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Abstract 
This thesis deals with the analysis and implementation of a neural network for the purpose 
of recognizing emotions from human speech using deep learning. The thesis also focuses on 
tuning this network to achieve greater sensitivity to a specific emotion and explores the time 
and indirectly the financial requirements of this tuning. The inspiration for creating this 
work is the increasing integration of artificial intelligence in the fields of biology, healthcare, 
as well as psychology, and one of the goals is also to study the complexity of creating specific 
models of neural networks for purposes in these sciences, which should contribute to better 
accessibility of artificial intelligence models. The work is based on the implementation of 
the "AST: Audio Spectrogram Transformer" model, which is publicly available under the 
BSD 3-Clause License and utilizes methods that have been used so far for classification and 
recognition of images by converting an audio track into a spectrogram. The resulting values 
of weighted accuracy are as follows: 93.5% for the E M O D B dataset, 92.8% for E M O V O , 
and 92.9% for the R A V D E S S dataset. 

Abstrakt 
Táto práca sa zaoberá analýzou a implementáciou neurónovej siete za účelom rozpoznáva
nia emócií z reči človeka pomocou hlbokého učenia. Práca sa taktiež zaoberá ladením tejto 
siete za účelom dosiahnutia väčšej citlivosti voči konkrétnej emócii a skúma časové a nepri
amo aj finančné nároky tohto ladenia. Inšpiráciou na vytvorenie tejto práce je stúpajúca 
integrácia umelej inteligencie v oblasti biológie, zdravotníctva ako aj psychológie a jedným 
z cieľov je aj skúmanie náročnosti vytvárať konkrétne modely neurónových sietí na účely 
v týchto vedách, čo by malo prispieť k lepšej dostupnosti modelov umenelej inteligencie. 
Práca stavia na základe implementácie modelu "AST: Audio Spectrogram Transformer" 
ktorá je verejne dostupná pod licenciou BSD 3-Clause License a využíva metódy ktoré boli 
doposiaľ využívané na klasifikáciu a rozpoznávanie obrazov vďaka premene zvukovej stopy 
na spektrogram. Výsledné hodnoty váženej presnosti sú následovné: 93.5% pre E M O D B 
dataset, 92.8% pre E M O V O a 92,9% pre dataset R A V D E S S . 
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processing, emotion classification 
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Rozšířený abstrakt 
Táto diplomová práca sa zameriava na rozpoznávanie emócií z ľudskej reči prostredníctvom 
hlbokého učenia s využitím neurónovej siete Audio Spectrogram Transformer (AST). Hlavným 
cieľom práce je implementácia a optimalizácia A S T modelu na analýzu emocionálneho ob
sahu v reči, kde vstupnými dátami sú spektrogramy. Spektrogramy, získané transformáciou 
zvukových signálov, poskytujú vizuálnu reprezentáciu frekvenčných komponentov, ktoré 
A S T model efektívne spracováva na rozpoznanie špecifických emócií. 

Práca detailne popisuje proces prípravy a predspracovania dát, vrátane konverzie audio 
signálov na spektrogramy, čo umožňuje modelu A S T naučiť sa rozpoznávať vzory spojené s 
rôznymi emocionálnymi stavmi. Tento prístup vyžaduje nielen technické znalosti o spracov
aní zvuku, ale tiež pochopenie, ako rôzne emocionálne stavy ovplyvňujú akustické vlastnosti 
reči. 

Ďalším kľúčovým aspektom práce je využitie cross-corpus prístupu pre tréning modelu, 
ktorý zahŕňa dátové sady z rôznych lingvistických a kultúrnych prostredí, ako sú E M O D B , 
E M O V O a R A V D E S S . Tento prístup umožňuje modelu získať schopnosť generalizovať emo
cionálne rozpoznávanie naprieč rôznymi korpusmi, čím sa zvyšuje jeho robustnosť a adapt
abilita. 

V neskoršej fáze práca preskúma možnosti jemného ladenia, ktoré je známe pod zauží
vaným anglickým názvom "fine-tuning", modelu na špecifickú dátovú sadu s nižšími výpoč
tovými nárokmi. Fine-tuning sa zameriava na optimalizáciu výkonu modelu pri zachovaní 
nízkej výpočtovej náročnosti, čo je kľúčové pre aplikácie v reálnom čase. Tento proces 
zahŕňa úpravu parametrov vrstiev modelu A S T , ktoré sú zodpovedné za konečnú klasifiká
ciu emocionálnych stavov, s cieľom dosiahnuť vyššiu presnosť pri rozpoznávaní cieľových 
emócií. 

Výsledky práce ukazujú, že upravený model A S T dosahuje vysokú presnosť rozpozná
vania emócií a demonstruje jeho praktickú aplikovateľnosť vo viacerých oblastiach, vrá
tane klinickej psychológie, bezpečnostných systémov a interaktívnych systémov založených 
na rozpoznávaní reči. Rozšírená analýza a evaluácia modelu na rôznych dátových sadách 
potvrdzujú jeho efektivitu a poukazujú na potenciálne vylepšenia pre budúce výskumy. 

Táto práca prispieva k hlbšiemu porozumeniu možností hlbokého učenia v oblasti rozpozná
vania emócií z reči a predstavuje dôležitý krok k lepšej integrácii umelej inteligencie do 
aplikácií súvisiacich s interakciou človeka a počítača. 



Emot ion Recognition from Analysis of 
a Person's Speech using Deep Learning 

Declaration 
I hereby declare that this Master's thesis was prepared as an original work by the author 
under the supervision of doc. Aamir Saeed Malik, Ph .D. I have listed all the literary sources, 
publications and other sources, which were used during the preparation of this thesis. 

Šimon Galba 
May 16, 2024 

Acknowledgements 
I would like to express my deepest gratitude to my supervisor, Doc. Aamir Saeed Malik, 
Ph.D. , for his invaluable guidance, patience, and expert advice throughout the duration of 
this research. His insights and expertise have been fundamental to the completion of this 
thesis, and his encouragement was crucial in overcoming the challenges encountered along 
the way. 

Special thanks goes to doc. Ing. Jiří Jaroš Ph .D. for a fast and simple access to the 
supercomputer used to calculate the models in this thesis. 

I am also immensely thankful to my family, whose unwavering support and understand
ing have been my pillars of strength throughout my studies. Their endless encouragement 
and belief in my abilities have been a constant source of motivation and have significantly 
lightened the burden during the most demanding periods of my academic journey. 

A special word of appreciation goes to my girlfriend, who has created a harmonious and 
supportive environment that was essential for my focus and productivity. Her patience, 
love, and understanding provided the calm amidst the storm of rigors of research, making 
it possible for me to pursue my academic goals without reservation. 



Contents 

1 Introduction 3 

2 Emotion Models in Computer Software 4 
2.1 Historical Overview of Emotion Theories 4 
2.2 Emotion Models in Computer Software 5 
2.3 Signal Processing Theoretics: Audio Signals 8 

3 Emotion recognition from speech 12 
3.1 SER Datasets 12 
3.2 Traditional Machine Learning Approaches for SER 13 
3.3 Deep Learning Approaches for SER 17 
3.4 Summary 27 

4 Proposed Methodology 30 
4.1 Pre-trained model 31 
4.2 Model parameters 32 
4.3 Evaluation Metrics 34 
4.4 Strategies to Improve Evaluation Metrics for an Audio Spectrogram Trans

former (AST) Model 36 
4.5 Fine-Tuning for Speech Emotion Recognition 37 

5 Implementation 39 
5.1 Top Level Overview 39 
5.2 Model training 40 
5.3 Fine Tuning 47 
5.4 Computational Complexity 48 

6 Results and Discussion 52 
6.1 Optimizing Recall for Disease Recognition Tasks 52 
6.2 Cross-Corpus Training and Fine-Tuning on Datasets 54 
6.3 Known issues and complications 59 

6.4 Future work 59 

7 Conclusion 60 

Bibliography 61 

A SD card content 65 

1 



List of Figures 

2.1 The Circumplex Model of Emotion [43] 6 
2.2 Plutchik's wheel of emotions [29] 7 
2.3 Lovheim Cube of Emotion [24] 8 
2.4 Different waveforms for different emotion affectation for the same sentence [44] 9 
2.5 Spectral Envelope [32] 9 
2.6 Hamming Window 10 
2.7 Mel Filter Banks 11 
2.8 Jitter and Shimmer 11 

3.1 The architecture of TIM-Net 19 

3.2 Architecture proposed by the authors of A S T [13] 21 

4.1 Architecture of a Neural Network based on the A S T Model 32 

5.1 The overall flow of the program 39 
5.2 Orignal waveform 43 
5.3 Random noise ugmentation of the signal 43 
5.4 Random speed change augmentation 44 
5.5 Random Impulse Response augmentation (RIR) 44 
5.6 Time masking spectogram augmentation 45 
5.7 Frequency masking spectogram augmentation 45 
5.8 WanDB training run charts 47 
5.9 Comparison of one epoch time training on C P U vs G P U ( C U D A activated) 51 
6.1 Confusion Matrix of the Base Model 53 
6.2 Confusion Matrix of the Fine-Tuned Model, with emphasis on Anger detection 53 
6.3 Confusion matrix of the cross-corpus model tested on the R A V D E S S dataset 55 
6.4 Confusion matrix of the model after fine-tuning on the R A V D E S S dataset . 56 
6.5 Confusion matrix of the model tested on the E M O D B dataset 57 
6.6 Confusion matrix of the fine-tuned model tested on the E M O D B dataset . . 57 
6.7 Initial confusion matrix of the model tested on the E M O V O dataset 58 
6.8 Confusion matrix of the model after additional tuning on the E M O V O dataset. 59 

2 



Chapter 1 

Introduction 

Emotion recognition and simulation have become pivotal in the interface between humans 
and computers, marking a significant evolution in both cognitive science and artificial in
telligence. Humans experience and express emotions with a complex interplay of physio
logical, cognitive, and social factors [38]. These emotional expressions are often subtle and 
nuanced, influenced by personal experiences and cultural contexts. In contrast, computers 
must rely on explicit models and algorithms to „understand" or simulate emotions. They do 
this by processing observable data such as facial expressions, voice modulations, and body 
language, which are then interpreted through predefined frameworks like the Circumplex 
Model of Emotion 2.2.1 or Plutchik's Emotion Wheel 2.2.2. 

In this thesis, we will focus on classifying human emotions from their speech with the 
help of deep learning neural networks. 
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Chapter 2 

Emotion 
Software 

Models in Computer 

Unlike humans, who can intuitively grasp and react to emotional subtleties, computers re
quire extensive data and sophisticated algorithms to approximate this understanding. This 
disparity arises because human emotional processing involves not only basic sensory input 
but also a deep, often unconscious synthesis of past experiences, cultural norms, and per
sonal expectations. Computers, however, operate within the confines of their programming 
and algorithms, which can only mimic this process to a limited extent. For instance, while 
a human might detect sarcasm or a subtle shift in mood from a slight change in tone, a 
computer needs clear, distinct patterns that fit within its programmed understanding. 

This chapter explores how emotion models are conceptualised and implemented in soft
ware to bridge this gap between human emotional complexity and computer processing 
capabilities. By integrating these models into systems, developers aim to enhance the ma
chine's ability to interpret human emotions accurately and interact in a more human-like, 
empathetic manner. Such advancements not only improve the user experience but also 
open new avenues in how we understand and interact with technology, making interactions 
more natural and intuitive. 

2.1 H i s t o r i c a l Overv iew of E m o t i o n Theories 

The study of emotions spans multiple disciplines including psychology, neuroscience, and 
philosophy. The understanding of emotions has evolved significantly from ancient to modern 
times, impacting how emotions are modelled in computational systems today. 

Ancient and Philosophical Perspectives 

The philosophical inquiry into emotions dates back to the works of Aristotle and Plato, 
who pondered the role of emotions in human rationality and ethics. Aristotle's "Rhetoric" 
discusses emotions as persuasive tools, while Plato considered them part of the psyche that 
could disturb rational thinking [33, 28]. 

Evolutionary Theories 

Charles Darwin's work in the 19th century marked a pivotal turn toward understanding 
emotions from an evolutionary perspective. In his seminal book „The Expression of the 
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Emotions in Man and Animals" [9], Darwin proposed that emotions served adaptive evo
lutionary functions, which could be understood through patterns of expression that were 
consistent across cultures [9]. This work laid the foundation for later scientific studies into 
the biological bases of emotion. 

