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Abstract
This thesis deals with the analysis and implementation of a neural network for the purpose
of recognizing emotions from human speech using deep learning. The thesis also focuses on
tuning this network to achieve greater sensitivity to a specific emotion and explores the time
and indirectly the financial requirements of this tuning. The inspiration for creating this
work is the increasing integration of artificial intelligence in the fields of biology, healthcare,
as well as psychology, and one of the goals is also to study the complexity of creating specific
models of neural networks for purposes in these sciences, which should contribute to better
accessibility of artificial intelligence models. The work is based on the implementation of
the "AST: Audio Spectrogram Transformer" model, which is publicly available under the
BSD 3-Clause License and utilizes methods that have been used so far for classification and
recognition of images by converting an audio track into a spectrogram. The resulting values
of weighted accuracy are as follows: 93.5% for the EMODB dataset, 92.8% for EMOVO,
and 92.9% for the RAVDESS dataset.

Abstrakt
Táto práca sa zaoberá analýzou a implementáciou neurónovej siete za účelom rozpoznáva-
nia emócií z reči človeka pomocou hlbokého učenia. Práca sa taktiež zaoberá ladením tejto
siete za účelom dosiahnutia väčšej citlivosti voči konkrétnej emócii a skúma časové a nepri-
amo aj finančné nároky tohto ladenia. Inšpiráciou na vytvorenie tejto práce je stúpajúca
integrácia umelej inteligencie v oblasti biológie, zdravotníctva ako aj psychológie a jedným
z cieľov je aj skúmanie náročnosti vytvárať konkrétne modely neurónových sietí na účely
v týchto vedách, čo by malo prispieť k lepšej dostupnosti modelov umenelej inteligencie.
Práca stavia na základe implementácie modelu "AST: Audio Spectrogram Transformer"
ktorá je verejne dostupná pod licenciou BSD 3-Clause License a využíva metódy ktoré boli
doposiaľ využívané na klasifikáciu a rozpoznávanie obrazov vďaka premene zvukovej stopy
na spektrogram. Výsledné hodnoty váženej presnosti sú následovné: 93.5% pre EMODB
dataset, 92.8% pre EMOVO a 92,9% pre dataset RAVDESS.
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processing, emotion classification
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Rozšířený abstrakt
Táto diplomová práca sa zameriava na rozpoznávanie emócií z ľudskej reči prostredníctvom
hlbokého učenia s využitím neurónovej siete Audio Spectrogram Transformer (AST). Hlavným
cieľom práce je implementácia a optimalizácia AST modelu na analýzu emocionálneho ob-
sahu v reči, kde vstupnými dátami sú spektrogramy. Spektrogramy, získané transformáciou
zvukových signálov, poskytujú vizuálnu reprezentáciu frekvenčných komponentov, ktoré
AST model efektívne spracováva na rozpoznanie špecifických emócií.

Práca detailne popisuje proces prípravy a predspracovania dát, vrátane konverzie audio
signálov na spektrogramy, čo umožňuje modelu AST naučiť sa rozpoznávať vzory spojené s
rôznymi emocionálnymi stavmi. Tento prístup vyžaduje nielen technické znalosti o spracov-
aní zvuku, ale tiež pochopenie, ako rôzne emocionálne stavy ovplyvňujú akustické vlastnosti
reči.

Ďalším kľúčovým aspektom práce je využitie cross-corpus prístupu pre tréning modelu,
ktorý zahŕňa dátové sady z rôznych lingvistických a kultúrnych prostredí, ako sú EMODB,
EMOVO a RAVDESS. Tento prístup umožňuje modelu získať schopnosť generalizovať emo-
cionálne rozpoznávanie naprieč rôznymi korpusmi, čím sa zvyšuje jeho robustnosť a adapt-
abilita.

V neskoršej fáze práca preskúma možnosti jemného ladenia, ktoré je známe pod zauží-
vaným anglickým názvom "fine-tuning", modelu na špecifickú dátovú sadu s nižšími výpoč-
tovými nárokmi. Fine-tuning sa zameriava na optimalizáciu výkonu modelu pri zachovaní
nízkej výpočtovej náročnosti, čo je kľúčové pre aplikácie v reálnom čase. Tento proces
zahŕňa úpravu parametrov vrstiev modelu AST, ktoré sú zodpovedné za konečnú klasifiká-
ciu emocionálnych stavov, s cieľom dosiahnuť vyššiu presnosť pri rozpoznávaní cieľových
emócií.

Výsledky práce ukazujú, že upravený model AST dosahuje vysokú presnosť rozpozná-
vania emócií a demonstruje jeho praktickú aplikovateľnosť vo viacerých oblastiach, vrá-
tane klinickej psychológie, bezpečnostných systémov a interaktívnych systémov založených
na rozpoznávaní reči. Rozšírená analýza a evaluácia modelu na rôznych dátových sadách
potvrdzujú jeho efektivitu a poukazujú na potenciálne vylepšenia pre budúce výskumy.

Táto práca prispieva k hlbšiemu porozumeniu možností hlbokého učenia v oblasti rozpozná-
vania emócií z reči a predstavuje dôležitý krok k lepšej integrácii umelej inteligencie do
aplikácií súvisiacich s interakciou človeka a počítača.
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Chapter 1

Introduction

Emotion recognition and simulation have become pivotal in the interface between humans
and computers, marking a significant evolution in both cognitive science and artificial in-
telligence. Humans experience and express emotions with a complex interplay of physio-
logical, cognitive, and social factors [38]. These emotional expressions are often subtle and
nuanced, influenced by personal experiences and cultural contexts. In contrast, computers
must rely on explicit models and algorithms to ”understand“ or simulate emotions. They do
this by processing observable data such as facial expressions, voice modulations, and body
language, which are then interpreted through predefined frameworks like the Circumplex
Model of Emotion 2.2.1 or Plutchik’s Emotion Wheel 2.2.2.

In this thesis, we will focus on classifying human emotions from their speech with the
help of deep learning neural networks.
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Chapter 2

Emotion Models in Computer
Software

Unlike humans, who can intuitively grasp and react to emotional subtleties, computers re-
quire extensive data and sophisticated algorithms to approximate this understanding. This
disparity arises because human emotional processing involves not only basic sensory input
but also a deep, often unconscious synthesis of past experiences, cultural norms, and per-
sonal expectations. Computers, however, operate within the confines of their programming
and algorithms, which can only mimic this process to a limited extent. For instance, while
a human might detect sarcasm or a subtle shift in mood from a slight change in tone, a
computer needs clear, distinct patterns that fit within its programmed understanding.

This chapter explores how emotion models are conceptualised and implemented in soft-
ware to bridge this gap between human emotional complexity and computer processing
capabilities. By integrating these models into systems, developers aim to enhance the ma-
chine’s ability to interpret human emotions accurately and interact in a more human-like,
empathetic manner. Such advancements not only improve the user experience but also
open new avenues in how we understand and interact with technology, making interactions
more natural and intuitive.

2.1 Historical Overview of Emotion Theories
The study of emotions spans multiple disciplines including psychology, neuroscience, and
philosophy. The understanding of emotions has evolved significantly from ancient to modern
times, impacting how emotions are modelled in computational systems today.

Ancient and Philosophical Perspectives

The philosophical inquiry into emotions dates back to the works of Aristotle and Plato,
who pondered the role of emotions in human rationality and ethics. Aristotle’s “Rhetoric”
discusses emotions as persuasive tools, while Plato considered them part of the psyche that
could disturb rational thinking [33, 28].

Evolutionary Theories

Charles Darwin’s work in the 19th century marked a pivotal turn toward understanding
emotions from an evolutionary perspective. In his seminal book ”The Expression of the
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Emotions in Man and Animals“ [9], Darwin proposed that emotions served adaptive evo-
lutionary functions, which could be understood through patterns of expression that were
consistent across cultures [9]. This work laid the foundation for later scientific studies into
the biological bases of emotion.

Early Psychological Theories

In the late 19th and early 20th centuries, William James and Carl Lange independently
proposed what is now known as the James-Lange Theory of Emotions. This theory suggests
that physiological arousal precedes the experience of emotion in which people feel sad
because they cry, and not the other way around [17]. Although later debated and refined,
this theory was crucial in shifting the focus to the physiological underpinnings of emotional
experiences.

The Development of Modern Emotion Psychology

Throughout the 20th century, further theories emerged that expanded upon these foun-
dations. The Cannon-Bard theory challenged the James-Lange theory by proposing that
emotions and physiological responses occur simultaneously rather than sequentially [8].
Later, Schachter and Singer’s Two-Factor Theory introduced the idea that both physiologi-
cal arousal and cognitive interpretation are necessary for the experience of emotion, adding
complexity to understanding how emotions are processed [35].

All of these theories have contributed to the rich tapestry from which modern emotion
models in computer software have been developed. They provide the necessary historical
context to appreciate the complexity and depth of human emotions that we attempt to
model today.

2.2 Emotion Models in Computer Software

2.2.1 The Circumplex Model of Emotion

Developed by James A. Russell in the early 1980s, the Circumplex Model of Emotion 2.1 is
a seminal framework in affective psychology that classifies emotions in a two-dimensional
space of arousal and valence [34]. Arousal indicates the level of energy associated with an
emotion, whereas valence reflects the degree of pleasantness. This model has been partic-
ularly influential in the development of emotion recognition software, which uses these two
dimensions to analyze facial expressions, voice tone, and physiological responses to catego-
rize the emotional state of users [3]. The simplicity of this model makes it highly effective
for real-time emotion assessment in interactive applications such as virtual assistants and
customer service chatbots.
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Figure 2.1: The Circumplex Model of Emotion [43]

The combination of these dimensions allows for the placement of specific emotions within
the circle. For example:

• High Arousal, Positive Valence: Excitement, ecstasy

• High Arousal, Negative Valence: Fear, anger

• Low Arousal, Positive Valence: Contentment, satisfaction

• Low Arousal, Negative Valence: Boredom, sadness

2.2.2 Plutchik’s Emotion Wheel

Robert Plutchik proposed his Emotion Wheel 2.2 in 1980 as a way to illustrate the relation-
ships among different emotions, conceptualizing them as eight primary bipolar emotions:
joy versus sadness, anger versus fear, trust versus disgust, and surprise versus anticipa-
tion [29]. This model extends to include various degrees of intensity of each emotion, and
combinations of the primary emotions can form complex feelings. In computer software,
Plutchik’s model is utilised to enhance emotional analysis algorithms. It enables more com-
plex emotion recognition capabilities that are critical in areas such as behavioural predic-
tion, personalised content delivery, and therapeutic settings where understanding nuanced
emotional responses is key [25].

