
B R N O U N I V E R S I T Y O F T E C H N O L O G Y
VYSOKÉ U Č E N Í TECHNICKÉ V BRNĚ

F A C U L T Y O F I N F O R M A T I O N T E C H N O L O G Y

F A K U L T A I N F O R M A Č N Í C H T E C H N O L O G I Í

D E P A R T M E N T O F C O M P U T E R G R A P H I C S A N D M U L T I M E D I A

ÚSTAV POČÍTAČOVÉ G R A F I K Y A MU L T IMÉ D IÍ

I N D E X I N G O F B I G T E X T D A T A A N D S E A R C H I N G I N
T H E I N D E X E D D A T A
INDEXACE ROZSÁHLÝCH TEXTOVÝCH DAT A VYHLEDÁVÁNÍ V ZAINDEXOVANÝCH DATECH

M A S T E R ' S T H E S I S

DIPLOMOVÁ PRÁCE

A U T H O R B e . D A V I D K O Z Á K

A U T O R PRÁCE

S U P E R V I S O R I n g . J A R O S L A V D Y T R Y C H , P h . D .

VEDOUCÍ PRÁCE

B R N O 2020

Brno University of Technology
Faculty of Information Technology

Department of Computer Graphics and Multimedia Academic year 2019/2020
(DCGM)

M a s t e r ' s T h e s i s S p e c i f i c a t i o n |||||||||||||||||||||||||
22961

Student: Kozák David, Be.
Programme: Information Technology Field of study: Information Systems
Title: Indexing of Big Text Data and Searching in the Indexed Data
Category: Web
Assignment:

1. Study indexing approaches and tools suitable for big data.
2. Get acquainted with MG4J tool and with semantically enriched data available in the

Knowledge Technology Research Group at FIT BUT.
3. Design a distributed system for indexing large textual data and semantic querying over

the data. Focus on defining appropriate interfaces between system components and on
the stability of the system as a whole.

4. Implement the designed solution and perform tests over the real big data.
5. Evaluate your work and create a brief poster presenting it.

Recommended literature:
• According to the supervisor's recommendation

Requirements for the semestral defence:
• Items 1 to 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Dytrych Jaroslav, Ing., Ph.D.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: May 20, 2020
Approval date: November 1, 2019

Master's Thesis Specification/22961 /2019/xkozak15 Strana 1 z 1

https://www.fit.vut.cz/study/theses/

Abstract
The topic of this thesis is semantic searching over big textual data. The goal is to design
and implement a search engine that queries the semantically enhanced documents efficiently
and has a user friendly interface for working w i t h the results. Fi rs t ly , state of the art
solutions along wi th their strengths and shortcomings are analyzed. Then a design for new
search engine is presented along wi th a specialized query language. The system consists of
components for indexing and searching the documents, management server, compiler for
the query language and two clients, web based and command line. The engine has been
successfully designed, developed and deployed and is available v ia the Internet. A s a result
of that, the possibil i ty of using of the semantic searching is available to a wide audience.

Abstrakt
T é m a t e m t é t o p r á c e je s éman t i cké vyh ledáván í ve velkých t e x t o v ý c h datech. Cí lem je
navrhnout a implementovat vyh ledávač , k t e r ý se bude efekt ivně dotazovat nad s éman t i cky
o b o h a c e n ý m i dokumenty a prezentovat výs ledky už iva te l sky p ř í v ě t i v ý m z p ů s o b e m . V p rác i
jsou ne jdř íve ana lyzovány současné séman t i cké vyh ledávače , spolu s jejich s i lnými a s l abými
s t r á n k a m i . P o t é je p ř e d n e s e n n á v r h nového vyh ledávače s v l a s t n í m do tazovac ím jazykem.
Tento s y s t é m se s k l á d á z komponent pro indexaci a do t azován í se nad dokumenty, manage
ment serveru, p ř e k l a d a č e pro do tazovac í jazyk a dvou k l ien tských apl ikací , webové a kon
zolové. Vyhledávač by l ú s p ě š n ě nav ržen , i m p l e m e n t o v á n i nasazen a je veřejně d o s t u p n ý na
Internetu. Výs ledky p r á c e umožňu j í š iroké veře jnost i využ íva t s éman t i ckého vyh ledáván í .

Keywords
search engine, semantic enhancement, M G 4 J , compiler, indexation, searching, annotation,
big data

Klíčová slova
vyh ledávač , s é m a n t i c k y o b o h a c e n é texty, M G 4 J , p ř e k l a d a č , indexace, vyh ledáván í , anotace,
big data

Reference
K O Z Á K , D a v i d . Indexing of Big Text Data and Searching in the Indexed Data. Brno ,
2020. Master 's thesis. B rno Universi ty of Technology, Facul ty of Information Technology.
Supervisor Ing. Jaroslav Dy t rych , P h . D .