Early Psychological Theories 

In the late 19th and early 20th centuries, Will iam James and Carl Lange independently 
proposed what is now known as the James-Lange Theory of Emotions. This theory suggests 
that physiological arousal precedes the experience of emotion in which people feel sad 
because they cry, and not the other way around [17]. Although later debated and refined, 
this theory was crucial in shifting the focus to the physiological underpinnings of emotional 
experiences. 

The Development of M o d e r n Emotion Psychology 

Throughout the 20th century, further theories emerged that expanded upon these foun
dations. The Cannon-Bard theory challenged the James-Lange theory by proposing that 
emotions and physiological responses occur simultaneously rather than sequentially [8]. 
Later, Schachter and Singer's Two-Factor Theory introduced the idea that both physiologi
cal arousal and cognitive interpretation are necessary for the experience of emotion, adding 
complexity to understanding how emotions are processed [35]. 

A l l of these theories have contributed to the rich tapestry from which modern emotion 
models in computer software have been developed. They provide the necessary historical 
context to appreciate the complexity and depth of human emotions that we attempt to 
model today. 

2.2 E m o t i o n M o d e l s i n C o m p u t e r Software 

2.2.1 The Circumplex M o d e l of Emotion 

Developed by James A . Russell in the early 1980s, the Circumplex Model of Emotion 2.1 is 
a seminal framework in affective psychology that classifies emotions in a two-dimensional 
space of arousal and valence [34]. Arousal indicates the level of energy associated with an 
emotion, whereas valence reflects the degree of pleasantness. This model has been partic
ularly influential in the development of emotion recognition software, which uses these two 
dimensions to analyze facial expressions, voice tone, and physiological responses to catego
rize the emotional state of users [3]. The simplicity of this model makes it highly effective 
for real-time emotion assessment in interactive applications such as virtual assistants and 
customer service chatbots. 

5 
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Figure 2.1: The Circumplex Model of Emotion [43] 

The combination of these dimensions allows for the placement of specific emotions within 
the circle. For example: 

• High Arousal, Positive Valence: Excitement, ecstasy 

• High Arousal, Negative Valence: Fear, anger 

• Low Arousal, Positive Valence: Contentment, satisfaction 

• Low Arousal, Negative Valence: Boredom, sadness 

2.2.2 Plutchik's Emotion Wheel 

Robert Plutchik proposed his Emotion Wheel 2.2 in 1980 as a way to illustrate the relation
ships among different emotions, conceptualizing them as eight primary bipolar emotions: 
joy versus sadness, anger versus fear, trust versus disgust, and surprise versus anticipa
tion [29]. This model extends to include various degrees of intensity of each emotion, and 
combinations of the primary emotions can form complex feelings. In computer software, 
Plutchik's model is utilised to enhance emotional analysis algorithms. It enables more com
plex emotion recognition capabilities that are critical in areas such as behavioural predic
tion, personalised content delivery, and therapeutic settings where understanding nuanced 
emotional responses is key [25]. 

Here are the eight primary emotions in Plutchik's model, along with their opposites: 

Joy <-> Sadness 

Trust <-> Disgust 

Fear <-> Anger 

(i 



Surprise <-> Anticipation 

Figure 2.2: Plutchik's wheel of emotions [29] 

2.2.3 Lovheim Cube of Emotion 

The Lovheim Cube of Emotion 2.3 presents a three-dimensional model based on the levels 
of the neurotransmitters serotonin, dopamine and noradrenaline, positing that different 
combinations of these levels of neurotransmitters lead to different emotions [24]. This 
model is especially relevant in the development of affective computing systems that need to 
simulate human emotions with high accuracy. For example, in therapeutic software used in 
mental health treatment, the Lovheim Cube can guide the simulation of patient emotions 
under various scenarios, thus aiding in more effective treatment planning and support. 
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Figure 2.3: Lövheim Cube of Emotion [24] 

2.2.4 Conclusion 

The integration of emotion models into computer software has transformed the landscape of 
human-computer interaction. By employing sophisticated models such as those discussed in 
this chapter, developers can create software that not only understands human emotions, but 
also responds to them in a manner that mimics human empathy and understanding, thereby 
enhancing user experience and broadening the applicability of technology in emotionally 
sensitive applications. 

2.3 Signal Process ing Theoret ics : A u d i o Signals 

This section delves into the fundamental aspects of audio signal processing that are crucial 
to understanding how emotional cues can be extracted from speech and vocal expressions. 
Each subsection focuses on a key concept or technique. 

„A signal is a representation of a quantity that varies over time or space and is used 
to convey information. In computer science, signals are often processed digitally and can 
be represented as a sequence of samples. Examples include audio signals, images, and 
network traffic. The primary focus of signal processing is to analyze, modify, and interpret 
these signals for various applications such as communication, audio processing, and image 
analysis." [27] In the Figure 2.4, you can see samples of how audio signals can differentiate 
based on the emotion expressed in the same sample of speech. 
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Figure 2.4: Different waveforms for different emotion affectation for the same sentence [44] 

2.3.1 Audio Signal Power Spectrum and Its Spectral Envelope 

The power spectrum of an audio signal represents the distribution of power in the frequency 
components that make up that signal. It provides insights into the harmonic content and 
the energy of the signal at various frequencies. The spectral envelope, on the other hand, 
is a smooth curve that represents the peaks of the power spectrum, effectively capturing 
the resonant frequencies of the vocal tract that are critical for characterizing speech sounds 
[32]. A n example of such envelope is shown in Figure 2.5. 

0 5000 10000 15000 20000 
Frequency (Hz) 

Figure 2.5: Spectral Envelope [32] 
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2.3.2 Waveform Examples 

A waveform is a visual representation of the shape of a sound signal in the time domain. 
Analyzing waveforms allows for the observation of characteristics such as amplitude and 
frequency over time, providing a fundamental understanding of sound properties. This 
analysis is essential for distinguishing between different types of sound expressions and is 
particularly useful in speech analysis [12]. 

2.3.3 Windowing Examples 

Windowing is a technique used in signal processing where the signal is multiplied by a 
window function. This method reduces artifacts in the Fourier transform of the signal, 
particularly discontinuities at the edges of a sampled time window. Common windows 
include Hamming, Hanning, and Blackman windows shown in Figure 2.6, each with specific 
properties that make them suitable for different types of signal analysis tasks [15]. 

Rectangular Window 

WW - Rectangular Window (No Window^^ 

0.0 0.2 0.4 0.6 0.8 1.0 

Hamming Window 

/"\ f\ Hamming Window 

0.0 0.2 0.4 0.6 0.8 1.0 

Hanning Window 

Figure 2.6: Hamming Window 

2.3.4 M e l Filter Bank Example 

The Mel Filter Bank is used to mimic the human ear's response to different frequencies, 
capturing the essential characteristics of sound in terms of human perception. It consists 
of a set of triangular filters, as seen in Figure 2.7, each tuned to a specific frequency 
band centered on the Mel scale. This technique is extensively used in voice recognition 
and speech processing applications to extract features that are robust and relevant for 
identifying emotional content in speech [10]. 

10 
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Figure 2.7: Mel Filter Banks 

2.3.5 Jitter and Shimmer Example 

Jitter and shimmer, as seen in Figure 2.8, are measures used to assess the stability and 
quality of the human voice. Jitter refers to the frequency variation from one cycle to the 
next, while shimmer refers to the amplitude variation. These parameters are important 
indicators of voice disorders and are also useful for emotional state analysis, as emotional 
states can influence voice stability and quality [18]. 

Base Speech Signa 

0.0 0.2 0.4 0.6 0.8 1.0 

Jitter in Speech Signal 

0.0 0.2 0.4 0.6 0.8 1.0 

Shimmer in Speech Signa 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 2.8: Jitter and Shimmer 

This thesis aims to propose the Speech Emotion Recognition (SER) system that recog
nizes emotions from a speech in a way that approaches the abilities of humans, and to do 
so there is a need to study how to categorize emotions like them as the fundamental brick 
for the following work. Two types of emotional models are interesting from the SER point 
of view: discrete (categorical) model and dimensional (continuous) model [2]. 

11 



Chapter 3 

Emotion recognition from speech 

3.1 S E R Datasets 

In recent advancements, the field of emotion recognition has become a focal point in machine 
learning research, prompting the development of numerous datasets. These datasets vary 
greatly in size, quality, and type, each tailored to meet specific research needs in the field 
of speech emotion recognition (SER). 

3.1.1 Types of S E R Datasets 

Datasets in SER are classified based on the nature of the emotion elicitation and recording: 

• Acted: Actors are instructed to express particular emotions, which are then captured 
in recordings. This type typically allows for controlled study of specific emotional 
states but may lack naturalism. 

• Naturalistic: These datasets consist of recordings from real-life interactions or mono
logues where emotions occur naturally, providing a more genuine insight into human 
emotional expression. 

• Bilingual: Unique datasets where the same phrases are recorded by the same speaker 
in multiple languages, enriching the dataset with linguistic diversity that is beneficial 
for multi-lingual emotion recognition systems. 

• Cross-corpus: Perhaps the most valuable for robust algorithm training, these datasets 
combine various types of data collections, enhancing the model's ability to generalize 
across different languages, modalities, and emotional expressions. 

3.1.2 Highlighted S E R Datasets 

This thesis utilizes five key datasets, whose overview can be seen in table 3.1, chosen for 
their relevance in benchmarking the performance of contemporary models as well as their 
availability through existing university resources. Detailed exploration of these datasets 
facilitates a deeper understanding of model accuracies and advancements in SER technology. 
The datasets include: 

• MSP-Podcast: This extensive dataset includes over 104,267 speaking turns, accu
mulating to about 166 hours and 9 minutes of naturalistic emotional speech collected 
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from various podcasts. It is particularly valuable for studying spontaneous emotional 
expressions in speech [23]. 

• E M O - D B : A well-established dataset, the Berlin Database of Emotional Speech 
(EMO-DB) , supports the analysis and development of algorithms for emotion recog
nition. It includes a variety of emotional states expressed in German through scripted 
statements, making it a staple in many SER studies [5]. 

• I E M O C A P : Focused on dyadic interactions, the Interactive Emotional Dyadic Mo
tion Capture database offers a rich source of audio-visual data capturing naturalistic 
emotional expressions in controlled scenarios. This dataset is widely used for training 
and testing SER systems [6]. 

• R A V D E S S : The Ryerson Audio-Visual Database of Emotional Speech and Song con
tains meticulously recorded audio and visual data of professional actors expressing a 
range of emotions through speech and song. Its detailed annotation system includes 
information on modality, vocal channel, emotion, emotional intensity, statement, rep
etition, and actor identity, providing a structured framework for comprehensive emo
tion analysis [22]. 

Table 3.1: Brief description of databases for SER. 
Name Type Language Emotions Citations count 

Neutral, anger, sadness, 
Emo-DB Acted German fear, boredom, happi

ness, disgust. 
1237 

Anger, happiness, sad
I E M O C A P Elicited English ness, frustration, neu

tral. 
1421 

Surprise, anger, fear, 
R A V D E S S Acted English disgust, sadness, neu

tral, calm, happiness. 
558 

Surprise, anger, fear, 
disgust, sadness, neu

MSP-Podcast Natural English tral, calm, happiness, 
concerned, depressed, 
excited. 

853 

3.2 T r a d i t i o n a l M a c h i n e L e a r n i n g Approaches for S E R 

3.2.1 Features 

Designing an effective speech emotion recognition (SER) system involves the meticulous 
identification and extraction of key emotion-related speech features. Human capabilities in 
interpreting both linguistic and paralinguistic cues from speech highlight the complexity 
of this task. The selection of appropriate speech features is crucial for enhancing the 
performance of SER classifiers. 
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Speech Feature Categories 

Numerous types of features have been studied extensively in SER research: 

• Local and Global Features: Local features represent short-term properties of 
speech, whereas global features capture long-term aspects. 

• Continuous Speech Features: These features are derived from flowing speech, 
providing a dynamic perspective of emotional expression. 

• Qualitative Features: Subjective qualities such as tone and stress fall under this 
category. 

• Spectral Features: These include fundamental frequency, formants, and other 
frequency-related characteristics that are vital for distinguishing emotional states in 
speech. 

• Teager Energy Operator (TEO) Features: TEO-based features help in analyz
ing the energy operators of speech signals, which are effective in identifying speech 
modulations. 

• Excitation Source Features: These features, including pitch and voice quality, are 
derived from the source of vocal excitation. 

• Vocal Tract Features: Represent the configuration and dynamics of the speaker's 
vocal tract during speech. 

Speech signals are inherently nonstationary, thus they are segmented into small frames to 
render them stationary for analysis, focusing primarily on excitation source features, vocal 
tract characteristics, prosodic features, and various combinations of these features [19]. 