Here are the eight primary emotions in Plutchik’s model, along with their opposites:

Joy <-> Sadness
Trust <-> Disgust
Fear <-> Anger

6



Surprise <-> Anticipation

Figure 2.2: Plutchik’s wheel of emotions [29]

2.2.3 Lövheim Cube of Emotion

The Lövheim Cube of Emotion 2.3 presents a three-dimensional model based on the levels
of the neurotransmitters serotonin, dopamine and noradrenaline, positing that different
combinations of these levels of neurotransmitters lead to different emotions [24]. This
model is especially relevant in the development of affective computing systems that need to
simulate human emotions with high accuracy. For example, in therapeutic software used in
mental health treatment, the Lövheim Cube can guide the simulation of patient emotions
under various scenarios, thus aiding in more effective treatment planning and support.
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Figure 2.3: Lövheim Cube of Emotion [24]

2.2.4 Conclusion

The integration of emotion models into computer software has transformed the landscape of
human-computer interaction. By employing sophisticated models such as those discussed in
this chapter, developers can create software that not only understands human emotions, but
also responds to them in a manner that mimics human empathy and understanding, thereby
enhancing user experience and broadening the applicability of technology in emotionally
sensitive applications.

2.3 Signal Processing Theoretics: Audio Signals
This section delves into the fundamental aspects of audio signal processing that are crucial
to understanding how emotional cues can be extracted from speech and vocal expressions.
Each subsection focuses on a key concept or technique.

”A signal is a representation of a quantity that varies over time or space and is used
to convey information. In computer science, signals are often processed digitally and can
be represented as a sequence of samples. Examples include audio signals, images, and
network traffic. The primary focus of signal processing is to analyze, modify, and interpret
these signals for various applications such as communication, audio processing, and image
analysis.“ [27] In the Figure 2.4, you can see samples of how audio signals can differentiate
based on the emotion expressed in the same sample of speech.
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Figure 2.4: Different waveforms for different emotion affectation for the same sentence [44]

2.3.1 Audio Signal Power Spectrum and Its Spectral Envelope

The power spectrum of an audio signal represents the distribution of power in the frequency
components that make up that signal. It provides insights into the harmonic content and
the energy of the signal at various frequencies. The spectral envelope, on the other hand,
is a smooth curve that represents the peaks of the power spectrum, effectively capturing
the resonant frequencies of the vocal tract that are critical for characterizing speech sounds
[32]. An example of such envelope is shown in Figure 2.5.

Figure 2.5: Spectral Envelope [32]
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2.3.2 Waveform Examples

A waveform is a visual representation of the shape of a sound signal in the time domain.
Analyzing waveforms allows for the observation of characteristics such as amplitude and
frequency over time, providing a fundamental understanding of sound properties. This
analysis is essential for distinguishing between different types of sound expressions and is
particularly useful in speech analysis [12].

2.3.3 Windowing Examples

Windowing is a technique used in signal processing where the signal is multiplied by a
window function. This method reduces artifacts in the Fourier transform of the signal,
particularly discontinuities at the edges of a sampled time window. Common windows
include Hamming, Hanning, and Blackman windows shown in Figure 2.6, each with specific
properties that make them suitable for different types of signal analysis tasks [15].

Figure 2.6: Hamming Window

2.3.4 Mel Filter Bank Example

The Mel Filter Bank is used to mimic the human ear’s response to different frequencies,
capturing the essential characteristics of sound in terms of human perception. It consists
of a set of triangular filters, as seen in Figure 2.7, each tuned to a specific frequency
band centered on the Mel scale. This technique is extensively used in voice recognition
and speech processing applications to extract features that are robust and relevant for
identifying emotional content in speech [10].
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Figure 2.7: Mel Filter Banks

2.3.5 Jitter and Shimmer Example

Jitter and shimmer, as seen in Figure 2.8, are measures used to assess the stability and
quality of the human voice. Jitter refers to the frequency variation from one cycle to the
next, while shimmer refers to the amplitude variation. These parameters are important
indicators of voice disorders and are also useful for emotional state analysis, as emotional
states can influence voice stability and quality [18].

Figure 2.8: Jitter and Shimmer

This thesis aims to propose the Speech Emotion Recognition (SER) system that recog-
nizes emotions from a speech in a way that approaches the abilities of humans, and to do
so there is a need to study how to categorize emotions like them as the fundamental brick
for the following work. Two types of emotional models are interesting from the SER point
of view: discrete (categorical) model and dimensional (continuous) model [2].
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Chapter 3

Emotion recognition from speech

3.1 SER Datasets
In recent advancements, the field of emotion recognition has become a focal point in machine
learning research, prompting the development of numerous datasets. These datasets vary
greatly in size, quality, and type, each tailored to meet specific research needs in the field
of speech emotion recognition (SER).

3.1.1 Types of SER Datasets

Datasets in SER are classified based on the nature of the emotion elicitation and recording:

• Acted: Actors are instructed to express particular emotions, which are then captured
in recordings. This type typically allows for controlled study of specific emotional
states but may lack naturalism.

• Naturalistic: These datasets consist of recordings from real-life interactions or mono-
logues where emotions occur naturally, providing a more genuine insight into human
emotional expression.

• Bilingual: Unique datasets where the same phrases are recorded by the same speaker
in multiple languages, enriching the dataset with linguistic diversity that is beneficial
for multi-lingual emotion recognition systems.

• Cross-corpus: Perhaps the most valuable for robust algorithm training, these datasets
combine various types of data collections, enhancing the model’s ability to generalize
across different languages, modalities, and emotional expressions.

3.1.2 Highlighted SER Datasets

This thesis utilizes five key datasets, whose overview can be seen in table 3.1, chosen for
their relevance in benchmarking the performance of contemporary models as well as their
availability through existing university resources. Detailed exploration of these datasets
facilitates a deeper understanding of model accuracies and advancements in SER technology.
The datasets include:

• MSP-Podcast: This extensive dataset includes over 104,267 speaking turns, accu-
mulating to about 166 hours and 9 minutes of naturalistic emotional speech collected

12



from various podcasts. It is particularly valuable for studying spontaneous emotional
expressions in speech [23].

• EMO-DB: A well-established dataset, the Berlin Database of Emotional Speech
(EMO-DB), supports the analysis and development of algorithms for emotion recog-
nition. It includes a variety of emotional states expressed in German through scripted
statements, making it a staple in many SER studies [5].

• IEMOCAP: Focused on dyadic interactions, the Interactive Emotional Dyadic Mo-
tion Capture database offers a rich source of audio-visual data capturing naturalistic
emotional expressions in controlled scenarios. This dataset is widely used for training
and testing SER systems [6].

• RAVDESS: The Ryerson Audio-Visual Database of Emotional Speech and Song con-
tains meticulously recorded audio and visual data of professional actors expressing a
range of emotions through speech and song. Its detailed annotation system includes
information on modality, vocal channel, emotion, emotional intensity, statement, rep-
etition, and actor identity, providing a structured framework for comprehensive emo-
tion analysis [22].

Table 3.1: Brief description of databases for SER.
Name Type Language Emotions Citations count

Emo-DB Acted German
Neutral, anger, sadness,
fear, boredom, happi-
ness, disgust.

1237

IEMOCAP Elicited English
Anger, happiness, sad-
ness, frustration, neu-
tral.

1421

RAVDESS Acted English
Surprise, anger, fear,
disgust, sadness, neu-
tral, calm, happiness.

558

MSP-Podcast Natural English

Surprise, anger, fear,
disgust, sadness, neu-
tral, calm, happiness,
concerned, depressed,
excited.

853

3.2 Traditional Machine Learning Approaches for SER

3.2.1 Features

Designing an effective speech emotion recognition (SER) system involves the meticulous
identification and extraction of key emotion-related speech features. Human capabilities in
interpreting both linguistic and paralinguistic cues from speech highlight the complexity
of this task. The selection of appropriate speech features is crucial for enhancing the
performance of SER classifiers.
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Speech Feature Categories

Numerous types of features have been studied extensively in SER research:

• Local and Global Features: Local features represent short-term properties of
speech, whereas global features capture long-term aspects.

• Continuous Speech Features: These features are derived from flowing speech,
providing a dynamic perspective of emotional expression.

• Qualitative Features: Subjective qualities such as tone and stress fall under this
category.

• Spectral Features: These include fundamental frequency, formants, and other
frequency-related characteristics that are vital for distinguishing emotional states in
speech.

• Teager Energy Operator (TEO) Features: TEO-based features help in analyz-
ing the energy operators of speech signals, which are effective in identifying speech
modulations.

• Excitation Source Features: These features, including pitch and voice quality, are
derived from the source of vocal excitation.

• Vocal Tract Features: Represent the configuration and dynamics of the speaker’s
vocal tract during speech.

Speech signals are inherently nonstationary, thus they are segmented into small frames to
render them stationary for analysis, focusing primarily on excitation source features, vocal
tract characteristics, prosodic features, and various combinations of these features [19].

Classifier Design and Effectiveness

Speech Emotion Recognition (SER) is employed to classify the underlying emotions in any
given utterance. The classification of SER can be approached through two distinct methods:
traditional classifiers and deep learning classifiers 3.3. While numerous classifiers have been
applied in SER systems, determining the most effective one poses a challenge, leading to
ongoing pragmatic research in the field.

SER systems commonly leverage various traditional classification algorithms. The learn-
ing algorithm predicts a new class input by utilizing labeled data that recognizes respective
classes and samples through the approximation of the mapping function. Following the
training process, the remaining data is employed to test the classifier’s performance. Ex-
amples of traditional classifiers include Gaussian Mixture Model, Hidden Markov Model,
Artificial Neural Network, and Support Vector Machines. Other traditional classification
techniques, such as k-Nearest Neighbor, Decision Trees, Naïve Bayes Classifiers, and k-
means, are also frequently preferred. Additionally, an ensemble technique is employed for
emotion recognition, combining different classifiers to achieve more robust and acceptable
results.

The effectiveness of a SER system significantly depends on the choice of classifiers. Vari-
ous machine learning classifiers have been implemented and evaluated for their performance
in SER [21]:
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• Single Classifiers: These involve using one classifier type to predict emotional states.

• Multiple Classifiers: This approach uses several classifiers, each trained on different
aspects of speech features to improve recognition accuracy.

• Hybrid Classifiers: Combining features or methods can result in hybrid classifiers
that leverage the strengths of various approaches.

• Ensemble Classifiers: These classifiers use a group of models to better generalize
over different datasets, enhancing robustness and accuracy.

The design of speech databases, crucial for assessing classifier effectiveness, varies based on
environmental conditions and language specifics. It’s essential that the features chosen for
classifier design are robust enough to perform effectively across different speech emotion
contexts. Classifiers are typically trained and tested within the same database to ensure
consistency in performance evaluation [21].

3.2.2 Summary

In the domain of machine learning for emotion recognition, traditional methodologies typi-
cally rely on manual feature extraction and established classifiers. Essential speech features
such as pitch, energy, and formants are extracted and then utilized to feed classifiers like
Support Vector Machines (SVMs) and Gaussian Mixture Models (GMMs). An overview of
such models is probided in the following table 3.2. These traditional models are somewhat
effective, yet they may not capture the complex and high-dimensional patterns in data as
efficiently as more modern deep learning approaches, such as Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks (RNNs).