Rozšířený abstrakt
T é m a t e m t é t o p r á c e je s éman t i cké vyh ledáván í ve velkých t e x t o v ý c h datech. V ý z k u m n á
skupina zna los tn ích technologi í (K N O T - Knowledge Technology Research Group) na
F a k u l t ě in formačních technologi í Vysokého učen í t echn ického v B r n ě disponuje skupinou
n á s t r o j ů pro zp racován í p ř i rozeného jazyka, k t e r á umožňu je analyzovat dokumenty p s a n é
v p ř i rozených jazyc ích a p ř i d á v a t k n i m dalš í metainformace. T y t o informace mohou bý t
b u d syn tak t i cké , jako n a p ř í k l a d lemma slov a jejich pozice ve vě tě a odstavci, či sémant ické ,
n a p ř í k l a d entity typu člověk či m í s t o . K a ž d á z t ě c h t o entit m á svoji v l a s tn í sadu a t r i b u t ů
dá le rozšiřujících kontext dokumentu. N a p ř í k l a d u entity typu osoba nalezneme atr ibuty
j m é n o , da tum na rozen í apod. V ý s t u p e m tohoto zp racován í je velké m n o ž s t v í t e x t o v ý c h
dat. Ř á d o v ě m l u v í m e o milionech d o k u m e n t ů zabíra j íc ích stovky G B m í s t a na disku. Už
samo o sobě se j e d n á o velký kus d o b ř e odvedené p ráce , n i c m é n ě tyto dokumenty jsou spíše
v h o d n é pro a u t o m a t i c k é zp racován í než pro č t en í č lověkem. Navíc je j i ch t akové množs tv í ,
že bez možnos t i v t ě c h t o s é m a n t i c k y o b o h a c e n ý c h datech rychle vyh l edáva t je jejich použ i t í
omezeno. Cí lem t é t o p r á c e je navrhnout a implementovat vyh ledávač , k t e r ý by se efek
t i v n ě dotazoval nad dokumenty a zároveň umožňova l využ í t v dotazech všechny d o s t u p n é
metainformace.

Několik vyh ledávačů s podporou pro séman t i cké vyh ledáván í jako n a p ř í k l a d M i m i r či
Sketch Engine již bylo i m p l e m e n t o v á n o dř íve . Jeden t a k o v ý vyh ledávač b y l dokonce vyv
inut i n t e rně u v n i t ř K N O T . N icméně , ž á d n ý z nich nesplňoval p o ž a d a v k y k l adené na nový
vyh ledávač . N ě k t e r é vyh ledávače nepodporovaly entity s atributy, j i né byly zase až příliš
komplexn í , zahrnuj íc í pří l iš mnoho dalš ích s lužeb , k t e r é pro tento účel nebyly p o t ř e b n é .
Jejich využ i t í by proto bylo t ě ž k o p á d n é . Vyhledávač dř íve i m p l e m e n t o v a n ý členy K N O T
splňoval p o ž a d a v k y nej lépe, n a n e š t ě s t í ale nebyl s t ab i ln í a jeho kód b y l t ěžko udržovate lný .
Proto bylo rozhodnuto, že se vy tvo ř í nový vyh ledávač , ve k t e r é m bude kladen d ů r a z p rávě
na s tabi l i tu a ud ržova te lnos t .

V p rác i by l ne jdř íve proveden d ů k l a d n ý n á v r h vyh ledávače j a k o ž t o d i s t r i b u o v a n é h o
s y s t é m u skládaj íc ího se z komponent r ů z n ý c h t y p ů . P r o indexován í a p ř í p r a v u dat byla
n a v r ž e n a komponenta IndexBuilder, pro v y h o d n o c e n í dotazu komponenta IndexServer.
T y t o komponenty in t e rně využívaj í pro indexován í d o k u m e n t ů MGJ^J - Managening Giga-
bytes for Java, proto v p rác i naleznete i sekci d i skutu j íc í tuto knihovnu. Dotazy mohou
přij í t ze dvou různých k l ien tů . P r v n í m z nich je WebClient, tvoř íc í p r i m á r n í uživatel
ské r o z h r a n í s y s t é m u . D r u h ý m je ConsoleClient, s loužící pro t e s tovan í a a u t o m a t i z o v a n é
do tazován í . T y t o komponenty jsou t vo řeny z komplexn í hierarchie m o d u l ů umožňuj íc ích
efekt ivně znovuvyuž íva t jejich funkcionalitu. V prác i by ly t a k é n a v r ž e n y č tyř i r ů z n é d a tové
s truktury pro p ř e n o s a n o t o v a n é h o tex tu mezi komponentami.

Pro do t azován í nad s é m a n t i c k y o b o h a c e n ý m i texty je t ř e b a spec iá ln ího do tazovac ího
jazyka . Tento jazyk by mě l bý t d o s t a t e č n ě expres ivní , aby umožňova l dotazovat se s p o m o c í
všech d o s t u p n ý c h metadat, ale zároveň by mě l bý t j e d n o d u c h ý na p o c h o p e n í , aby s n í m by l i
schopní pracovat i l idé z j iných d o m é n než in formační technologie. Jako součás t t é t o p ráce
by l vyvinut jazyk Enticing Query Language (EQL), k t e r ý by mě l sp lňova t výše uvedené
požadavky . EQL rozšiřuje s é m a n t i k u vyh ledávac ího j azyka knihovny MGJ^J o do tazován í
se nad ent i tami s atributy, g lobáln í omezen í pro definici v z t a h ů mezi ent i tami a omezen í
vyh ledáván í na k o n k r é t n í dokument. Vzhledem k širší s éman t i ce bylo v r á m c i p r á c e n u t n é
navrhnout v l a s tn í vyh ledávac í algoritmy, k t e r é budou tato d o d a t e č n á omezen í schopny
vyhodnot i t . T í m t o byla t a k é o t e v ř e n a cesta k ú p r a v ě z p ů s o b u v y h o d n o c e n í d o t a z ů tak,
aby byly v r áceny všechny kombinace výs ledků , k t e r é se v dokumentu nacházej í . P ř e k l a d a č
tohoto j azyka by l p lně in tegrován do infrastruktury vyh ledávače .