Classifier Design and Effectiveness 

Speech Emotion Recognition (SER) is employed to classify the underlying emotions in any 
given utterance. The classification of SER can be approached through two distinct methods: 
traditional classifiers and deep learning classifiers 3.3. While numerous classifiers have been 
applied in SER systems, determining the most effective one poses a challenge, leading to 
ongoing pragmatic research in the field. 

SER systems commonly leverage various traditional classification algorithms. The learn
ing algorithm predicts a new class input by utilizing labeled data that recognizes respective 
classes and samples through the approximation of the mapping function. Following the 
training process, the remaining data is employed to test the classifier's performance. Ex
amples of traditional classifiers include Gaussian Mixture Model, Hidden Markov Model, 
Artificial Neural Network, and Support Vector Machines. Other traditional classification 
techniques, such as k-Nearest Neighbor, Decision Trees, Naive Bayes Classifiers, and k-
means, are also frequently preferred. Additionally, an ensemble technique is employed for 
emotion recognition, combining different classifiers to achieve more robust and acceptable 
results. 

The effectiveness of a SER system significantly depends on the choice of classifiers. Vari
ous machine learning classifiers have been implemented and evaluated for their performance 
in SER [21]: 
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• Single Classifiers: These involve using one classifier type to predict emotional states. 

• Multiple Classifiers: This approach uses several classifiers, each trained on different 
aspects of speech features to improve recognition accuracy. 

• Hybrid Classifiers: Combining features or methods can result in hybrid classifiers 
that leverage the strengths of various approaches. 

• Ensemble Classifiers: These classifiers use a group of models to better generalize 
over different datasets, enhancing robustness and accuracy. 

The design of speech databases, crucial for assessing classifier effectiveness, varies based on 
environmental conditions and language specifics. It's essential that the features chosen for 
classifier design are robust enough to perform effectively across different speech emotion 
contexts. Classifiers are typically trained and tested within the same database to ensure 
consistency in performance evaluation [21]. 

3.2.2 Summary 

In the domain of machine learning for emotion recognition, traditional methodologies typi
cally rely on manual feature extraction and established classifiers. Essential speech features 
such as pitch, energy, and formants are extracted and then utilized to feed classifiers like 
Support Vector Machines (SVMs) and Gaussian Mixture Models (GMMs) . A n overview of 
such models is probided in the following table 3.2. These traditional models are somewhat 
effective, yet they may not capture the complex and high-dimensional patterns in data as 
efficiently as more modern deep learning approaches, such as Convolutional Neural Net
works (CNNs) and Recurrent Neural Networks (RNNs). 

In this thesis, we will depart from these traditional models in favor of exploring deep 
learning techniques. The subsequent section will detail these deep learning algorithms 
and their application to emotion recognition, highlighting their advantages over traditional 
methods in capturing nuanced emotional expressions in speech. 
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Table 3.2: This table provides a quick overview over existing traditional models used for speech emotion recognition 

O S 

N o . M e t h o d s M e t h o d o l o g y o v e r v i e w R e s u l t s R e f e r e n c e s 

1 G M M s 
A l l f e a t u r e s w e r e u s e d t o m o d e l G M M s o n t h e f r a m e 
l e v e l . E m o t i o n s w e r e c l a s s i f i e d i n t h r e e c a t e g o r i e s . 
M e t h o d h a s b e e n t e s t e d o n t w o d i f f e r e n t d a t a s e t s 

8 5 % a c c u r a c y N e i b e r g e t a l . ( 2 0 0 6 ) 

2 S V M 
E m o t i o n s w e r e c l a s s i f i e d i n t o 7 d i f f e r e n t c a t e g o r i e s . 
M a j o r i t y o f f e a t u r e s t h a t w e r e u s e d a r e i n t i m e 
d o m a i n . M e t h o d o l o g y w a s t e s t i n g u s i n g o n e d a t a s e t 

8 1 % r e c o g n i t i o n r a t e L a l i t h a et a l . ( 2 0 1 4 ) 

3 G M M S u p e r v e c t o r - b a s e d S V M v s G M M 
G M M s u p e r v e c t o r s f o r c a l c u l a t e d f o r e a c h u t t e r a n c e , 
w h i c h w e r e f u r t h e r u s e d as i n p u t f o r S V M . U t t e r 
a n c e s w e r e c l a s s i f i e d t o 5 e m o t i o n s 

G M M S u p e r v e c t o r - b a s e d S V M s i g n i f i c a n t l y o u t p e r 
f o r m s s t a n d a r d G M M s y s t e m 

H u e t a l . ( 2 0 0 7 ) 

4 H M M a n d S V M 

U t t e r a n c e s w e r e c l a s s i f i e d i n 5 c a t e g o r i e s . F e a t u r e 
s e l e c t i o n w a s p e r f o r m e d u s i n g S F S . B o t h H M M 
a n d S V M w e r e u s e d f o r c l a s s i f i c a t i o n s e p a r a t e l y t o 
c o m p a r e 

R e c o g n i t i o n r a t e o f 9 9 . 5 % t h r o u g h H M M , 8 8 . 9 % 
t h r o u g h S V M L i n a n d W e i ( 2 0 0 5 ) 

5 S V M 
D i f f e r e n t c o m b i n a t i o n o f f e a t u r e s w a s u s e d t o 
d e v e l o p d i f f e r e n t S V M m o d e l s . B e s t o n e w a s c h o 
s e n b a s e d o n a c c u r a c y r a t e 

A c c u r a c y r a t e o f 9 1 . 3 % f o r C h i n e s e d a t a b a s e , 9 5 . 1 % 
f o r B e r l i n d a t a b a s e s 

P a n e t a l . ( 2 0 1 2 ) 

6 H y b r i d S V M - B e l i e f N e t w o r k A r c h i t e c t u r e 

U t t e r a n c e s w e r e c l a s s i f i e d s i n t o 7 e m o t i o n s . H y b r i d 
s y s t e m w a s b u i l t u s i n g S V M a n d B e l i e f N e t w o r k . 
R e s u l t s w e r e i n t e g r a t e d i n a s o f t d e c i s i o n f u s i o n 
u s i n g M L P 

E r r o r r a t e o f 8 . 0 % S c h u l l e r et a l . ( 2 0 0 4 ) 

7 S V M , L D A , Q D A , H M M 
I m p o r t a n t f e a t u r e s w e r e s e l e c t e d , m u l t i p l e m e t h o d s 
w e r e u s e d 

A c c u r a c y r a t e o f 7 0 . 1 % (4 e m o t i o n s ) , 9 6 . 3 % ( 2 e m o 
t i o n s ) u s i n g G S V M 

K w o n et a l . ( 2 0 0 3 ) 

8 H M M ( b i m o d a l , i n t e g r a t i n g a u d i o a n d v i d e o ) 
H y b r i d m e t h o d , b o t h v i d e o a n d a u d i o s o u r c e s w e r e 
u s e d t o c l a s s i f y e m o t i o n s i n t o 4 c a t e g o r i e s 

A p p r o x i m a t e a c c u r a c y o f 7 0 % t h r o u g h v i d e o s o u r c e , 
3 0 % t h r o u g h a u d i o , a n d 7 2 % t h r o u g h b i m o d a l 

S i l v a a n d N g ( 2 0 0 0 ) 

9 
N e a r e s t - m e a n c r i t e r i o n , m o d e l 
e a c h c l a s s w i t h G a u s s i a n 
d i s t r i b u t i o n a n d c l a s s i f y t e s t s a m p l e s 

F e a t u r e s t h a t g i v e h i g h e s t r e c o g n i t i o n r a t e s a r e 
s e l e c t e d . B o t h v i d e o a n d a u d i o s o u r c e s w e r e u s e d 
t o c l a s s i f y e m o t i o n s i n t o 6 c a t e g o r i e s 

B e s t a c c u r a c y o f 7 7 . 8 % t h r o u g h a u d i o s o u r c e , 9 7 . 2 % 
t h r o u g h a u d i o a n d v i d e o s o u r c e 

C h e n e t a l . ( 1 9 9 8 ) 

10 
k - n e a r e s t n e i g h b o r , n e u r a l n e t w o r k , e n s e m b l e o f 
n e u r a l n e t w o r k 

E m o t i o n s w e r e c l a s s i f i e d i n t o 5 c a t e g o r i e s . R e c o g n i 
t i o n r a t e o f e a c h e m o t i o n w a s c a l c u l a t e d . A c c u 
r a c y r a t e o f e a c h e m o t i o n w a s d e t e r m i n e d t o f i n d 
o u t w h i c h e m o t i o n s a r e b e i n g c a t e g o r i z e d m o r e 
a c c u r a t e l y 

A c c u r a c y o f 5 5 % t h r o u g h K - n e a r e s t n e i g h b o r s , 6 5 % 
t h r o u g h n e u r a l n e t w o r k , 7 0 % t h r o u g h e n s e m b l e o f 
n e u r a l n e t w o r k . A c c u r a c y o f c l a s s i f y i n g f e a r w a s 
w o r s t , w h i l e a n g e r a n d s a d n e s s w a s b e s t 

P e t r u s h i n ( 2 0 0 0 ) 



3.3 Deep L e a r n i n g Approaches for S E R 

Deep Neural Networks (DNNs) are a class of machine learning algorithms inspired by the 
biological neural networks that constitute human brains. These sophisticated models consist 
of multiple layers of interconnected nodes, and they are highly adept at identifying complex 
patterns and relationships within large datasets. DNNs are particularly impactful in the 
field of affective computing for tasks such as emotion recognition from speech. 

Central to the effectiveness of DNNs is their ability to autonomously derive hierarchical 
feature sets from raw data inputs. In the realm of speech emotion recognition, DNNs are 
exceptionally skilled at detecting subtle acoustic nuances linked with various emotional 
states. This capability is enhanced by using Recurrent Neural Networks (RNNs) equipped 
with Long Short-Term Memory (LSTM) units, which are crucial for processing the temporal 
aspects and dependencies of spoken language. 

The operational mechanism of DNNs starts either with extracting critical features from 
speech, such as Mel-frequency cepstral coefficients (MFCCs) , which capture the audio's 
frequency components, or providing the raw speech data as input. These features are fed 
into the neural network, initiating a training phase on annotated datasets. Throughout 
this phase, the D N N adjusts its internal weights and biases to align the feature inputs with 
corresponding emotional labels, a process refined through continual optimization iterations. 

What sets DNNs apart in the field of emotion recognition is their nuanced capability 
to perceive fine variations in speech, such as changes in tone, pacing, and intonation, all 
of which are indicative of underlying emotions. This sensitivity allows the models to gen
eralize effectively across different emotional expressions and ensures robust performance in 
practical applications. 

As interest in SER expands within the research community—fueled by advancements in 
technology and greater accessibility to computational resources—deep learning methodolo
gies are increasingly being integrated into this area. The subsequent sections will outline 
cutting-edge approaches in this domain, forming the foundation upon which the model will 
be developed and potential shortcomings of existing frameworks address. A n overview of 
deep learning approaches below is provided by Table 3.3. 

3.3.1 Convolutional Recurrent Neural Network ( C R N N ) 

The Convolutional Recurrent Neural Network (CRNN) merges the spatial feature detec
tion capabilities of Convolutional Neural Networks (CNNs) with the sequence modeling 
strengths of Recurrent Neural Networks (RNNs). This combination allows C R N N s to ef
fectively process data that has both spatial and temporal dimensions, making them highly 
effective in tasks such as emotion recognition from speech signals [20]. 

Architecture Overview 

In a C R N N , the initial layers are convolutional, designed to extract spatial features from 
the input data. These features are then processed by recurrent layers, which capture tem
poral dependencies using mechanisms such as Long Short-Term Memory (LSTM) or Gated 
Recurrent Units (GRUs). This architecture makes C R N N s suitable for applications where 
both the content of the signal and its temporal characteristics are important. 
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Applications and Performance 

C R N N s are utilized for enhancing one-dimensional signals, such as in audio processing, 
where they can apply filters like Mel and Gammatone to improve signal clarity by removing 
noise. The integration of convolutional and recurrent layers enables C R N N s to achieve high 
accuracy and low loss rates during both training and testing phases, demonstrating their 
robustness and efficiency in handling complex tasks [20]. 

3.3.2 C N N Bidirectional L S T M ( C N N - B i L S T M ) 

Wang et al. [39] introduce a novel transformer-based framework named DWFormer, de
signed specifically for the speech emotion recognition field. This framework is adept at 
identifying significant temporal regions at varying scales both within and between samples. 
Empirical evidence shows that DWFormer surpasses previous state-of-the-art methods in 
performance. Through an ablation study, the utility of the Dynamic Local Window Trans
former (DLWT) and Dynamic Global Window Transforme (DGWT) modules within this 
framework is validated. Given its capability to pinpoint critical information, plans are un
derway to deploy DWFormer in the study of pathological speech recognition, aiming to aid 
researchers in analyzing the effects of diseases on speech articulation. 