In this thesis, we will depart from these traditional models in favor of exploring deep
learning techniques. The subsequent section will detail these deep learning algorithms
and their application to emotion recognition, highlighting their advantages over traditional
methods in capturing nuanced emotional expressions in speech.
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Table 3.2: This table provides a quick overview over existing traditional models used for speech emotion recognition
No. Methods Methodology overview Results References

1 GMMs
All features were used to model GMMs on the frame
level. Emotions were classified in three categories.
Method has been tested on two different datasets

85% accuracy Neiberg et al. (2006)

2 SVM
Emotions were classified into 7 different categories.
Majority of features that were used are in time
domain. Methodology was testing using one dataset

81% recognition rate Lalitha et al. (2014)

3 GMM Supervector-based SVM vs GMM
GMM supervectors for calculated for each utterance,
which were further used as input for SVM. Utter-
ances were classified to 5 emotions

GMM Supervector-based SVM significantly outper-
forms standard GMM system Hu et al. (2007)

4 HMM and SVM

Utterances were classified in 5 categories. Feature
selection was performed using SFS. Both HMM
and SVM were used for classification separately to
compare

Recognition rate of 99.5% through HMM, 88.9%
through SVM Lin and Wei (2005)

5 SVM
Different combination of features was used to
develop different SVM models. Best one was cho-
sen based on accuracy rate

Accuracy rate of 91.3% for Chinese database, 95.1%
for Berlin databases Pan et al. (2012)

6 Hybrid SVM-Belief Network Architecture

Utterances were classifieds into 7 emotions. Hybrid
system was built using SVM and Belief Network.
Results were integrated in a soft decision fusion
using MLP

Error rate of 8.0% Schuller et al. (2004)

7 SVM, LDA, QDA, HMM Important features were selected, multiple methods
were used

Accuracy rate of 70.1% (4 emotions), 96.3% ( 2 emo-
tions) using GSVM Kwon et al. (2003)

8 HMM (bimodal, integrating audio and video) Hybrid method, both video and audio sources were
used to classify emotions into 4 categories

Approximate accuracy of 70% through video source,
30% through audio, and 72% through bimodal Silva and Ng(2000)

9
Nearest-mean criterion, model
each class with Gaussian
distribution and classify test samples

Features that give highest recognition rates are
selected. Both video and audio sources were used
to classify emotions into 6 categories

Best accuracy of 77.8% through audio source, 97.2%
through audio and video source Chen et al. (1998)

10 k-nearest neighbor, neural network, ensemble of
neural network

Emotions were classified into 5 categories. Recogni-
tion rate of each emotion was calculated. Accu-
racy rate of each emotion was determined to find
out which emotions are being categorized more
accurately

Accuracy of 55% through K-nearest neighbors, 65%
through neural network, 70% through ensemble of
neural network. Accuracy of classifying fear was
worst, while anger and sadness was best

Petrushin (2000)
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3.3 Deep Learning Approaches for SER
Deep Neural Networks (DNNs) are a class of machine learning algorithms inspired by the
biological neural networks that constitute human brains. These sophisticated models consist
of multiple layers of interconnected nodes, and they are highly adept at identifying complex
patterns and relationships within large datasets. DNNs are particularly impactful in the
field of affective computing for tasks such as emotion recognition from speech.

Central to the effectiveness of DNNs is their ability to autonomously derive hierarchical
feature sets from raw data inputs. In the realm of speech emotion recognition, DNNs are
exceptionally skilled at detecting subtle acoustic nuances linked with various emotional
states. This capability is enhanced by using Recurrent Neural Networks (RNNs) equipped
with Long Short-Term Memory (LSTM) units, which are crucial for processing the temporal
aspects and dependencies of spoken language.

The operational mechanism of DNNs starts either with extracting critical features from
speech, such as Mel-frequency cepstral coefficients (MFCCs), which capture the audio’s
frequency components, or providing the raw speech data as input. These features are fed
into the neural network, initiating a training phase on annotated datasets. Throughout
this phase, the DNN adjusts its internal weights and biases to align the feature inputs with
corresponding emotional labels, a process refined through continual optimization iterations.

What sets DNNs apart in the field of emotion recognition is their nuanced capability
to perceive fine variations in speech, such as changes in tone, pacing, and intonation, all
of which are indicative of underlying emotions. This sensitivity allows the models to gen-
eralize effectively across different emotional expressions and ensures robust performance in
practical applications.

As interest in SER expands within the research community—fueled by advancements in
technology and greater accessibility to computational resources—deep learning methodolo-
gies are increasingly being integrated into this area. The subsequent sections will outline
cutting-edge approaches in this domain, forming the foundation upon which the model will
be developed and potential shortcomings of existing frameworks address. An overview of
deep learning approaches below is provided by Table 3.3.

3.3.1 Convolutional Recurrent Neural Network (CRNN)

The Convolutional Recurrent Neural Network (CRNN) merges the spatial feature detec-
tion capabilities of Convolutional Neural Networks (CNNs) with the sequence modeling
strengths of Recurrent Neural Networks (RNNs). This combination allows CRNNs to ef-
fectively process data that has both spatial and temporal dimensions, making them highly
effective in tasks such as emotion recognition from speech signals [20].

Architecture Overview

In a CRNN, the initial layers are convolutional, designed to extract spatial features from
the input data. These features are then processed by recurrent layers, which capture tem-
poral dependencies using mechanisms such as Long Short-Term Memory (LSTM) or Gated
Recurrent Units (GRUs). This architecture makes CRNNs suitable for applications where
both the content of the signal and its temporal characteristics are important.
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Applications and Performance

CRNNs are utilized for enhancing one-dimensional signals, such as in audio processing,
where they can apply filters like Mel and Gammatone to improve signal clarity by removing
noise. The integration of convolutional and recurrent layers enables CRNNs to achieve high
accuracy and low loss rates during both training and testing phases, demonstrating their
robustness and efficiency in handling complex tasks [20].

3.3.2 CNN Bidirectional LSTM (CNN-BiLSTM)

Wang et al. [39] introduce a novel transformer-based framework named DWFormer, de-
signed specifically for the speech emotion recognition field. This framework is adept at
identifying significant temporal regions at varying scales both within and between samples.
Empirical evidence shows that DWFormer surpasses previous state-of-the-art methods in
performance. Through an ablation study, the utility of the Dynamic Local Window Trans-
former (DLWT) and Dynamic Global Window Transforme (DGWT) modules within this
framework is validated. Given its capability to pinpoint critical information, plans are un-
derway to deploy DWFormer in the study of pathological speech recognition, aiming to aid
researchers in analyzing the effects of diseases on speech articulation.

3.3.3 PCNSE

In full name the Parallel Convolutional Layers (PCN) integrated with Squeeze-and-Excitation
Network. Zhao et al. [45] introduce an advanced deep neural network architecture that
integrates Connectionist Temporal Classification (CTC) loss for targeted use in discrete
speech emotion recognition. The efficacy of this innovative approach is validated through
rigorous testing on two key emotion corpora: the Interactive Emotional Dyadic Motion
Capture (IEMOCAP) and the FAU-Aibo Emotion corpus (FAU-AEC). The experimen-
tal outcomes highlight the suitability of this method for discrete SER, where it achieves
a weighted accuracy (WA) of 73.1% and an unweighted accuracy (UA) of 66.3% on the
IEMOCAP dataset. Furthermore, it also records an unweighted accuracy of 41.1% on the
FAU-AEC dataset.

3.3.4 TIM-Net

In full words the Temporal-aware bI-direction Multi-scale Network. Ye et al. [42] present a
cutting-edge approach for temporal emotional modeling in their paper, introducing TIM-
Net which architecture is shown in figure 3.1. This model is designed to learn multi-scale
contextual affective representations across various time scales. TIM-Net excels at capturing
long-range temporal dependencies using bi-directional temporal modeling and dynamically
fuses multi-scale information to adeptly adjust to variations in temporal scale.

The findings from experimental evaluations underscore the importance of leveraging
context information with dynamic temporal scales for the speech emotion recognition task.
Additional insights from ablation studies, visualizations, and domain generalization analyses
further substantiate the benefits of TIM-Net. Looking forward, Ye proposes to explore the
disentanglement of emotional and speech content within this temporal modeling framework
to enhance generalization across different SER corpora.
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Figure 3.1: The architecture of TIM-Net is specifically designed for extracting affective
features and includes two main components: a bi-directional module and a dynamic fusion
module. It is important to note that the forward 𝜏𝑗 and backward 𝜏𝑗 components of the
bi-directional module share the same structural design but differ in the inputs they process.
[42]

3.3.5 DNN & ELM

Han et al. [14] introduce a novel approach in their study by employing a Deep Neural
Network (DNN) to estimate emotional states from individual speech segments within an
utterance. These segment-level estimations are then aggregated into an utterance-level
feature vector. Subsequently, an Extreme Learning Machine (ELM) is utilized to perform
the emotion recognition for the entire utterance. The experimental results from this study
suggest that leveraging a DNN in conjunction with an ELM significantly enhances the
performance of emotion recognition from speech signals. This method shows great promise
in extracting and learning emotional information from low-level acoustic features through
neural networks.

3.3.6 Multimodal System by Busso et al.

This study conducted by Busso et al. [7] delves into the statistical analysis of pitch contours
in speech. Initially, pitch features extracted from emotional speech samples are compared
to those from neutral speech using symmetric Kullback-Leibler distance to establish differ-
ences. Subsequently, the emotional discriminative power of these pitch features is assessed
through the comparison of nested logistic regression models.

The findings reveal that broader pitch contour statistics—such as mean, maximum,
minimum, and range—hold greater emotional significance than those describing the shape of
the pitch. Furthermore, it is determined that pitch statistics evaluated at the utterance level
yield more accurate and robust results than those assessed over shorter speech segments,
such as voiced sections.

Building upon these insights, a binary emotion detection system is developed to differ-
entiate emotional from neutral speech. The system employs a novel two-step methodology:
initially, reference models for pitch features are trained using neutral speech to establish a
baseline. Input features are then compared against these models to gauge similarity (for
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neutral speech) or disparity (for emotional speech). The effectiveness of this approach is val-
idated across four acted emotional databases, encompassing various emotional categories,
recording settings, speakers, and languages.

The results demonstrate that this system achieves a recognition accuracy of over 77%
using only pitch features, a significant improvement over the baseline of 50%. Compared
to traditional classification methods, this novel approach exhibits enhanced accuracy and
robustness. [7]

3.3.7 Audio Spectrogram Transformer (AST)

The Audio Spectrogram Transformer (AST) represents a groundbreaking shift in audio
classification methodologies. Unlike traditional models, AST is the first to utilize a purely
attention-based mechanism, devoid of convolutional layers, tailored specifically for audio
tasks. It accommodates variable-length inputs and has been rigorously evaluated across
several audio classification benchmarks. Remarkably, AST achieves a mean average pre-
cision (mAP) of 0.485 on AudioSet, 95.6% accuracy on ESC-50, and 98.1% accuracy on
Speech Commands V2 [13]. The model’s architecture, inspired by the successes of Trans-
former technology in natural language processing, adapts this approach to handle audio
data through sophisticated time-frequency representations known as spectrograms.

