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A B S T R A C T 
The following master's thesis paper equipped with a short description of C T scans and 
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convolutional neural networks and how they implemented into biomedical image analysis, 
besides it was taken a popular modification of U-Net and tested on two loss-functions. As 
far as segmentation quality plays a highly important role for doctors, in experiment part 
it was paid significant attention to training quality and prediction results of the model. 
The experiment has shown the effectiveness of the provided algorithm and performed 100 
training cases with the following analysis through the similarity. The proposed outcome 
gives us certain ideas for future improving the quality of image segmentation via deep 
learning techniques. 
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Introduction 

Since 2012 computer vision and deep learning techniques and principally convolu-
tional neural networks made a huge breakthrough in image recognition. Until 2012 
the sphere of the neural network was developed however not in such way as we 
have it now. Previously we met two problems: personal computers did not have a 
suitable capacity (both C P U and GPU) to be used as an instrument for solving the 
image recognition tasks and the second large problem was the availability of big data. 
Therefore it was a long way to current outstanding results. The first computer vision 
department was established in summer 1966 in Massachusetts Institute of Technol
ogy, two years before Stanford's school, both of them had a great transformation 
and development through the current period. Only after several decades, at the be
ginning of 2010, NVIDIA has presented their powerful-capacity microchips, which 
were able to process images and as well were open for the mass-market. The issue 
with big data was covered by the growing project named IMAGENet. Nowadays 
computer vision and deep learning is a spotlight for many scientists and profession
als all over the world as a modern, flexible and multitask tool, which can be used 
in a wide range of options. As a great example, we can run across the widening 
number of projects in such international conferences as C V P R and I C C V with more 
than 2 000 attending researchers each year. 

The IMAGENet is a massive dataset with more than 14 million images and 22 
thousand categories, which were marked by hand for several years. Convolutional 
neural networks became popular in 2012 after publications of the results of IMA
GENet competition, where the task was correctly to classify and to detect objects 
and scenes. By some means, it was a revolutionary and historical moment of deep 
learning. On that year neural network model showed its massive power and high 
capacity into training architecture with almost half decrease of the error (from 0.26 
to 0.16[1]) and continued its winning every single year after it. Since 2012 scientists 
and enthusiasts from all parts of the world put a lot of afford to develop and widen 
the sphere and already have archived some great results. The modern convolutional 
neural networks have a difficult structure and include sometimes more than 1 000 
layers. Today we can use it for amount range of purposes: detection, classification, 
segmentation and not only images but videos and 3D objects can be used too. 

Everyday computer technology goes deeper and deeper to our life and no wonder 
that such techniques already in several years after the breakthrough have come into 
the biomedical sector. Doctors and researchers are constantly working together to 
unlock new possibilities to cure or help people through computer vision's power. The 
first from the rage of doctors, who need computer vision and artificial intelligence 
help, are radiologists. They work with C T scans and M R images, detection of 
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objects may help them to discover the probable diseases with less error rate, amount 
of time and in parallel processing. Manual segmentation of the brain tumours in 
M R images is a time-consuming process, which increases the required time for the 
research of tumour development. Segmentation of tumours in M R images currently 
is an achievable task for deep learning algorithms. It is possible to train the C N N 
model with supervised learning, where the database will include M R images and 
ground truths with segmenting regions of interests (tumours). 

Recently it has already been discovered several fully automatic segmentation al
gorithms to solve the segmentation problem and to show the importance of medical 
automatic image recognition. The rise in deep convolutional neural networks per
formance, due to their abstractions of different levels of features, motivated many 
researchers to transfer the knowledge acquired by these networks, when trained on 
millions of images into new tasks such as medical image segmentation, to benefit 
from their learned parameters, in particular, weights. The most common convolu
tional neural network for image segmentation task is called U-Net, which issued for 
biomedical image segmentation at the Computer Science Department of the Univer
sity of Freiburg, Germany. 

The following master's thesis paper equipped with a short description of CT scans 
and M R images and the main differences between them, explanation of the structure 
of convolutional neural networks and how they implemented into biomedical image 
analysis, besides in paper it was tested a popular modification of U-Net with loss-
functions. As far as segmentation quality plays a highly important role for doctors, 
in experiment conclusion part it was paid significant attention to training quality 
and prediction results of the model. 
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1 Medical Image Acquisition 

The fast advancement of biomedical imaging techniques in the last couple of years 
has significantly enhanced the role of imaging in biology and medicine. Computer 
imaging began to play an integral and important role in the assessment of neuro
logical disorders with the evolution of technology. It is accomplished for diagno
sis, assessing the efficacy of therapy, follow-up, and guidance for procedures. Be
nign neurological disorders and life-threatening neoplasms may present with similar 
overlapping symptomatology, which could be relatively nonspecific. Clinical history 
combined with a good neurological evaluation is often followed by laboratory inves
tigations, electroencephalography, lumbar puncture, and other investigations. Mag
netic resonance (MR) and Computed tomography (CT) form the backbone of the 
imaging work-up of these patients. Neurological disorders are always tending to be 
complex and arriving at a diagnosis requires a deep understanding of neuroanatomy, 
physiology and ability to use last updated diagnostic tools such as neuroimaging. 

Imaging Modalities 

Previously radiography ('plain films' then digital radiography) significantly af
fected on medical imaging. With the advent of advanced imaging technologies like 
CT and MR, the role of radiography has remarkably decreased. Currently, CT and 
M R are the most commonly performed imaging modalities for the brain and spine 
diseases. In addition, to extend anatomical details it was developed new advanced 
M R techniques such as M R perfusion, M R spectroscopy and functional M R (fMRI) 
provide fuller physiological information. Furthermore, single-photon emission C T 
(SPECT) and positron emission tomography (PET)-CT imaging have a distinct 
contribution, as they can provide functional and structural brain images. 