3.3.3 P C N S E 

In full name the Parallel Convolutional Layers (PCN) integrated with Squeeze-and-Excitation 
Network. Zhao et al. [45] introduce an advanced deep neural network architecture that 
integrates Connectionist Temporal Classification (CTC) loss for targeted use in discrete 
speech emotion recognition. The efficacy of this innovative approach is validated through 
rigorous testing on two key emotion corpora: the Interactive Emotional Dyadic Motion 
Capture ( I E M O C A P ) and the FAU-Aibo Emotion corpus ( F A U - A E C ) . The experimen
tal outcomes highlight the suitability of this method for discrete SER, where it achieves 
a weighted accuracy (WA) of 73.1% and an unweighted accuracy (UA) of 66.3% on the 
I E M O C A P dataset. Furthermore, it also records an unweighted accuracy of 41.1% on the 
F A U - A E C dataset. 

3.3.4 T I M - N e t 

In full words the Temporal-aware bl-direction Multi-scale Network. Ye et al. [42] present a 
cutting-edge approach for temporal emotional modeling in their paper, introducing T I M -
Net which architecture is shown in figure 3.1. This model is designed to learn multi-scale 
contextual affective representations across various time scales. TIM-Net excels at capturing 
long-range temporal dependencies using bi-directional temporal modeling and dynamically 
fuses multi-scale information to adeptly adjust to variations in temporal scale. 

The findings from experimental evaluations underscore the importance of leveraging 
context information with dynamic temporal scales for the speech emotion recognition task. 
Additional insights from ablation studies, visualizations, and domain generalization analyses 
further substantiate the benefits of TIM-Net. Looking forward, Ye proposes to explore the 
disentanglement of emotional and speech content within this temporal modeling framework 
to enhance generalization across different SER corpora. 
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Input Pipeline Temporal-aware bl-direction Multi-scale Network Classifier 

Figure 3.1: The architecture of TIM-Net is specifically designed for extracting affective 
features and includes two main components: a bi-directional module and a dynamic fusion 
module. It is important to note that the forward fj and backward fj components of the 
bi-directional module share the same structural design but differ in the inputs they process. 
[42] 

3.3.5 D N N & E L M 

Han et al. [14] introduce a novel approach in their study by employing a Deep Neural 
Network (DNN) to estimate emotional states from individual speech segments within an 
utterance. These segment-level estimations are then aggregated into an utterance-level 
feature vector. Subsequently, an Extreme Learning Machine (ELM) is utilized to perform 
the emotion recognition for the entire utterance. The experimental results from this study 
suggest that leveraging a D N N in conjunction with an E L M significantly enhances the 
performance of emotion recognition from speech signals. This method shows great promise 
in extracting and learning emotional information from low-level acoustic features through 
neural networks. 

3.3.6 Mult imodal System by Busso et al. 

This study conducted by Busso et al. [7] delves into the statistical analysis of pitch contours 
in speech. Initially, pitch features extracted from emotional speech samples are compared 
to those from neutral speech using symmetric Kullback-Leibler distance to establish differ
ences. Subsequently, the emotional discriminative power of these pitch features is assessed 
through the comparison of nested logistic regression models. 

The findings reveal that broader pitch contour statistics—such as mean, maximum, 
minimum, and range—hold greater emotional significance than those describing the shape of 
the pitch. Furthermore, it is determined that pitch statistics evaluated at the utterance level 
yield more accurate and robust results than those assessed over shorter speech segments, 
such as voiced sections. 

Building upon these insights, a binary emotion detection system is developed to differ
entiate emotional from neutral speech. The system employs a novel two-step methodology: 
initially, reference models for pitch features are trained using neutral speech to establish a 
baseline. Input features are then compared against these models to gauge similarity (for 
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neutral speech) or disparity (for emotional speech). The effectiveness of this approach is val
idated across four acted emotional databases, encompassing various emotional categories, 
recording settings, speakers, and languages. 

The results demonstrate that this system achieves a recognition accuracy of over 77% 
using only pitch features, a significant improvement over the baseline of 50%. Compared 
to traditional classification methods, this novel approach exhibits enhanced accuracy and 
robustness. [7] 

3.3.7 Audio Spectrogram Transformer ( A S T ) 

The Audio Spectrogram Transformer (AST) represents a groundbreaking shift in audio 
classification methodologies. Unlike traditional models, A S T is the first to utilize a purely 
attention-based mechanism, devoid of convolutional layers, tailored specifically for audio 
tasks. It accommodates variable-length inputs and has been rigorously evaluated across 
several audio classification benchmarks. Remarkably, A S T achieves a mean average pre
cision (mAP) of 0.485 on AudioSet, 95.6% accuracy on ESC-50, and 98.1% accuracy on 
Speech Commands V2 [13]. The model's architecture, inspired by the successes of Trans
former technology in natural language processing, adapts this approach to handle audio 
data through sophisticated time-frequency representations known as spectrograms. 

Architecture 

AST's architecture, also shown in Figure 3.2 fundamentally transforms the approach to 
audio signal processing by employing the Transformer model, which relies on self-attention 
mechanisms rather than the traditional convolutional neural networks (CNNs). This shift 
allows A S T to dynamically weigh the importance of different segments of the audio without 
the constraint of local receptive fields typically imposed by CNNs. The Transformer layers in 
A S T analyze the entire audio spectrum holistically, enabling it to capture complex patterns 
and dependencies that are crucial for accurate audio classification. 

Input Representation 

The input to A S T is a mel-spectrogram, a sophisticated transformation of raw audio that 
reflects human perception of sound more accurately than standard spectrograms. This 
transformation involves segmenting the audio signal into short frames, applying a Fast 
Fourier Transform (FFT) to each frame to obtain the frequency spectrum, and then warping 
the frequencies onto the mel scale. This scale emphasizes perceptual relevance rather than 
linear frequency distribution, making it particularly effective for tasks involving human 
auditory perception, such as speech and music classification. 

Applications 

AST's flexibility and robustness allow it to excel in a variety of audio classification tasks. 
It has been successfully applied in environmental sound classification, where it identifies 
and categorizes natural and urban sounds, music genre classification, distinguishing among 
different musical styles, and speech emotion recognition, detecting emotional states from 
speech patterns. The model's ability to handle long-range dependencies and its sensitivity 
to the temporal dynamics of audio make it exceptionally suited for these complex audio 
analysis tasks. 
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Advantages 

One of the foremost advantages of the A S T model is its convolution-free architecture, 
which enables it to focus attention variably across different parts of an audio signal. This 
capability allows A S T to perform exceptionally well on tasks that require a nuanced un
derstanding of audio content. The self-attention mechanism assesses relationships across 
all parts of the audio signal, fostering a comprehensive understanding that often surpasses 
traditional methods, particularly in discerning subtle audio features essential for high-level 
audio analysis. 
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Figure 3.2: Architecture proposed by the authors of A S T [13] 
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Table 3.3: The table provides a quick overview over existing deep learning models used for 
speech emotion recognition 

Model Database(s) Preprocessing Results 
C - R N N R A V D E S S - 70 % / -

C N N -
B i L S T M 

l E M O C A P 
Framing with the frame 

length of 25 ms and 
hop length of 10 ms 

92 % / 91.28 % 

P C N S E 
I E M O C A P , 
F A U - A E C 

Framing with the frame 
length of 25 ms and 
hop length of 10 ms, 

Hamming window 
applied on each frame 

66.3 % / 73.1 % 
for I E M O C A P , 
41.1 % / - for 

F A U - A E C 

TIM-Net 

EmoDB, 
I E M O C A P , 
R A V D E S S , 

S A V E E , 
C A S I A , 

E M O V O 

Framing with frame 
length of 50 ms and 

hop length of 12.5 ms, 
Hamming window 

applied on each frame. 

2.34 % / 2.36 % 
(avg. improve

ment) 

D N N , then 
E L M -

D N N have been used to 
produce emotion state 

probability distribution 
for each segment, 

which was to construct 
utterance-level features. 
These features were fed 

into E L M to identify 
utterance-level 

emotions ( 5 categories) 

Accuracy rate of 
45% through base 

H M M improved 
to 54.3% through 

proposed 
approach 

Multimodal 
system -

Both audio and visual 
information have been 

used. Results were 
integrated through 

fusion. Emotions were 
classified into 4 

categories 

Accuracy of 
70.9% through 

acoustic source, 
85% through 
facial source, 

89.1% through 
bimodal system 

A S T 

AudioSet, 
Speech 

Commands 
V2 

-

95.6% accuracy 
on ESC-50, and 
98.1% accuracy 

on Speech 
Commands V2. 

3.3.8 Deep Belief Networks 

Deep Belief Networks (DBNs) represent another class of deep learning models, distinct in 
architecture and training methodology from traditional Deep Neural Networks (DNNs). 
While both DNNs and DBNs fall under the umbrella of deep learning, the key difference 
lies in the hierarchical structure and learning approach. 
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Unlike the feedforward architecture of DNNs, DBNs are composed of multiple layers of 
stochastic, latent variables, where each layer models dependencies among these variables. 
DBNs consist of a generative layer known as the Restricted Boltzmann Machine (RBM) 
and a top discriminative layer for classification tasks. 

In the realm of emotion recognition from speech, DBNs offer an alternative approach 
to capturing intricate patterns in acoustic signals. The training process of a D B N in
volves layer-wise unsupervised pretraining, where each layer is trained to learn a compact 
representation of the input data. This pretraining allows DBNs to automatically extract 
hierarchical features and uncover complex relationships within the data. 

The versatility of DBNs lies in their ability to adapt to varying levels of abstraction 
in the input features. In the context of speech, this can be advantageous for recognizing 
emotions, as it allows the model to capture both low-level acoustic details and high-level 
contextual information. 

While DNNs have proven effective in learning representations directly from labeled 
data through supervised learning, DBNs, with their unsupervised pretraining, may excel in 
scenarios with limited labeled training samples. This characteristic makes them valuable 
in tasks where obtaining large labeled datasets is challenging [41]. 

Deep Boltzmann Machine 

Deep Boltzmann Machines (DBMs) represent a specialized class of unsupervised deep learn
ing models, sharing some similarities with Deep Belief Networks (DBNs) in their use of 
Boltzmann Machines. However, D B M s introduce a more complex and interconnected ar
chitecture, enabling the modeling of higher-order dependencies in the data. 

In the context of emotion recognition from speech, Deep Boltzmann Machines offer a 
unique approach to capturing the intricate patterns present in acoustic signals. Unlike 
the layer-wise unsupervised pretraining employed in DBNs, D B M s utilize a joint training 
approach that considers all layers simultaneously. This allows D B M s to model complex 
relationships and dependencies across multiple layers, potentially yielding richer represen
tations of emotional cues in speech. 

The architecture of a D B M comprises visible and hidden layers, where each layer con
tains a set of stochastic binary units. The connectivity pattern between layers is symmetric, 
allowing for bidirectional information flow. This bidirectional connectivity enables D B M s 
to capture not only the direct relationships between input features but also more abstract 
and high-level dependencies. 

Training a Deep Boltzmann Machine involves adjusting the weights and biases to max
imize the likelihood of observed data. This process is inherently unsupervised, making 
D B M s particularly suitable for scenarios where labeled emotion data is scarce or unavail
able. The model learns a probabilistic generative model of the input data, allowing it to 
capture the underlying structure of the acoustic features associated with different emotional 
states. 

The use of D B M s in emotion recognition highlights their capability to automatically 
learn hierarchical representations of speech data. By modeling dependencies across mul
tiple layers, D B M s have the potential to capture nuanced and contextually rich patterns, 
contributing to more sophisticated emotion recognition systems [36]. 
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Restricted Boltzmann Machine 

While both R B M s and D B M s are types of Boltzmann Machines used for unsupervised 
learning, D B M s extend the architecture to include multiple hidden layers with bidirectional 
connectivity. This architectural difference allows D B M s to capture more complex relation
ships within the data, making them particularly useful for tasks requiring the modeling of 
intricate dependencies, such as in emotion recognition from speech [31]. 

3.3.9 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) represent a class of neural networks designed to ef
fectively capture sequential information, making them well-suited for analyzing time-series 
data like speech signals. In the context of emotion recognition from speech, RNNs offer a 
unique approach to understanding the temporal dynamics inherent in spoken language [37]. 