Architecture

AST’s architecture, also shown in Figure 3.2 fundamentally transforms the approach to
audio signal processing by employing the Transformer model, which relies on self-attention
mechanisms rather than the traditional convolutional neural networks (CNNs). This shift
allows AST to dynamically weigh the importance of different segments of the audio without
the constraint of local receptive fields typically imposed by CNNs. The Transformer layers in
AST analyze the entire audio spectrum holistically, enabling it to capture complex patterns
and dependencies that are crucial for accurate audio classification.

Input Representation

The input to AST is a mel-spectrogram, a sophisticated transformation of raw audio that
reflects human perception of sound more accurately than standard spectrograms. This
transformation involves segmenting the audio signal into short frames, applying a Fast
Fourier Transform (FFT) to each frame to obtain the frequency spectrum, and then warping
the frequencies onto the mel scale. This scale emphasizes perceptual relevance rather than
linear frequency distribution, making it particularly effective for tasks involving human
auditory perception, such as speech and music classification.

Applications

AST’s flexibility and robustness allow it to excel in a variety of audio classification tasks.
It has been successfully applied in environmental sound classification, where it identifies
and categorizes natural and urban sounds, music genre classification, distinguishing among
different musical styles, and speech emotion recognition, detecting emotional states from
speech patterns. The model’s ability to handle long-range dependencies and its sensitivity
to the temporal dynamics of audio make it exceptionally suited for these complex audio
analysis tasks.
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Advantages

One of the foremost advantages of the AST model is its convolution-free architecture,
which enables it to focus attention variably across different parts of an audio signal. This
capability allows AST to perform exceptionally well on tasks that require a nuanced un-
derstanding of audio content. The self-attention mechanism assesses relationships across
all parts of the audio signal, fostering a comprehensive understanding that often surpasses
traditional methods, particularly in discerning subtle audio features essential for high-level
audio analysis.

Figure 3.2: Architecture proposed by the authors of AST [13]
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Table 3.3: The table provides a quick overview over existing deep learning models used for
speech emotion recognition

Model Database(s) Preprocessing Results
C-RNN RAVDESS - 70 % / -

CNN-
BiLSTM IEMOCAP

Framing with the frame
length of 25 ms and
hop length of 10 ms

92 % / 91.28 %

PCNSE IEMOCAP,
FAU-AEC

Framing with the frame
length of 25 ms and
hop length of 10 ms,
Hamming window

applied on each frame

66.3 % / 73.1 %
for IEMOCAP,
41.1 % / - for

FAU-AEC

TIM-Net

EmoDB,
IEMOCAP,
RAVDESS,

SAVEE,
CASIA,
EMOVO

Framing with frame
length of 50 ms and

hop length of 12.5 ms,
Hamming window

applied on each frame.

2.34 % / 2.36 %
(avg. improve-

ment)

DNN, then
ELM -

DNN have been used to
produce emotion state
probability distribution

for each segment,
which was to construct
utterance-level features.
These features were fed

into ELM to identify
utterance-level

emotions ( 5 categories)

Accuracy rate of
45% through base
HMM improved

to 54.3% through
proposed
approach

Multimodal
system -

Both audio and visual
information have been

used. Results were
integrated through

fusion. Emotions were
classified into 4

categories

Accuracy of
70.9% through
acoustic source,
85% through
facial source,
89.1% through
bimodal system

AST

AudioSet,
Speech

Commands
V2

-

95.6% accuracy
on ESC-50, and
98.1% accuracy

on Speech
Commands V2.

3.3.8 Deep Belief Networks

Deep Belief Networks (DBNs) represent another class of deep learning models, distinct in
architecture and training methodology from traditional Deep Neural Networks (DNNs).
While both DNNs and DBNs fall under the umbrella of deep learning, the key difference
lies in the hierarchical structure and learning approach.
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Unlike the feedforward architecture of DNNs, DBNs are composed of multiple layers of
stochastic, latent variables, where each layer models dependencies among these variables.
DBNs consist of a generative layer known as the Restricted Boltzmann Machine (RBM)
and a top discriminative layer for classification tasks.

In the realm of emotion recognition from speech, DBNs offer an alternative approach
to capturing intricate patterns in acoustic signals. The training process of a DBN in-
volves layer-wise unsupervised pretraining, where each layer is trained to learn a compact
representation of the input data. This pretraining allows DBNs to automatically extract
hierarchical features and uncover complex relationships within the data.

The versatility of DBNs lies in their ability to adapt to varying levels of abstraction
in the input features. In the context of speech, this can be advantageous for recognizing
emotions, as it allows the model to capture both low-level acoustic details and high-level
contextual information.

While DNNs have proven effective in learning representations directly from labeled
data through supervised learning, DBNs, with their unsupervised pretraining, may excel in
scenarios with limited labeled training samples. This characteristic makes them valuable
in tasks where obtaining large labeled datasets is challenging [41].

Deep Boltzmann Machine

Deep Boltzmann Machines (DBMs) represent a specialized class of unsupervised deep learn-
ing models, sharing some similarities with Deep Belief Networks (DBNs) in their use of
Boltzmann Machines. However, DBMs introduce a more complex and interconnected ar-
chitecture, enabling the modeling of higher-order dependencies in the data.

In the context of emotion recognition from speech, Deep Boltzmann Machines offer a
unique approach to capturing the intricate patterns present in acoustic signals. Unlike
the layer-wise unsupervised pretraining employed in DBNs, DBMs utilize a joint training
approach that considers all layers simultaneously. This allows DBMs to model complex
relationships and dependencies across multiple layers, potentially yielding richer represen-
tations of emotional cues in speech.

The architecture of a DBM comprises visible and hidden layers, where each layer con-
tains a set of stochastic binary units. The connectivity pattern between layers is symmetric,
allowing for bidirectional information flow. This bidirectional connectivity enables DBMs
to capture not only the direct relationships between input features but also more abstract
and high-level dependencies.

Training a Deep Boltzmann Machine involves adjusting the weights and biases to max-
imize the likelihood of observed data. This process is inherently unsupervised, making
DBMs particularly suitable for scenarios where labeled emotion data is scarce or unavail-
able. The model learns a probabilistic generative model of the input data, allowing it to
capture the underlying structure of the acoustic features associated with different emotional
states.

The use of DBMs in emotion recognition highlights their capability to automatically
learn hierarchical representations of speech data. By modeling dependencies across mul-
tiple layers, DBMs have the potential to capture nuanced and contextually rich patterns,
contributing to more sophisticated emotion recognition systems [36].
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Restricted Boltzmann Machine

While both RBMs and DBMs are types of Boltzmann Machines used for unsupervised
learning, DBMs extend the architecture to include multiple hidden layers with bidirectional
connectivity. This architectural difference allows DBMs to capture more complex relation-
ships within the data, making them particularly useful for tasks requiring the modeling of
intricate dependencies, such as in emotion recognition from speech [31].

3.3.9 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) represent a class of neural networks designed to ef-
fectively capture sequential information, making them well-suited for analyzing time-series
data like speech signals. In the context of emotion recognition from speech, RNNs offer a
unique approach to understanding the temporal dynamics inherent in spoken language [37].

Key Characteristics of RNNs:

• Temporal Sequences: RNNs are specialized in handling sequences of data by main-
taining hidden states that capture information from previous time steps. This makes
them particularly powerful for tasks where the order and context of input data matter,
such as in understanding the emotional nuances expressed in speech.

• Long Short-Term Memory (LSTM): To address challenges like vanishing gradi-
ents and the inability to capture long-range dependencies, RNNs often incorporate
LSTM cells. LSTMs are capable of learning and remembering information over ex-
tended sequences, making them effective for modeling the temporal aspects of speech.

• Feature Extraction: RNNs process acoustic features extracted from speech signals,
such as Mel-frequency cepstral coefficients (MFCCs), pitch, and energy. These fea-
tures serve as inputs to the network, enabling it to learn patterns associated with
different emotions.

• Training Process: During training, RNNs learn to map the sequential acoustic
features to corresponding emotion labels. The training process involves adjusting
the weights of the network using backpropagation through time (BPTT), allowing
the model to capture temporal dependencies and improve its ability to recognize
emotions.

• Real-time Inference: Once trained, RNNs can perform real-time emotion recogni-
tion from speech. Given a new speech sample, the model processes the input sequen-
tially and generates predictions based on the learned temporal dependencies.

• Challenges: Despite their effectiveness, RNNs have limitations, such as difficulties in
capturing very long-term dependencies and susceptibility to vanishing or exploding
gradients. These challenges have led to the development of more advanced architec-
tures like Long Short-Term Memory networks (LSTMs) and Gated Recurrent Units
(GRUs).

Applications in Emotion Recognition:

Temporal Dynamics: RNNs excel in capturing the dynamic nature of emotional expres-
sion in speech, where the timing and sequence of acoustic features play a crucial role.
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Contextual Understanding: The ability to maintain hidden states allows RNNs to con-
sider context from previous time steps, aiding in the interpretation of emotional cues within
a broader context.

Multimodal Integration: RNNs can be employed in multimodal emotion recognition
systems, combining information from speech with other modalities like text or facial ex-
pressions for a more comprehensive understanding of emotional states.

3.3.10 Long Short-Term Memory

Long Short-Term Memory (LSTM) networks are a specialized type of Recurrent Neural
Network (RNN) architecture designed to address the challenges of modeling long-range de-
pendencies and capturing temporal dynamics in sequential data. In the context of emotion
recognition from speech, LSTMs offer enhanced capabilities for understanding and inter-
preting the nuanced patterns associated with different emotional states [16].

Key Characteristics of LSTM Networks:

• Memory Cells: LSTMs introduce a memory cell, a fundamental component that
allows the network to store and retrieve information over extended time intervals.
This mitigates the vanishing gradient problem encountered in traditional RNNs, en-
abling LSTMs to capture long-term dependencies crucial for understanding emotional
expressions in speech.

• Gates for Information Flow: LSTMs incorporate gating mechanisms, including
the input gate, forget gate, and output gate. These gates regulate the flow of infor-
mation into, out of, and within the memory cell. The ability to selectively update
and forget information enhances the network’s capacity to discern relevant emotional
cues in speech.

• Sequential Processing: LSTMs process sequential input data, such as acoustic fea-
tures extracted from speech signals, in a step-by-step manner. At each time step, the
network considers the current input, updates its hidden state, and makes predictions
based on the learned temporal dependencies.

• Feature Learning: LSTMs automatically learn hierarchical representations of se-
quential data, allowing them to extract and emphasize salient features associated with
different emotional states in speech.

• Training Process: During training, LSTMs adjust their weights through backprop-
agation through time (BPTT). The architecture’s ability to capture long-term depen-
dencies facilitates more effective learning of patterns within emotional expressions,
contributing to improved accuracy in emotion recognition.

Applications in Emotion Recognition:

• Temporal Context: LSTMs excel in capturing the temporal context of emotional
expressions in speech, enabling the model to consider not only the current acoustic
features but also the historical context.

