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Metody vylepšení bezdrátové komunikace
v domácí automatizaci a zabezpečení

Abstrakt

Tato práce představuje možnosti vylepšení bezdrátové ko-
munikace pro systémy domácí automatizace a zabezpečení.
Většina dnešních systémů používá jednofrekvenční komu-
nikaci. Přidání frekvenčního skákání zvyšuje odolnost proti
rušení, ale přináší problémy s výdrží baterie nebo s rychlostí
odezvy, které nejsou v této třídě elektroniky jednoduše
řešitelné.

První metoda představená v této práci je vícekanálový přijí-
mač pro centrální jednotku. To umožňuje senzorům spát a po
probuzení neřešit synchronizaci se sítí.

Druhá metoda je kombinace vícekanálového přijímače s komu-
nikací bezdrátových kamer. Komunikace senzorů se skryje do
přenosu obrazu bez přidání dalšího rádia.

Klíčová slova: frequency hopping, frequency agility, OFDM,
home automation, security system, sensor network
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Methods of Improving Wireless Communica-
tion in Home Automation and Security

Abstract

This thesis presents methods of improving wireless communi-
cation in home automation and security. Most current systems
use single-frequency communication. Frequency hopping im-
proves resistivity to interference but brings problems with bat-
tery lifespan or communication delay, which cannot be simply
solved in this class of electronics.

The first method proposed in this work is an all-channel re-
ceiver for the central unit. It allows the sensors to sleep and
avoid lengthy network synchronization after wakeup.

The second method is a combination of the all-channel receiver
with a communication of wireless cameras. The sensor commu-
nication is hidden in video transfer without additional hard-
ware.

Keywords: frequency hopping, frequency agility, OFDM,
home automation, security system, sensor network
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1 Introduction

Home automation and security is a specific area of consumer electronics. A se-
curity system usually consists of a Central Unit (CU) and many independent
devices which need to be small and cheap. There are Passive Infrared (PIR) sen-
sors, magnetic door contacts, smoke detectors, key fobs, smart light switches
and many more. All can be connected to the CU via a wired bus or wireless
network. This thesis is focused only on wireless communication.

Wireless communication in the area of home automation and security is ad-
vancing much slower than in other areas of consumer electronics. There are
several difficulties [1] that don’t allow quickly reusing foreign ideas. Require-
ments of very low energy consumption, short communication delay and rela-
tively long range stand against each other. Current wireless networks are not
usable in home automation and security for various reasons:

• Modern industrial technologies are several orders of magnitude faster
than what is needed, but cannot be powered by batteries [2].

• Modern consumer technologies have high bandwidth and a nearly ac-
ceptable delay, but still consume too much current [3].

• Modern IoT technologies can live a long time on a small battery [4], but
the delay before the information gets processed is neither usable for au-
tomation nor for security systems.

The hardware used in this area has improved over the past decade, but it
barely matched the increasing requirements of security. CR2032 battery re-
mains to be a very limited reservoir of energy. Security, on the other hand, has
seen constant development in attacks and countermeasures. Older garage door
remotes used static codes and can be easily opened by the de Bruijn sequence
in 8 seconds [36]. Some manufacturers sell these even today, but it should be
avoided if possible. The only viable solution today is AES, possibly improved
by an asymmetric key exchange. The cheap and small devices need enough
power for computing and more complicated exchange of packets. There is very
little space for improvements in modulation and communication techniques.

A common solution nowadays is still a single-frequency network that is sus-
ceptible to interference and doesn’t efficiently use the available spectrum. The
purpose of this work is to design and verify new methods which would allow
new communication techniques, with emphasis on frequency agility, while sat-
isfying the requirements for this area of electronics.
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2 Goals

The main goal of the thesis is to present ways to improve wireless communica-
tion in home automation and security. The improvements need to satisfy both
technical needs such as latency, power, datarate, range, or size of the devices
as well as financial limits. There might be a more elegant solution, but if it
would increase the price of a sensor by an order of magnitude, it is not viable.
If Moore’s law should hold, we can discuss at least those solutions which will
probably drop into the available budget in a foreseeable future.

2.1 Example Situation

The example situation is a small house with one larger CU and many small
low-power sensors. Sensors can be magnetic contacts guarding closed doors,
PIR detectors for person movement, acoustic glass-break detectors, flooding
detectors, smoke detectors, light switches and many more. The CU is powered
by mains at all times and has a large backup battery in case there is a power
outage or in case the power connection is intentionally cut. The size of the CU’s
battery is designed to keep the system running only for a few days, sometimes
even only hours. On the other side of communication are sensors that need to
survive many years on a small battery. The delay between triggering any sensor
and information being available in the CU needs to be at most a fraction of
a second.

At least one device in the network is usually the keypad. This device
does not communicate directly with the sensors but allows the user a normal
day-to-day operation of the system. The user interface can be composed of sev-
eral kB of texts. That puts more constraints on the available network datarate.
The latency of the user interface should be a fraction of a second, similar to the
sensors. A keypad can usually hide a somewhat larger battery in exchange for
output functionality.

Another output device is a siren. An outdoor siren needs a considerably
larger battery to be able to drive the 100dB piezo element even when the out-
side temperature is −20 ◦C. The output devices are usually time synchronized
with the CU to periodically open receiving windows. When the device is syn-
chronized, it requires only a time-frequency chart to add pseudorandom fre-
quency switching. It makes most of this thesis not applicable to this class of
devices, but even synchronous devices can use the ability to randomly switch
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frequencies at will. Either way, it adds more constraints on compatibility with
the rest of the wireless devices.

The network needs to reach over a small family house. Having routing be-
tween sensors is not practical for various reasons. On one side, the network
is set up in advance and most of the devices do not move. That would al-
low storing paths and time synchronization of an optimal tree network perma-
nently in all devices. On the other side, all devices would have to open their
receiving windows at a precise time. Using only devices with a larger battery
for routing would not bring many benefits as most devices have small batter-
ies. The need to synchronize all devices will increase power consumption and
latency. On top of that, there would be retransmissions discharging unevenly
the devices near CU.

Routing or a mesh network would be a viable option in home automation,
where there are a lot of output devices connected to the mains supply and the
user can quickly replace the batteries of the rest. The preferred way for a secu-
rity system is to cover the entire house with one or at most a few radio hubs.
These radio hubs can be connected to the CU by a high speed wired bus or
they can be directly embedded inside of the CU. In the scope of this text, the
CU is synonymous with the radio hub and the connection between them is ne-
glected.

Modern systems can also optionally provide visual verification. When an
intrusion is detected, the system makes one or more pictures of the situation.
A homeowner or the security agency gets a picture and can decide whether
the situation is a real threat (eg. burglar) or a false alarm (eg. misbehaving
pet). Even though there are such products available, transmitting pictures
over the sensor network is not a viable solution. It takes a minute to carry
a 640× 480pixel low resolution picture [37]. In a model situation, a person
entering the building will be gradually triggering low-power sensors while the
cameras start transmitting video. The low-power sensor network has to work
together with the high-bandwidth link of the cameras and not interfere. The
needs of the sensor network are almost the opposite of the needs of the camera.

Security cameras require a lot more power, so it is common to use Power
Over Ethernet (POE) or a wireless connection with a power adapter and a small
battery for backup. It is a part of the security system, so it needs tampering
detection and connection to the secure network, even if there already is Wi-Fi
for video. Having two radios is more complicated, expensive and adds inter-
ference. In particular, interference between Orthogonal Frequency Division
Multiplex (OFDM) and frequency hopping is known for Bluetooth and Wi-Fi
[5].

2.2 Current Consumption

Common wireless sensors can consume between 0.1mW and 0.2mW which
is being matched by the design of power sources [6]. But depending on the
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context, contemporary home security sensors can go almost an order of mag-
nitude lower. Some simpler sensors can live for over two years on a single
CR2032 coin cell battery [38]. Context, in this case, is to comply with grade 2
of EN 50131 [39]. To arm the system, the latest message from the sensor needs
to be 20 minutes old or newer. There needs to be at least one transmitted mes-
sage from the sensor and its acknowledgment received by the sensor over the
20 minute period. An automation device doesn’t need to periodically commu-
nicate at all and its consumption can be even lower.

The CR2032 battery has a capacity around 220mAh which gives a continu-
ous current of

I =
0.22

24× 365× 2
≈ 13 µA (2.1)

for two years of service. During this time, the battery has a voltage between 3V
and 2V which gives an average power

P = 13× 2.5 ≈ 31 µW (2.2)

With some safety margin, it is less than 10 µA of cumulative current consump-
tion for radio, MCU and the sensor. Some devices, such as magnetic contacts
hidden in the window frame, can also be deployed in a harsh environment of
high humidity or sub-zero temperatures that can reduce the battery capacity
significantly.

Part of this current is consumed all the time by the sleeping MCU and ra-
dio, part of the current is needed to keep the actual sensor running and very
little current is remaining for wireless communication. Common Gaussian Fre-
quency Shift Keying (GFSK) transceivers consume more than 10mA when ac-
tive [40]–[42], which translates to only a small amount of short packets in either
direction.

2.3 Communication Delay

Another important constraint is the delay between triggering the sensor and
a reaction in the CU. A light switch needs to turn the lights on in a fraction
of a second. A smoke detector cannot have any unnecessary delay when a fire
is detected.

Some wireless technologies take time to get from a sleeping state to a ready
state in which information can be passed over. This is especially true for fre-
quency hopping networks. The hopping device first needs to find the correct
channel, learn the hopping sequence and synchronize with the other side be-
fore sending any information.

Other wireless technologies are intentionally designed for applications that
are not time critical and in exchange are optimized for battery consumption
and range. For example, LoRa Wide Area Network (LoRaWAN) device can
Transmit (Tx) a packet at any time, but the packet is acknowledged after one
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second at the earliest [43]. Any lost packet means a delay in the range of sec-
onds.

In our case, the system should be stateless and quick to respond to the de-
vice. A light switch, which is completely powered off, should be able to quickly
wake up and start transmitting useful information. The wireless hub has to be
able to immediately verify and acknowledge the message. If any of those mes-
sages get lost, the device needs to quickly repeat the message. There cannot be
any exchange of packets negotiating parameters of the communication. There
is also no time for establishing encryption and message authentication, but
such algorithms already exist and are beyond scope of this work.

2.4 Range and Cohabitation

Communication from sensors to the CU needs to work over an area of
a one-family home. Datasheet values can be a few hundred meters in an open
area [38] and in reality even more. The range is much shorter when considering
multipath propagation and other indoor effects. That is the main reason for
trying to bring principles of frequency agility and hopping into this area [7].

Another reason is the cohabitation of multiple systems from the same manu-
facturer. In especially bad conditions, two systems will be far enough that they
will not detect each other by their Listen Before Talk (LBT) and Clear Chan-
nel Assessment (CCA) tools, but they will add too much interference to each
other’s messages. The problem can be worse if both systems use the same tim-
ing principles. Using many frequency channels for hopping will significantly
reduce the risk of collision in these situations.

The range is also one of the significant reasons for using the sub-GHz fre-
quencies in these systems.

2.5 Size and Economic Aspects

The security system is composed of one larger CU and many small sensors.
The price of these sensors can add up quickly to an amount comparable to
other household reconstruction works. The price of the sensors is an important
aspect, so the system is affordable to many potential customers. There is very
little space to improve the hardware of the radio or MCU in sensors.

The cost of the CU is important as well, but the increase is not multiplied
by the number of sensors, so a larger increase can be tolerated. The CU has
also much faster MCU, sometimes even running a full operating system, which
could handle some computation of the radio.

Some of the devices need to be hidden, which puts constraints on their size.
Other devices are directly in sight and customers require small size together
with fashionable design. Antennas have to be hidden inside and very small
which puts even more restrictions on wireless communication.
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3 State of the Art

3.1 Common Solution

One simple solution for a wireless network for home automation or security
system is to use a single frequency channel with GFSK modulation. All devices
at all times use one narrow predefined channel. These systems are common in
the sub-GHz Short Range Device (SRD) frequency band, known in Europe
as 868MHz band.

The usual solution of an asynchronous sensor takes these steps:

1. A sensor is sleeping and consumes a few µA from its battery. A mains-
powered CU is always receiving. Consumption of its radio, although less
important, is in tens of mA, usually well below other components of CU.

2. The sensor needs to communicate with CU. Either it detects a change
or it needs to report its presence. The change can be an open window,
a change in temperature, flipping the light switch or any other event.

3. Sensor’s MCU and GFSK radio both wake up. Sensor’s consumption
rises to tens of mA.

4. The sensor sends a frame which is received by the CU.

5. CU processes the information. Appropriate action can be taken immedi-
ately.

6. CU sends a response frame which is received by the sensor to verify suc-
cessful communication. If the sensor doesn’t get a response, it repeats
from step 4.

7. Sensor goes back to sleep with consumption of a few µA.

The whole communication takes only a few tens of ms. In case of an un-
planned event, the information gets to CU in less than 100ms even with pos-
sible packet repetition. Security devices need to periodically report their pres-
ence, so depending on the system configuration this can take place several
times an hour [39]. The average cumulative consumption from the battery can
be close to the few µA sleeping value. The automation device does not need to
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periodically report. It needs to communicate only when needed, perhaps a few
times a day.

Communication from the CU to the sensor can happen only after a message
from the sensor. The system can be optionally improved with output devices.
Either by a wake-up radio [8], if its range is sufficient, or by synchronization.
But synchronized devices can have an order of magnitude larger consumption.

This solution cannot be easily improved by frequency hopping between
frames. The sleeping slave has no way to know which channel is currently in
use. In step 4 it cannot just send a packet to CU, because the CU is most likely
listening on a different channel. Finding the correct channel takes time and
causes an unacceptable delay in communication. Synchronization of sensors
the same way as output devices is possible, but it requires frequent beacon mes-
sages and a precise oscillator. Both increase consumption beyond one CR2032
battery.

It is less complicated to add basic frequency agility. The sensor can re-
peat transmissions on a different channel or CU can do channel scanning. The
number of used channels needs to be quite low, it would otherwise affect com-
munication delay or require an unreasonably long preamble.

3.2 Existing Short Range Technologies

Several existing wireless technologies are intended to work over an area similar
to a small house. Most of them are proven by decades which is a large bonus
for a reliable device such as a smoke detector. Some are getting close to the
requirements of home automation and security, but various parameters are still
making it difficult to use.

3.2.1 BLE

Bluetooth, especially the newer Bluetooth Low Energy (BLE), is popular for
short-range communication in consumer electronics. It provides various set-
tings compromising current consumption and response speed. Compromises
that make the technology universal, make it less than ideal for a sensor net-
work.

BLE was developed independently from “classic” Bluetooth and was inte-
grated into it in version 4.0. Version 4.0 of the standard uses three fixed chan-
nels for advertising to synchronize two devices together. Synchronized devices
can then hop over all 40 frequency channels. These channels are spread over
the 2.4GHz band, separated by 2MHz. The fixed nature of the advertising re-
moves a bit of spread spectrum advantages. Frequency-specific noise or other
independent Bluetooth devices on those three channels can complicate com-
munication.

Version 5.0 added Extended Advertising which can use all 40 BLE chan-
nels. It can send only a small header on the three fixed channels and the rest
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of the data on any other channel. This helps to ease the traffic on the three
fixed channels. This version also added LE Coded Physical Layer (PHY) with
Forward Error Correction (FEC) to increase the range.

BLE uses Gaussian Minimal Shift Keying (GMSK) modulation at 1 or
2Msample/s. BLE transmitter can use at most +10dBm, depending on its
class, which is less than +14dBm available in the European sub-GHz SRD
band. Together with the higher frequency, it may be very difficult to deploy
a BLE network over a whole house.

It can reach transfer rates over 1Mbit/s. That is almost ready for High
Definition (HD) video streaming, but not reliable. For a wireless camera, it
would need to be supplemented by Wi-Fi, which brings the already mentioned
compatibility problems [5].

The BLE design doesn’t allow both quick response from the sensor to CU
together with µA consumption. Optimization for communication delay [9] in-
creases consumption. The consumption requirements are met only if the sensor
is completely shut down most of the time and needs to connect in order to Tx
data. Even without the use of hopping, the connection latency is too high
[10]. Yet, there are ideas to improve BLE connection mechanisms [11] and BLE
might get into the required delay in future versions.

3.2.2 IEEE 802.11
IEEE creates various sets of standards for wireless communication. The most
known set IEEE 802.11, known under the brand name Wi-Fi, was developed
for the wireless connection of user devices to the Internet. Orientation for
high datarate means that these protocols are great for the transport of large
amounts of data but very bad for low-power sensors. Consumer devices have
batteries designed to last for days or sometimes hours and not years. Sensor
network built on top of IEEE 802.11 would be several orders of magnitude over
the power consumption limit [3].

Datarates of IEEE 802.11 range from a few Mbit/s to several Gbit/s. The
lower values can support at least one wireless camera and the newer modes
would easily cover many.

The first versions of the standard used Frequency Hopping Spread Spec-
trum (FHSS) and Direct Sequence Spread Spectrum (DSSS), but were quickly
outdated. Most of IEEE 802.11 is built on the OFDM technology. Recent
standards add Multiple Input Multiple Output (MIMO) principles that use
multipath propagation to push the datarates even higher. Multipath propaga-
tion usually complicates communication inside buildings, but with the use of
multiple antennas, it can be turned into an advantage.

A new addition is also a set of light-based protocols IEEE 802.11bb mar-
keted as Li-Fi. It is useful for short-range connections not affected by electro-
magnetic interference. In the case of a security system, it would be hard to
eavesdrop or jam the signal from the outside. As a connection of sensors and
automation in a single room, it might be useful.
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There is an IEEE 802.11af that uses unused parts of the TV spectrum. The
future of this standard might be short-lived as there are already hints about can-
celing the TV broadcast in favor of mobile networks. Even if it wasn’t entirely
true, the frequencies allocated for TV are slowly diminishing.

Another outlier is a Wake-Up Radio (WUR) using On Off Keying (OOK)
modulation. This low-power radio can be receiving and able to wake up the
sleeping main radio to achieve a short communication delay with low power
consumption. The consumption of two radios in one is still too much for a se-
curity system [12]. A variation of low-power radio for a sensor which doesn’t
interfere with regular OFDM for a camera would be beneficial. But in this
case, the WUR must be complemented with full OFDM radio and able to send
a legacy OFDM preamble, so it is detected by other legacy devices.

IEEE 802.11ah

This part of the standard branded as Wi-Fi HaLow moves the OFDM technol-
ogy into the sub-GHz frequency band. First routers and device modules are
beginning to appear on the market.

It is too early to definitively comment on sensor consumption, but it seems
that a device in its deep sleep state alone has a consumption of 20 µA (unofficial
specification for NRC7292). The cumulative consumption of the entire sensor
operation will be even higher and surely over the budget of a CR2032 battery.

High datarate of this technology will be great for a more complicated sen-
sor or a security camera. On the other side, wide adoption of this standard
may bring a lot of traffic to a relatively empty sub-GHz spectrum. Low-power
sensors may have a much harder time competing for available clear channel.

3.2.3 IEEE 802.15.4
Especially for home automation and security, there is an IEEE 802.15.4 family
with several proprietary and perhaps a few open technologies. It is mostly
known for the ZigBee standard, but also WirelessHART, 6LoWPAN, Thread
and more build on top of IEEE 802.15.4. This family can use spread spectrum,
mostly DSSS, but also OFDM and Ultra Wideband (UWB) [44].

Parameters of these technologies can fit inside the requirements. Compari-
son with BLE [13] shows that ZigBee has larger current consumption in a cyclic
sleep scenario, but the communication process is much shorter. The delay from
sleep to a functional state is acceptable.