Key Characteristics of RNNs: 

• Temporal Sequences: RNNs are specialized in handling sequences of data by main
taining hidden states that capture information from previous time steps. This makes 
them particularly powerful for tasks where the order and context of input data matter, 
such as in understanding the emotional nuances expressed in speech. 

• Long Short-Term Memory (LSTM): To address challenges like vanishing gradi
ents and the inability to capture long-range dependencies, RNNs often incorporate 
L S T M cells. L S T M s are capable of learning and remembering information over ex
tended sequences, making them effective for modeling the temporal aspects of speech. 

• Feature Extraction: RNNs process acoustic features extracted from speech signals, 
such as Mel-frequency cepstral coefficients (MFCCs) , pitch, and energy. These fea
tures serve as inputs to the network, enabling it to learn patterns associated with 
different emotions. 

• Training Process: During training, RNNs learn to map the sequential acoustic 
features to corresponding emotion labels. The training process involves adjusting 
the weights of the network using backpropagation through time (BPTT) , allowing 
the model to capture temporal dependencies and improve its ability to recognize 
emotions. 

• Real-time Inference: Once trained, RNNs can perform real-time emotion recogni
tion from speech. Given a new speech sample, the model processes the input sequen
tially and generates predictions based on the learned temporal dependencies. 

• Challenges: Despite their effectiveness, RNNs have limitations, such as difficulties in 
capturing very long-term dependencies and susceptibility to vanishing or exploding 
gradients. These challenges have led to the development of more advanced architec
tures like Long Short-Term Memory networks (LSTMs) and Gated Recurrent Units 
(GRUs). 

Applications in Emotion Recognition: 

Temporal Dynamics: RNNs excel in capturing the dynamic nature of emotional expres
sion in speech, where the timing and sequence of acoustic features play a crucial role. 
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Contextual Understanding: The ability to maintain hidden states allows RNNs to con
sider context from previous time steps, aiding in the interpretation of emotional cues within 
a broader context. 

Multimodal Integration: RNNs can be employed in multimodal emotion recognition 
systems, combining information from speech with other modalities like text or facial ex
pressions for a more comprehensive understanding of emotional states. 

3.3.10 Long Short-Term M e m o r y 

Long Short-Term Memory (LSTM) networks are a specialized type of Recurrent Neural 
Network (RNN) architecture designed to address the challenges of modeling long-range de
pendencies and capturing temporal dynamics in sequential data. In the context of emotion 
recognition from speech, L S T M s offer enhanced capabilities for understanding and inter
preting the nuanced patterns associated with different emotional states [16]. 

Key Characteristics of L S T M Networks: 

• Memory Cells: L S T M s introduce a memory cell, a fundamental component that 
allows the network to store and retrieve information over extended time intervals. 
This mitigates the vanishing gradient problem encountered in traditional RNNs, en
abling L S T M s to capture long-term dependencies crucial for understanding emotional 
expressions in speech. 

• Gates for Information Flow: L S T M s incorporate gating mechanisms, including 
the input gate, forget gate, and output gate. These gates regulate the flow of infor
mation into, out of, and within the memory cell. The ability to selectively update 
and forget information enhances the network's capacity to discern relevant emotional 
cues in speech. 

• Sequential Processing: L S T M s process sequential input data, such as acoustic fea
tures extracted from speech signals, in a step-by-step manner. At each time step, the 
network considers the current input, updates its hidden state, and makes predictions 
based on the learned temporal dependencies. 

• Feature Learning: L S T M s automatically learn hierarchical representations of se
quential data, allowing them to extract and emphasize salient features associated with 
different emotional states in speech. 

• Training Process: During training, L S T M s adjust their weights through backprop-
agation through time ( B P T T ) . The architecture's ability to capture long-term depen
dencies facilitates more effective learning of patterns within emotional expressions, 
contributing to improved accuracy in emotion recognition. 

Applications in Emotion Recognition: 

• Temporal Context: L S T M s excel in capturing the temporal context of emotional 
expressions in speech, enabling the model to consider not only the current acoustic 
features but also the historical context. 

• Complex Dependencies: The memory cell and gating mechanisms enable L S T M s 
to capture complex dependencies in sequential data, making them well-suited for tasks 
where understanding the interplay of various acoustic features is crucial. 
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• Real-time Inference: Trained L S T M s can perform real-time emotion recognition, 
making them suitable for applications that require immediate feedback based on in
coming speech signals. 

• Transfer Learning: L S T M s can benefit from transfer learning by initializing 
weights with pre-trained models on large datasets. This is particularly useful in 
emotion recognition tasks when labeled data is limited. 

3.3.11 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are a type of deep learning model that has been 
successfully applied to various tasks, including image and speech processing. In the context 
of emotion detection from human speech, CNNs can be utilized to automatically learn 
relevant features from the audio data [44]. Here's an overview of how CNNs can be employed 
for emotion detection from speech: 

1. Data Representation: Spectrogram Generation: Audio data is often converted into 
a spectrogram, which is a visual representation of the spectrum of frequencies in a 
sound signal as they vary with time. This conversion is crucial for extracting patterns 
from the audio signals 

2. Convolutional Layers: 

Feature Extraction: Convolutional layers in a C N N are responsible for learning hier
archical features. In the context of spectrograms, the convolutional filters can learn 
to detect patterns and features that are indicative of certain emotional characteristics 
in the speech signal. 

3. Pooling Layers: 

Downsampling: Pooling layers are often used to reduce the spatial dimensions of the 
feature maps obtained from convolutional layers. This downsampling helps retain the 
most important information while reducing computational complexity. 

4. Flattening and Fully Connected Layers: 

Decision Making: The flattened output from the convolutional and pooling layers is 
fed into one or more fully connected layers. These layers serve as classifiers and learn 
to map the features extracted by the earlier layers to specific emotion classes. 

5. Softmax Activation: 

Output Layer Activation: The final layer typically uses a softmax activation function, 
which converts the raw output scores into probability distributions over different 
emotion classes. This allows the model to provide a probability for each emotion 
class. 

6. Training: 

Supervised Learning: CNNs are trained in a supervised manner, meaning that they 
are provided with labeled examples of speech data and their corresponding emotion 
labels. The model adjusts its parameters during training to minimize the difference 
between its predicted emotions and the true emotions. 
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7. Evaluation: 
Testing and Validation: The trained model is evaluated on a separate set of data that 
it has not seen before to assess its ability to generalize to new instances. Metrics such 
as accuracy, precision, recall, and F l score are commonly used for evaluation. 

8. Hyperparameter Tuning: 

Optimization: The model's hyperparameters, such as learning rate, number of layers, 
and filter sizes, may need to be fine-tuned to achieve optimal performance. 

9. Real-time Inference: 

Deployment: Once trained, the model can be used for real-time inference, taking in 
new audio data and predicting the associated emotion. 

Considerations: 
Data Quality and Quantity: Adequate and diverse training data is crucial for the model 

to generalize well to different speakers, accents, and emotional expressions. Model Com
plexity: The architecture of the C N N , including the number of layers and parameters, needs 
to be carefully chosen to balance complexity and generalization. 

In summary, CNNs provide a powerful framework for automatically learning hierarchical 
features from spectrograms, making them well-suited for tasks like emotion detection from 
human speech. 

3.4 S u m m a r y 

The following table 3.4 summarizes various deep learning models discussed in the chapter, 
outlining their advantages and disadvantages in the context of speech emotion recognition. 
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Table 3.4: Comparison of Deep Learning Models for Speech Emotion Recognition 
Model Pros Cons 

Deep Neural 
Networks (DNNs) 

Highly effective in identifying 
complex patterns and relationships, 
good at generalizing across 
different emotional expressions. 

Requires significant computational 
resources, potential for overfitting 
on complex datasets. 

Convolutional 
Recurrent Neural 
Network (CRNN) 

Merges spatial feature detection of 
CNNs with temporal modeling of 
RNNs, suitable for data with both 
spatial and temporal dimensions. 

Complex architecture can be 
challenging to tune and optimize, 
potentially high computational 
load. 

C N N 
Bidirectional 
L S T M 
( C N N - B i L S T M ) 

Combines CNN's feature extraction 
capabilities with L S T M ' s temporal 
accuracy, highly effective in 
complex temporal sequence tasks. 

Training can be computationally 
intensive and slow, may require 
large datasets to train effectively. 

Parallel 
Convolutional 
Neural Networks 
with Squeeze-
and-Excitation 
(PCNSE) 

Targets discrete emotion 
recognition efficiently, shows strong 
performance on specific 
benchmarks. 

Performance can vary significantly 
across different datasets, may 
struggle with generalization across 
diverse emotional states. 

Temporal-aware 
bl-direction 
Multi-scale 
Network 
(TIM-Net) 

Capable of capturing long-range 
temporal dependencies, adjusts 
dynamically to variations in 
temporal scale. 

Complexity of the model might 
lead to difficulties in training and 
require extensive computational 
resources. 

Audio 
Spectrogram 
Transformer 
(AST) 

Utilizes a purely attention-based 
mechanism without convolutional 
layers, excellent at handling 
long-range dependencies and subtle 
audio features. 

As a newer model, may lack 
extensive real-world testing across 
varied SER applications. 

Given the various options, the author has chosen to implement the Audio Spectrogram 
Transformer (AST) in their network. The decision is based on several factors: 

• Attention Mechanism: A S T leverages an advanced attention-based mechanism 
which is crucial for identifying subtle nuances in speech that are indicative of emo
tional states. 

• Handling Long-Range Dependencies: Unlike traditional models that might strug
gle with long sequences, A S T excels in managing long-range dependencies, making it 
well-suited for continuous speech emotion recognition. 

• Model Efficiency: Despite its sophisticated capabilities, A S T is designed to operate 
efficiently in terms of computational resources compared to models that combine 
CNNs and R N N s / L S T M s . 

• Innovative Approach: The purely attention-based approach without reliance on 
convolutional layers positions A S T at the cutting edge of audio processing technology, 
promising enhanced performance on SER tasks. 
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The choice of A S T highlights a strategic move towards utilizing state-of-the-art technol
ogy to address the intricacies of speech-based emotion recognition, aiming to achieve both 
high accuracy and efficiency The proposal is explained in more depth in chapter 4. 

29 



Chapter 4 

Proposed Methodology 

This chapter describes the idea of my implementation, it explains the relevant topics in 
theory and describes the practical implementations of them. 

After thoughtful consideration, I've opted not to create a custom deep learning model for 
Speech Emotion Recognition (SER) and instead chose to fine-tune a pretrained model. The 
primary motivation behind this decision is to strive for improved accuracy and efficiency 
in recognizing emotional cues in speech. By fine-tuning, I can focus particularly on the 
latter layers of the pretrained model, where intricate details of audio features and nuances 
related to emotions are likely captured. This tailored approach allows for a more precise 
adaptation to the specific characteristics of my SER dataset, aiming to enhance the model's 
ability to discern subtle emotional variations in speech. The emphasis on the final layers 
during fine-tuning is strategic, seeking to leverage the knowledge encoded in the pretrained 
model while ensuring it aligns more closely with the unique features of emotions expressed 
in my dataset. This decision reflects a commitment to achieving a more accurate and 
contextually relevant SER model by strategically refining the pretrained model's outputs. 

Fine-tuning a pretrained model for Speech Emotion Recognition (SER) using deep learn
ing involves leveraging a model that has already been trained on a large dataset and adapt
ing it to the specific characteristics of my target SER dataset. Below is a proposed method 
for fine-tuning the pretrained model: 

• Modifying the Input Layer: The input layer of the pretrained model is adjusted to 
accommodate the features specific to the SER dataset, ensuring that the input layer 
matches the dimensionality and type of features present in the dataset, such as mel-
frequency cepstral coefficients (MFCCs) or spectrograms. 

• Freezing Base Layers: The weights of the initial layers of the pretrained model are 
frozen. These layers have learned general audio representations that can be useful for 
SER, and freezing them helps to prevent overfitting. 

• Adding Additional Layers: New layers (fully connected or convolutional layers) are 
appended to the pretrained model to adapt it to the target SER task. 

• Initializing Weights: The weights of the newly added layers are initialized randomly 
or using a suitable initialization technique. This step is crucial to prevent catastrophic 
forgetting of the pretrained features. 
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• Modifying the Loss Function: The loss function is adjusted to match the SER task 
requirements. Cross-entropy loss is commonly used for classification tasks, including 
emotion recognition. 

• Fine-tuning the Model: The model is trained on the SER dataset while keeping the 
base layers frozen. This allows the model to adapt to the specific emotional charac
teristics of the dataset without drastically altering the learned audio representations. 

