
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

LIBRARY FOR MULTIPLATFORM DEVELOPMENT
OF MOBILE APPS
KNIHOVNA PRO MULTIPLATFORMNÍ VÝVOJ MOBILNÍCH APLIKACÍ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MICHAL KOVAŘÍK
AUTOR PRÁCE

SUPERVISOR prof. Ing. ADAM HEROUT, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2017

Vysoké učení technické v Brné - Fakulta informačních technologií

Ústav počítačové grafiky a multimédii Akademický rok 2016/2017

Z a d á n í b a k a l á ř s k é p r á c e

Řešitel: Kova ř í k Michal

Obor: Informační technologie

Téma: Kn ihovna p r o m u l t i p l a t f o r m n í v ý v o j m o b i l n í c h apl ikací

L lb ra ry f o r M u l t i p l a t f o r m D e v e l o p m e n t of Mobi le Apps

Kategorie: Uživatelská rozhraní

Pokyny:
1. Prostudujte a popište problematiku vytváření multiplafromních mobilních aplikací,

včetně tvorby tenkých klientů.
2. Definujte požadavky na nástroj/knihovnu/framework pro tvorbu multiplaformních

mobilních aplikací.
3. Implementujte důležité části navržené funkčnosti.
4. Vytvořte demonstrační aplikace demonstrující vytvořené řešení a umožňující

vyhodnocení jeho vlastností.
5. Vyhodnoťte vlastnosti vytvořené knihovny.
6. Zhodnoťte dosažené výsledky a navrhněte možnosti pokračováni projektu; vytvořte

plakátek a krátké video pro prezentování projektu.

Literatura:
* dle pokynů vedoucího

Pro udělení zápočtu za první semestr je požadováno:
• Body 1 a 2, značné rozpracování bodů 3 a 4.

Podrobné závazné pokyny pro vypracování bakalářské práce naleznete na adrese
http: / /www.f i t . vutbr,cz/ínfo/szz/

Technická zpráva bakalářské práce mjsi obsahovat formulaci cile, charakteristiku současného stavu,
teoretická a odborná východiska řešených problému a specifikaci etap (20 ař 30% celkového rozsahu technické
zprávy) .

Student odevzdá v jednom výtisku technickou zprávu a v elektronické podobě zdrojový text technické zprávy,
úplnou programovou dokumentaci a zdrojové texty programu. Informace v elektronické podobe budou uloženy
na standardním nepřepisová t e lném paměťovém médiu (CD-R, DVD-R, apod-), které bude vloženo do písemné
zprávy tak, aby nemohlo dojít k jeho ztrátě při běžné manipulaci.

Vedoucí: H e r o u t A d a m , p ro f . I n g . , Ph.D., UPGM FIT VUT

Datum zadání: 1. listopadu 2016

Datum odevzdání: 17. května 2017
VYSOKÉ UČENÍ TECHNICKÉ V 8RNÉ

Fakulta mtorinačnlcít tectinoiop
Ústav počítačové grafiky a multimédií

6 1 E . & B m o . Božetěchova 2

O S * .

doc. Dr. Ing, Jan Černocký
vedoucí ústavu

http://www.fit

Abstract
This thesis addresses the issues when developing mobile applications for mult iple operating
systems and development environments, w i th the target being to create the ideal user inter­
face library. A framework for H T M L app development has been designed and implemented
that is buil t on top of modern web standards, al lowing the developer to create applications
wi th a single codebase that w i l l , when deployed, intelligently adapt to the device and oper­
ating system that they are being run on. Released as an open-source project and currently
supporting Windows 10, A n d r o i d , Chrome O S and Web. Flexus, a framework for bui lding
user interfaces, is i n live use and active development.

Abstrakt
Tato p r á c e se zabývá p o t í ž e m i s vývo jem mobi ln ích ap l ikac í pro vícero ope račn ích s y s t é m ů
a vývojových p ros t ř ed í , s c í lem vy tvo ř i t ideá ln í knihovnu pro tvorbu už iva te l ských rozh ran í .
N a zák ladě m o d e r n í c h webových s t a n d a r d ů by l n a v r ž e n a i m p l e m e n t o v á n framework pro
vývoj H T M L apl ikací , umožňuj íc í v ý v o j á ř ů m s n a d n é v y t v á ř e n í ap l ikac í s j e d n o t n ý m zdro­
j o v ý m k ó d e m , k t e r é se samy in te l ige tně p ř i způsob í za ř í zen ím a o p e r a č n í m s y s t é m ů m , na
nichž jsou spuš těny . Zvře jněn coby open-source projekt, současně podporu j í c í Windows
10, A n d r o i d , C h r o m é O S a Web, je Flexus frameworkem n á v r h u už iva te l skách r o z h r a n í v
a k t i v n í m užívání a n a d á l é m vývoji .

Keywords
Mate r i a l Design, Universal Windows P la t form (U W P) , Microsoft Design Language (M D L) ,
Neon Design, A n d r o i d , Windows, H T M L , C S S , JavaScript, Framework, Library .

Klíčová slova
Mate r i a l Design, Univerzá ln í P la t forma Windows (U W P) , Des ignový Jazyk Microsoft (M D L) ,
Neon Design, A n d r o i d , Windows, H T M L , C S S , JavaScript, Framework, Kn ihovna .

Reference
K O V A R I K , M i c h a l . Library for Multiplatform Development of Mobile Apps. Brno , 2017.
Bachelor's thesis. Brno Univers i ty of Technology, Facul ty of Information Technology. Su­
pervisor prof. Ing. A d a m Herout, P h . D .

Library for M u l t i p l a t f o r m Development
of Mobi le A p p s

Declaration
Proh lašu j i , že jsem tuto b a k a l á ř s k o u p rác i vypracoval s a m o s t a t n ě pod v e d e n í m pana prof.
Ing. A d a m a Herouta, P h . D . Uved l jsem všechny l i t e rá rn í prameny a publikace, ze k t e rých
jsem čerpal .

M i c h a l Kovař ík
M a y 18, 2017

Acknowledgements
Děkuji panu prof. Ing. A d a m u Heroutovi , P h . D . za jeho o d b o r n é veden í t é t o p r áce , dále
děkuji všem, k t e ř í m i poskyt l i pomoc a korekci k tomuto dokumentu, j m e n o v i t ě D a v i d
Smi th , E m m a O l i v i a Pedersen, Keifer Lucch i .

Contents

1 Introduction 3

2 Current State of Apps and User Interfaces 4
2.1 Platforms and runtimes 4

2.1.1 A n d r o i d 4
2.1.2 i O S 5
2.1.3 Windows - U W P 5
2.1.4 Web 5
2.1.5 Chrome OS 5
2.1.6 Other platforms 6

2.2 Ana tomy of an Appl i ca t ion 6
2.3 Design Languages 8

2.3.1 Mate r i a l Design 8
2.3.2 Neon Design Language (Microsoft Design Language) 9
2.3.3 i O S H u m a n Interface 10

3 Goals of the Framework 11
3.1 Flexus Modules 12
3.2 Code Simpl ic i ty 13

3.2.1 Cus tom Att r ibutes 14
3.2.2 Compar ison to Other Ex i s t ing Libraries and Frameworks 15
3.2.3 Customiza t ion 18

3.3 Br idg ing Design Languages 20

4 Implementation 24
4.1 Opt imizat ions for Variety of Screens and Devices 24

4.1.1 Scaling 24
4.1.2 Responsivi ty 24
4.1.3 Sizing and Spacing 25
4.1.4 Touch vs. Mouse 25
4.1.5 Composi t ion 27

4.2 P i x e l Perfect Implementation of Design Languages 27
4.3 Opt imiza t ion Compromises 30
4.4 Exper imenta l Standards 30

4.4.1 Shadow D O M 31
4.4.2 C S S Cus tom Properties 32

4.5 Modu la r i t y 33
4.6 Performance 33

1

4.6.1 D O M Manipu la t ion 34
4.6.2 G P U Accelerat ion 34
4.6.3 Caching 35
4.6.4 Scroll ing wi th Passive Listeners 35

4.6.5 Scheduling the Browser's A n i m a t i o n Frame 36

5 Evaluation for Real World Usage 37

6 Conclusion 40

Bibliography 42

A Content of the D V D 44

B Demo applications 45

2

Chapter 1

Introduction

A n y software development w i th the intention of reaching a wide audience spanning multiple
platforms and form factors has always been difficult due to the restriction in programming
languages and A P I s available for each of the platforms. A n d of course, the user interface
has to be adjusted for various screen sizes and, preferably, even each operating system's
specific look and rules. In addi t ion to that, the internet has become increasingly important
and, in order to stay relevant and broadly available, services and companies now have to
provide users w i t h not only a mobile appl icat ion or a program for desktop computers but
also a website or rather a full web applicat ion providing the same functionality.

Development efforts are being scattered across mult iple separate apps that are concur­
rently being buil t from the ground up to fit each platform's needs. However the landscape
of app development has undergone immense changes i n the past couple of years and, thanks
to the popular i ty of web platforms, languages that have previously been only used to create
a website can now be used to bu i ld mobile applications as well . G i v e n that every major
operating system today has a bu i l t - in web browser, the first prerequisite is met. However,
when it comes to creating user interfaces that are responsive to numerous screen sizes and
input types, things start to get complicated. There are many open source U I libraries
available to use, which are mainly designed for creating websites, not applications, and i f
so they only support a single design language for specific operating systems.

This thesis provides insight into the current state of appl icat ion development and aims
to remedy the si tuation by creating a framework for H T M L development, called Flexus,
that aims to solve the aforementioned problems by providing developers w i th a set of
bui lding blocks for designing a user interface that automatical ly scales and adjusts, to
various screens and platforms wi th min ima l effort. A tool , implemented in JavaScript, on
top of modern web standards, designed wi th s implic i ty in m i n d and that takes away the
hard and repetitive work from a developer's hands, resulting in clear, customizable and
easily maintainable applicat ion source code.

3

Chapter 2

Current State of Apps and User
Interfaces

The landscape of software development has shifted dramatical ly over the past couple of
years, towards mobile devices such as phones and tablets, due to their increasing populari ty
and availability. These devices are usually used without any peripherals and are generally
controlled using a touchscreen interface. A s such they are pr imar i ly opt imized for touch
input causing text, buttons, and the whole user interface i n general to be large enough
for fingertips to control easily. Often programs, also called applications or apps for short,
wri t ten for these platforms lack some functionality as the ma in focus is to be simple and
clear. Their , development, however is not as t r iv i a l as one would hope. There are currently
four major platforms, each of which vastly differs both visual ly and i n runtime, supporting
only certain programming languages for the apps to be coded in . Beyond that developers
are presented wi th user interface libraries that provide a basic set of components for bui lding
a G U I . These libraries are, of course, based on each platform's programming language of
choice and coding style that they enforce varies. Th is leaves developers w i th app code that
is non-reusable across other platforms and results i n wr i t ing and testing the app multiple
times, from scratch, for each of the platforms.

2.1 Platforms and runtimes

2.1.1 A n d r o i d

A n d r o i d (by Google) is currently the world's leading mobile operating system, holding
a majority market share. The pr imary programming language is Java, aided by X M L for
configuration files and is confusingly bloated, repetitive and has extensive layout definitions.
A l though web technologies are not supported for native applicat ion development, it is
possible to create an empty Java app covered wi th a Webview component, which then
hosts the H T M L and JS files, effectively creating a native web applicat ion. This Webview
shares its engine wi th Google's web browser (Chrome) and is regularly updated. M a k i n g it
anattractive development target, mainly wi th the help of the Cordova project, simplifying
this process.

4

2.1.2 iOS
iOs is Apple ' s smartphone and tablet powering operating system which, much like A n d r o i d ,
prefers custom languages (Objective-C or Swift) over web technologies for native applicat ion
development. However, the same Webview approach, as w i th A n d r o i d , can be used.

2.1.3 Windows - UWP

Windows has t radi t ional ly been a desktop only system that eventually branched out into the
smartphone sector w i th an overhauled interface. Version 8 of the system started to bridge
differences by bringing touch enabled apps to its desktop counterpart. W i t h Windows
10, this p lan for a converged O S came to fruition thanks to a unified design language for
interfaces that works well across a l l screen types. A l o n g wi th two separate runtimes capable
of hosting apps powered by variety of programming languages. It is known as Universal
Windows P la t fo rm or U W P for short.

F i r s t ly there is a runtime centered around Microsoft 's t radi t ional C # and X A M L lan­
guages. Secondly, and for my thesis more importantly, there is a second runtime (based on
the E d g e H T M L and C h a k r a engines) which is essentially the Edge web browser enhanced
wi th the same system A P I s provided to the C # runtime as well . Th is allows the creation
of native applications wi th web technologies. Edge (both runtime and browser), which is
updated twice a year alongside the system, supports most of the modern E C M A S c r i p t and
H T M L 5 web standards and can be just as high performing as the C # app runtime since
both underlying web engines are greatly opt imized. Microsoft also provides the W i n J S
l ibrary for bui lding UIs.However, it d id not become very popular among developers due to
its strange and complicated code style, making it challenging to understand and code.

2.1.4 Web

The Internet, once a text document sharing tool , grew i n popular i ty w i th both users and
developers. Websites slowly turned into web applications capable of what previously could
have only been done i n a desktop program thanks to new standards regularly extending
H T M L , JavaScript and C S S languages.