• Complex Dependencies: The memory cell and gating mechanisms enable LSTMs
to capture complex dependencies in sequential data, making them well-suited for tasks
where understanding the interplay of various acoustic features is crucial.
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• Real-time Inference: Trained LSTMs can perform real-time emotion recognition,
making them suitable for applications that require immediate feedback based on in-
coming speech signals.

• Transfer Learning: LSTMs can benefit from transfer learning by initializing
weights with pre-trained models on large datasets. This is particularly useful in
emotion recognition tasks when labeled data is limited.

3.3.11 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of deep learning model that has been
successfully applied to various tasks, including image and speech processing. In the context
of emotion detection from human speech, CNNs can be utilized to automatically learn
relevant features from the audio data [44]. Here’s an overview of how CNNs can be employed
for emotion detection from speech:

1. Data Representation: Spectrogram Generation: Audio data is often converted into
a spectrogram, which is a visual representation of the spectrum of frequencies in a
sound signal as they vary with time. This conversion is crucial for extracting patterns
from the audio signals

2. Convolutional Layers:
Feature Extraction: Convolutional layers in a CNN are responsible for learning hier-
archical features. In the context of spectrograms, the convolutional filters can learn
to detect patterns and features that are indicative of certain emotional characteristics
in the speech signal.

3. Pooling Layers:
Downsampling: Pooling layers are often used to reduce the spatial dimensions of the
feature maps obtained from convolutional layers. This downsampling helps retain the
most important information while reducing computational complexity.

4. Flattening and Fully Connected Layers:
Decision Making: The flattened output from the convolutional and pooling layers is
fed into one or more fully connected layers. These layers serve as classifiers and learn
to map the features extracted by the earlier layers to specific emotion classes.

5. Softmax Activation:
Output Layer Activation: The final layer typically uses a softmax activation function,
which converts the raw output scores into probability distributions over different
emotion classes. This allows the model to provide a probability for each emotion
class.

6. Training:
Supervised Learning: CNNs are trained in a supervised manner, meaning that they
are provided with labeled examples of speech data and their corresponding emotion
labels. The model adjusts its parameters during training to minimize the difference
between its predicted emotions and the true emotions.
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7. Evaluation:
Testing and Validation: The trained model is evaluated on a separate set of data that
it has not seen before to assess its ability to generalize to new instances. Metrics such
as accuracy, precision, recall, and F1 score are commonly used for evaluation.

8. Hyperparameter Tuning:
Optimization: The model’s hyperparameters, such as learning rate, number of layers,
and filter sizes, may need to be fine-tuned to achieve optimal performance.

9. Real-time Inference:
Deployment: Once trained, the model can be used for real-time inference, taking in
new audio data and predicting the associated emotion.

Considerations:
Data Quality and Quantity: Adequate and diverse training data is crucial for the model

to generalize well to different speakers, accents, and emotional expressions. Model Com-
plexity: The architecture of the CNN, including the number of layers and parameters, needs
to be carefully chosen to balance complexity and generalization.

In summary, CNNs provide a powerful framework for automatically learning hierarchical
features from spectrograms, making them well-suited for tasks like emotion detection from
human speech.

3.4 Summary
The following table 3.4 summarizes various deep learning models discussed in the chapter,
outlining their advantages and disadvantages in the context of speech emotion recognition.
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Table 3.4: Comparison of Deep Learning Models for Speech Emotion Recognition
Model Pros Cons

Deep Neural
Networks (DNNs)

Highly effective in identifying
complex patterns and relationships,
good at generalizing across
different emotional expressions.

Requires significant computational
resources, potential for overfitting
on complex datasets.

Convolutional
Recurrent Neural
Network (CRNN)

Merges spatial feature detection of
CNNs with temporal modeling of
RNNs, suitable for data with both
spatial and temporal dimensions.

Complex architecture can be
challenging to tune and optimize,
potentially high computational
load.

CNN
Bidirectional
LSTM
(CNN-BiLSTM)

Combines CNN’s feature extraction
capabilities with LSTM’s temporal
accuracy, highly effective in
complex temporal sequence tasks.

Training can be computationally
intensive and slow, may require
large datasets to train effectively.

Parallel
Convolutional
Neural Networks
with Squeeze-
and-Excitation
(PCNSE)

Targets discrete emotion
recognition efficiently, shows strong
performance on specific
benchmarks.

Performance can vary significantly
across different datasets, may
struggle with generalization across
diverse emotional states.

Temporal-aware
bI-direction
Multi-scale
Network
(TIM-Net)

Capable of capturing long-range
temporal dependencies, adjusts
dynamically to variations in
temporal scale.

Complexity of the model might
lead to difficulties in training and
require extensive computational
resources.

Audio
Spectrogram
Transformer
(AST)

Utilizes a purely attention-based
mechanism without convolutional
layers, excellent at handling
long-range dependencies and subtle
audio features.

As a newer model, may lack
extensive real-world testing across
varied SER applications.

Given the various options, the author has chosen to implement the Audio Spectrogram
Transformer (AST) in their network. The decision is based on several factors:

• Attention Mechanism: AST leverages an advanced attention-based mechanism
which is crucial for identifying subtle nuances in speech that are indicative of emo-
tional states.

• Handling Long-Range Dependencies: Unlike traditional models that might strug-
gle with long sequences, AST excels in managing long-range dependencies, making it
well-suited for continuous speech emotion recognition.

• Model Efficiency: Despite its sophisticated capabilities, AST is designed to operate
efficiently in terms of computational resources compared to models that combine
CNNs and RNNs/LSTMs.

• Innovative Approach: The purely attention-based approach without reliance on
convolutional layers positions AST at the cutting edge of audio processing technology,
promising enhanced performance on SER tasks.
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The choice of AST highlights a strategic move towards utilizing state-of-the-art technol-
ogy to address the intricacies of speech-based emotion recognition, aiming to achieve both
high accuracy and efficiency. The proposal is explained in more depth in chapter 4.
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Chapter 4

Proposed Methodology

This chapter describes the idea of my implementation, it explains the relevant topics in
theory and describes the practical implementations of them.

After thoughtful consideration, I’ve opted not to create a custom deep learning model for
Speech Emotion Recognition (SER) and instead chose to fine-tune a pretrained model. The
primary motivation behind this decision is to strive for improved accuracy and efficiency
in recognizing emotional cues in speech. By fine-tuning, I can focus particularly on the
latter layers of the pretrained model, where intricate details of audio features and nuances
related to emotions are likely captured. This tailored approach allows for a more precise
adaptation to the specific characteristics of my SER dataset, aiming to enhance the model’s
ability to discern subtle emotional variations in speech. The emphasis on the final layers
during fine-tuning is strategic, seeking to leverage the knowledge encoded in the pretrained
model while ensuring it aligns more closely with the unique features of emotions expressed
in my dataset. This decision reflects a commitment to achieving a more accurate and
contextually relevant SER model by strategically refining the pretrained model’s outputs.

Fine-tuning a pretrained model for Speech Emotion Recognition (SER) using deep learn-
ing involves leveraging a model that has already been trained on a large dataset and adapt-
ing it to the specific characteristics of my target SER dataset. Below is a proposed method
for fine-tuning the pretrained model:

• Modifying the Input Layer: The input layer of the pretrained model is adjusted to
accommodate the features specific to the SER dataset, ensuring that the input layer
matches the dimensionality and type of features present in the dataset, such as mel-
frequency cepstral coefficients (MFCCs) or spectrograms.

• Freezing Base Layers: The weights of the initial layers of the pretrained model are
frozen. These layers have learned general audio representations that can be useful for
SER, and freezing them helps to prevent overfitting.

• Adding Additional Layers: New layers (fully connected or convolutional layers) are
appended to the pretrained model to adapt it to the target SER task.

• Initializing Weights: The weights of the newly added layers are initialized randomly
or using a suitable initialization technique. This step is crucial to prevent catastrophic
forgetting of the pretrained features.

30



• Modifying the Loss Function: The loss function is adjusted to match the SER task
requirements. Cross-entropy loss is commonly used for classification tasks, including
emotion recognition.

• Fine-tuning the Model: The model is trained on the SER dataset while keeping the
base layers frozen. This allows the model to adapt to the specific emotional charac-
teristics of the dataset without drastically altering the learned audio representations.

• Unfreezing and Continuing Training: Optionally, some of the top layers of the pre-
trained model are unfrozen after several epochs to allow fine-tuning on the SER
dataset. This can be beneficial if the dataset is large enough to avoid overfitting.

• Applying Regularization Techniques: Regularization techniques like dropout or batch
normalization are applied to prevent overfitting during fine-tuning.

• Optimizing Hyperparameters: Experimentation with learning rates, batch sizes, and
other hyperparameters is conducted to find the optimal configuration for fine-tuning
on the SER dataset.

• Evaluating Performance: The fine-tuned model is evaluated on a validation set to
monitor its performance and adjust hyperparameters if necessary. Its performance is
assessed on a separate test set to ensure generalization.

4.1 Pre-trained model
For the pretrained model, I have decided to choose the AST model, as it provided with
great baseline accuracy and will thus provide a very high basis. The model is described at
3.3.7. The proposed architecture of the implementation is shown in the Figure 4.1.
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Figure 4.1: Architecture of a Neural Network based on the AST Model. The process begins
with user input, where model parameters and dataset selection are specified. Features
are extracted by converting audio signals into MEL spectrograms. Data augmentation
techniques are applied to improve model generalization. The model undergoes fine-tuning,
specifically for enhancing emotion recognition in psychological evaluations. Finally, the
classifier outputs a probability distribution across the specified classes.

4.2 Model parameters
In the realm of deep learning, the effectiveness of a model heavily relies on the configuration
of various parameters. These parameters dictate how the model learns from data, adapts
its internal representations, and ultimately makes predictions. In this section, we delve
into key parameters commonly encountered in deep learning frameworks, elucidating their
significance and the impact of their manipulation on model behavior and performance.
From fundamental parameters like sample rate and batch size to more intricate concepts
such as learning rate and cross-validation folds, grasping the nuances of these parameters is
essential for fine-tuning models and achieving optimal results in deep learning applications.

• sample_rate: Sample rate refers to the number of samples of audio carried per
second, measured in Hertz (Hz). It represents the frequency at which audio signals are
captured. When changing the sample rate, you’re essentially altering the granularity
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of the audio data. Higher sample rates capture more detail but also require more
computational resources and storage space.

• n_epochs: This parameter represents the number of epochs, or complete passes
through the entire dataset, during the training phase. Increasing the number of epochs
allows the model to see the data more times, potentially improving its performance.
However, too many epochs can lead to overfitting, where the model memorizes the
training data instead of learning generalizable patterns.

• batch_size: Batch size refers to the number of samples processed before the model’s
parameters are updated. A larger batch size generally leads to faster training because
it allows for more parallel computations, but it requires more memory. Smaller batch
sizes may result in slower convergence but can help the model generalize better by
updating weights more frequently.

