experimental Evaluation
	Selected Benchmarks and Experiments Setup
	Evaluation of the One-way Integrations
	Evaluation of the Anytime Symbiotic Algorithm

	Final Considerations
	Future Research
	Conclusions

	Bibliography