Most of the mobile apps today come wi th a web counterpart offering that has the
same features through web browsers, usually powered by some M V C framework taking
care of data rendering and navigation without actually reloading the whole web page.
This paradigm is called a Single Page App l i ca t ion and, w i t h new standards, under the
name Progressive Web A p p s [7], enables offline access and "pinning to the home screen"
by storing a l l of the application's files and placing icons beside native applications [5]. It
then operates without connection to the internet and suppresses the browser's U R L bar,
leaving the web app looking and behaving like an actual applicat ion without the need of
installat ion. The requirement for this is the creation of a manifest.json file [8].

2.1.5 Chrome OS

Google's other operating system is an extension of the existing Chrome browser, aimed at
laptop users who spend most of their t ime browsing the internet, and as such is solely based
on web technologies. The only available languages for development are H T M L , C S S , and
JavaScript , currently, applications must be published to the Chrome Web Store using a

5

separate manifest.json file, al though it is expected that the P W A standard w i l l be favored
in the future being as it is already implemented i n A n d r o i d .

2.1.6 Other platforms

A s previously mentioned, A n d r o i d and i O S do not currently support web languages as
their pr imary means for applicat ion development. However, Webview components can be
util ised for hosting H T M L , C S S , and Javascript. This has been popularized by the Cordova
project 1 , formerly known as PhoneGap, which automates the creation of such Webview
shells on mobile operating systems: A n d r o i d , i O S , and Windows.

A n d , much like Cordova, two open source projects N W . J S 2 and Elec t ron 3 combinine
Chrome's rendering engine (Bl ink) w i th deeper access to the system and removing sandbox
l imitat ions of typica l websites. Br ing ing web programs for desktop OS's (M a c O S , L inux ,
Windows) .

2.2 Anatomy of an Application

Despite visual differences, the essential structure stays similar on most platforms. The
basis for every screen in the applicat ion is what I, for the lack of a better term, cal l V i e w .
It is a container for a single state, or unit of content, w i t h a unique set of functionality,
taking up whole screen of a phone. Every V i e w has content i n the middle, taking up the
majority of the space. Th is could be anything from pla in text to photos, or an interactive
component like buttons and checkboxes. The other important part of a V i e w is usually, but
not necessarily always, a heading, navigational icon but ton leading to a previous V i e w , and
an addi t ional actionable button(s). These are a l l grouped into a single component called
the Toolbar, also known as the A p p B a r or the N a v B a r due to naming diversity.

Figure 2.1: T y p i c a l V i e w structure.

A n app is essentially a collection of mutual ly interconnected Views and the user can
navigate from one to the other. They do this by either going hierarchically deeper to access
more information i n the current scope, for example from list of contacts into a detai l page

x h t t p s : //cordova.apache.org/
2 h t t p s : //nwj s.io/
3 h t t p s : //electron.atom.io/

G

of a single contact. O r by going to another V i e w on the same level of flat hierarchy, for
example from the home screen to a settings page.

For the latter type of navigation both the Neon and Mate r i a l design languages use a
side panel, known as the Drawer or the Navigat ional Drawer, which slides into the screen
from the left edge upon cl icking a so-called "Hamburger menu", an icon of three horizontal
lines that is located on the left side i n Toolbar of top level V i e w . The same space is then
occupied by a left facing arrow or an X to close and return to the previous V i e w , up i n the
hierarchy.

button

Navigat ional
drawer —

Figure 2.2: Navigat ional Drawer and its appearance on smal l and large displays.

In addi t ion to pr imary navigation, a View 's content can also be split into sub sections
that are navigable using a Tabs component that is either directly part of the Toolbar or
immediately after it , visual ly blending into the rest of the content.

My Music
Artists Albums-

Selected
— tab Tabs

Tab
content

= My Music
Artists Albums

Figure 2.3: Single V i e w w i t h content separated using Tabs component.

Views are pr imar i ly designed to allow small screens to display a l l core functionality
but it can and should expand from there to account for larger screens by showing, not only
more content, but possibly changing the application's layout. Most used is the master-detail
pattern which is applied to two Views i n a hierarchical parent-child relation where a single
master V i e w leads to many detail Views . Take, for example, a contact list, where the list is
the master and always visible on the left half of the display, the right side is then occupied
by details of ind iv idua l contacts. O r a list of folder contents w i th addi t ional actions hidden
in a side panel, s l iding from under the right edge on phones, but permanently visible on
tablets where surface area is large enough for both.

7

Contacts

• Contact 1

• Contact 2

• Contact 3

• Contact 4

• Contact 5

• Contact 6

• Contact 7

• Contact 8

Contact 4

Contacts

| Contact 1

| Contact 2

| Contact 3

| Contact 4

| Contact 5

| Contact 6

| Contact 7

I Contact 3

Contact 4

Figure 2.4: Two Views in Master -Deta i l relation as displayed on smal l and large screens.

Despite s tructural similarities, there are s t i l l a lot of differences between platforms and
their design languages. Vague oversimplification often leads some developers to believe
that they could s imply port their existing applicat ion 1:1 to another platform without
any design changes. Such approach to mul t ip la t form development is frowned upon since
platforms actually vary not only visual ly but also behaviorally. This leaves users confused
because they come to expect every app to look similar and be controlled in the same way.
A prime example is navigation. The design of i O S places navigational Tabs on bot tom
of the screen whereas Mate r i a l Design (Google) tackles this w i th the Drawer, a vertical
panel sl iding from the left side of the screen by dragging the finger from the edge of the
screen inwards or by cl icking the "Hamburger" but ton in the Toolbar. These memorized
steps are crucial for less experienced users that rely on the presence of these interactions in
every app. Por t ing an iOs applicat ion to A n d r o i d without first updat ing the interface to
match the Mate r i a l Design specifications can lead to confusion due to the absence of the
aforementioned drag-in gesture for opening the navigational drawer.

2.3 Design Languages

Each platform devised a distinctive visual look to differentiate itself from the others. These
looks are called Design Languages because i t , just like natural human languages, follows
syntax and rules where words are replaced wi th interface components. These languages
are described i n extensive documents known as Design Guidelines which define everything
from fonts and colors, sizing, spacing, and placement of components, up to wireframes and
examples of common mistakes to be avoided.

2.3.1 Material Design

Developed by Google for A n d r o i d O S and web services, it is a bo ld new step that places
emphasis on color, imagery, transitions, simple shadow effects i n three dimensional space
and rounded edges of boxes called Cards encapsulating the content. The layout is very
spacious since it was pr imar i ly designed for touch devices, but extends beyond to Chrome
OS laptops without touchscreen where sizing of a few components is reduced.

The visuals are an analogy to real world where a l l elements are made out of material ,
hence the name, and that is paper. Just like i n real world, these sheets of paper can be
placed next to each other creating a seam, stacked over each other casting a shadow, moved
around, stretch or collapse and change color. Unl ike other design languages it capitalizes
on animations and transitions and bold visuals. Great example is the Toolbar component

8

that, unlike i n other conventional design languages, goes beyond just a th in strip on top of
the screen. It can hold images, stretch height, react to scroll and become more prominent
part of the application's layout on larger screens.

Mate r i a l Design Guidelines is a document extensive i n both smal l details, like exact
measurements of elements and their sizing on different screens, applicat ion layout, compo­
sition, responsivity, terminology as well as guidance on customization or forbidden patterns
to avoid. Th is combined wi th the flexibil i ty and customization is the reason I chose it as a
basis for Flexus.

2.3.2 Neon Design Language (Microsoft Design Language)

W i t h Windows 10, Microsoft has focused on creating a balanced design that could work
across various form factors and input methods. This poses a problem since desktop pro­
grams are usually delivered wi th lots of information, labels and lines upon lines of text
thanks to the precision that mice offer. A cluttered interface is not the best to begin wi th ,
however the overly spacious Met ro from Windows 8 was also not ideal. Neon strikes a bal­
ance by delivering clickable areas that are just large enough to be easily reached by fingers
on a touchscreen but not so large as to feel empty and space-wasting on classic desktop
P C s .

Visual ly , the language is fairly simple, compact, flat and without any special effects or
shadows, w i th the exception of transparency. The visuals are dominated by sharp edges,
straight lines and flat filled areas, using black or white upon which lies text and heading in
large but th in Segoe U I font. Regular text size is 15px for op t imal readabili ty but headings
are large and distinctive. The overall layout and spacing is generally more condensed,
making it comfortable for mouse manipula t ion but actionable and clickable areas are are
at least 32 pixels t a l l or wide, al lowing it to be large enough for touchscreen devices. A
notable part of some applications is the navigation drawer, a vert ical list of icons wi th text,
similar to that found i n i n Mate r i a l Design, only here it is placed to the left hand side of
the application, almost exclusively, i n compact th in form. It expands upon cl icking the
"Hamburger button". Similarly, this inspirat ion was drawn upon for the toolbar that hosts
frequently used actions, represented by icons.

This design language might seem a l i t t le vague i n it 's appearance, but the new category
of hybr id devices wi th touch screens and detachable keyboards is where it t ru ly shines.
Users of such devices have the comfort of using a precise mouse cursor but also the abi l i ty
to uti l ize gestures that are tai lored for physical interaction wi th the screen wi th their fingers.

A t the t ime of wri t ing , this part icular design language is undergoing another shift,
or rather extension. Microsoft is currently experimenting wi th new blur effects, colorful
toolbars bearing larger text that is also reactive to scrolling. Basical ly br inging this design
language more i n line wi th Mate r i a l Design. These new changes can already be seen i n the
pre-installed Windows 10 applications such as Movies & T V and Groove Mus ic . More are
scheduled to follow wi th next update i n the fall.

This visual refresh is known as Project Neon and I also chose to reference it as such,
rather than M D L . This is to prevent ambiguity because the M could potential ly refer to
either Microsoft or Mater ia l .

Unfortunately, the design documentation is l imi ted and Microsoft provides very li t t le
guidance on basic measurements, sizing or spacing. This forces my implementation of this
design language in Flexus to be an approximation, based on existing Microsoft 's (and th i rd
party) applications for Windows 10. I downloaded, studied and measured a number of

9

these applications to ensure as close a match as possible. Addi t ional ly , researching Neon
changes are considerably difficult at this undocumented stage. I d id , however, manage to
dissect Microsoft 's W i n J S library, which allowed me to determine the proper sizes of fonts
and toolbar components.

Despite its many challenges, I chose Neon for the challenging yet forward th inking
interface that traverses a large variety of different devices.

2.3.3 iOS Human Interface

Due to the popular i ty of its devices, i O S has garnered a massive user base. Unfortunately,
App le does not provide any real information into their design guidelines. Deta i l ing mostly
large white planes that host a thin , uniform, toolbar on the top of every view, leaving the
developer w i th the freedom to express his or her own style. Due to the i O S design guidelines
and the relative complexities involved i n support ing Mate r i a l Design and Microsoft Design
Language, por t ing the best features of both over to an i O S applicat ion in the future should
pose no issues. However, when considering support for i O S , I found that I needed to reverse
engineer the design specifications (sizing, spacing etc) themselves. A s the development
environment for i O S requires an iPhone and Macintosh, which I do not have available to
me, I was unable to consider adding i O S support into Flexus at this t ime.

10

Chapter 3

Goals of the Framework

M a n y existing platforms, languages and component libraries are vastly different and in­
compatible so commit t ing to these environments, precludes code sharing and reusability
across other platforms. One solution is the use of web technologies and, al though much
progress has been made i n the creation of an environment for native H T M L applications, it
remains unpopular due to the lack of interest of the platforms authors to provide meaning­
ful tools and user interface bui ld ing blocks because they usually prefer a platform's pr imary
programming language. The main argument for this is, of course, performance, as native
languages are opt imized to run closely t ied to the hardware whereas Webview introduces an­
other layer of abstraction. I, however, hold the opposite view. Smartphones were conceived
as a multipurpose device, one of these purposes being a web browser. The i r populari ty
sparked a wave of opt imizat ion amongst vendors on one side and web developers, more
str ict ly following good practices of development, on the other. Smartphones are becoming
increasingly faster w i th four core C P U s and G P U s capable of intensive 3D graphics. W i t h
new deeper level A P I s granting developers access to G P U acceleration, this makes H T M L -
based development performant and viable. The final missing piece is a l ibrary for creating
compell ing user interfaces that would scale and adjust.

Th is is where Flexus steps in wi th four core principles.

• A single applicat ion codebase that automatical ly adjusts to two design languages,
various screen sizes, input types and platforms.

• Opinionated, yet extremely simple code.

• Powerful and extensible when required, but intelligently inferring when not.

• Precise implementat ion of Mate r i a l Design and Neon languages.

Flexus is a framework for bui ld ing user interfaces i n H T M L , C S S and JavaScript lan­
guages. It is not just a l ibrary that only provides sets of components. It is a framework
that cements itself into the language by introducing new elements for scaffolding the appli­
cation's layout, while al lowing developers to reuse a l l existing H T M L tags e.g. <button>,
unlike others tools like Paper Elements l ibrary 1 which enforces the use of custom re­
placements, <paper-button> for example. These elements are self configurable and aware

x h t t p s : //www.webcomponents.org/collection/PolymerElements/paper-elements

11

http://www.webcomponents.org/collection/PolymerElements/paper-elements

of context, platform, size, input type, they provide robust customization, most notably
<f lexus-toolbar>, and their inner code does not leak into appl icat ion code.