1.1 Computed Tomography 

C T technology bases on the identical physical principle as x-rays do. The differ
ential absorption of the x-ray beam by different tissues produces varying levels of 
density in the image, which on CT scans are measured in Hounsfield units. It can 
be shown in cross-sectional format or multiple planes. Multidetector C T has in
creased the capability with greater spatial resolution, faster scans and multiplanar 
reformat ions [2]. 

The fast ability of C T to image traumatic conditions of the spine and brain 
rapidly has made it invaluable in acute neuro operations. Commonly seen lesions 
on CT include acute intra and extra-axial haemorrhage, hemorrhagic contusions, 
diffuse axonal injury, spinal and calvarial fractures. 
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CT plays a crucial and important role in the management of acute stroke and is 
the first imaging modality due to the quite short procedure time. It works quickly in 
determining whether the symptoms being observed can be attributed to intracranial 
haemorrhage, ischemic stroke or a mass lesion. The vital benefaction of non-contrast 
CT is excluding intracranial haemorrhage, so that appropriately selected patient can 
be started on tissue plasminogen activator. Even though it is easy to admit that 
CT is less sensitive than M R in detecting acute cerebral ischemia-infarction, visible 
and detectable changes are present on nearly 50 per cent of non-contrast CT scans 
in patients with major territorial infarcts. 

Non-contrast C T is relatively insensitive for the detection of neoplastic disease, 
especially when the tumour is small. A post-contrast CT has to be made when 
evaluating neoplastic conditions using CT. 

1.2 Magnetic Resonance 

The M R signal used to generate mostly all clinical images comes from hydrogen nu
clei. Hydrogen nuclei are consisting of a single proton which is constantly spinning. 
A radio frequency pulse (RF pulse) emitted from the scanner results in some of the 
hydrogen protons and then being knocked in 180° out of alignment with the static 
magnetic field. The simplest form of the spin-echo (SE) pulse sequence consists of 
90°-pulse, a 180°-pulse, and then an echo. The time between the middle of the first 
R F pulse and the peak of the spin echo is called the echo time (TE). The sequence 
then repeats at time TR, the repetition time. Because the energy from the R F pulse 
is dissipated, the hydrogen protons will return to alignment with the static magnetic 
field. The M R signal is derived from the hydrogen protons as they move back by 
the magnetic field. The Magnetic Resonance (MR) signal is then broken down and 
spatially placed in resulting images[2]. 

T l , T2, and proton density (PD) are the basic parameters of M R and de
termine the contrast between different tissues. Spin and gradient echo are two main 
sequences in MR. A l l other sequences are variations of one of these sequences and 
are used to better characterize specific tissue types. M R sequences that emphasize 
tissue differences in T l relaxation are called T l weighted, and those that emphasize 
T2 relaxation are called T2 weighted. Mainly tissues with short T l relaxation time 
such as fat, protein and melanin produce a high signal on Tl-weighted sequences and 
appear brighter on images, whereas cerebrospinal fluid (Cerebrospinal Fluid (CSF)) 
is relatively darker. Fluids have a long T2 relaxation time and appear bright on 
T2-weighted sequences. To more close comprehension of imaging properties of the 
main types of tissues, there is present Tab. 1 above. 
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Tab. 1.1: M R Signal Characteristic of Different Tissue[2] 

T l T2 
Dense bone Low signal Low signal 

Fat High signal 
Loses signal compared with 
T l 

Water (cere
brospinal fluid) 

Low signal High signal 

Hemorrhage 
Variable (depends on stage 
of hemoglobin breakdown) 

Variable (depends on stage 
of hemoglobin breakdown) 

Gray/white mat White matter higher signal White matter lower signal 
ter than gray matter than gray matter 

On spin-echo (SE) imaging, the repetition time (TR) and the echo time (TE) 
are used to control image contrast and the "weighting" of the M R image. In the 
broadest sense, Tl-weighted and T2-weighted are used to communicate to other 
physicians the type of M R pulse sequence employed to generate a series of images. 
In a more narrow sense an implication exists that a single intrinsic tissue parameter 
( T l , T2, spin-density, diffusion, susceptibility, chemical shift, flow, perfusion, etc.) 
dominates the image contrast observed. The traditional model in SE imaging to 
which the main question refers considers four combinations of T R and T E values: 

. Short TR/Short T E -> T l - W 

. Long TR/Short T E -> P D - W 

. Long TR/Long T E -> T2-W 

• Short TR/Long T E —> not used 

The exact reference ranges are not generally specified, but usually "long" T R or T E 

means 3-5x T l or T2 respectively, while "short" implies T R or T E « T l or T2. 

To understand the effect of T E on T2-weighting is to consider the signals gen
erated by two tissues with different T2 values. When T E is short, the echo occurs 
when there has been little time for T2-decay to have taken place and hence the 
tissues are not differentiated. If T E is long, the relative differences in signal decay 
between the two tissues become more noticeable, and hence more "T2-weighting." 

Similar arguments can be made for the interplay between T R and T l . At long 
TR's tissues with different T l values have all had time to recover from the 90 
excitation pulse, so their signals are not dramatically different. Conversely, short 
TR's accentuate "Tl-weighting". 

Finally, when T R is long and T E is short, both T l and T2 effects are minimized. 
The only remaining factor is the spin-density [H], which becomes the dominant 
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S h o r t T E 

L o n g T E 

Fig. 1.1: Image Contrast 

(TE)[3] 

weighting for that combination of parameters. Result of following combinations are 
described with image examples in the Fig. 1.1 below. 

Besides, it may be useful to mention next technique: M P R A G E is a three-
dimensional, thin-section Tl-weighted volumetric acquisition that is increasingly 
utilized for evaluating a widen spectrum of brain disorders. 

Fluid-attenuation inversion recovery (FLAIR) sequence is used to elimi
nate the signal from CSF, which comes into view dark. It is useful for highlighting 
parenchymal lesions that lie close to ventricles or multiple sclerosis plaques or small 
cortical infarcts, which are not as easily seen on T2- weighted sequences. Bright 
CSF signal on F L A I R could suggest leptomeningeal disease with the replacement of 
the normal CSF by blood (subarachnoid hemorrhage), pus (meningitis) or tumour 
cells (leptomeningeal carcinomatosis). 