Vyhledávač by l ú s p ě š n ě nav ržen , i m p l e m e n t o v á n , t e s tován a nasazen do provozu. J á d r o
projektu bylo dá le rozš í řeno o mon i to rovac í a a d m i n i s t r a t i v n í infrastrukturu, konf igurační
doménově specifický jazyk, podporu pro a s y n c h r o n n í n a č í t á n í výs ledků a in te l igen tn í vyh
ledávací ř á d e k zobrazuj íc í výs ledky syn t a t i ckých a s éman t i ckých kontrol . P la t forma m ů ž e
bý t dá le rozš í řena n a p ř í k l a d p ř i d á v á n í m nových t y p ů indexačn ích serverů, n a t i v n í m mobi l
n í m klientem či podporou pro děd ičnos t mezi enti tami.

I n d e x i n g o f B i g T e x t D a t a a n d S e a r c h i n g i n t h e

I n d e x e d D a t a

Declaration
I hereby declare that this thesis was prepared as an original work by the author under the
supervision of Ing. Jaroslav Dy t rych , P h . D . The supplementary information was provided
by Doc . R N D r . Pavel Smrz, P h . D . I have listed a l l the l i terary sources, publications and
other sources, which were used during the preparation of this project.

D a v i d K o z á k
June 2, 2020

Acknowledgements
I would like to thank my supervisor, Ing. Jaroslav Dy t rych , P h . D . , and Doc . R N D r . Pavel
Smrž , P h . D for their professional help and guidance. I also want to thank Ing. Jan Doležal
for his guidance and support in the design process. Last but not least, I would like to thank
my parents for their neverending support.

Contents

1 Introduction 3

2 Indexing and searching inside search engines 4
2.1 Basic definitions 4
2.2 Techniques used i n a search engine 5
2.3 M G 4 J - Managing Gigabytes for Java 6

3 Semantic enhancement of natural languages 8
3.1 Basic definitions 8
3.2 Corpora processing tools 8
3.3 State of the art semantic search engines 12

4 Design of the search engine 16
4.1 Requirements analysis 16
4.2 E Q L - En t i c ing Query Language 17
4.3 Component architecture 22
4.4 Module architecture 24
4.5 Transferring annotated text 27

5 Used technology 32
5.1 Frontend 32
5.2 Backend 33

6 Implementation of the search engine 35
6.1 Eager result loading 35
6.2 Paginat ion and offsets 36
6.3 Ent ic ing Query Language 37
6.4 Encapsulat ing M G 4 J 38
6.5 User interface 40
6.6 Smart search bar 42
6.7 En t i c ing Configuration D S L 43

7 Testing and evaluation of the search engine 45
7.1 Types of tests 45
7.2 Overview of the testing module 45
7.3 Testing the searching algorithms 46
7.4 Performance measurements 47
7.5 Continuous Integration and Continuous Delivery 48

1

8 Deployment of the search engine 4 9

8.1 Deployment scripts 49
8.2 Logging 5 0

8.3 Management and moni tor ing infrastructure 50

9 Conclusion 5 3

Bibl iography 5 5

A Contents of the included storage media 5 7

B M a n u a l 5 8

C O

B . l Dependencies 0 0

B.2 B u i l d 5 8

B.3 Testing 5 8

C E Q L G r a m m a r 5 9

2

Chapter 1

Introduction

The topic of this thesis is semantic searching over big textual data. The Knowledge Technol
ogy Research Group (K N O T) 1 at the Facul ty of Information Technology Brno Universi ty
of Technology (F I T B U T) has a N a t u r a l language processing (N L P) pipeline which can
analyse documents wri t ten i n natural languages and add addi t ional meta information to
them. Such information can be syntactic, such as lemma of the word or their posit ion wi th in
sentences and paragraphs, or semantic, such as entities like people and places. The output
of this pipeline is a big volume of textual data. It is already a great piece of work on its
own, but without the abi l i ty to query these semantically enhanced documents, their usage
is l imi ted . The goal of this thesis is to design and develop a search engine that would query
the documents efficiently while al lowing to use a l l the meta information in the queries.

A couple of search engines wi th support for semantic search such as M i m i r or Sketch
Engine have been implemented before. One such engine has even been created internally
wi th in K N O T 2 . However, none of those matched the requirements for the new engine. They
either d id not provide support for entities w i th attributes or were way too complex for this
use case. The previous engine developed at K N O T was quite close, but unfortunately it
wasn't stable and the code was hard to mainta in . That ' s why the decision was made to
create a new engine and design it w i th stabil i ty and maintainabi l i ty i n mind .

In order to query the semantic metadata, a special query language has to be used. This
language should be powerful enough to query a l l the entities inside semantically enhanced
documents but it should also be simple to understand, so that users from other domains can
use it as well . A s a part of this thesis, such query language called E Q L has been designed
and its compiler was integrated into the search engine infrastructure.

The structure of the text is as follows. The problem of searching and indexing is
described i n the chapter 2. The process of semantic enhancement and its realization v ia
the Corpora processing pipeline is presented i n the chapter 3. Various state of the art
semantic search engines along wi th their strengths and shortcomings are analyzed as well.
The chapter 4 presents the design of the new search engine called Ent ic ing . The chapter 5
describes languages, libraries and frameworks used when developing Ent ic ing . The chapter
6 contains more in-depth information about the platform. The chapter 7 describes how the
search engine was tested. The chapter 8 covers the deployment process. In the end, the
conclusion is given.

x

https: //www.fit.vut.cz/research/group/knot/
2

http: //knot. f i t . vutbr.cz/pr ojects.html

3

http://www.fit.vut.cz/research/group/knot/
http://vutbr.cz/pr

Chapter 2

Indexing and searching inside
search engines

This chapter describes the problem of indexing and searching i n the context of search
engines. The section 2.1 contains basic definitions used i n the rest of the document. Typ ica l
techniques used wi th in search engines are described in 2.2. A search engine called M G 4 J is
presented in 2.3, as it is used internally wi th in Ent ic ing .