The visuals of the appl icat ion are defined by two C S S files w i t h the implementat ion of
both Neon and Mate r i a l Design that can be swapped as required, that allows developers to
meet the design specifications for the platform that the applicat ion is launched on. Fonts
and icons are included, as well as a wide color palette that can be ut i l ized for styling and
customization. The layout of the appl icat ion is automatical ly adjusted to screen type, size,
orientation, effects disabled on slower devices or when the battery is running out, and more.

Simpl ic i ty was key for designing this framework, which could be used to create appli­
cations w i th next to no addi t ional setup. For example <f lexus-tabs> element can be
created to control currently shown page i n <f lexus-pages> and both elements are capable
of finding and attaching themselves into each other, without the need of specifying [for]
and [id] , i f they are both located wi th in the same <f lexus-view>. Flexus also delivers
substantial bui l t - in behavior that automatical ly sets up the environment and takes care of
the usual hard work associated wi th repetitive, so called "boilerplate" code that is gener­
ally involved i n the development of an applicat ion. It is simplist ic, in terms of a prototype
bui lding tool , where output is not just a prototype, but an actual working interface.

This project is an exploration of what the ideal framework should look like, both from
a code perspective and, also, technologically. It is buil t on top of modern web platform
features and specifications that are being standardized and implemented i n browsers right
now (or in the near future). Tha t said, it was always meant as a serious, product ion facing
open-source project and not s imply an experiment. Flexus has been released on G i thub 2

where it available for download and use. The currently targeted platforms are A n d r o i d ,
Chrome O S , Windows 10 and Web. It does this by implementing two design languages
(so far) w i th the intention of expanding to other platforms i n the future, namely i O S and
M a c O S , however these come wi th specific hardware requirements that are not currently
available to me.

W h e n compared to other H T M L , C S S and JavaScript based libraries or frameworks
developed by large teams, Flexus may, currently, only provide a smal l amount of what
these other frameworks can offer, but what it does, it tries to do correctly.

3.1 Flexus Modules

The scope of this framework is relatively wide, so it was necessary to set out the function­
alities and to separate them into sub-modules:

• Flexus UI
B y default, a H T M L document has no style w i t h no v isual elements and text i n the
serif typeface. Flexus provides two r igid, comprehensive stylesheet files, one for each
design language implemented to a high level of detai l and containing styles covering
everything from basic elements to complex layout schemes. Mos t H T M L bui l t - in
elements like <button>, <input> text fields, checkboxes, radio buttons, as well as
custom components like <f lexus-toolbar> are automatical ly styled upon impor t ing
the C S S file to a H T M L document. Color palette and typography wi th icons are
predefined and properly spaced, including a wide range of custom attributes that can
be used to customize any part of the application.

2 h t t p s : //github. com/MikeKovarik/flexus

12

Flexus U I provides everything the applicat ion could need when it comes to design,
so ideally the developer wouldn' t have to write any C S S , unless it 's for some de­
tailed customization matter that cannot be solved by provided modifier attributes.
These styles can be used standalone, without any other Flexus modules, but then the
automatic adjustment to screen size and form factor would be lacking.

• Flexus Custom Components Library
Despite respecting bui l t - in H T M L elements and encouraging developers to use them,
Flexus introduces a host of new custom elements that extend the language and can
be used like any other. For example <f lexus-toolbar>, which is semantically similar
to the bu i l t - in <header>, but has a lot of advanced behavior buil t in .

These elements are self configuring, context aware and can talk to each other to work
for developers w i t h min ima l effort. Tha t is ensured by bui ld ing them on top of new
standards called Web Components which allow the enclosure a l l of the framework's
source code into what, from the application's standpoint, appears as a single H T M L
element, without spi l l ing out of context and causing confusion.

• Flexus Core Support Library
A s the name implies, the support l ibrary has many objectives required for the proper
functioning of other modules or the framework as a whole.

— Col lect ion of classes, decorators and helper functions that are shared, used or
inherited by the custom components classes.

— Pla t form detector gathers information about operating system, runtime or browser,
screen size, input type, device form factor, performance and battery.

— Fi l l s i n missing meta tags, configuration, ensures proper scaling, disables zooming
and overall prepares the environment for applicat ion development.

— Loads polyfills for missing platform features, if they're not included

— Loads proper design language i f it 's not defined

— Adjusts look and behavior.

— Disables or re-enables device processor intensive effects, based on device and
battery status.

• Ganymede
A t the beginning of wr i t ing this thesis, there were two unfinished and par t ia l ly im­
plemented versions of Web Components standards [17]. Ganymede was created as
an abstraction layer from this inconvenience and later turned into a lightweight l i ­
brary. It handles the registration, creation (and later destruction) of component and
mapping instance properties to D O M attributes of the element.

3.2 Code Simplicity

H T M L is a very expressive language that allows programs to be wri t ten in declarative
manner. Being buil t on top of i t , Flexus framework shares some of that language's traits
and introduces opinionated concepts. It guides and sometimes enforces the developer to
write code i n a part icular way, but the tradeoff is much simpler appl icat ion code.

13

3.2.1 Custom Attributes
The way H T M L elements are t radi t ional ly styled is by using classes or IDs. Classes supplied
by U I libraries could be used w i t h custom styles wri t ten by the developer, but this way is
prone to indistinguishabili ty.

<h2 class="text-primary custom-heading">

Two classes are used i n this common example: .text-primary is Boots t rap l ibrary class
for adding color, . custom-heading is hypothet ical class by the application's developer to
further enhance look of the element.

H T M L elements can also contain addi t ional information i n form of attributes. O n l y few
are buil t into the language by default, the most known are [disabled] for actionable form
elements, or [type] that changes behavior and look of the universal <input> element to be
either a text field <input type="text">, checkbox <input type="checkbox">, or a radio
but ton <input type="radio">. A n d while it was able to query attributes using C S S , it
was not a popular s tyl ing option among developers up un t i l widespread adoption of Web
Components standards which reinvented what a good and bad practises for the language
are, s tyl ing attributes being one of them. Par t of Flexus is a set of custom components
that use attributes as a means of configuration of the element as well for styling since it
would be impract ica l and inefficient to duplicate parts of the code as a C S S class. Equa l ly
impract ical would be requiring use of classes for bui l t - in elements and attributes for custom
elements.

Design decision has therefore been made to uti l ize attributes everywhere, not only in
custom elements, i n order to fall in line wi th the philosophy of cementing Flexus into the
language, giving a notion of what H T M L for appl icat ion development always should've
been, because use of attributes implies bui l t - in behavior which is exactly what Flexus does.
Tha t way there's a clear dist inct ion between developer's custom code and the rest of the
environment and th i rd party tools.

One of the new attributes is [tinted] for applying color to elements. W i t h i t , the
previous example could therefore be rewritten as:

<h2 tinted class="custom-heading">

This code immediately indicates that the class is supplied by developer to customize
heading which has addi t ional s tyl ing buil t into it.

Another example is the use of H T M L ' s buil t i n [hidden] and [disabled] attributes.
The navigational drawer <f lexus-drawer> automatical ly adds and removes [hidden] to
itself upon opening or closing and it could be used by the user as well to configure that it
should be hidden by default. O n the other hand <f lexus-tabs> uses [disabled] on its
children to denote the inaccessibility of a specific tab.

<flexus-tabs>
Speed dial
Recent calls
Contacts

</flexus-tabs>

This approach is much friendlier as it recycles pre-existing and well known concepts
instead of artificially creating new ones.

14

3.2.2 Comparison to Other Existing Libraries and Frameworks
The following code is an example of a simple but ton wi th a star icon and the text „Favori te"
inside it , using the Ma te r i a l Design L i t e library, by Google.

<button class="mdl-button mdl-js-button mdl-button—raised">
<i class="material-icons">star</i> Favorite

</button>

A s can be seen, the H T M L bui l t - in <button> tag is used to create the but ton which
would, however, lack any style that the l ibrary is supposed to provide. Wi thou t the addi­
t ional classes where mdl- is a namespace, mdl-button and mdl-j s-button are the manda­
tory classes containing the default look and, finally, the mdl-button- further deepens the
scope to access only but ton related style modifiers of which raised adds a shadow around
the button. Add i t iona l ly mdl-button-primary can be used to embellish the element w i th
the theme's pr imary color.

Twitter 's Boots t rap doesn't cause as much clutter thanks to omit t ing the namespace
but retains scopes. In this case .btn for but ton related styles which leaves this solution far
from perfect w i th impl ic i t .btn and .btn-default classes.

<button type="button" class="btn btn-default">
 Favorite

</button>

W i n J S by Microsoft follows the same pattern but lacks a named icon system so entity
code has to be inserted instead.

<button class="win-button"> Default button</button>

Unopinionated libraries sound good i n theory, however practice presents the developer
wi th repetitive boilerplate code. Combina t ion of mult iple libraries ends up producing hard
to mainta in code for what should've been only a simple, colored but ton w i t h icon and text
in i t . Fol lowing example is an amalgamation of M D L and W i n J S code to make the same
code adjust to both design languages. It clearly is not an op t imal way for creation of just
a single button.

<button class="win-button-primary mdl-button mdl-js-button mdl-button—raised">
 <i class="material-icons">star</i> Favorite

</button>

Besides M D L , Google also develops Polymer and Paper Elements l ibrary bu i ld on top of
Web Components standard, just like Flexus, but it strangely presents custom replacement
elements for those already bui l t - in to H T M L . Instead of native <button> developers are
forced to use <paper-button>. It has to be imported to the document since it 's defined
in external javascript file, causing unnecessary overhead as addi t ional javascript code runs
behind every but ton i n the app. Not to mention that icons are only available through
another custom element <iron-icon> as seen i n this example:

<paper-button raised>
<iron-icon icon="star"X/iron-icon> Favorite

</paper-button>

Flexus can be marked as opinionated since it , by default, applies styles globally to a l l
appropriate elements. Therefore buttons w i l l always look consistent, based on the design
spec of hosting platform wi th no addi t ional code to what developers have already come to
know. The but ton from the previous examples can be only wri t ten using the following code
where [raised] adds shadow in Mate r i a l Design and [icon] uses C S S pseudo-elements to

15

inlay the icon g lyph without the need of addi t ional nested icon-hosting elements as w i th
other libraries.

<button r a i s e d icon="star">Favorite</button>

A single but ton wi th an icon can be used as a smal l example, the crucial differences and
simplici ty starts to show up in the code that more accurately depicts an actual applicat ion.
Every applicat ion usually has a Toolbar.

W i n J S dynamical ly enhances elements into so called controls, but it does so wi th every
chi ld. Not only does it require addi t ional code but also causes unnecessary performance
overhead. Simple toolbar w i th single but ton wri t ten i n W i n J S looks as follows:

<div data-win-control="WinJS.UI.ToolBar">
<button data-win-control="WinJS.UI.Command"
data-win-opt ions="{

Type:'button',
icon: 'edit',
l a b e l : 'Edit'

}"></button>
</div>

New configuration at tr ibute data-win-options is introduced, leading to steeper learn­
ing curve. The same toolbar can be wri t ten i n Flexus on just a three lines:

<flexus-toolbar>
<button i con="edit">Edit</button>

</flexus-toolbar>

More realistic toolbars are much more complicated, as i n the following example taken
directly from Onsen U I website [9]. It has four icons w i t h a heading in between. That
should be six elements i n total , w i th the toolbar included. Yet the Onsen UI , much like
most other s imilar ly targeted mul t i platform frameworks do not provide the same comfort
that I envisioned for Flexus.

Figure 3.1: Basic Mate r i a l Design toolbar w i th a t i t le and a few buttons.

16

<div class="navigation-bar navigation-bar—material">
<div class="navigation-bar l e f t n a v i g a t i o n - b a r — m a t e r i a l l e f t " >

<i class="zmdi zmdi-menu"X/i>

</div>
<div class="navigation-bar center n a v i g a t i o n - b a r — m a t e r i a l center">Title</div>
<div class="navigation-bar r i g h t n a v i g a t i o n - b a r — m a t e r i a l right">

<i class="zmdi zmdi-search"x/i>

<i class="zmdi z m d i - f a v o r i t e " x / i >

<i class="zmdi zmdi-more-vert"X/i>

</div>
</div>

A s can be seen i n previous snippet which recreates F i g . 3.1, not only does Onsen UI
force developers to write verbose classes like .navigation-bar-material center and
.navigation-bar center, that are arguably confusing due to the combination of variety
of dash and underscore delimiters. However, and most importantly, these classes are ex­
pl ic i t ly only applying the Ma te r i a l Design look, therefore addi t ional and separate code has
to be wri t ten for another platform's design language.

This example Toolbar can be rewritten in Flexus as follows:

<flexus-toolbar>
<button icon="menu"X/button>
<hl>Title</hl>
<button icon="search"></button>
<button icon="heart"X/button>
<button icon="more"X/button>

</flexus-toolbar>

Not only is this code clearer but also semantically correct, this is because the the icons
are meant to be clicked on like on a but ton. A n d , in Flexus, they are represented by an
actual H T M L element <button> instead of general purpose <div> and elements,
making it easy for machine processing by screen readers. Notab ly the tit le is also represented
by the semantical heading element, in this case <hl> and since <f lexus-toolbar> inherits
the horizontal [layout] , there's no need to wrap content into addi t ional containers like the
Onsen UI does wi th classes .navigation-bar center and .navigation-bar right.