Summarising the overall analysis of C T scans and M R images it will be useful 
to look at the table with all the main differences. Tab. 2 was attached above and it 
shows how the main aspects of tissue appearance on the resulting image, moreover, 
below it also was attached a practical case in Fig. 1.2 with CT and T2-weighted M R 
images of leukoaraiosis that shows basic differences in image representation. From 
the following point of view and previously accumulated experience in medical images, 
it obviously will be a conclusion that in brain tumour analysis more reasonably to use 
M R images instead of C T scans. That is why in my master thesis the main dataset 
includes M R images with following sequencies: Tl-weighted, T2, Fluid-attenuation 
Inversion Recovery (FLAIR) and T l Gd. 

with Different Repetition Time (TR) and Echo Time 
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Tab. 1.2: Comparison of C T and M R in Neurology[2] 

Computed tomography Magnetic resonance 
Few contraindications Multiple contraindications 
Fast, readily available Slow, less available 
Radiation exposure No radiation exposure 
Very good for acute hemorrhage Excellent for different phases of hemorrhage 
Poor soft tissue contrast Excellent soft tissue contrast 
Nephrotoxic contrast Nephrogenic systemic fibrosis 
Higher incidence of contrast reaction Lower incidence of contrast reaction 
Need contrast for C T A Non-contrast M R A (flow related) 

Fig. 1.2: Comparison of C T and M R images on example that shows leukoaraiosis 
at different stages of severity [4]. 
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2 Convolutional Neural Networks in Biomed
ical Data 

A convolutional neural network is an implementation of a neural network used in 
machine learning that processes array data such as images, and is thus frequently 
used in applications aimed at medical images. 

A key problem in medical image computing today is that the process of applying 
a segmentation algorithm to a new problem is completely human-driven. It is based 
on experience, with the papers mostly focusing on the network architecture, while 
merely brushing over all the other hyperparameters. Sub-optimal adaptations of a 
baseline method are regularly compensated for by the proposal of a new architecture. 
Since the strong dependencies and amount of local minima in hyperparameter space 
make it really hard to optimally adapt a method to a new problem, nobody in this 
loop can really be blamed. This situation can be frustrating for the researchers and 
computer science community. Mainly in the medical imaging domain where datasets 
are so diverse, progress will largely depend on our ability to solve these problems[5]. 

2.1 Main Parts of CNN 

A typical convolutional neural network is divided into three main parts although 
sometimes the architectural implementation varies considerably: 

1. input (depends on dataset, can be text, image, volume or video) 
2. feature extraction (encoder) 
3. regression/classification and output 

Input of Neural Networks 

Input objects of neural networks have many options it can be text, audio, image, 
video plus in medical application standard signals. In fact of the smaller size to 
compare with others and less demand for computational power the most common 
input of C N N currently is an image. Although considerable work has also been 
performed on 3D convolutional neural networks, which can process either volumetric 
data (3 spatial dimensions), video (2 spatial dimensions + 1 temporal dimension) or 
ID data as signals (biomedical as E E G , E M G , E C G , E O G , D N A sequences, etc.). 

Mostly in implementations, the input needs to be processed to match the par
ticulars of the Convolutional Neural Network (CNN) being used. This may include 
reducing the size of the image, cropping, identification of a particular region of 
interest (ROI), as well as normalizing pixel values to particular regions. 

Feature Extraction (Encoder) Part 
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The feature extraction part is what tells the difference between CNNs from other 
multilayered neural networks. It typically comprises of repeating sets of following 
sequential steps: 

• convolution layer 
— input is convoluted by application of numerous kernels 
— every kernel results in a feature map 

• non-linear activation unit 
In neural networks, the activation function of a node defines the output of that 
node given an input or set of inputs. Experience shows that only nonlinear 
activation functions allow such networks to compute nontrivial problems using 
only a small number of nodes[6]. 

— the activation of each neuron is then computed by the application of a 
non-linear function to the weighted sum of its inputs and an additional 
bias term. It gives the neural network the ability to approximate almost 
any function. 

— currently, well-spread an activation unit called the Rectified Linear Unit 
(ReLU)[7] and their modifications: Bipolar rectified linear unit (BReLU)[8], 
Leaky rectified linear unit (Leaky ReLU) [9], Randomized leaky rectified 
linear unit (RReLU)[10], Exponential linear unit (ELU)[11] and others. 

* during convolution and pooling processes results in some pixels are 
having negative values 

* the rectified linear unit verifies all negative values are at a zero 
• pooling layer every feature map is downsampled into a smaller matrix by 

pooling the values in neighboring pixels 
These steps run through again certain amount of times, each convolution layer 

acting upon the pooled and rectified feature maps from the previous layer. The 
result is an ever-smaller matrix size with activation dependent on growing complex 
features due to the cumulative interaction of numerous prior convolutions. 

Regression/Classification and Output Part 

Most frequently convolutional neural networks in radiology undergo supervised 
learning. It involves training an algorithm from a set of images or data where 
the output labels are already known [12]. Supervised learning is broken into two 
subcategories, classification and regression[13]. Classification refers to the prediction 
of whether an image falls into one or more categories while regression aims to predict 
a continuous label. The final pooled and rectified feature maps are used as the input 
of fully connected layers just like in a fully connected neural network. 

Regression and classification are categorized under the same umbrella of super
vised machine learning. Both share the same concept of utilizing known datasets 
(referred to as training datasets) to make predictions. In supervised learning, an 
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algorithm is employed to learn the mapping function from the input variable (x) 
to the output variable (y); that is y = f(X). The objective of such a problem is to 
approximate the mapping function (f) as accurately as possible such that whenever 
there is a new input data (x), the output variable (y) for the dataset can be pre
dicted. The main difference between them is that the output variable in regression is 
numerical (or continuous) while that for classification is categorical (or discrete) [14]. 