The FCC regulations in the USA require the use of spread spectrum in the
sub-GHz frequency band [45]. That is perhaps one of the reasons for DSSS
modulation. Current consumption for this kind of receiver can be equal to
simple Frequency Shift Keying (FSK) modulation and the resistance to nar-
rowband interference is tempting, but this kind of spread spectrum doesn’t
improve on interference between multiple instances of the same system. Plus
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the wider bandwidth means there are a lot fewer available channels and more
opportunities for collision.

SUNOFDM PHY

An OFDM communication PHY was added to this group of standards with the
name Smart utility network (SUN) OFDM. At least one sub-GHz OFDM RF
transceiver is already available and more are planned. When this technology
reaches the consumption and price of a common GFSK transceiver, it will be
a great option for the sensors. So far both parameters [46] are two or three
times larger than a common GFSK transceiver [42].

This standard allows various datarate settings. Only the highest values
would allow an HD camera connection.

Additionally, In-phase/Quadrature (IQ) interface of these chips (where it
is user accessible) opens possibilities of Software Defined Radio (SDR). It
could be a reasonably priced solution for the connection of a camera and
GMSK sensors through one radio.

LRP and HRP UWB PHY

Two promising technologies are in development, Low Rate Pulse repetition
frequency (LRP) and High Rate Pulse repetition frequency (HRP) UWB PHY.
Both technologies use very short pulses with a bandwidth of around 500MHz.

Apart from low-power data communication, it enables ranging with 10 cm
accuracy and, in the case of HRP, a detection of an angle of arrival. The ex-
changed packet sequence can be short, only a few ms, and the hardware con-
sumes less than a µA [47], [48] when powered down, so cumulative power con-
sumption should be comparable to a single-frequency GMSK sensor.

LRP should require 125 times less power [14] with similar range as HRP.
On the other hand, LRP allows only a datarate of up to 1Mbit/s, while HRP’s
6.8Mbit/s might be enough to transfer video.

Coverage area of this technology might be smaller than sub-GHz GMSK,
but estimations are over 200m [14] which would suffice. In some cases inside
buildings, the spread spectrum UWB might even be better.

3.2.4 Backscatter
In the area of low-power communication, there is ongoing research on
backscatter technology [15]. Well-known and already widely used is Radio Fre-
quency Identification (RFID) and Near Field Communication (NFC), where
one communicating device has no own power at all.

There are multiple ways to modify the electromagnetic signal coming from
another source to Tx data. Ambient backscatter uses Wi-Fi, TV broadcasting
and other signals which are available all around us. It would be a candidate for
home automation and security sensors when range, reliability and delay reach
the necessary requirements.
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This system could have a problem with reliability. If a neighbor’s Wi-Fi
or a far away DVB-T tower is used as a source of signal for communication,
it can fail just when the security system needs it. Providing an own ambient
signal can be technically more difficult. It would probably require two separate
devices instead of one CU, one transmitting ambient carrier wave and the other
receiving. This problem would have to be solved to use backscatter in home
automation and security.

3.2.5 Mesh
A mesh network is a way to cover a larger area with short-range links. The
sensor needs to transmit the message only to its neighbor and not all the way
to the CU. It could fix the limited range of 2.4GHz BLE communication.

The problem for the security system could be the volatility of the routing
algorithm. When a smoke is detected, the information must get to the CU and
to sirens. Adding hops that will be selected on the fly might not be reliable
enough. A properly installed security system should have a map with the loca-
tion of all devices. This information could be used to plan and fix the routing
paths during installation.

Consumption of the network will be increased by the repetition of the mes-
sages. This effect must be balanced by lower transmitting power in the nodes.
Otherwise, it would be more beneficial to increase Tx power and disable mesh-
ing.

The meshing network needs to be synchronized. All devices need to wake
up at the right time to forward messages. Periods of sleep need to be relatively
short, so a message can get from the sensor to CU quickly. Synchronized, pe-
riodically waking devices will have larger consumption than sleeping sensors.

Randomly placed devices will deplete the batteries of unlucky nodes.
A node that is close to CU will bear the most load from its neighbors [16].
Batteries in a security system are commonly not user replaceable, so uneven
discharging would complicate maintenance. The routing algorithm needs to
tackle this issue.

Power problems can be avoided if routing is done only by mains powered
devices such as automation relay or smart light bulb. Yet, for a security net-
work, routing devices need to have their own backup in case mains power is in-
terrupted. There might not be enough space for batteries in a small device such
as a light bulb.

3.2.6 Other Less Known Systems
There are many more technologies for home automation or security. Some
are single-frequency systems, some are trying to adopt frequency hopping or
agility with the usual disadvantages and some have other inventions.

Z-Wave is a proprietary mesh network for home automation. It uses up to
three channels in the unlicensed sub-GHz frequencies with FSK modulation.
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Insteon combined AC powerline communication with proprietary
sub-GHz FSK. Unfortunately, the company went out of business in 2022
and was forced to shut down the cloud functionality of its devices.

IQRF uses GFSK on a single sub-GHz channel, selected in configuration.
It combines a synchronous mesh network with asynchronous sleeping sensors.

PowerG adds some channel hopping to its sub-GHz proprietary GFSK
technology. It uses a synchronized network and hops 64 times a second. It
uses 4 channels in 868MHz band and 50 channels in the 915MHz band. Dif-
ferent from other technologies, PowerG also offers security systems and not
just home automation.

EnOcean is a set of standards for sub-GHz Amplitude Shift Keying (ASK)
or FSK communication optimized for energy harvesting. Sensors can use en-
ergy from a flip of a switch, a change in temperature or a small solar panel to
send several short packets. It is a great solution for home automation. Security
device would have to harvest enough energy to periodically report its presence
even at night.

DASH7 is a sub-GHz GFSK technology with ad-hoc synchronization.
When a gateway wants to communicate with a sleeping device, it will continu-
ously send synchronization packets for several seconds. The battery-powered
device is duty-cycling its receiver to detect that and synchronize. There is also
an option for a gateway to scan multiple frequency channels. The device can
then use any of the scanned channels to transmit.

KNX RF is a set of sub-GHz GFSK protocols. There is BiBat with syn-
chronous devices that Receive (Rx) and Tx in defined time slots. There
is KNX RF Multi with 2 slow and 3 fast channels which are periodically
scanned for basic frequency agility. The frames have a long preamble, 500ms
for slow channels, which can easily be received by scanning or a duty-cycled
receiver.

Wireless M-Bus is a sub-GHz GFSK standard for reading out utility meters.
There are various modes of operation with several baudrates. Some of them are
unidirectional from a sensor to a master. Bidirectional sensors always initiate
communication to keep low power consumption.

ANT is a 2.4GHz GFSK personal area sensor network primarily intended
for fitness trackers. One master node and one or more slave nodes open syn-
chronized channels and exchange information only once in the channel pe-
riod, defaulted to 4Hz. Each opened channel can use a different frequency. If
needed, it can use frequency agility on selected 3 out of all 125 frequency chan-
nels. Another mode is Continuous Scanning where one node is continuously
receiving a single frequency for messages from other nodes.

3.3 Existing LPWAN Technologies

LoRaWAN, Sigfox and more popular technologies are in the category of Low-
Power Wide-Area Network (LPWAN). These networks are optimized for the
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operator and gathering of IoT data. The low-power aspect and connection of
many devices into one gateway were balanced by higher latency. The tradeoff
is visible in most LPWAN technologies [17].

Mostly, the delay is not acceptable for a home security device. But even
if the network would be able to reliably deliver the response in a fraction of
a second, any component on the way to the cloud and back could fail. We
have seen outages even of the biggest internet companies. Home automation
and security systems will mostly prefer a network that is centered inside the
protected house and will continue to work even when the internet connection
fails.

3.3.1 LoRaWAN
At least two large-scale networks were recently deployed over Europe and more
or less over the whole world. In the case of LoRaWAN, which is open, more
than a single provider may be available at any given place.

These networks are designed for IoT nodes with very low power consump-
tion. The node consumption can get to tens of µA [4], almost as low as simple
GFSK system while communicating over much longer distances, but probably
over the CR2032 limit. The involvement of the cloud means that it is good for
a long-term data gathering, but not the right technology for home automation
nor for security.

The LoRa modulation, used as a base for the LoRaWAN network, can be
licensed for use in a proprietary system. It uses a Chirp Spread Spectrum (CSS)
with multiple partially orthogonal spreading factors and bandwidths that allow
balancing data rate and available link budget. LoRaWAN uses bandwidth of
125, 250 and 500kHz in some regions, but the hardware is capable of various
other values. LoRaWAN uses sub-GHz unlicensed spectrum.

There is also a Long Range FHSS (LR-FHSS) modulation usable for up-
link. It was added to improve the congestion of many devices at one gateway.
Compared with LoRa modulation, it can support one or two orders of mag-
nitude more devices per gateway [18]. It solves the bottleneck, especially with
the prospect of using satellites instead of ground base stations.

The LR-FHSS splits one channel into many subchannels and uses a receiver
capable to listen to all subchannels of the channel. It means that the device
doesn’t need to be synchronized and the gateway can receive many hopping
sequences at once. The device sends 1 to 4 copies of a header on different
subchannels with a 9bit selection of a hopping sequence. The gateway needs
to receive at least one of the headers to synchronize and follow the device’s
hopping. The rest of the packet uses a coding rate of 1/3 or 2/3 to be able to
decode data even with a loss of many packet fragments.

LoRaWAN defines three classes of devices [43]. Class A is the simplest class,
just an asynchronous sensor. It needs to be implemented on all devices. When
the device has something to send, it transmits the uplink message and then
opens two receive windows for acknowledge and a downlink message. The
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device checks the availability of the channel by CCA algorithm only in regions
where it is necessary. In Europe, LoRaWAN uses a duty cycle limit instead. The
two receiving windows start 1 s and 2 s after the end of the device’s transmission.
Downlink is optional and discouraged as the gateway also needs to limit its
transmitting duty cycle.

Delay before the two receiving windows is caused by connection with the
cloud. The gateway needs 1 s to communicate with the network server and with
the application server to know what to respond. Technically, the information
from the sensor to an application server might get almost instantly, but any
lost frame will delay the information by several seconds before the device can
repeat its message.

LoRaWAN device can randomly select from multiple channels for the up-
link message. Gateway needs to have hardware capable of receiving multiple
channels at once. The price and power requirements of this hardware are not
that important when the gateway can handle a large area. It can be accom-
plished by one or two demodulators with a multichannel baseband receiver
[49] capable of receiving multiple frequencies and multiple spreading factors
at the same time.

Class B device opens periodic receiving windows for quicker downlink mes-
sages. LoRaWAN gateways send periodic beacons once every 128 s. Class B
devices synchronize with them and open receiving windows at precise times
known by the gateway.

The gateway can be tightly synchronized with GPS with sub-µs precision, in
which case it transmits all beacons. Beacons from multiple gateways merge in
the device’s antenna and the LoRa modulation is successfully received. If the
gateway cannot guarantee the necessary precision, it is only loosely synchro-
nized and will randomly send or drop beacons. It gives the device in range
of multiple gateways a chance to receive only one beacon. The probability of
transmitting a beacon is configured by a network server based on the distance
to neighboring gateways.

Class C device is always receiving. This class has a large power consumption
and therefore is used only by mains powered devices.

Class B and Class C devices also support multicast used to deliver the same
data to multiple devices. It can be the only way to get a Firmware Update
Over-the-Air (FUOTA) to all devices while complying with the duty cycle limit
of a gateway.

3.3.2 Sigfox
Sigfox is another LPWAN technology using unlicensed sub-GHz frequency
bands. With this technology, every device is registered and connected to the
cloud by the same operator.

Sigfox uses Ultra Narrowband (UNB) signal with bandwidth of 100Hz or
600Hz depending on region. Uplink uses Differential Binary Phase Shift Key-
ing (DBPSK) while downlink uses GFSK.
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The device is not synchronized with the gateway. It starts by transmitting
3 copies of a message on randomly selected channels. The gateway needs a ra-
dio capable of receiving all subchannels at once. After 20 s from the first mes-
sage, there may be an optional receive window. If there is a downlink message,
the device responds and the conversation ends.

The extremely low datarate has several disadvantages. Packets can carry
only 12B uplink and 8B downlink and still, the transceiver needs to be active
for several seconds. That in turn increases sensor power consumption. In the
situation of home automation and security, the average current consumption
would be over 100 µA [19], which is an order of magnitude more than a CR2032
battery.

To comply with duty cycle limits, in some regions the device can use only
140 uplink messages a day, plus 4 messages used by the protocol itself. The
actual limit of messages per day might be lower, depending on the service sub-
scription. That would be a limiting factor even for a simple security sensor.

Downlink messages are limited to only 4 messages a day. Together with
the delay between Tx and Rx it disqualifies Sigfox from any operation with
a verified uplink.

3.3.3 ETSI TS 103 357, TS-UNB
Several companies have grouped into Mioty Alliance with intention to use
Telegram-Splitting Ultra Narrowband (TS-UNB) part of ETSI TS 103 357
[50]. This technology uses GMSK modulation in the unlicensed sub-GHz fre-
quency band together with Telegram Splitting Multiple Access (TSMA) for
LPWAN star-shaped network. End-points can be either uplink-only Class Z
or bidirectional Class A. Downlink messages come only after uplink with ap-
proximately 7 s delay.

The main principle is to split one packet into many bursts, each on a differ-
ent channel. Coding of the message can take care of a missing burst. That can
overcome interference that is limited in time or in frequency.

There can optionally be Sync-burst Data Unit before the packet. It con-
tains information about the frequency-time burst pattern to be used by low-
complexity receivers. This burst is sent on a dedicated channel C=24. The
available documentation doesn’t specify how much more complex the radio
needs to be to be able to receive any pattern without the Sync-burst.

The documentation mentions cases where low latency is required, but the
network timing for downlink response, to acknowledge uplink message, pro-
hibits using this in anything like a smoke detector.

3.3.4 3GPP

3rd Generation Partnership Project (3GPP) is an organization responsible for
most modern mobile telecommunication standards. In the area of LPWAN,
they created standards for three independent technologies. As with other
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3GPP standards, they use licensed frequencies and are deployed by large es-
tablished mobile network operators.

Mobile phone chips with modems for various 3GPP standards could theo-
retically be used as a base for a wireless camera. The chips have a fast processor,
graphics accelerator and OFDM-capable SDR modem which can be tuned to
sub-GHz frequencies. All of them are necessary for a wireless camera in a home
security system.

NB-IoT

Narrowband IoT (NB-IoT) is the lowest power oriented. It provides only up
to 159kbit/s and has a higher latency 1.5 s to 6 s [20]. Different from the other
LPWAN, it verifies transmitted messages. Depending on a situation, the delay
could be acceptable for security devices if the technology can guarantee deliv-
ery in that time. Light switches and other automation devices wouldn’t work
with this delay.

Current development even points to satellite networks [21] similarly to Lo-
RaWAN.

EC-GSM-IoT

Extended Coverage GSM IoT (EC-GSM-IoT) is based on older Enhanced
General Packet Radio Service (EGPRS) and can be deployed over existing 2G
networks. It inherited its capabilities from 2G, datarate 474kbit/s and latency
of 700ms to 2000ms.

LTE-M

LTE for Machine-Type Communications Category M1 (LTE Cat-M1) is the
most powerful out of the three. It can provide 1Mbit/s with latency of 10ms
to 15ms. Consumption of the devices is also closing the consumption limit
of a coin cell battery. Nordic Semiconductor nRF9160 consumes 18 µA [51]
while in Extended Discontinuous Reception (eDRX) mode with period 81.92 s.
While in eDRX mode, the device automatically sleeps the modem to save power
and wakes without needing to reconnect to the network.
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4 RelatedWork

4.1 Custom FHSS Network

As a master thesis, I have tried to design an FHSS¹ network with the previously
explained constraints in mind [22].

The main principle of this network is that CU sends a beacon frame every
100ms on one of 4 channels. These 4 channels can be changed after a longer
period. A sensor that wakes up is able to quickly scan beacon channels and
from the first beacon frame quickly obtain information necessary to join the
network. Space between beacons can be used for communication between CU
and sensors.

This solution has lots of disadvantages similar to different frequency hop-
ping networks. The main difference is that CU of this network creates a lot of
radio traffic to compensate for the frequency hopping nature and the sleeping
sensors. The European RF norms have since then slightly changed and now it
most likely would not pass the certification.

4.2 Cortex-M Simulator

During my internship in STMicroelectronics, I was working with a brand new
STM32WL MCU with GFSK and LoRa transceiver on-chip. I was allowed to
publish an article about a simulator for Cortex-M microprocessors [23].

This tool does not directly fit into the dissertation topic, but might be very
helpful for developers in this area. Testing microprocessor firmware can be
challenging. Devices in home automation, security and more broadly any IoT
tend to sleep for long periods of time. A full system integration test can in
some cases take days and require a lot of resources.

The simulator developed can be used to do integration test of production
firmware without any modifications needed for testing. The simulation can be
run in a fraction of the time, save on the testing costs and thus increase the
amount of testing and discovered problems.

¹Note that the category FHSS is used loosely here, because the spectrum spreading is dis-
cutable. Frequency is changed from frame to frame and not inside one frame nor inside one
symbol. Especially for a sensor with only one or two frames sent, the spectrum would not be
spread at all.
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5 Affordable All-channel Receiver

The first idea of improving the communication in a security system is similar
to LoRaWAN LR-FHSS setup. A specialized receiver could be added to the
system CU, where there is enough room for a slight price increase. This so-
lution doesn’t consider the high bandwidth cameras which are requested for
some security systems. Parts of this chapter were published in [24], [25].

The main problem of the frequency agile or hopping network are sleeping
sensors which need to quickly connect to the hopping communication. The
sensor is sleeping long enough to lose synchronization. It doesn’t have infor-
mation about time and channel mapping and cannot easily transmit to CU.
Basic frequency agility could be solved by scanning multiple channels or by
having more physical receivers.

Scanning only works for a very limited number of channels, requires
a longer preamble and highly depends on the transceiver used. For exam-
ple, CC1200 transceiver needs 630 µs to switch frequency and check if there
is a GFSK signal at 38.4kBd/s [22]. Regular 4B preamble is 833 µs long,
so scanning more than just one channel presents a probability that the packet
will not be detected. Scanning for a few channels can be done with a longer
preamble, but it increases usage of the RF channel and batteries.

Having multiple radios in CU is another option with similar results. Sev-
eral 3 $ transceiver chips can be hidden in a price of the CU. Regulations for
sub-GHz FHSS require to have 47 or 58 channels respectively [52] or 50 chan-
nels [45]. That is unrealistic both as a price increase and as a space on the CU’s
PCB.

A receiver listening on all channels would eliminate the problem with syn-
chronization to the hopping network. The sensor device could sleep as in the
single-frequency solution. When communication is needed, the sensor could
choose randomly one of its preferred channels and start transmitting immedi-
ately. CU would receive the message, know the important information without
any delay, and respond on the same frequency with its regular transceiver. The
response might be a simple acknowledge or synchronization data for the hop-
ping network. The idea is depicted in Figure 5.1.
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Figure 5.1: Sensor and CU with an Additional All-channel Receiver

The task at hand is to create a receiver for CU that works on many chan-
nels¹ concurrently. It might not be profitable to design a new radio integrated
circuit for the amounts produced in this area of electronics. The remaining so-
lution is to use existing mass-produced electronics for SDR and put necessary
development into the software.

If the transceiver chip in the sensor is sufficiently advanced, this solution
could be improved to a full FHSS the same way as in LoRaWAN. The sensor
could send a small header with a hopping pattern, the CU’s receiver would
synchronize and the rest of the frame could be spread over many channels.
In the scope of this work, only the task of receiving a single frame is investi-
gated. Whether the frame contains sensor data or FHSS synchronization pat-
tern is not important.