Flexus does not force developers to relate to any part icular design language in code.
B o t h provided styles, Mate r i a l Design and Neon, are buil t around the same single core so
the applicat ion code stays untouched but appearance changes accordingly when either Neon
or Mate r i a l C S S files are loaded. The code from previous example is displayed as follows:

= Title Q. 9 : • = Title p V

Figure 3.2: Toolbar from F i g . 3.1 recreated wi th Flexus i n Ma te r i a l Design and Neon
Design.

17

3.2.3 Customization
Simpl ic i ty is important but so is customization. Toolbars are one of the most important
and diverse components according to the Mate r i a l Design specifications and, yet, this is
where most other U I libraries lack because they th ink of toolbar as of just a th in strip
atop the screen. Toolbars can be r ich, include mult iple sections, images and be resizeable,
change color or fade out certain chi ld elements in reaction to scroll . Not to mention that
applications usually have search capabilities that are buil t into the toolbar, transforming
its color and layout to reveal the search text-box upon cl icking the search icon. None of the
currently available H T M L frameworks provide this level of customization that the native
Andro id ' s Java A p p C o m p a t style l ibrary gives. One of the goals of Flexus was to br ing this
functionality to life w i th comparably simple code.

Customizat ion begins by wrapping the original contents of <f lexus-toolbar> into
the <section> element and adds a [multisection] at tr ibute to the toolbar element.
Th is results in , visually, the same toolbar. F r o m there addi t ional sections can be added,
<f lexus-tabs>, or even images.

<flexus-toolbar m u l t i s e c t i o n
<section>

<button icon="menu"X/button>
<div f l e x x / d i v >
<button icon="search"X/button>
<button icon="more"X/button>

</section>
<h2 indent displayl>My Music</h2>

</flexus-toolbar>

Figure 3.3: Mul t i sec t ion Toolbar created w i t h Flexus.

In this snippet we can see the heading pushed further down. The <h2> element was
chosen and, while it would be better to have it wrapped in another <section> element, this
works just as well because both of them are block elements. Addi t ional ly , the [displayl],
one of many typography modifiers predefined by Flexus, was used to increase the size and
thickness and [indent] to align nicely.

A l l of these customizations are included wi th the default C S S stylesheet so they can be
used without impor t ing the elements/toolbar. j s custom component javascript definition
file. However, adding it unlocks addi t ional capabilities, the first of which is a quali ty of life
improvement - automatical ly adding the [multisection] attribute.

Some applications host searchable content or a list of selectable items. The toolbar
can be used to swap the ma in section for one that better fits the context. Support for
this behavior is buil t into the <f lexus-toolbar>. A d d i n g [search] to <section> makes
it hidden and it 's revealed only after cl icking a but ton wi th the search icon, specifically
[icon="search"] . If the closing but ton is included inside the section, it w i l l be taken care
of as well . This is the most common, default behavior, but the search-show or search-hide
events can be used for customized manipulat ion. Section wi th a selection context can be
added handled s imilar ly using [selection].

My Music

18

<flexus-toolbar m u l t i s e c t i o n
<section>

<button icon="menu"X/button>
<div f l e x x / d i v >
<button icon="search"X/button>
<button icon="more"X/button>

</section>
<section search>

<button icon="arrow-back"X/button>
<input type="search" placeholder="search">
<button icon="more"X/button>

</section>
<h2 indent displayl>My Music</h2>

</flexus-toolbar>

Mate r i a l Design takes the capabilities of the Toolbar further w i th reactivity to scroll.
Flexus implements this as well w i th opt- in attributes [sticky] and [collapse] . B o t h are
mutual ly exclusive and can be added by the user manual ly or could be assigned automati­
cally by Flexus ' educated guesses. Sections marked wi th [sticky] w i l l remain visible even
after scrolling the content it is succeeded by, whereas the remaining sections w i l l be hidden
and/or faded out. Al ternat ive ly [collapse] can be applied to only those sections that are
meant to be hidden.

<flexus-toolbar m u l t i s e c t i o n
<section overlay sticky>

<button icon="menu"X/button>
<div flex></div>
<but t on i c on= " heart -out l i n e " X / b u t t on>

</section>

<section overlay indent>
<h2>Zelny trh</h2>

</section>
</flexus-toolbar>

Zelný trh

= Zelný trh

This snippet also shows the use of [overlay] which can be used to display the section
over the collapsible content w i th a transparent background. The collapsible content is an
image that is also automatical ly adjusted to fit any wid th .

These elementary tools unlock many uses like the following example of social applicat ion
wi th hidden search section and a collapsible C a r d showing information about a missed cal l .
At t r ibutes inferred and automatical ly assigned by Flexus are represented by gray color.

M y M u s i c

<- search

M y M u s i c

19

<flexus-toolbar m u l t i s e c t i o n
<section main sticky>

<hl>Social Hub</hl>
<button icon="search"X/button>
<button icon="more"X/button>

</section>
<section search dark sticky>

<button icon="arrow-back"X/button>
<input type="search">

</section>
<div card collapse fx-item>

<div two-line>

<div>Michal</div>
<div muted>Mobile, 5 minutes ago</div>

</div>
</div>
<flexus-tabs sticky>
<a>Speed dial
<a>Recents
<a>Contacts

</flexus-tabs>
</flexus-toolbar>

3.3 Bridging Design Languages

Flexus forms a strong opinion on the source applicat ion code it is applied to by styling a l l
native H T M L tags for the developer without asking. Tha t could be viewed by some as a
downside since intrusive opinionated libraries make it harder to be used wi th other libraries.
Th is however begs the question " W h y use other libraries at a l l?" Flexus answers this by
taking care of a l l of the hard work related to styling by covering most possible elements
and design use cases across two distinctive design languages.

A l l of the application's styles are compiled into two separate C S S files, one for Mate r i a l
Design and the other for the Neon Design Language, complemented by their respective icon
sets. For the appl icat ion to acquire the v isual look, one of the styles has to be included
wi th the <link> tag.

<link rel="stylesheet" type="text/css" href="flexus/css/flexus-material.css">
<link rel="stylesheet" type="text/css" href="flexus/css/flexus-material-icons.css">

Otherwise Flexus w i l l automatical ly load a relevant design language based on platform
the applicat ion is launched on. Unless the developer expl ic i t ly forces Flexus to load a specific
design language by adding either [material] or [neon] to the <body> element. Th i s is
part icularly useful dur ing development and testing, but using <link> tags is recommended
for product ion code to improve load time.

B o t h implementations are buil t around a single core which resets the original browser's
style, contains shared u t i l i ty attributes, mixins, color palettes, and basic appl icat ion layouts.
Onto this core, the design language specific code is added. This makes the two stylesheets
interchangeable. However, bo th are unique i n their own way. Flexus tries to tie them
together as closely as possible but there are s t i l l some specific cases that the developers
might want to use to tailor their applicat ion for each design language separately.

Mate r i a l Design Guidelines are a comprehensive visual guide that makes for a great
foundation for some of the framework's design decisions because neither Neon, nor i O S

Social Hub j j
Michal Kovařík 1
Mobile, 5 minutes ago

SPEED DIAL RECENTS CONTACTS

20

(which is currently not targeted but it is intended for the future) provide much of any
actual information for developers wanting to implement the design, as these guidelines are
aimed pr imar i ly at designers. Whereas Ma te r i a l Design provides plenty information and,
importantly, some naming conventions that could be used instead of reinventing custom
terms.

A t a first glance the two designs are s imilar i n terms of appl icat ion composit ion. They
both use toolbars w i th t i t le and a "hamburger" icon menu that opens up a navigation
drawer, but deep down they are different, visually and conceptually. Ma te r i a l design uses a
facsimile of real world paper, w i th layers that can stacked, placed next to each other, slide
around and as such the content is enclosed onto these pieces of paper, called "cards" that
cast shadow and should not be transparent.

Flexus implements this look in an at tr ibute [card] that can be applied to most con­
tent containers. One of the s implici ty-driven decisions was to create a universal [card]
attribute that can be applied to wide range of pre-existing elements, instead of a strict
new <f lexus-card> component. Another reason besides s implic i ty was that Neon does
not have this concept of paper and a l l of the styles applied to [card] in Mate r i a l degrade
gracefully i n Neon and, what remains, is just a style-less element.

Besides cards, the toolbar is another sheet of shadow casting paper i n this analogy. For
this purpose, Mate r i a l Design has fashioned an elevation system i n which every component
is placed into a 3D space. The further the element is from the plane of other content, the
deeper the shadow is. Flexus provides an attr ibute [elevation] that can be used by users,
and it is also inherited by some components. <f lexus-toolbar> has, by default, elevation
value of 2. This however only applies to Mate r i a l design, since, again, Neon does not share
this visual concept. So applying [elevation="0"] to <f lexus-toolbar> makes it lose the
shadow in Mate r i a l version but does nothing i n Neon.

This becomes more interesting when we consider that the Mate r i a l paper behavior also
introduces concept of "seams". W h e n the component does not elevate, it descends to the
same depth plane as other elements, yet they do not blend together and a separation
is visible between them. A seam. This description sounds oddly unique from Mate r i a l
philosophical perspective but, upon closer inspection, the behavior is s imilar to content
separators like H T M L ' s <hr> and is something where Neon already bears some resemblance.
B u t not only that, certain Neon applications like Microsoft Edge have a th in border on the
bot tom of the toolbar which is exactly the same look as the Mater ia l ' s version of "seamed"
toolbar. Th is behavior was therefore buil t into <hr> as well as [seam] at tr ibute that can
be applied to elements. Do ing that w i l l also automatical ly disable any shadows without the
need of using [elevation="0"] since these two behaviors are mutual ly exclusive.

This is just one of the examples where these two design languages meet. Flexus is
designed to take care of most of the work from small details, up to the composit ion of the
applicat ion. Figure 3.4 shows applicat ion wi th two Views i n Master -Deta i l relation and the
way Flexus displays it differently i n the two design languages. Neon on the right can be
seen wi th two clean columns and a navigation drawer, whereas Mate r i a l on the left side of
the image transforms one of the views into a distinct card la id over the other view.

Besides the visual separation, another element, the <flexus-scene> can be used to
stack mult iple views together. Th is allows Flexus to change the layout depending on screen
the resolution and only showing one at a t ime i f the viewport could not fit them both as
can be seen i n Fig.3.5.

A big part of the visual appearance is also typography, icons, and color. Mate r i a l
Design uses the Roboto font. Neon Design uses Segoe U I . B o t h of these fonts are included

21

Figure 3.4: Master -Deta i l applicat ion created wi th Flexus i n Mate r i a l Design and Neon
Design as seen on large screens.

= Tourist guide 1

ALL FAVORITES 1

Vra n ské jezero • • Pa koš ta ne

Vltava ň Lorern Ipsum

D r a 9 e * Lorern Ipsum
Lorem Ipsum

Petrov

Šilingrovo námestí

B Lorem Ipsum
Lorem Ipsum

Petrov

Šilingrovo námestí
ň Lorem Ipsum

Lorem Ipsum

„ . . _ _ „ J „ _ J S . . „ „ . . _ . Lorem Ipsum

_ JĚ. Vranské jezero

j Praha

Petrov Lorem ipsum

Lorem Ipsum

^ Lorem losům

Figure 3.5: Master -Deta i l applicat ion created w i t h Flexus i n Mate r i a l Design and Neon
Design as seen on smal l screens.

w i th Flexus and dynamical ly loaded i f they are not preinstalled on the platform. Text
can be modified wi th a handful of attr ibute modifiers such as [small], [bold], [i t a l i c] ,
[underline] as well as more specific ones like [displayl] or [headline] w i th higher
specificity, just to name a few.

A useful [icon=" . . ."] at tr ibute is available to choose from over one thousand named
icons, that are mixed and matched from both Microsoft 's Segoe M D L 2 Assets icon font 3

and an open source Ma te r i a l Design Icons l ibrary 4 .

= -1= 0 s> ~ nr. • • C-D T Y Q, Q,
: i 0 9. Q, 0 Q, P
9 & + fr • • B • Q [B] I t
Q • V -» -> < Ů <^

+ + c O • • - — a Ü
x X X X fP •ŕr -ú • • Q H • •

m • < b a B 0 ô 71

Figure 3.6: Example of differences between Mate r i a l Icons and Neon Icons

https: //docs.microsoft.com/en-us/windows/uwp/style/segoe-ui-symbol-font/
4https://materialdesignicons.com/

22

http://microsoft.com/en-us/windows/uwp/
https://materialdesignicons.com/

A wide range of colors is also available for deep customization for which Mater ia l ' s
color palette [1] and naming scheme is implemented. Every applicat ion can have two main
colors, of which, the apt ly named, pr imary color covers large surfaces like toolbars. It can
be complemented by accent color for details such as check boxes, active tab indicators, etc.
Th is is where the two design languages differ. Mate r i a l introduces a system of two colors
and encourages more vibrant applications, whereas Neon is more subtle w i th just a single
color. It eventually comes down to the developer's taste. Should they decide to use both,
they can use two attributes [primary=". . ."] and [accent=" . . . "] . These attributes can
be used globally for the whole applicat ion, per view, or essentially everywhere. They do
not change the immediate background of the element. Instead they define the accent and
pr imary tones for a l l chi ld elements that might use color, w i th in the scope.