2.1 Basic definitions

In this section, the basic terms used throughout the text are defined. Since this thesis is
a follow-up work of [14, 8], the terminology w i l l be mostly identical as it was defined i n [14]
wi th some modifications and extensions.

T o k e n

Token is a commonly used term i n scientific texts and it 's definition differs based on the
domain. For the purposes of this thesis, it can be defined as a sequence of non-whitespace
characters such as letters, numbers and special characters.

Index

The Oxford dict ionary defines it as an alphabetical list of names, subjects, etc. w i th
reference to the pages on which they are ment ioned 1 .

In [14], they defined index as a structure al lowing a faster access to a certain piece of
information without the need to process a l l the data. Th is definition is well suited for this
thesis, so it w i l l be adopted.

Index ing

Indexing can be defined as creating tables (indexes) that point to the locat ion of folders, files
and records. Depending on the purpose, indexing identifies the location of resources based
on file names, key data fields i n a database record, text wi th in a file or unique attributes
in a graphics or video f i le 2 . For our purposes, indexing w i l l be used to describe the process

x

https: //www.lexico.com/en/def inition/index
2

https://www.pcmag.com/encyclopedia/term/44896/indexing

4

http://www.lexico.com/en/def
https://www.pcmag.com/encyclopedia/term/44896/indexing

of creating a l l the metadata necessary to query the semanticaly enhanced documents. In
Ent ic ing , indexing is performed as a preprocessing step before the services are started.

Searching

Searching can be defined as the process of looking up a certain piece of information using
a query. In this thesis, that piece of information w i l l be snippets of texts from documents
and the query w i l l be wri t ten in E Q L .

Snippet

If a query matched a document, the result has to be presented to the user. One of the most
common forms of presenting search results are snippets. A snippet is a part of a document
that matched given query, possibly extended wi th some addi t ional information about the
evaluation of the searching algori thm.

2.2 Techniques used in a search engine

This section focuses on some of the underlying principles, algorithms and data structures
that are used inside state of the art search engines, which are relevant for our purposes.

Inverted Indexes

A n inverted index over a collection of documents contains, for each term of the collection,
the set of documents in which the term appears and addi t ional information such as the
number of occurrences of the term wi th in each document, and possibly their positions [18].
Th is data structure is used inside search engines to efficiently determine which documents
contain the specified words.

Query expansion

M o d e r n web search engines rely on query expansion, an automatic or semi-automatic mech
anism that aims to rewrite the user intent (i.e., a set of keywords, maybe wi th addi t ional
context such as geographical location, past search history, etc.) as a structured query buil t
upon a number of operators [5].

Tree based evaluation of the query

One of the most used data structures for representing a search query is a tree [14]. The
leaves represent keywords from the query and the intermediary nodes represent operators.
The searching algori thm can then proceed i n the bo t tom up way as follows. F i rs t , a l l the
leaves of the tree are evaluated and the results are stored wi th in them. Then their parents
are evaluated, combining results from their children. The execution proceeds a l l the way
to the root, which represents the whole query.

Semantic models of searching

The semantic of the structured query is given by the semantic model . The simplest one
is the boolean model, where only conjuctions, disjunctions, negations and keywords are
allowed. Unfortunately, this model does not provide any information regarding the fact

5

how the document was matched by the query. M G 4 J uses a different model, which is called
M i n i m a l Interval Semantics. It uses intervals of natural numbers that are incomparable
towards inclusion to represent the semantics of a query. E a c h interval is a witness of the
satisfiability of the query, and defines a region of the document that satisfies the query [5].
After the bo t tom up algori thm finishes, a l l intervals that are stored wi th in the root of the
query represent a successful match.

Parallel execution

Since the amount of data that has to be processed for every query is huge, it is useful to
distribute the data to mult iple servers (and possibly mult iple collections on each server) to
paralelize the process. However, one must find the op t imal degree of dis tr ibut ion, because
the cost of combining the results might eventually overcome the speed gain. A n d even
before the querying itself, the process of creating the indexes is t ime-consuming, therefore
it is better to split the inputs and do it i n parallel .

2.3 M G 4 J — Managing Gigabytes for Java

This section introduces M G 4 J , a free full-text search engine for large documents wri t ten in
Java [4]. It is developed under the G N U Lesser General Pub l i c License 3 at the Univers i ty
degli S tudi d i M i l a n o . M G 4 J is used internally inside Ent ic ing . The engine and the research
around it is an extensive topic that does not fit into the scope of one section. Therefore only
basic introduct ion and parts relevant for this thesis are covered. For addi t ional information,
please refer to the manual [3].

M G 4 J has a query language wi th very expressive set of operators al lowing to bu i ld com
plex queries. These operators are implemented using new very efficient search algorithms
[3]. It supports searching over mult iple indexes and combining the results. O n top of that,
M G 4 J is open source, so it is possible to dive into the source code when the answers cannot
be found in the documentation. Unfortunately, it has no support for entities w i th attributes
and relationships between them. Nevertheless, the aforementioned properties make it a very
suitable backend for Ent ic ing .

Indexing in M G 4 J works in a sequence of steps. The first one is scanning documents
and creating batches. Firs t ly , each document is given an identifier, as can be seen i n the
table 2.1. Afterwards, a l l words wi th in documents are given identifiers, which can be seen
in the table 2.2. F r o m two previous steps, triples (v,p,d) are created, where v stands for
an i d of a word, d is an id of the document and p is a posit ion wi th in document. Example
of these triplets is given in the table 2.3. The inverted index is then created by sorting
these triplets based on the id of the word, which you can see i n the table 2.4. The resulting
batches have to be merged again to create a full index [8].