Last layer in regression is usually fully connected, it does not have activation 
function (sometimes in the specific cases ReLu or basic activation function build
ing block Softmax[15]), number of neurons corresponds to the number of regressed 
values. 

Otherwise, last layer in classification is fully connected too but frequently with 
softmax (sigmoid) activation function and number of neurons corresponds to the 
number of classes. Output vector in classification includes values of membership 
probabilities for each class (length of the vector equals the number of classes). Re
sulting estimated classes is taken with maximal probabilities. 

Training of Neural Network 

As it was mentioned in the introduction part, the most popular and wide-spread 
convolutional neural network for segmentation purposes is called U-Net[16]. There 
are several other options for segmentation task like Medical Detection Toolkit [17] or 
Mask R-CNN[18], however, with more detailed look, we probably may see that other 
options have mostly similar structure or even include U-Net in themself. From this 
perspective let us make an observation of the most popular and powerful instrument 
for biomedical image segmentation. 

Training of the deep model includes direct work with optimization and loss func
tions and if we are talking about optimizers researches already achieved some high-
rated results but loss functions choice sometimes maybe only as an experiment 
results or a guess. 

Fundamentally, the optimization of supervised machine learning consists of two 
phases that are looped through continuously: 

• forward propagation: for a given input, calculates a predicted outcome and 
compares this with the expected outcome to give an overall cost (error), 

• backward propagation: from the cost, works backwards through the network 
updating the parameters in an attempt to minimize the overall cost [19]. 

There are many successful options optimizers for training neural network - gradi
ents based, evolution algorithms, etc. However, recently there were developed a lot 
of types of gradient based methods (SGD[20], SGD wtih momentum[21], Nesterov 
accelerated gradient[22], AdaGrad[23], Adam[24], etc.). U-Net and many others its 
modifications use (ex. nnUNet[5]) Adam optimazer. 

27 



Adaptive Moment Estimation (Adam) [25] is method that computes adap
tive learning rates for each parameter. In addition to storing an exponentially decay
ing average of past squared gradients v(t), Adam keeps an exponentially decaying 
average of past gradients m(t), similar to momentum. Whereas momentum can be 
seen as a ball running down a slope, Adam behaves like a heavy ball with friction, 
which thus prefers flat minima in the error surface [26]. We compute the decaying 
averages of past and past squared gradients m(t) and v(t) respectively as follows: 

mt = PWH-i + (1 - Pi)gt (2.1) 

vt = {i2vt.x + (1 - fo)g2
t (2.2) 

m(t) and v(t) are estimates of the first moment (the mean) and the second 
moment (the uncentered variance) of the gradients respectively, hence the name of 
the method. As m(t) and v(t) are initialized as vectors of O's, the authors of Adam 
observe that they are biased towards zero, especially during the initial time steps, 
and especially when the decay rates are small (i.e. j3i and (32 are close to 1).[27] 

They counteract these biases by computing bias-corrected first and second mo
ment estimate: 

rfk - ^ (2.3) 

They then use these to update the parameters just as we have seen in Adadelta 
and RMSprop, which yields the Adam update rule: 

9 t + 1 = 6 t - -p^—mt (2.5) 

The authors propose default values of 0.9 for j3i, 0.999 for (32 and 10"8 for e. They 
show empirically that Adam works well in practice and compares favorably to other 
adaptive learning-method algorithms. 

Adam optimizer is using with an initial learning rate of 3 x 10"4 for all experi
ments. Whenever it did not improve by at least 5 x 10"3 within the last 30 epochs, 
the learning rate was reduced by factor 5. The training was terminated automati
cally if it did not improve by more than 5 x 10"3 within the last 60 epochs, but not 
before the learning rate was smaller than 10"6[28]. 

Several different multi-class loss functions are using for segmentation tasks and 
currently it is among the main aspects of a successful model. It can be Cross-
Entropy (CE), Weighted Cross-Entropy (WCE), Soft Dice[29], Batch Soft Dice, 
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Tversky Loss[30], Lovasz-Softmax[31] or combinations of them. One of the main 
challenges with brain tumour segmentation is the class imbalance in the dataset. 
While networks will train with cross-entropy loss function, the resulting segmenta
tions may not be ideal in the sense of the Dice Score they obtain. Since the Dice 
Scores are one of the most important metrics based upon which contributions are 
ranked, it is imperative to evaluate this metric. To demonstrate the effectiveness 
of nnU-Net we can compare results of training with different loss functions: pop
ular cross-entropy and a unique combination of dice and cross-entropy loss from 
M I C - D K F Z team. The experimental part and results are shown in the section 3.2 
Training of Test Model. 

Let the number of image patches X i in our training mini-batches be I and let 
each image patch consist of C pixels. The segmentation model then maps each of I 
x C = N pixels in the mini-batch to probability pi for each of labels L. The training 
procedure ensures that the resulting output label probability vectors p i c correspond 
to one-hot encoded ground truth label vectors r i c as best as possible on the training 
data. 

Cross-Entropy Loss. Also known as log-loss, cross-entropy is the most widely 
used loss function for classification C N N . When applied to a segmentation task, 
cross-entropy measures the divergence of the predicted probability from the ground 
truth label for each pixel separately and then averages the value over all pixels in 
the mini-batch: 

This loss function tends to under-estimate the prediction probabilities for classes 
that are under-represented in the mini-batch which is inevitable in training data. 

Combination of Dice and Cross-Entropy Loss. By default models in nnU-
Net are trained from scratch and evaluated using five-fold cross-validation on the 
training set. The network trains with a combination of dice and cross-entropy loss: 

For 3D U-Nets operating on nearly entire patients (first stage of the U-Net 
Cascade and 3D U-Net if no cascade is necessary) we compute the dice loss for 
each sample in the batch and average over the batch. For all other networks it is 
interpreted the samples in the batch as a pseudo-volume and compute the dice loss 
over all voxels in the batch. Based on past experience, the team of developers is 
implemented the dice loss as follows: 

c=l 1=1 

(2.6) 

Ltotal — Ldice + Lce[28] (2.7) 
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where u is the softmax output of the network and v is a one hot encoding of the 
ground truth segmentation map. Both u and v have shape I x K with i e I being 
the number of pixels in the training patch/batch and k e K being the classes[28]. 

