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Abstract 
This work focuses on combining two state-of-the-art controller synthesis methods for partially 
observable Markov decision processes (POMDPs), a prominent model in sequential decision 
making under uncertainty. A central issue is to find a P O M D P controller that achieves a total 
expected reward objective. As finding optimal controllers is undecidable, we concentrate 
on synthesising good finite-state controllers (FSCs). We do so by tightly integrating 
two modern, orthogonal methods for P O M D P controller synthesis: a belief-based and an 
inductive approach. The former method obtains an F S C from a finite fragment of the 
so-called belief M D P , an M D P that keeps track of the probabilities of equally observable 
P O M D P states. The latter is an inductive search technique over a set of FSCs with a fixed 
memory size. The key result of this work is a symbiotic anytime algorithm that tightly 
integrates both approaches such that each profits from the controllers constructed by the 
other. Experimental results indicate a substantial improvement in the value of the controllers 
while significantly reducing the synthesis time and memory footprint. 

Abstrakt 
Táto práca sa zameriava na kombináciu dvoch moderných metód syntézy plánovačov pre 
Markovské procesy s čiastočným pozorovaním (POMDPs) , ktoré sú významným modelom 
pre sekvenčné rozhodovanie s neistotou. Hlavnou úlohou je nájsť plánovač P O M D P , ktorý 
dosahuje čo najlepšiu hodnotu. Keďže hľadanie optimálneho plánovača je nerozhodnuteľné, 
zameriavame sa na syntézu dobrých konečne stavových kontrolérov (FSCs). V tejto práci 
integrujeme dve moderné, ortogonálne metódy pre syntézu kontrolérov P O M D P , a to metódu 
založenú na prehľadávaní belief priestoru a induktívnu metódu. Prvá metóda získava 
F S C z konečného fragmentu takzvaného belief M D P , čo je M D P , ktorý udržiava prehľad 
o pravdepodobnostiach rovnako pozorovateľných stavov P O M D P . Druhá je induktívna 
vyhľadávacia technika pre množinu F S C s fixnou veľkosťou pamäti . Kľúčovým výsledkom 
tejto práce je symbiotický algoritmus, ktorý integruje obidva tieto prístupy tak, aby sa 
každý dokázal zlepšiť z kontrolérov vytvorených tým druhým. Experimentálne výsledky 
naznačujú významné zlepšenie hodnoty kontrolérov pri značnom znižovaní času syntézy a 
využitej pamäte. 
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Rozšířený abstrakt 
Náhodnosť a neistota sa často vyskytujú v umelej inteligencii, biologických systémoch, 
distribuovaných algoritmoch a mnohých ďalších oblastiach. Pravděpodobnostně modely 
sú silným nástrojom, ktorý nám pomáha uvažovať o náhodnosti a neistote v systémoch. 
Použitie týchto modelov nám môže pomôcť ďalej analyzovať vlastnosti daných systémov 
formálnym spôsobom. Modely zodpovedajúce systémom z reálneho života môžu byť veľmi 
komplexné. Ich stavový priestor môže byť veľký a môžu obsahovať veľa častí s neistými 
informáciami, ktoré môžu byť pre daný model kritické. Preto je dôležité zlepšovať metódy, 
ktoré sa používajú na analýzu takýchto modelov. 

Markovské rozhodovacie procesy (MDP) [25] sú jedným z najpoužívanejších modelov 
na získavanie informácií o systémoch obsahujúcich pravděpodobnostně vetvenia s nede­
terministickými akciami. Sú využívané v automatizovanom plánovaní, plánovaní úloh a 
formálnej verifikácii. Pravděpodobnostně modelovacie nástroje, ako napríklad P R I S M [22] a 
Storm [12], sú schopné efektívne nájsť riešenia pre MDP. Čiastočne pozorovateľné Markovské 
rozhodovacie procesy (POMDP) [24] predstavujú zovšeobecnenie MDP. Zdedili všetky vlast­
nosti klasických M D P , ale ich stavy nie sú plne pozorovateľné. To môže byť interpretované 
tak, že vieme identifikovať len určité aspekty stavov, napríklad farbu stavu, ale nie samotný 
stav. To dáva P O M D P potrebnú silu na modelovanie určitých problémov. Napríklad si 
predstavme robota, ktorého senzory majú len čiastočnú spoľahlivosť. Toto môžeme modelo­
vať pomocou P O M D P . Hlavným cieľom riešenia P O M D P je získať plánovač, teda plán na 
riešenie nedeterminizmu modelu pre daný cieľ. Rozdielom oproti M D P pri tomto probléme 
je, že P O M D P plánovače musia svoje rozhodnutia zakladať len na pozorovateľných aspektoch 
stavov, zatiaľ čo plánovače M D P môžu brať do úvahy celú históriu informácií o stavoch. To 
znamená, že v P O M D P sú cesty s rovnakými sledmi pozorovaní neodlíšiteľné z pohľadu 
plánovača. 

Problém overenia P O M D P s neohraničeným horizontom (neobmedzená dosiahnuteľnosť 
alebo odmeny akcii) je vo všeobecnosti nerozhodnuteľný [23]. Jeden príklad takejto špecifiká­
cie je nasledovný: Je maximálna očakávaná celková odmena na dosiahnutie daného cieľového 
stavu v POMDP pod daným prahom? Napriek nerozhodnuteľnosti existuje mnoho prís­
tupov, ktoré sa dnes snažia účinne aproximovat riešenie pre P O M D P . Belief-based metódy 
sú založené na preskúmaní belief priestoru a sú jedným z najmodernejších prístupov pre 
analýzu P O M D P s neobmedzeným horizontom. "Belief" reprezentuje pravdepodobnostnú 
distribúciu nad stavmi P O M D P , ktoré majú rovnaké pozorovanie. Pojem "belief" je dôležitý, 
pretože nám umožňuje opísať čiastočnú pozorovateľnosť aktuálneho stavu. Tieto metódy 
sa snažia odvinúť belief priestor daného P O M D P a vytvoriť takzvaný belief M D P , ktorý 
je možné následne overiť. Dokážu tiež poskytnúť dobré výsledky pre väčšinu modelov, 
ale použitie plánovača, ktorý vytvoria, je komplikované, pretože tento plánovač obvykle 
vyžaduje veľa pamäte a spolieha sa na náhodné podplánovače. Preto vznikli metódy, ktoré 
dokážu produkovať malé a ľahko použiteľné plánovače. Jednou z týchto metód je induktívna 
syntéza konečne stavových kontrolórov (FSC) [4]. F S C sú malé konečné automaty, ktoré 
dokážu zakódovať celé stratégie pre P O M D P [13]. Induktívna syntéza iterativně preskúmava 
čoraz väčšie rodiny možných FSC a snaží sa nájsť ten najlepší. Jedným z problémov induk­
tívnej syntézy je rast priestoru možných FSC, ktorý treba preskúmať. Táto práca sa teda 
sústreďuje na skúmanie a zlepšovanie dvoch hlavných metód: 1) induktívna syntéza F S C 
implementovaná v nástroji P A Y N T [5], a 2) Belief-based metódy [6, 7] implementované v 
nástroji Storm [12, 17], ktoré používajú takzvané cut-off aproximácie nepreskúmaného belief 
priestoru. Obidve tieto metódy majú svoje výhody a nevýhody, preto z hľadiska používateľa 
nemusí byť jednoduché vybrať, ktorú z metód použiť bez hlbokých znalostí jednotlivých 



metód a skúmaného modelu. Táto práca sa zameriava na vývoj frameworku, kde si tieto 
metódy symbioticky pomáhajú a sú schopné nájsť lepšie plánovače. 

V tejto práci sa budeme zameriavať iba na špecifikácie s neobmedzeným horizontom. 
Ak odstránime túto požiadavku, existujú aj iné veľmi efektívne metódy. Významné príklady 
sú aproximovaná iterácia hodnôt navrhnutá v [15], simulácie Monte Carlo [27] a použitie 
strojového učenia a neurónových sietí [8]. Pravdepodobne najznámejší spomedzi týchto 
metód je algoritmus S A R S O P [21], ktorý produkuje plánovače ako množinu a-vektorov. 
Plánovače vo forme a-vektorov vedú k zložitejšiemu následnému použitiu. Výsledné plánovače 
musia sledovať "belief" a vykonávať náročné výpočty na výber akcií. Ďalším významným 
algoritmom je HSVI [18]. Tieto metódy sú obvykle veľmi silné s využitím skutočnosti, že sa 
umožňuje znižovanie dôležitosti akcii. Niektoré prístupy sa uberali cestou hľadania samotných 
plánovačov na rozdiel od snahy získať plánovač s aproximovanej hodnotovej funkcie. Niektoré 
z najvýznamnejších sú náhodné plánovače pomocou gradientného zostupu [16] alebo pomocou 
konvexnej optimalizácie [1, 11, 19]. 

Reinforcement learning (RL) [14, 26] je tiež veľmi významným v probléme hľadania 
plánovačov pre P O M D P (prehľad najnovších pokrokov v R L pre P O M P D nájdete v [29]). 
Tieto prístupy a iné metódy strojového učenia zavádzajú istú polaritu medzi bezpečnosťou 
výsledku a škálovateľnosťou v porovnaní s formálnymi metódami, na ktoré sa zameriavame v 
tejto práci. Metódy založené na R L veľmi dobre škálujú a môžu byť tiež použité na riešenie 
neznámych P O M D P s , ale obetujú záruky bezpečnosti, ktoré poskytujú formálne metódy. 
Cieľom tejto práce je zmierniť medzeru medzi bezpečnosťou a škálovateľnosťou, a to tak že 
sa snažíme zlepšiť efektívnosť formálnych metód na riešenie P O M D P a posilniť ich pozíciu 
v tejto oblasti. 

Hlavným prínosom tejto práce je symbióza belief-based metód a vyhľadávania plánovačov. 
Pre tento účel bolo potrebné vyriešiť rôzne technické prekážky, ako napríklad získanie 
plánovača z belief M D P s aproximujúcimi plánovačmi, a vývoj prechodu medzi fázami 
prieskumu belief priestoru a vyhľadávania plánovačov s minimálnymi nákladmi. Výhody 
navrhovaného symbiotického algoritmu sú mnohostranné, ako ukazujeme v našej empirickej 
evaluácii. Symbiotický algoritmus dokáže riešiť P O M D P , ktoré nemožno riešiť žiadnym z 
jednotlivých prístupov samostatne. Produkuje plánovače, ktoré dosahujú lepšiu hodnotu 
(s relatívnym zlepšením až o 40%) ako aj plánovače, ktoré potrebujú menej pamäte (s 
redukciou až o dva rády). Okrem toho je t á to integrácia schopná znížiť pamäťové nároky 
prieskumu belief priestoru až o faktor 4. Záver je taký, že naša integrácia ponúka veľmi 
silný syntetizačný algoritmus, ktorý produkuje lepšie a stručnejšie plánovače v porovnaní s 
najnovšími metódami. Zatiaľ čo naša empirická evaluácia je špecifická pre dané metódy, 
získané poznatky sa môžu aplikovať aj pri integrácii iných metód. 
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Chapter 1 

Introduction 

Randomness and uncertainty commonly appear in artificial intelligence, biological systems, 
distributed computing and many more fields. Probabilistic models are a powerful tool to help 
us reason about both randomness and uncertainty in systems. Using these models can help 
us further analyse the properties of given systems in a formal way. Models corresponding to 
many real-life systems can be very complex, their state space can be large and there can be 
a lot of parts where critical information is uncertain. That's why improving the methods 
that are used for the analysis of such models is important. 

Markov decision processes (MDPs) [25] are one of the most used models to reason 
about systems containing probabilistic branching with controllable actions. They are used 
in automated planning, scheduling and formal verification. Probabilistic model checkers 
such as P R I S M [22] and Storm [12] are able to efficiently find policies for MDPs . Partially 
observable Markov decision processes (POMDPs) [24] represent a generalization of MDPs . 
They inherit all features of classic MDPs, however, the states are not fully observable. This 
can be interpreted as only being able to identify certain aspects of states, but not the 
state itself. This gives the P O M D P s the needed strength to model certain problems. For 
example, imagine a robot whose sensors have only partial reliability, we can model this 
using P O M D P s . The main goal in P O M D P solving is to obtain a scheduler, i.e. a plan for 
how to choose actions for a given objective. The difference for this problem between solving 
M D P s and P O M D P s is that P O M D P schedulers must base their decisions solely on the 
observable aspects of the states, meanwhile, M D P schedulers can take the entire history of 
full state information into consideration. This means that in P O M D P s the paths with the 
same observation traces are indistinguishable for the scheduler. 

The problem of verifying a P O M D P with respect to indefinite-horizon specification 
(unbounded undiscounted reachability or rewards) is generally undecidable [23]. One 
example of such a specification is the following: is the maximal expected total reward to reach 
a given goal state in a POMDP below a given threshold? Despite the undecidability, there 
are many approaches today that try to effectively approximate the solution for P O M D P s . 

The belief-based methods using belief exploration are one of the state-of-the-art ap­
proaches for P O M D P s [7]. Beliefs represent the probability distributions over states of 
the P O M D P that have the same observation and thus allow us to describe the partial 
observability of the current state. Belief-based methods try to unfold the belief state space 
of a given P O M D P and obtain policies from the explored belief space. These methods are 
able to provide high-quality schedulers, however, deploying such schedulers is problematic as 
they usually require a lot of memory, they are difficult to interpret since very similar beliefs 
can lead to different actions, and they rely on randomized sub-schedulers to approximate 
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unexplored belief space. Alternative approaches that can produce small and easy-to-use 
schedulers for complex P O M D P s have recently emerged. One of the state-of-the-art ap­
proaches builds on the inductive synthesis of finite-state controllers (FSCs) [4]. FSCs are 
small finite-state automata that can encode whole strategies for P O M D P s [13]. The inductive 
synthesis iteratively explores bigger and bigger families of possible FSCs and tries to find 
the best one. The key problem of inductive synthesis is the increasing size of the design 
space that needs to be explored. So the two main methods this work will try to examine and 
improve are: 1) the inductive synthesis of FSCs implemented in a tool called P A Y N T [5], 2) 
the belief-based methods [6, 7] implemented in a tool called Storm [12, 17] that use cut-offs 
to approximate the unexplored belief space. Both of these methods have their pros and 
cons, so from the user's perspective, it is not convenient to choose between them without 
a deep understanding of the methods. This work sets out to develop a framework where 
these methods symbiotically alleviate each other's weaknesses and find better schedulers 
than both of them individually. 

If we lift the need for undiscounted specification there are alternative methods that 
are very efficient. Prominent examples include approximative value iteration proposed 
in [15], Monte Carlo simulations [27] and usage of machine learning and neural networks [8]. 
Probably the most notable of the bunch is algorithm SARSOP [21] which produces policies 
as a set of a-vectors. The a-vector policies lead to more complex analysis downstream: the 
resulting policies must track the belief and do floating-point computations to select actions. 
Another notable algorithm is HSVI [18]. These methods are usually really strong in utilizing 
the fact that discounting is allowed. Some approaches go the route of policy search. Some 
of the most prominent are randomised controllers via gradient descent [16] or via convex 
optimization [1, 11, 19]. 