3

https: //www.gnu.org/licenses/lgpl-3.0.en.html

http: //www.unimi.it/

G

http://www.gnu.org/licenses/lgpl-3.0.en.html
http://www.unimi.it/

Identifier Document
0 I love you
1 G o d is love
2 Love is b l ind
3 B l i n d justice

Table 2.1: Document identifiers

Identifier W o r d
0 b l ind
1 god
2 i
3 is
4 justice
5 love
6 you

Table 2.2: W o r d identifiers

Triples W o r d Document
(2,0,0) i I love you
(5,0,1) love I love you
(6,0,2) you I love you

(1,1,0) god G o d is love
(3,1,1) is G o d is love
(5,1,2) love G o d is love
(5,2,0) love Love is b l ind
(3,2,1) is Love is b l ind
(0,2,2) b l ind Love is b l ind
(0,3,0) b l ind B l i n d justice
(4,3,1) justice B l i n d justice

Table 2.3: Triplets before sorting

W o r d Locat ions
0 (blind) (0,2,2), (0,3,0)
1 (god) (1,1,0)

2 (i) (2,0,0)
3 (is) (3,1,1), (3,2,1)

4 (justice) (4,3,1)
5 (love) (5,0,1), (5,1,2), (5,2,0)
6 (you) (6,0,2)

Table 2.4: Inverted index

7

Chapter 3

Semantic enhancement of natural
languages

This chapter explains the topic of semantic enhancement. Related basic definitions are
provided in 3.1. The section 3.2 describes how semantically enhanced documents are created
wi th in K N O T . A comparison of three state of the art search engines wi th support for
semantic search is given i n 3.3.

3.1 Basic definitions

The key definition i n semantic enhancement is Semantic annotation. Semantic annota
tions are metadata assigned to other data i n order to increase their context and seman
tics [14]. These annotations are usually derived from unstructured content using Na tu ra l
language processing and afterwards they are encoded in a structured format suitable for
semantic search [16].

Semantic search over documents aims to find information that is not based just on
the presence of words, but also on their meaning. It is gradually establishing itself as the
next generation search paradigm, which can better satisfy a wider range of information
needs, as compared to t radi t ional full-text search. In the case of semantic search, what is
being indexed is typical ly a combination of words, formal knowledge typical ly expressed in
an ontology, and semantic annotations mentioning ontological concepts i n the text [16].

3.2 Corpora processing tools

This section describes the corpora processing p ipe l ine 1 which is used wi th in K N O T to create
semantically enhanced documents.

Input data

In [14, 8], the input data was C o m m o n C r a w l and W i k i p e d i a . The Engl i sh wikipedia pub
lishes a d u m p 2 of i t 's whole database every month, which can be used for various analysis,
statistic measurements, etc.

1http: //knot.fit.vutbr.cz/corpproc/corpproc_en.html
https: //dumps.wikimedia.org/

8

http://fit.vutbr.cz/
http://wikimedia.org/

CommonCrawI^is a project that maintains an open repository of web crawl data.
For the pract ical part of this thesis, the data from W i k i p e d i a was chosen, but in fact

any source of input data i n the mg4j format can be used. The details of this format are
explained i n the following subsection.

Stages of the pipeline

This section describes the stages of the processing pipeline along wi th their inputs and
outputs.

Verticalization

The input of vert icalization can be a warc.gz archive, a dump of W i k i p e d i a or a webpage in
the H T M L format. A meaningful text is extracted from web pages using the tool Justext' 1 .
Dur ing this step the H T M L pages are parsed. The output of vert icalization is a file w i th
three columns, where each line describes one token. It s t i l l contains some X M L tags, but
it is not a val id X M L document anymore. The tags only serve as metainformation about
the text [8].

Deduplicat ion

A s the name suggests, the goal of deduplication is to remove duplici t pages and duplici t
pieces of text wi th in pages [8]. The tool used for deduplicat ion was inspired by a tool called
O n i o n 5 . The deduplication consists of two phases. In the first the U R L of the document
is used to detect duplici t documents. If the U R L is unique, the hash of the text of the
document is computed and compared wi th hashes of previously processed documents. If
the document passes this test, it is assumed to be unique. Then , the second stage is
performed i n which the content of the document is checked for duplicities, again using
hashes. The output of this stage are files i n the same format, without the duplicities.

Tagging

In this stage a tool TreeTagger is used to identify parts of speech. The goal is to identify
the type of each token using a morphological analysis [8].

Parsing

This stage performs a syntactical analysis using a tool called M D P a r s e r ' . Tokens are
enhanced w i t h various syntactical information.

S E C

In the end, a tool called S E C is used, which identifies entities wi th in documents. It was
developed by Jan Doležal i n his Master 's thesis [7]. The output of this stage are files in the
mg4j format described i n the subsection 3.2. Some of the most frequently used searches

3

https: //commoncrawl.org/
4

http: / / corpus, tools/wiki/Justext
5

http: //corpus.tools/wiki/Onion
6

http: //www. cis.uni-muenchen.de/-schmid/tools/TreeTagger/
7

http: / /mdparser. sb.dfki.de/

9

http://uni-muenchen.de/-schmid/tools/TreeTagger/
http://sb.dfki.de/

are for people, locations, organisations, and other named entities [16]. Therefore this step
provides very useful pieces of information.

M g 4 j file format

This subsection describes the mg4j file format, which is the output of the Corpora processing
pipeline. It is a token separated value (tsv) format, where each column has a well defined
meaning. It's current format is defined i n the table 3.1.