The U-Net architecture is built as the fully convolutional network and modified in 
a way to produce better segmentation in the sphere of medical imaging. In Fig. 2.1 
below, it is shown the visual structure of U-Net and it can be described as comprising 
of two parts an encoder (contraction path) on the left side and a decoder (expansion 
path) in the right side. The architecture of the network is noteworthy and reminds 
the letter "U" because of it the network got such name "U-Net"[16]. 

The contraction path includes a repeated application of two 3x3 convolutions, 
where each followed by a ReLU and a 2x2 max pooling operation with stride 2 
for downsampling. At every downsampling step, the number of feature channels is 
doubling. This captures context via a compact feature map [16]. 

The expansion path includes upsampling of the feature map followed by a 2x2 
convolution that halves the number of feature channels a concatenation with the 
cropped feature map from the contracting path, and a 3x3 convolutions, followed by 
a ReLU. The upsampling of the feature dimension is done to meet the same size as 
the block to be concatenated on the left. The expansion increases the "what" which 
helps in getting more features but losses the localization, localization information is 
concatenated from the contraction path. The cropping is necessary due to the loss 
of border pixels in every convolution. At the final layer, a l x l convolution is used 
to map each 64-components feature vector to the desired number of classes[16]. 

Since 2015 the U-net implementation has achieved proficient performance on 
different biomedical segmentation applications. It needs a small number of ground 
truths and has an outstanding reasonable training time. A l l these qualities make 
U-Net is a perfect candidature as a tool in the hands of many researchers for tumour 
segmentation. 

As it was described above U-Net [16] now is the state-of-art technique for image seg
mentation. However, U-Net is modified by several groups of scientists with some up-

2.2 Observation of U-Net 

2.3 nnU-Net 
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Fig. 2.1: U-net Architecture (example for 32x32 pixels in the lowest resolution). 
Each blue box corresponds to a multi-channel feature map. The number of channels 
is denoted on top of the box. The x-y-size is provided at the lower left edge of the 
box. White boxes represent copied feature maps. The arrows denote the different 
operations[16]. 

grades for each specific aim. In the case of brain imaging sphere, great achievements 
are shown in the Multimodal Brain Tumor Segmentation Challenge (BRATS) [32] 
provided by Center for Biomedical Image Computing and Analytics (CBICA) and 
supported by non-profit corporation MICCAI . These companies organize challenge 
each year and publish diverse datasets with ground truths for two tasks: segmen
tation and survival. For us, the segmentation task has a significant interest. From 
the rankings, we can find the best result techniques and work on it because usually, 
they are in open source. 

From all teams in the BRATS competition there is one — M I C - D K F Z , which 
demonstrated the effectiveness of a well trained U-Net and was in Top 3 during last 
three years. It is Division of Medical Image Computing in German Cancer Research 
Center (DKFZ) from Heidelberg, Germany. Team of scientists: Fabian Isensee, 
Philipp Kickingereder, Wolfgang Wick, Martin Bendszus and Klaus H. Maier-Hein 
proposed their own version of U-Net: No New-Net or just nnU-Net[33]. Due to the 
sheer number of such variants, it becomes increasingly difficult for researchers to keep 
track of which modifications extend their usefulness over the few datasets they are 
typically demonstrated on. Unlike other segmentation methods published recently, 
nnU-Net does not use complicated architectural modifications and instead revolves 
around the popular U-Net architecture. M I C - D K F Z team have implemented a num-
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Fig. 2.2: nnU-Net is a 3D U-Net architecture with minor modifications. It uses 
instance normalization and leaky ReLU nonlinearities and reduces the number of 
feature maps before upsampling. Feature map dimensionality is noted next to the 
convolutional blocks, with the first number being the number of feature channels[33]. 

ber of these variants and found that they provide no additional benefit if integrated 
into a well trained U-Net. In this context, contribution to the B R A T S challenges was 
intended to demonstrate that such a U-Net, without using significant architectural 
alterations, is capable of generating competitive state-of-the-art segmentations. 

The architecture of nnU-Net is an instantiation of the 3D U-Net with minor mod
ifications. It was stuck with design choice to process patches of size 128x128x128 
with a batch size of two. Due to the high memory consumption of 3D convolutions 
with large patch sizes, the network was implemented carefully to still allow for an 
adequate number of feature maps. By reducing the number of filters right before 
upsampling and by using in-place operations whenever possible, this results in a net
work with 30 feature channels at the highest resolution. Due to previous experience 
of the team, traditional ReLU activation loss function did not reliably produce the 
desired result that is why it was replaced with leaky ReLUs (leakiness 0,01) through
out the entire network[33]. With a small batch size of 2, the exponential moving 
averages of mean and variance within a batch learned by batch normalization[34] 
are unstable and do not reflect the feature map activations at test time very well. 
Instance normalization is providing more consistent results and therefore used it 
to normalize all feature map activations (between convolution and nonlinearity). 
Overview of architecture is shown in Fig. 2.2. 
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Fig. 2.3: Principal idea of similarity. Similarity of Patient A to Patient B is defined 
as the quality of the automatic segmentation of Patient B from a classifier trained 
on Patient A 

The quality of automatic segmentation still is important issue for doctors, who are 
planning to use deep learning techniques their practice. The final and ideal task of 
the thesis is to verify and improve the quality of image segmentation in convolutional 
neural networks and optimize the training dataset through its similarity. 