Reinforcement learning (RL) [14, 26] is also very prominent in the problem of finding 
controllers for P O M D P s (for an overview of recent advances in R L for P O M P D s see [29]). 
These approaches and other machine learning methods introduce a certain polarity between 
safety and scalability compared to the formal methods we focus on in this work. The 
RL-based methods scale very well and also might be used for solving unknown P O M D P s , 
however, they sacrifice the safety guarantees offered by the formal methods. The focus of 
this work is on bridging the gap between safety and scalability as we aim to improve the 
efficiency of the formal methods for P O M D P solving and strengthen their position in this 
research 

Key contributions 

This work showcases the issues and limitations of the state-of-the-art methods on tiny 
examples and uses this fact to reinforce the need for a symbiotic approach. These tiny 
examples provide a good insight into what the methods trying to tackle the indefinite-horizon 
specifications for P O M D P s need to take into consideration to provide good results for a 
variety of problems. 

The key contribution of this work is the symbiosis of belief exploration and policy search 
methods. Various technical obstacles had to be addressed e.g. obtaining a scheduler from the 
belief M D P along the approximating policies for its frontier and developing a back-and-forth 
approach that switches between the belief exploration and policy search phases with minimal 
overhead. The benefits of the symbiotic algorithm are manifold, as we show by in-depth 
empirical evaluation. The symbiotic algorithm is able to solve P O M D P s that cannot be 
tackled with either of the two approaches alone. It produces schedulers that are superior 
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in value (with relative improvements of up to 40%) as well as schedulers which take a lot 
less memory to store (with a reduction of a factor of up to two orders of magnitude) with 
only a small cost on their values. Additionally, the integration is able to reduce the memory 
footprint of the belief exploration by a factor of 4. In conclusion, the integration offers a very 
powerful push-button, anytime synthesis algorithm producing superior and/or more succinct 
schedulers compared to the state-of-the-art methods. While our empirical evaluation is 
method-specific, the lessons carry over to integrating other methods. 

Another important contribution is the unification of the theory behind representing the 
schedulers for P O M D P s using FSCs. We define a notion of a general F S C and then we 
expand this definition and define various sub-classes of FSCs. This fact allows us to better 
reason about the schedulers produced by belief-based methods and also allows us to better 
compare the results, especially their size. 

Publication 

This thesis served as a basis for an article called „Search and Explore: Symbiotic Policy 
Synthesis in POMDPs" . This article was accepted to International Conference on Computer 
Aided Verification 2023 (CAV'23) in May 2023. C A V is a C O R E A * conference with average 
acceptance rate around 25%. I would like to thank the co-authors Roman Andriushchenko, 
Alexander Bork, Milan Češka, Sebastian Junges and Joost-Pieter Katoen for their help 
with the publication of this work. In the following paragraph, I tried to summarize my 
contribution to this publication: 

I significantly contributed to the formulation of the research ideas, namely the proposed 
improvements of the inductive synthesis by using different P O M D P policies and the whole 
symbiotic loop. I designed and implemented the methods for obtaining information from 
belief policies, for using this information to enhance inductive synthesis in P A Y N T and, for the 
analysis of obtained FSCs. I came up with the main design of the symbiotic algorithm (see 
Algorithm 1) and was the one implementing it in our tools. I helped with the implementation 
of exporting belief policies as well as FSCs found in the inductive synthesis. I performed all 
of the experiments and pointed out the interesting facts that we present in our evaluation of 
the proposed ideas. I also took an important part in the process of writing the article. 

Structure of this thesis 

Chapter 2 introduces the important theory behind the analysis of P O M D P s and contains the 
formulation of the offline synthesis problem for P O M D P s this work focuses on. Chapter 3 
showcases the current state-of-the-art methods for analysing P O M D P s . We focus on 
introducing methods capable of working with indefinite-horizon specifications, i.e. the 
belief-based methods with cut-off approximations and the inductive synthesis of FSCs. In 
Chapter 4 we explore the limitations of the state-of-the-art methods. We showcase the 
advantage of representing strategies in the form of FSCs and the importance of improving 
the formal methods in the P O M D P synthesis problem. We also highlight the limitations of 
inductive synthesis and belief-based methods on two simple P O M D P s and provide motivation 
behind the symbiotic integration. Chapter 5 introduces novel ideas for combining belief-based 
and inductive synthesis approaches. We introduce a framework combining tools S T O R M 

and P A Y N T . And finally, introduce our proposed push-button anytime symbiotic algorithm 
for the synthesis of FSCs in P O M D P s . Chapter 6 contains the experimental evaluation 
of the implemented integration that shows many practical improvements over the current 
state-of-the-art tools. And finally, Chapter 7 contains a conclusion of this work. 
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Chapter 2 

Preliminaries and Problem 
Formulation 

This chapter serves as an introduction to the fundamental concepts and tools that are 
crucial for comprehending the ideas presented in this work. We begin this chapter with 
an introduction to probability distribution and the basic stochastic models. The chapter 
then shifts its focus to the specific problem that this work aims to address, which involves 
synthesizing schedulers for partially-observable Markov decision processes (POMDPs) with 
respect to indefinite-horizon specifications. P O M D P s are critical models for decision-making 
under uncertainty and limited observability, used in planning autonomous agents, solving 
games with imperfect information, and medical treatment strategies. The chapter explains 
the specifications that the work concentrates on and introduces the vital concept of a 
finite-state controller (FSC), which provides a compact way to represent P O M D P policies. 
Finally, the problem statement for this work is presented. 

2.1 Preliminaries 

We begin with an explanation of probability distributions, which facilitate reasoning about 
uncertainty. The Markov property is then introduced as a vital assumption underlying 
the stochastic decision-making models in this work, derived from the notion of the Markov 
chain. The chapter proceeds to define Markov decision processes (MDPs) , which are an 
essential model for reasoning about non-deterministic choices in stochastic environments. 
Furthermore, key concepts surrounding MDPs , such as schedulers, memoryless schedulers, 
and induced Markov chains, are discussed. 

2.1.1 Probability and Markov Property 

Probabilistic models are a powerful tool to help us reason about uncertainty, which occurs 
in many complex systems. A probability distribution describes the likelihood of uncertain 
outcomes. Formally: 

Definition 1 (Probability distribution) A (discrete) probability distribution over a 
countable set A is a function fx : A —>• [0,1] such that the sum ^2a&A //(a) = 1. Let Distr(A) 
denote the set of all probability distributions on A. We define the support of a distribution \i 
as supp(fi) = {a G A \ fi(a) > 0}. 
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Example 1 Let A = {00,01,02} and let \x : A —>• [0,1] be defined as / / : [OQ i-> 3,01 i-> 
§, 02 l—>• 0], /x G Distr(A), i.e. \x is a probability distribution on A. The support of \x is 
supp(/ji) = {a 0 , a i } . 

Definition 2 (Markov chain) A discrete-time Markov chain (MC) is a tuple D = (S,SQ, 
P), where S is a finite set of states, SQ G S is an initial state and P : S —>• Distr(S) is a 
transition probability matrix. 

One key property of stochastic models that is often considered is the Markov property. 
Markov property refers to the memory less property of stochastic processes. Markov property 
states that if the current state is known, then the future states of the system are independent 
of its past states. This allows us to adopt a state-based view of the stochastic models. 

Definition 3 (Markov property) Let D be an MC. Let X(k) G S be a random variable 
describing the current state of D at discrete time k > 0. Markov property is defined as 
F(X(k) = sk I X(k - 1) = s f e _ i , X ( 0 ) = s0) = F(X(k) = sk I X(k - 1) = s f e _i) . 

2.1.2 Markov Decision Processes 

Markov Decision Processes (MDPs) [25] are a widely used framework for modelling decision­
making problems under uncertainty. They introduce a non-deterministic choice into the 
states in the form of actions that can be chosen. The Markov chain defined in the previous 
section is, in fact, a special case of M D P where in each state there's only one action that 
can be chosen. MDPs have become widely used in AI , robotics, control theory etc. as they 
naturally model examples like a robot moving through a stochastic environment. 

Definition 4 (MDP) Markov decision process (MDP) is a tuple M = (S, so,Act, P) ; where 
S is a finite set of states, so G S is an initial state, Act is a finite set of actions and 
P : S x Act x S —>• [0,1] is a transition probability function where for all s G S and a G Act, 
£ s , e S P(a, a, a') G {0,1}. 

For each state s we can define set Act(s) = {a G Act \ 3s' G S,P(s,a, s') > 0}. If 
a $L Act(s) then we say that action a cannot be played from state s. We call a state s 
absorbing if Va G Act(s) :P ( s , a , s ) = l . A path TT in M D P is defined as a non-empty 
(possibly infinite) alternating sequence of states and actions so«oSia iS2"2"- such that 
Vi G No : P(SJ, aj, Sj+i) > 0. Let Paths*(j(s) be a set of all infinite paths from state s 
and Paths^ n(,s) a set of all finite paths from state s in an M D P M. Then Paths M (s) = 
Paths*(j(s) U Pathsjf n(s). For a finite path TT = soaoSiai...sn, let last(7r) = sn denote the 
last state on the path. The Markov property allows us to compute the probability of an 
individual path 7r = soa.oS\a.i...sn using the probability matrix: F[ir] = n™T0

1P(sj, OJJ, SJ+I). 
Schedulers (also known as strategies, policies or adversaries) are used to resolve non-

determinism in MDPs. Simply put schedulers choose what action should be taken based on 
path history. In general, we can define a scheduler as: 

Definition 5 (Scheduler) A scheduler is a mapping a : Paths fin -> Distr(Act) that for 
a path 7T yields a probability distribution over actions with supp{a{it)) C Act(last(fr)), where 
PathsYin is set of all finite paths in M. 

Let TiM denote the set of all schedulers for M D P M. 
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Definition 6 (Memoryless Scheduler) Scheduler a is memoryless if for paths-fc, -ft' it 
holds that: last(ft) = last(-ft') =>• o-(fr) = a (-ft'). For memoryless schedulers we often use 
a(last(ft)) instead of a{ft). 

In most of the cases in this work, we will only consider deterministic schedulers, i.e. the 
mapping a chooses just one action instead of distribution over actions. Formally, a is 
deterministic iff \supp(a(iv))\ = 1 for all TT G Pa ths M . We can say that deterministic 
schedulers are therefore of type Pa th s M —>• Act. In general, randomized schedulers are more 
powerful, however, they are harder to interpret and are therefore impractical in most cases. 
What is really important in the analysis of M D P s is that for most basic specifications we 
need to only consider memoryless schedulers to find the minimum and maximum value 
schedulers [25]. This makes the set of considered schedulers finite. By applying a memoryless 
scheduler to M D P we get an 151-state induced M C (if we needed memory for the scheduler 
we would need to encode it in the induced model). Formally: 

Definition 7 (Induced M C ) Let M = (S,s0,Act,P) be an MDP. We say that the 
scheduler a € S M induces an MC Ma = (Pathsfin(s0),s0,Pa) where Pa(ir,ira(ir)s') = 
P(last(-K),a(-K),s'). 

Example 2 Let's consider MDP M = ({so> si> «2, ei, e2,g}, so> {init, I, r}, P) where the 
transition probability function P(SQ, init, s\) = ^,P(SQ, init, s2) = \, P(si, I, ei) = l ,P(si , 
r,g) = l,P(s2,r,e2) = l,P(s2,l,g) = l ,P(ei,r,si) = l ,P(e 2 ,Z ,s 2) = 1 and state g is 
absorbing. MDP M is shown in the form of a state transition graph in Figure 2.1b. Let 
a be a deterministic memoryless scheduler such that cr(si) = r and a(s2) = I. If we apply 
scheduler a to MDP M we obtain an induced Markov chain that is isomorphic to a four-
state MC (shown in Figure 2.1a) D = ({SQ, s\, s2, g}, SQ, P) where P(SQ) = [s\ i-> \,s2 

\),P{s1) = [g^l),P{s2) = [g^l),P{g) = [g^l). 

(a) (b) 

Figure 2.1: (a) contains a graph representation of M C with 4 states. State G is an absorbing 
state (transition probability omitted for clarity), (b) showcases graph representation of 
M D P with 6 states and 3 actions. M C depicted in (a) is isomorphic with an induced M C 
obtained by applying a scheduler a, cr(si) = r and a(s2) = I, to the M D P depicted in (b). 

2.2 Partially-observable Markov Decision Processes 

Partially observable Markov decision processes (POMDPs) [24] emerged as a natural ex­
tension of MDPs and are currently widely researched. They help us model another level of 
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uncertainty in the form of observations. These observations restrict the information about 
the current state. Any two states with the same observation are indistinguishable from each 
other and we need to remember the history of visited observations to make good choices. 

Definition 8 (POMDP) Partially observable MDP (POMDP) is a tuple M = ( M , Z, O), 
where M = (S, so, Act,P) is the underlying MDP, Z is a finite set of observations and 
O : S —> Z is an observation function1. 

We can extend the observation function to work on paths. Let TT = so«oSia iS2"2" - be a path 
in a P O M D P 0'(TT) = 0(so)aoO(si)aiO(s2)ct,2--- in the rest of the paper we will write 0(ir) 
to represent 0'(TT). TWO paths 7TI,7T2 with 0(TTI) = 0 (^2) are called observation-equivalent 
and are indistinguishable from the decision-making perspective. 

W.l.o.g., we assume that all states with the same observation have the same set of 
enabled actions. Formally, Vs,s' G S : O(s) = O(s') Act(s) = Act(s'). This means 
that if we consider state s with observation z we can write Act(z) = Act(s). 

Schedulers again help us to resolve POMDPs , however, finding the optimal scheduler even 
for simple specifications without a discounting factor or a finite step bound is undecidable in 
general. This comes from the fact that the optimal scheduler may require infinite memory. 
In contrast with MDPs, in P O M D P s we have to consider a special case of schedulers called 
observation-based schedulers: 

Definition 9 (Observation-based Scheduler) Scheduler a is observation-based if for 
paths it, TT' it holds that: 0(TT) = 0(it') o-(fr) = O-(TT') 

Observation-based schedulers make a decision based on the history of observations instead 
of states as is the case in MDPs. Let denote the set of all observation-based schedulers 
for a P O M D P M. If we take a scheduler a G and apply it to P O M D P M we induce 
an M C Aia in a similar fashion as in MDPs . 

Example 3 Let's consider a POMDP M. = ( M , {in, mid, left, right, goal}, O) where M 
is an MDP from Example 2 and the observation function is defined in the following way 
O = {so i->- in, s\ i->- mid, S2 mid,e\ i-> left,e2 right, g i-> goal}. The graph 
representation for this POMDP is shown in Figure 2.2a. The graph representation is similar 
to the MDP graph representation with the exception that we colour states in the graph to 
signify what is the observation of each state. In Figure 2.2a we assigned the colours in the 
following way in i-> grey, mid 1—>• green, left i-> yellow, right i-> purple and goal i-> white. 