• Unfreezing and Continuing Training: Optionally, some of the top layers of the pre-
trained model are unfrozen after several epochs to allow fine-tuning on the SER 
dataset. This can be beneficial if the dataset is large enough to avoid overfitting. 

• Applying Regularization Techniques: Regularization techniques like dropout or batch 
normalization are applied to prevent overfitting during fine-tuning. 

• Optimizing Hyper parameters: Experimentation with learning rates, batch sizes, and 
other hyper parameters is conducted to find the optimal configuration for fine-tuning 
on the SER dataset. 

• Evaluating Performance: The fine-tuned model is evaluated on a validation set to 
monitor its performance and adjust hyper parameters if necessary. Its performance is 
assessed on a separate test set to ensure generalization. 

4.1 P r e - t r a i n e d m o d e l 

For the pretrained model, I have decided to choose the A S T model, as it provided with 
great baseline accuracy and will thus provide a very high basis. The model is described at 
3.3.7. The proposed architecture of the implementation is shown in the Figure 4.1. 
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Fine Tuning 
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and Dataset < • Save Model Checkpoint 

Classifier Output 

Figure 4.1: Architecture of a Neural Network based on the A S T Model. The process begins 
with user input, where model parameters and dataset selection are specified. Features 
are extracted by converting audio signals into M E L spectrograms. Data augmentation 
techniques are applied to improve model generalization. The model undergoes fine-tuning, 
specifically for enhancing emotion recognition in psychological evaluations. Finally, the 
classifier outputs a probability distribution across the specified classes. 

4.2 M o d e l parameters 

In the realm of deep learning, the effectiveness of a model heavily relies on the configuration 
of various parameters. These parameters dictate how the model learns from data, adapts 
its internal representations, and ultimately makes predictions. In this section, we delve 
into key parameters commonly encountered in deep learning frameworks, elucidating their 
significance and the impact of their manipulation on model behavior and performance. 
From fundamental parameters like sample rate and batch size to more intricate concepts 
such as learning rate and cross-validation folds, grasping the nuances of these parameters is 
essential for fine-tuning models and achieving optimal results in deep learning applications. 

• sample rate: Sample rate refers to the number of samples of audio carried per 
second, measured in Hertz (Hz). It represents the frequency at which audio signals are 
captured. When changing the sample rate, you're essentially altering the granularity 
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of the audio data. Higher sample rates capture more detail but also require more 
computational resources and storage space. 

• n epochs: This parameter represents the number of epochs, or complete passes 
through the entire dataset, during the training phase. Increasing the number of epochs 
allows the model to see the data more times, potentially improving its performance. 
However, too many epochs can lead to overfitting, where the model memorizes the 
training data instead of learning generalizable patterns. 

• batch size: Batch size refers to the number of samples processed before the model's 
parameters are updated. A larger batch size generally leads to faster training because 
it allows for more parallel computations, but it requires more memory. Smaller batch 
sizes may result in slower convergence but can help the model generalize better by 
updating weights more frequently. 

• lr: L R stands for learning rate, which determines the size of the step the optimizer 
takes during the parameter update process. A higher learning rate allows for faster 
convergence but may lead to overshooting and instability. Conversely, a lower learning 
rate might result in slower convergence but can help the model find a more precise 
minimum of the loss function. 

• n folds: This term typically refers to the number of folds used in cross-validation, a 
technique for assessing the performance and generalization ability of a model. Increas
ing the number of folds provides a more robust estimate of the model's performance 
but also increases computational cost. 

• seed: Seed is a parameter used to initialize random number generators. Setting a 
seed ensures reproducibility, meaning that running the model with the same seed 
will produce the same results each time. This is crucial for experimentation and 
debugging. 

• mel filter banks: Mel-filter banks are used in audio processing to convert the 
linear frequency scale of audio signals into the mel scale, which better approximates 
the human auditory system's response to different frequencies. Adjusting the param
eters of the mel-filter banks can affect the spectral representation of the audio data, 
potentially impacting the model's ability to extract relevant features. 

• frames: Frames refer to the temporal segmentation of audio signals into smaller 
chunks. This parameter determines the size of each frame. Changing the frame size 
can influence the temporal resolution of the input data, affecting the model's ability 
to capture temporal patterns in the audio signal. 

4.2.1 Experiment: Finding the Best M o d e l Configuration 

Objective: To identify the optimal configuration of parameters for a deep learning model 
in the context of audio classification. 

Experimental Procedure: 

1. Parameter Initialization: Initialize the parameter grid with different combinations 
of values for each parameter. For example: 
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. Sample rate: [8 kHz, 16 kHz, 22.05 kHz, 44.1 kHz] 
• Number of epochs: [50, 100, 150] 
. Batch size: [16, 32, 64] 
. Learning rate: [0.001, 0.01, 0.1] 
• Number of cross-validation folds: [3, 5, 10] 
• Mel-filter bank settings: [Default, Custom] 
• Frame size: [10 ms, 20 ms, 30 ms] 

2. Model Training and Evaluation: Train the deep learning model for each param
eter combination using the training pipeline. Use a validation set to evaluate model 
performance for each configuration. 

3. Performance Evaluation: Assess the performance of each trained model using 
metrics such as accuracy, precision, recall, and Fl-score. Compare the results across 
different parameter combinations. 

4. Parameter Optimization: Analyze the performance results to identify the pa
rameter combinations that yield the best performance metrics. Look for trends and 
patterns in how changes to each parameter affect the model's performance. 

5. Validation: Validate the final selected model(s) on a separate test set to ensure 
generalization performance. 

Results and Analysis: 

1. Optimal Parameter Configuration: Identify the parameter combination(s) that 
result in the best performance metrics based on the validation results. 

2. Insights: Analyze how variations in each parameter impact the model's performance. 
Gain insights into which parameters have the most significant influence and how they 
interact with each other. 

3. Conclusion: Summarize the findings and recommend the best model configuration 
based on the experimental results. Provide insights into the relationship between 
parameter settings and model performance, guiding future research and application 
development. 

Conclusion 

By systematically exploring variations in the parameters relevant to deep learning models 
for audio classification, this experiment enables the identification of the optimal model 
configuration. Through rigorous experimentation, analysis, and validation, researchers and 
practitioners can develop highly effective deep learning models tailored to specific tasks and 
datasets. 

4.3 E v a l u a t i o n M e t r i c s 

In the field of machine learning, particularly in classification tasks, it is crucial to accurately 
measure the performance of models. Evaluation metrics provide insights into different as
pects of model behavior, such as its precision in predicting positive labels, sensitivity to 
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capturing relevant instances, and overall error balance. These metrics are indispensable 
for tuning models, comparing different models, and ultimately selecting the best model for 
deployment. The following are key metrics used for evaluating the performance of classifi
cation models [30]. 

Accuracy measures the overall correctness of the model, defined as the ratio of correctly 
predicted observations (both true positives and true negatives) to the total observations in 
the dataset. This metric is particularly useful as a general indicator of model performance 
across all classes. Accuracy provides a quick snapshot of the effectiveness of a predictive 
model, especially in scenarios where all classes are equally important. 

True Positives (TP) + True Negatives (TN) 
Accuracy - T P + T N + False Positives (FP) + False Negatives (FN) 

Simplified the accuracy can be denoted as: 

Number of correct predictions 
Accuracy = ——— 

Total number of predictions 
Precision measures the accuracy of the model's positive predictions, defined as the 

ratio of true positives to the total number of predicted positives. This metric is crucial in 
situations where the cost of a false positive is high (e.g., spam detection). 

_, . . True Positives (TP) 
Precision — 

T P + False Positives (FP) 

Recall (also known as Sensitivity or True Positive Rate) measures the ability of the 
model to identify all relevant instances, calculated as the ratio of true positives to the total 
actual positives. High recall is critical in scenarios where missing a positive instance is 
costly (e.g., disease screening). 

T p 

Recall 
T P + False Negatives (FN) 

F l Score is the harmonic mean of precision and recall. It is a single metric that 
combines both precision and recall to provide a balanced view of the model's overall per
formance, especially useful when the positive class is rare. 

„ „ Precision x Recall 
F l Score = 2 x -

Precision + Recall 

Support refers to the number of actual occurrences of each class in the dataset. It is 
important for understanding the class distribution and ensuring that the evaluation metrics 
are not biased due to a skewed dataset. 

Support = Number of instances for each class 

Specificity (also known as True Negative Rate) measures the proportion of actual 
negatives that are correctly identified by the model, indicating the model's ability to reject 
false positives. It is particularly relevant in cases where it's crucial to confirm an absence 
of condition. 

True Negatives (TN) Specificity 
T N + F P 
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4.4 Strategies to Improve E v a l u a t i o n M e t r i c s for an A u d i o 
Spectrogram Transformer ( A S T ) M o d e l 

To enhance the performance of an Audio Spectrogram Transformer (AST) model in clas
sification tasks, specific strategies can be employed for each key evaluation metric. Below 
is a list of effective approaches for improving Precision, Recall, F l Score, Support, and 
Specificity: 

Improving Precision 

• Threshold Adjustment: Increase the threshold for predicting positive classes to 
reduce false positives. 

• Data Quality: Improve the quality of input data, focusing on cleaner, higher-
resolution audio spectrograms. 

• Feature Engineering: Enhance or select features that are more predictive of the 
positive class. 

Improving Recall 

• Threshold Lowering: Decrease the classification threshold to capture more true 
positives, at the risk of increasing false positives. 

• Data Augmentation: Use techniques like time stretching, pitch shifting, and adding 
background noise to create a more robust model. 

• Model Complexity: Increase the depth or capacity of the A S T model to capture 
more complex patterns in the data. 

Improving F l Score 

• Model Tuning: Use grid or random search to find the optimal balance of model 
parameters that maximize both precision and recall. 

• Ensemble Techniques: Combine multiple models to leverage their individual strengths, 
potentially improving both precision and recall. 

Improving Support 

• Balanced Datasets: Ensure the training set is representative of the true population 
distribution to avoid biases in the model's performance metrics. 

• Resampling Techniques: Utilize oversampling of minority classes or undersampling 
of majority classes to balance class distribution. 

Improving Specificity 

• Negative Case Enhancement: Augment the dataset with more varied negative 
cases to improve the model's learning of what does not constitute a positive class. 
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• Anomaly Detection Techniques: Incorporate methods specifically designed to 
improve true negative rates, such as anomaly detection algorithms that focus on 
identifying non-target classes. 

4.5 F i n e - T u n i n g for Speech E m o t i o n Recogni t ion 

Sd discussed, deep learning models, particularly convolutional neural networks (CNNs) 
and recurrent neural networks (RNNs), have shown promising results in SER. However, 
fine-tuning an existing deep learning model can further improve its performance, especially 
when targeting specific emotions. 

4.5.1 Fine-Tuning Process 

Fine-tuning an existing deep learning model for SER involves adjusting its parameters 
to better capture the nuances of specific emotions. The process typically consists of the 
following steps: 

1. Fine-Tuning Strategy: Define a fine-tuning strategy to adapt the pre-trained model 
to the target emotion(s). This may involve adjusting hyperparameters, modifying the 
model architecture, or fine-tuning specific layers of the network. 

2. Data Augmentation: Apply data augmentation techniques to artificially increase 
the diversity of the training data. Common augmentation methods for SER include 
time stretching, pitch shifting, and adding background noise. 

3. Training Procedure: Train the fine-tuned model using the prepared dataset. Mon
itor the model's performance on validation data and adjust the fine-tuning strategy 
as necessary to achieve the desired results. 

4.5.2 Fine-Tuning for Specific Emotions 

When fine-tuning a model for SER to detect a particular emotion, it's essential to consider 
the unique acoustic characteristics associated with that emotion. For example, anger may 
be characterized by high pitch and intensity, while sadness may exhibit lower pitch and 
slower speech rate. 

To fine-tune the model for a specific emotion: 

1. Emotion-Specific Data Selection: Curate a subset of the dataset containing 
speech samples predominantly expressing the target emotion. This focused dataset 
helps the model learn discriminative features for the specific emotion. 

2. Fine-Tuning Parameters: Adjust the fine-tuning strategy to emphasize features 
relevant to the target emotion. For instance, increase the weight of emotion-specific 
loss functions or fine-tune certain layers to extract emotion-specific features more 
effectively. 

3. Evaluation and Validation: Evaluate the fine-tuned model's performance on a 
separate test set containing samples of the target emotion. Use appropriate evaluation 
metrics, such as accuracy or Fl-score, to assess the model's effectiveness in recognizing 
the desired emotion. 
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4.5.3 Example: Fine-Tuning for Anger Recognition 

As an example, consider fine-tuning a pre-trained A S T model for recognizing anger in 
speech. The fine-tuning process may involve: 

• Selecting a pre-trained A S T model with high performance on general SER tasks. 