There are several ideas on how to optimize the quality of segmentation can be 
found. After some research, the idea of using similarity and 'Input Data Adapted 
Learning' (IDAL)[35] seems promising for the case where we already have some 
good segmentation result and would like to improve it. It proposes to learn the best 
training base for every image and use this to predict a subgroup of best training 
images for every previously unseen image. It has shown potential with Random 
Trees techniques, however, the method may be treated universally on other deep 
learning techniques including convolutional neural networks, because it is based on 
the similarity between Patient A and Patient B and proposes a concept how to 
find and fit a special classifier — Similarity Classifier (SC), which optimizes the 
best dataset for Patient B, look at Fig.2.3. As it was mentioned earlier, a similar 
experiment carried out only on Random Trees and never on C N N , which give the 
following thesis an innovation. 

2.4 Improving Quality of Segmentation 
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Fig. 2.4: Overview of the workflow of the proposed IDAL-algorithm 

Instead of training a single classifier that is used to predict all unseen images 
method proposes to adaptively train a new classifier for every new image. This allows 
us to use only few, but similar images during the training. While such an approach 
makes each classifier less general, it is expected that the so-trained classifier is better 
suited to deal with the afore mentioned heterogeneity. [35] 

This approach with a two-staged algorithm (Fig.2.4). During the first stage, that 
is performed classifier training, we create a similarity classifier (SC) which can group 
images based on some similarity measures. In the second stage to find images that 
are similar to the new, unlabeled image or just similar types of images (ex. liver, 
brain etc. tumours). From the new optimzed dataset, we can train more effective 
model with better qualitative segmentation results. 
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3 Experiment 

3.1 Dataset 

As it was mentioned before one of the biggest open-source brain image datasets is 
provided by B R A T S [32] competition. The vast majority of nnU-Net[33] was de
veloped and organized in the context of the Medical Segmentation Decathlon[36] 
among different tasks there is brain tumour. The main attributes of the brain tu
mour dataset from are collected the Medical Segmentation Decathlon in Tab.3.1. 
The whole dataset is quite massive for training but well-build to prevent overfitting, 
which makes a good balance. It consists of two years of BRATS competition: 2017 
and 2018 and together has 484 training + 266 testing images and with total size 
near 9Gb. Moreover, on the stage of preprocessing dataset expands dramatically in 
the size and requires at least 20 Gb on the R A M disk. 

NnU-Net uses three types of U-Net models and can automatically choose which 
(of what ensemble) of them to use. The default setting in a five-fold cross-validation 
is to train each of these models: 

. 2D U-Net 
• 3D U-Net (full resolution or fuller) 
• 3D U-Net Cascade 
From the authors, it is known that 3D U-Net model (3d fullres) looks like the 

most robust way. If the patch size of the 3D U-Net only covers a very small fraction 
of an image then it is possible that the 3D U-Net cannot capture sufficient contextual 
information in order to be effective. If this is the case, it would be better to consider 
running the 3D U-Net cascade (3d lowres followed by 3d cascade fullres). If data is 
very anisotropic then a 2D U-Net may be a better option[5]. Also, it will be useful 
to take into account that each next type of running requires unique preprocessing 
of the data and more R A M space on the disc compare to the previous one. 

3.2 Training of Test Model 

To begin training model I have to find the G P U power. It can be realized in several 
ways: personal computer, supercomputer or virtual server/environment. Due to no 
opportunity to use personal or supercomputer on the beginning stage of thesis, it was 
chosen virtual environment with free access to G P U . Currently, it is a few options 
for free G P U : kaggle and Google Colab. Google Colab offers best conditions: 37 GB 
on disc space, Tesla K80 G P U and intuitively understandable environment based 
on Jupyter Notebook. These characteristics should be sufficient for preliminary 
evaluation of the network and even for some experiments. 
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Tab. 3.1: Brain Tumours Dataset Description[36] 

Target: Gliomas segmentation necrotic/active tumour and oedema 
Modality: Multimodal multisite M R I data (FLAIR, T l w , T lgd , T2w) 
Size: 750 4D volumes (484 Training + 266 Testing) 
Source: BRATS 2016 and 2017 datasets 
Challenge: Complex and heterogeneously-located targets 

The code of the nnU-Net with description is in open access and free to load. To 
provide a robust experiment it should be done some preparation and test experiment 
and to understand and solve some issues, which can appear during the process of 
the experiment, besides, we can receive the training weights, which can be used as 
initials in the full experiment. For that task, it was chosen a test of Cross-Entropy 
(Equation 2.6) and original Combination of Dice and Cross-Entropy (Equation 2.7) 
loss functions. The first problem has shown when the 3D U-Net with a full dataset 
on Google Colab has been on a trial run of preprocessing and unpacking the model 
stage. A l l the available size on the disc space was occupied by the image data and 
there was no free space for training weights. To operate the model properly the size 
of the dataset has been reduced from 484 training images to 100 and 100 for testing. 

After trimming of image dataset to a suitable size for Google Colab it was loaded 
into the system. When preprocessing is done, training of the model can begin. 
Another problem with limited G P U power has appeared when the 3D U-Net began 
running. By the reason of 12 hours limit of processing in Colab, the model does not 
have time to to be adequately processed and to reach the maximum of capacity. The 
learning has been moved slowly with overestimated computational time and nearly 2 
000 seconds for each epoch. The learning was stopped on 16 epochs because it took 
a long time. The only way to increase the speed of computation is to choose a less 
powerful model type — 2D. The resulting number of the loss function is presented 
in Tab.3.2. 

To prevent the long and time-consuming process in the second attempt, the 
model was training on 2D and with cross-entropy loss function. The calculation 
time of each epoch took almost 750 seconds, which was allowing us to calculate 30 
epochs and to stop it by order due to slow changes in the loss function during last 
15 epochs. Analyzing the results of test in Fig.3.1, it shows us the good learning 
rate of loss function, which is close in the end to 0 (minimum) and can be assessed 
and used as the main loss function for many image segmentation tasks. 