2.3 Specification 

In this work, we consider indefinite-horizon reachability or expected total reward properties. 
Formally, let's consider M C D = (S,so,P) and let T C S be a set of target states. 
IP15 [s \= ()T] denotes the probability of reaching T from state s £ S. If we use FD [QT] 
we mean FD [SQ \= O T ] , i.e. the probability of reaching T from the initial state and we 
omit the superscript if the M C is clear from the context. Now assume P O M D P A4 with 
underlying M D P M = (S, Act, P, so) and a set T C S of absorbing target states. W.l.o.g. 
we assume that there is a special observation zT G Z assigned to each of the target states, 

1We can encode more general observation functions using this formalism 
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Figure 2.2: (a) contains an example of a graph representation of a P O M D P . The underlying 
M D P is taken from Figure 2.1b and is extended with 5 observations (represented by 5 
colours), (b) contains a simple 2-state F S C . Each transition is representing a triple prior 
observation, chosen action and posterior observation. Transitions that are not feasible 
for the P O M D P from (a) were omitted. This showcases the fact that the general F S C as 
defined in Section 2.4 is not practical in many cases. The FSC from (b) represents the best 
observation-based strategy if we want to minimize the number of steps it takes to reach 
state G in P O M D P from (a). 

i.e. Vs £ S : s £ T O(s) = zT. The maximal reachability probability of T from 
state s e S in M is F^ax [s f= OT] := sup^^F^ [s \= OT]. The minimal reachability 
probability I P ^ n [s \= OT] is defined analogously. These specifications are used for long-term 
planning and formal verification. 

Some methods for P O M D P analysis consider infinite-horizon specifications. These 
specifications still consider an unbounded number of decisions, however, they introduce a 
discount factor 7 between 0 and 1. This discount factor means that actions in the present 
are more significant than the actions considered in the future. The closer the discount factor 
gets to 1, the more we need to consider future decisions. Another possibility is to only 
consider bounded reachability or rewards. This means that you only analyse the model 
with respect to some number of bounded actions. These specifications are also known as 
finite-horizon specifications. 

2.4 Finite-state Controllers 

Finite-state controllers [2] are mealy automata that encode schedulers in a compact way. 
They also have the advantage of being easy to use and verify. 

Definition 10 (FSC) Finite-state controller (FSC) for POMDP M is a tuple F = 
(N, no, 7,5), where N is a finite set of memory nodes, no £ N is the initial memory 
node, 7 : J V x Z 4 Act is the action mapping function and 5: NxZxZ^-Nis the 
memory update function. 

FSCs represent observation-based schedulers for P O M D P s and therefore can be used to 
induce M C . We call the states of F S C memory nodes (or just nodes) to distinguish them 
from P O M D P states. The action mapping function selects the actions based on the current 
node of the F S C and the current observation, while the memory update function looks 
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at the current node, current observation and the next observation seen after playing the 
action chosen by the action mapping function. So for example for P O M D P in state s with 
observation z = O(s) an agent following the strategy defined by F S C F executes action 
a = 7(n, z) associated with the current memory node of the F S C and the current (prior) 
observation z. The P O M D P state is updated to s' with P(s, a, s') > 0 and based on the 
next (posterior) observation z' = O(s'), the FSC updates its memory node to n' = 5(n, z, z'). 
In this work, we only consider deterministic FSCs, however, it is possible to define FSCs 
whose action mapping function returns a distribution over actions and the memory update 
function a distribution over memory nodes in general. For \N\ = k we call an FSC a fc-FSC. 
If k = 1, the FSC encodes a memoryless policy. The induced M C for FSC F and P O M D P 
M is MF = (S x N, (s0, n 0 ) , P F ) where for all (s, n), (a', n') G S x N we define 

PF((s, n), (s', n')) = [n' = 5(n, O(s), O(s'))} • P(s, 7 ( n , 0(s)),s') 

Example 4 Let's consider POMDP M. from Example 3. Let FSC F = ({no, n{\, no,7,6), 
where 7 = {(no, in) i-> init, (no,mid) i-> I, (no,left) i-> r,(n\,mid) i-> r} and 7 = 
{(no, in, mid) i-> no, (no, mid, left) i-> no, (no, mid, goal) i-> no, (no, left, mid) i-> n i , ( n i , 
mid, goal) ^ no}. T/ie state diagram for this FSC is shown in Figure 2.2b. 

Definition 11 (Family of FSCs) 4 /amity of k-FSCs for POMDP M is a tuple = 
(N, no, K), where N is the set of k nodes, no E N is the initial node and K = NxZxZis 
a finite set of parameters each with domain VIUJZJZI\ C ^4ct x AT . 

We can obtain an FSC from a family by choosing the value for each parameter. Families of 
FSCs contain 0((\Act\ • \N\)^N\-\Z^) many FSCs. A P O M D P and a family of FSCs induce 
a family of Markov chains. We use J-M to denote the family of all FSCs for P O M D P ftA. 

FSCs with k nodes provide the same amount of memory for every observation, however, 
in many practical problems memory is often required only for some of the observations. 
Therefore we can consider reduced FSCs given by a memory model a : Z —>• N , where fi(z) 
determines the number of memory nodes used in the observation z. This way the number 
of nodes in the FSC can remain the same, but the parameter domains can be significantly 
reduced. The family of reduced FSCs induces a smaller design space. The definition 10 
introduces a general form of an F S C also called posterior-aware F S C . In many cases, we 
only need to consider a subset of FSCs called posterior-unaware FSCs. We say an F S C 
with update function 5 is posterior-unaware if the posterior observations are not taken into 
consideration when updating the memory, i.e. 5(n, z, z') = 5(n, z, z") for all n G N and for 
all z, z', z" G Z. This restriction reduces the number of FSCs in the families we consider 
(upper bound on the number of FSCs C((|^4ct| • l A ? } ) ^ ! ' ! 2 ! ) ) ) . The advantage of the general 
FSCs is that they usually need fewer memory nodes to encode the same strategy. We will 
get to a proper definition of the so-called /x-FSC and belief F S C and overview posterior 
aware and unaware FSCs in the Section 5.3. 

For MDPs with infinite state space and general POMDPs , an FSC realising the maximal 
(minimal) reachability probability generally does not exist. Let's take F S C F G FM 

with memory nodes N. Let F m F [(s,n) \= 0T] := F m F [(s,n) \= 0(T x N)] denote the 
probability of reaching target states T from state (s, n) G SxN. And similarly, FM [0T] := 
F M F [0(T x N)] denotes the probability of reaching target states T in the M C A4F induced 
by F on M. 
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2.5 Problem Statement 

We focus on the indefinite-horizon specifications in this work. We, therefore, focus on 
long-term goals. For these specifications, finding the optimal FSC is an undecidable problem. 
The classical synthesis problem [23] for P O M D P s asks: given a P O M D P M, set of target 
states T and a threshold A, find an FSC F for which it holds that FM [OT] > A if such an 
FSC exists. We focus on a more practical take and aim to optimise the value P - A / ( F [<)T] in 
an anytime fashion: we try to find FSCs with high value and the faster we are able to do it, 
the better. 

Other variants of the synthesis problem e.g. maximising synthesis problem for the 
expected total reward and minimisation variants are defined analogously. For simplicity, 
in this work, we will assume that we want to always maximise the value. Of course, the 
proposed method works for the minimisation problem as well, which is showcased in the 
chapter with experimental evaluation. 

The value of the F S C F is the main objective of our problem statement, however, in 
addition to that, we also look at the size of the FSC as a secondary objective and discuss it 
in detail in later chapters. 
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Chapter 3 

State-of-the-art Methods 

In this chapter, we will review the state-of-the-art methods for the analysis of P O M D P s . 
This work focuses on the offline synthesis problem for indefinite-horizon specifications as was 
highlighted in the previous chapter. For this reason, we will mainly focus on introducing 
belief-based methods with cut-off approximations and the inductive synthesis of FSCs. 
Belief-based methods are a class of methods that operate on probability distributions over 
the state space. These distributions are also known as beliefs. Inductive synthesis aims 
to find compact FSCs representing good policies. It constructs families of FSCs and tries 
to find the best F S C in the given family using the results it computed up to that point. 
We also introduce the point-based methods which perform well when a discount factor is 
introduced, but struggle in long-term planning. At the end of the chapter, we also review 
the simulation-based approach and the reinforcement learning methods. These methods are 
strong when we work with prohibitively large or unknown P O M D P s and they are typically 
used in online planning, however, they tend to be data-intensive, the efficiency of sampling 
limits their performance and their results are difficult to interpret and verify compared to 
the FSCs we consider in the most of this work. 

3.1 Belief-based Methods 

This section introduces the methods for P O M D P analysis that build on the notion of a 
belief. We introduce this very important notion and all the needed theories using it. After 
that, we introduce more concepts that are used in state-of-the-art belief-based methods. 

3.1.1 Beliefs and Belief M D P 

One way of analysing P O M D P s is to construct a so-called (fully observable) belief M D P 
and perform the analysis on this M D P [28]. The state space of this M D P consists of beliefs: 
probability distributions over states of the P O M D P M having the same observation. The 
notion of belief is therefore really important and it lets us to describe the uncertainty (or 
partial observability) of the current state. Let Sz := {s G S \ O(s) = z] denote the set of all 
states in P O M D P A4 having the same observation z £ Z. Let the set of all possible beliefs 
be BM := \JzeZ Distr(Sz). Notice that the set of all possible beliefs is uncountable. For 
any belief b G BM by 0(b) G Z we denote the unique observation 0(s) of any s G supp(b). 
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Let P(s, a, z) = X ^ ' e S ^ ^ ' ) = z\ ' *̂(s> a's') denote1 the probability to move to a state 
with observation z from state s using action a and let P(6, a, z) = X^se5 b(s) • P(s, a, z) 
denote the probability to observe z after taking action a in belief b. We now can define the 
belief obtained by taking action a from belief b conditioned on observing z if P(6, a, z) > 0 

for all s' G Sz>. If P(6, a, z) = 0 the next belief is undefined. 

Definition 12 (Belief M D P ) Tfte 6eKe/ MDP of POMDP M = (M, Z, O) is the MDP 
M.B = {BMI bo, Act, PB), where BM are the beliefs representing the states, bo = {so i-> 1} 
is the initial belief and transition function PB: 

What is really important about belief M D P s is the fact that they accurately capture 
the behaviour in their corresponding P O M D P . By analysing belief M D P we are able to get 
the scheduler for the P O M D P directly. The analysis can be done using the standard M D P 
model checking techniques. 

The problem that arises in the construction of belief MDPs is the fact that their reachable 
state space might be infinite. And this problem shows itself even for very small P O M D P s 
as will be shown in later chapters. If this is the case then we have to only construct some 
finite part of the belief M D P and approximate the rest using appropriate approximation 
techniques. 

Example 5 Let's consider POMDP M from Example 3. For this POMDP we can con­
struct a finite belief MDP M.B = {{bo, b\, 62, &3, &4, 65, bg}, bo, {init, I, r}, PB) where PB = 
{(b0,init,bi) H-> l ,(6i,/,62) !-> \,{b\,l,bg) i-> l , ( 6 i , r , 6 3 ) i-> l , ( 6 i , r , 6 f l ) i-> 1 , (62,^64) i-> 

1,(63,^,65) H-> 1,(64,^,62) i-> l , ( 6 4 , r , 6 f l ) H-> l , ( 6 5 , r , 6 3 ) i-> l,(b5,l,bg) i-> 1 } . The beliefs 
encode following distributions over states: bo = [so 1 ] , 61 = [si >->• 5, «2 *->• 5], 62 = [ei 
1]> 3̂ = [e2 ^ 1 ] , 64 = [si i->- 1 ] , 65 = [s2 i->- 1 ] , bg = [g i->- 1 ] . This belief MDP is shown in the 
form of a state transition graph in Figure 3.1. 

3.1.2 Belief Exploration 

We start the exploration of the belief space from the initial belief 60 = {-so l—>• !}• Since all 
states in a given belief have the same observation we can get the set of actions for belief b 
as Act(6) = Act(s) for any s G supp(b). In the exploration, we want to expand all of the 
actions of the current belief and get a set of new beliefs which are put in a queue. Each 
time a belief is picked from the queue, there is a decision on whether it should be expanded 
or left unexplored. Assuming A4B is unfolded up to some depth, let £ C BM denote the set 
of explored beliefs and let U C BM\£ denote the frontier. Frontier is the set of unexplored 
beliefs reachable from £ in one step. The idea of explored belief space £ and of the frontier 
IA is shown in Figure 3.2a. If we decide to expand a state from the frontier further we 
compute the set of new beliefs for each action using the formula presented in Section 3 . 1 . 1 . 

1Iverson bracket notation: [x] = 1 if x is true and 0 otherwise 

as: 

(6 J a, z)(s') 
[Q(s')=z]-j:sesKs)-1P(s,a,s' 

P(6, a, z) 
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Figure 3 .1: Belief M D P constructed for P O M D P from Figure 2.2a. For every belief there 
is a corresponding distribution over original states. This belief M D P is complete, i.e. the 
reachable belief space for the considered P O M D P is finite. The colours are used only to help 
us map the beliefs to the observations of the original P O M D P but there are no observations 
in the belief M D P itself. 

Note that if we are expanding belief b on action a obtaining a set of new beliefs Brj^" then 
for each observation z the sum X^eS n e™ \Q(P) = z] < 1 which means that no two beliefs 
from the set BJff" have the same observation. To construct belief M D P we add transitions 
from belief b on action a to the new beliefs with their corresponding computed probabilities. 
In the set of new beliefs, we might get a belief b' which we explored before meaning that 
we add a transition from b to already existing b' in the belief M D P . If we choose to not 
expand a belief from the frontier then we have to approximate its value which is discussed 
in the next section. One way to decide what beliefs to explore is to set a depth limit or to 
have a heuristic which takes the gap between the fully observable lower bound and upper 
bound into consideration. We usually work with a combination of these, i.e. we set a size 
for the belief M D P but we want to focus on exploring paths that are important for the 
overall result. If there are no beliefs in the frontier, the whole reachable belief space has 
been explored so we have constructed a finite belief M D P and we can easily model check it 
without any approximations (an example of a finite belief M D P is shown in the Example 5). 

Approximating the values of unexplored beliefs is an essential part of the belief-based 
methods. There are a lot of models where finite exploration becomes ineffective after a 
number of beliefs were explored and the overall result therefore heavily depends on the 
approximations. Therefore, there is a lot of focus on coming up with good approximations. 

3.1.3 Cut-off Approximation of Unexplored Belief Space 

The main idea behind belief cut-offs is that we want to assume a target state is reached 
immediately from the frontier (or cut-off) state while achieving sub-optimal value. This 
idea can be used for computing both over-approximations described in [6] and under-
approximations described in [7]. In this work, we will focus on under-approximations as we 
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(a) (b) 

Figure 3.2: (a) showcases the explored part of the belief space £ from initial belief 60 and the 
frontier of the belief M D P IA reachable in one step from £. (b) Application of value function 
V_ to compute cut-off values for each belief b G U and obtain a belief M D P abstraction M®. 
The states fry and b± are newly added sink states, where the former is added to the set of 
target states. Note that beliefs b G U can have multiple actions but we omitted them for 
clarity. 

are interested in finding real usable controllers. Let's say our specification is to maximize 
the probability of reaching a target state. One simple way how to approximate cut-off states, 
in this case, is to make all of them absorbing and therefore there is no path to the target 
states from cut-off states. This gives us a proper under-approximation of the real value. Of 
course, we can do better than that by searching for strategies for the unexplored part of 
the belief space beyond the cut-off states. Applying cut-offs directly manipulates the belief 
M D P and yields a finite model. 

