Identification of similar websites for phishing detection – Bc. Petra Bernáthová
Bc. Petra Bernáthová
Bachelor's thesis
Identification of similar websites for phishing detection
Identification of similar websites for phishing detection
Abstract:
Phishing sa bez pochýb stal významným a globálnym problémom. V dnešnej dobe môžu ľudia na internete robiť čokoľvek. Útočníci majú preto veľa možností na to kde a na koho útočiť, či už je to jednotlivec alebo firma s obrovskými ročnými výnosmi. Mnoho techník na detekciu phishingových stránok bolo navrhnutých s cieľom bojovať proti týmto útočníkom. Prvá časť tejto práce ponúka komplexný prehľad o súčasne …moreAbstract:
Undoubtedly, phishing has become a significant concern and global problem. Nowadays, people can do almost anything on the Internet. Therefore, attackers have numerous options on where and whom to attack, whether an individual or a large company with immense annual revenues. In order to fight against these criminals, many phishing detection techniques have been proposed. The first part of this work …more
Language used: English
Date on which the thesis was submitted / produced: 18. 5. 2023
Identifier:
https://is.muni.cz/th/egbh0/
Thesis defence
- Date of defence: 28. 6. 2023
- Supervisor: Mgr. Pavel Novák
- Reader: Ing. Bohumír Fajt
Citation record
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsBachelor programme / field:
Programming and development / Programming and development
Theses on a related topic
-
Practical use of natural language processing in education technology
Dominik Hartinger -
Application of Natural language processing to enhance qualitative research used for marketing
Poj Nuangniyom Netsiri -
Scalability of Semantic Analysis in Natural Language Processing
Radim Řehůřek -
Evaluation of Multiple Clustering Algorithms on Insurance Datasets
Kryštof Suchánek -
Comparison of methods for clustering convolutional neural network intercomputation values with respect to explainability
Adrián Bindas -
Customers Classification using Recency Frequency, Monetary value (RFM), and K-means clustering algorithm
Mark Azietaku -
On resemblance of domain names: Clustering versus malicious actors
Ondřej Ševčík -
User Sessions Clustering and Anomaly Detection
Michal Mokroš