On the third attempt, the model received the combination of dice and cross-
entropy loss function on 2D data. The calculated numbers of function are negative 
because minimum of the loss function lays on point -1. One epoch consumed lesser 
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time (650 seconds) and shows as well the appropriate loss function curve in Fig.3.1. 
From this test, we may lead to the confirmation that both loss functions: cross-

entropy and combination of dice and cross-entropy loss are suitable for image seg
mentation of brain tumours and can be used in a process of training of the convo-
lutional neural network. However, if we want to compare them and learning rate, 
we have to use another parameter - Evaluation Metric. In my case I was using Dice 
Score(Fl). From Fig.3.2, model with combination of dice and cross-entropy loss 
function on 2D data is considering for a leading result because of the slightly bigger 
number of evaluation metric. The final values of the tested loss functions collected 
in Tab.3.2. 

To display nnU-Net segmentation results we can perform files (predictions) in 
standard bio image *.nifty format. After we overlap it with a test image and we 
are able to see the predicted place of gliomas in the brain. In Fig.3.3 there are 
two examples from tested images. However, the most important from the technical 
processing side outcome is training weights. These training weights storage the 
values, which already can successfully predict the brain tumour, and the highest 
result will be used as pre-training weights on the next step in quality analysis. 

Tab. 3.2: Comparison of Evaluation Metrics (Dice Score(Fl)) 

Training Model 
Evaluation 
metric 
(Fl) 

3D fullers dataset with combination of dice 
and cross-entropy loss (16 epochs) 

0.7951 

2D with cross-entropy loss (30 epochs) 0.8476 
2D with combination of dice and cross-entropy 
loss (30 epochs) 

0.8684 

3.3 Analysis of the Training Quality 

For analysis of the training quality between several cases, we will use recorded 
modalities of one patient for each training case consequently. To make the experi
ment more detailed we took again 100 training images and 100 test patients images 
from BRATS dataset. Then we compare predicted segmentations with hand-marked 
ground truths by doctors from the original dataset, evaluate them and cluster or 
classify them as in was described in Fig.2.4. The presented similarity method can 
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Comparison of Loss Functions 

Fig. 3.1: Loss functions values of nnU-Net learning on 2D dataset with cross-entropy 
and combination of dice and cross-entropy. 

1,0 , 

Comparison of Evaluation Metrics 

• 2 D C E • 2D D+CE 

Number of Epochs 

Fig. 3.2: Evaluation metrics of nnU-Net learning on 2D dataset with cross-entropy 
and combination of dice and cross-entropy loss functions. 
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(a) Example 1. Results of a Single Slice for Test-patient 05, T l w scan 

(b) Example 2. Results of a Single slice for Test-patient 06, T2w scan 

Fig. 3.3: Examples of Gliomas Segmentation on the initial training weights, where 
blue colour is edema, green — non-enhancing tumor and red — enhancing tumour. 
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be used only, if the ground truth is known, which makes it unusable in real circum
stances. However, if the final aim is to achieve a better quality of predictions in 
image segmentation, it can be implemented via optimized training dataset. Opti
mizing of the dataset will be organized with similarity classifier that needs ground 
truths only on the first analysis stage. To generate the automatic classifier, which 
can evaluate and optimize image datasets and also will be universal for all types of 
similar images. 

The main experiment includes four steps. In the first step, it was a preparation 
of training weights. For such purpose, we take the pre-training weights from the 
previous test, where the network has been trained by 30 epochs on 100 images 
with the most effective result — 2D with combination of dice and cross-entropy 
loss function. The obtained model was saved with its training weights. The saved 
weights will be used as initial conditions in the next steps. There was made due to 
the reason for preventing fail and also better visualizing the further training results 
with the possibility to give them assessment as upgrade or downgrade. Besides, 
from the received model, we can predict segmentation and it can give us comparison 
before and after implementing the classifier. 

The second step consisted of preparation and setting up new input of training. 
Unfortunately, nnU-Net does not allow training the model on only one image. To 
complete the requirements we used a data augmentation process — batchgenerators 
by MIC, DKFZ[37], wherefrom one original image converted into a set of five with 
random mirroring by X , Y , Z axes and spatial deformation with the low scale of the 
deformation parameters. 

In the next step, we were training 100 separate models with obtained previously 
modalities for 100 extra epochs. When the training process is done, we can perform 
inference of brain tumour segmentation for chosen dataset — 100 test images. The 
calculation of segmentation quality will be provided through the similarity between 
predicted ground truth and the original one. For comparison of segmentation usu
ally, it is used intersection-over-union (Jaccard Index or just IoU) or Dice Coefficient 
( F l Score) [38]. Both of them are very similar. The Dice Coefficient calculates from 
the equation 3.1: 

Dice = (2 x Area of Overlap)/(Total Pixels Combined) (3.1) 

As a result, we have a value in the range from 0 to 1, where 1 signifies the 
greatest similarity between predicted and truth. Collecting all the values in a table 
and visualizing them on the heatmap can get us a similarity matrix (Fig.3.4), i.e. one 
cell of the matrix corresponds to the Dice Score, that is trained on the corresponding 
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training image, is used to segment the corresponding test image[35]. The resulting 
matrix indicates how similar each patient training case to each other. 

With the last step of experiment from the heatmap we built a dendrogram with 
the average method (also called the U P G M A algorithm[39] ) for analyzing the re
sults. The following dendrogram (Fig.3.5) gives us several clusters of images, where 
each of them shows us a selection sample for training certain case. 

To prove previous statement, we can remove some images or group of images 
(clusters) that show bad learning rate from dataset. It gives us a new reduced 
dataset and after training new model on that dataset we can compare predictions 
of the test images. Dendrogram sorted bad learning cases on the right side on the 
graph. If we take the worst images, which have the brightest colours, it will be test 
patients data numbers 12, 11, 83, 9, 28, 24, 81, 80 and 42 from Fig.3.5. To follow 
the aim to create several examples on the training weights of original 100 training 
images it was made a prediction of 100 test images and results were evaluated 
with original ground truths by Dice Score metric and collected in Fig.3.6 a, then 
dataset was reduced with the first 5 images from the list of worst cases, trained and 
evaluated. The identical process has been repeated from 7 and 9 images and results 
are consequently presented in Fig.3.6 a. 