Let V : BM ->• [0,1] be a function where V6 G BM • V(b) < V*(b). We call V and under-
approximative value function and V_(b) the cut-off value of belief b. The under-approximative 
function can be defined for maximizing/minimizing rewards as well. By applying this function 
to all unexplored beliefs from the frontier we not only under-approximate their values but 
we also under-approximate values of all the explored beliefs in the belief MDP. With this we 
obtain a finite approximation A 4 B . Figure 3.2b shows an example of applying function V 
to state in the frontier. The question of finding an adequate under-approximative function 
V_ is crucial for the cut-off approach. One simple approach was explained in the previous 
paragraph but if we want a better approximation a more sophisticated approach is needed. 
One such approach is to assign some arbitrary fixed observation policy a G £ ^ s - Let 
Ua : S ->• [0,1] such that for all s G S we have Ua(s) = FMtT [s \= 0T}. Then we can define 
the function <Ua : BM -> [0,1] as <Ua(b) := E s e s u p p ( b ) &(*) " U < 7 ( s ) -

Lemma 1 [7] The function 1la is an under-approximative value function, i.e. for all 
b G BM: 

U%b):= Hs)-U°(s)<V*(b). 
sdsupp(b) 

By Lemma 1 we know that finding an adequate under-approximative value function reduces 
to finding „good" observation-based controllers for M.. We will use this fact to enhance the 

15 



belief-based algorithm proposed in [7], where function 11a is given by heuristic which uses 
values obtained from the fully observable underlying M D P . 

Belief clipping 

A n alternative method for approximating unexplored beliefs called belief clipping was 
introduced in [7], however, in the experiments we showcase that this method brings practical 
benefits only for a very limited selection of models. Therefore we will not explain this 
method in detail in this work and only give the high-level ideas behind it. The intuition 
behind belief clipping is that we shift some of the probability mass of a belief b in order to 
transform 6 to a new belief b. We then want to connect b with 6 in a way that the accuracy 
of approximation of the value V*(b) depends only on the approximation of V*(b) and a 
so-called clipping value which represents a notion of distance between beliefs 6 and b. We 
can then explore the successors of b to obtain good approximations for both 6 and 6. 

3.1.4 Point-based Approximations 

Point-based approximations work by discretizing the belief space into a set of representative 
belief points. These points are used to approximate the optimal value function and policy. 
The algorithm iteratively updates the value function and policy at each point until conver­
gence. The belief points are chosen based on their ability to improve the approximation 
of the value function and policy. This approach reduces the computational complexity 
of solving P O M D P s by focusing on a smaller set of belief points rather than the entire 
belief space. The most notable point-based algorithm is S A R S O P [21]. S A R S O P uses a 
tree-based data structure to efficiently search the near-optimal belief space and select the 
most promising actions. 

3.2 Inductive Synthesis of FSCs 

In this section, we recap a recent inductive approach [4] for finding FSCs for P O M D P s that 
builds on inductive methods for synthesis of probabilistic programs [3] First, we showcase 
the overall synthesis framework for POMDPs , and then we introduce abstraction refinement 
as one of the main methods for the exploration of the family of FSCs, lastly, we discuss the 
importance of memory injection in inductive synthesis. 

3.2.1 Synthesis Framework 

The inductive synthesis framework works in two stages, the inner stage and the outer stage. 
The overall framework is showcased in Figure 3.3. Let's first discuss the outer stage. The 
main part of the outer stage is called the learner. Learner constructs a family of FSCs also 
called the design space. From this design space, a part called teacher provides the best 
FSC and potentially some additional information about the result. The learner receives the 
candidate F S C and either accepts it as the final result or adapts the design space and the 
loop continues. Naturally, the teacher will provide results faster when the design space is 
small, however, when constructing small design spaces we have to be careful not to prune 
potentially good FSCs. So the main objective of the outer loop is to start with a small 
design space and strategically adapt it based on the results from the teacher. 

The internals of the Teacher is called the inner stage of the synthesis. Its task is to 
determine the best F S C within the given design space. A naive implementation of the 
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Figure 3.3: Nested inductive synthesis framework with an abstraction oracle. The framework 
takes a P O M D P and a specification and finds an F S C that satisfies the specification. The 
learner is responsible for creating a design space of candidate FSCs. The teacher finds the 
best FSC from the suggested family of FSCs. This Figure is taken from [4]. 

teacher enumerates all FSCs in the design space. The inductive synthesis we consider in 
this work realizes the teacher through another inductive synthesis loop. It uses abstraction 
refinement (see Section 3.2.2) to search the design space effectively. Both learning stages 
have access to an oracle that over-approximates the design space. This larger abstract design 
space can be analysed efficiently as the underlying problem. This resembles the analysis 
of fully observable schedulers. Therefore, the oracle yields a constraint on what the best 
F S C from the original design space can achieve. This information is essential for guiding 
the search in both stages. 

We assume an inductive synthesis for finding deterministic posterior-unaware FSCs 
in this work. Deterministic FSCs are beneficial in terms of the reproducibility of their 
behaviour, which makes working with them easier and more practical. Moreover, finding 
randomised FSCs is a more complex problem 2. 

3.2.2 Abstraction Refinement 

Consider a finite family of FSCs Tyr of fe-FSCs with memory nodes N = {no, n i , n ^ - i } 
and the associated family := {A4F \ F G Fj^1} of induced MCs . The states of each 
M C are tuples (s, n) £ S x N. We can create an M D P abstraction of the family Ai^k4 of 
MCs to help us reason about the whole family. Informally, the M D P abstraction of the family 
MT^ is an M D P MDP{T^) with the set S x N of states such that, if some M C M € MT^ 
executes action a 3 in state (s,n) € S x N, then this action is also enabled in the state 
(a,n) of MDP{T^) with the same effect. This means that MDP{F^) over-approximates 
the behaviour of all the M C s in the family M^^4 (all FSCs in the family J-j^)- It is an 
over-approximation as in every step an arbitrary family member is simulated and it may 
switch between steps. M D P abstraction formally: 

Definition 13 ( M D P abstraction) MDP abstraction for POMDP M and family = 
{F1,F2,...Fm} ofk-FSCs is the MDP MDP{T^) := (S x N, (s0, n 0 ) , {1, 2 , m } , P ^ ) 
where 

P^M((s,n),i) = PFL 

Even though this M D P has m actions, practically, many actions may coincide. Let's 
observe that this abstract M D P definition represents a proper abstraction: 

2Finding randomised FSCs is ETR-complete, meanwhile finding deterministic FSCs is NP-complete [20]. 
3 In our formal definition of a M C we do not include actions, however, you can think of M C as an MDP 

where each state has one action enabled. 
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Lemma 2 [10] For all F G , P^fn

 (^FE ] [OT] < ¥ m F [OT] < W%£}Fk ] [OT]. 

By this lemma, we know that the analysis of the abstraction M D P gives us bounds on the 
best F S C from the family J~^- This fact is an important part of abstraction refinement. 
Because the abstraction M D P over-approximates the behaviour of FSCs in family J~t^, 
not every scheduler a induces an F S C . We say that a scheduler a is consistent if 0(s) = 
O(s') =4> cr((s, n)) = cr((s', n)) for all s,s' G S and n G N. The set of consistent schedulers 
in MDPiJF^) corresponds to the family T^r. 

The main idea behind abstraction refinement is that if the best policy in the abstraction 
M D P is worse than the given bound then all the FSCs in the original family violate the 
bound. Assume we want to maximise the constraint P>A[0T] for some target set T. Let 
the scheduler a* be the optimal scheduler for the given constraint in our M D P MDP{F) 
and let its achieved probability be ¥ a . If PC T < A then it holds that all F G J- violate the 
constraint and the whole family can be pruned. Otherwise, if a* is a consistent scheduler 
then it represents a valid F S C satisfying our constraint which is what we wanted to find. 
The last possibility is that the analysis of MDP{F) is inconclusive and the family T needs 
to be refined. Additionally, this analysis also provides bounds that are used in both the 
inner and the outer synthesis loops. 

The refinement strategy drives the exploration of family T(y. It decomposes a given 
family into smaller subfamilies by splitting the domain of selected parameters from K. The 
key idea is to examine the inconsistencies of the scheduler a*. The refinement strategy 
estimates the significance of each inconsistent parameter p G K for a* by examining the 
impact of changing p and this impact is weighted by the expected occurrence frequency 
of the decisions corresponding to p. The most significant parameter p is selected. Assume 
(inconsistent) p with domain Vp = {vi, v2, vn} and scheduler a* selected options Vi 
and Vj. The refinement partitions Vp into three subdomains Vp = {vi}, Vp

2 = {VJ} and 
Vp

s = Vp\{vi,Vj} corresponding to three new subfamilies. This removes the inconsistency 
and the process of analysing families continues until the best FSC from the original family 
is found. 

3.2.3 Memory Injection Strategy 

Memory injection strategy dictates how the outer stage of the synthesis constructs the design 
space. The design space represents a subset of FSCs and is passed to the teacher for analysis. 
This construction assumes access to the bounds of the abstraction presented in the previous 
section as is outlined in the scheme from Figure 3.3. The learner processes this information 
and derives a new design space. It does this by adding memory. B y adding memory we 
mean considering FSCs with more states, i.e. the FSCs can store more information. This 
helps FSCs to represent better strategies, however, it (dramatically) increases the size of the 
design space which is one of the big challenges in inductive synthesis. To combat this, the 
inductive synthesis we consider in this work allows increasing the memory locally and keeps 
the growth of the design space somewhat manageable. Note that increasing the memory 
might introduce symmetries in the design space as is highlighted in [4] and we can introduce 
symmetry reduction techniques to make the design spaces smaller, however, this topic will 
not be further discussed in this work as we will introduce our own memory injection strategy 
in the later chapters where the symmetry reduction did not prove to be helpful. 

Let's first consider a memory injection strategy where we want to analyse families 
J7fl,J7fl,...J7£4 in this order. This means we first consider 1-state FSCs representing 
memoryless strategies, then we consider all 2-state FSCs and so on. This memory injection 
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strategy is very simple, however, from a practical point of view it's still useful as we cannot 
be sure what number of states we should start with and the analysis of small families like 
J-^ is cheaper and we will use the bounds learned in each stage to make the next ones 
faster. The size of the design space grows exponentially with respect to the number of 
memory nodes so exploring families with big k usually is not even feasible. Of course, it 
holds that C C ... C so by exploring bigger families we also explore the ones 
with smaller k. These two facts need to be considered when coming up with a memory 
injection strategy for inductive synthesis. 

3.3 Simulation-based and Reinforcement Learning Methods 

We give brief summaries for both simulation-based and reinforcement learning methods. 
They are used for planning in complex domains [26]. 

3.3.1 Simulation-based methods 

Simulation-based methods can be used to solve P O M D P s by simulating the environment 
and the agent's interactions with it. Specifically, the agent's policy is evaluated by running 
simulation runs of the P O M D P and computing the expected reward obtained under that 
policy. One common simulation-based method for solving P O M D P s is Monte Carlo Tree 
Search (MOTS) [27]. MOTS builds a search tree that represents possible sequences of actions 
and observations, and the expected rewards associated with each sequence. M C T S uses a 
simulation-based approach to estimate the value of each node in the tree and then selects 
actions to maximize the expected reward. Overall, simulation-based methods are useful 
for solving P O M D P s because they allow the agent to evaluate policies without having to 
explicitly compute the probability distributions over states and observations. Instead, the 
agent can use simulations to estimate the expected reward associated with different actions 
and observations and then select the action that maximizes the expected reward. 

3.3.2 Reinforcement Learning 

Reinforcement learning (RL) can be used to solve P O M D P s by iteratively interacting with 
the environment, receiving rewards based on its actions, and updating its policy based 
on the received rewards and observations. Approaches based on R L provide very strong 
scalability. One common R L algorithm for solving P O M D P s is deep Q-learning [14]. In 
deep Q-learning, the agent maintains Q-values, which estimate the expected reward of 
taking a particular action in a given state. The Q-values are updated based on the observed 
rewards and transitions between states. Learning the Q-values for P O M D P s this way is 
intractable because a Q-value would be needed for each possible belief or for arbitrary long 
observation-based histories. We can use a function approximator, such as a neural network, 
to approximate the Q-values. The Q-values can be parameterized by either the belief and 
the action or the observation-based history and the action. Sometimes R L uses M C T S 
(or other simulations) to estimate the expected rewards that can be used for the learning 
process. The overall goal of RL-based methods in P O M D P s is to learn functions that can 
be used to choose actions for the current belief. For an overview of recent advances in the 
R L approach for P O M D P s see [29]. 
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Chapter 4 

Limitations of State-of-the-art 

In this chapter, we present the limitations of the state-of-the-art methods introduced in the 
previous chapter. Firstly, we look at point-based methods, simulation-based methods and 
reinforcement learning methods to explain why we do not consider them in the remainder of 
this work from the perspective of our problem statement. That is the perspective of offline 
synthesis in P O M D P s with indefinite-horizon specifications. We also include a discussion 
on why FSCs are a go-to representation for P O M D P schedulers. In the second part of this 
chapter, we present the limitations of belief-based methods with cut-off approximations and 
the inductive synthesis of FSCs on two small P O M D P s . These examples show that even 
current state-of-the-art methods struggle with seemingly simple problems. This motivates 
the improvements we propose in the next chapter as we seek ways to improve both belief-
based methods and inductive synthesis. We also introduce a synthetic P O M D P called 
Lanes-I- which showcases the struggles of both of the methods combined and serves as a 
motivation for closed-loop integration. 

4.1 Limitat ion of Alternative Approaches 

We focus on belief-based methods and inductive synthesis in this work. In this section, 
we give reasons as to why other methods are not suitable when we consider our problem 
statement. We also explain the importance of FSCs as a means of representing schedulers 
compared to other representations. 

Point-based methods 

Point-based methods allow us to efficiently approximate the value function. However, they 
have two main drawbacks. Firstly, they often require a discount factor to work and have a 
guarantee of fast convergence. We do not work with specifications that allow discounting in 
this work. Secondly, they represent the computed policy as a set of a-vectors. This set is 
not convenient to use. To compute what action to play, we need to remember our current 
belief and perform a number of vector multiplications to find out which a-vector produces 
the best value. Once we find the best a-vector for the current belief we can play the action 
assigned to this vector and perform a belief update. A n d for every new belief we have to 
repeat this process. You can compare this process to using FSCs. If we encode the functions 
of an FSC and store them in a hash table for example we can obtain what action to play in 
constant time for every observation-based history. 
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Simulation-based methods 

Simulations allow us to obtain a lot of information about the model without the need to 
unfold the possibly complex belief space. This provides an advantage for the online planning 
problem. However, in this work, we focus on the offline synthesis problem. This means 
that a lot of simulations are required to obtain a good picture of what the policy should 
look like. This limits the effectiveness of simulations which are typically good for obtaining 
approximations quickly. Another problem is that simulations themselves do not provide 
a clear way how to obtain a full policy. That's why they are usually used in tandem with 
other methods. 

Reinforcement learning 

R L and other machine learning approaches proved useful for many practical P O M D P 
problems. They tend to learn a neural network that is used to obtain what actions to choose, 
effectively it encodes the policy. They are able to solve big problems. Their drawback is 
that they are very intensive on computational resources and the computation itself is not 
easy to verify. The policy represented by a neural network is not easy to understand and 
verify. Compare that to the policies represented as FSCs, where each state clearly defines 
the considered actions and memory updates. This can be crucial when we want to use 
these policies in safety-critical systems. We believe that our focus on improving the formal 
approach to the synthesis problem will prove beneficial for such applications. Additionally, 
the produced neural networks can be pretty large. 