• lr: LR stands for learning rate, which determines the size of the step the optimizer
takes during the parameter update process. A higher learning rate allows for faster
convergence but may lead to overshooting and instability. Conversely, a lower learning
rate might result in slower convergence but can help the model find a more precise
minimum of the loss function.

• n_folds: This term typically refers to the number of folds used in cross-validation, a
technique for assessing the performance and generalization ability of a model. Increas-
ing the number of folds provides a more robust estimate of the model’s performance
but also increases computational cost.

• seed: Seed is a parameter used to initialize random number generators. Setting a
seed ensures reproducibility, meaning that running the model with the same seed
will produce the same results each time. This is crucial for experimentation and
debugging.

• mel_filter_banks: Mel-filter banks are used in audio processing to convert the
linear frequency scale of audio signals into the mel scale, which better approximates
the human auditory system’s response to different frequencies. Adjusting the param-
eters of the mel-filter banks can affect the spectral representation of the audio data,
potentially impacting the model’s ability to extract relevant features.

• frames: Frames refer to the temporal segmentation of audio signals into smaller
chunks. This parameter determines the size of each frame. Changing the frame size
can influence the temporal resolution of the input data, affecting the model’s ability
to capture temporal patterns in the audio signal.

4.2.1 Experiment: Finding the Best Model Configuration

Objective: To identify the optimal configuration of parameters for a deep learning model
in the context of audio classification.

Experimental Procedure:

1. Parameter Initialization: Initialize the parameter grid with different combinations
of values for each parameter. For example:
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• Sample rate: [8 kHz, 16 kHz, 22.05 kHz, 44.1 kHz]
• Number of epochs: [50, 100, 150]
• Batch size: [16, 32, 64]
• Learning rate: [0.001, 0.01, 0.1]
• Number of cross-validation folds: [3, 5, 10]
• Mel-filter bank settings: [Default, Custom]
• Frame size: [10 ms, 20 ms, 30 ms]

2. Model Training and Evaluation: Train the deep learning model for each param-
eter combination using the training pipeline. Use a validation set to evaluate model
performance for each configuration.

3. Performance Evaluation: Assess the performance of each trained model using
metrics such as accuracy, precision, recall, and F1-score. Compare the results across
different parameter combinations.

4. Parameter Optimization: Analyze the performance results to identify the pa-
rameter combinations that yield the best performance metrics. Look for trends and
patterns in how changes to each parameter affect the model’s performance.

5. Validation: Validate the final selected model(s) on a separate test set to ensure
generalization performance.

Results and Analysis:

1. Optimal Parameter Configuration: Identify the parameter combination(s) that
result in the best performance metrics based on the validation results.

2. Insights: Analyze how variations in each parameter impact the model’s performance.
Gain insights into which parameters have the most significant influence and how they
interact with each other.

3. Conclusion: Summarize the findings and recommend the best model configuration
based on the experimental results. Provide insights into the relationship between
parameter settings and model performance, guiding future research and application
development.

Conclusion

By systematically exploring variations in the parameters relevant to deep learning models
for audio classification, this experiment enables the identification of the optimal model
configuration. Through rigorous experimentation, analysis, and validation, researchers and
practitioners can develop highly effective deep learning models tailored to specific tasks and
datasets.

4.3 Evaluation Metrics
In the field of machine learning, particularly in classification tasks, it is crucial to accurately
measure the performance of models. Evaluation metrics provide insights into different as-
pects of model behavior, such as its precision in predicting positive labels, sensitivity to
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capturing relevant instances, and overall error balance. These metrics are indispensable
for tuning models, comparing different models, and ultimately selecting the best model for
deployment. The following are key metrics used for evaluating the performance of classifi-
cation models [30].

Accuracy measures the overall correctness of the model, defined as the ratio of correctly
predicted observations (both true positives and true negatives) to the total observations in
the dataset. This metric is particularly useful as a general indicator of model performance
across all classes. Accuracy provides a quick snapshot of the effectiveness of a predictive
model, especially in scenarios where all classes are equally important.

Accuracy =
True Positives (TP) + True Negatives (TN)

TP + TN + False Positives (FP) + False Negatives (FN)

Simplified the accuracy can be denoted as:

Accuracy =
Number of correct predictions
Total number of predictions

Precision measures the accuracy of the model’s positive predictions, defined as the
ratio of true positives to the total number of predicted positives. This metric is crucial in
situations where the cost of a false positive is high (e.g., spam detection).

Precision =
True Positives (TP)

TP + False Positives (FP)

Recall (also known as Sensitivity or True Positive Rate) measures the ability of the
model to identify all relevant instances, calculated as the ratio of true positives to the total
actual positives. High recall is critical in scenarios where missing a positive instance is
costly (e.g., disease screening).

Recall = TP
TP + False Negatives (FN)

F1 Score is the harmonic mean of precision and recall. It is a single metric that
combines both precision and recall to provide a balanced view of the model’s overall per-
formance, especially useful when the positive class is rare.

F1 Score = 2× Precision × Recall
Precision + Recall

Support refers to the number of actual occurrences of each class in the dataset. It is
important for understanding the class distribution and ensuring that the evaluation metrics
are not biased due to a skewed dataset.

Support = Number of instances for each class

Specificity (also known as True Negative Rate) measures the proportion of actual
negatives that are correctly identified by the model, indicating the model’s ability to reject
false positives. It is particularly relevant in cases where it’s crucial to confirm an absence
of condition.

Specificity =
True Negatives (TN)

TN + FP
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4.4 Strategies to Improve Evaluation Metrics for an Audio
Spectrogram Transformer (AST) Model

To enhance the performance of an Audio Spectrogram Transformer (AST) model in clas-
sification tasks, specific strategies can be employed for each key evaluation metric. Below
is a list of effective approaches for improving Precision, Recall, F1 Score, Support, and
Specificity:

Improving Precision

• Threshold Adjustment: Increase the threshold for predicting positive classes to
reduce false positives.

• Data Quality: Improve the quality of input data, focusing on cleaner, higher-
resolution audio spectrograms.

• Feature Engineering: Enhance or select features that are more predictive of the
positive class.

Improving Recall

• Threshold Lowering: Decrease the classification threshold to capture more true
positives, at the risk of increasing false positives.

• Data Augmentation: Use techniques like time stretching, pitch shifting, and adding
background noise to create a more robust model.

• Model Complexity: Increase the depth or capacity of the AST model to capture
more complex patterns in the data.

Improving F1 Score

• Model Tuning: Use grid or random search to find the optimal balance of model
parameters that maximize both precision and recall.

• Ensemble Techniques: Combine multiple models to leverage their individual strengths,
potentially improving both precision and recall.

Improving Support

• Balanced Datasets: Ensure the training set is representative of the true population
distribution to avoid biases in the model’s performance metrics.

• Resampling Techniques: Utilize oversampling of minority classes or undersampling
of majority classes to balance class distribution.

Improving Specificity

• Negative Case Enhancement: Augment the dataset with more varied negative
cases to improve the model’s learning of what does not constitute a positive class.
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• Anomaly Detection Techniques: Incorporate methods specifically designed to
improve true negative rates, such as anomaly detection algorithms that focus on
identifying non-target classes.

4.5 Fine-Tuning for Speech Emotion Recognition
Sd discussed, deep learning models, particularly convolutional neural networks (CNNs)
and recurrent neural networks (RNNs), have shown promising results in SER. However,
fine-tuning an existing deep learning model can further improve its performance, especially
when targeting specific emotions.

4.5.1 Fine-Tuning Process

Fine-tuning an existing deep learning model for SER involves adjusting its parameters
to better capture the nuances of specific emotions. The process typically consists of the
following steps:

1. Fine-Tuning Strategy: Define a fine-tuning strategy to adapt the pre-trained model
to the target emotion(s). This may involve adjusting hyperparameters, modifying the
model architecture, or fine-tuning specific layers of the network.

2. Data Augmentation: Apply data augmentation techniques to artificially increase
the diversity of the training data. Common augmentation methods for SER include
time stretching, pitch shifting, and adding background noise.

3. Training Procedure: Train the fine-tuned model using the prepared dataset. Mon-
itor the model’s performance on validation data and adjust the fine-tuning strategy
as necessary to achieve the desired results.

4.5.2 Fine-Tuning for Specific Emotions

When fine-tuning a model for SER to detect a particular emotion, it’s essential to consider
the unique acoustic characteristics associated with that emotion. For example, anger may
be characterized by high pitch and intensity, while sadness may exhibit lower pitch and
slower speech rate.

To fine-tune the model for a specific emotion:

1. Emotion-Specific Data Selection: Curate a subset of the dataset containing
speech samples predominantly expressing the target emotion. This focused dataset
helps the model learn discriminative features for the specific emotion.

2. Fine-Tuning Parameters: Adjust the fine-tuning strategy to emphasize features
relevant to the target emotion. For instance, increase the weight of emotion-specific
loss functions or fine-tune certain layers to extract emotion-specific features more
effectively.

3. Evaluation and Validation: Evaluate the fine-tuned model’s performance on a
separate test set containing samples of the target emotion. Use appropriate evaluation
metrics, such as accuracy or F1-score, to assess the model’s effectiveness in recognizing
the desired emotion.
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4.5.3 Example: Fine-Tuning for Anger Recognition

As an example, consider fine-tuning a pre-trained AST model for recognizing anger in
speech. The fine-tuning process may involve:

• Selecting a pre-trained AST model with high performance on general SER tasks.

• Curating a dataset with speech samples labeled as expressing anger.

• Fine-tuning the model by adjusting hyperparameters and optimizing the model ar-
chitecture to focus on features indicative of anger, such as high pitch and intensity.

• Evaluating the fine-tuned model’s performance on a test set containing anger-labeled
speech samples.

Fine-tuning an existing deep learning model for SER to detect specific emotions allows
for more targeted and accurate emotion recognition, catering to various applications in
affective computing, human-computer interaction, and mental health assessment.
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Chapter 5

Implementation

5.1 Top Level Overview
The script is structured to function as the entry point of a Python program that parses
command-line interface (CLI) arguments to control various aspects of model training and
evaluation.

Figure 5.1: The overall flow of the program

5.1.1 Program Arguments

These are the arguments controlling the program settings:

• -d, –dataset: Dataset to use for training and evaluating the model. Options include:

– RAVDESS

– EMODB

– EMOVO

These are the datasets for which automatic metadata file creation is provided, see
next argument for other datasets.

• c, –csv: If the dataset name is not given as an input, a custom CSV file with dataset
metadata can be used.

• -s, –seed: Random seed for controlling the random state.
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• -b, –batch-size: Specifies the number of samples in one training batch.

• -e, –epochs: Indicates the number of training epochs.

• -lr, –learning-rate: Sets the learning rate for training.

• -sr, –sampling-rate: Sampling rate for loading speech recordings.

• -fr, –frames: Default: Defines the number of time frames in the Mel Spectrogram.

• -mel, –mel-filter-banks: Specifies the size of the mel filter bank.

• –folds: Number of training folds for cross-validation.

• –wandb-key: (Required) API key for logging into your wandb.ai account.