Making the results more clear and visible I subtracted from the original 100 
images dataset Dice Score our new dataset Dice Score and collected them in Fig.3.6 
b. From that graph, it is possible to say that a few predictions lost up to 15% 
but in general many images showed reverse effect and gained up to 5% of their 
quality. Giving assessment to all images it was calculated total median result Dice 
Score consequently and gathered in Tab.3.3. It has show improvement of only in 
the case were 7 images were removed and it is already 4.8% of quality. That fact we 
can achieve better quality from Input Data Adapted Learning method from images 
similarity has proven. Moreover, the reduced dataset and less computation time 
compare with the first calculation give us belief that turning dataset in several ways 
we can reach even more improvement of quality with fewer computation expenses 
in future. 

Tab. 3.3: Changing of median Dice Score relatively original 100 images dataset in 
shares 

Amount of Images in Dataset Median Dice Score 
95 -0.007212 
93 0.048353 
91 -0.013250 
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(a) Similarity Matrix of Training Images 

(b) Similarity Matrix of Test Images 

Fig. 3.4: Similarity matrices, where one cell of the matrix corresponds consequently 
to the Dice Score of training and test images, that is trained on the corresponding 
training image. As deeper blue colour (correspond to 1) we have then more similarity 
between produced segmentation and hand marked ground truth. 
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Fig. 3.5: Dendrogram of similarity matrix of 100 training cases was built by the 
average method. On the left side, we have cases with the best learning rate and on 
right the contrary results. Each row and column has a line, which unites it with 
similar results and forms a cluster 
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(a) Dice Score of test images prediction trained on full 
dataset (100) and reduced (95, 93 and 91) 
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(b) Subtraction between Dice Score of the orig
inal dataset and with reduced number of im
ages: 95, 93 and 91 consequently, to illuminate 
cases where changes were the most significant. 
Red colour shows improvement, white remains 
invariable, blue — decline. 

Fig. 3.6: Dice Score of test images prediction 
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4 Discussion 
Nowadays it is no question that convolutional neural networks are state-of-art tech
niques for image recognition and segmentation. However, it remains some gaps 
for development and improving these models. From the test experiment, we may 
found several problems such as memory and G P U consumption. Despite huge break
through of Convolutional Neural Networks, it is still requiring an impressive amount 
of capacity. That was shown in the case where 3D U-Net did not perform well due to 
the necessity of the big G P U power machine. I may assume that many biomedical 
centres or hospitals cannot have access to such capacity in everyday life to train their 
model. It may be solved by pre-training or already prepared weights, which can be 
done remotely, but it will not allow the process to be more flexible and achieve the 
best segmentation results. Concerning the 2D U-Net we can easily conclude that it 
is a working example of C N N , which may be applied already in many machines and 
produce stable results, however they will be beaten by 3D version in future. 

The results of experiment on 2D U-Net showed the use of input data adapted 
learning method leads to a slightly visible but in some cases a boost of segmentation 
performance. From several training case the median Dice Scores are shown an 
increase by 4.8% in case were 7 images were removed and near 1% of decrease in other 
cases. It is also visible that further improvement is possible if a better similarity 
classifier will be used, based on the fact that using a perfect similarity classifier (with 
already prepared ground truths) leads to 4% of improvement compared to the used 
method. Therefore, it let us conclude that there is a further potential for improving 
this technique. 

We used a very basic approach for our challenge contribution, on the whole 
avoiding all post-processing. That was made in order to reduce the effect of the 
post-processing. Since the post-processing (brain extraction, noise reduction etc) 
seems to have a big influence in the final segmentation quality, a further increase 
could be achieved by an additional cleaning of the segmentation mask. From next 
ideas to improve process of optimazing the dataset could be work with meta-data 
of images, setups of scanners and others. 

As the method does not depend on a given combination of features or a similarity 
classifier, it is possible to incorporate input data adapted learning method with most 
other, learning-based approaches. It is expected that most approach could benefit 
from the used method and results. Though we have to understand that developing a 
unique method of improving the segmentation of the image in convolutional neural 
networks quality is a generous task, which cannot be solved instantly and requires 
extensive discussion. 
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Conclusion 
In the presented master's thesis was conducted a description of CT scans and M R 
images and the main differences between them on technical and image side. It 
was observed possible of deep learning methods and tools for image segmentation, 
explained the structure of convolutional neural networks on several examples and 
how they implemented into biomedical image analysis. There were provided a wide 
research of optimization and different loss functions for neural network. Further it 
includes a brief analysis of the training quality and method how to improve it. 

The experiment part it about test training of neural network for brain tumour 
segmentation with state-of-art convolutional neural network nnU-Net on possible 
data loads and comparison of different loss functions. It shows us effectiveness and 
reliability in segmentation task, however, the quality can be improved. During the 
experiment, we trained 100 convolutional neural networks to assess the quality of 
predictions, and based on Dice Score calculations, built Similarity Matrices. From 
the traning matrix, we constructed dendrogram (Fig.3.5) and clustered the images. 
Removing images from the worst cluster from the original dataset, we can achieve a 
similar median quality of the segmentation among all tested images, and in particular 
case, it was found an increase of almost 5 % as it showed in Tab.3.3. The discussion 
about training setups, an algorithm of clustering and similarity classifier, which 
unites data in a certain cluster, is behind the scope of one master's project, but the 
technique has a potential for development and will be in a future focus of scientific 
attention. The experiment has shown the success of the provided algorithm in detail 
analysis of performed training cases. The proposed outcome gives us certain ideas 
for future improving the quality of image segmentation via deep learning techniques. 
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List of symbols, quantities and abbreviations 
C N N Convolutional Neural Network 

C T Computed Tomography 

M R Magnetic Resonance 

fMRI Functional Magnetic Resonance Image 

S P E C T Single-photon Emission Computed Tomography 

P E T Positron Emission Tomography 

CSF Cerebrospinal Fluid 

F L A I R Fluid-attenuation Inversion Recovery 

ROI Region of Interest 

ReLU Rectified Linear Unit 
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