Number Name Descript ion
1 posit ion posit ion wi th in sentence
2 token the token itself
3 tag token type
4 lemma basic shape of the token
5 parpos token connected to current token
6 function function of the token wi th in sentence
7 parword value of token identified by parpos
8 par lemma the basic shape of the parword
9 paroffset offset between token and parpos
10 l ink source of the data
11 length number of tokens connected wi th this token
12 docuri ur i of the document
13 lower token in lowercase
14 nerid id of the entity
15 nertag type of the entity

16-25 paramO - param9 entity attributes
26 nertype type of S E C / N E R
27 nerlength length of the entity

Table 3.1: M G 4 J F i l e format

Columns 16-25 are polymorphic . The i r meaning differs based on the entity, which is
determined by the value i n the nertag column. The exact meaning of the attr ibute columns
as of wr i t ing this section is defined i n the table 3.2, but please note that the types of entities
and their attributes change over t ime.

10

entity paramO par a m i param2 param3 param4 param5 param6 par am 7 param8 param9
person u r l image name gender birthplace birthdate deathplace deathdate profession nat ionali ty
artist u r l image name gender birthplace birthdate deathplace deathdate role nat ionali ty

location u r l image name country
artwork u r l image name form datebegun datecompleted movement genre author

event u r l image name startdate enddate locat ion
museum ur l image name type established director location

family u r l image name role nationali ty members
group u r l image name role nationali ty

nat ionali ty u r l image name country
date u r l image year month day

interval u r l image fromyear frommonth fromday toyear tomonth today
form u r l image name

medium ur l image name
mythology u r l image name
movement u r l image name

genre u r l image name

%%#DOC 819d48be-5472-57cb-bOf6-437d774el250
%%#PAGE f>&bWiWfr% •• e0Wq$C0$e h t t p : / / 1 1 9 . d o o r b l o g . j p / a r c h i v e s / 5 1 9 8 1 3 4 S . h t m l
%%#PAR 1 w x l
%%#SEN 1 w x l
1 IMG J J IMG 3 NMOD programmer programmer +2 0 0 0 img 0 0» 0 0 0 0
2 My PP$ my 1 SUFFIX IMG IMG -1 0 0» 0 my 0 0 0 0 0 0 0» 0 0 0 0
3 programmer NN programmer 4 SBJ •is» be + 1 0» 0 0 programmer 0 0 0 0» 0 0 0 0
4 i s VBZ be 0 ROOT 0 0 0 0 0 0 i s 0 0 0 0 0 0 0 0 0» 0 0 0 0
5 t r y i n g VVG t r y 4 SUFFIX i s be -1 0 0 0» t r y i n g 0 0 0 0 0 0 0 0 0 0 0
6 t o TO t o 4 ADV i s be -2 0 0 0 to 0» 0 0 0 0 0 0 0 0 0» 0 0 0 0
7 persuade VV persuade 4 SUFFIX i s be -3 0 0 0 persuade 0 0 0 0 0 0 e
8 me PP me 4 SUFFIX i s be -4 0 0 0 me 0 0» 0 0 0 e 0 0 0» 0 0 0 0
9 t o TO t o 4 ADV i s be -5 0 0 0 to 0» 0 0» 0 0 0 e 0 0 0» 0 0 0 0
10 move VV move 4 SUFFIX i s be -6 0 0» 0 move 0 0 0 0 0 0» 0 0 0 0
11 t o TO t o 4 ADV i s be -7 0 0 0 to 0» 0 0 0 0 0 0 0 0 0» 0 0 0 0
12 . net NN .net 11 PMOD t o t o -1 0 0» 0 . net 0 0 0 0 0 0» 0 0 0 0
13 from IN from 4 PRD i s be -9 0 0 0 from 0 0 0 0 0 0 0» 0 0 0 0
14 PHP NP PHP 4 SUFFIX i s be -10 0 0 0 php 0 0 0 0 0 0 0 0 0» 0 0 0 0
15 • |G SENT . 4 SUFFIX i s be -11 0 0» 0 0 0 0 0 0 0 0» 0 0 0 0
%%#SEN 2 wx2
1 I PP I 0 ROOT 0 0 0 0 0 0 i 0 0» 0 0 0 0 0 0 0» 0 0 0 0
2 have VHP have 1 SUFFIX I I -1 0 0» 0 have 0 0 0 0 0 0» 0 0 0 0
3 al w a y s RB always 1 TMP I I -2 0 0 0» a l w a y s 0 0 0 0 0 0 0» 0 0 0 0
4 d i s l i k e d VVN d i s l i k e 1 SUFFIX I I -3 0 0 0 d i s l i k e d 0 0 0 0 0 0 0 0
5» t h e DT th e 6 NMOD i d e a i p e a +1 0 0 0 t h e 0 0 0 0 0 0 0 0 0 0 0
6 i d e a NN i d e a 0 ROOT 0 0 0 0 0 0 i d e a 0 0 0 0 0 0 0 0 0 0
7 because IN because 0 ROOT 0 0 0 0 0» 0 because 0 0 0 0 0 0» 0 0 0 0
8 of» IN» of 7 DEP because because -1 0 0 0» of 0» 0 0 0 0 0 0 0» 0 0 0 0
9 t h e DT th e 10 NMOD expenses expense >+!>• 0» 0 0 t h e 0 0 0 0 0 0» 0 0 0 0
10 expenses NNS expense 7 PMOD because because -3 0 0 0 expenses 0 0» 0 0 0 0
11 . | G _ » SENT 10 SUFFIX expenses expense >-l» 0» 0 0 0 0 0 0» 0 0 0 0
%%#SEN 3 WX3

Figure 3.1: Example of an mg4j file

A n example of an mg4j file can be seen i n the figure 3.1.

3.3 State of the art semantic search engines

This section covers three state of the art search engines which support semantic search to
a various extent. Thei r strengths and shortcomings are analyzed, as these engines were
used as inspirat ion when designing Ent ic ing .