W i t h the blue and yellow example, the toolbar would have a blue background and,
should it contain tabs or a but ton, those would be yellow. Proper foreground color is also
implemented so the toolbar automatical ly has white text. Th is view itself uses a [light]
theme and the check boxes would usually pick up the accent color, making the yellow hardly
visible on the white background. However, in this special case Flexus intelligently omits
yellow and uses the pr imary color instead. This is thanks to cleverly mix ing both colors
into a so called "adaptive tint". The same code, only w i t h [dark] theme used instead, w i l l
result i n yellow check boxes as can be seen on F i g 3.7. Th is is a l l possible thanks to the new
standard C S S C u s t o m Properties [10]. Tha t way customization possibilities are endless and
the developer is only provided wi th a simple [tinted] at tr ibute. O f course pr imary and
accent colors can be forced wi th the use of value-less attributes [primary] and [accent].
[background=". . ."] and [f oreground=". . ."] are also available for granular control
over the style. If the provided color palette is not sufficient, the developer can s imply use
custom hex values, such as <body primary="#F00"> and Flexus w i l l again take care of
applying the color everywhere, including providing proper foreground color for text.

= Title p •••

One Two Three

Heading

S\ Lorem ipsum dolor sit amet
Lorem Ipsum H

- V . Lorem Ipsum dolor sit amet
Lorem Ipsum H
Lorem ipsum dolor sit amet

— Lorem Ipsum H
Lorem ipsum dolor sit amet
Lorem Ipsum

<flexus-view li g h t / d a r k primary="blue"
accent="yellow">

<flexus-toolbar tinted>

</flexus-toolbar>
<main>
<h2 tinted>Tinted heading</h2>
<div fx-item icon="home">

<input type="checkbox" checked>
</div>

<main>
</flexus-view>

Heading

^ \ Lorem ipsum dolor sit amet
Lorem Ipsum

Lorem ipsum dolor sit amet
— Lorem Ipsum

Lorem ipsum dolor sit amet
Lorem Ipsum

Figure 3.7: P r i m a r y and accent color shown on light and dark theme.

B o t h pr imary and accent colors (and their tags) can be omit ted to leave the applicat ion
colorless. Flexus, however, integrates more deeply into Windows 10 and can automatical ly
use the local system's theme (light or dark) and color. Similarly, part of the P W A standards
is the <meta name= "theme-color" content="#FF0000"> tag which can be used to define
color to be used by browser and /or system. Flexus can automatical ly read from this tag
and adjust the applicat ion, or vice versa.

23

Chapter 4

Implementation

4.1 Optimizations for Variety of Screens and Devices

4.1.1 Scaling

Besides clarity, modern high density displays introduced a new problem, scaling. Most
typica l desktop monitors have mdpi pixel density, also known as " P i x e l Ra t io 1.0", meaning
one physical p ixel represents one logical pixel . Smartphones are equipped wi th denser
displays, for comfortable use at a much closer viewing distance, where one logical p ixel has
to be represented by many physical pixels on the screen. For example a 56 pixel t a l l toolbar
takes up about 120 m m on a hypothet ical 22" mdpi monitor w i th pixel ratio 1.0. A phone
wi th an xxhdp i 5" screen that has a resolution of 1080xl920px at a 3.0 ratio would show the
same toolbar at around 36 m m unless it 's scaled up, in which case the applicat ion perceives
the resolution as only 360x640px, where 1 logical p ixel is represented by 9 physical pixels
on the screen. The toolbar, from a programming standpoint, s t i l l remains effectively 56px
ta l l , even though it is displayed on 168 physical pixels, resulting i n size of around 110mm,
making it roughly the same size i n the real world, independent of screen density. B o t h of
the targeted design languages are aware of this and use different units, Density-independent
pixels (dp) [3] in Mate r i a l Design and Effective pixels (epx) in Neon [6], bo th having the
same meaning - logical resolution. Flexus, specifically the Core Support library, takes this
into account and automatical ly configures the proper <meta name="viewport"> tags so
that the developer doesn't have to. A n d , like most other features, developers can override
this default behavior by s imply providing a custom meta tag.

4.1.2 Responsivity

Appl icat ions are being developed for the mobile first, displaying one view at a t ime however,
s imply stretching out the w i d t h is unsuitable for a larger screen. Th is is where Flexus
starts to change layout composit ion or even begins to display previously hidden elements.
Of course both design languages have their own way of handling responsivity w i t h different
breakpoints. It had to be simplified into a single unified breakpoint system, w i t h a Metr ics
Table 1 i n mind . The backbone for this are three states that the applicat ion can be in ,
depending on screen wid th , or window wid th i n case of an O S windowed mode.

• S — Small, up to 600px
Covers a l l smartphones, shows a single view, spacing is confined.

x h t t p s : //material, io/devices/

24

• M — Medium, between 600px and lOOOpx
Most smal l tablets at any orientation and larger tablets i n portrai t orientation fall
into this category. S t i l l only a single view is shown (with increased spacing). In
Neon Design, the drawer is shown in a pinned mode and the toolbar may change in
appearance.

• L — Large, from 1020px
Large tablets in landscape orientation fall under this state. M u l t i p l e views are allowed
to show though only two are being displayed by default in <f lexus-scene>.

The two breakpoints are defined as C S S variables -breakpoint-s-m and -breakpoint-m-1
in :root scope, which makes it easily customizable. The JS Core Support L i b r a r y picks it
up from there and sets up media query listeners that, in turn, applies the [screensize]
attribute to the H T M L tag, together w i th other platform information, making it easy for
granular customization.

4.1.3 Sizing and Spacing

B o t h Ma te r i a l and Neon uti l ize two different values for padding contents of view, spacing
between elements and the density of the entire applicat ion. The values differ though, w i th
16px and 24px i n Mate r i a l and 12px and 24px i n Neon. However, it is important to note
that they are used in the same manner. Smal l phone-sized screens make use of the lower
values and larger screens uti l ize the larger values to ensure that the applicat ion looks more
spacious, clear and comfortable to use. This also assists the "medium" breakpoint. Smal l
tablets occupy this category wi th screens that are much larger than phones, but not nearly
enough to host two views. The layout from the "smal l" category is therefore used wi th
spacing increased to that of the 24px layout, which makes it slightly upscaled and therefore
tailored correctly to the screen size.

These sizing changes can be most notably seen as a padding of toolbars and view's
content. Mate r i a l Design however includes a few more deviations to this [4]. Neon's toolbars
have fixed base height of 48px, whereas Mate r i a l varies w i th 56px on smal l screens, 64px on
medium and large screens, w i th exception for non-touch devices, where only 48px is used.

4.1.4 Touch vs. Mouse

The size of the screen is not the only th ing that Flexus optimizes for. Appl ica t ions can be
used on both touch screens as well as w i t h a mouse and keyboard. The physical size of an
area the human finger touches on the screen, according to Mate r i a l Design Guidelines [2],
is approximately 9mm. Therefore, the recommendation is to have touch targets that are,
at least, 48px to accommodate this. Ideally a l l buttons would therefore be at least 48px
wide and t a l l but that doesn't make for an attractive, visually appealing, design. Typ ica l
buttons i n Ma te r i a l design are 32 pixels t a l l . E m p t y buttons hosting only icons are even
smaller at only 24 pixels. This is more than enough for mouse operated applications but not
ideal for the imprecise touch operation. Scaling up to a larger size would favor touchscreens
but cause the applicat ion to be impract ical ly large for mouse operated computers.

Flexus, however, cleverly optimizes for it w i t h use of the C S S 3 pseudo-elements [12]
: : before and : : after. These pseudo-elements are not specified i n the H T M L node tree,
they are, instead, specified i n C S S and are then injected into the element wi th in D O M .
The [icon] at tr ibute uses this to inject an icon into any k ind of element without the need

25

of any addi t ional element. For touch enabled screens the Core Support L ib ra ry adds the
[touch] at tr ibute to the <html> element, onto which selectors are hooked by adding the
: : after pseudo-element into clickable elements as well . It is absolutely positioned around
the element to cover, at least, 48px. This layer is, of course, invisible so that it does not
interfere visual ly but makes the element reactive to cl icking beyond its actual size and,
thanks to the posit ioning, the element retains the same physical size so that the layout or
spacings are not affected.

1

24J48 °\
• • •

—

Figure 4.1: H i tbox opt imizat ion for touch screens.

Touch enabled devices not only differ in sizing and spacing but also enable other new
ways of manipula t ing and interacting w i t h content. One example is the navigational drawer
in F i g . 4.2. A hidden panel that can be opened by cl icking a related button, or, i n the case
of a touchscreen, dragged i n from outside the edge. D r a g and Drop is the usual pattern
for visible components, but i n this case the drawer is in i t ia l ly hidden and no portions of
it are visible for the finger to hold on to. Here, a very similar approach is used where a
th in , invisible strip is displayed on the left side of the screen. W i d e enough for a finger to
latch onto and init iate the drag, but narrow enough so interference wi th the application's
content is prevented.

Figure 4.2: Touch screen opt imizat ion for the Navigat ional Drawer using the invisible strip.

Windows 10 offers a feature called "Tablet M o d e " for hybr id devices wi th touchscreens
and/or detachable keyboards. It is mostly useful on a system level because it automatical ly
switches the current appl icat ion to fullscreen and adjusts the system U I when the keyboard
is removed. This feature led me to use it as a trigger for a U I change, increasing the
sizes of components and spaces between them i n the tablet mode. However, even though
detection of the tablet mode is possible i n U W P ' s E d g e H T M L runtime, it 's not reliable,
and no similar features are available for A n d r o i d , Chrome O S or Web. This d id not prove
to be a problem. Str ic t ly condensing the U I in the presence of precision pointer, i.e. mouse
or trackpad, is not a perfect solution for hybr id devices. Personal experience and testing
demonstrates that touch interactions are l ikely to be used regardless. More often than not it
is more convenient to tap on the screen rather than sl iding a finger a couple of times across
the trackpad to move the cursor to opposite side of the screen. Flexus therefore makes an

26

educated guess, based on form factor, screen type and applicat ion size, to determine the
opt imal applicat ion sizing and spacing. A l l touch enabled devices, including hybrids, are
therefore displayed i n a touch-friendly manner.

Despite this adjustment being automatic, it can be overridden. The Core Support
L ib ra ry adds either [touch] or [nontouch] to the <html> element and developers can
specify one or the others to disable Flexus ' detection and switching mechanism. Al te rna­
t ively [dense] or [spacious] attributes can be added for more granular use. Unfortunately
<html> has to be used instead of <body> which does make it less convenient but ensures
the proper value of C S S rem unit that is used for sizing of the application.

4.1.5 Composition

The core of each screen is a single view but this only applies to smal l screen sizes. Instead
of leaving it to stretch out, the developer can opt- in for automated composit ion. The
pattern of master-detail can be achieved wi th the <f lexus-scene> element, for which a
elements/scene, j s extension must be loaded. Once that is done, this element hooks
into the breakpoint responsive system and, upon changes in screen size, it is capable of
displaying two views next to each other or just one at a t ime and transit ioning between
them.

Besides that, navigational buttons are being hidden or shown accordingly. The master is
usually the top-level view wi th a hamburger menu but ton in the toolbar, whereas the detail
view lies hierarchically below and must have a but ton navigating back up. Tha t but ton is
also placed i n the toolbar but it is only usable on smaller screens where one view is shown
at a t ime. Flexus therefore automatical ly hides the but ton w i t h [icon="arrow-back"] in
a detail 's toolbar on a larger screen because there's no need for such a navigation step as
seen in F i g . 3.4 and 3.5.

4.2 P ixe l Perfect Implementation of Design Languages

The visuals of an applicat ion are not just the color and shadow effects. Beyond every ele­
ment lie measurements of height, width , padding, margin, spacing between other elements
and set of rules, that may change depending on size and input type. Flexus pr imar i ly
adheres to Ma te r i a l Design since its design guidelines provide explicit measurements and
in-depth coverage of structure [2] and terminology. Most of the concepts are applicable
to Neon Design which was also given equal attention. It, unfortunately, does not have
as detailed and helpful design guidelines since it is more targeted at designers instead of
developers.

Every detai l is painstakingly adhered to, ensuring that the implementat ion of the design
language is as complete and true as possible.

One notable point is the indentation line 4.3. Th is is an invention of Mate r i a l Design
but applies nicely to Neon as well . It is denoted by a secondary line on the left side of the
layout, around which text and elements must be aligned i f they contain icons, checkboxes,
avatars or are modified i n any other way causing them to skip the pr imary line. The pr imary
line is either 16px or 24px, depending on the screen size, from the edge of the screen and
serves as an anchor where a l l of the content is aligned to. After that, addi t ional 56 pixels
are reserved for potential content-shifting elements such as the icons previously referred to.

Thanks to C S S variables, Flexus is able to ensure proper compliance of a l l texts and
elements, be they pla in or nested, to this indentation line as can be seen in F i g . 4.4. These

27

variables, -indent and -size, can be further adjusted, giving developers full customization
control over these basic layouts and sizes of icons, checkboxes, avatars, etc.

J • • ^ • 12:30
ID

Tit le ro o

F •
72

i

•

16 i

•

16

Figure 4.3: Excerpt of measurements behind Mate r i a l Design's components and layout.
Retrieved from: https: //material.io/guidelines/layout/structure.html

This is

This is

Online Storage

_orem ipsum

This is a text field

This is indented [fx-item]

f la in [fx-item]

paragraph

Figure 4.4: Example of a <f lexus-view> w i t h various components aligning around inden­
tat ion line.