4.2 Limits of Belief-based Methods and Inductive Synthesis 

We will first introduce a simple P O M D P example where belief exploration struggles, then we 
give a small example where inductive synthesis struggles and we indicate how both of these 
approaches can help each other to overcome these struggles. By the combination of these 
simple POMDPs , we get a P O M D P that is difficult to solve for either of the two approaches 
but a combined symbiotic approach can efficiently tackle this problem. We showcase the 
full potential of this symbiosis on a new synthetic P O M D P called Lanes+. 

Challenging P O M D P for belief exploration approach 

Consider P O M D P from Figure 4.1a. Let's call it Ma. The objective is to minimise the 
expected number of steps needed to reach target state Ta. There are two optimal policies for 
this specification in model Ma. One policy always takes action a, the other policy always 
takes action f3. Both policies yield 4 expected steps. A n FSC realising one of these policies 
can be found using the policy search approach under Is. 

Let's analyse the structure of the belief M D P A4B closer. The initial belief is {S i—>• 1}. 
B y taking action a (the case for taking action j3 is symmetric), 'yellow' observation is 
observed and the belief is updated to {L i-> | , R i-> | } . Detailed inspection shows that 
the set of reachable beliefs is infinite rendering M.® to be infinite. The belief exploration 
can only construct a finite approximation of the belief space M.® by exploring M.® up to 
some depth and applying cut-offs at the frontier states. We can then analyse this finite 
approximation using off-the-shelf tools yielding the minimising policy erg assigning to each 
belief state the optimal action. 
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(a) (b) 

Figure 4.1: (a) and (b) contain two example P O M D P s . Colours encode observations. 
Unlabelled transitions have probability 1. Omitted actions (e.g. j,S in state B2) execute a 
self-loop, (a) contains 4 states, 3 observations and 5 actions. This model is used to showcase 
one of the main weaknesses of belief exploration, (b) contains 9 states, 5 observations and 
20 actions. This model's structure causes issues for inductive policy search. 

Figure 4.2: Markov chain (MC) induced by the minimising policy erg in the finite approxi­
mation of the P O M D P from Figure 4.1a. In the rightmost state, policy F is used to 
compute the cut-off value represented by p. 

A simple way to compute cut-off values is to use an arbitrary controller F and compute 
the expected number of steps needed under F. This operation is cheap if F is compact. 
Figure 4.2 shows a M C induced by as in M*. The belief {L |, R §} is cut off using 
controller F. If we consider the belief exploration implemented in S T O R M [12], unfolding 
1000 states and using heuristics to obtain controller F, we obtain a sub-optimal controller 
Fg that reaches target in « 4.1 steps. If we instead used better F (not necessarily optimal) 
computed by some efficient policy search implementation we would only need to explore 
a few states to beat Fjg. This might not seem like a big issue for the belief exploration, 
however, we can scale the model from Figure 4.1a to contain 100 intermediate (yellow) 
states and the belief space for this new model becomes much more complicated and the 
need for good approximation grows. If we use S T O R M to explore 1 million belief states for 
this new model and apply its heuristic controllers as cut-offs we obtain the value of over 
2100 steps meanwhile the policy search is able to find an F S C with the optimal value of 
98 steps almost instantly. Again we can use this F S C provided by policy search to help 
belief exploration construct a better finite approximation and also find the optimal strategy. 
Generally, structures similar to the one presented here can appear in practical models, and 
in some cases can render the belief exploration very inefficient. 
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Challenging P O M D P for policy search approach 

Consider P O M D P A4f, from Figure 4.1b. The objective is to minimise the expected number 
of steps to Tf,. The reachable belief space for this model is finite, it consists of 9 states to 
be more precise, and therefore solving this P O M D P is trivial for the methods using belief 
exploration. The optimal controller erg first picks action 7, on observing 'yellow' observation 
it plays j5 twice, otherwise it always picks a. A n F S C with 3 memory nodes realises this 
strategy. The inductive policy search implemented in P A Y N T [5] can find the optimal 
policy as well, however, it has to consult about 20 billion candidate policies. This requires 
545 model-checking queries; the optimal FSC is found after 105 queries and the remaining 
queries prove that no better 3-state FSC exists. 

We can use reference policies to guide the policy search, the policy search we considered 
uses the fully observable M D P policy which in this case picks (senseless) action 5 in B\ first. 
This action is not good in A4b, even though it's the optimal action in the underlying MDP, 
as we will not be able to avoid reaching fail state F from the 'purple' states as we cannot 
tell in which state we are exactly. Using policy erg obtained by the belief-based approach 
instead, action 5 is not considered. As erg picks 3 different actions in states with 'blue' 
observation, we know that an FSC mimicking this strategy will need at least three memory 
nodes. This means we can skip a family of 2-FSCs. Using these facts in the inductive policy 
search we can reduce the total number of required model-checking queries by a factor of 
ten and we are able to find the optimal 3-state FSC after just 23 queries. This shows that 
considering better reference policies can lead to significant speedup. More importantly, it 
shows that considering (even non-optimal) P O M D P policies has benefits compared to the 
fully observable policies which are standardly used. 

4.2.1 The potential of symbiotic approach 

Using the models from Figure 4.1 we can construct a model where both belief exploration 
and inductive policy search struggle, by putting the two models sequentially one after 
another. These combinations, however, are not enough to show that a closed-loop symbiotic 
approach can be beneficial. For this, we introduce one more synthetic model called Lanes+ 
which will be used in the experimental evaluation as well. 

New P O M D P Lanes+ 

The structure of the Lanes+ model is illustrated in Figure 4.3a. It is a sequential composition 
of a Lanes P O M D P (see Figure 4.3b) repeated 100 times, followed by the P O M D P from 
Figure 4.1a extended to 100 states, followed by the P O M D P from Figure 4.1b. The core 
component - Lanes model - was designed with two main goals in mind: i) the optimal 
FSC Fx requires several memory nodes and ii) the model can be easily scaled up such that 
an exhaustive policy search is not feasible. When combining Lanes with P O M D P s from 
Figure 4.1, we obtain a model which is difficult for both standalone approaches as well 
as their one-way integrations and the two-way symbiotic integration is required to find a 
good controller. The optimal F S C for the Lanes+ model requires 8 memory nodes. The 
corresponding family Tj^ contains ~ 10 4 3 candidate controllers, which is unattainable for 
inductive search. 
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Figure 4.3: (a) Overall structure of the Lanes+ P O M D P . (b) The Lanes P O M D P . The 
P O M D P consists of three lanes and the objective is to cross the lanes from left to right with 
the minimum amount of actions. The lanes are cyclic meaning when the last state of a lane 
is reached the next state is the first state of that given lane. Playing actions in the slow 
lane gives you reward 5, moderate lane 3, and fast lane 1, so the faster you get to faster 
lanes the better. When performing the upgrading action (e.g. action a in the first state of 
the slow lane), the lane is upgraded with probability pu; with probability 1— pu the agent 
moves to the next state of the lane. 

Symbiotic approach on Lanes-)- model 

We consider minimisation of the expected reward for the model Lanes+ with a 15-minute 
timeout. The belief-based approach implemented in S T O R M yields the value 18870, because 
the intermediate extended model from Figure 4.1a makes the reachable belief space difficult 
to explore. The policy search method implemented in P A Y N T finds an FSC with 2 memory 
nodes achieving value 8223 and is unable to search the bigger families because of the state-
space explosion. This sub-optimal FSC significantly improves the belief M D P approximation 
and enables the implementation from S T O R M to find a controller with value 6471. The 
symbiotic synthesis loop finds the optimal FSC with the value 4805 after two full iterations 
of the algorithm discussed in later chapters. This shows the potential of a symbiosis between 
inductive synthesis and belief exploration. In the experimental evaluation, we confirm this 
potential on more practical models. 
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Chapter 5 

Integration of Inductive Synthesis 
and Belief-based Methods 

This chapter starts by introducing two main novel ideas: i) we improve the approximations 
of the unexplored belief space, a crucial part of the belief-based approach, by using FSCs 
at cut-off beliefs ii) we improve the inductive synthesis approach by considering reference 
P O M D P strategies obtained from other sources and using them to steer the search within 
the families of FSCs as well as creating more suitable families of FSCs. We then unify the 
theory of FSCs to include special cases of FSCs such as //-FSCs of belief FSCs. We also 
give formulas on how to compute the sizes of FSCs for different types. These formulas will 
be used to compare the sizes of solutions obtained in the experimental section. Lastly, we 
present the main innovation proposed in this work. We introduce a novel symbiotic policy 
synthesis algorithm called S A Y N T . This algorithm iteratively combines the inductive search 
of FSCs and belief exploration. We presented a need for such combination in the previous 
chapter and we will present the improvements this algorithm brings in Chapter 6. 

5.1 Using FSCs for Cut-off Values 

Before we introduce the main idea of using FSCs for computing cut-off values, we showcase 
how we can derive FSCs from the belief M D P s . This process is important for our work 
as we focus on synthesising compact policies that are easy to use. We look at two cases 
considering finite and infinite belief MDPs . 

Finite belief M D P s Let TB := {b e BM \ 0{b) = zT} denote the set of target beliefs. If 
the reachable state space is finite and we constructed the finite belief M D P A4B, we can use 
the standard model checking techniques to compute the memoryless policy erg : BM —>• Act 
that maximises F[b \= 0TB] for each b G BM. We can translate this deterministic, memoryless 
policy OB into the corresponding FSC Fg = (BM-, bo, 7, S) with action function 7(6, z) = erg (6) 
and update function 5(b, z, z') = (b | erg(6), z') for all z, z' G Z. 

Infinite or not fully explored belief M D P s In case the reachable belief space is 
infinite or too large so we cannot unfold it completely, a finite approximation AiB, based 
on techniques discussed in the previous chapters, is used instead. Let's have some set 
of explored beliefs £ and the frontier beliefs IA. To complete the finite abstraction we 
wil l assign a cut-off value V_(b) for each b G U. Ultimately, we define a finite M D P 
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M.B = (£ U U U {bj, b±}, bo, Act, Pg) with the transition function: Pg(6, a) :=Pg(6, a) for 
explored belief b G £ for all a G ̂ 4ct, and Pz?(6, a) := {6y |-> Z(&),&± 1 — F(6)} for 
frontier beliefs b EU and all a G ^4c£, where 6y a n d b± are fresh sink states, i.e. they are 
absorbing for all actions a G Act. The reachable state space of J\AB is finite and therefore a 
policy maximising P ^ [Q(TB U {&T})] induces an FSC for the original P O M D P M. 

F S C Cut-offs 

In Chapter 3, we discussed why and how to approximate the unexplored belief space. We 
also observed that finding good observation-based controllers is crucial to obtain good 
approximations. We can use an observation-based controller to compute suitable cut-off 
values. The closer the cut-off value is to the actual optimum in a belief, the better the 
approximation we obtain. In particular, if the cut-off values coincide with the optimal value, 
cutting off in the initial state is optimal. Obviously, finding a good (optimal) approximation 
this way is as hard as solving the original P O M D P . We consider under-approximative value 
functions by applying any FSC to the P O M D P and lifting the results to the belief MDP. So 
we want to find good a FSC to get good cut-off values. We note here that implementation 
in [7] considers simple memoryless FSCs. We generalise belief exploration with cut-offs such 
that arbitrary sets of FSCs are supported. 

Let's consider an arbitrary, but fixed F S C Fx G FM for P O M D P M. Let p s ,„ := 
FM T[(s,n) \= ()T] for state (s,n) G S x N in the corresponding induced M C . We denote 
the cut-off value V(b, n) := X^eS 0(b) ' ̂ s'n ^ o r D e ^ e ^ ^ a n < ^ memory node n. This value 
corresponds to the probability of reaching a target state in A4Fx when starting from state 
s G S according to the probability given by belief b with memory node n G N. We define 
the overall cut-off value for belief b induced by controller F as V_(b) := max„ e ArF(6, n). We 
can clearly see that V_(b) < P ^ x [ 6 |= ()TB\. Computing V_(b) for a given belief b is relatively 
simple as the values pSjn only need to be computed once. However, the complexity of the 
FSC-based cut-off approach depends on the size of the induced M C which means that it is 
essential that the FSC used to compute the cut-off values is concise. 

Model checking the finite approximation M D P j\AB with cut-off values induced by an 
FSC Fx yields a maximising memoryless policy erg. We want to use the formalism of FSC 
to represent this policy. We will use Fg to denote this belief F S C . We construct F g by 
considering both Fx used to compute cut-off values and the necessary memory nodes for 
each explored belief b G £. Concretely, we introduce a corresponding memory node for each 
explored belief. In each such node the action as{b) is selected. For the memory update, 
we distinguish between two cases based on the next belief after executing action erg(b) in 
M.B. Given z' G Z, if the successor belief b' = (b \ crg(6), z') G £, the memory is updated 
to the corresponding node. Otherwise, b' G IA must hold, which means the successor is 
part of the frontier. The memory is then updated to the memory node n of F S C Fx that 
maximises the cut-off value V(b',n). This corresponds to the notion of switching to the 
strategy represented by F S C Fx once a belief from the frontier is encountered. So overall 
we follow two policies, erg for explored belief and Fx from frontier beliefs onward. This is 
formalised as: 

Definition 14 (Belief F S C with F S C cut-offs) Let FX = (N,n0,jx,Sx) and let MB 

be the finite approximation defined as before. The belief-based FSC with cut-offs is FQ = 
{£ U iV, &0J7J<5) with action function ^{b,z) = crg(6) for b G £ and 7(71, z) = 7 r ( n , z) 
for n G N and arbitrary z G Z. The update function 5 is defined for all z,z' G Z by 
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8(n, z, z') = 5z(n, z, z') if n G N, and for b G £ with b' = (b | crg(&), z') by: 

8(b,z,z') = b' if b' G £, and 5(b,z,z') = a rgmax n g A r F(6' , n) otherwise. 

This definition provides us with insight into how the actual strategy works, but if we want to 
compute the value of this strategy we want to construct induced M C . The reachable segment 
of the explored belief space with strategy Fg wil l represent the backbone of the induced 
M C . We have to evaluate the states from the frontier U and assign each state its cut-off 
value based on F S C F%. To do this we compute the probability F[s \= (}T] (or rewards 
depending on our original specification) of reaching the target states when starting in state 
s and executing F S C Fx for each s G S in the original P O M D P . Let's denote this value 
pFl{s). Then if we take a belief b G U its value according to F S C Fx is X^se5 ^{s) • pFx(s). 
If we add direct transitions with the computed probabilities from each frontier state to the 
target state we can directly get the value of the strategy by checking the M C given by the 
belief space exploration and controller Fg for specification P(^= 0&T)-

5.2 Using Reference Policies to Improve Inductive Synthesis 

We want to improve the inductive synthesis approach presented in Chapter 3. Consider 
the search for the optimal A:-FSC F G J-{y for P O M D P A4. To accelerate the search for 
F within the given family, we can use a reference policy. One example of such policy is 
the policy erg extracted from a (finite approximation of the) belief M D P . This reference 
policy can be used to shrink the FSC family. For each observation z G Z, we collect the set 
Act[ats](z) := {ct,b(&) | b G BM, 0(b) = z] of actions that were selected by erg in beliefs with 
observation z. Simply put, the set Act[ats](z) contains the actions used by the reference 
policy in states with observation z. It holds that ^ct[crg](z) C Act(z). These subsets are 
significant as they contain only the actions that are important for executing policy erg. 
Since O~M is an observation-based policy it provides valuable insight into what actions are 
likely not important for finding good policies. The better this reference policy is the better 
information we can extract, however, finding a good policy requires solving the P O M D P 
which is a difficult problem as we already discussed in this work. Note here, that the 
policy erg can be replaced by any other observation-based policy. We want to focus on 
these important actions while searching for a good F S C by constructing a subset of FSCs 
{(N,n0,j,5) G | V n G N,Vz G Z,-y(n,z) G Act[aB](z)}. 