In the same way, this work doesn’t handle higher Open Systems Intercon-
nection (OSI) layers, for example L4 mechanisms for correct packet retrans-
mission. These mechanisms are well known and don’t need to be discussed
here.

For the initial development, a simulation and RTL-SDR receiver with Mat-
lab were used. RTL-SDR is an affordable and easy-to-use [26] SDR receiver
based on DVB-T tuner. The radio concept was then ported to a Cortex-M
MCU.

5.1 Design

The lowest level modulation, binary GFSK with BT = 0.5, is given by the
available hardware for sensors. It is not feasible to put more expensive radio
into devices that cost only a few $ to manufacture. Frequency deviation, symbol
rate and channel spacing could be set to the needs of the receiver.

¹Separate carrier frequencies might be called subchannels and independent sets of many
subchannels can be called channels. Whether the communication can be used on multiple
independent sets of carrier frequencies is an implementation detail. In this text, channel is used
for carrier frequency and not sets of them.
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5.1.1 Receiving Symbols
Simplified binary FSK signal might look as

s = A · sin (2πt · (f0 ± fdev)) (5.1)

where f0 is carrier frequency, and fdev is frequency deviation. The ± sign can
switch each Ts symbol duration.

Signal s is received, demodulated to a lower frequency, sampled and dig-
itized by the SDR. There are multiple types of SDR constructions. It can be
done even without the demodulation step [53] which shows that development
of this area still continues.

The digital signal first enters an FFT to receive all channels at once. The
FFT has bins set to frequency f0 of each channel. Signal s won’t fit precisely
into any bin. The best it can do is

s = A · sin(2πtf0 ± 2πtfdev) (5.2)

where 2πf0 is the bin frequency and A with

±2πtfdev = φ(t) (5.3)

are amplitude and phase, products of the FFT bin.
The first derivative of the phase is

dφ(t)

dt
= ±2πfdev (5.4)

and that is exactly the bit of information we are interested in. We look at sign
of dφ(t)

dt
and decide on the received symbol.

In practice, it has to be replaced by discrete approximation, in the simplest
by a difference of two consecutive samples. Each sample φ(t) must be in range
of ⟨0, 2π). If it goes above or below, it wraps around. The same has to be done
with the difference. That limits phase difference which can be detected to

φ
[
t

Tc

]
− φ

[
t− Tc

Tc

]
∈ ⟨−π, π) (5.5)

where Tc is the duration of the samples at the output of FFT. The maximum
detectable frequency deviation is

2πTc ·max(fdev) = π (5.6)

max(fdev) =
1

2Tc

(5.7)

Normally, the sampling time could be synchronized with the received signal
to minimize the intersymbol interference [27] [28]. Here, several individual
devices transmit their symbols randomly shifted in time. It wouldn’t help to
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synchronize sampling to only one of them, and interpolating the signal for
each channel separately would be too complicated. For a 30ppm quartz crystal,
Tc

2
shift happens after 8333 symbols or 1042 bytes. That is several times more

than the longest packet of most similar systems, so the symbol synchronization
was simplified to the bare minimum. I have selected Ts = 2Tc to sum two
neighboring samples.

The condition for maximal received frequency deviation can now be ex-
pressed as

max(fdev) =
1

2Tc

=
1

Ts

(5.8)

which can be compared to a Minimal Shift Keying (MSK) modulation
(fdev = 1

4Ts
) and gives three-quarter margin for noise and oscillator imperfec-

tions.
MSK is a special case of FSK where fdev =

1
4Ts

. It simplifies the phase shift
caused by one symbol to φ(Ts) = ±π

2
. The difference between both symbols

is exactly half of the sine wave. It is the variant with minimal bandwidth while
keeping both symbols orthogonal to each other.

Another special case for both FSK and MSK are GFSK and GMSK.
A Gaussian filter is used for the fdev change which smooths the signal and re-
duces bandwidth. The disadvantage is intersymbol interference. Both meth-
ods of reducing signal bandwidth are helpful when putting many channels next
to each other.

The channel size or size of the FFT frequency bin is equal to sampling fre-
quency at the output, fch = 1

Tc
. The size must be greater than the bandwidth

used by the communication to fit the signal inside the provided channel. It
is hard to estimate the bandwidth of GFSK, but Carson’s rule can give a rough
estimate of

fbw = 2 ·
(
BT

Ts

+ fdev

)
(5.9)

where BT is the Gaussian filter bandwidth bit period product. For GMSK with
BT = 0.5 it would simplify to fbw = 1.5

Ts
. That gives another condition on the

sampling rate
fch =

1

Tc

≥ fbw =
1.5

Ts

(5.10)

Ts ≥ 1.5Tc (5.11)

which is satisfied by previously selected Ts = 2Tc and a small reserve remains
for the bandwidth estimate.

Using higher fdev than GMSK would increase the signal bandwidth, and
force us to increase Ts to Tc ratio and decrease the amount of useful data. Since
GMSK has been successfully used for decades, there is no need to increase fdev.

An RTL-SDR dongle has limited IQ sample rate of 2.4Msample/s which
limits the received bandwidth. The size of the FFT has to be n = 64 as it
is the lowest possible power of 2 which satisfies regulations. Some of these
channels can be permanently silent to avoid neighboring communication or
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Figure 5.2: Basic Scheme

reserved channels. Channels are 37.5kHz apart, the symbol rate has to be
1/Ts = 18.75kBd/s and the frequency deviation fdev = 4.6875kHz. Channels
were put from 865MHz up, so no Low Duty Cycle / High Reliability (LD-
C/HR) channel is overlapped. The LDC/HR is a reserved group of channels
that cannot be used by an FHSS.

5.1.2 Processing Packets
Each packet starts with a preamble and a syncword. The preamble is an al-
ternating sequence of zeros and ones used for synchronization. The syncword
is a pseudo-random value, selected beforehand, to know when preamble ends,
useful data start and to differentiate between systems with the same modula-
tion. Running cross-correlation was chosen to detect preamble and syncword.
The match on the syncword also sets the symbol synchronization. After the
syncword, it is common to include a length of the useful data in the packet. At
the packet’s end, there is usually a CRC.

GMSK transceivers usually have some frequency offset. It can be calibrated
in a factory, but time and temperature will cause some additional uncalibrated
offset. It needs to be compensated by the receiver. An averaging filter was
used to get transmitter carrier frequency from the alternating preamble. The
filter has a length of 4 samples. Length in multiples of 4Tc = 2Ts will average
the same amount of negative and positive fdev and get the offset. The offset
is stored in a circular buffer of 64 values. At the time of syncword match, the
last value is used for symbol decision. The buffer delays the valid offset value,
because at the time of syncword match, the filter has already processed the
syncword. The syncword is not balanced in zeros and ones and would bring
a frequency offset of its own.

Now the simplified scheme of the receiver can be seen at Figure 5.2. Indi-
vidual blocks can be enabled only at the time they are needed to save on com-
putational power. Only the FFT and power detector need to be always on.
When a detector is triggered on a particular channel, more blocks are enabled,
but only blocks for the given channel. The first step is a power rising over
a given threshold which enables calculation of phase angle, its difference and
preamble correlator. The next stage freezes frequency offset and activates sync-
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word cross-correlation. Last stage updates frequency offset from the 64-sample
FIFO and receives data. Everything must be protected by a hysteresis or fail-
safe timeout. Absolute signal power is expected to keep high during the whole
packet, so there can be a hysteresis and a condition resetting everything on
packet failure. Cross correlations on the other hand are expected to fall shortly
after detection, well before the packet ends, so there needs to be a protective
timeout resetting the receiver only if something fails.

5.2 Simulation

The receiver implemented in Matlab Simulink was tested by a simulation. The
RTL-SDR module returns preprocessed baseband complex signal in a single
floating point type. It is equivalent to synthetic e2πift or to the output of the
comm.GMSKModulator() function. That simplifies the test and doesn’t require
almost any changes in the receiver model.

All simulations were done with the signal passed through an Additive White
Gaussian Noise (AWGN) channel which is the simplest method. Individual
channels of this receiver are relatively thin and the receiver doesn’t presume any
multipath effects nor frequency distortions. Therefore, this kind of test should
be enough for this receiver. Frequency-specific effects would be interesting in
comparison to a single-frequency system, but that is not specific for this receiver
and it has already been studied [7].

The input to all simulations were packets with 20 useful data bytes. That
is 31B in total, including all overhead (4B preamble, 4B syncword, 1B length
and 2B CRC). Perhaps it is more common to simulate Bit Error Rate (BER),
but here the success depends on syncword match and frequency offset elimi-
nation. Packet Error Rate (PER) was used as a simulation output. No error
correcting code was used and a single erroneous bit means the packet is not
received successfully. The received data were compared with the data sent be-
cause the CRC used (CRC-16-IBM) offers only a basic protection.

The packets were generated by Matlab’s comm.GMSKModulator() already at
the base sample rate with 64× 2 samples per symbol. Packets were multiplied
by a step window passed through a Gaussian filter to smooth the power rise and
fall. A similar process, power ramping, is done by real transmitters. Addition-
ally, a random time in a range between 1 sample and 2 symbols was prepended
before the packet and a complement of that time was appended after the packet
to have a constant length. This was to test the syncword match and the sym-
bol detection. In the end, the packet was shifted to the frequency of one of
the channels by multiplying with e2πift, where f was channel offset from the
receiver center frequency in a range from −32 to +31 divided by 64, size of the
FFT. Variables f and t also contained 2.4Msample/s sample rate to fit the same
receiver to both hardware and simulation.

The simulation was set up in a complicated manner to shrink the simulation
time down to a practical level. As it turns out, Matlab and Simulink have quite
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Figure 5.3: Packet Error Rate

bad memory management and parallel computing capabilities. It is not a prob-
lem to create several thousand packets and start parsim() simulation, yet start-
ing and stopping each simulation takes orders of magnitude more time than
the actual simulation. The problem even increases after a few hundred simu-
lations. I found the optimal setup to be 50 packets in one signal, separated by
a few bytes of zeros (approximately 2 million samples). Approximately 100 of
these signals were simulated together in one parsim(). With these numbers,
the signals were not too long for the initial model build, the initial build was
done 6 out of 100 times and the latter simulations were not yet slowing down.
This was repeated 20 or more times to get enough data.

5.2.1 Receiving Packets Through AWGN Channel

Figure 5.3 depicts simulation of different Signal to Noise Ratio (SNR) and
the resulting PER. The SNR was corrected for the fact that the FFT filters out
63/64 of the noise. The SNR level of the AWGN channel was decreased by
approximately 18dB.

SNRoffset = 10 · log10
(
1

64

)
≈ −18dB (5.12)

The Figure 5.3 shows that the receiver starts receiving after 12dB of SNR
with 17dB for 10−2 PER.
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Figure 5.4: Packet Error Rate on Frequency Offset

5.2.2 Receiving with Frequency Offset
Figure 5.4 shows how the Rx is influenced by the frequency offset of the Tx.
This simulation was done with 17dB SNR, so the expected PER at exact chan-
nel frequency should be around 10−2.

The left curve in Figure 5.4 rises slowly from the correct channel frequency
up to 0.25 · 37.5kHz = 9.375kHz, where the error rate more than doubles.
It shows that even a small frequency offset will influence the communication
and production devices should be calibrated. Rx stops receiving completely
when Tx shifts for more than approximately 0.3 · 37.5kHz = 11.25kHz. This
is perhaps less than a normal GMSK receiver would [40]. It is also less than
the limit of the detectable deviation on FFT output

fdev_max − fdev_gmsk =
1

Ts

− 1

4Ts

= 14.0625kHz (5.13)

but that would be only in ideal conditions without any noise.
The right curve is the same curve flipped, when the receiver starts receiving

the packet on a wrong channel.
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Figure 5.5: Packet Error Rate on Different Channels

5.2.3 Comparison of Different Channels
Figure 5.5 shows dependency of the receiver on channel used. This simulation
was again done with 17dB SNR and expected PER should be around 10−2.
Only one random sequence was generated for all channels. This is to ensure
no influence of randomness on a specific channel. Channels were selected ran-
domly, but incremented by the simulation index. There were 64 simulations
which means that all channels were always simulated, but in the scope of one
signal, the channel appeared random.

The result is only a noise below 10−2 which verifies that the receiver
shouldn’t be dependent on any particular channel used.

5.2.4 Influence of GMSK on Other Channels
Figure 5.6 shows the influence of a GMSK signal on a neighboring channel.
The format of tested packets was kept the same as in the previous simulations.
The AWGN channel was kept on the same level of 17dB SNR between useful
packets and white noise. An additional GMSK signal with the same parameters
and randomly selected symbols was added on a neighboring channel. This
noise signal was continuous without a header and pauses between packets.
The power of the noise GMSK was varied. SNR in Figure 5.6 is a difference
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Figure 5.6: Packet Error Rate with GMSK on Neighboring Channel

between power of the useful packets to the noise GMSK on the neighboring
channel.

The expected error rate without signal on a neighboring channel is 10−2.
Even with a much weaker neighboring signal, the PER doesn’t fall to the ex-
pected value but stays approximately 6 times higher. With both signals having
the same power, the receiver is more than an order of magnitude worse.

Figure 5.6 also shows a bump between −4 and −2dB. A stronger noise
influences the receiver less than a weaker signal. A similar bump shows even
when varying simulation parameters, so it doesn’t seem as an error of the simu-
lation. The bump could be explained by two influencing factors together, but
the exact cause of this is not known.

Influence on the neighboring channel is significant, but less important if
the communication will randomly select a different channel. The probability
of a collision of two devices selecting the same channel is 1/64 which should
be prevented by CCA. The probability of selecting a neighboring channel
is 2/64 = 0.03125 which almost compensates for the worse PER.

Figure 5.7 shows the same two signals with larger channel distance between
them. Both signals have the same power and AWGN was still set to 17dB
from the useful packets, not counting the power of the GMSK noise. The in-
fluence of the other GMSK signal falls quickly with the first few channels of
distance. With another GMSK further apart, the receiver PER stays approxi-
mately 6 times higher than without another GMSK. It seems that both a weak
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Figure 5.7: Packet Error Rate with GMSK on Other Channel

signal on the neighboring channel and a strong signal far apart have the same
influence.

5.2.5 Multiple Packets Received at Once
Figure 5.8 shows how the receiver works when multiple packets are running
simultaneously. Instead of one packet in previous simulations, N individual
packets were generated separately and then summed together. All packets were
created with the same power. SNR value is the distance between the noise and
the power of one GMSK signal.

In this simulation, the random shift of the packets was increased to between
1 sample and 16B. This should be closer to reality where the chance of packets
starting at the exact same time is negligible.

Concurrent packets were randomly spread between available channels by
using permutation and picking the first N elements. This was to prevent col-
lisions, so there were no two packets at the same frequency at the same time.
The random selection of a channel adds randomness in how close the channels
are but is similar to a real device trying to transmit.

Data at Figure 5.8 shows expected increase in PER with increasing number
of concurrent packets. For 64 packets at once the PER doesn’t fall as quickly
with higher SNR, similar to the limit caused by a signal on a neighboring chan-
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Figure 5.8: Packet Error Rate on Concurrent Packets

nel. Even in this case of entirely full radio spectrum, the receiver would have
90% chance of success at 20dB SNR. A bigger problem would be planning the
L4 protocol layer to be able to respond to all 64 devices in a reasonable time.
The other problem would be computational power. Matlab simulation doesn’t
need to run in real time if it doesn’t have any real-time inputs and 64 packets
at once might be too much for a common computer.

For the real scenario, where only a few packets are expected at the same
time, the change in performance is relatively small.

5.3 Test with RTL-SDR

This time the Matlab Simulink receiver was connected to RTL-SDR hardware
with a long stick antenna. This device is constructed on a base of DVB-T USB
dongle. The regular DVB-T receiver is switched to raw mode and sends IQ
samples through USB to host PC. It is a cheap alternative to professional tools,
essential for students to explore SDR.

The receiver was running in Matlab Simulink in an infinite real-time simu-
lation. Transmitter was a repurposed electronics board with STM32L0 MCU,
CC1200 RF transceiver and an onboard PCB antenna. It sent packets with 20B
of useful data. The first four bytes were the hardware address of the transmit-
ter. Following was one byte with a channel on which the packet was sent. The

43



next two bytes were 16bit counter incremented with each packet. The counter
was used to evaluate missing packets. For each received packet, the number
of received packets was incremented by one and the number of missed packets
was incremented by counter difference minus one. The rest of the packet were
fixed values to validate the received data.

The transmitter started by 2ms receiving, followed by a transmission of the
packet. The receiving part was implemented as CCA to prevent collisions from
influencing the results. This was repeated on different channels. The transmit-
ter was incrementing frequency channels by one on each packet. This simpli-
fied processing of the received data, as all missed packets were easily pinned to
a given channel. Random channel selection would require knowing the selec-
tion at the receiver to know what channel was used for the missing packets.

Several tests were made inside an old university building. In each test, over
20 · 103 packets were sent. For the transmitter on the same table approximately
1m apart, PER was 1 ·10−3. Interestingly, a few packets were received as copies
on a neighboring channel. Gain of the RTL-SDR was set to maximum and
Automatic Gain Control (AGC) was turned off, so a weaker packet would not
be influenced by a stronger packet on another channel. Maximal gain creates
a significant distortion as the signal is clipped. It shows how robust can fre-
quency modulation be.

When the transmitter was one floor up and approximately 30m far, the PER
was even better 2 · 10−4.

The test at Figure 5.9 was done with transmitter two floors up, about 50m far
and behind complicated wall structure. Basically as far as the school building
allows. PER in this situation was 5 · 10−2, which is still usable 95% of pack-
ets successfully received. At this distance, the transmission on a single chan-
nel wasn’t received by the same hardware used for Tx, though the comparison
is a bit misleading as the hardware receiver had a different antenna.

The blue line in Figure 5.9 shows that the receiver is bad on several low
channels. It may be caused by filters in the demodulator [54] or filters in the
DVB-T receiver which are not well documented. The resulting PER without
first 3 channels would be 3 · 10−2.

The overall performance of the receiver would require much more elaborate
measurements and a laboratory environment. Still, it is seen that the receiver
works at a reasonable distance, considering the thick walls and floors of an
old building. When compared with a single-channel chip receiver, this SDR
receiver is at least comparable if not better.

5.4 Hardware Platform

The overall receiver concept is tested and the next step is to prove that the re-
ceiver can run in affordable electronics. Running a full computer with Matlab
Simulink is not practical for an embedded electronics CU. The hardware used
is based on LPC-Link 2 with a custom RF demodulator expansion board.
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5.4.1 LPC-Link 2
The LPC-Link 2 is a fast debugger for Cortex-M LPC MCUs made by NXP. It
itself is also based on a powerful Cortex-M MCU and can be used as a devel-
opment kit debugged by another LPC-Link 2.

The kit provides the LPC4370 MCU, external flash program memory, ex-
pansion connectors and a handful of other necessary components. This multi-
core MCU has one Cortex-M4 core, two Cortex-M0 cores, all running at
204MHz, and for an MCU extremely fast 80MHz ADC [55]. Nowadays, there
are more powerful MCUs with the same size and power requirements, but none
has comparable ADC.

5.4.2 Demodulator Expansion
An expansion board with a demodulator was designed to receive 868MHz RF
signal and demodulate it for the ADC. The demodulator chip is Rafael Micro
R820T2, the same as in RTL-SDR. This chip was selected because part of its
documentation leaked to the public and is available.²

²Unfortunately, the original R820T2 is at end of its life [56] and its successors are kept secret
with no documentation available. According to authors of RTL-SDR, its replacement R860
is identical [57] and so the documentation for R820T2 is still usable.
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The demodulator has an onboard PCB antenna connected to its RF input.
This antenna is common in sub-GHz home electronics. Better antennae exist,
but this design is sufficient for the purposes of this experimental implementa-
tion.