U p unt i l recently, H T M L and C S S were not suitable for advanced element composit ion
since the languages were lacking proper layout tools. Tha t was un t i l in t roduct ion of the
new Flexbox [11] standard, which Flexus uses extensively, and presents developers w i th
the u t i l i ty attr ibute [layout] . It can be used i n combination wi th the [horizontal] or
[vertical] attributes to create container hosting elements i n a single line, al igning them
around a single axis and flexibly adjusting their size, relative to other s ibl ing nodes as
represented i n F i g . 4.5. Th is greatly simplifies code and, since F lexbox handles children
independently of the display mode, it allows for inline-block elements like <button> to be
flexed next to block element such as <hl>. A prime example of this is <f lexus-toolbar>
as most Flexus custom elements inherit [layout] behavior, or at least portions of it.

28

Figure 4.5: Representation of fiexbox behavior implemented in [layout] attribute.

Most applications consist of lists, whether they are contacts, emails, messages, to-do
lists or any other group of items, they typical ly host an addi t ional icon, checkbox or avatar
on the left side, w i th the rest of it being filled w i th a single line of text. Flexus therefore
provides styles for creating items of such list available under the [fx-item] attribute,
F i g 4.6. This is a subset of [layout] w i t h higher specificity and proper spacing between
not only children, but also other sibling items and, most importantly, alignment to the
indentation line. Besides just a p la in thext, lists items often contain icons, checkboxes or
images to which [avatar] at tr ibute can be added.

Behavior of [fx-item] is also inherited by <flexus-toolbar> element and its sub­
sections.

The [fx-item] was intentionally designed to be an at tr ibute instead of a custom element
so that it could be applied to a range of elements such as <label> so that the whole i tem
could be reactive to click and control state of checkboxes as in F i g . 4.7.

<div fx-item icon="cloud">Online Storage</div>

Online Storage Online Storage

Figure 4.6: Example of a simple, single-line, list i tem wi th an icon, created using [fx-item]
attribute. Mate r i a l Design variat ion is on the left, Neon design on the right.

<label fx-item>

<div two-line>
<div>Mi chal</div>
<div muted>Missed c a l l , 5 minutes ago</div>

</div>
<input type="checkbox">

</label>

I Michal
J Missed call, 5 minutes ago

Michal
M issed call, 5 minutes ago

Figure 4.7: Example of an i tem wi th an avatar, two lines of text and a checkbox, created
using [fx-item] at tr ibute. Mate r i a l Design variat ion is on the left, Neon design on the
right.

29

4.3 Optimization Compromises

A s was already mentioned, Flexus provides developers w i t h a wide range of text, size and
color modifying attributes to be used i n conjunction w i t h H T M L elements such as [hidden]
for h iding components. These attributes can be used either globally without a value, or
w i th a specifier of where to apply. There are five different specifiers that were cleverly
designed to be used together w i t h very l i t t le excessive code. Those are small, medium,
large for screen size and neon, material for design. For each of these attributes that are
responsive to the specifiers, there are five statements inside the Flexus source code, such as
following where hidden is the at tr ibute name and star character, instead of direct equality,
applies the style rule only when the attr ibute value contains small.
[neon] [hidden*="neon"] ,
[material] [hidden*="material"] ,
[screensize*="s"] [hidden*="small"],
[screensize*="m"] [hidden*="medium"],
[screensize*="l"] [hidden*="large"] {

}

This provides enough flexibility to combine specifiers, [hidden*="medium,large"] ap­
plies to medium and large screen sizes, effectively showing the element only on smal l phones.
Due to performance concerns I decided against implementing more complex specifiers. It
is tempt ing to use small-material that would only apply to material design phone ap­
plications, but each combinat ion of specifiers would have to be hard-coded, resulting in
seventeen selectors instead of five, leading up to hundreds of lines of addi t ional code that
could potential ly cause slowdowns that I wanted to avoid. It is, however, encouraged to go
beyond what Flexus has to offer for achieving the true vis ion that the developers may have
for their appl icat ion by wr i t ing custom code, only on a per-app level.

4.4 Experimental Standards

Web Components are a set of modern standards that change the core behavior of browser's
engines and open up a future for highly composable components. Web Components consist
of four separate standards; Cus tom Elements [13], Shadow D O M [15], H T M L Templates [18]
and H T M L Imports [14] which are currently undergoing the final phases of standardization
and are being implemented by browser vendors.

Using unfinished technology in the midst of its standardization is risky, but the founda­
t ion has already been la id . Backed up by a positive reception and demand from the com­
munity, the in i t i a l implementat ion in Chrome and pre-existing libraries (namely Google's
Polymer and their Paper Elements components l ibrary) I was confident to move forward
and bu i ld Flexus around the Web Components standards [17]. It was an important design
decision, because it was cr i t ica l for achieving some of the set out principles:

• S impl ic i ty of the application's code

• Self contained functions of components

• Non-leaking separation of framework's and application's code

This however turned out to be one of the pr imary problems as well . Chrome (and
Andro id ' s Webview) in i t ia l ly supported vO standards as of the start of the development of

30

this thesis. Over time, v l has been finally implemented i n Chrome and Flexus adapted to
it w i t h an abstraction layer for custom components registration that subsequently became
the Ganymede module. Unfortunately Edge (and the U W P runtime) does not support Web
Components, yet making it much more complicated. There are ways to par t ia l ly overcome
this problem. One of them is the use of polyfills 2 which Flexus automatical ly loads during
runtime of the appl icat ion if needed. However, this solution is not perfect as the polyfills
are only a s imulat ion of the missing features, some of which are impossible to do as they
deeply alter the browser's behavior, specifically the Shadow D o m standard. This lead to
changes i n the framework's code to allow for functioning in today's environments, al though
wi th somewhat l imi ted capabilities.

A n example case is the requirement to use the [f x-item] at tr ibute on a l l descendants of
the <f lexus-drawer> element due to the missing encapsulation the Shadow D O M provides.
The drawer's descendants could not be directly addressed w i t h f lexus-drawer > * C S S
selector. The <f lexus-toolbar> on the other hand is feature complete as elegance of the
internal element's code was sacrificed i n order to work properly in both native and polyfilled
environments. Th is w i l l , thankfully, change in the future as Microsoft has announced that
it w i l l deliver Web Components 3 and they already have added another related standard,
the C S S C u s t o m Properties [10] that Flexus is heavily ut i l iz ing, i n a recent A p r i l 2017
update of Windows.

4.4.1 Shadow DOM

H T M L documents are essentially a tree of elements stacked into a hierarchical structure.
One element can have mult iple children and it is itself placed in a parent element. The
Shadow D O M standard enables to puncture a hole into a given element and create a sec­
ondary sub-branch aside from the pr imary D O M tree. This allows for the creation of a
scaffolding wi th in the shadow root that is hidden from the user but defines the outlook of
the element. Th is underlying shadow structure can contain slots <slot>, serving as entry
points into which the actual element's children w i l l be redistributed into.

The shadow root is invisible and inaccessible to the outer world, ensuring encapsulation
of not only H T M L nodes but also styles. C S S Rules applied to inner shadow elements do
not leak outside and remain immune to the application's styles w i th an exception of C S S
Cus tom Properties.

Flexus utilizes this in an attempt to simplify the application's code by applying default
styles to the immediate first-level children of elements such as <f lexus-toolbar> where
<button icon=" . . . "> looks appropriate for the context of the Toolbar, whereas the same
code outside it w i l l look like a normal content but ton without any addi t ional style modifiers
or added classes.

The following example shows <f lexus-toolbar> components that self-configure them­
selves based on the children they contain, attaches missing attributes and redistributes the
elements into an underlying shadow root. In this case, a main section complemented by a
[search] section, an image which is recognized as collapsible content, followed by tabs in
an overlay mode, resting on top of the element.

2 h t t p s : //www.webcomponents.org/polyfills
3 h t t p s : //blogs.windows.com/msedgedev/2015/07/ 15/microsoft-edge-and-web-component

31

http://www.webcomponents.org/polyfills
http://windows.com/msedgedev/2015/07/

<flexus-toolbar>
<section>...</section>
<section search>...</section>

<flexus-tabs overlay>...</flexus-tabs>

</flexus-toolbar>

Lis t ing 4.1: Or ig ina l toolbar code

<flexus-toolbar>
<section slot="before">...</section>
<section slot="before" search>...</section>

<flexus-tabs overlay s t i c k y slot="after-overlay">...</flexus-tabs>

</flexus-toolbar>

Lis t ing 4.2: A c t u a l D O M code after self configuration

<div id="before">
<slot name= l lbefore"x/slot>
<div class="overlay">

<slot name="before-overlay"></slot>
</div>

</div>
<div id="collapsible">

<div id="parallaxwrap">
<slot name="collapsible"></slot>

</div>
</div>
<div id="after">

<div class="overlay">
<slot name="after-overlay"></slot>

</div>
<slot name="after"></slot>

</div>

Lis t ing 4.3: Excerpt from shadow root

4.4.2 CSS Custom Properties
C S S Cus tom properties are unique because unlike other C S S rules they do not change the
immediate style of the element. A variable is created in the scope of the element and a l l
descendants are able to retrieve its value using var (-my-variable) syntax. This allows
for infinite theming capabilities as featured i n the following approximat ion of how Flexus
theming mechanism works. Most other frameworks currently require developers to pre-build
themes into static C S S files, whereas Flexus, w i t h a buil t i n color palette, lets developers
specify colors on any level, using attributes like [primary=" . . . "] . Not only would this be
unsustainable wi th the amount of styleable elements and CSS ' s default outside-in styling
mechanism, but Flexus ' unique feature "adaptive t int" could not be done at a l l .

32

[primary="red"] button -[background-color: red}
[primary="red"] input {border: lpx s o l i d red}
[primary="red"] h i [tinted] {color: red}
[primary="red"] h2[tinted] {color: red}

[primary="blue"] button {background-color: blue}
[primary="blue"] input {border: lpx s o l i d blue}
[primary="blue"] h i [tinted] {color: blue}
[primary="blue"] h2 [tinted] {color: blue}

[primary="green"] button {background-color: green}
[primary="green"] input {border: lpx s o l i d green}
[primary="green"] h i [tinted] {color: green}
[primary="green"] h2[tinted] {color: green}

Lis t ing 4.4: Conventional theming

[primary="red"] {—primary: red}
[primary="blue"] {—primary: blue}
[primary="green"] {—primary: green}

button {background-color: var(—primary)}
input {border: lpx s o l i d v a r (— p r i m a r y) }
h l [t i n t e d] {color: v ar(—primary)}
h2[tinted] {color: v ar(—primary)}

Lis t ing 4.5: C S S Cus tom properties way

4.5 Modular i ty

The most visible feature of Flexus is, of course, the U I styling provided by the C S S files.
Those provide a l l of the necessary style rules for both bui l t - in elements and custom com­
ponents. It could realistically be used stand-alone without the Core Support Library , even
though it is not recommended as the Core Support L i b r a r y handles platform detection and
adjusts to changes. However, what is recommended, is omi t t ing the inclusion of custom
component javascript files.

Folder elements contains many . j s files w i t h implementat ion of element's advanced
behavior, starting by registering a custom element, causing the browser to actively enhance
every instance of the element w i th a shadow root and given code. B u t this process is an
unnecessary overhead for simple applications that might not need a l l of the elements. If, for
example, only a simple <f lexus-toolbar> is used, without any sections, nor the advanced
collapsible capabilities, it is not needed to load a toolbar.js since a l l basic styles are
already provided by a C S S stylesheet.

Components inherit the same resources from the Core Support Library , but they are
buil t to be independent of one another to further improve load speeds and performance.
The components were buil t to collaborate when used together, like <f lexus-tabs> and
<f lexus-page>, but they are not mutual ly dependent.

4.6 Performance

The most common complaint against using web technolog ies cts ci reliable applicat ion de­
velopment environment is performance. The problem, however, is not i n the commonly

33

blamed JavaScript language, but the Document Object Mode l , a live, interactive represen­
tat ion of H T M L code, more specifically D O M manipulat ions are very slow compared to JS
loops and function calls. The in i t i a l render is not that big of a problem but subsequent
modifications to the D O M can cause slowdowns i f handled without care. I took a great
deal of care to avoid this as much as possible.

Browser vendors have been progressively opt imiz ing both JavaScript engines and D O M
renderers over the past couple of years while the web platform itself has expanded i n terms
of, not only, new features but also new performance-related specifications. For example
C S S 3 introduced G P U accelerated animations and transitions, offloading computat ional
tasks down the stream to a G P U , when used properly. Contrary to old bad practises using
obsolete libraries where every step of the animat ion is calculated in JavaScript and then
applied to the D O M , resulting in an overhead of ineffective calls that could be handled by
the Browser or better yet the G P U . This cumbersome method persists to this day on many
websites and the problem lives on.

I, however, took a great deal of care during the designing of Flexus to cautiously use re­
sources, avoid unnecessary operations, only follow the best practices and uti l ize new perfor­
mance specifications where possible. The most important of those are: G P U Acceleration,
u t i l iz ing a rendering scheduler, executing tasks i n batch, and offline D O M manipulat ion.