• Curating a dataset with speech samples labeled as expressing anger. 

• Fine-tuning the model by adjusting hyperparameters and optimizing the model ar
chitecture to focus on features indicative of anger, such as high pitch and intensity. 

• Evaluating the fine-tuned model's performance on a test set containing anger-labeled 
speech samples. 

Fine-tuning an existing deep learning model for SER to detect specific emotions allows 
for more targeted and accurate emotion recognition, catering to various applications in 
affective computing, human-computer interaction, and mental health assessment. 
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Chapter 5 

Implementation 

5.1 Top Leve l Overv iew 

The script is structured to function as the entry point of a Python program that parses 
command-line interface (CLI) arguments to control various aspects of model training and 
evaluation. 

Argument Parsing 
Random seed setting 

Model creation 

Dataset metadata creation 
Data augmentation 

Model Evaluation Model Training 

Figure 5.1: The overall flow of the program 

5.1.1 Program Arguments 

These are the arguments controlling the program settings: 

• -d, —dataset: Dataset to use for training and evaluating the model. Options include: 

- RAVDESS 

- EMODB 

- EMOVO 

These are the datasets for which automatic metadata file creation is provided, see 
next argument for other datasets. 

• c, —csv: If the dataset name is not given as an input, a custom C S V file with dataset 
metadata can be used. 

• -s, —seed: Random seed for controlling the random state. 
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• -b, —batch-size: Specifies the number of samples in one training batch. 

• -e, —epochs: Indicates the number of training epochs. 

• -lr, —learning-rate: Sets the learning rate for training. 

• -sr, —sampling-rate: Sampling rate for loading speech recordings. 

• -fr, —frames: Default: Defines the number of time frames in the Mel Spectrogram. 

• -mel, — mel-filter-banks: Specifies the size of the mel filter bank. 

• —folds: Number of training folds for cross-validation. 

• —wandb-key: (Required) A P I key for logging into your wandb.ai account. 

• —wandb-project: (Required) Specifies the project in wandb.ai for logging experi
ment runs. 

5.1.2 Dataset Metadata 

For dataset file the following architecture was chosen 

Table 5.1: Metadata File Structure for Neural Network Model 
Column Name Description Example 

recording path File path to the audio recording datasets/RAVDESS/A01/03.wav 
label Emotional state label neutral 
encoded_label Numerical encoding of the label 0 

5.1.3 M a i n Function 

Within the i f name == „ main " block, the script performs several key operations. 
First, it utilizes argparse. ArgumentParser to set up command-line interface (CLI) options, 
where users must specify the dataset, A P I keys for Weights & Biases (wandb), and various 
model parameters such as batch size and learning rate. 

To ensure reproducibility across runs, the script fixes the random seed using PyTorch 
Lightning utilities. 

Next, it calls the train function from the training module, passing user-defined pa
rameters for dataset characteristics and training configuration. 

Finally, the script evaluates the model on the specified dataset by calling the evaluate 
function from the evaluation module using the trained model paths. 

5.2 M o d e l t r a i n i n g 

5.2.1 Module Description 

The Python class, LigthningAST, extends p i . LightningModule and manages the lifecycle 
of an audio spectrogram transformer model, including its training, validation, and testing 
phases. 

40 



Initialization 

The constructor of the class takes several parameters parsed from the main module ar
guments defining the model architecture and training process. During initialization, the 
model, loss function, and various training metrics are set up. 

Optimizer Configuration 

The conf igure_optimizers method sets up the optimization strategy: 

• A n Adam optimizer with a configurable learning rate. 

• A cosine annealing scheduler for adjusting the learning rate across epochs. 

5.2.2 Training Preparation 

1. Data Retrieval: Metadata for the dataset is fetched, including file paths and labels, 
which are then split according to stratified k-folds to ensure balanced representation 
in each fold. 

2. Normalization: Computes and applies normalization statistics (mean and standard 
deviation) for the dataset to ensure that input features are on a similar scale. 

3. Augmentation: Employs both signal and spectrogram augmentations to enhance 
model robustness against variations in audio inputs. 

41 



Read the 
speech file Framing and windowing 

Frequency augmentations 

Time masking Frequency masking 

J 
Signal augmentations 

M f ~ 
f •> f f s 

Pitch 
augmentation 

Speed 
augmentation 

Noise 
Augmentation 

J / J 

5.2.3 Implemented Augmentations 

Data augmentation is crucial for enhancing the robustness and generalization of models 
in machine learning, particularly in audio processing [11] [40]. This subsection discusses 
various techniques implemented in Python for augmenting audio data. 

These augmentations are designed as subclasses of a base augmentation module, which 
selectively applies a specific augmentation to an audio recording based on a predefined 
probability. Below are detailed descriptions of each augmentation technique: 

Signal augmentations 

Signal augmentations are applied directly to the raw audio waveform, that is, the time-
domain signal before any transformation into frequency or time-frequency representations. 
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Figure 5.2: Orignal waveform 

Adding Gaussian Noise to audio recordings introduces non-specific background 
noise, which is common in real-world scenarios, thus making the model more re
silient to such disturbances. [40] 
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Time 

Figure 5.3: Random noise ugmentation of the signal 

Random Speed Change This augmentation alters the playback speed of audio 
recordings, affecting their temporal properties without changing the pitch. It trains 
the model to recognize features that are invariant to speed variations. [40] 
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Figure 5.4: Random speed change augmentation 

• Room Impulse Response (RIR) Augmentation simulates different acoustic en
vironments by convolving the audio signal with a room's impulse response. This helps 
the model perform well across varied recording conditions. [40] 

Figure 5.5: Random Impulse Response augmentation (RIR) 

Spectrogram augmentations 

Spectrogram augmentations are applied after the audio signal has been converted into a 
spectrogram, a visual representation of the spectrum of frequencies of a signal as it varies 
with time. [40] 

44 



• Time Masking randomly masks consecutive time segments in the spectrogram, sim
ilar to frequency masking but along the time axis. It challenges the model to rely on 
partial temporal information. [40] 

11 me 

Figure 5.6: Time masking spectogram augmentation 

Frequency Masking is used in processing spectrograms by masking random fre
quency bands. This technique forces a model to learn from parts of the data where 
key frequency components might be missing, enhancing general robustness. [40] 
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Figure 5.7: Frequency masking spectogram augmentation 
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Python Implementation 

Here is a Python implementation Listong 5.2.3 showing the structure of the base augmen
tation class and how it probabilistically decides whether to apply an augmentation: 

class BaseAugmentation(torch.nn.Module): 
def ini t (self, p, sample_rate): 

super () . ini t () 
self._p = p 
self._sample_rate = sample_rate 

def forward(self, recording): 
should_apply = torch.bernoulli(torch.tensor(self._p)) 
i f should_apply: 

return self._apply_augumentation(recording) 
return recording 

def _apply_augumentation(self, _): 
raise NotlmplementedError 

Training and Validation Steps 

The class implements specific methods for handling training and validation batches: 

• training_step: Calculates and logs training loss and accuracy. 

• validation_step: Calculates and logs validation loss and accuracy, storing them for 
later analysis. 

Both methods utilize a helper function to compute predictions, loss, and accuracy from the 
input batch. 

Visualisation, Experiment Tracking and Model Saving 

Thanks to the python implementation, the structure allows for integration with the wandb 
[4] platform for logging training metrics and saving model checkpoints. This allows for 
monitoring model performance and saving the best-performing models. 

The initialization happens on creation of model class, and on every n step of model 
training, a log is sent into the wandb module. These „checkpoints" are then available locally 
and the model training can be resumed from these partly trained models. 

In the same fashion, results (accuarcy, loss function value) are logged and sent to the 
wandb database, where they are available to see and analyse. 5.8 
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Figure 5.8: WanDB training run charts 

5.3 F i n e T u n i n g 

This section details the implementation of the fine-tuning process in the Speech Emotion 
Recognition (SER) Python code. The primary focus is on ensuring the correctness of labels 
across a cross-corpus dataset and optimizing the model to improve the detection of specific 
emotions. 

5.3.1 Dataset Label Mapping 

To maintain consistency and accuracy in the labels across different datasets, a systematic 
label mapping approach is employed. Each dataset may have its own set of emotion labels, 
which can lead to discrepancies if not properly aligned. The following steps are taken to 
ensure correct label mapping: 

1. Standardization of Emotion Labels: Each emotion label from the datasets is 
standardized to a common set of labels. For instance, labels like „happy", ,joy", and 
„elation" are all mapped to a single label „happy". 

2. Creation of Label Index Mapping: Once standardized, these labels are mapped 
to unique indices. This allows for consistent referencing across different datasets and 
ensures that the model correctly interprets each label during training and evaluation. 

3. Cross-Verification: The mapping is cross-verified to ensure that each label from all 
datasets is correctly translated to its respective index. This step is crucial to avoid 
mislabeling and to maintain the integrity of the training process. 

The standardized labels and their corresponding indices are then used to convert emo
tion labels into indices for the model weights. This ensures that the model can correctly 
interpret and process the emotion data from different datasets. 

5.3.2 Custom Weight List for Loss Function 

To enhance the detection of specific emotions, a custom weight list is implemented. This 
list, with a size equal to the number of emotion labels, is used to adjust the loss function, 
giving more importance to certain classes. The steps involved in this process are as follows: 

1. Initialization of Custom Weights: A custom weight list is created, where each 
weight corresponds to a specific emotion label. For example, if the goal is to improve 
the detection of „anger", the weight for the „anger" label is increased relative to other 
labels. 
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2. Integration with Loss Function: The custom weight list is integrated into the 
loss function. During training, the loss for the „anger" class is weighted more heavily, 
encouraging the model to pay extra attention to correctly classifying instances of 
„anger". 

3. Model Training: Wi th the adjusted loss function, the model is trained on the SER 
dataset. The custom weights guide the model to focus more on the specified emotion, 
improving its recall and precision for that class. 

4. Evaluation and Adjustment: The performance of the model is evaluated, partic
ularly focusing on the detection of the targeted emotion. If necessary, the custom 
weights are adjusted iteratively to optimize performance. 

5.3.3 Data Augmentation by Increasing Emotion Instances 

Another method employed for fine-tuning involves feeding the training model more instances 
of a particular emotion. This is implemented during the dataset loading process from the 
C S V metadata file. The steps include: 

1. Metadata Loading: The metadata for the dataset is loaded from a C S V file, which 
includes paths to the audio recordings and their corresponding emotion labels. 

2. Duplication of Target Emotion Instances: To improve detection of a specific 
emotion, such as „anger", instances of this emotion are duplicated in the dataset. 
This increases the representation of the target emotion in the training data. 

3. Balanced Dataset Creation: Care is taken to ensure that the dataset remains bal
anced and that the increased instances of the target emotion do not lead to overfitting. 
Proper validation techniques are used to monitor model performance. 

4. Model Training with Augmented Data: The augmented dataset is used to train 
the model, with the increased number of target emotion instances helping the model 
to better learn the characteristics of that emotion. 

This approach of augmenting the dataset with more instances of the target emotion, 
in combination with the custom weight list for the loss function, allows for a robust fine-
tuning process. By strategically increasing the focus on the desired emotional class, the 
model becomes more sensitive to its nuances, thereby enhancing its overall performance in 
speech emotion recognition tasks. 

5.4 C o m p u t a t i o n a l C o m p l e x i t y 

5.4.1 Used hardware 

In the early stages, all training of the model was done locally on a machine using intel i7-
8750h cpu running at 2.20GHz. For faster iteration frequency and lower waiting times, all 
remaining training was done remotely on the supercomputer Barbora [1] located in Ostrava, 
Czech Republic using the Brno University of Technology access. 

Barbora's advanced computing infrastructure, equipped with high-performance G P U s 
and CPUs , offered the necessary computational horsepower to efficiently handle calculations 
and large datasets. The superior processing capabilities of the supercomputer drastically 
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reduced the model training times, enabling more rapid iterations and enhancements Wi th 
access to greater memory and storage capacities, the model could be scaled up without 
compromising on the performance or accuracy. 

In this section, the cost and time complexity will be analysed for future reference of 
training models such as the one regarded in this thesis. 

5.4.2 G P U accelerators 

Overview of C U D A by N V I D I A (Compute Unified Device Architecture) is a parallel com
puting platform and application programming interface (API) model created by N V I D I A 
[26]. It allows software developers to use a CUDA-enabled graphics processing unit (GPU) 
for general purpose processing - an approach known as G P G P U (General-Purpose com
puting on Graphics Processing Units). 