The output of the demodulator is a differential pair with frequencies of sev-
eral MHz. In the path of the signal are capacitors to remove any DC com-
ponent from both signals. The resulting signal is put through the LPC-Link 2
expansion connector to the differential input of the ADC. There is also a layout
for a voltage divider and a pair of anti-parallel diodes clamping the differential
signal to protect the MCU’s ADC input which can survive only 400mV. Later
measurements showed that they were not needed and the output stays under
the limit.

A mistake was made in the board design due to insufficient documenta-
tion. The LPC4370’s differential ADC has internal bias resistors. They are
used on DC separated signal to provide safe DC value. In that case, an ad-
ditional 100kΩ pull-down resistors need to be connected to the ADC inputs.
This was not mentioned in the datasheet [55] nor in the user manual [58] of
LPC4370. Without these resistors, the measured signal has a significant offset
which complicates further calculations. The resistors were added later to the
prototype boards to fix the problem.

The demodulator is set and controlled through an I2C bus. In contrast to
standard I2C connection, there are resistor-capacitor filters on the signal wires.
These were copied from the reference application schematic found in the leaked
datasheet for the demodulator. The purpose is probably to balance I2C signal
quality and interference from quick falling edges.

There are extra pads for an I2C DAC which leads to analog gain control of
the demodulator. Layout for it was etched into the PCB as a precaution but
the components were not placed. Gain controls inside the demodulator were
enough for the function of the prototype.

The whole PCB was designed with 4 copper layers to provide a ground plane
close to the demodulator chip. The expansion board, including the antenna,
is 4× 4 cm large. Resulting hardware platform is depicted in Figure 5.10, where
the blue longer board is LPC-Link 2 and square green board is the expansion
demodulator.

5.4.3 Current Consumption
The LPC-Link 2 can be powered by 5V from mini USB connector or by 5V or
3.3V on solder pins. There are linear voltage regulators between 5V and 3.3V
which makes powering the board by 5V quite ineffective.

When the receiver is running powered by 3.3V, the whole board consumes
394mA. Out of this value, only 203mA are consumed by the MCU and 191mA
are consumed by the demodulator. The consumption of the demodulator
is surprisingly high for an analog chip only 1/4 size of the MCU, but the values
correspond to values found in respective datasheets.
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Figure 5.10: Hardware Platform

The total consumption is approximately 1.3W. It is an order of magnitude
more than the consumption of radio for a single-frequency network, but power
requirements of the CU are not as big an issue and this value is acceptable.

5.5 Firmware

All firmware is written in C language. The MCU manufacturer provides an
Eclipse-based IDE MCUXpresso which comes with project examples. These
examples are important for the control of the MCU’s cores and the external
flash memory. On power up, the MCU’s Cortex-M0 cores are stopped and the
Cortex-M4 core loads its program code from the external memory. Provided
linker scripts add M0 firmware as data for the M4 which loads them into proper
RAM sections in its startup code.

5.5.1 Demodulator, ADC and DMA Control

The demodulator, ADC and Direct Memory Access (DMA) unit are controlled
by the M0 core. The DMA is set up to transfer ADC samples, full FFT
frame at a time, directly to RAM. The ADC produces 12bit samples already in
two’s complement format. When one frame is transferred, it is automatically
switched to a second buffer and an interrupt is triggered. This way the mea-
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surement is fully automatic and the M4 core can immediately start calculations
on the frame.

The ADC takes differential signal but only one stream of real data.
RT820T2 normally converts the DVB-T signal to Intermediate Frequency (IF)
of about 4MHz with bandwidth between 6 and 8MHz. That is the main dif-
ference in SDR architecture from RTL-SDR. In this setup, the ADC speed
must compensate for the missing complex component and the signal must be
later processed digitally. The simplest method is to sample twice as fast as in
the Simulink receiver, 4.8MHz, which results in 128-sample blocks per one Tc.
The lowpass filter of the demodulator can be set around this low value [54].
The ADC can take samples much faster, but the MCU would not be able to
process the signal.

Control of the demodulator was quite a challenging task since the avail-
able documentation is very brief. There is an open-source driver for R820T2
available in the Linux repository, but it is flawed. It isn’t able to set the de-
modulator’s Phase Locked Loop (PLL) frequency to the 868MHz band with
the quartz crystal that is suggested by the documentation. This is probably
just another bad effect of no public documentation. In most cases, it is not
a problem, because different crystal values may be used in different receivers
and DVB-T signal should not be at 868MHz. Luckily, the Airspy open source
project solved the PLL setting differently and it was possible to take inspiration
there.

5.5.2 MCU Speed and CMSIS-DSP
The speed of the MCU is barely enough for the task to receive on all channels
at once. Several changes had to be made for the necessary calculations to fit
inside the given time interval.

Most of the calculations are done with Cortex Microcontroller Software
Interface Standard - Digital Signal Processing (CMSIS-DSP) which is a math-
ematical library for Cortex-M processors. This library is highly optimized al-
though there are examples where user code can be better. Table 5.1 shows time
needed for various operations on the M4 core at full speed 204MHz. Calcula-
tions are done for type q15_t provided by CMSIS-DSP.

In some cases, there are simple tricks to speed up firmware operations. The
ADC output is 12bit and needs to be multiplied by 16 to get the full resolution
of a 16bit q15_t. The first tip, used by almost all programmers is to use bitshift
instead of multiplication. Another tip is to do two shifts in one MCU clock
by using 32bit Arithmetic Logic Unit (ALU). The 12bit values are stored in
2B next to each other in memory and cannot overflow if they are both shifted
at the same time. This can in some cases be used also for addition and other
operations if the result cannot overflow the given space. The last tip is called
loop unrolling. Most for loops can be rearranged to do more calculations in
each cycle to be a bit faster.
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Table 5.1: Duration of Various Operations

Operation CMSIS-DSP MCU Cycles Time [μs]
128×copy • 370 1.8
128×copy 201 1.0
128×offset • 537 2.6
64-sample complex FFT • 2745 13.5
128-sample real FFT • 4761 23.3
—||— without bitreversal • 4377 21.5
64×magnitude2 • 539 2.6
128×bitshift & overflow 273 1.3
128×bitshift 569 2.8
128×copy & sin 699 3.4
2×decimate 1×tap • 2937 14.4
2×decimate 3×tap • 3586 17.6

5.5.3 FFT andMagnitude Squared
The goal is to keep the communication speed of the receiver designed in pre-
vious sections. This means that one 64-sample FFT and one sample of the
resulting signal need to be calculated in

Tc =
Ts

2
=

1

2× 18.75kBd/s ≈ 26.6 µs (5.14)

where Tc is the time of a sample of the resulting signal and Ts is the time of one
GMSK symbol.

The calculations were split between the M4 core and one M0 core. The M4
core has additional vector instructions and a full ALU, so it is used to calculate
the FFT and magnitudes for all channels. Processing of the individual GMSK
signals, remainders of the receivers, evaluation of the packet data, control of
MCU peripherals and demodulator is handled by the M0. The GMSK pro-
cessing is done only for a limited number of active channels, so it may seem
like more tasks, but it is less work for the smaller core.

Given the time measured in Table 5.1 and the time budget of (5.14), the M4
core has less than 26.6 µs to:

• 1.3 µs, bitshift the signal from 12bit two’s complement to 16bit two’s com-
plement q15_t.

• 3.4 µs, copy and interleave from real to complex data type leaving the
imaginary element zero and multiply with fsample/4 sine and cosine.

• 2× 17.6 µs, filter the signal to get rid of the unwanted image.

• 13.5 µs, do a 64-sample complex FFT.
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The total would be approximately 53 µs. It is clear that the M4 core cannot
further downconvert the signal to zero IF.

The solution is to sacrifice some channels near the zero frequency and use
real FFT of twice the size. The optimizations used by CMSIS-DSP allow
to calculate only 64-sample complex FFT and then split the result to obtain
128-sample real FFT. Together with the calculation of magnitude squared it
would almost fit within the time limit. To get into the time limit and provide
a reasonable reserve, the magnitude calculation is done only for a half of the
channels alternating with each sample. The magnitude is used only to start fol-
lowing parts of the GMSK receiver and it doesn’t need to be known for each
sample.

5.5.4 Arctangent and GMSK Decoder
Decided on the value of the magnitude squared, a limited number of channels
is selected and marked active. Currently, only 6 packets can be received at once.
Only active channels have arctangent calculated. It would not be feasible for
the M0 core to calculate arctangent for all 64 channels. It could be possible to
use the other M0 core of LPC4370 to calculate an additional 6 channels, but it
was not done in this work.

There are many numerical approximations to calculate arctangent [29]. But
the best seems to be the Coordinate Rotation Digital Computer (CORDIC)
algorithm [27]. Implementation of CORDIC used in this work was made by
ST [59]. Speed of approximation such as a · x− b · x2 and CORDIC is almost
the same, but the CORDIC algorithm seems to produce much better results
for the receiver.

The active channels are passed through four stages. Compared with the
receiver implemented in Simulink, there are many smaller changes to speed
up the calculations. Instead of preamble and syncword correlations, there are
simple comparators with decoded symbols. Instead of long FIFO for calibra-
tion of the frequency offset, this implementation uses deviation at the time of
preamble match.

In the first stage, the receiver looks for a preamble. Four sample average
is subtracted to remove offset and compared with 0 to get GMSK symbols.
Even or odd samples are compared with alternating sequence to match the
preamble. When the preamble is detected, the stage advances to syncword
compare, where all 4B must fit the signal. The syncword fit also sets the symbol
position on the correct one of two samples. The next stage is a receival of
individual bits and bytes of data. For simplification, only odd or even samples
are used for the GMSK symbol decision.

In the last stage, the packet waits in a buffer until CRC is checked. CRC
check is done from main loop with a lower priority, together with printing
information to UART console.
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5.6 Results

The receiver was tested with a single board CC1200 transceiver. Ordinary
GMSK packets were sent on all frequency channels, received by the software
receiver and printed through UART to PC. The packet format was the same
as in the previous test. There were preamble, syncword, length, 20B of useful
data filled with counter, channel and known pattern and 2B CRC at the end.

The receiver and transmitter were in the same room, about 1m apart and
about 30 cm from any obstacle. An unusually small distance was selected be-
cause the receiver can successfully work only in a range of one room.

Dependence of Rx success rate on channel is depicted back at Figure 5.9
on page 45. The drop around channel 51 (red curve in Figure 5.9) is for the
receiver in LPC4370. This drop was expected. The downconversion process in
the demodulator flips the frequency spectrum and its high pass image filter cuts
approximately 500kHz [54] which approximates to 13 channels. It is the down-
side of the FFT simplification mentioned earlier. This drop is a nice change
because the test with RTL-SDR showed a different drop (blue curve in Figure
5.9), but the closed nature of Matlab drivers didn’t allow any explanation.

When only channels 0 to 51 are considered, 39475 out of 40361 packets were
successfully received or PER of 2 · 10−2. Included are 364 packets that were
received on a wrong, neighboring channel. Not included are 18807 packets
which were received as an additional copy on a neighboring channel.

5.6.1 Improvements
The range of the receiver is very limited. There may be several reasons for this
insufficient range. It may be caused by the antenna which was not impedance
fitted to the demodulator input. RF optimization would be a long and ex-
pensive process but have little to no effect on the goals of this prototype. It
may also be caused by improper matching of the differential IF pair between
the demodulator and the ADC. It would need proper documentation from the
manufacturers of both chips. The last reason could be any of the many simpli-
fications necessary for the low computational power of the MCU.

There was a very large number of packets received additionally on a dif-
ferent than the original channel. From previous experiments, we know that
the receiver architecture is often able to receive a deformed signal that leaks to
a neighboring FFT frequency. It would point to a possible problem in clipping
with a signal that is too strong. Yet, a distance of several meters is enough for
the receiver to stop working. Both problems may be linked together.

A large improvement might be to use a more modern MCU like STM32H7.
This MCU has slower ADCs, but a much faster Cortex-M7 core. Its ADCs can
be joined in an interleaved mode and do up to 7Msample/s. It would allow
us to fully sample the IF and convert the sampled signal properly to zero IF
before doing a complex FFT.
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6 Proof of Concept Sensor

This chapter describes a Proof of Concept (PoC) network of a CU with wireless
sensors. It should verify what sensor consumption is achievable with modern
hardware and certain network parameters. Research in this chapter was done
in cooperation with Department of Materials and Technology (KET) at ZCU.
It is planned to be published later in a journal. In preparations for Chapter 7,
this PoC uses more advanced SDR and the results from this chapter are not
directly applicable to the receiver designed in the previous chapter.

The model situation would be a factory that handles dangerous gases. As an
additional layer of protection, this factory might want to place sensors guard-
ing gas concentration throughout the entire factory. Many sensors would be
able to do long-term measurements and report concentration to detect even
the smallest leak. In case of a big leak, the sensors should react immediately to
stop the source of the leak and alert everyone to leave the area.

The wireless sensor needs to periodically measure and send the concentra-
tion of a dangerous gas. Additionally to that, there is also a trigger that is able
to immediately report if the concentration increases over a given threshold.

The sensor needs to have low current consumption and survive more than
a year without maintenance. Many sensors would be placed all around the
factory, so replacing batteries too often would be complicated. The limit would
be to match the batteries to the expiration date of the gas sensor and replace
the entire sensor at one time.

Communication between sensors and CU needs to be reliable even in pres-
ence of interference. It also cannot have a longer delay, so the alert is trans-
ferred to CU as soon as possible. The sensor is using a random frequency
channel for Tx and needs an all-channel receiver in the CU.

6.1 Sensor Hardware

Custom PCB was made for the sensor. The sensor is built around a combi-
nation of STM32L062 MCU and S2LP GMSK RF transceiver connected to-
gether with SPI. The complete PCB is 3× 3 cm large. With batteries and the
electrochemical cell, it is approximately 2 cm tall. Version v03 of the sensor can
be seen on Figures 6.1 and 6.2.

Previous work showed that an onboard antenna can be a potential source of
problems. In this PCB, a U.FL connector was used instead. It can be connected
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Figure 6.1: Hardware Platform

Figure 6.2: Hardware Platform with Batteries and Antenna
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either to a sub-GHz antenna or via an attenuator and a 50Ω cable directly to
the transceiver in CU. In between the RF transceiver and the connector, there
is an integrated Balun, made specifically for the S2LP by ST, and a Surface
Acoustic Wave (SAW) bandpass filter tuned to 869MHz. The SAW filter passes
most of the unlicensed sub-GHz spectrum but attenuates everything else. The
production device might work well with discrete components instead of both
chips, but it should be a good starting point for this PoC.

The gas sensor is a 3-lead electrochemical cell from Spec Sensor. It needs
a proper Analog Front-End (AFE) potentiostat LMP91000 to get a value mea-
surable by the MCU’s ADC. Apart from the analog output, the AFE needs to
be controlled by an I2C bus. This AFE consumes approximately 10 µA con-
tinuously which is a major part of the 13 µA budget of 2 years on CR2032.
Unfortunately, it also needs at least 2.7V to operate. CR2032 battery starts at
3V, but its voltage decreases as it gets depleted. For effective use of the bat-
tery energy, this AFE needs two CR2032 batteries in series and a power supply
lowering the voltage to a value safe for the electronics.

The electrochemical sensor requires knowing the ambient temperature and
humidity. Both values can be used in calculations of concentration, to estimate
the sensor wear and to indicate failure if the sensor exceeds allowed parameters.
There is an indicative temperature sensor embedded inside the MCU, but it
is imprecise and influenced by the heat generated by the MCU itself. A more
precise temperature and humidity sensor HDC2080 was added to the same
I2C bus.

There is a cascade of power sources to make proper voltage for all compo-
nents. Switching power source TPS6284x converts the voltage of 2 CR2032
cells to 0.2V above the voltage used by the AFE with high efficiency. It is fol-
lowed by a linear regulator making a stable voltage for the AFE. Radio, MCU
and humidity sensor are powered directly from the switching power source.
The board was designed for two assembly variants, one with a precise 3V ref-
erence and another with a 2.8V Low-Dropout (LDO) regulator. Precise low-
power voltage reference at 2.8V was not yet available when the PCB was made.
On the battery connection, there is also a FET to protect the sensor from con-
necting the battery with inverse polarity.

6.1.1 Analog Trigger
The sensor needs a way to detect a sudden rise in gas concentration even if the
MCU is sleeping. This PoC uses a combination of an ADC, a DAC and an ana-
log comparator. On pin PA4 there is a 100Ω resistor and a 10 µF capacitor. The
pin is measured by the ADC and if the value differs from the required threshold
for the sensor output, the DAC is enabled to force the correct voltage on the
capacitor. After a delay of 1ms, the DAC is turned off and the pin is measured
again. Initial settling after reset can be estimated to 3τ = 3RC = 3ms, but it
will depend on tolerances of components and internal resistance of the MCU
pin. When the measured value is close enough to the required threshold, the
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analog comparator is enabled between PA4 and PA3, where the sensor analog
signal is present. The MCU can go to a low-power stop mode. A change in sen-
sor signal will flip the comparator and wake the MCU. Otherwise, the MCU
will wake up after a long period to do a long-term measurement. Together
with measuring the sensor output, it will check the drift of the voltage on the
capacitor and, if needed, repeat activation of the DAC.

Another way would be to wake the MCU in short periods, sample the sig-
nal and compare the value. In the case of a slowly changing signal, it might
be more energy efficient. Active comparator consumes 160nA while an active
MCU with an ADC consumes over 2.6mA [60]. To get a reasonably quick one-
second sampling with the same cumulative current consumption, one sample
would have to be done in

Trun × Irun = Tperiod × Icomparator (6.1)

Trun =
Icomparator

Irun
× Tperiod =

160nA
2.6mA × 1 s ≈ 62 µs (6.2)

The exact Tperiod where sampling starts to be more efficient than using a com-
parator depends on the configuration of the ADC. Reasonable time to wake the
MCU, configure the ADC and make a sample would be in range of millisec-
onds.¹ The turning point in favor of sampling will be at least tens of seconds
which might be too much for some applications.

If the device doesn’t need to periodically sample at all, the trigger threshold
can be designed in such a way that the self-discharge of the capacitor will make
the trigger value smaller. The MCU doesn’t need to wake up to recalibrate at
all and when the trigger crosses the sensor output, it will wake up, measure and
tweak the threshold back to its correct value. It would require an extra several
MΩ resistor for planned discharge as the ceramic capacitor can have a smaller
leak than the connection to supply voltage inside MCU’s pin and the value can
itself drift up instead of down.

6.2 Gas Sensor

The sensor has two modes. In one mode, it makes 8 samples of the AFE out-
put in a minute, averages them and stores one value a minute of current going
through the electrochemical cell. In the other mode, it makes 2 samples a sec-
ond and averages them to one value a second. The averaging was added to
increase the precision of the gas concentration measurement.

The sensor can be set to a secondly or a minutely mode by the CU. If the
measured value is higher than the trigger, the sensor switches to a secondly
mode automatically. The electrochemical cell can have a longer time constant,
so after the initial trigger, the value can be still increasing and needs to be
measured often.

¹Values achieved by this PoC are in Section 6.4.1.
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The AFE has amplifiers to control a 3-lead electrochemical cell. One am-
plifier controls the difference between the Working Electrode (WE) and the
Reference Electrode (RE) by setting voltage to the Counter Electrode (CE).
Current going out of the WE shows the concentration of the measured gas.
Depending on a sensor type, it can be in the range of nanoamperes. This cur-
rent is amplified and converted to a voltage by another amplifier, so it can be
measured by the MCU’s ADC. The AFE has many options on setting bias be-
tween WE and RE, internal zero or gain of the output amplifier.