4.6.1 DOM Manipulation

Manipu la t ion wi th Document Object M o d e l , i.e. changing text, updat ing classes, attributes,
styles or inserting new nodes is slow and should be decreased to m i n i m u m since it triggers
many other rendering related operations. Flexus adheres to good practices of applying
changes i n batch instead of one after another. Addi t ional ly , "offline" manipula t ion outside
the active D O M is preferable. DocumentFragment serves as a temporary host for a l l new
or modified nodes that are then inserted into a live D O M a l l at once. One of the cases of
offline manipulat ion is the creation of a shadow root of custom components, when a l l of
the template nodes are created at first w i th in a DocumentFragment which is then appended
into the shadowRoot D O M tree.

4.6.2 GPU Acceleration

Ensur ing smooth transitions and animations is a difficult task because of D O M manipula­
tions, most of the style changes 1 lead to a repaint and even reflow i n the worst cases. These
are the hidden processes of a browser's rendering engine. Reflow is triggered when the lay­
out of the document has changed, e.g. the C S S property margin is modified, changing the
element posit ion and forcing the geometry of a l l nodes to be recalculated. This is followed by
a repaint phase which l i teral ly paints the document by applying colors, textures and effects
onto precalculated node positions. M o r e specifically, both of these phases are evaluated by
the C P U which then offloads the actual repaint rendering onto the G P U . Lucki ly , usage of
the C S S properties opacity and transform can optimize this process. These properties
instruct the G P U to create a snapshot (a transparent layer w i th only the element bearing
it) dur ing the first repaint after a reflow. The first render pass is then executed as usual by
stacking a l l layers together and output t ing the result. Subsequent changes to opacity or
transform avoid the repaint phase and are sent directly to G P U where only a single layer
from the last snapshot is modified without interference from the C P U . This dramatical ly

4https://csstriggers.com

34

https://csstriggers.com

speeds up the repeated modifications that animations consist of, since such operations are
relatively cheap for the G P U to perform, unlike assembling everything from scratch.

4.6.3 Caching

Caching is an ambiguous term since it 's used to describe many different operations. In my
case, I used it to store values from nested properties wi th in objects. It could be dismissed
as t r iv ia l but profound differences can start to show up i f the property-accessing code is
called regularly, i.e. inside a loop or event callback, or even worse, when the property is
deeper than a single level. The following excerpt is taken from file elements/toolbar. js
and shows a modification of C S S transform property on the element parallaxwrap that is
nested wi th in t h i s . $.
t h i s . o n (' c o l l a p s e ' , ([p, s, capped]) => {

this.$.parallaxwrap.style.transform = 'translate3d(0px, ${capped}px, 0)'
})

Since the path is expected to remain unchanged, it is wise to store the latest accessible
object from the path to a separate variable parallaxwrapStyle.
var parallaxwrapStyle = this.$.parallaxwrap.style
t h i s . o n (' c o l l a p s e ' , ([p, s, capped]) => {

parallaxwrapStyle.transform = 'translate3d(0px, $-[capped]-px, 0)'
})

It might not be always useful as code readabili ty is also a concern for future main­
ta inabi l i ty but the provided example is justifiable due to it being a callback to the event
collapse which fires i n bursts of hundreds as it is t ied to scrolling.

It becomes especially beneficial i n combination wi th a deeper knowledge of how render­
ing/ layout engines work. Every D O M Element offers a set of methods and properties such
as of f etWidth, of f setHeight and a l i t t le known fact is that merely reading these offset
properties forces costly reflows and repaints. Caching them is therefore reasonable, specif­
ical ly in case of Flexus 's Toolbar element which, in some configurations, needs to perform
adjustments based on size.

4.6.4 Scrolling with Passive Listeners

A common problem, seen w i t h web development, is scroll performance. To remedy this,
Flexus uses new standard Passive Event Listeners [19]. To see the benefit we first have to un­
derstand the basics of event handling. Every t ime the browser fires an event, the developer
is offered a window for reaction. This could be p la in update of a variable or an impact ing
change to D O M which modifies the behavior of the fired event, in which case a default action
taken by the browser has to be canceled by cal l ing the method event .preventDef ault ().
The browser has to presume this prevention every t ime it fires an event and al locating
needed resources for this operation results i n delayed, unpredictable reactions that become
noticeable during a series of quickly fired events such as those produced by scrolling. There­
fore effects that respond to scrolling often appear to be unpleasantly lagging behind. Now,
registering a listener as passive marks a promise from developer to the browser not to
prevent the default action but to only observe. N o addi t ional resources are wasted and
results are significant. Launching the same example of collapsible toolbar i n Chrome shows
a smooth transformation dur ing scrolling whereas i n Edge the toolbar jumps around and

35

lags behind. That is because Edge has not yet implemented 5 passive listeners, however,
this is expected to be included i n future versions as this feature is already i n development 6 .

4.6.5 Scheduling the Browser's Animation Frame

For an applicat ion to be conceived as smooth, be it through animations or scrolling, a thresh­
old of sixty frames displayed per second should be met. Previously mentioned optimizations
help reduce the overhead, al lowing the browser to focus on reliably delivering those sixty
frames. This means that every 16.6 milliseconds one frame has to be rendered. If some
other operation takes up browser's resources at this point, the appl icat ion starts to appear
laggy. The worst offenders of this are scroll and pointer events (including touch and mouse
movement). Those are being fired erratically and usually in rapid bursts, possibly even
mult iple times wi th in the 16ms frame between rendering. Execut ing callbacks on every
single one of them results in disastrous performance hit if it interacts w i th D O M . For tu­
nately the requestAnimationFrame [16] spec gives developers deeper integration into the
browser's t imer by allowing them to schedule code to be executed exactly at the moment
of the frame rendering when the browser is "warmed up" for these k ind of tasks. Flexus
utilizes this scheduler in elements inheri t ing the Scrollable class and vastly improves scroll
performance by u t i l iz ing this scheduler, therefore reducing the number of callbacks by only
executing the latest ones.

5 h t t p : //caniuse.com7#feat=passive-event-listener
6 h t t p s : //developer.microsoft.com/en-us/microsoft-edge/platform/status/

passiveeventlisteners/?q=passive

36

http://microsoft.com/en-us/microsoft-edge/platform/

Chapter 5

Evaluation for Real World Usage

Throughout the development of Flexus, I have been regularly testing snippets of code and
also complete demo applications to ensure that the project is not only useful but also
performant and on par w i t h applications that are wri t ten i n native languages such as C #
and Java.

A s Webview adds another step between the applicat ion code and hardware, therefore,
it is only to be expected that it w i l l be slower than native languages. Th is is, however, a
problem of the web platform which is not designed for creating intensive 3D graphics and
games to begin wi th and instead is ideal for applications such as to-do lists, calendars, news
readers etc. In this case „slower" is defined as tens of milliseconds. A s discussed i n the
previous chapter 4.6, the big focus during Flexus ' development was to make it performant
in bo th the in i t i a l load t ime along wi th actual interaction wi th in the application.

Flexus was regularly tested on a Nexus 5 device, which as of wr i t ing this thesis, is an
almost four year o ld mid-range A n d r o i d phone. The subjective load times from the users'
point of view are almost indistinguishable from native applications, w i t h no noticeable
slowdown when delivering content. Furthermore, I was able to test on a Nexus 7 device
(released i n 2012) which is, by today's standards, a considerably slower device. Through
mult iple tests it was obvious that even the native Java applications were slow on this device.
W i t h this i n mind , it would be fair to assume that H T M L applications would be noticeably
worse however, they are absolutely comparable when considering performance.

Addi t ional ly , on A n d r o i d devices I tested their abi l i ty to instal l the applications from
the web, due to the A n d r o i d O S already support ing the P W A manifest. The launch speed
of P W A apps is heavily dependent on the way that the application's files are served. I was
unable to properly test caching the application's files local ly on the device as that would
require the availabil i ty of an H T T P S server. I was able, however, to test it i n remote mode
where at the moment of launching, a l l of the files would be loaded from the server. Th is
process is also dependant on the application's content and images however, a basic app
(consisting of a single view w i t h text and the core components of Flexus) loaded wi th in a
second or two. This test was performed on a regular home W i F i connection which causes
the largest performance impact by retrieving the application's files from the internet.

Another factor that increases the performance of Flexus lays i n its modulari ty. For a
simple applicat ion, only the design C S S files and preferably the Core Support L ib ra ry need
to be loaded, unless any advanced features like tabs/pages or toolbar are required. Unl ike
Google's Paper Elements l ibrary (also a web H T M L based U I l ibrary) , Flexus tries to keep
the number of newly created custom elements as low as possible. For example, creating a list
would require list i tem elements. Flexus merely provides the option of using the [f x - i t em]

37

attribute that can be applied to anything from <div> to <label>, whereas Polymer creates
a whole new custom element <paper-item>. A custom element like this is defined in
another file which then has to be imported, and the component's code registered into the
browser's element registry. Then , each t ime an i tem is created, the component's underlying
JS code is executed, adding unnecessary performance overhead. Fol lowing the same topic
of simplification, w i th Flexus, icons can be added to almost anything, by applying the
attr ibute [icon="myicon"], whereas Paper Elements requires the use of <iron-icons>
components, making it less pract ical (a deeper node tree) and more expensive (in both load
t ime and execution).

Regarding its usefulness, Flexus excels at handling the visual appearance of an appli­
cation by adjusting it to screen size, touch or mouse input, and provides proper styling
wi th Ma te r i a l Design and/or Neon Design. Developers can focus on wr i t ing their ideas
in declarative H T M L and Flexus w i l l take care of the styl ing and layout. It can be used
to develop applications that are deployable into the Windows Store, A n d r o i d Store, and
Chrome O S Web Store, and along wi th the expansion of the P W A standards, the web.

The s implic i ty of the resulting application's code was discussed i n chapter 3.2, but
it should be stated that the code is not just clean, but also functional. Component
<f lexus-toolbar> offers powerful animations that are reactive to scrolling of view's con­
tent, which could be done wi th just a few lines of code. Just adding a element
as a chi ld to a <f lexus-toolbar> triggers a number of internal operations e.g. listen­
ing for changes i n scroll posit ion, updat ing state, rendering and accelerating animations
through the G P U to ensure smooth scrolling. This was achieved by u t i l iz ing Web C o m ­
ponents standards which allowed for encapsulating such complexity internally w i th in the
component (during its lifecycle) and away from the applicat ion developers.

The result of this is a highly declarative code that, i n the case of simple applications,
can stand on its own without the need of any addi t ional JavaScript since, for example, the
components <f lexus-tabs> and <pages-pages> can find each other and l ink themselves.
Unless the developer wants to precisely determine the relationship which could be done wi th
matching [id=" . . ."] and [f or=" . . ."] attributes, in the same way that H T M L ' s <label>
and <input> functions. O n the other hand, the component's encapsulation ensures Flexus
is compatible w i th any of the popular M V C s , routing or a templat ing l ibrary or framework.

Flexus is, however, not without its flaws. Use of the modern (and often experimental)
web standards that Flexus is buil t on leads to the temporary unavailabil i ty of some features
in some browsers and environments. Even though Flexus also contains polyfills (open source
snippets of code that tries to patch or simulate missing browser features), these standards
are very t r icky or nearly impossible to polyfi l l , especially the Shadow D O M (and styling
wi th in) . I have put considerable effort into making it work and it does collaborate w i th
the polyfills, even w i t h a l l of the complex scrollable toolbars, at least for the most part.
However, this is at the expense of adding complexity to Flexus ' source code, making it not
as sleek and elegant as it could have been.

A t the t ime of wri t ing , the current version of Chrome (58), Chrome OS , and A n d r o i d
Webview, fully support a l l of the mentioned standards and therefore a l l of Flexus and the
demo applications work flawlessly. Microsoft 's Edge and subsequently Windows 10 U W P
platform (built on top of Edge's rendering code) are currently missing the implementat ion
of the Web Components standards. Due to this, some bugs are expected to surface and it
is possible that more complex applications may not work at a l l . This , however, is only a
temporary problem as Microsoft have pledged to support these standards i n future releases
as have the other major platforms.

38

Another l imi ta t ion is caused by sandboxed environments. Flexus is able to automati­
cally detect the platform and/or O S and tries to load up the appropriate design language
automatical ly (if it 's not defined by the developer) including polyfills. There is a l imi ta ­
t ion that is only present w i th U W P and Chrome O S applications as they are executed in
a restrictive manner, where the C S P (Content Security Pol icy) prevents the applicat ion
from injecting another scripts or styles. Us ing less restrictive shells like Electron, N W . J S
or Cordova resolves and removes this l imi ta t ion .

Flexus does not, currently, offer a l l of the components for developing intricate applica­
tions. I intend to remedy this in the future as I w i l l be continuing the development and
expansion of Flexus as an open source project, improving current functionality, introducing
new components, and adding support for A p p l e devices through the i O S design language.

39

Chapter 6

Conclusion

In this thesis I have researched and studied the available literature relating to the design
and development of mobile applications and programs. There are currently a variety of
platforms and my findings proved that developing for them is difficult due to differences in
programming languages executable on each platform. Another obstacle is the distinctive
visual appearance that these platforms enforce. Th is problem is further compounded by
characteristic visual and behavioral patterns of the two input types, the touch and the
mouse pointer, around one of which are applications usually opt imized. Despite available
alternative to use web technologies for development, it is not that pract ical because very
few mult ipla t form libraries and frameworks are available. A n d those that are do not tackle
al l of the aforementioned problems a l l at once, rendering the libraries impract ica l as it s t i l l
leaves more work to be done by developers.