Restricting the action selection may exclude the optimal fc-FSC and we need to keep this 
in mind. It also does not guarantee that the optimal FSC in the restricted family achieves 
the same value as the reference policy erg as replicating erg may require more memory nodes 
than we have currently available in the family, i.e. more than k memory nodes. We first 
search the restricted space of FSCs given by the reference policy before completely searching 
the rest of the design space. This also accelerates the search as the earlier a good policy is 
found, the easier it is to discard other candidate FSCs as we can prove that they are not 
optimal. Furthermore, in case the algorithm terminates earlier (notice the anytime aspect 
given in our problem statement), we are more likely to have found a reasonable policy. 

Let's have two families of FSCs Ta and T\,. Informally, we say that Ta is subfamily of T\, 
if every FSC in Ta is also in Tb- Let's consider family and say T% is one of its subfamilies. 
By Ti we denote the complement subfamily, i.e. Fi D Fi = 0 and T% U T% = J7^- To ensure 
we search a given family completely after we go through the main restricted family of FSCs 
Tm-, we have to also search subfamilies Jri,Jr2,---,Jrj such that \JJ^i = Tm- The number 
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of these subfamilies is equal to the number of restricted states in the M D P abstraction 
MDP{F^). Let's say we have 2 restricted states SQ, S\ in the abstraction M D P representing 
the same observation z with enabled actions Act(so) = Act{s\) = {a,/?}. Assume that for 
our reference policy it holds that Act[ats](z) = {a}. Then our main restricted family 
only allows action a in both states. The first subfamily will allow action j5 in SQ and both 
actions a, j3 in s\. The lat subfamily will allow a in SQ and j3 in s\. This way we covered 
all possible FSCs from our initial family. This process is illustrated in Figure 5 .1 on an 
example with three abstraction states. 

(a) (b) 

Figure 5 .1: Let's say we have a reference policy erg, which chooses action /3 for abstraction 
states so,si and actions i , n for abstraction state s\. Each cube represents one choice of 
actions for the abstraction states, (a) shows the main restricted family J-m given by policy 
erg. Here we can see that the reference policy might significantly reduce the size of the 
important part of the design space, (b) shows the subfamilies that remain after we explored 
Tm- We can clearly see that when we explore all the families Tm, ^1,^2, J^3 we explored 
the whole original family. We also see that we do not consider any action assignment twice. 
So it holds that Tm = J i U J 2 U J 3 and T% n .Fj = 0 for any two constructed subfamilies. 

Improving Memory Injection Strategy 

We can improve the memory injection strategy to obtain FSCs that are more compact and 
create families that are smaller but still contain the important FSCs. For this, let's define a 
new type of FSC: 

Definition 15 (/x-FSC) A memory model for POMDP M. is a function // : Z —> N. Let 
k = maxz^zpiz) • The k-FSC F G with nodes N = {no,n\, ...,rik-i} is a p-FSC iff for 
all z G Z and for all i > fi(z) it holds: 7(nj, z) = 7(710, z) and 5(ni, z, z') = 5(no, z, z') for 
any z' G Z. 

Let J--p denote the family of all //-FSCs for given memory function //. Informally, we can 
say that the memory model /J dictates that for prior observation z only fj,(z) memory nodes 
are utilised, while the rest of the nodes behave exactly as the default memory node no- If 
we are using a memory model /x where JJ,(Z) < k for some observations z G Z, we greatly 
reduce the number of candidate FSCs in the family. We will use / J - F S C S in our improved 
version of inductive synthesis as well as our symbiotic algorithm. 

28 



With //-FSCs defined, we can consider an improved version of the memory injection 
strategy. The memory nodes are used to store information to improve decisions, however, 
if we have a state s £ S with observation z G Z from P O M D P M. such that W G S : 
s = s' O(s) = O(s') we know that when we see observation z on some path we are 
in state s and therefore we do not need to remember any information to make a decision 
for this observation. This allows us to reduce the design space. So the improved memory 
injection strategy starts with family but then creates a family where fi(z) = 1 
for all observations z where only one state in the model has this observation, otherwise 
(i(z) = 2 and so on for bigger k. 

We can improve this strategy further by using the reference policies to perform more 
educated decisions on where we need to add memory. To be more precise we can use sets 
Act\as] to determine the k we want to search. If in some observation z G Z the belief policy 
erg uses |^4ct[crg](z)| distinct actions, then we for sure know that in order to enable the use 
of all of these actions, we require at least k = maxz£z\Act[ats](z) memory nodes. This fact 
stems from the definition of F S C as the action mapping function 7 can only choose one 
action for each (n, z) pair. However, we have to be careful with adding a lot of memory 
because it might become infeasible to search the constructed families even with our proposed 
restrictions. For this reason, we use a more refined view. We consider FSCs from family 
jrM given by memory function fj, as per definition 15. This helps us reduce the size of the 
abstraction even if the reference policy requires a lot of memory nodes. 

Posterior-aware or posterior-unaware FSCs 

The inductive synthesis presented in Chapter 3 considers posterior-unaware FSCs. As a 
reminder, posterior-unaware FSC is an FSC where 5(n, z, z') = 5(n, z, z") for all n G N and 
z,z',z" G Z. The advantage of using posterior-unaware FSCs is that the M D P abstraction 
corresponding to a family of posterior-unaware FSCs is smaller as fewer parameters have to 
be considered. It is easy to see that the posterior-unaware FSCs are a special case of the 
general posterior-aware ones. On the other hand, the posterior-aware FSCs typically need 
fewer memory nodes to denote the same strategy. This fact can sometimes be beneficial for 
the inductive synthesis approach. 

5.3 F S C Overview 

We wish to compare the sizes of all different controller types as one of our goals given in the 
problem statement is to find concise strategies. For FSC F = (N, no, 7, 5) we define its size 
size(F) := sizefr) + size(S), i.e. the memory required to encode functions 7 and S1. The 
sizes for each FSC type are shown in Table 5.1. Before we showcase how to obtain the sizes 
of FSCs we want to discuss the flexibility of general FSCs compared to belief FSCs. Belief 
FSCs contain states that coincide with the explored beliefs £. This means that in certain 
states only a limited amount of actions can be considered. If we change the P O M D P such 
that the new reachable belief space does not correspond one-to-one with the states of belief 
FSC, this belief FSC becomes unusable as it would get stuck. Meanwhile, the more general 
FSCs produced by the inductive synthesis can be used as long as the set of observations 
and actions does not change in the P O M D P . This also explains why we can use the more 
general form of a FSC to compute cut-off approximations. 

1 Remember: 7 : N x Z -> Act and 6: NxZxZ->N 
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FSC class size(5) 
£;-FSC 
//-FSC 

posterior-unaware //-FSC 
Fg using Fx for cut-offs 

k-\Z\ 

sizei^x) + \£\ 

2 - E „ e 7 v E ^ e z \post(n,z)\ 
2 - E 2 e z E f i o ) " 1 b ^ ( n „ z ) | 

awe(fe) + 2 • E 6 g £ |poat(6,0(6))| 
Table 5.1: Sizes for all different types of FSCs introduced in this work. The overall size of 
an FSC F is size(F) = size^) + size(5). 

Assume a P O M D P M, a fc-FSC F with memory nodes N = {no,ni , ...,nk-i} and an 
induced M C MF = (S x N, (so,rao), PF). Encoding the function 7 of a general fc-FSC 
requires size{^) = J2nGN ^Zz&z 1 = ^ ' \^\ memory. Encoding function 5 might require 
k • \Z\2, however, it's rare that in each state-memory pair (s, n) all posterior observations can 
be observed. We, therefore, encode 5(n, z, •) as a sparse adjacency list. To define the size 
of such a list properly, consider the induced M C MF. Let post(n, z) := {O(s') | 3s G Sz : 
(s', •) G supp(PF (s, n))} denote the set of posterior observations reachable when making a 
transition in a state (s, n) of A4F with O(s) = z. Then, 5(n, z, •) can be encoded as a list 
{(z1, 5(n, z, z')) J z' G post(n, z)} of posterior observation and memory node pairs. Thus we 
get: 

size(5) = ^2 2 ' \P°st(ni z)\ = 2 • 51 51 b o s t ( n > z ) l 
nGN zeZ neN zeZ 

If we use memory model // instead of considering the full fc-FSCs we have fi(z) distinct 
memory nodes for each observation z £ Z. Therefore the needed memory changes: 

z&z i=o zez 

size{5) = 2 • \post(rii,z)\ 
z£Z i=0 

If we consider posterior-unaware //-FSC we can limit the size of the FSC further. For each 
z G Z and rij G {no, ••••,n^(z)-i\ w e o n r y need to store single value 5(rii, z, •). We get: 

size(5) = Y^ ^ 1 = "/Z^(z) 
z£Z i=0 z£Z 

and size^) remains the same as for the general //-FSCs. Lastly, let's consider the belief FSC 
Fg = (SUN, bo, 7, 5) obtained with applying FSC Fx = (N, no, 7x, 5%) at frontier states. Each 
non-frontier state b G £ is associated with the unique prior observation 0(b). Therefore, for 
every b G £ we must store exactly one action and a list {(V, (5(6, 0(6), z')) \ z' G post(b, 0(b))} 
of posterior observation and belief pairs. Of course, we have to also include the size of the 
FSC Fx used to compute the cut-off values at the frontier states. Overall, we obtain: 

size{^) = sizei^fx) + 1 = size{pjx) + \£\ 

size{8) = size{8x) + 2 • ^ \post(b, 0(b))\ 
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5.4 Symbiotic Policy Synthesis 

We introduce a symbiotic approach for finding good FSCs for P O M D P s with indefinite-
horizon specifications. Our symbiotic approach combines tools P A Y N T [5] and S T O R M [12] 
which represent two state-of-the-art tools for this problem. The important underlying 
notions of these tools were introduced in Chapter 3. We would like to note here that the 
potential advantages this symbiosis brings are not strictly tied to these two tools and might 
be applicable to other combinations of approaches. We call our symbiotic approach S A Y N T in 
the remainder of this work. Firstly, we introduce the overall structure of S A Y N T showcasing 
how these tools can work together and then we provide the anytime symbiotic algorithm for 
finding good FSCs. 

5.4.1 Overall framework 

The main idea behind the symbiotic approach is essentially the fact that a policy found by 
one of the methods can be used to boost the other method either in the sense of finding 
a policy with better value or finding said policy faster. The key observation is that these 
policies can be beneficial even if they are sub-optimal in terms of the objective at hand. 
This is crucial as both methods are trying to tackle the same difficult problem and therefore 
both of them might fail to find near-optimal solutions on their own and symbiosis might be 
the key. We've shown this potential in Section 4.2.1. The symbiotic approach combining 
P A Y N T and S T O R M is sketched in Figure 5.2. The orange part represents the inner workings 
of the inductive synthesis implemented in P A Y N T . P A Y N T works with families of FSCs. It 
constructs M D P abstraction for a given family and performs M D P model checking on the 
abstraction. If the specification is violated we know that the whole family violates it and we 
can prune it. If the specification holds we obtain some potentially good policy but we have to 
check if this policy is observation-based or not. If this policy is not observation-based we have 
to refine the current family to obtain better abstraction. If the policy is observation-based 
we've found new improving F S C Fx and we can update the specification. This part is 
described in detail in Section 3.2. The blue part represents belief exploration from S T O R M . 

S T O R M tries to find P O M D P policies by unfolding belief space. It unfolds a finite fragment 
of the belief M D P and computes heuristic bounds that are used to approximate unexplored 
belief space. This process produces a finite approximation of the complete belief M D P . We 
can perform M D P model checking on this approximation and the obtained policy is a valid 
observation-based F S C Fg. A detailed explanation is provided in Section 3.1. The red 
arrows highlight where and how the two methods communicate. How the methods use the 
provided policies to boost their respective performance is explained in the previous sections 
of this chapter. In short, the FSCs Fx obtained by policy search are used to guide the 
partial belief M D P to the target, allowing us to compute values of unexplored belief states. 
Meanwhile, the FSCs FQ obtained by the belief exploration are used to shrink the set of 
considered policies and steer the abstraction as we are able to extract better information 
compared to the fully-observable M D P strategies. 

5.4.2 Anyt ime Symbiotic Algorithm 

We now use the structure shown in Figure 5.2 as a base for our algorithm. In the previous 
sections, we showed how inductive synthesis can benefit from policies obtained by belief 
exploration and how belief exploration can use FSCs produced by inductive synthesis to 
achieve better results. A natural is to use improved inductive synthesis results to further 
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Figure 5.2: Schematic depiction of the symbiotic approach. The orange part represents the 
inductive synthesis implemented in P A Y N T and the blue part represents belief exploration 
implemented in S T O R M . The red arrows show how the two approaches communicate using 
their FSCs. 

improve belief exploration and improved belief exploration to provide even better reference 
policies to the inductive synthesis, i.e. to alternate between these approaches and in each 
step let them share the found FSCs. This symbiotic approach is captured in Algorithm 1 . 

We iterate until a global timeout t is reached. In each iteration, we make both controllers 
available to the user as soon as they are computed. We start the symbiotic algorithm with 
the inductive mode (1. 3-8), where we initially consider 1-FSCs represented in T^. Method 
search(l. 8) investigates given family T and outputs the new maximising F S C Fx (if it 
exists). If the timeout t% interrupts the synthesis process, the method additionally outputs 
yet unexplored parameter assignments T. If family T is fully explored within the timeout 
tx (1. 4), we increase k and continue the synthesis with a new family of FSCs. After the 
timeout tx, we run the belief exploration method explorefor £g seconds, where we use 
F S C Fx for computing cut-off values. Fx is used in tandem with the heuristic strategies 
computed by belief exploration. After the timeout £g is reached the exploration stores its 
current configuration (so that it knows where to continue in the next iteration). Then 
the exploration proceeds to obtain the cut-off values at unexplored states using Fx and 
computes the optimal policy aM from which we extract the belief F S C F^ incorporating 
the F S C Fx- Before we continue with the next iteration we check whether the belief FSC 
gives better value than Fx and whether this F S C gives any reason to update the memory 
model (1. 10). If we determine that the memory should be updated, i.e. whether there's 
any observation for which the current memory value is smaller than the number of distinct 
actions considered by erg, we update \x and continue with new family T (1. 11-12). 