6.2.1 ADC, AFE and Power Source
Initial prototype v01 had a pulse power source generating 2.8V and a precise
voltage reference of 2.5V as a reference for the AFE. The AFE needs to be pow-
ered by 2.7V, but it can use lower precise voltage as a reference for the opera-
tional amplifiers driving the electrochemical cell. It caused problems because
the AFE is very sensitive to its supply voltage even if it uses an additional pre-
cise reference.

The switching power supply naturally has ripples in its output. For this
reason, there are two inputs. One to set the power supply to a PWM mode
which makes less noise and another to stop it completely. Both modes were
tested with the MCU measuring a constant voltage. With the power supply in
its normal mode, the standard deviation was s = 7.79mV. Switching the power
supply to PWM mode decreased it to s = 1.19mV. Stopping the power supply
completely during the measurements decreased it even more to s = 0.95mV.

Unfortunately, the AFE is very sensitive to its power supply and stopping
the power supply makes the supply voltage fall. What happens with the AFE
output can be seen in Figure 6.3. The data in Figure 6.3 were gathered by an
oscilloscope and passed through a 12.5kHz lowpass filter. A similar ripple in
the AFE output could also be seen when the transceiver transmitted a packet.
That led to discontinuing the work on hardware v01 and redesigning the power
supply chain.

Fixed hardware v03 uses a dedicated precise reference or an LDO only for
the AFE. It didn’t fix the ripples on the AFE output completely but reduced
them significantly. Between the PCB revisions, we were struck by the electron-
ics component outage and the power source needed to be replaced by the same
chip in another package. It solved the issue of stopping the power supply be-
cause the other package doesn’t have the stop pin. During the measurements,
the power source is only switched to the PWM mode.

Two methods were added to further improve the sensor precision. The ADC
can automatically do a 16× oversampling and produce a 16bit output instead
of its natural 12bit. It slightly increases power consumption, but even with the
oversampling the ADC conversion is done in 0.5ms. The other method is to
measure more frequently and average several samples. The ripples in the AFE
output are changing slowly and the average will attenuate them. As a compro-
mise between current consumption and precision, 8 measurements per minute
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Figure 6.3: Ripple on AFE Output

or 2 measurements per second are averaged to produce minutely or secondly
samples.

6.2.2 LDO or Precise Reference
Hardware v03was made in two versions. Regular LDO XC6206 is inexpensive,
made for various voltages and consumes very little current. The other version
was made with a more precise 0.05% LT6656 voltage reference.

Two-sample F-test for equal variances was done to know if there is a signif-
icant difference between them. The same configuration and the same electro-
chemical cell were used with two hardware to gather data. The test ended with
p = 0.24 and showed that there is no significant difference in output variance
between hardware with LDO and precise reference.

6.3 Radio

A test setup was used to check the feasibility of keeping the Matlab Simulink
receiver design. First, a packet was received with RTL-SDR, then it was de-
coded by the Matlab Simulink receiver model running in real time. Getting
real-time data outside of Simulink turned out to be quite problematic. One
working way is to use TCP to localhost. This was then redirected by a bash
command
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netcat -l -p 50000 | cu -l /dev/ttyACM0

to Communications Device Class (CDC) USB device. The USB device was
a development board with an STM32L443 and an S2LP GMSK transceiver
which sent the response on a correct channel back to the sensor. The delay
from a packet end and a response start was between 60ms and 120ms. That
is at least an order of magnitude more than the needed latency for a realistic
sensor network design. High latency would require the sensor to stay in Rx
with high current consumption and force it to repeat packets after a long delay.
We weren’t able to make this architecture work.

Another option would be to fix range problems in the Cortex-M-based
receiver and connect a custom S2LP board as another peripheral to the
LPC-Link 2. But since Chapter 7 required the use of a more powerful SDR
together with a transmitter and a blank sensor, the all-channel GMSK receiver
was redesigned. The SDR is used not just to receive, but also to send a response
to the sensor. The same hardware and parts of the software were used for this
PoC and experiments in Chapter 7.

6.3.1 Hardware and Channel Layout
New hardware opens a possibility to change the channel layout from Chapter 5.
The license-free European sub-GHz regulations offer 7MHz bandwidth, but
instead of using the entire band, the GMSK baudrate was set. One of the
preferred baudrates used in this area is 38.4kBd/s. With the same condition of
two samples per symbol, it is one FFT in Tc = Ts/2 ≈ 52 µs and a sample rate of
the SDR for 64 channels of 4.9152Msample/s. The center frequency was set to
866MHz which leaves approximately 1MHz guard bands still in the allowed
bandwidth.

Attempts with AD9364

There was an attempt to build the prototype on AD-FMCOMMS4-EBZ. It
is a development board with AD9364 connected via FMC connector to one
of Xilinx’s Zynq development boards. Together it is a very powerful set com-
bining SDR frontend, FPGA and fast ARM cores. It is more capable than
LimeSDR Minis used in the end but requires a much higher investment in de-
velopment. Proper reimplementation of the design on this platform would
probably increase its performance. Most notable is the response time between
packet received and response being transmitted.

When this platform was explored, the available examples were mostly out-
dated and hard to use. Nowadays, with Analog Device’s Kuiper Linux based
on Raspbian, the situation might have improved. It would still require deep
knowledge of Zynq FPGAs and Linux driver development to be able to accel-
erate the signal processing.
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LimeSDRMini

LimeSDR Mini² is a crowdfunded hardware platform for LMS7002M made by
the chip’s manufacturer Lime Microsystems. It provides 30.72Msample/s full
duplex SDR through its USB 3 connection with PC.

It is possible to use this SDR with GNU Radio and some unofficial support
is also available for Matlab Simulink, but it was dismissed with concerns of la-
tency. This setup was not tested, but the use of Python programming language
in GNU Radio would most likely increase the response time to similar levels
as with the Simulink model for RTL-SDR. C++ together with the LimeSuite
driver library was chosen for the SDR development.

This hardware can run the Rx and Tx streams synchronously from the same
oscillator. It is possible to use timestamps and transmit the response with con-
stant offset from the received data. It allows a linear design of the controlling
software with receive - process - transmit loop.

The processing software needs to set itself a higher priority by
//Set priority
sched_param sch = {sched_get_priority_max(SCHED_FIFO)};
if (pthread_setschedparam(pthread_self(), SCHED_FIFO, &sch))
{

cerr << "Failed to set priority: " << strerror(errno) << '\n';
//Continue with regular priority for debugging

}

Otherwise, the operating system’s scheduler might want to finish something
first and the receiving program is delayed. The average time to process one
frame is almost the same. Maximal time is usually an order of magnitude higher
if the program runs with a normal priority which results in lost frames. The
compiled program binary must be allowed to change its priority by
setcap 'cap_sys_nice=eip' program_binary

or it needs to be run with sudo.³
A large improvement in software speed was achieved by using 1020 sample

sized frames for communication with the library. The LimeSDR Mini uses data
blocks that are sized at an optimal power of 2. Part of these data blocks is used
for control information, so the remainder for SDR data is 1020 samples large.
The library can use 1024-sample frames and it is easier on the controlling soft-
ware, but there is additional copying done in the driver which increases latency.

The size of frame buffers and offset between Rx and Tx timestamps can be
configured. If the latency is set too low, the hardware starts to miss Tx times-
tamps and transmits 0 instead of the useful frame of data. With the mentioned

²The original hardware is no longer available due to the global chip shortage. For-
tunately, a second crowdfunding campaign was launched for a LimeSDR Mini 2.0 at
crowdsupply.com/lime-micro/limesdr-mini-2. It replaces an unavailable FPGA with a slightly
better one. The original FPGA was almost full just handling SDR.

³These instructions are valid on Debian or its derivatives. Other distributions might use
slightly different commands.
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Figure 6.4: Delay Between Sensor’s and CU’s Tx

4.9152Msample/s and 1020-sample frames, it is possible to reach latency be-
tween Rx and Tx of 4 frames or approximately 0.83ms. This number doesn’t
include any processing time between obtaining Rx frame and giving out Tx
frame. A real design needs to add at least one more frame or approximately
0.21ms during which the frame data are processed. The latency value was not
dependent on hardware. The same response time is possible with modern PC
and with Raspberry Pi 4.

For this prototype, a value of 8 frames was used to increase stability and
reduce the possibility of missing frames. Stability is important for data Rx
and Tx, but for something such as a CCA algorithm, a lower latency would
be possible. The resulting delay after a sensor’s packet should be between 9
and 10 frames (1.87ms to 2.08ms), depending on when in the frame the sen-
sor packet ends. The result can be seen in Figure 6.4 which was measured by
RTL-SDR at 1024ksample/s and passed through an RMS filter in GNURadio.
The power values are tentative and depend on attenuators used to connect all
devices.

Some additional improvements, for example even quicker CCA, might be
accomplished by offloading some signal processing from the PC to custom
FPGA firmware. Similarly to the Zynq option, the FPGA path was not pursued
in this thesis.
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6.3.2 SDR Receiver

The receiver is based on FFT as in Chapter 5. After the FFT, a liquid⁴ DSP li-
brary was used to demodulate the GMSK. This library provides objects for sig-
nal processing, specifically for the creation of SDRs. The library uses standard
C and dynamically allocated structures passed as function parameters instead
of C++. Its emulation of C++ templates by macros is at times almost unreadable.

The liquid library provides gmskmod and its counterpart gmskdem modules
to modulate and demodulate GMSK signals. It takes the difference between
a phase of consecutive samples and puts it into a matched FIR filter. Whether
the use of a matched filter has any advantage in the case of two samples per
symbol was not investigated. For a receiver that could be loaded by several
GMSK signals at once, it might be an inefficient use of computational power.

Unfortunately, the modules in the liquid library used for frame receival
use a specific frame format and cannot be simply used together with common
hardware receivers such as S2LP. S2LP can process several packet formats:
IEEE 802.15.4, Wireless M-Bus, proprietary ST format and basic packet for-
mat, but none of them is close to the liquid frame. Liquid uses no preamble,
63 symbols of m-sequence as a syncword and its own scrambled header with
information about CRC and FEC. Except for wM-Bus, all of the S2LP formats
use up to 2046-bit preamble and at most 32-bit syncword. This receiver needs
to work with a 32-bit preamble, 32-bit syncword, 8-bit length, data and 16-bit
CRC.

There are 64 instances of a GMSK receiver class running at all times, one
for each channel. Each of them goes through several stages while receiving
a packet. Most of the instances should be in the computationally inexpensive
Power state and waiting for a GMSK signal. In this state, they are looking for
a sudden rise in received power by comparing two IIR filters iirfilt_rrrf. In-
put to both filters is a binary logarithm logbf() which represents signal power
but is very easy to compute. One filter is set to a normalized frequency of 0.05
and the other to 0.02. If the output of the quicker filter is 5 logbf() units larger
than the slower filter, the receiver advances to another stage. The value was set
experimentally.

The following stages are separated after a FIFO, so they can be calculated
in parallel by another thread. These stages also have a timeout, returning the
receiver to the Power stage. Stage Preamble has a correlator detector_cccf
looking for a pattern of zeros and ones. Stage Syncword has a longer correlator
looking for a match with the syncword. When it is matched, the frequency off-
set produced by the correlator is used to set nco_crcf oscillator to compensate
for the GMSK carrier offset. Stage Receive finally uses gmskdem to get packet
data. Complete packets are checked with CRC and given to the application
layer. There, the data are processed and a response is created.

⁴Available on GitHub as jgaeddert/liquid-dsp.
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ramp preamble syncword len data crc ramp

Figure 6.5: GMSK Sensor Packet

6.3.3 SDR Transmitter
The transmitter composes packet data in the same format: 32-bit preamble,
32-bit syncword, 8-bit length, data and 16-bit CRC, but adds one preamble byte
with alternating bits at the beginning and one at the end for power ramping.
A 6-symbol Hamming window is applied over the signal generated from these
bytes for smooth power rise and fall. The result can be seen in Figure 6.5.

The first idea was to use the same structure as for the receiver. Individual
modulators use liquid’s gmskmod to generate 2 samples per symbol. All 64 mod-
ulators run in parallel and input to one iFFT which produces the resulting sig-
nal. It allows simply adding data to be transmitted disregarding how many
channels are currently used.

In reality, it would probably suffer from high Peak-to-Average Power Ra-
tio (PAPR) in a similar way as is common for OFDM. One of the methods of
reducing PAPR [30] would have to be applied. There is also a peculiar mod-
ulation OFDM based M-ary FSK (OFDM-MFSK) [31] which uses a similar
principle of transmitting FSK. Different from the transmitter described here,
OFDM-MFSK doesn’t use a signal phase for communication, so it can be used
to reduce PAPR.

This construction showed very high Out of Band (OoB) interference. Fig-
ure 6.6 shows Tx on channel 26, 865.5392MHz, measured with Resolution
Bandwidth (RBW) of 1kHz. The SDR Tx was connected directly to a spec-
trum analyzer via a 50-Ω coaxial cable. The useful signal in the middle can be
received by a hardware GMSK receiver. In addition to that, there are pairs
of sidelobes. Each couple is centered in one neighboring 76.8kHz channel.
The peaks would not break the European sub-GHz regulations [52], but only
because the SDR transmits in almost 5MHz at once and is unable to produce
14dBm in one narrow channel.

An improvement might be to attempt perfect reconstruction by using over-
lapping iFFTs and mixing the overlapping output signal blocks with a window-
ing function. It would require doubling the rate of iFFT calculation, so this
method was not pursued.

The solution was to get rid of the iFFT and modulate the GMSK signal di-
rectly on the SDR sample rate. The gmskmod is set to generate 128 instead of
2 samples per symbol. A harmonic signal made by nco_crcf with a required
channel frequency is then applied to shift the signal to its correct channel. The
transmitted result, shown as the other line in Figure 6.6, doesn’t have any prob-
lematic emissions outside of the channel and would nicely fit into the OoB lim-
its even with 40dB amplification. A disadvantage of this solution is that only
one signal can be modulated at one time. If two sensors wake up at the same
time, only one of them can get a response and the other would need to repeat
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Figure 6.6: The Spectrum of GMSK SDR Transmitter

its message. In our scenario, it will not influence when the information gets to
the CU. It will only slightly increase the power consumption of the unlucky
sensor. The solution with this particular SDR has also much lower Tx power
compared with a solution with SDR Rx and hardware transceiver Tx.

The different constructions of the SDR Tx can also be seen on the power
ramp in Figure 6.7 which precedes the packet preamble. The Tx with iFFT has
visible steps in the output power. There are also glitches visible between each
symbol for the Tx with iFFT. They may be linked with the unwanted spectrum
sidelobes. Figure 6.7 was measured by RTL-SDR at 1024ksample/s and passed
through RMS filter in GNURadio. The power values are tentative. Output
power measured by a calibrated spectrum analyzer can be seen in Figure 6.6.

6.3.4 S2LP
The S2LP radio is controlled via SPI and one interrupt pin. The firmware uses
S2LP_Library enclosed in STSW-S2LP-DK support package for S2LP. This
library allows controlling most of the S2LP radio but is poorly maintained.
On top of known S2LP hardware bugs, it adds a few bugs of its own.

S2LP chip has a channel offset feature. The user sets channel spacing and
channel number and the S2LP will add the necessary offset to the carrier fre-
quency. It only works if the channel offset fits perfectly to the register resolu-
tion. Otherwise, rounding errors will shift the 64th channel completely away
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from its required position. It is necessary to calculate channel offset manually
and change the carrier frequency before each Tx.

Each radio transaction happens in two stages. First is Tx including CCA
done automatically by the S2LP. The radio will listen in Rx for a pre-configured
time and if the channel is clear, it automatically starts Tx. The minimum that
can be configured is the time of 64 symbols, 1.7ms in this case. S2LP can even
do a random backoff and try again, but it was not used here. This sensor is set
to try Tx once and if the selected channel is occupied, it retunes and tries again
on a different channel.

The second stage is Rx where the sensor waits for a response from CU. If no
response is received within the time limit of 20ms, the transmission is repeated
on another channel. S2LP has an embedded timer that is able to cancel the Rx
operation and alert MCU via the interrupt pin.

6.3.5 Packet Format
The packet from the sensor contains temperature, humidity, battery voltage
and data of the electrochemical sensor current. The data portion of the packet
can include several minutely or secondly spaced values and a timestamp in
seconds.

The sensor continuously stores values of current and after 26 minutes trans-
mits all 26 of them. Instead of higher OSI layers, unacknowledged data are
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repeated after the next measurement. There are 5 attempts to transmit the data
and receive an acknowledgment. If unsuccessful, the sensor sleeps for another
minute and tries to send 27 values. At most 30 values can be sent in one packet
and after that, the earliest value is lost. It is also a limit when the CU should
consider the entire sensor lost.

If the concentration threshold is reached, the sensor creates an extra packet
with a different format. It has only one current value, an approximate times-
tamp and a separate numbering to prevent duplicates. The extra packet is sent
up to 15 times before giving up. After that, it is replaced by the nearest period-
ically measured value. If the measured value is over the threshold the sensor
switches to a secondly measurement and tries to transmit every second. The
sensor should not stay in this mode for a long time or it will quickly deplete its
batteries.

6.4 Current Consumption

One of the main parameters of the PoC sensor is its cumulative current con-
sumption which translates to an expected life on its battery. These measure-
ments show what consumption is possible with this particular gas concentra-
tion sensor and also approximate what consumption would be possible inde-
pendent from the AFE, just MCU, ADC and communication with the CU.

Results were measured with the analog trigger disabled. It lowered the mea-
sured value by 160nA consumed by the comparator [60] and a small current
consumed by the DAC. The DAC is enabled only sporadically when the capac-
itor self-discharge changes the voltage outside of the preset limits. It depends
on many variables and would only add more randomness to the measurement.

The sensor in these measurements uses GMSK at 38.4kBd/s while the re-
ceiver in Chapter 5 was built for 18.75kBd/s. The time that the sensor spends
in Tx and Rx would be doubled and the consumption would be somewhat in-
creased. This difference would be smaller than the difference between a sensor
that transmits measurement data and a sensor that transmits a binary value.
Such a sensor would be for example a magnetic door sensor that needs to re-
port only its presence and state of the door. There is also an option to reduce
the number of channels and use the higher baudrate. That would not influence
sensor consumption but network robustness.

During the measurements, the sensor was randomly selecting any one of
the 64 channels. The SDR of the CU was responding on the same channel.
The S2LP transceiver in the sensor was connected with Rx and Tx of the SDR
via 50Ω coaxial cables and appropriate attenuators.

6.4.1 Detailed Consumption Profile
Figure 6.8 shows current consumption during one sensor activity. The sensor
measures the last of 26 samples and reports all to CU. This figure was measured
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Figure 6.8: Detailed Consumption of Sensor Reporting to CU

by Power Profiler Kit II from Nordic Semiconductor providing 2V to a sensor
with all power sources removed. The switching power supply adds a lot of noise
to the current measurements due to its pulsating nature. The consumption
in Figure 6.8 is higher than with the switching power supply, but the overall
shape of the curve and energy consumption should correspond to a complete
sensor. The consumption of a full sensor could be estimated by using the ratio
of voltages and switching power supply efficiency. This piece also doesn’t have
the AFE and the electrochemical cell. The ADC measures from a floating input.
The removed AFE reduces the consumption by 10 µA [61].⁵

The firmware goes through these stages visible in Figure 6.8:

• 2.5ms below 5mA waking up the MCU and clock.

• 0.5ms below 5mA doing the ADC measurement.

• 1.5ms below 5mA temperature and humidity measurement.

• 12ms at 5mA initializing the transceiver. This time can be shorter if the
radio is in standby mode instead of powered off, but it would increase the
current consumed while the sensor is sleeping. It can be beneficial with
a shorter report period.