M i m i r

M i m i r is a semantic search engine developed at the The Univers i ty of Sheffield. It was
developed as a part of the Gate infrastructure for language engineering 8 . Us ing index
federation and cloud-based deployment, it can scale up to 150 mill ions documents [16]. It
supports hybr id queries that arbi t rar i ly mix full-text, structural , l inguistic and semantic
constraints [16]. It internally combines different indexing technologies. The full-text search
is done using M G 4 J and a triple store queried using S P A R Q L is then used for accessing
L inked Open D a t a resources. The overview can be seen in the figure 3.2.

Another interesting feature of M i m i r is that it uses direct indexes i n addi t ion to the
widely used inverted indexes, i n order to support bo th information discovery and informa
t ion seeking searches [16].

Queries in M i m i r are trees, w i th compound query operators as intermediary nodes and
base queries as leaves. They are evaluated using a bo t tom up algori thm. D u r i n g the
evaluation of the query, token query executors are created for each leaf. They gather a l l the
hits i n the document. Then their parents are processed, performing compound operations

8

https: //gate.ac.uk/

12

http://119.doorblog.jp/archives/5198134S.html
http://ac.uk/

on the intervals obtained by their children. Th is process is carried up a l l the way to the
root of the tree, which then contains intervals that match the whole query [16].

M i m i r is a very powerful engine, even too powerful for our use case. Most of its func
t ional i ty is not necessary, therefore using it would be too heavyweight.

L i n k e d D a t a

Figure 3.2: M i m i r overview Taken from [16]

Sketch Engine

Sketch Engine is a tool for analyzing how languages work. It analyses large text corpuses
i n order to find out what is typica l and what is rare for a given language. It houses more
than 500 corpora i n more than 90 languages [12].

It presents search results i n three forms, word sketches, concordances or word lists.
The word sketch processes the word's collocates and other words i n its surroundings.

The results are organized into categories, called grammatical relations such as words that

13

serve as an object of the verb, words that serve as a subject of the verb, words that modify
the word [12].

W o r d lists serve display the frequency of each word i n the documents.
F rom our perspective, the most interesting form of presenting the results are the con

cordances. In this mode we can search words, phrases, tags, documents, etc. and display
them along wi th their context. A n example can be seen in the figure 3.3.

C O N C O R D A N C E | English Web 2015 (enTenTenl5)~ ® ©
CQL "in'-the"? D?"conterf' 706,992

Gl. * K-v © « X — — EB rg
EX H • DB KWIC + a

Deta i Is Left context KWIC Right context

© earlychildhoodmagazine. jce violence against children in humanitarian contexts , thereby improving the physic

© nsta.org isks and activities that occur in the social contexts of day-to-day living, whether o

393 o ancientdragon.org universal truth can only exist in the context of some particular situation. <

394 0 edtalks.org <s> He discusses open-ness in the social context , the technical area, and educ;

395 0 theology.geek.nz ard immoral has no meaning in this context . </sxs> We are stuck saying

396 0 dangcongsan.vn in the EU market, particularly in the context of the strengthening euro. </s

0 fifthestate.org writer Paul Goodman insisted in the context of 1960s movements, there m

bsa.govt.nz ;tertherefore concluded that in the context of a news item reporting on a

0 wisc.edu ie consequences of tracking in contexts beyond the US and the UK, wf

dukeandduchessofcamb. . have to picture wildlife crime in the context of the overall damage that's b

Rows per page: 10 •» 39 1-400 of 706,992 K < 40 > >l

Figure 3.3: SketchEngine Concordance view

Even though SketchEngine is an interesting piece of work that can be used for s tudying
languages, it was not designed to be a publ ic ly available search engine. O n the other hand,
some of its features, mainly the concordances, can be used by our search engine as well .

Previous system at F I T B U T

One semantic search engine was developed wi th in K N O T . Its original author was Jan
K o u r i l 9 and it was extended by Sergey Panov i n [14] and K a t a r i n a Gresova in [8]. Its archi
tecture was the following. There were two main components, Webserver and IndexDeamon.
IndexDeamon was able to index documents and query them. Webserver provided user in
terface for the system. Y o u can find a screenshot of the o ld user interface i n the figure 3.4.
It was taken from [8] as the system is no longer in use.

For querying the documents, package Query along wi th a query language mg4j-eql was
developed i n [14]. The Query package was created so that it could be used i n various clients.
It was later integrated into the old webserver i n [8]. K . Gresova also made several changes
to the webserver to make it more flexible. However, the original code was not wri t ten in
a maintainable way. A n d , as it typical ly happens wi th software products, its quali ty got
only worse over t ime. O n top of that, its implementat ion was not fully finished, because

9

https: //www.fit.vut.cz/person/ikouril/

14

http://nsta.org
http://ancientdragon.org
http://edtalks.org
http://fifthestate.org
http://wisc.edu
http://www.fit.vut.cz/person/ikouril/

it was out of the scope for a bachelor thesis. A n d because of the maintainabi l i ty issues, it
was hard to add the missing pieces of functionality or provide bug fixes. However, a lot of
ideas behind the o ld design could be reused in Ent ic ing .