Key Features of C U D A C U D A provides a comprehensive development environment 
for performing complex calculations on N V I D I A GPUs, offering several key features: 

• Parallel Computing Model: C U D A enables developers to create algorithms that 
can process large blocks of data in parallel, significantly accelerating complex compu
tations compared to sequential processing on CPUs. 

• Memory Management: It provides various memory hierarchies and management 
techniques, including global, shared, constant, and texture memory, allowing for effi
cient data handling and optimization. 

• Direct Hardware Access: Developers have direct access to the virtual instruction 
set and memory of the parallel computational elements in GPUs. This allows for 
higher performance and more efficient resource utilization. 

Initially developed for scientific and engineering computing, C U D A has found widespread 
use across various domains that require intensive computational resources, such as machine 
learning and deep Learning where C U D A accelerates neural network training and inference, 
reducing the time required to train complex models. 

C U D A ' s ability to manage and accelerate computations by leveraging the power of 
GPUs has made it an indispensable tool in the field of high-performance computing, en
abling advancements in science, engineering, and data analysis. 

5.4.3 Measuring the power used 

This subsection presents a comparison of power consumption between CPU-only training 
and G P U training on the supercomputer Barbora. The data were collected using the 
Carbon library, which provides a comprehensive assessment of the environmental impact of 
machine learning models. 

CPU-only Training 

Training the model using only CPUs on the supercomputer Barbora involved the following 
specifications: 

. C P U : Intel Xeon Gold 6240 C P U (72 cores) 
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. R A M : 192GB DDR4 

. Disk: 10TB H D D (per user) with 5GB/s throughput 

• Training Time: 6.25 hours (circa 15 sec * 150 epochs * 10 folds) 

• Energy Consumption: 

- C P U : 180W (avg), 1125Wh total 
- R A M : 6W (avg), 37,5Wh total 

- Disk: 4W (avg), 25Wh total 

• Total Energy Consumption: 1187Wh 

G P U Training 
Training the model on the supercomputer Barbora with an N V I D I A Tesla V100 G P U 
involved the following specifications: 

. G P U : N V I D I A Tesla V100 (32GB) 

. C P U : Intel Xeon Gold 6240 C P U (72 cores) 

. R A M : 192GB DDR4 

. Disk: 2TB N V M e SSD 

• Training Time: 5 hours 

• Energy Consumption: 

- G P U : 250W (avg), 1250Wh total 

- C P U : 120W (avg), 600Wh total 

- R A M : 6W (avg), 30Wh total 

- Disk: 4W (avg), 20Wh total 

• Total Energy Consumption: 1900Wh 

Impact of Sampling Rate on Training Time 
During testing, it was observed that at a sampling rate of 16000Hz, one epoch took 15 
seconds for both C P U and G P U training due to the overhead associated with the C U D A 
environment. This suggests that the performance advantage of G P U s may not always be 
fully realized at lower sampling rates. 

Proposed Solution: To optimize G P U training and reduce epoch times at lower 
sampling rates, the following steps are recommended: 

• Batch Size Adjustment: Increase the batch size to maximize the utilization of 
G P U resources. This ensures that more data is processed in parallel, reducing epoch 
time. 

• Data Preprocessing Optimization: Preprocess and cache the audio data in batches 
to minimize the preprocessing overhead during training. 
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• Asynchronous Data Loading: Implement data loaders with multiple workers to 
load data asynchronously and minimize the waiting time for the next batch. 

• Mixed Precision Training: Use mixed precision training (FP16) to reduce memory 
consumption and accelerate training. 

• C U D A Graphs: Leverage C U D A Graphs to capture and replay training loops, 
reducing kernel launch overhead. 

Figure 5.9: Comparison of one epoch time training on C P U vs G P U ( C U D A activated) 

5.4.4 Summary 

As described in the subsection above, using the supercomputer or any other powerful system 
brings a lot of advantages for a relatively cheap price. That being said, fine tuning described 
in this thesis is doable on a „daily use" computer system given some accommodations are 
performed. 
Is it based on the specific configuration, pricing and time schedule to determine the best 
hardware to use for task such as this one. At the time of development of this thesis, training 
the models on a C P U only cluster of a supercomputer proved to be the best option. 
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Chapter 6 

Results and Discussion 

6.1 O p t i m i z i n g R e c a l l for Disease Recogni t ion Tasks 

In the context of disease recognition, ensuring minimal false negatives is crucial to avoid 
undetected cases, making Recall (Sensitivity) a critical metric in model evaluation. This 
section discusses experimental setups and strategies used to fine-tune models for high Recall 
performance in disease recognition tasks, particularly focusing on the emotion Anger. 

6.1.1 Importance of Recall 

Recall is essential in disease recognition as it measures a model's ability to identify all rel
evant instances of a class. For disease recognition, high Recall ensures maximum detection 
of true disease cases, crucial for effective diagnosis and treatment. Low Recall could lead 
to undetected illnesses, worsening patient outcomes. 

6.1.2 Comparison of Confusion Matrices 

This subsection presents confusion matrices from the evaluations of the Base Model and 
the Fine-Tuned Model, as shown in Figures 6.1 and 6.2, respectively. These visual repre
sentations allow for a straightforward comparison of how each model performs in classifying 
various emotional states. 
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Figure 6.1: Confusion Matrix of the Base Model 
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Figure 6.2: Confusion Matrix of the Fine-Tuned Model, with emphasis on Anger detection 
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Performance Metrics Comparison 

Tables 6.1 and 6.2 display the performance metrics for the Base Model and the Fine-Tuned 
Model, respectively. Notably, the Recall for the emotion Anger shows marked improvement 
in the Fine-Tuned Model, demonstrating the effectiveness of the fine-tuning process on a 
cross-corpus dataset. 

Table 6.1: Performance Metrics of the Base Model  
Emotion Precision Recall Fl-score Support Specificity 

Anger 0.759 0.854 0.804 48 0.966 

Table 6.2: Performance Metrics of the Fine-Tuned Model  
Emotion Precision Recall Fl-score Support Specificity 

Anger 0.933 0.965 0.949 96 0.990 

Analysis of Performance Across Two Models 

As illustrated in Table 6.1 and Table 6.2, and further depicted in Figures 6.1 and 6.2, the 
Fine-Tuned Model demonstrates significant enhancements in its ability to accurately and 
reliably detect various emotions, particularly Anger. These improvements are critical for 
deploying the model in real-world applications where precise emotion recognition can lead 
to better outcomes in user interactions, safety protocols, and therapeutic settings. 

6.2 C r o s s - C o r p u s T r a i n i n g and F i n e - T u n i n g on Datasets 

This section discusses the training and fine-tuning processes of our Audio Spectrogram 
Transformer (AST) model on a cross-corpus dataset, consisting of three distinct datasets. 
Initially, the model was trained on this aggregated dataset to learn general features ap
plicable across different emotional expressions and recording conditions. Subsequently, to 
enhance its performance on specific data, the pre-trained model was fine-tuned directly on 
the dataset. 

6.2.1 Testing on R A V D E S S Dataset 

Training Procedure 

The training began with the A S T model exposed to a diverse range of emotional states 
and acoustic environments presented by the combined datasets. This initial phase aimed 
at equipping the model with robust, generalized capabilities for emotion recognition. 

Fine-Tuning Process 

After the initial training, the model underwent a fine-tuning process on the R A V D E S S 
dataset. Fine-tuning adjusted the model's weights specifically to the acoustic and emotional 
characteristics present in R A V D E S S , thus optimizing its performance for this particular set. 
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Convergence and Performance 

The fine-tuning phase was notably efficient, with the model converging to optimal per
formance in less than 10 epochs. This rapid convergence highlights the effectiveness of 
leveraging a pre-trained model that has already captured a broad understanding of emo
tional cues, requiring only minor adjustments to specialize for a particular dataset. 

Results Visualization 

To illustrate the improvement brought by the fine-tuning process, confusion matrices before 
and after fine-tuning on the R A V D E S S dataset are presented. These matrices provide a 
visual representation of the model's performance on classifying different emotional states. 
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Figure 6.3: Confusion matrix of the cross-corpus model tested on the R A V D E S S dataset 
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Figure 6.4: Confusion matrix of the model after fine-tuning on the R A V D E S S dataset 

6.2.2 Testing on E M O D B Dataset 

Following the successful fine-tuning on R A V D E S S , the model was also tested on the E M O D B 
dataset, which only includes 7 of the 9 emotions that the model was initially trained to 
recognize, specifically lacking 'surprise' and 'calm'. Despite this limitation, the results were 
promising and demonstrate the model's adaptability and functionality with minimal addi
tional computational investment for training. 

Performance Analysis 

The confusion matrices for the E M O D B dataset illustrates how the model managed to 
adjust its predictions in the absence of 'surprise' and 'calm'. This analysis helps in under
standing the model's capability to handle datasets with varied emotional labels effectively. 
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Figure 6.5: Confusion matrix of the model tested on the E M O D B dataset 
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This testing phase underscores the model's flexibility and robustness, proving its efficacy 
even when the training and testing datasets do not perfectly align in terms of emotion 
categories. The confusion matrices (Figures 6.3, 6.4, and 6.5) visually represent the model's 
performance across different datasets, highlighting its strengths and areas for potential 
improvement. 

6.2.3 Testing on E M O V O Dataset 

The model was further evaluated on the E M O V O dataset to assess its adaptability and 
performance across a diverse set of emotional expressions. E M O V O provides a distinct 
context due to its unique composition of Italian emotional speech, which challenges the 
model to demonstrate its robustness and generalization capabilities. 

Dataset Challenges 

The E M O V O dataset presents a different set of emotional expressions, some of which were 
not as prominently featured in the training datasets. This variation tests the model's ability 
to generalize learned emotional cues to new, context-specific scenarios. 

Results Analysis 

To visually represent the model's performance on E M O V O , confusion matrices before and 
after any additional tuning or retraining are provided. These matrices help illustrate the 
initial adaptability of the model to E M O V O and the improvements in classification accuracy 
after fine-tuning. 
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Figure 6.7: Initial confusion matrix of the model tested on the E M O V O dataset. 
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Figure 6.8: Confusion matrix of the model after additional tuning on the E M O V O dataset. 

The visual data from Figures 6.7 and 6.8 confirm the model's capability to adapt to the 
E M O V O dataset's characteristics and highlight the effectiveness of fine-tuning in achieving 
better specificity and overall accuracy. This testing phase not only showcases the model's 
flexibility but also its efficiency in adapting to datasets with different linguistic and emo
tional compositions. 

6.3 K n o w n issues and complicat ions 

Apart from the usual problems connected to software development, some other issues came 
up that should be addressed in this section. 

• G P U cluster time - during the training of a model checkpoint, the G P U allocated 
time for the university project ran out, which later complicated the calculation of 
time complexity. Older logs were used to calulate the necessary metrics. 

6.4 Future work 

Based on the problem on described at 5.4.3, the proposed solution could be implemented 
and a benchmark created to find out the best setting for fine tuning models such as the 
one in this thesis, making the task of specific emotion recognition more available, even for 
people with less or no experience with neural networks. 
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Chapter 7 

Conclusion 

Speech Emotion Recognition (SER) is an inherently challenging task due to the complexity 
and variability of human emotions, the diverse expression of these emotions across different 
speakers, and the influence of various contextual and environmental factors. This thesis 
set out to address this challenge by developing a fine-tuned solution specifically tailored for 
SER tasks, demonstrating that customized models can yield better results than broadly 
generalized approaches, the resulting values of weighted accuracy are as follows: 93.5% for 
the E M O D B dataset, 92.8% for E M O V O , and 92.9% for the R A V D E S S dataset. 

The primary goal of this thesis was to provide a solution for fine-tuning SER models 
for specific tasks. By leveraging transfer learning techniques and pre-trained models, the 
work presented here has shown that customizing models to suit a particular dataset or ap
plication can enhance performance compared to generalized models. Fine-tuning allows the 
model to capture the specific nuances and characteristics of the target dataset, ultimately 
leading to improved emotion classification accuracy. 

By providing clean, reusable code in Python and extensive documentation of the source 
files enriched by guide-style readme files, the secondary goal of this thesis was to provide a 
guideline for fine tuning a model for a specific task in a way that is obtainable without ex
tensive technical research, thus laying grounds for more development in the field of software 
emotion recognition. 
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Appendix A 

SD card content 

The attached memory card has the following structure: 

• Thesis.pdf- This P D F with thesis text. 

• src/ - Folder containing the implementation of neural network 

• thesis_source/ - Latex source codes for P D F generation 

. R E A D M E . M D - A readme file for this folder 
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