⁵If it could run from 2V.
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• 3ms to 27ms at 15mA receiving a randomly selected CCA. These values
come from the CCA mechanism in S2LP and can be different for a differ-
ent transceiver or sensor network design.

• 5.5ms to 17ms at around 40mA⁶ transmitting data to CU. Duration de-
pends on how much data is needed.

• 4.5ms to 6.5ms below 15mA receiving and waiting for a response from
CU. Depends on how quickly CU responds and on the amount of data.
The method of encryption used by the sensor network may increase the
size of the response significantly.

Apart from the activity of reporting to the CU, the sensor also wakes up to
measure. It makes a bump in the consumption of less than 3ms wide and less
than 8mA tall.

6.4.2 Cumulative consumption
Figure 6.9 shows approximate predictions of consumption depending on the
period between two reports to CU. The cumulative current consumption was

⁶The actual value varies between 30mA and 45mA. It is probably caused by non-ideal 50Ω
coaxial cables. Transceiver Tx consumption can be influenced by a load on its RF output.
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estimated as a mean of instantaneous current with the communication with the
CU from Figure 6.8 in the center. Varying the duration of the averaged area
with exactly one report to CU corresponds to a sensor that would change its
report period. This way it is possible to estimate current consumption for up
to almost twice the period used by this PoC. All data were measured by the
Power Profiler Kit II.

The full gas sensor in minutely mode was powered by 5V. It is the maxi-
mum possible with the measurement tool and corresponds to two CR2032 bat-
teries in the middle of their life. The sensor was measuring 8 times a minute,
averaging that to one sample a minute and reporting to CU once every 26 min-
utes. The cumulative current was measured over the 26 minute report period.
Full sensor with the NO₂ detector in version with the 2.8V LDO was consum-
ing 11.2 µA. The version with LDO can also be seen in Figure 6.9. Full sensor
with the NO₂ detector in version with the precise 3V reference was consuming
13.9 µA. That is a bit over the limit for two years on two CR2032.

The full gas sensor in secondly mode was measured with the NO₂ detector
in version with the 2.8V LDO. It was measuring 2 times a second, averaging
that to one sample a second and reporting to CU once every 26 seconds. The
cumulative current for 26 second report period, averaged over 17 periods, was
48.7 µA. This is too much for coin cell batteries but could work as a more pow-
erful sensor powered by four AAA batteries.⁷ This version is not present in
Figure 6.9.

A generic sensor without the switching power supply and without AFE
was powered by 2V. This could represent what would be possible for a different
sensor. The ADC measurement timing was the same as with the full sensor in
minutely measurement mode. The sensor was consuming 4.1 µA. It shows that
there would be a reserve for a sensor running two years from a single CR2032.
This combination can also be seen in Figure 6.9.

The last version is a generic sensor that doesn’t do periodicmeasurements.
It represents a sensor that guards a digital input or uses the analog trigger. It
only needs to report to CU that it still exists. Due to low-power timer manage-
ment in firmware, this variant was waking up once a minute only to immedi-
ately return back to sleep. This version of the sensor spent much less time in
Tx because it didn’t have any measured values to send. The cumulative current
was 3.1 µA. It is the last curve in Figure 6.9.

⁷The limit for two years on AAA batteries would be somewhere around 50 µA.
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7 Mixed Network with GMSK and OFDM

A more advanced solution for the problems of frequency agile sensors might
be to use the high bandwidth camera as the all-channel receiver. The cam-
eras have complex OFDM receivers which have a similar construction as the
SDRs used above. This solution will require a larger investment into devel-
opment and hardware than the previous option. Part of the Section 7.2 with
initial evaluation was published in [32].

7.1 Proposed Network

The proposal is to build a network combining OFDM and frequency agile
GMSK. High bandwidth communication uses radio transceivers that are very
close to an SDR or entirely software-defined. That is why it would not require
a lot of additional hardware to add GFSK communication into the OFDM
transceivers in cameras and the central unit.

I have rejected the idea of incorporating sensor communication into the
camera feed in an Orthogonal Frequency Division Multiple Access (OFDMA)
fashion. Synchronization between individual transmitters would be compli-
cated [33] and probably require much more advanced hardware in sensors.
The sensors need to be very energy efficient and cheap which is fulfilled only
by common GFSK transceivers.

FSK modulation can be used in OFDM-MFSK [31] where one of each
group of M subcarriers contains a signal and the rest are silent. Its application
to smart meters shows advantages in robustness [34] which might be beneficial
in a security system. An OFDMA version of OFDM-MFSK with M = 2 or
M = 4 could perhaps be received by the simple FSK transceivers. It would be
a way to connect the sensor directly to high bandwidth communication and an
interesting topic for future research. In the most basic layout, just the OFDM
header could be FSK encoded with network information and hole position for
the sensor.

The solution explored here is to make holes into the regular Phase Shift
Keying (PSK) OFDM signal by zeroing several neighboring tones. The sen-
sor will start transmitting as soon as one OFDM packet ends and the OFDM
radio needs to detect that and create a hole in the next packet to not disrupt
the sensor. The sensor can continue its GMSK Tx and follow with Rx of an
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acknowledgment. The sensor packet can be received directly in the CU or one
of the cameras and routed via the OFDM link.

Getting the information to the CU is the important part, but the sensor
needs to receive an acknowledgment, so it can go back to sleep to save power.
The CU or a designated router will immediately respond on the same frequency
with acknowledgment and allow the sleep mode. This can also be used to give
the sensor updated information about the network and perhaps to synchronize
the sensor into an FHSS.

7.2 Signal Simulation

As a first step to determine whether the proposed system can be built, a sim-
plified model was created in Matlab Simulink. For the sensor communication,
I have selected GMSK with symbol filtering of BT = 0.3. Minimal frequency
deviation of GMSK will have small bandwidth to fit into an OFDM hole. One
GMSK symbol was simulated with 240 samples.

Simple quadrature PSK was used for the OFDM signal, initially with n = 64
sample FFT and later n = 128 and n = 256. The cyclic prefix was set to n/4. The
OFDM symbols were not window mixed together to keep the model as simple
as possible. There were 6 and 5 empty guard tones on the edges and no pilot
tones. The receiver was simulated coherently with the transmitter so no pilot
tones or packet headers were needed for synchronization. The signal was up-
sampled by 3 before being mixed with the sensor signal. There were 1, 2 or 4
GMSK symbols per one OFDM symbol to match the sample rates.

The initial FFT size was selected to fit GMSK channels to OFDM tones
while satisfying the minimum number of GMSK channels for a hypothetical
FHSS [45], [52]. The n = 64 OFDM signal has a distance between two tones of
1.25× fs/240, where fs is the sampling frequency. The bandwidth of the GMSK
signal can be again estimated by Carson’s rule

fbw = 2 ·
(
BT

Ts

+ fdev

)
= 1.1× fs/240 (7.1)

where BT is the Gaussian symbol filter, Ts = 240/fs is the duration of one
GMSK symbol and frequency deviation fdev = 1/4Ts. It shows that with these
parameters, one channel could barely fit in one tone.

The proposed composition of OFDM, GMSK and AWGN can be seen in
Figure 7.1. The GMSK signal has a unit power, the same as the noise. The
OFDM signal would have unit power if all 64 tones were used. Its power was
not compensated for the empty tones. In the case of Figure 7.1, there are 5
empty tones centered on the GMSK signal. With guard bands, it is 16 empty
tones and a power of 3/4.

For n = 64, a full 3-dimensional matrix was simulated with the strength of
both signals varying between −20dB to 30dB plus the special case with no
signal. The strength of the signals is relative to the situation in Figure 7.1.
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Figure 7.1: The Spectrum of the Communication

The third dimension was a number of empty tones. A portion of these was
simulated needlessly to fill the matrix completely and ease later processing. For
n = 128 and n = 256, only a cross was simulated as two slices of the complete
matrix necessary for the figures.

7.2.1 Interference to GMSK
Figure 7.2 shows how the BER of the GMSK signal is affected by the OFDM
signal for n = 64. The power of noise and the power of individual OFDM tones
stays the same as in Figure 7.1. The power of the GMSK signal is varied relative
to the unit power. The GMSK signal power can be related to SNR, but we have
to consider the OFDM signal as noise and correct the value for relative band-
width. The GMSK signal has a relatively narrow bandwidth, so only a small
fraction of the AWGN and OFDM has any effect on the GMSK performance.

One of the curves in Figure 7.2 shows the performance of the GMSK with-
out the OFDM signal as a reference for comparison. The rest are simulations
with different hole sizes. We can see that a gap of one tone centered on the
GMSK signal has the largest influence. Zeroing a gap of 3 or 5 tones can im-
prove the signal a bit more, but has a much smaller effect. The effect of 3 or
5 empty tones is slightly larger when there is a larger difference between the
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Figure 7.2: Bit Error Rate for GMSK Signal

power of the OFDM and the AWGN. The situation where one signal is over-
powering the other will be shown later.

7.2.2 Interference to OFDM
Figure 7.3 shows how the BER of individual OFDM tones is affected by the
GMSK signal. The power of the GMSK and noise is set to 1 while the OFDM
power is varied. The tone number means distance from the GMSK signal.
Tone 0 has the same frequency as GMSK, tone 1 is an average of the two neigh-
boring tones and so on.

Same as before, the power of OFDM can be related to SNR, having in mind
that AWGN power is spread to three times as much bandwidth while GMSK
power is concentrated mostly in a bandwidth of a single tone. There is a refer-
ence curve of BER of all tones without any GMSK for comparison.

We can see that the tone with the same frequency as the GMSK signal
is mostly unusable. The tones right next to it are still strongly affected. Tones
further away come closer to the performance of the OFDM without a GMSK
signal. Same as in the previous section, zeroing 3 or 5 OFDM tones would have
the wanted effect. Zeroing 3 or 5 tones would be beneficial for both signals.
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7.2.3 Relative Signal Strength
The previous two sections failed to show the area in which both communication
links can work at the same time. In Figure 7.4, simulated for n = 64, we can see
the area where none of the signals is usable and where both are usable. The
gradient is fit between BER of 10−2 and 10−6. For the OFDM the BER means
errors in bits transmitted on all used tones.

Figure 7.4 shows that in the case without empty tones, the two modulations
cannot work together. The stronger signal would always disrupt the weaker sig-
nal or none of them would work. With an increasing number of empty OFDM
tones, a corridor appears where both communication types can work at the
same time. The corridor is about 20dB to 25dB wide for the case of 5 empty
tones. More than 5 empty tones has a smaller effect on the corridor.

We can use the free space loss equation to compare the change in signal
strength to a change in distance. The change allowed by the corridor in Figure
7.4 can be related to physically moving one of the transmitters relative to the
receiver.

LFS + Lc = 20log(d · dc) + 20log(f) + 20log
(
4π

c

)
(7.2)

where LFS is the original free space loss, Lc is the change in signal strength, d
is the original distance, dc is the change in distance and 20log(f) + 20log

(
4π
c

)
are constants in this consideration. We can see that a change of 20dB com-
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Figure 7.5: Bit Error Rate for GMSK Signal

pares to a 10× change in the transmitter distance. For our model situation, if
the farthest transmitter is 100m from the receiver, then the closest has to be
at least 10m far. That is not enough for a practical network. The network
will require controlling transmitter power to fit the right power at the receiver.
Most devices in a security system are stationary, but a device such as a key fob
is movable and will be problematic in this setup.

The simulated figures show that the OFDM signal is much less robust. The
transmitted power allowed by government regulations usually stays the same,
even though it is used to transmit much more data. In a physical system, this
will lead to a shorter range for the security cameras compared to simple sensors.
This is one more reason why having a secondary backup GMSK communica-
tion is necessary even in security cameras where Wi-Fi satisfies all criteria. The
robust link can be used at least to report tampering and interference in the
main high datarate link.

7.2.4 Different FFT Size
The effect of different FFT sizes should also be considered. Figure 7.5 shows
the effect on the GMSK with OFDM of different sizes. Figure 7.6 shows the
effect on the OFDM with different FFT sizes. The number of zeroed tones was
chosen to get a gap of similar size for different FFT sizes. The same gap is not
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possible because the gap should be an odd number of tones, but also 2 or 4
times larger for the 1/2 or 1/4 FFT. The hole was set between 1 and 7 tones for
n = 64 and a maximal still smaller value for bigger ns. The size of the gap in
both figures is marked as parts of 256, so they can be compared.

Figure 7.5 shows that the size of the gap is important, but the size of the
FFT is not. The first three lines show a difference because there is a large dif-
ference between the actual gap sizes. For more zeroed tones, the differences
are negligible.

In Figure 7.6, the plots depict BER of tones that would be on the edge
of a gap with the size written in the legend. The situation is more complicated
here, as wider FFT show some suspicious behavior. In some situations, a larger
gap is worse than a narrower one. More can be explained by Figure 7.7 which
is made only for n = 256. It contains BER for multiple tones and fixed power.
The GMSK signal is centered at tone 0. The plot shows peaks once every ap-
proximately 3.2 tones. Similar but a weaker effect can be seen with n = 128.

One explanation might be that peaks of the sin(πx)/πx spectrum
collide with some components of the GMSK only for some tones.
The width of the n = 256 OFDM tone and distance between zeros in
sin(πx)/πx is 0.3125× fs/240. The ratio between GMSK symbol rate (fs/240)
and tone size would be 1/0.3125 = 3.2 which might be a coincidence or an ex-
planation. The question is whether the same effect will happen with realistic
oscillator tolerances, symbol shift between the two modulations or windowing
of OFDM symbols, but this effect was not investigated further. With the data
in Figure 7.7, it seems reasonable for n = 256 to eliminate at least 7 tones and
get rid of the first peak.

7.2.5 Limitations of this Simulation
We can question the validity of the simulation if we have no information
about differences in the simulated GMSK demodulator and physical GFSK
transceivers available on the market. From the available information, it seems
that physical receivers digitize both IQ components at an intermediate fre-
quency while the Matlab demodulator uses a baseband signal. Documentation
of physical receivers mentions configurable low-pass filters and lots of spec-
ifications for blocking and selectivity, but Matlab block was receiving com-
plex baseband signal with all the OFDM signal present on higher frequencies.
A similar thing can be said about the Matlab’s OFDM receiver.

The real receiver will also need to handle packet detection and synchroniza-
tion which is not a part of this simulation. The differences need to be verified
on a working prototype before a definitive answer can be given.

This simulation was done without symbol windowing. It might have been
a wrong decision because it could make tone bandwidth narrower and reduce
interference between the two modulations. Adding a symbol windowing could
improve the cohabitation problem in exchange for less data transferred.
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7.3 Implementation of an OFDMwith a Hole

As a starting point, the liquid DSP library was used. There are
two high-level classes for OFDM communication, ofdmflexframegen and
ofdmflexframesync. These define complex packet structures for automatic se-
lection of modulation, CRC or FEC. In our situation, it would be more of a bur-
den than a simplification. Performance of the ofdmflexframesync as measured
by liquid’s author can be seen in Figure 7.8.

One layer lower, there are ofdmframegen and ofdmframesync which handle
frame synchronization, but leave packet layout to the user. These two were
rewritten to C++. It was less work than it seems, as liquid is object-oriented
code made with C tooling, and it made making changes a lot easier. Three
C++ classes were made, HoleOfdmCommon and two derived classes, HoleOfdmGen
and HoleOfdmRec. This layout corresponds to the original split of common
functions in liquid.

The goal is to implement an SDR OFDM transmitter and receiver which can
make a hole in the communication. During the development, the OFDM was
set to n = 256 with a 32-sample cyclic prefix and a 24-sample tapering between
symbols. Default tone layout was used, which for liquid is 1/10 of nulled tones
as guardband above the signal and 1/10 below. The DC tone is also nulled.
Pilots are spaced one in every 8 tones. One hole was set 7 tones wide. Most of
these parameters could easily be changed after the development.

From the example situation, the sensor GMSK communication should be
sparse. Only a few packets are expected at the same time. The implementation
was done for the possibility to add two holes and two GMSK signals. It would
probably be more difficult to add more holes later.

7.3.1 Liquid OFDM Frame
The OFDM receiver needs to detect the start of a frame, estimate channel pa-
rameters and select a packet type if there is more than one.¹ The liquid receiver
uses three OFDM symbols: two short s0 symbols and one long s1 symbol.
Both s0s are used to detect the frame, do coarse and fine time synchronization
and for carrier offset compensation. The s1 is used to estimate the channel and
prepare the receiver for data symbols.

Liquid OFDM implements coarse synchronization in the frequency domain
which is in contrast with some common methods that use only the time domain
[35]. The s0 symbols have an m-sequence of 1 or −1 on even tones and 0 on odd
tones. Instead of a regular cyclic prefix, s0 symbols are composed of a ramp
2 cyclic prefixes long and two copies of the iFFT block. The ramp is another
copy of the iFFT block with sin()2 tapering at the beginning. It is the same
function used to mix together consecutive symbols in windowing.

¹Sometimes the term Physical Layer Convergence Procedure (PLCP) can be found, but
Wi-Fi for example in its current specification does not use this term at all [62].
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The receiver looks for a packet by processing one FFT every n samples. It
compares the received frequency domain data with the expected s0 symbol.
From that, it calculates the s_hat metric by summing phase differences be-
tween all used tones and their +2 neighbors. The s_hat is used to set a coarse
timing of the symbols. The receiver repeats the estimation two more times with
n/2 samples offset. From the average s_hat, it readjusts precise symbol timing.
In the end, it uses the time domain data and the original s0 for maximum like-
lihood estimation of the carrier offset.

After s0, there is one s1 symbol. This symbol is transmitted as an ordinary
OFDM symbol with a regular cyclic prefix and windowing with s0 at the be-
ginning. The s1 symbol is created from the m-sequence of binary PSK on all
used tones. The receiver will put the received data through an FFT and com-
pare them to the original s1. If there is a sufficient match, it will advance to
channel estimation, otherwise, it waits for another n/2 samples and repeats this
step. If the s0 symbol and the s_hat metric are periodic after n/2, the s0 match
could have happened on any one of the periods. The s1 match will ensure that
the receiver will correctly start processing Rx symbols no matter on which s0
period it detected the frame.

The last step is to estimate the channel response to rotate and amplify indi-
vidual tones. The receiver compares the received symbol s1 with the original
and creates a 4th-order polynomial to compensate for tone power and a sepa-
rate polynomial for the tone phase. These polynomials are used to create a com-
plex vector with compensation for each tone.

During the Rx of data symbols, all tones are first compensated with the
vector created from s1. Then the receiver compares pilot tones with their orig-
inal value. Pilots are made with binary PSK from the same m-sequence in the
transmitter and the receiver. The difference of pilot phases is approximated
with linear function and its slope is passed through a simple IIR filter. The
result is applied to the data tones additionally to the s1 compensation. The
constant value of the phase compensation is also used to tweak the carrier fre-
quency compensation.

The resulting complex vector with compensated data tones is given via call-
back to upper layers. It might be ofdmflexframesync or any custom layer with
any packet format. When the upper layer receives enough symbols, it signals
back and the receiver is reset to wait for another frame.

The performance of the ofdmflexframesync was measured by the library
author and is depicted in Figure 7.8. This was measured for n = 64 and is spe-
cific for the ofdmflexframe header modulation and coding.

7.3.2 Adding Holes
Both transmitter and receiver need to know the layout of tones in advance. In
the case of the liquid library, the tones are fixed when creating the transmitter
and receiver objects. That does not allow adding holes into the communica-
tion. One of the first changes was to make the tone layout changeable in the
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Figure 7.8: Liquid Flexframe Performance [63]

HoleOfdmGen transmitter when a packet is to be sent and not when the trans-
mitter is created.