• –wandb-project: (Required) Specifies the project in wandb.ai for logging experi-
ment runs.

5.1.2 Dataset Metadata

For dataset file the following architecture was chosen

Table 5.1: Metadata File Structure for Neural Network Model
Column Name Description Example
recording path File path to the audio recording datasets/RAVDESS/A01/03.wav
label Emotional state label neutral
encoded_label Numerical encoding of the label 0

5.1.3 Main Function

Within the if __name__ == ”__main__“ block, the script performs several key operations.
First, it utilizes argparse.ArgumentParser to set up command-line interface (CLI) options,
where users must specify the dataset, API keys for Weights & Biases (wandb), and various
model parameters such as batch size and learning rate.

To ensure reproducibility across runs, the script fixes the random seed using PyTorch
Lightning utilities.

Next, it calls the train function from the training module, passing user-defined pa-
rameters for dataset characteristics and training configuration.

Finally, the script evaluates the model on the specified dataset by calling the evaluate
function from the evaluation module using the trained model paths.

5.2 Model training

5.2.1 Module Description

The Python class, LigthningAST, extends pl.LightningModule and manages the lifecycle
of an audio spectrogram transformer model, including its training, validation, and testing
phases.
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Initialization

The constructor of the class takes several parameters parsed from the main module ar-
guments defining the model architecture and training process. During initialization, the
model, loss function, and various training metrics are set up.

Optimizer Configuration

The configure_optimizers method sets up the optimization strategy:

• An Adam optimizer with a configurable learning rate.

• A cosine annealing scheduler for adjusting the learning rate across epochs.

5.2.2 Training Preparation

1. Data Retrieval: Metadata for the dataset is fetched, including file paths and labels,
which are then split according to stratified k-folds to ensure balanced representation
in each fold.

2. Normalization: Computes and applies normalization statistics (mean and standard
deviation) for the dataset to ensure that input features are on a similar scale.

3. Augmentation: Employs both signal and spectrogram augmentations to enhance
model robustness against variations in audio inputs.
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5.2.3 Implemented Augmentations

Data augmentation is crucial for enhancing the robustness and generalization of models
in machine learning, particularly in audio processing [11] [40]. This subsection discusses
various techniques implemented in Python for augmenting audio data.

These augmentations are designed as subclasses of a base augmentation module, which
selectively applies a specific augmentation to an audio recording based on a predefined
probability. Below are detailed descriptions of each augmentation technique:

Signal augmentations

Signal augmentations are applied directly to the raw audio waveform, that is, the time-
domain signal before any transformation into frequency or time-frequency representations.
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Figure 5.2: Orignal waveform

• Adding Gaussian Noise to audio recordings introduces non-specific background
noise, which is common in real-world scenarios, thus making the model more re-
silient to such disturbances. [40]

Figure 5.3: Random noise ugmentation of the signal

• Random Speed Change This augmentation alters the playback speed of audio
recordings, affecting their temporal properties without changing the pitch. It trains
the model to recognize features that are invariant to speed variations. [40]
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Figure 5.4: Random speed change augmentation

• Room Impulse Response (RIR) Augmentation simulates different acoustic en-
vironments by convolving the audio signal with a room’s impulse response. This helps
the model perform well across varied recording conditions. [40]

Figure 5.5: Random Impulse Response augmentation (RIR)

Spectrogram augmentations

Spectrogram augmentations are applied after the audio signal has been converted into a
spectrogram, a visual representation of the spectrum of frequencies of a signal as it varies
with time. [40]
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• Time Masking randomly masks consecutive time segments in the spectrogram, sim-
ilar to frequency masking but along the time axis. It challenges the model to rely on
partial temporal information. [40]

Figure 5.6: Time masking spectogram augmentation

• Frequency Masking is used in processing spectrograms by masking random fre-
quency bands. This technique forces a model to learn from parts of the data where
key frequency components might be missing, enhancing general robustness. [40]

Figure 5.7: Frequency masking spectogram augmentation
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Python Implementation

Here is a Python implementation Listong 5.2.3 showing the structure of the base augmen-
tation class and how it probabilistically decides whether to apply an augmentation:

class BaseAugmentation(torch.nn.Module):
def __init__(self, p, sample_rate):

super().__init__()
self._p = p
self._sample_rate = sample_rate

def forward(self, recording):
should_apply = torch.bernoulli(torch.tensor(self._p))
if should_apply:

return self._apply_augumentation(recording)
return recording

def _apply_augumentation(self, _):
raise NotImplementedError

Training and Validation Steps

The class implements specific methods for handling training and validation batches:

• training_step: Calculates and logs training loss and accuracy.

• validation_step: Calculates and logs validation loss and accuracy, storing them for
later analysis.

Both methods utilize a helper function to compute predictions, loss, and accuracy from the
input batch.

Visualisation, Experiment Tracking and Model Saving

Thanks to the python implementation, the structure allows for integration with the wandb
[4] platform for logging training metrics and saving model checkpoints. This allows for
monitoring model performance and saving the best-performing models.

The initialization happens on creation of model class, and on every n_step of model
training, a log is sent into the wandb module. These ”checkpoints“ are then available locally
and the model training can be resumed from these partly trained models.

In the same fashion, results (accuarcy, loss function value) are logged and sent to the
wandb database, where they are available to see and analyse. 5.8
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Figure 5.8: WanDB training run charts

5.3 Fine Tuning
This section details the implementation of the fine-tuning process in the Speech Emotion
Recognition (SER) Python code. The primary focus is on ensuring the correctness of labels
across a cross-corpus dataset and optimizing the model to improve the detection of specific
emotions.

5.3.1 Dataset Label Mapping

To maintain consistency and accuracy in the labels across different datasets, a systematic
label mapping approach is employed. Each dataset may have its own set of emotion labels,
which can lead to discrepancies if not properly aligned. The following steps are taken to
ensure correct label mapping:

1. Standardization of Emotion Labels: Each emotion label from the datasets is
standardized to a common set of labels. For instance, labels like ”happy“, ”joy“, and

”elation“ are all mapped to a single label ”happy“.

2. Creation of Label Index Mapping: Once standardized, these labels are mapped
to unique indices. This allows for consistent referencing across different datasets and
ensures that the model correctly interprets each label during training and evaluation.

3. Cross-Verification: The mapping is cross-verified to ensure that each label from all
datasets is correctly translated to its respective index. This step is crucial to avoid
mislabeling and to maintain the integrity of the training process.

The standardized labels and their corresponding indices are then used to convert emo-
tion labels into indices for the model weights. This ensures that the model can correctly
interpret and process the emotion data from different datasets.

5.3.2 Custom Weight List for Loss Function

To enhance the detection of specific emotions, a custom weight list is implemented. This
list, with a size equal to the number of emotion labels, is used to adjust the loss function,
giving more importance to certain classes. The steps involved in this process are as follows:

1. Initialization of Custom Weights: A custom weight list is created, where each
weight corresponds to a specific emotion label. For example, if the goal is to improve
the detection of ”anger“, the weight for the ”anger“ label is increased relative to other
labels.
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2. Integration with Loss Function: The custom weight list is integrated into the
loss function. During training, the loss for the ”anger“ class is weighted more heavily,
encouraging the model to pay extra attention to correctly classifying instances of

”anger“.

3. Model Training: With the adjusted loss function, the model is trained on the SER
dataset. The custom weights guide the model to focus more on the specified emotion,
improving its recall and precision for that class.

4. Evaluation and Adjustment: The performance of the model is evaluated, partic-
ularly focusing on the detection of the targeted emotion. If necessary, the custom
weights are adjusted iteratively to optimize performance.

5.3.3 Data Augmentation by Increasing Emotion Instances

Another method employed for fine-tuning involves feeding the training model more instances
of a particular emotion. This is implemented during the dataset loading process from the
CSV metadata file. The steps include:

1. Metadata Loading: The metadata for the dataset is loaded from a CSV file, which
includes paths to the audio recordings and their corresponding emotion labels.

2. Duplication of Target Emotion Instances: To improve detection of a specific
emotion, such as ”anger“, instances of this emotion are duplicated in the dataset.
This increases the representation of the target emotion in the training data.

3. Balanced Dataset Creation: Care is taken to ensure that the dataset remains bal-
anced and that the increased instances of the target emotion do not lead to overfitting.
Proper validation techniques are used to monitor model performance.

4. Model Training with Augmented Data: The augmented dataset is used to train
the model, with the increased number of target emotion instances helping the model
to better learn the characteristics of that emotion.

This approach of augmenting the dataset with more instances of the target emotion,
in combination with the custom weight list for the loss function, allows for a robust fine-
tuning process. By strategically increasing the focus on the desired emotional class, the
model becomes more sensitive to its nuances, thereby enhancing its overall performance in
speech emotion recognition tasks.

5.4 Computational Complexity

5.4.1 Used hardware

In the early stages, all training of the model was done locally on a machine using intel i7-
8750h cpu running at 2.20GHz. For faster iteration frequency and lower waiting times, all
remaining training was done remotely on the supercomputer Barbora [1] located in Ostrava,
Czech Republic using the Brno University of Technology access.

Barbora’s advanced computing infrastructure, equipped with high-performance GPUs
and CPUs, offered the necessary computational horsepower to efficiently handle calculations
and large datasets. The superior processing capabilities of the supercomputer drastically
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reduced the model training times, enabling more rapid iterations and enhancements With
access to greater memory and storage capacities, the model could be scaled up without
compromising on the performance or accuracy.

In this section, the cost and time complexity will be analysed for future reference of
training models such as the one regarded in this thesis.

5.4.2 GPU accelerators

Overview of CUDA by NVIDIA (Compute Unified Device Architecture) is a parallel com-
puting platform and application programming interface (API) model created by NVIDIA
[26]. It allows software developers to use a CUDA-enabled graphics processing unit (GPU)
for general purpose processing – an approach known as GPGPU (General-Purpose com-
puting on Graphics Processing Units).

Key Features of CUDA CUDA provides a comprehensive development environment
for performing complex calculations on NVIDIA GPUs, offering several key features:

• Parallel Computing Model: CUDA enables developers to create algorithms that
can process large blocks of data in parallel, significantly accelerating complex compu-
tations compared to sequential processing on CPUs.

• Memory Management: It provides various memory hierarchies and management
techniques, including global, shared, constant, and texture memory, allowing for effi-
cient data handling and optimization.

• Direct Hardware Access: Developers have direct access to the virtual instruction
set and memory of the parallel computational elements in GPUs. This allows for
higher performance and more efficient resource utilization.

Initially developed for scientific and engineering computing, CUDA has found widespread
use across various domains that require intensive computational resources, such as machine
learning and deep Learning where CUDA accelerates neural network training and inference,
reducing the time required to train complex models.

CUDA’s ability to manage and accelerate computations by leveraging the power of
GPUs has made it an indispensable tool in the field of high-performance computing, en-
abling advancements in science, engineering, and data analysis.

5.4.3 Measuring the power used

This subsection presents a comparison of power consumption between CPU-only training
and GPU training on the supercomputer Barbora. The data were collected using the
Carbon library, which provides a comprehensive assessment of the environmental impact of
machine learning models.