Now we would like to highlight some of the decisions we had to make in the design of 
this algorithm. We wanted a simple push-button algorithm that is powerful for the general 
class of P O M D P s and the choices we made led to this goal as we will show in the next 
chapter. These decisions were made based on our initial experiments with the integration. 
The main decisions we discuss here: i) the order of the used methods in the algorithm, ii) the 
timeout for inductive search and belief exploration, iii) complete search vs. family pruning, 
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Algorithm 1: Anytime symbiotic algorithm for finding FSCs for P O M D P s 
Input : P O M D P M., set T of target states, timeout values t, tx, tB 

Output: Best FSCs F r and FB found so far 

1 FX < - _L, T <- J^i4, k <- 0, [i <- {z h-> 1 | z G Z}, FB < - _L, aB <- 1 
2 while not timeout t do 

while not timeout tx do 
if T = 0 then 

fc <- /c + 1 
Vz £ Z: fi(z) <— max{/x(z), A:} 

T,FX <- se&rch(F, F X , Act[aB] if P - ^ f O T ] > F M F B [<>T] else 1) 
O-B,Fb <r- e x p l o r e F x ) 

if : [ 0 T ] < P ^ F b [ 0 T ] and 3 z G Z : /x(z) < |Arf[<7B](«)| then 
Vz £ Z: fi(z) <- |^ct[aB](z)| 

yield F x , F B 

iv) considering non-FSC cut-offs in reference policies. The implementation of our algorithm 
allows the user to set the pruning of non-main subfamilies and consider the non-FSC cut-offs 
(discussed below) if they want but we will not consider these settings in the remainder of 
this work. The timeouts we used for our experiments will be discussed in the experimental 
evaluation chapter. 

The order of the methods 

Starting the symbiotic iteration with policy search is the preferred way to combine these 
methods. While it is possible to start the loop with belief exploration, it does not provide 
any lasting advantages and might in fact hinder the performance. The reason is that if 
the initial belief-based method produces a bad policy then it might negatively impact the 
inductive synthesis by steering the search to unimportant families that contain bad FSCs. 
Finding bad F r then further slows down the improvement of the belief-based method as the 
cut-off values are not good. On the other hand, bad FSCs obtained by inductive synthesis 
do not hinder the belief exploration in any way and actually still provide better bounds 
than the heuristically computed strategies in most cases. 

Setting the timeouts 

A n important part of the algorithm is the setting of the two timeouts tx and tB. We leave 
these values as parameters in the algorithm as it's easy to see that these have a great 
impact on the overall result. But there are general rules on how to set these. The inductive 
synthesis usually takes longer to obtain good FSCs on more complex models. Also, the 
belief exploration timeout does not include the time needed to obtain the belief policy, i.e. 
the belief M D P model checking. These facts mean that we usually want to have tx > tB. 
We also want to ensure that multiple iterations are allowed to finish as we have shown in 
our motivation section and will show in experiments. Therefore the sum of these timeouts 
should be at least 3-4x less than the overall time we want to run the algorithm for. 
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Complete search of the families 

We discussed the use of reference policies to help us find good FSCs more quickly by 
prioritizing the search in the main restricted subfamily. One approach would be to only 
focus on these main families in the inductive synthesis, search in them quickly and go to 
bigger families quickly. However, we outlined that it might be important to perform the 
complete search, i.e. also searching for solutions in the other subfamilies as showcased in 
Figure 5 . 1 . The reason for this is that the reference policy might not be entirely correct 
and can have some biases that come from the method used to obtain them. The complete 
search ensures that even when the reference policy is bad we still get a good FSC and might 
outperform the method used to get the reference policy. 

Considering non-FSC cut-offs 

The belief-based method from S T O R M computes memoryless probabilistic policies to be used 
at cut-offs which we replace by FSCs computed by inductive synthesis. We've observed that 
the small FSCs computed very quickly by inductive synthesis are able to beat these policies 
but sometimes one of these policies might be good for some belief and we are left with the 
choice of including this policy in the context of the reference policy. The difficult part is 
that they are probabilistic and it's hard to quantify what actions are actually important. 
That's why we do not consider these policies by default even if they produce good cut-off 
values for some of the frontier beliefs. This in most cases leads to better results as the main 
family is more true to the reference policy and contains only the important restrictions. 
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Chapter 6 

Experimental Evaluation 

In this chapter, we present an experimental evaluation of the proposed improvements from 
the previous chapter. We first introduce the considered P O M D P s and discuss the setup of 
the experiments. We then showcase our proposed ideas for improving cut-off approximations 
in belief-based methods and improving inductive synthesis work with just simple additional 
computations. These results directly motivate the proposed symbiotic algorithm which is 
evaluated at the end of this chapter. We focus on our main goal, i.e. finding good FSCs 
quickly. However, we also evaluated the memory usage of the algorithm, the sizes of the 
found FSCs and we also discuss the advantage of producing two FSCs in S A Y N T . With the 
results presented in this chapter, we show that our proposed improvements and especially 
the symbiotic algorithm S A Y N T beats the current state-of-the-art methods for the synthesis 
problem in P O M D P s with indefinite-horizon specifications. 

6.1 Selected Benchmarks and Experiments Setup 

With the focus being on indefinite-horizon specifications, our baselines are the recent belief 
exploration technique [7] implemented in S T O R M [17] and the inductive synthesis method [4] 
implemented in P A Y N T [5]. P A Y N T uses S T O R M for parsing the input P O M D P s and for model 
checking M D P s , but not for solving P O M D P s . Our symbiotic framework (see Figure 5.2 
and Algorithm 1) has been implemented on top of P A Y N T and S T O R M , combining them in 
a closed-loop fashion. In the rest of this chapter, we will use S T O R M and P A Y N T to refer to 
the implementation of belief exploration and inductive synthesis respectively. We will use 
S A Y N T to refer to our proposed symbiotic framework. 

Setup A l l of the experiments are run on a single core of a machine equipped with an 
Intel i5-12600KF @4.9GHz C P U and 64GB of R A M . P A Y N T searches for posterior-unaware 
FSCs using abstraction refinement (explained in Section 3.2), as suggested by [4]. The 
default setting of S T O R M is to apply cut-offs as presented in Section 3.1. S A Y N T uses the 
default settings for both P A Y N T and S T O R M . The parameters from Algorithm 1 were set 
to tx = 60s and = 10s by default. At the end of this chapter, we discuss how changing 
these values affects the performance. 

Benchmarks We consider models from AI and formal verification communities obtained 
from [4, 6, 7, 9]. We evaluate the methods on a selection of these models, supplemented by 
larger variants of these models (Drone-8-2 and Refuel-20), by one model from [15] (Milos-97) 
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Model \S\ ZAci \Z\ Spec. Over-
approx. Model \s\ Y.Act \Z\ Spec. Over-

approx. 
4x3-95 22 82 9 ^max < 2.24 Drone-4-2 1226 2954 761 p 

1 max 
< 0.98 

4x5x2-95 79 310 7 ^max < 3.26 Drone-8-2 13k 32k 3195 P 
1 max 

< 0.99 
Hallway 61 301 23 -^min > 11.5 Lanes+ 2741 5285 11 -^min > 4805 
Milos-97 165 980 11 ^max < 80 Netw-3-8-20 17k 30k 2205 -^min > 4.31 
Network 19 70 5 ^max < 359 Refuel-06 208 565 50 P 

1 max 
< 0.78 

Query-s3 108 320 6 ^max < 600 Refuel-20 6834 25k 174 P 
1 max 

< 0.99 
Tiger-95 14 50 7 ^max < 159 Rocks-12 6553 32k 1645 -^min > 17.8 

Table 6.1: Information about the benchmark P O M D P s . 

and by the synthetic model explained in Section 4.2.1 (Lanes+). We excluded benchmarks 
for which P A Y N T or S T O R M finds trivial (expected) optimal solutions in a matter of seconds. 
The reason for this is that if P A Y N T or S T O R M finds a solution in a trivial fashion, S A Y N T is 
also able to find and the comparison is pointless. The benchmarks were selected to illustrate 
the advantages as well as the drawbacks of all three synthesis approaches: belief exploration, 
inductive search, and the symbiotic technique. Table 6.1 lists for each P O M D P the number 
of states \S\, the total number of actions X ] ^ c * : = Yls \Act(s)\, the number of observations 
\Z\, the specification (either maximising or minimising a reachability probability P or 
expected reward R), and a known over-approximation on the optimal value computed using 
the technique from [6]. These over-approximations are solely used as rough estimates of the 
optimal values and for most of these models, we do not know how close to the optimum 
we are. 

6.2 Evaluation of the One-way Integrations 

We want to showcase that the main ideas presented in Chapter 5 can be used to improve 
the state-of-the-art tools. We first look at improving belief approximations by using F S C 
cut-offs. Secondly, we showcase the improvements in the inductive synthesis with belief-based 
reference policies. 

6.2.1 F S C s Improving Approximations of the Belief M D P 

In these experiments. P A Y N T is used to obtain a sub-optimal F S C Fx within 10s (or the 
first found if a bigger time limit is needed) which is then used by S T O R M to compute better 
cut-offs. We ask the question (Ql): Do the FSCs from inductive synthesis raise the accuracy 
of the belief MDP? Table 6.2 (left) lists the results. From these results, we get the following 
observation: 

Observation 1 Belief exploration can yield better FSCs (and sometimes even faster) using 
FSCs from PAYNT even if the latter FSCs are from optimal. 

For instance, S T O R M with provided Fx finds an F S C with value 0.97 for the Drone-4-2 
benchmark within a total of 10s (ls+9s for obtaining Fx), compared to obtaining an FSC of 
value 0.95 in 56s on its own. A value improvement is also obtained if S T O R M runs longer. 
For the Network model, the value improves with 37% (short-term) and 47% (long-term) 
respectively, at the expense of investing 3s to find Fx- For the other models, the relative 
improvement ranges from 3% to 25%. A further value improvement can be achieved when 

36 



P A Y N T Short S T O R M Long S T O R M 

Model FI + FX +FT 

Drone-4-2 0.94 0.92 0.97 0.95 0.97 
p 

1 max 
9s Is l s 56s 57s 

Network 266.1 186.7 274.5 202.1 277.1 
Rma,x 3s <ls <ls 26s 33s 

Drone-8-2 0.9 0.6 0.96 0.68 0.97 
p 

1 max 
28s 3s 3s 101s 103s 

4x3-95 1.66 1.62 1.82 1.84 1.88 
Rma,x 7s <ls <ls 60s 72s 

Query-s3 425.2 417.4 430.0 419.6 432.0 
F-iaax 7s 2s 2s 91s 94s 

Milos-97 31.56 37.15 39.15 38.35 40.64 
-Rmax 3s <ls <ls 42s 42s 

Hallway 16.05 13.07 12.63 12.55 12.55 
F-min 9s ls l s 160s 167s 

Rocks-12 42 38 31.89 20* 20* 
F-min <ls <ls <ls 10s 10s 

S T O R M P A Y N T 

Model FB 
+ FB 

4x5x2-95 2.08 0.94 2.03 
•^max <ls 258s 38s 

Refuel-20 0.09 <0.01 0.19 
-fmax l s 10s l i s 

Tiger-95 50.38 2.99 28.73 
•^max <ls 14s 23s 

4x3-95 1.62 1.75 1.84 
-Rmax <ls 14s 238s 

Refuel-06 0.67 0.35 0.67 
p 

1 max 
<ls <ls 42s 

Milos-97 37.15 31.56 39.29 
-Rmax <ls 3s 215s 

Netw-3-8-20 11.93 11.07 10.95 
-Rmin l s 185s 271s 

Rocks-12 38 42 38 
<ls <ls <ls 

Table 6.2: Left (Ql): Experimental results on how a (quite sub-optimal) FSC Fx computed 
by P A Y N T within 10s impacts S T O R M . (For Drone-8-2, the largest model in our benchmark, 
we use 30s). The " P A Y N T " column indicates the value of Fx and its run time. The "Short 
S T O R M , , column runs storm for ls and compares the value of FSC FQ found by S T O R M alone 
to S T O R M using Fx- The "Long S T O R M " column is analogous, but with a 300s timeout for 
S T O R M . In the last row, * indicates that clipping was used. Right (Q2): Experimental 
results on how an F S C FQ obtained by a shallow exploration of the belief M D P impacts 
the inductive synthesis by P A Y N T . The " S T O R M , , column reports the value of FQ computed 
within ls . The " P A Y N T " column compares the values of the FSCs Fx obtained by P A Y N T 

itself to P A Y N T using the FSCs FQ within a 300s timeout. 

using better FSCs Fx from P A Y N T ; see Section 6.3. Sometimes, belief exploration does not 
profit from F%. For Hallway, the unexplored part of the belief M D P becomes insignificant 
rather quickly, and so does the impact of Fx- Clipping [7], a computationally expensive 
extension of cut-offs, is beneficial only for Rocks-12, rendering Fx useless. Though even in 
this case, using Fx significantly improves Short S T O R M that did not have enough time to 
apply clipping. 

6.2.2 Belief-based F S C s Improving Inductive Synthesis 

In these experiments, we run S T O R M for at most ls, and use the result as a reference policy 
in P A Y N T . We ask the question (Q2): Does the exploration of the belief MDP boost the 
inductive synthesis of FSCs? Table 6.2 (right) lists the results. From these results we make 
another important observation: 

Observation 2 Inductive synthesis can find much better FSCs (and sometimes much faster) 
when using FSCs obtained from belief exploration as reference policies to steer the search. 

For instance, for the 4x5x2 benchmark, an F S C is obtained about six times faster while 
improving the value by 116%. On some larger models, P A Y N T alone struggles to find any 
good Fx and using FQ boosts this; e.g., the value for the Refuel-20 model is raised by a 
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factor 20 at almost no run time penalty. For the Tiger benchmark, a value improvement of 
860% is achieved (albeit not as good as Fg itself) at the expense of doubling the run time. 
Thus: even a shallow exploration of the belief MDP pays off in the inductive synthesis. The 
inductive search typically profits even more when exploring the belief M D P further. This 
is demonstrated, e.g., in the Rocks-12 model: using the F S C Fg computed using clipping 
(see Table 6.2 (left)) enables P A Y N T to find F S C Fx with the same (optimal) value 20 as 
Fjg within Is. Similarly, for the Milos-97 model, running S T O R M for 45s (producing a more 
precise FQ) enables P A Y N T to find an F S C Fx achieving a better value than controllers 
found by S T O R M or P A Y N T alone within the timeout. (These results are not reported in the 
tables.) However, as opposed to Q l , where a better F S C Fx naturally improves the belief 
MDP, longer exploration of the belief M D P does not always yield a better Fx'- a larger AiB 

with a better FQ may yield a larger memory model thus inducing a significantly larger 
family where P A Y N T struggles to identify good FSCs. 

6.3 Evaluation of the Anytime Symbiotic Algori thm 

We know focus on evaluating the proposed symbiotic approach. We ask the question (Q3): 
Is the symbiotic approach improving run time, controller's values and size? Thus the goals of 
the experiments presented in this section are to investigate whether the symbiotic approach 
improves the run time (can FSCs of a certain value be obtained faster?), the memory 
footprint (how is the total memory consumption of the methods affected?), the controller's 
value (can better FSCs be obtained with the same computational resources?), and the 
controller's size (are more compact FSCs obtained?). 