Much greater problems turned up when modifying the HoleOfdmRec re-
ceiver. Experiments showed that the receiver is unable to work if the tone
layout is different from the one used for Tx. Synchronization with a hole in
Tx and no hole in Rx works with high confidence, but the constellation of the
output is as if it was passed through a mixer.

The first idea was to look into the s0 synchronization. With an increasing
number of holes, the synchronization gets worse and then stops working com-
pletely. When looking for the s0 symbol, pairs of +2 neighboring tones are
multiplied together and the sum is compensated by their count. There is small
negligence in the count as there are one fewer neighboring pairs of tones than
there are used tones. When a hole is added, this difference is increased. The
offset was fixed to divide by the real number of nonzero products and the syn-
chronization started to work even with small blocks of tones divided by many
holes. Real performance would probably suffer with fewer tones used, but the
fundamental problem was solved. Testing showed that the problem was not in
this stage of the receiver and its influence was minor. In our situation of up to
two holes, this fix would make almost no difference, so it was later removed.

A second wrong idea was to split the detection into blocks between two pilot
tones. Synchronization symbols do not contain pilots², but missing blocks in

²Or are s0 and s1 made only of pilot tones?
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synchronization would seamlessly continue into data symbols where the 7-tone
hole for GMSK would be placed between two pilots. Each independent block
could be calculated separately during the synchronization. Outliers can be
eliminated from the set of metrics and then composed together to get one syn-
chronization metric. This might make the synchronization work regardless of
whether there is a hole. This method could be used for both s0 and s1. Further
testing showed that this also was not the main problem and it would restrict
the GMSK channel placement, so it was not used.

The main problem was found in the channel estimation of s1. After a cor-
rect match, the receiver gets the difference between wanted and received s1 and
uses polynomial fit over all used tones. When there is a hole in the s1 symbol,
the phase received is completely random and the phase compensation is as well.
The problem with the phase is that it is limited between 0 and 2π. The receiver
checks if there is a step of phase compensation between two neighboring tones.
A step indicates that the phase has wrapped over and needs to be unwrapped.
If there is a difference larger than +π or −π, it adds or removes 2π to make
the phase curve smooth. The unwrapping algorithm will start correctly, but
during the hole, it randomly adds several multiples of 2π and continues with
that until the end. The 4th-order polynomial fit tries to smoothly link one part
of the symbol with the other which is multiple turns above. The result cannot
be used to compensate the channel, instead, it mixes all the received data be-
yond repair. Similar but less serious is the situation with power compensation.
Unused tones have very low power, which influences the resulting polynomial
around the hole. The same effect with phase and power was also happening
later during the 2nd order polynomial pilot tracking.

The solution was to add a second s1 symbol and encode DBPSK data into
it before the channel estimation is made. This modulation should be tolerant
to the channel parameters. Depending on whether the second symbol’s phase
is the same or inverted, we get as many bits of information as there are tones.
Each empty tone will return a random bit, so the position of both holes needs
to be encoded in the remaining tones and not influenced by the data on the
empty tones.

The first idea was to mark both holes with ones on both sides. An algorithm
can be made to look for the hole positions even when the holes are overlap-
ping. The algorithm needs to find the longest consecutive sequence of zeros
and then mark two or a single hole. There is a hard limitation on only two
holes. Limitation on the number of used tones and size of the holes is satisfied
for the selected parameters with a large margin. This solution has proven to be
sensitive to those bordering bits which are also the ones most likely to flip.

A much simpler solution is to take hole positions and encode them with
high redundancy into the available data while not considering which bits won’t
be transmitted. In the simplest, the position information can be repeated many
times. One hole will overlap only one copy of the information. During Rx, in-
dividual bits are counted and the more frequent value is used. A 16-bit number
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is enough for the selected parameters, one B for each hole position. If the hole
is not used, it can be put to the guard bands where it has no meaning.

With n > 256, the hole position would have to be encoded differently. The
GMSK signal can only appear on one of 64 channels and only 6 bits of in-
formation are needed. The other 2 could be used to configure the size of the
gap.

Instead of a simple majority, a proper FEC could also be used. Or more
elaborate non-standard FEC encoding could be created. The transmitter has
the information about which bits will not be received, so it could encode the
hole position only to bits that are not part of the hole. Design of an own FEC
would be a lot of work and using an already existing and validated FEC should
be a better option.

When the hole positions are decoded, a new layout of tones is known and
can be used to finish the equalization. The phase and power corrections from
the first s1 can be used, missing tones eliminated and a correct polynomial
fitted. After these modifications, the receiver started giving reasonable data.

7.4 Simulation of Frames with Holes

In parallel with the implementation, the receiver was continuously tested with
a simulation. The same program was modified when the implementation was
done to test the differences between the modified receiver and the liquid orig-
inal. The simulation is a C++ program that runs an instance of the transmitter,
adds AWGN and runs an instance of the receiver. Each run of the simula-
tion was done for 4 sets of transmitters and receivers: the original liquid set,
HoleOfdm set without any holes, with one hole and with two holes. The hole
positions were selected randomly on one of the used tones.

Each run of the simulation used a combination of C++ random_device to
seed a default_random_engine which should be enough to prevent any arti-
facts caused by some poor-quality pseudorandom generators. Before the sim-
ulated signal, there was a random delay in length between 3 and 4 OFDM sym-
bols. Added noise was generated once and applied to all 4 signals. The only
exception was the second s1 symbol which is not used in the liquid OFDM
frame. After the header, there were 256 symbols of data. Each symbol had
binary PSK data on even tones and quadrature PSK data on odd tones. This
layout was copied from a liquid example code. At the end of the frame, there
was one more OFDM symbol of just noise to flush out any block that might
still be stuck in the receiver.

The receiver callback had access to the transmitted data and the correct
hole layout. It counted errors and marked frames with a wrong hole layout.
Error in a symbol was counted as one error even in cases where the 4-state
symbol would give both decoded bits wrong. Frames that were not detected
were marked after the run.
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Figure 7.9: Comparison of OFDM receivers, Frame Detected

There was an attempt to speed up the simulation by using multiple parallel
threads. Both liquid and HoleOfdm transceivers need FFT library to work. Both
can either use liquid’s built-in FFT or FFTW3 from the operating system. FFTW3
had decades of development, so it should be the most optimized and the fastest.
It was optimized for multiple architectures and can easily run on x86-64 PC
as well as on ARM which will be the target application of the transmitter.

As it turns out, FFTW3 is not thread-safe when creating and deleting FFT
plans. Usually, the plans are created in advance and then run many times. The
problem is with HoleOfdmGen which needs to regenerate symbol s0 on each
Tx and at that time it creates, uses and destroys an iFFT. With some modifi-
cation, the transmitter could probably use the same iFFT plan which is used
for data symbols. To prevent this and more possible collisions, the simulation
was instead split into different programs. Each running program has its own
allocated memory and can simulate its own fraction of the overall simulation.

7.4.1 Results
The Figure 7.9 shows that the modified HoleOfdmRec is much worse at detecting
the frame and synchronizing. The curves show packet miss rate or PER if suc-
cess is the detection of the frame or packet and synchronization. The dashed
lines show where the packet was detected, but the hole layout decoded from
the second s1 was wrong. Full and dashed lines are very close which means
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that when the packet is detected, the hole layout will be most likely correct.
Detection and synchronization alone do not tell anything about the quality of
the synchronization and the frame data. Even though the liquid receiver is able
to detect many more packets, they will be mostly unusable.

Figure 7.10 shows that when the threshold for a successful packet is 50% data
symbols correct, both liquid and HoleOfdm receivers are comparable, at least
on this AWGN channel. These curves can also be compared with the header
decoding curve in Figure 7.8. The ofdmflexframe header uses FEC and needs
some portion of bits correct to work. The similarity between the figure created
by this simulation and a figure provided by the liquid’s author suggests that the
results are correct and both receivers are in fact comparable. The last Figure
7.11 shows a performance of the receivers if success is 99% data symbols correct.
At this level, the errors would be easily fixed with basic coding.

7.5 Prototype Network Implementation

The next step was to implement a basic camera, CU and a sensor for a prototype
network. The camera needs HoleOfdmGen together with a source of video and
a detector of the GMSK communication. The CU needs HoleOfdmRec with the
GMSK transceiver from Chapter 6.
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The development and testing of the prototype network were done entirely
on 50Ω coaxial cables. LimeSDR Mini transceivers had approximately 43dB
between Tx and own Rx while there were at least 3dB more for each T-splitter
in the path to other transceivers. RTL-SDR was used for the inspection of what
signals are present. This setup was used instead of antennas for two reasons. It
would not be polite to fill the entire sub-GHz SRD spectrum with the testing
signal. Production devices need to keep track of their Tx and obey duty cycle
limits, which is not true for tweaking and testing. There will still be some sig-
nal escaping the cables, but it shouldn’t inconvenience nearby sub-GHz users.
The second reason is that the first simulation showed that it may be necessary
to control the Tx power. That functionality is regularly used today and there
would be no benefit in implementing it yet again in this prototype. Fixed at-
tenuation and manually set Tx power will simplify the design.

7.5.1 Clear Channel Assessment
In our model situation, it would be possible to keep a camera synchronized
with CU and the network but the sensor will wake up unaware of the network
state and timing. The GMSK transceivers in sensors will awake from sleep
and will have to find a correct channel to Tx as soon as possible. Normally,
a CCA algorithm is used to determine who will transmit first and who later. The
device that wants to transmit will first scan the channel, try to detect the other
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transmitter and if there is one, it will back off and wait before trying again.
Depending on the implementation, either the scanning time or the back-off
time can be random or both. In our situation, it should also be improved by
retuning to another random channel for the frequency agility.

The first thing to notice is the detection of the OFDM signal as it is spread
approximately 51 times wider than the GMSK.³ Normally, the regulations pro-
vide rules for CCA. In EU at sub-GHz, it is 15dB above the sensitivity level
[52], but the receiver’s filter will detect only 1/51 or −17dB of the OFDM sig-
nal. Modern transceivers should have sensitivity lower than the limit required
by regulations, but it needs to be accounted for in the design. On the other
hand, following the rules completely would prevent the sensor and the camera
from transmitting together, so a little reinterpretation is necessary.

If the situation would be a continuous stream of video, such as DVB-T for
example, the sensor would have no other choice but to scan every channel
and find a hole. It would have to detect a drop in the power on one of the
channels. Scanning for power should take less than the already mentioned
630 µs [22] which were for preamble detection, but scanning tens of channels
will still require some time. The actual time will depend on the transceiver
and its configuration. Random channel scanning might also be unreliable in
a multipath environment if the remaining sidebands in the hole are stronger
than a used channel on the other side of the spectrum.

For this network, there is a set of HoleOfdmGen and HoleOfdmRec which use
frames and can add an arbitrary hole, including to the frame header. The CCA
used here is almost the opposite of the correct algorithm. The sensor starts
as a regular CCA and if the channel is clear, it transmits. If not, instead of a ran-
dom back-off, the sensor will wait until the OFDM packet ends and start trans-
mitting immediately after. The OFDM transmitter needs to sense the GMSK
signal as a part of its CCA and automatically eliminate the necessary tones.
There is a risk of multiple sensors transmitting both after the same end of the
OFDM packet, but the chance for collision is smaller by the number of ran-
domly selected channels.

7.5.2 Simplified Sensor
The sensor made in Chapter 6 was simplified to the bare minimum. Its only
function is to send packets and wait for an acknowledgment. The sensor
is sleeping most of the time and waiting for an interrupt from a button. If
the button is pressed, the sensor does the modified CCA, transmits and waits
in Rx for 100ms. Another switch is used to select whether to randomly select
frequencies or stay on one channel.

The packet format was also simplified. The length byte was removed and
the packet size was fixed on both ends. An incorrectly decoded bit in the length
byte would mean an entire packet lost. The packet has 18B with 9 copies of

³A very approximate amount of 51 out of 64 channels of GMSK is covered by the OFDM
with 20% guardbands.
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a 1B counter, to detect packets missed from sensor to CU, and 9 copies of a 1B
number obtained by the last acknowledge, to detect missing acknowledgments
from CU to sensor. CRC was removed from the packet and the majority of 9
copies is used instead to detect how many bits were received wrong.

18B would be a very short packet when network information and encryp-
tion are added. This could represent a binary sensor as a magnetic door detec-
tor or a smoke alarm.

7.5.3 OFDM Packet Format
The individual OFDM tones were modulated with quadrature PSK which puts
one byte per 4 symbols. The packet was fixed to a length of 64B per tone or
approximately 15ms on air including all synchronization symbols. The packet
length is approximately equal to a 64B packet of GMSK including its preamble
and syncword. Without the pilots and guard bands, there are 178 data tones
which gives something over 11KiB.

The OFDM link should transport video. In the production device, the video
would be encoded to save much of the available datarate. Camera devices
would also have to track their Tx duty cycle which means limiting the trans-
mitted video to only short bursts when there is some activity detected or on an
intentional user request. In this prototype network, the goal was to continu-
ously fill the link up to its limit without any restrictions on bandwidth usage.
The raw video was mapped to the two-dimensional OFDM packet.

Each packet starts with one row of bytes storing 64 copies of a 16-bit video
frame counter and a 16-bit vertical position of the first line. The next 63 rows
are used to store 7 lines of the video data. The video picture frames at
432× 768pixel were split into lines. Each line of the picture is mapped to 9 rows
of the data. Three colors times three neighboring pixels are stored in the same
tone. The mapping disregards pilots and holes, so a hole in frequencies trans-
lates to a hole in the picture while the rest remains in the same place.

The picture data are not protected by any FEC or CRC, to make errors
visible. Only the line position in a picture frame is protected by a majority to
detect when a packet gets lost.

7.5.4 Central Unit
The CU software is written in C++ and runs on a PC with LimeSDR Mini con-
nected to one of its USB 3 ports. The development started from the software
used in Chapter 6 and uses the same GMSK receiver and transmitter. Few im-
provements and fixes were made during this development. The SDR classes
were split into a submodule to allow easy transfer of changes between this soft-
ware and the one from Chapter 6.

This software uses three threads and even more are spawned by the Lime-
Suite library. One thread is dedicated to the user interface which is mainly
a console, but it handles also an output of the received video. This thread also
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handles debug facilities such as printing a log of events and exporting debug
data to be plotted. Two other threads use maximal priority and process SDR
and application layer behavior. The second thread handles the LimeSuite li-
brary, GMSK Tx, FFT and the first stage of GMSK Rx and stores the incoming
frames to FIFO. The threads are linked with a simple statically allocated FIFO
for the 1020 sample frames. The third thread uses data from this FIFO to re-
ceive OFDM packets. It also handles the application layer of communication
with the sensor.

The software uses the OpenCV library. No other OpenCV tools were used
besides basic data manipulation and imshow() to show the received picture on
the screen. The library was selected for convenience as it is also used in the
camera, but it could be easily replaced. The video frame is built line by line
as the packets are received and a thin red line is drawn underneath to show
what part of the picture was updated. Data from missing packets are cleared
from the image.

A small quirk of the setup creates a difference from the symbol simulation
in Section 7.2. In the simulation, the symbol of OFDM including the guard
interval was the same number of samples as the GMSK symbol or its multiple.
In the SDR software, both modulations need to be baseband signals at the
same sampling frequency. The all-channel GMSK needs to have one symbol
per 2× 64 samples, exactly at the 2x size. The OFDM is set to n = 256 with
a n/8 = 32-sample cyclic prefix which cannot be equal to 2x. This difference
should have a similar effect as a realistic shift between symbols from different
transmitters.

7.5.5 Wireless Camera
The camera prototype is based on a Raspberry Pi 4 with a CSI camera module.
Raspberry Pi OS operating system, now in standard 64bit, based on Debian
bullseye, was used to run it. The LimeSDR Mini was connected to USB 3,
an Ethernet cable was plugged in for SSH access and an LCD was connected
via the DSI for convenience.

The SDR software is written in C++ and compiled from the same
sources as the software for the CU. It is compiled on the host PC with
aarch64-linux-gnu-g++ with different options enabled. Initially, there were
some problems with cross-compilation and the solution was to use the same
version of Debian as is used in Raspberry on the PC used for development.
Having newer Debian testing was not possible as it contains a newer glibc
used by the libraries.

This software uses a similar layout as the one in CU. One thread is for the
console output, one thread handles the LimeSuite library and detects incoming
noise on one of the GMSK channels and the third thread composes the OFDM
packets and puts the data to FIFO to be sent.

The main SDR loop was shortened, compared with the CU software, to
4 frames. It still causes a delay of at least 1.04ms to react to an incoming signal.
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Figure 7.12: Timing of OFDM and GMSK Packets

The delay between two OFDM packets needs to include the time for the sensor
to start transmitting and the reaction time of the camera. The delay is shown
in Figure 7.12 which was measured by RTL-SDR at 1024ksample/s and passed
through an RMS filter in GNURadio. The power values are only for illustration
as they depend on attenuators used to connect all devices and on the OFDM
signal which does not fit into RTL-SDR bandwidth.

Figure 7.12 shows that the sensor takes approximately 1.5ms to start trans-
mitting. From personal experience with S2LP, I know that this time can be al-
most 5 times less, but it would require not using the S2LP library, reorganizing
most of the sensor firmware and would have a little benefit in this prototype.
In this situation, the delay between packets was chosen to be 13 LimeSuite
frames or approximately 2.7ms. The figure shows that the next OFDM packet
starts approximately 2.75ms after the first one ends which would be somewhere
between 13 and 14 frames.

The camera data are obtained by OpenCV and a GStreamer pipeline with
the advantage that the CSI camera or any other USB camera can be used almost
without any changes to the code. It also rescales the picture to 432× 768pixel
to fit nicely over the selected number of tones with a common aspect ratio.
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7.5.6 Communication Problems
The first attempts with OFDM on the LimeSDR Mini showed that the signal
is spread and the holes are barely visible. Two fixes were made to make the
transmission work. Both are probably linked together and with high PAPR
of the generated OFDM signal. First suspicion was to wrongly set Tx power
amplifiers in the SDR hardware. The hardware has too many options to attempt
custom settings and the only option is to trust the LimeSuite driver. The author
of the liquid library writes [63]: “Most hardware have highly non-linear RF
front ends (mixers, amplifiers, etc.) which require a transmit power back-off
by a few dB to ensure linearity, particularly when many subcarriers are used.”
The solution was to reduce both the amplitude of the generated OFDM signal
by 1/7 and the driver Tx power by −18dB. The Tx power could probably be
increased significantly with proper tuning of the entire SDR chain. Another fix
was adding a whitening of the transmitted data. Both transmitter and receiver
flip each transmitted bit by the same m-sequence. With those two fixes, the
OFDM transmitter and receiver started to work correctly.

The GMSK signal proved to be quite disturbing to the OFDM receiver. The
signal from the sensor is problematic only slightly, which was expected from
the simulation results, but the acknowledgment transmitted by the CU is prob-
lematic very. The situation could be probably improved by a proper separation
between the SDR Tx and Rx paths. A circulator could be used instead of two
common attenuators. Manually tuning the power of both GMSK signals was
enough to make the system work. In a real situation with antennas where the
separation between camera and CU will be much higher than between Rx and
Tx antenna, the circulator might be necessary.

Another option would be to circumvent the problem with a clever design
of the network. The video link would require a back channel from the CU to
the camera. Higher OSI layers need to send acknowledge packets and CU will
need a way to control the camera. The acknowledgment to the camera might
be sent sooner than required and allow the CU to switch its SDR to Tx mode.
The CU, as a master of the network, has the option to take priority and transmit
right away. Both acknowledgments to the camera and the sensor can be sent
at the same time. This would make the circulator in CU unnecessary and also
allow the use of much simple SDR with a switch between Rx and Tx instead of
both in parallel.