CPU-only Training

Training the model using only CPUs on the supercomputer Barbora involved the following
specifications:

• CPU: Intel Xeon Gold 6240 CPU (72 cores)
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• RAM: 192GB DDR4

• Disk: 10TB HDD (per user) with 5GB/s throughput

• Training Time: 6.25 hours (circa 15 sec * 150 epochs * 10 folds)

• Energy Consumption:

– CPU: 180W (avg), 1125Wh total
– RAM: 6W (avg), 37,5Wh total
– Disk: 4W (avg), 25Wh total

• Total Energy Consumption: 1187Wh

GPU Training

Training the model on the supercomputer Barbora with an NVIDIA Tesla V100 GPU
involved the following specifications:

• GPU: NVIDIA Tesla V100 (32GB)

• CPU: Intel Xeon Gold 6240 CPU (72 cores)

• RAM: 192GB DDR4

• Disk: 2TB NVMe SSD

• Training Time: 5 hours

• Energy Consumption:

– GPU: 250W (avg), 1250Wh total
– CPU: 120W (avg), 600Wh total
– RAM: 6W (avg), 30Wh total
– Disk: 4W (avg), 20Wh total

• Total Energy Consumption: 1900Wh

Impact of Sampling Rate on Training Time

During testing, it was observed that at a sampling rate of 16000Hz, one epoch took 15
seconds for both CPU and GPU training due to the overhead associated with the CUDA
environment. This suggests that the performance advantage of GPUs may not always be
fully realized at lower sampling rates.

Proposed Solution: To optimize GPU training and reduce epoch times at lower
sampling rates, the following steps are recommended:

• Batch Size Adjustment: Increase the batch size to maximize the utilization of
GPU resources. This ensures that more data is processed in parallel, reducing epoch
time.

• Data Preprocessing Optimization: Preprocess and cache the audio data in batches
to minimize the preprocessing overhead during training.
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• Asynchronous Data Loading: Implement data loaders with multiple workers to
load data asynchronously and minimize the waiting time for the next batch.

• Mixed Precision Training: Use mixed precision training (FP16) to reduce memory
consumption and accelerate training.

• CUDA Graphs: Leverage CUDA Graphs to capture and replay training loops,
reducing kernel launch overhead.

Figure 5.9: Comparison of one epoch time training on CPU vs GPU(CUDA activated)

5.4.4 Summary

As described in the subsection above, using the supercomputer or any other powerful system
brings a lot of advantages for a relatively cheap price. That being said, fine tuning described
in this thesis is doable on a ”daily use“ computer system given some accommodations are
performed.
Is it based on the specific configuration, pricing and time schedule to determine the best
hardware to use for task such as this one. At the time of development of this thesis, training
the models on a CPU only cluster of a supercomputer proved to be the best option.
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Chapter 6

Results and Discussion

6.1 Optimizing Recall for Disease Recognition Tasks
In the context of disease recognition, ensuring minimal false negatives is crucial to avoid
undetected cases, making Recall (Sensitivity) a critical metric in model evaluation. This
section discusses experimental setups and strategies used to fine-tune models for high Recall
performance in disease recognition tasks, particularly focusing on the emotion Anger.

6.1.1 Importance of Recall

Recall is essential in disease recognition as it measures a model’s ability to identify all rel-
evant instances of a class. For disease recognition, high Recall ensures maximum detection
of true disease cases, crucial for effective diagnosis and treatment. Low Recall could lead
to undetected illnesses, worsening patient outcomes.

6.1.2 Comparison of Confusion Matrices

This subsection presents confusion matrices from the evaluations of the Base Model and
the Fine-Tuned Model, as shown in Figures 6.1 and 6.2, respectively. These visual repre-
sentations allow for a straightforward comparison of how each model performs in classifying
various emotional states.
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Figure 6.1: Confusion Matrix of the Base Model

Figure 6.2: Confusion Matrix of the Fine-Tuned Model, with emphasis on Anger detection
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Performance Metrics Comparison

Tables 6.1 and 6.2 display the performance metrics for the Base Model and the Fine-Tuned
Model, respectively. Notably, the Recall for the emotion Anger shows marked improvement
in the Fine-Tuned Model, demonstrating the effectiveness of the fine-tuning process on a
cross-corpus dataset.

Table 6.1: Performance Metrics of the Base Model
Emotion Precision Recall F1-score Support Specificity
Anger 0.759 0.854 0.804 48 0.966

Table 6.2: Performance Metrics of the Fine-Tuned Model
Emotion Precision Recall F1-score Support Specificity
Anger 0.933 0.965 0.949 96 0.990

Analysis of Performance Across Two Models

As illustrated in Table 6.1 and Table 6.2, and further depicted in Figures 6.1 and 6.2, the
Fine-Tuned Model demonstrates significant enhancements in its ability to accurately and
reliably detect various emotions, particularly Anger. These improvements are critical for
deploying the model in real-world applications where precise emotion recognition can lead
to better outcomes in user interactions, safety protocols, and therapeutic settings.

6.2 Cross-Corpus Training and Fine-Tuning on Datasets
This section discusses the training and fine-tuning processes of our Audio Spectrogram
Transformer (AST) model on a cross-corpus dataset, consisting of three distinct datasets.
Initially, the model was trained on this aggregated dataset to learn general features ap-
plicable across different emotional expressions and recording conditions. Subsequently, to
enhance its performance on specific data, the pre-trained model was fine-tuned directly on
the dataset.

6.2.1 Testing on RAVDESS Dataset

Training Procedure

The training began with the AST model exposed to a diverse range of emotional states
and acoustic environments presented by the combined datasets. This initial phase aimed
at equipping the model with robust, generalized capabilities for emotion recognition.

Fine-Tuning Process

After the initial training, the model underwent a fine-tuning process on the RAVDESS
dataset. Fine-tuning adjusted the model’s weights specifically to the acoustic and emotional
characteristics present in RAVDESS, thus optimizing its performance for this particular set.
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Convergence and Performance

The fine-tuning phase was notably efficient, with the model converging to optimal per-
formance in less than 10 epochs. This rapid convergence highlights the effectiveness of
leveraging a pre-trained model that has already captured a broad understanding of emo-
tional cues, requiring only minor adjustments to specialize for a particular dataset.

Results Visualization

To illustrate the improvement brought by the fine-tuning process, confusion matrices before
and after fine-tuning on the RAVDESS dataset are presented. These matrices provide a
visual representation of the model’s performance on classifying different emotional states.

Figure 6.3: Confusion matrix of the cross-corpus model tested on the RAVDESS dataset
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Figure 6.4: Confusion matrix of the model after fine-tuning on the RAVDESS dataset

6.2.2 Testing on EMODB Dataset

Following the successful fine-tuning on RAVDESS, the model was also tested on the EMODB
dataset, which only includes 7 of the 9 emotions that the model was initially trained to
recognize, specifically lacking ’surprise’ and ’calm’. Despite this limitation, the results were
promising and demonstrate the model’s adaptability and functionality with minimal addi-
tional computational investment for training.

Performance Analysis

The confusion matrices for the EMODB dataset illustrates how the model managed to
adjust its predictions in the absence of ’surprise’ and ’calm’. This analysis helps in under-
standing the model’s capability to handle datasets with varied emotional labels effectively.
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Figure 6.5: Confusion matrix of the model tested on the EMODB dataset

Figure 6.6: Confusion matrix of the fine-tuned model tested on the EMODB dataset
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This testing phase underscores the model’s flexibility and robustness, proving its efficacy
even when the training and testing datasets do not perfectly align in terms of emotion
categories. The confusion matrices (Figures 6.3, 6.4, and 6.5) visually represent the model’s
performance across different datasets, highlighting its strengths and areas for potential
improvement.

6.2.3 Testing on EMOVO Dataset

The model was further evaluated on the EMOVO dataset to assess its adaptability and
performance across a diverse set of emotional expressions. EMOVO provides a distinct
context due to its unique composition of Italian emotional speech, which challenges the
model to demonstrate its robustness and generalization capabilities.

Dataset Challenges

The EMOVO dataset presents a different set of emotional expressions, some of which were
not as prominently featured in the training datasets. This variation tests the model’s ability
to generalize learned emotional cues to new, context-specific scenarios.

Results Analysis

To visually represent the model’s performance on EMOVO, confusion matrices before and
after any additional tuning or retraining are provided. These matrices help illustrate the
initial adaptability of the model to EMOVO and the improvements in classification accuracy
after fine-tuning.

Figure 6.7: Initial confusion matrix of the model tested on the EMOVO dataset.
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Figure 6.8: Confusion matrix of the model after additional tuning on the EMOVO dataset.

The visual data from Figures 6.7 and 6.8 confirm the model’s capability to adapt to the
EMOVO dataset’s characteristics and highlight the effectiveness of fine-tuning in achieving
better specificity and overall accuracy. This testing phase not only showcases the model’s
flexibility but also its efficiency in adapting to datasets with different linguistic and emo-
tional compositions.

6.3 Known issues and complications
Apart from the usual problems connected to software development, some other issues came
up that should be addressed in this section.

• GPU cluster time - during the training of a model checkpoint, the GPU allocated
time for the university project ran out, which later complicated the calculation of
time complexity. Older logs were used to calulate the necessary metrics.

6.4 Future work
Based on the problem on described at 5.4.3, the proposed solution could be implemented
and a benchmark created to find out the best setting for fine tuning models such as the
one in this thesis, making the task of specific emotion recognition more available, even for
people with less or no experience with neural networks.
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Chapter 7

Conclusion

Speech Emotion Recognition (SER) is an inherently challenging task due to the complexity
and variability of human emotions, the diverse expression of these emotions across different
speakers, and the influence of various contextual and environmental factors. This thesis
set out to address this challenge by developing a fine-tuned solution specifically tailored for
SER tasks, demonstrating that customized models can yield better results than broadly
generalized approaches, the resulting values of weighted accuracy are as follows: 93.5% for
the EMODB dataset, 92.8% for EMOVO, and 92.9% for the RAVDESS dataset.

The primary goal of this thesis was to provide a solution for fine-tuning SER models
for specific tasks. By leveraging transfer learning techniques and pre-trained models, the
work presented here has shown that customizing models to suit a particular dataset or ap-
plication can enhance performance compared to generalized models. Fine-tuning allows the
model to capture the specific nuances and characteristics of the target dataset, ultimately
leading to improved emotion classification accuracy.

By providing clean, reusable code in Python and extensive documentation of the source
files enriched by guide-style readme files, the secondary goal of this thesis was to provide a
guideline for fine tuning a model for a specific task in a way that is obtainable without ex-
tensive technical research, thus laying grounds for more development in the field of software
emotion recognition.
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Appendix A

SD card content

The attached memory card has the following structure:

• Thesis.pdf - This PDF with thesis text.

• src/ - Folder containing the implementation of neural network

• thesis_source/ - Latex source codes for PDF generation

• README.MD - A readme file for this folder
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