Based on these findings I have devised a simplist ic A P I of a mul t ip la t form framework for
application development and bui ld ing User Interfaces. I have implemented this framework
in H T M L , C S S and JavaScript languages using modern web standards. The name chosen
is Flexus as the framework flexibly adjusts interface of the applicat ion to fit the device it is
launched on. Flexus pr imar i ly provides two things: the visual style for the appl icat ion and
a set of components to bu i ld it wi th . Two design languages are supported - Mate r i a l Design
for A n d r o i d and Neon Design for Windows 10. B o t h are complemented by large set of icons
and a color palette that can be used for styling. A l so provided is a set of modular custom
components. A m o n g these components are the basic bui ld ing blocks such as navigational
drawer, toolbar, tabs, and more. B y default, their basic s tyl ing is included, but developers
can selectively import respective addi t ional javascript files to further enhance behavior of
such elements when needed.

The framework was designed to be simple on the outside, yet complex and powerful on
the inside. G i v i n g developers the power they need to customize their applications i f they
need i t , or automatical ly configure itself and a l l components w i t h smart assumptions based
on surroundings. Th is goal has been achieved. After a quick and straightforward setup
of s imply including a few JS files, the Flexus framework takes over and adjusts the single
codebase for various platforms, screen sizes, and form factors. The appropriate design
language is loaded, layout and structure changes wi th screen size, spacing and sizing is
increased and touch gestures are enabled on touch screens, advanced effects can be used
wi th min ima l code and can be automatical ly disabled on slower devices.

This project started as an exploration of what the ideal future U I framework could be,
and the result is an actual working tool . However, there's a caveat to that. Flexus is buil t
on top of modern web standards, which poses some problems on platforms that have not

40

yet implemented a l l of these standards. However, a l l platforms have previously announced
development of Web Components standards so this inconvenience is only temporary. Cur ­
rently targeted platforms are Windows 10, A n d r o i d , Chrome O S and Web. Flexus has been
released as an open-source project on G i thub and I intend to continue development, add
support to i O S and expand functionality w i th more components.

41

Bibliography

[1] Google: Material Design Guidelines: Color Palette.
Retrieved from:
h t t p s : //mat er i a l . i o / g u i d e l i n e s / s t y l e / c o l o r . h t m l # c o l o r - c o l o r - t o o l

[2] Google: Material Design Guidelines: Layout - Metrics & keyline.
Retrieved from:
h t t p s : / / m a t e r i a l . i o / g u i d e l i n e s / l a y o u t / m e t r i c s - k e y l i n e s . h t m l

[3] Google: Material Design Guidelines: Layout - Units & measurements.
Retrieved from: h t t p s : / / m a t e r i a l . i o / g u i d e l i n e s / l a y o u t / u n i t s -
measurements.html#units-measurements-density-independent-pixels-dp

[4] Google: Material Design Guidelines: Structure.
Retrieved from:
h t t p s : / / m a t e r i a l . i o / g u i d e l i n e s / l a y o u t / s t r u c t u r e . h t m l # s t r u c t u r e - a p p - b a r

[5] Google: The Web App Manifest.
Retrieved from: h t t p s : //developers.google.com/web/fundamentals/engage-and-
r e t a i n / w e b - a p p - m a n i f e s t /

[6] Microsoft: Introduction to UWP app design.
Retrieved from:
h t t p s : //docs.microsof t.com/en-us/windows/uwp/layout/design-and-ui-intro

[7] M o z i l l a : Progressive web apps.
Retrieved from: h t t p s : //developer.mozilla.org/en-US/Apps/Progressive

[8] M o z i l l a : Web App Manifest.
Retrieved from: h t t p s : //developer.mozilla.org/en-US/docs/Web/Manif e s t

[9] Onsen: Onsen UI: CSS Components.
Retrieved from: http://components.onsen.io

[10] W 3 C : CSS Custom Properties for Cascading Variables Module Level 1.
Retrieved from: https://www . w 3.org/TR/css-variables/

[11] W 3 C : CSS Flexible Box Layout Module Level 1.
Retrieved from: https://www . w 3.org/TR/css-flexbox-l/

[12] W 3 C : CSS Pseudo-Elements Module .
Retrieved from: h t t p s : //drafts.csswg.org/css-pseudo-4/#generated-content

12

https://material.io/guidelines/layout/units-
http://google.com/web/fundamentals/engage-and-
http://mozilla.org/en-US/Apps/Progressive
http://mozilla.org/en-US/docs/Web/Manif
http://components.onsen.io
https://www.w3.org/TR/css-variables/
https://www.w3.org/TR/css-flexbox-l/
http://ts.csswg.org/

[13] W 3 C : Custom Elements.
Retrieved from: https://www .w3.org/TR/custom-elements/

[14] W 3 C : HTML Imports.
Retrieved from: http : / / w 3 c.github.io/webcomponents/spec/imports/

[15] W 3 C : Shadow DOM.
Retrieved from: https://www.w3.org/TR/shadow-dom/

[16] W 3 C : Timing control for script-based animations.
Retrieved from: https://www .w3.org/TR/animation-timing/#dom-
windowanimationtiming-requestanimationframe

[17] webcomponents.org: Web Components Specifications.
Retrieved from: https://www.webcomponents.org/specs

[18] W H A T W G : HTML Living Standard.
Retrieved from: h t t p s :
//html.spec.whatwg.org/mult i p a g e / s c r i p t i n g . h t m l # t h e - t e m p l a t e - e l e m e n t

[19] W I C G : Passive event listeners.
Retrieved from:
h t t p s : //github.com/WICG/EventListenerOptions/blob/gh-pages/explainer.md

43

https://www.w3.org/TR/custom-elements/
http://w3c.github.io/webcomponents/spec/imports/
https://www.w3.org/TR/shadow-dom/
https://www.w3.org/TR/animation-timing/%23dom-
http://webcomponents.org
https://www.webcomponents.org/specs
http://spec.whatwg.org/mult

Append i x A

Content of the D V D

The attached D V D contains the following notable directories and files:

I— f lexus (directory containing compiled and source code of flexus and demos)
I | — ess (directory w i t h compiled Flexus C S S design languages)
I | — demo (directory wi th variety of demo applications)
I | — elements (directory w i t h compiled Flexus custom components)
I | — fonts (directory wi th fonts and icons used by C S S files)
I | — l i b (directory wi th compiled Flexus Core Support L i b r a r y and Ganymede)
I | — p o l y f i l l s (polyfills fixing missing functionality in old browsers)
I | — src (directory wi th original not compiled source codes of Flexus)
I | — test (directory w i t h code snippets and testing apps used dur ing development)
I | — f lexus .jsproj (Visua l Studio U W P project)
I I— g u l p f i l e . j s (build tasks used for compiling)

I— thesis (directory containing this thesis and its source)
I — src (directory containing source code of this thesis)
I— thesis.pdf (compiled electronic version of this thesis)
I— manual.pdf (user's guide for working wi th Flexus framework)
I— promo.mp4 (brief video about Flexus framework and this thesis)
I— poster.png (promotional poster about Flexus framework and this thesis)

The directory flexus also contains various other files related to or required by V i s u a l
Studio project, bu i ld tasks, git, etc. The directories f lexus/fonts and f lexus/polyf i l l s
contain open-source files created by th i rd parties, retrieved from 1 2 3 , which are used by
Flexus or the demo applications.

x h t t p s : //www.webcomponents.org/polyf i l l s
2https://materialdesignicons.com/
3https://docs.microsoft.com/en-us/windows/uwp/design-downloads/index

44

http://www.webcomponents.org/polyf
https://materialdesignicons.com/
https://docs.microsoft.com/en-us/windows/uwp/design-downloads/index

Append i x B

Demo applications

Following are a few examples of applications, from the f lexus/demo directory on attached
DVD, that were buil t using Flexus.

Your device is being monitored and protected

fit G © 8 ?
Home Update History Settings Help

0 0 0

Real-time protection Virus and spyware definitions _ast quick scan

turned on jp to date 24 days ago

Files seamed; 19 276 Updatec: 25.08.2016 08:30 Time: 01.08,2016 14:43

Quarantined: 8 Version: 1.227.538.0 Files scanned; 247 952

Allowed: 5 Update Threats 2

Scan new

Threat was found

& C © © ?
Home Update History Setting, Help

Virus and spyware definitions
' up to date

Definitions created on; 25.08.2016 08:30

Definitions updated on; 25.08.2016 14:43

Virus definitions ve "sions; 1.227.638.0

Spyware definitions versions: 1.227.638.0

Figure B . l : An t iv i rus demo applicat ion.

= Tourist guide

ALL FAVORITES

Figure B .2 : Tourist guide.

45

«- Feb 01, 2014

pany lne 531.00 +3.42 (0.65%)

ANNOTATIONS

Lorem ipsum dolor sit arret
jr adlplslc ng elit, sed fl<

Ut enim ad rrinim veniam ex es commotio

Duis aute im re dolor in reprehencerit in volu plate
veli'esse cilum dolore eu fugia' nulla pariatur

C o m p a n y Inc 5 3 1 . 0 0 +3.42 (0.65%)

OLDER ARTICLES

ANNOTATIONS

Lorem ipsum dolor sit amet
consec:etur adipisicing elit, sed do eiusmod B

Ut enim ad minim veniam ex ea commodo
quis nostrud exercitation ullamco laboris nisi ut
aliquip

Duis aute irure dolor in reprehenderit in

volu ptat e

velit esse cillum dolore eu fTgiat nulla pariatur

OLDER ARTICLES

Lorem ipsum dolor sit amet
consec:etur adipisicing elit, sed do eiusmod

Ut enim ad minim veniam ex ea commodo

quis nosliud exercilaliun ullamco labors nisi ul

Figure B . 3 : Stocks applicat ion.

= Recent files

i

i

0

1

1

B

H

B

Fi lename.doc

D o c u m e n t

Fi lename.doc

D o c u m e n t

Filename.jpg

P ic tu re

Fi lename.doc

D o c u m e n t

Fi lename.doc

D o c u m e n t

Filename.jpg

P ic tu re

Filename.jpg

P ic tu re

Filename.jpg

P ic tu re

i Downloads

9 Images

t u Videos

Q Audio

0 Recent

Downloads

Google Drive

m y . e m a i l @ g m a i l . c o m

OneDrive

m y . e m a i l @ g m a i l . c o m

Figure B .4 : Simple list of downloaded files inspired by Andro id ' s Download applicat ion.

46

mailto:my.email@gmail.com
mailto:my.email@gmail.com

Figure B .5 : Photo gallery.

Figure B .6 : Panel w i th details of a photo.

47

Uication jO

hts News Entertainment Music Rim Games

llios: The perfect vacation destination

Situated atop a snal sand rising TC r the Aegean Sea, llios is a
postcard-perfect 'v'lecitenonejn town with a oustling harbourside,
winding paths for rdnifclinc I" Hi strc Is. c ic gorgeous vistas. It is
llie ideal vata.ion slop (u jeq; e o:>; ng lo1 d pate lo idax, or (or
those interested in exploring t ie i'..hs sco;tf"ed at the top of the
island, vuhere many jitrV:tr. :r'd relics o - the .indent world have
been recentyunearthed.

llios: The perfect vacation destination
Situated stop a small island r sing from the Aegean Sea, llios is a
postcard-perfect Mediterranean town, with a bustling harbourside,
winding paths for rambling hillside strolls, and gorgeous vistas, t
is the ideal vacation stop tor pecple looking tor a place to relax, or
for :hose interested in exploring the ruins scattered at the top of
the island, where many artifacts and relics of the ancient world
have been recently unearthed.

Figure B .7 : L i s t of articles represented by cards.

= M y Games

Info Activity feed Friends & clubs Looking for Group Captures

Lorem ipsum dolor sit anriet, consecteturadipiscing elit Morbi tincidunt mauris nec erat

dapibus accumsan. Etiam facilisis ligula non feugiat luctus. Donee sed est non elit dignissim

semper. In consectetur nulla id ligula tempor imperdiet nec eget nunc Ut ut quam a metus

sollicitudin gravida. Vivamus dui nisi, blandit ac purus eget fringilla rhoncus magna.

Phasellus ac fermentům augue. Morbi sagittis sapien at est volutpat; nec euismod massa

fermentům. Nunc ultricies quis erat vitae venenatis. Duis ut bibendum enim, in varius sem.

Nulla scelerisque lobortis enim. Interdum et malesuada fames ac ante ipsum př imis in

faucibus. Nunc molestie facilisis sapien, nec malesuada neque tincidunt finibus. Quisque

ultricies laoreet sem ac aliquet

Start a party Looking for Group

P
Need more players?

Lookig for Group can help you find people that
play like you.

Figure B .8 : Video game hub.

= Title p <Z>

s\ Lorem ipsum dolor sit amet
tTLI Lorem Ipsum

- r v Lorem ipsum dolor sit amet
Lorem Ipsum

Lorem ipsum dolor sit amet
Lorem Ipsum

Lorem ipsum dolor sit amet

I Lorem Ipsum

Lorem ipsum dolor sit amet

I Lorem Ipsum

= Title P <^> •••

Lorem ipsum d o l o r sit amet
Lorem Ipsum

Lorem ipsum d o l o r sit amet
Lorem Ipsum

Lorem Ipsum d o l o r sit amet
Lorem Ipsum

• Lorem ipsum d o l o r sit amet
Lorem Ipsum

• Lorem ipsum d o l o r sit amet
Lorem Ipsum

Figure B .9 : Simple list applicat ion.

18