7.6 Results

One OFDM packet with the delay between two packets as seen in Figure 7.12
totals approximately 18ms. One packet adds 7 lines of a picture which results
in one frame of raw video in 1.1 s. It can also be converted to a datarate of
618KiB/s or 5.1Mbit/s. The same numbers were also observed by counting
the received data in CU. This datarate is without holes which will remove 6 or
7× 64 B from each packet, depending on pilot positions.
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Figure 7.13: Waterfall of OFDM with Holes

Figure 7.13 was gathered by LimeSDR Mini and SDR++. Time flows up on
the figure, the oldest data are at the bottom. The colors of the waterfall image
were inverted and level-shifted for better illustration on white background. The
center frequency of the receiver was put slightly higher than the transmitter. It
can be seen as an artifact on the waterfall made by the DC spike. Other artifacts
may be caused by missed samples. This setup was only for illustration purposes
and not for serious measurement.

In Figure 7.13 the GMSK packet can be seen to start almost immediately
after the OFDM packet ends. A short while after that, another OFDM packet
starts with a hole around the continuing GMSK packet. It is the same situation
as in Figure 7.12. Normally, another GMSK packet would follow as a response
from CU to the sensor, but in this figure, the CU’s radio was used to gather the
waterfall instead. The same situation can be seen in Figure 7.14 which is a video
output from the CU with sensor transmitting. Light gray are the pilot tones
and darker gray are the unused tones and holes made for the sensor’s signal.

Some GMSK packets are also visible on channels that are in the OFDM
guard bands. The real network doesn’t have to use these GMSK channels or
use them only for key fobs and other mobile devices. That would circumvent
the problem with configuring Tx power of mobile devices.

Figure 7.15 shows a spectrum of the OFDM signal. It was measured with an
RBW of 5kHz. Pilot tones modulated by binary PSK and the DC spike make
small dimples in the spectrum. Figure 7.16 was measured with RBW of 5kHz
as well. It shows the sensor GMSK signal put inside a hole in the OFDM.

Error rates were measured with the power of both signals as set manu-
ally during the development. It is the case of GMSK power set to −23dBm.
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Figure 7.14: Video Output from CU
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Figure 7.15: OFDM Spectrum
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Figure 7.16: Spectrum of OFDM with Hole and GMSK

The sensor transmitted one GMSK packet approximately once on every third
OFDM packet, so only 1/3 of the OFDM was affected by the GMSK.

• When only the OFDM was running, no packet out of 32962 was lost. Out
of more than 358MiB, only 2583 bits were received wrong (0.9 · 10−6).

• When only the GMSK was running, no packet was lost out of 12549 sent.
Out of almost 221KiB, not a single bit was received wrong.

• OFDM with holes filled with GMSK has worse parameters.

– None out of 32976 OFDM packets was lost (few usually do),
and 6893 bits were wrong out of 355MiB (2 · 10−6).

– 2268 out of 11523 GMSK packets were lost (0.2)
and 14 778 bits were wrong out of 163KiB (10−2).

• Without holes in the OFDM, the communication is unreliable.

– 749 out of 32976 OFDM packets were lost (2 · 10−2)
and 0.1 out of 350MiB were wrong (4 · 10−4).

– The GMSK communication wasn’t usable at all and the CU software
wasn’t able to track the Tx packet counter to count lost packets.
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Figure 7.17: PER Test of the Prototype

These numbers show that the situation does favor the OFDM. The GMSK
connection would be usable, but with drawbacks. In a low-power device, the
frequent packet repetitions would increase its current consumption. The last
test shows that if the OFDM link does not provide holes for the GMSK, the
communication suffers a lot. Both PER and BER of the OFDM drop at least
two more orders of magnitude. It should be beneficial to be polite even if the
GMSK communication is not a part of the same network. European norms do
not require the use of CCA if the duty cycle is limited, but waiting or making
holes should be preferred. The GMSK link is not usable at all without holes.

Figures 7.17 and 7.18 show how PER and BER change when the power of the
GMSK signal is varied. The drop of OFDM BER at the right edge is probably
a quirk of the test as the inaccuracy of BER rises with high PER and less data
received. The optimum of BER would be for GMSK power above −16dBm,
a little higher than the value manually selected during development. The PER
of the GMSK signal stays unreasonable high even with increasing power.

It seems that the hole should be larger than the selected 7 tones. A hole of
11 tones would carry approximately 4/178 ≈ 2% less data but would improve
the interference. Figure 7.19 shows how BER is influenced by the hole size
when GMSK power was set to −16dBm. The PER stayed almost constant in
this situation for both OFDM and GMSK. Perhaps the bad PER of GMSK
(over 4 · 10−2) is not caused by an interference of the signals but by saturation
of the SDR receiver.
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8 Conclusion

Current security and automation systems are often stuck on single-frequency
communication which is susceptible to jamming, no matter if intentional or
caused by an external signal from poorly designed electronics. The main rea-
son for a single-frequency system is the delay from a sensor waking up to infor-
mation getting to a CU. This work proposes two methods on how to improve
wireless communication in home automation and security systems.

One method improves sensor communication, is affordable and could be
implemented with proper investment in development. The other method adds
video cameras, but wouldn’t currently fit into a budget of a CU of a security or
home automation system. However, it might be available in near future.

Both methods allow sensors to wake up from sleep and immediately start
transmitting on a random channel. A network can be designed based on these
principles. The sensor hardware, power consumption, range and communica-
tion delay can stay the same as for the simple single-frequency solution that
is currently available. The main improvement is increased robustness by fre-
quency agility. If one channel is occupied, the sensor can randomly select an-
other. With some invention, these principles could also be used to synchronize
the sensor into a slow frequency hopping without the usual disadvantages.

The second method allows coexistence between the signals of a sensor and
a video camera. It allows the security camera to have only one hardware radio
for both the low-power sensor network and the high datarate video link.

8.1 Affordable All-channel Receiver in Cortex-M

This receiver allows receiving all GMSK channels at the same time. The con-
struction uses a cheap demodulator from a DVB-T tuner connected to the
MCU’s ADC, so the additional complexity of the CU is acceptable for home
automation or security.

The prototype hardware is not optimized and its analog design could use
a lot of attention from an RF engineer. The final prototype had only a range of
several meters. A receiver of a similar structure running on PC with RTL-SDR
with a proper antenna had a range comparable to or greater than a standard
GMSK receiver. That might indicate that there is nothing fundamentally
wrong with the concept, just an imperfect design of the Rx chain.
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Despite the prototype parameters, it demonstrates the possibilities of soft-
ware radio in small embedded microprocessors. Apart from the direct appli-
cation, the design explores a new interesting area of embedded electronics.
A simple SDR receiver doesn’t need an expensive FPGA to work. This po-
tentially opens a whole new market of consumer electronics to innovative and
experimental designs in RF communication, radars or similar. A receiver with-
out the need for FFT would fit into the MCU easily. For more complicated
designs, even faster Cortex-M microprocessors are already available.

8.2 Mixed Network with GMSK and OFDM

This set of OFDM transmitter and receiver allows making holes several fre-
quency tones wide. These holes can be used by the GMSK communication.
The OFDM receiver will automatically detect the hole layout. It could be use-
ful for a home security system with wireless cameras. In this case, the previous
all-channel GMSK receiver can be run on the same hardware in parallel with
the OFDM. The results for the GMSK receiver while the OFDM is running are
not good even when power and hole size are varied. More research might be
needed to get the PER reasonably low.

The implementation presented here is only one of many possibilities of the
entire network design. For example, a much simpler solution for the cohabita-
tion would be a time division multiplex between the two modulations. In this
specific setup, it would reduce the OFDM datarate to 2/3. It would be the pre-
ferred solution if the sensor packets would be sparse enough. However, if the
expected situation is multiple sensors reporting at the same time as the video
cameras start transmitting, then the holes can be a significant improvement.

Currently, common SDRs available on the market are too expensive for
consumer electronics, but the price could be pushed way down with propri-
etary chips used in the mobile phone segment. Security cameras will need both
a processor to encode the video stream and an SDR for communication. Both
components are cheaply manufactured for every mobile phone but unfortu-
nately kept secret to protect the design. The situation could change rapidly in
the same way as embedded computing became easily available by Raspberry Pi
and SDR became available by the leaked datasheet of RT820T2 and RTL-SDR.

8.3 Applications andMore Research

Still, a lot of development would be needed between this work and a produc-
tion device. The development of a real network should start with up-to-date
hardware. There are new options instead of the LPC4370 as more powerful
MCUs became available during the studies. For example, STM32H7 offers up
to 480MHz Cortex-M7 with M4 as a coprocessor. A complete CU could instead
use something like an STM32MP1 with embedded Linux and radio running on
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an M4 coprocessor. Both of these M4 coprocessors are comparable to the main
core of the LPC4370.

Instead of the RT820T2 demodulator, there are also other options. With
the upcoming IEEE 802.15.4 OFDM, more SDR-capable modems are ex-
pected. They can be used as a cheaper alternative between LimeSDR Mini and
RTL-SDR. Recently, the CaribouLite¹ was crowdfunded to connect the raw
IQ stream directly to Raspberry Pi’s memory interface. It will be a nice and
affordable concept for more SDRs which could be transformed into a CU. The
IEEE 802.15.4 chips can already work with OFDM on their own which would
allow time-multiplexed systems with cameras and sensors with relatively little
computing power required.

An experiment showed that making the hole is advantageous in sense of
correctly received OFDM packets. Even if the hole mechanism shouldn’t be
used for an own sensor network, it might be useful to avoid interference such
as a narrow bandwidth LPWAN device. The device (eg. Sigfox) can use more
than a second long, very narrow packets for its communication. Instead of
waiting for the IoT device to end, it would be beneficial to eliminate a few tones
and communicate. This might become even more important if the sub-GHz
frequencies fill up with both LPWAN and IEEE 802.15.4 OFDM devices.

The OFDM prototype was able to communicate with 5.1Mbit/s. Theo-
retical datarate without spaces between packets would be closer to 6Mbit/s
which, given the bandwidth and quadrature PSK, is on par with the oldest
IEEE 802.11a. Today, much higher speeds are expected. A lot of improve-
ments could be obtained by dynamically assigning modulation to tones, sim-
pler binary PSK for tones next to the GMSK signal and more complex Quadra-
ture Amplitude Modulation (QAM) further away.

One path of future research would be the principles of OFDM-MFSK. The
communication in the direction from the CU to the sensor should not be hard.
Some tones would use regular PSK or QAM and some intended for the sensor
would use two or four-symbol FSK. It would allow reducing the hole as the
FSK signal would be orthogonal to the rest of the OFDM. In the direction
from the sensor to the CU, it would be more difficult to synchronize the two.
Perhaps an OFDM-MFSK preamble could encode the hole position and the
sensor could precisely fit in. The rest of the OFDM packet could continue with
regular modulation. It might again work only for stationary devices and many
issues common with OFDMA synchronization would probably arise.

An important aspect of these methods would be the design of the entire
network. The CU radio would be much simpler if it didn’t have to transmit
and receive at the same time. Timing of the OSI transport layer could ensure
that the CU has enough time to compose a response to multiple sensors and
the camera into one OFDM-MFSK packet. It would have to be balanced with
the maximal delay allowed before a repeated packet gets to CU.

¹Funded at crowdsupply.com/cariboulabs/cariboulite-rpi-hat.
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Software Created for this Work

All software here should be obtainable from GitLab, but its long-term avail-
ability cannot be guaranteed. Use any of this code only at your own risk and
be sure to check local radio regulations first.

Matlab All-channel Receiver
These Matlab scripts and Simulink models were used to test the all-channel
receiver in Chapter 5. Some are modified to work with RTL-SDR and some
are intended for a simulation.

• gitlab.com/ratiafak/allch_sim

Cortex-M All-channel Receiver
This is a firmware for LPC4370 with the all-channel receiver used in Chapter 5.
It uses fast ADC to receive GMSK packets demodulated by R820T2. These
three projects of MCUXpresso also need CMSIS libraries from NXP.

• gitlab.com/ratiafak/allch1

• gitlab.com/ratiafak/allch1_app

• gitlab.com/ratiafak/allch1_intercom

Matlab Simulation of OFDM and GMSK
This is a set of Matlab scripts and Simulink models to simulate influence of
OFDM and GMSK. They were used in Chapter 7.

• gitlab.com/ratiafak/ofdm_gmsk_ber_sim

Gas Sensor Firmware
This firmware for STM32L062 was used in the gas sensor in Chapter 6. It
was developed using CubeIDE. Version S01.00.0012 was used for the current
consumption measurement in Chapter 6. For Chapter 7 a lot simplified version
S01.lm.0001 was used.
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• gitlab.com/ratiafak/gas_sensor
It requires a submodule for controlling the S2LP transceiver. This submod-

ule contains S2LP_Library provided by ST in STSW-S2LP-DK and a high level
wrapper.

• gitlab.com/ratiafak/gas_sensor_radio

CU for Gas Sensor
This is a C++ Eclipse project for Debian Linux to work with LimeSDR Mini.
It communicates with the sensor and can set its parameters. It was used in
Chapter 6.

• gitlab.com/ratiafak/lime_response
It requires three submodules: transceiver library gas_sensor_radio is in-

cluded for common packet format, submodule lime_radio contains most SDR
code and responder_userface contains a console user interface to control the
settings of the sensors.

• gitlab.com/ratiafak/gas_sensor_radio

• gitlab.com/ratiafak/lime_radio

• gitlab.com/ratiafak/responder_userface

CU and Camera for Mixed Network
This is a C++ Eclipse project for Debian or Raspberry Pi OS Linuxen. Both
versions are used in Chapter 7. It works with LimeSDR Mini. A Release build
configuration runs on PC and is for the CU. It shows the received video and
simplified sensor packets. The second build configuration, ReleasePi, runs on
ARM and is for the camera. It transmits video from a CSI camera and makes
a hole if it detects a sensor packet. This project also contains a C++ simulation
of the OFDM transmitter and receiver in folder ./experiments.

• gitlab.com/ratiafak/lime_combi
It was cloned from lime_response and requires the same submodules.

Technically, both responder_userface and gas_sensor_radio became unnec-
essary with simplifications of the sensor and communication. Both could be
removed together with all code that was specific for gas sensor.

Source Code for this Document
The following are sources to make this dissertation and the shorter summary.

• gitlab.com/ratiafak/dissertation

v12; 2022-09-16T06:54:05+02:00; a3cadc7eab725b4e6f1816342a055567d78f2a1c

106

https://gitlab.com/ratiafak/gas_sensor
https://gitlab.com/ratiafak/gas_sensor_radio
https://gitlab.com/ratiafak/lime_response
https://gitlab.com/ratiafak/gas_sensor_radio
https://gitlab.com/ratiafak/lime_radio
https://gitlab.com/ratiafak/responder_userface
https://gitlab.com/ratiafak/lime_combi
https://gitlab.com/ratiafak/dissertation


Tomáš Jakubík 

APR 2019 – OCT 2019 
INTERNSHIP, CORTEX-M FIRMWARE DEVELOPER – STMICROELECTRONICS ROUSSET SAS 

Sophia Antipolis, France  

JAN 2017 – CURRENT 
PART-TIME, CORTEX-M FIRMWARE DEVELOPER – JABLOTRON ALARMS A.S. 

Jablonec nad Nisou, Czechia

DEC 2016 – CURRENT – Liberec, Czechia 
DOCTORAL STUDIES OF TECHNICAL CYBERNETICS – Technical University of Liberec 

ISCED 8  

SEP 2014 – FEB 2017 – Liberec, Czechia 
MASTER'S DEGREE IN MECHATRONICS – Technical University of Liberec 

ISCED 7  

SEP 2015 – SEP 2016 – Zittau, Germany 
MASTER'S DEGREE IN MECHATRONICS – Zittau/Görlitz University of Applied Sciences 

ISCED 7  

Mother tongue(s):  CZECH 

Other language(s):  

UNDERSTANDING SPEAKING WRITING

Listening Reading Spoken
production

Spoken
interaction

ENGLISH C2 C2 C1 B2 C1

FRENCH A1 A2 A1 A1 A1

Levels: A1 and A2: Basic user; B1 and B2: Independent user; C1 and C2: Proficient user

WORK EXPERIENCE

EDUCATION AND TRAINING

LANGUAGE SKILLS 


	Acknowledgment
	Abstract
	Contents
	Acronyms
	1 Introduction
	2 Goals
	2.1 Example Situation
	2.2 Current Consumption
	2.3 Communication Delay
	2.4 Range and Cohabitation
	2.5 Size and Economic Aspects

	3 State of the Art
	3.1 Common Solution
	3.2 Existing Short Range Technologies
	3.2.1 BLE
	3.2.2 IEEE 802.11
	3.2.3 IEEE 802.15.4
	3.2.4 Backscatter
	3.2.5 Mesh
	3.2.6 Other Less Known Systems

	3.3 Existing LPWAN Technologies
	3.3.1 LoRaWAN
	3.3.2 Sigfox
	3.3.3 ETSI TS 103 357, TS-UNB
	3.3.4 3GPP


	4 Related Work
	4.1 Custom FHSS Network
	4.2 Cortex-M Simulator

	5 Affordable All-channel Receiver 
	5.1 Design
	5.1.1 Receiving Symbols
	5.1.2 Processing Packets

	5.2 Simulation
	5.2.1 Receiving Packets Through AWGN Channel
	5.2.2 Receiving with Frequency Offset
	5.2.3 Comparison of Different Channels
	5.2.4 Influence of GMSK on Other Channels
	5.2.5 Multiple Packets Received at Once

	5.3 Test with RTL-SDR
	5.4 Hardware Platform
	5.4.1 LPC-Link 2
	5.4.2 Demodulator Expansion
	5.4.3 Current Consumption

	5.5 Firmware
	5.5.1 Demodulator, ADC and DMA Control
	5.5.2 MCU Speed and CMSIS-DSP
	5.5.3 FFT and Magnitude Squared
	5.5.4 Arctangent and GMSK Decoder

	5.6 Results
	5.6.1 Improvements


	6 Proof of Concept Sensor 
	6.1 Sensor Hardware
	6.1.1 Analog Trigger

	6.2 Gas Sensor
	6.2.1 ADC, AFE and Power Source
	6.2.2 LDO or Precise Reference

	6.3 Radio
	6.3.1 Hardware and Channel Layout
	6.3.2 SDR Receiver
	6.3.3 SDR Transmitter
	6.3.4 S2LP
	6.3.5 Packet Format

	6.4 Current Consumption
	6.4.1 Detailed Consumption Profile 
	6.4.2 Cumulative consumption


	7 Mixed Network with GMSK and OFDM 
	7.1 Proposed Network
	7.2 Signal Simulation 
	7.2.1 Interference to GMSK
	7.2.2 Interference to OFDM
	7.2.3 Relative Signal Strength
	7.2.4 Different FFT Size
	7.2.5 Limitations of this Simulation

	7.3 Implementation of an OFDM with a Hole
	7.3.1 Liquid OFDM Frame
	7.3.2 Adding Holes

	7.4 Simulation of Frames with Holes
	7.4.1 Results

	7.5 Prototype Network Implementation
	7.5.1 Clear Channel Assessment
	7.5.2 Simplified Sensor
	7.5.3 OFDM Packet Format
	7.5.4 Central Unit
	7.5.5 Wireless Camera
	7.5.6 Communication Problems

	7.6 Results

	8 Conclusion
	8.1 Affordable All-channel Receiver in Cortex-M
	8.2 Mixed Network with GMSK and OFDM
	8.3 Applications and More Research

	Bibliography
	Manuals, Datasheets and Online
	List of Published Results

	Software Created for this Work
	Matlab All-channel Receiver
	Cortex-M All-channel Receiver
	Matlab Simulation of OFDM and GMSK
	Gas Sensor Firmware
	CU for Gas Sensor
	CU and Camera for Mixed Network
	Source Code for this Document

	Curriculum Vitae