Value of the synthesized FSCs 

Figure 6.1 plots the value of the FSCs produced by S T O R M , P A Y N T , and S A Y N T versus the 
computation time. Note that for maximal objectives, the aim is to obtain a high value (the 
first 4 plots) whereas for minimal objectives a lower value prevails. From the plots, we make 
the following observation: 

Observation 3 The FSCs from the symbiotic approach are superior in value to the ones 
obtained by the standalone approaches. 

The relative improvement of the value of the resulting FSCs differs across individual models, 
similar to the trends in Q l and Q2. When comparing the best F S C found by S T O R M or 
P A Y N T alone with the best FSC found by S A Y N T , the improvement ranges from negligible 
(4x3-95) to around 3%-7% (Netw-3-8-20, Milos-97, Query-s3) and sometimes goes over 40% 
(Refuel-20, Lines+). We note that the distance to the (unknown) optimal values remains 
unclear. Recall that S A Y N T returns two FSCs: Fx found during the inductive phase and 
Fjg (that incorporates Fx) found during the belief phase. That's why there are two lines 
associated with the results of S A Y N T . The F S C value never decreases but sometimes does 
also not increase, as indicated by Hallway and Rocks-12 (see also Section 6.2.2). Some plots 
in Fig. 6.1 also include the FSC value by the one-shot combination of S T O R M and P A Y N T . 

By comparing these FSCs we observe: 

Observation 4 SAYNT can improve the FSC value over the one-shot combinations whose 
ideas are presented in Sections 5.1 and 5.2. 
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This is illustrated in, e.g., the 4x3-95 and Lanes+ benchmarks, see the 1st and 3rd plots in 
Figure 6.1 (left). 

• SAYNT FJS SAYNT FX - • - STORM - • - PAYNT Q l STORM - *- Q2 PAYNT 

4x3-95 Milos-97 o 

4 6 8 10 12 14 
Time [min] 

4 6 8 10 
Time [min] 

Figure 6.1: Value of the generated FSCs over time. We compare S A Y N T with our two 
baselines S T O R M and P A Y N T . Note that S A Y N T produces two FSCs (blue and green lines). 
We also include comparisons with the proposed one-way improvements discussed in the 
previous sections 6.2.1 (Ql) and 6.2.2 (Q2). The lines ending before the timeout indicate 
that the 64GB memory limit was hit. • indicates that P A Y N T and S A Y N T synthesized 
posterior-aware FSCs. o indicates that S A Y N T ran with t% =90s. 
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Total synthesis time 

From Figure 6.1 we see that S A Y N T initially needs some time to complete the first iteration 
(one inductive and one belief phase) in Algorithm 1 and thus during the beginning of the 
synthesis process, the standalone tools may provide FSCs of a certain value faster. However, 
we observe that: 

Observation 5 After the first iteration, SAYNT typically provides better FSCs in a shorter 
time and quickly overtakes both baselines. 

For instance, for the Refuel-20 benchmark S A Y N T swiftly overtakes S T O R M after the first 
iteration. The only exception is Rocks-12 (discussed in the previous sections), where S A Y N T 

with the default settings needs significantly more time than S T O R M to obtain an FSC of the 
same value. 

Memory footprint 

Belief exploration typically has a large memory footprint: S T O R M quickly hits the 64GB 
memory limit on exploring the belief M D P . This is indicated in the various plots of Fig. 6.1 
by the purple dashed line that ends before the timeout. However, if we consider S A Y N T we 
observe: 

Observation 6 SAYNT reduces the memory footprint of STORM alone by a factor of 3 to 4 
while producing better FSCs. 

See Figure 6.2 for the comparison of average memory usage between S T O R M and S A Y N T . 

The average memory footprint of running P A Y N T standalone quickly stabilises around 
700MB-1GB (for the largest models). The memory footprint of S A Y N T is thus dominated 
by the restricted exploration of the belief M D P . 

Average memory usage comparison 

0 2 4 6 8 10 12 
Time [min] 

Figure 6.2: Comparison of average memory usage between S T O R M and S A Y N T . The y-axis 
is logarithmic. We observe that S A Y N T dramatically reduces the memory footprint of the 
belief exploration despite the fact that it produces better FSCs. 
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Models: Lanes+ Hallway Netw-3-8-20 Query-s3o Refuel-06 Drone-8-2 Refuel-20 

Fx 
4805/8.1k 
6591/34 

12.55/2k 
15.46/86 

10/40k 
11.04/4.8k 

511.32/7.7k 
509.49/26 

0.67/84 
0.67/156 

0.96/237k 
0.90/6.4k 

0.24/1.5k 
0.2/362 

Table 6.3: Trade-offs between the value and size in the resulting FSCs Fx and FB found by 
S A Y N T . Each cell reports value/size. The first three models have a minimising objective, o 
indicates that S A Y N T ran with t% =90s. 

The size of the synthesised FSCs 

For selected models, Tab. 6.3 shows the trade-offs between the value and size of the resulting 
FSCs FX and FB found by S A Y N T . From the experiments we observe: 

Observation 7 The FSCs Fx provided by the inductive synthesis in SAYNT are typically 
about one to two orders of magnitude smaller than the belief-based FSCs FB with only a 
small penalty in their values 

There are models (e.g. Refuel-06) where a very small FB, having an even slightly smaller 
size than Fx, does exist. The integration mostly reduces the size of FB due to the better 
approximation of the belief M D P by up to a factor of two. This reduction has a negligible 
effect on the size of Fx- This observation further strengthens the usefulness of S A Y N T that 
jointly improves the value of Fx and F&. Hence, S A Y N T gives users a unique opportunity to 
run a single, time-efficient synthesis and select the FSC according to the trade-off between 
its value and size. 

6.3.1 More Results 

In the previous sections, we presented results that helped us answer all of the important 
questions surrounding our proposed ideas and the proposed algorithm S A Y N T . We showcased 
that the ideas from sections 5.1 and 5.2 can be used to obtain strong one-way integrations 
that outperform the base methods. We then showed that the proposed symbiotic algorithm 
S A Y N T outperforms our baselines from multiple perspectives. Table 6.4 shows more results 
from our experiments, where we can compare the sizes of FSCs from different methods and 
the impact of using default versus non-default settings. 

6.3.2 Customising the S A Y N T Setup 

In contrast to the stand-alone approaches as well as to the one-way integrations presented 
in Section 6.2, we observe that: 

Observation 8 SAYNT provides a single synthesis method that is efficient for a general 
class of models without tuning its parameters. 

Although S A Y N T includes parameters that affect the interplay between the standalone 
approaches (see Algorithm 1 with the paragraphs discussing design choices and the paragraph 
on parameter settings), the experiments confirm that the default strategy provides superior 
and stable performance across all considered models. Below, we discuss some results when 
using a non-default setup, see the captions in Figure 6.1, Table 6.3, and Table 6.4. Using 
posterior-aware FSCs mostly significantly slows down the synthesis process. For Network 
and 4x3-95, it does improve the value of the default posterior-unaware FSCs by 2% to 4%. 
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For the former model, a better F% also improves Fg about a similar value. In some cases 
(e.g. Query-s3), it is beneficial to increase the parameter t% to 90s, giving P A Y N T enough 
time to search for a good FSC F% (the relative improvement is 6%) which also improves the 
value of the resulting FSC FQ about a similar value. t% and tg also determine if the size or 
the value of the FSCs is preferred. A detailed analysis of the experimental results suggests 
that it is more effective to invest time into searching for Fx approximating the belief M D P 
rather than into its deeper exploration. 

Benchmark 
Model Spec. 

Model Size 
S/Act Z 

PAYI 

Fx 
Size 

S T O 

FB 

R M 

Size FB 

S A Y 

Size 
N T 

Fx Size 
4x3 
95 Riaax 

22 
82 9 1.81 

764s 
36 1.87 

414s 
999 1.89 

283s 
968 1.87« 

120s 
126 

4x3 
95 Riaax 

22 
82 9 

1.81 
764s 

36 1.87 
414s 

999 1.89 
303s 

869 1.79 
678s 

36 

4x5x2 
95 Riaax 

79 
310 7 

0.94 
305s 

26 2.08 
3s 

102 2.08 
71s 

102 2.03 
378s 

38 

Drone 
4-2 

P 
1 max 

1226 
3026 761 

0.95 
900s 

1.5k 0.95 
110s 

135k 0.97 
194s 

140k 0.94 
Is 

1.5k 

Drone 
8-2 Pmax 

13k 
32k 3195 

0.9 
260s 

6.4k 0.68 
98s 

280k 0.96 
247s 

140k 0.9 
30s 

6.4k 

Hallway 
Rmin 

61 
301 

23 
15.54 

26s 
66 12.55 

916s 
1.9k 12.55 

263s 
1.8k 15.46 

293s 
86 

Lanes+ 
Rmin 

2741 
5289 

11 8223 
118s 

42 18870 
376s 

8.1k 4805 
173s 

8.1k 6591 
114s 

34 

Milos-97 
Riaax 

165 
980 

11 31.56 
4s 

40 39.03 
88s 

823 41.99o 
370s 

692 S5.820 

185s 
40 

Milos-97 
Riaax 

165 
980 

11 31.56 
4s 

40 39.03 
88s 

823 41.55 
270s 

290 35.41 
114s 

40 

Network 
Riaax 

19 
70 5 

280.33 
38s 

22 209.71 
110s 

2.4k 289.18« 
395s 

2k 287.23« 
106s 

54 

Network 
Riaax 

19 
70 5 

280.33 
38s 

22 209.71 
110s 

2.4k 284.51 
85s 

1.8k 280.33 
41s 

22 

Netw 
3-8-20 Rmin 

17k 
30k 2205 

11.04 
638s 

4.4k 10.27 
238s 

64k 10 
742s 

38k 11.04 
379s 

4.8k 

Query 
s3 Rmax 

108 
320 6 

502.3 
931s 

28 420.11 
184s 

12.9k 511.320 

566s 
7.7k 509.49O 

362s 
26 

Query 
s3 Riaax 

108 
320 

6 
502.3 
931s 

28 420.11 
184s 

12.9k 482.21 
700s 

7.7k 478.59 
610s 

28 

Refuel 
06 

P 
1 max 

208 
565 

50 
0.35 
<ls 

100 0.67 
182s 

343 0.67 
178s 

84 0.67 
84s 

156 

Refuel 
20 

P 
1 max 

6834 
24k 174 

0.02 
922s 

348 0.15 
468s 

1.2k 0.24 
386s 

1.5k 0.2 
173s 

360 

Tiger 
95 -Rmax 

14 
50 7 

7.93 
547s 

34 50.38 
<ls 

58 50.38 
71s 

58 31.61 
513s 

48 

Table 6.4: The quality and size of resulting FSCs provided by P A Y N T , S T O R M , and S A Y N T 

within the 15-minute timeout. The run times indicate the time needed to find the best 
FSC. Non-default settings: • marks experiments where P A Y N T synthesized posterior-aware 
FSCs, o marks experiments where integration parameter t% was set to 90 seconds. 
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Chapter 7 

Final Considerations 

7.1 Future Research 

This work opens up a lot of avenues for further research in the P O M D P synthesis. We 
proposed two ideas for improving belief approximations and the inductive policy search 
respectively. In the case of belief approximations, we showcased that using simple FSCs can 
greatly improve state-of-the-art approaches. It is desirable to explore other methods and see 
if there are possible ways to improve them using these simple FSCs as they are compact and 
hold a lot of information about the P O M D P and its specification. In the case of improved 
inductive synthesis, we can look into extracting more information from the reference policies. 
Currently, we only look at the considered set of actions for different observations but there 
might be more information about for example the needed memory, or the dependencies 
between different actions in the reference policies. We also might consider reference policies 
from different sources. As we said the idea of using a reference policy is not tool specific, 
however, in the experimental evaluation we only considered reference policies from belief 
exploration in S T O R M . 

If there's any progress in these mentioned areas, we directly improve the proposed 
symbiotic algorithm S A Y N T . While this algorithm already outperforms the state-of-the-art 
we believe that further improvements are possible with more fine-tuned parameters. It 
might be also interesting to try and come up with different integrations e.g. including 
simulation-based and reinforcement learning methods. The motivation here is the fact that 
the P O M D P synthesis question is a difficult one, and while coming up with new ideas on 
how to tackle it is important, there wil l always be some inherent flaws that might only be 
avoided by looking at the problem from multiple angles at once. 

In this work, we considered indefinite-horizon specifications. The AI community prefers 
using infinite-horizon specifications with discounting. In many cases, the algorithms only 
work if a discount factor strictly less than 1 is used. We believe this topic surrounding the 
use of a discount factor is not explored properly. We think there are real-world practical 
problems where the use of a discount factor is inappropriate. While we can set the discount 
very close to 1 , we observed in our initial experiments (not included in this work) that by 
doing so the performance of the algorithms drops to a point where the benefits of approaches 
that support indefinite-horizon specifications become clear. Future research in this area 
should focus on explaining the need for a discount factor and how the methods considering 
different specifications can help each other. 

This work tries to bridge the safety-scalability gap that currently occurs in the P O M D P 
synthesis problem. We believe that the discussion on this topic is an important one. 
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Reinforcement learning and other machine learning approaches provide good scalability, 
however, offer little safety guarantees compared to formal methods. This problem is 
prominent in a lot of areas of modern computer science and we believe that future research 
in the P O M D P synthesis problem should focus on this important problem. 

Finally, S A Y N T produces two FSCs Fx and Fg and we observed interesting trade-offs 
between the size and the quality of these FSCs (see Observation 7), where their values 
can be close but their sizes vary a lot. This indicates that sometimes the produced FSCs 
are unnecessarily large. Future research might focus on developing algorithms for the 
minimisation of the FSCs. This could lead to an approach where we find a good FSC first 
and then make it as compact as possible using some external algorithm. 

7.2 Conclusions 

This work focused on the synthesis problem in P O M D P s with indefinite-horizon specifications. 
We considered two main state-of-the-art approaches for this problem: i) belief exploration 
with cut-off approximations implemented in tool S T O R M , ii) the inductive synthesis of FSCs 
implemented in tool P A Y N T . We showed clear limitations of state-of-the-art approaches 
on simple P O M D P examples. We used the shown limitations to directly motivate two 
novel ideas. Firstly, we can improve the belief exploration by using FSCs to obtain better 
cut-off approximations. Secondly, we can improve the inductive synthesis approach by using 
information from reference policies to steer the search. W i t h these ideas, it became clear 
that an interplay between belief exploration and inductive synthesis is possible. We proposed 
S A Y N T , a symbiotic closed-loop integration of the two main approaches for controller synthesis 
in P O M D P s . Using a wide class of models, we demonstrated that S A Y N T substantially 
improves the value of the resulting controllers. It does so while also reducing the memory 
footprint of the belief exploration and improving the overall synthesis time. S A Y N T works 
in an iterative fashion. After each iteration, two FSCs Fx and FQ are produced. This gives 
the user a unique choice between the small F S C Fx or better but much larger F S C FQ. 
Another advantage of S A Y N T is that it provides a single synthesis method for a general class 
of models without the need for tuning its parameters. This work strengthens the position of 
formal methods for the P O M D P synthesis problem. 

This thesis served as a basis for an article called "Search and Explore: Symbiotic Policy 
Synthesis in POMDPs". This article was accepted to International Conference on Computer 
Aided Verification 2023 (CAV'23), a C O R E A * conference, in May 2023. 
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