Options v Help v

nertag:person killed Search

Time elapsed: 1070 ms Results estimate: 26367703

lex: Comext link
TP*" context I I'V
Tc-x: Csrr.cwt Unk
lex: Con:ext Link
Te.x: Link
Tex: fontmrt L nk
lex: Con:ext Lî <
fext Context L
TL-.-.: Context Link
Tex: Contest
lex: Context
Tex-. Context: Link
Tex: Context
le>: Context 1 \-<
Tex: Context ••-•<

lex: Context Link
IP>: Context i at
Tex: Context 1 ink
rext Context Link
lex- Context 1 Tk

; show Aaron Hachmeister alleges in the lawsu it that his brother killed their mother. During a preliminary
; after all that does not work she is killed. I do believe that violence against women is the battle to fight. Murder in the Name of Honour NHC , on August 12, 2013 at4:i6arr
i becoming the first and only voice in Jordan, at the lime, of the victims of the - so called - honour crimes. She read a short article in the newspaper about a woman killed in t

; Why was she murdered? Who killed her? What happened? I daresay a task most courageous men might be afraid to perform.She details some of the cases, she talks abet
; her interviews with some of the men who have murdered their daughters, sisters or wives. I was interested in seeing the other side of the story, how did these men decide

Justice Minister Ayelet Shaked , also from his Jewish... Read More Published June 14, 2015 Palestinian man killed by IDF jeep, soldiers shoot Gaza man
; According to the UN, Israeli soldiers have killed 11 Palestinians in the West Bank since the start of the year. Ghanayirn's death comes just two days after a video - which h
; Cohen 'S" Good Arabs" and Shira Robinson "s " Citizen Strangers "), It was during this time that Israel's secular regime expropriated the land of Palestinians refugees wh
5 good on its commitments. when Israelis are killed or wounded by Gaza militants or when the army happens to discover a new underground tunnel that it missed during O
; first-degree murder conviction, He killed a father o'six, Walker, also 34, was serving a life

literally reminiscent; QF Stalin's era.' Ognianova says. Russian journalists know well the topics that are verbcten ^ organized crime, government corruption and thetonflir.
; time, government officials said they believed that Sldorov had rjecn killed in rcia iation for his work. A
S troubles come to a head when Maya and her husband are killed in an automobile accident leaving their 7

, 2012 at 4:42 pm Reply PDub ABUHAMZA, you are a coward and a fool! Hate and anger fills your soul. A real man looks to help life, not end it. Peace is only reached wher
likely a 10 month old Arab will be killed when Israel tries to wipe out where the missiles are coming from. In fact, Hamas specifically fires the missiles from schools hoping tl
. Cowards shoot from blindly and never care where who gets hit or killed! Every man. woman and child

; deal with the iniquitous trade when he was killed at Mukapa by the very people whose cause he was about to espouse. As a result of the martyrdom British warships inten
t War Two The poetry of Wilfred Qwen,kllled at the tender age of 25 just before

,2015_IMG89_ Marine killed in Chattanooga gets pa... 1m17sjul. 24, 2015 _IMG90_ Soldier of the Year: Staff 5gt. Jose... 5m8sjul 24, 2015 _IMG91_ Raising the Bi
; said 26 people, including 20 children ' who simply came here to learn ' were killed when a man opened fire Friday inside two

Previous 1 2 3 3 5 U S 9]U

Figure 3.4: U I of the previous solution Taken from

15

Chapter 4

Design of the search engine

This chapter covers the design of the search engine. The section 4.1 contains the requirement
analysis. The design of E Q L is described i n 4.2. In the section 4.3, components of the
platform are presented. The architecture of ind iv idua l modules is given in 4.4. The section
4.5 covers the data structures designed for representing and transferring the annotated text.

4.1 Requirements analysis

This section contains the requirements analysis. Firs t ly , an informal specification is given.
Afterwards, a use case diagram is presented and described.

Search engine specification

Ent ic ing is a search engine for querying semantically enhanced documents available i n the
Knowledge Technology Research Group . Users are provided wi th a special query language
called En t i c ing Query Language (E Q L) allowing them to query not just the text of the doc
uments, but also metadata assigned to i t . Such metadata can be syntactic, such as lemmas
of the words, parts of speech, positions wi th in sentences and paragraphs, or semantic, such
as entities like people, places and events. These entities may have various attributes. For
example person might have attributes like name and birthdate. A l l these attributes can be
used inside queries. The exact format of metadata is dynamic and is to be given as a part
of the system configuration.

Documents are grouped into corpuses, such as W i k i p e d i a and C o m m o m C r a w l . The
system supports mult iple corpuses simultaneously and provides an easy way how to switch
between them.

Search results are presented as snippets, which are parts of the text of the documents
that match the given query. Every snippet can be repeatedly extended unt i l the full docu
ment length is reached. Alternat ively, it is also possible to display the whole document in
a dialog window. Users can also navigate to the original source, from which the semantically
enhanced document was created. The metadata should be presented as tooltips.

Par t of the solution is a user management system, which handles different types of users
wi th different privileges. Each user can save his search configuration, including the amount
of results per page. For each corpus, they can also select and save only a subset of the
metadata it provides.

16

User roles

In Ent ic ing , users can have several roles. The roles are ordered and each of the more
privileged roles have some extra privileges on top of the previous ones.

• User - can only edit his own settings and select metadata for each corpus

• Corpus maintainer - can add, edit and delete corpus configurations

• A d m i n - can manage user roles of other users

The text above can be summarized using the use case diagram shown i n the figure 4.1.
It provides use cases from the specification above as well as a few other that were added
later dur ing development.

4.2 E Q L — Enticing Query Language

E Q L is a language which can be used to query semantically enhanced documents on the
Ent ic ing platform. The queries can be as simple as a few words, but also very complex,
containing logical operators, subqueries over mult iple indexes or constraints further l imi t ing
the results.

The rest of the section is structured as follows. F i rs t part is a pract ical guide that shows
how to use E Q L . It starts w i t h a simple query and gradually adds more operators to it to
satisfy the requirements. Then, a list of a l l operators that E Q L supports is given along
wi th their description.

Practical guide

Let 's start w i t h a simple query, whose purpose w i l l be to search for documents ta lking about
Bonaparte vis i t ing Jaffa 1 . Mos t people would probably write a query like the following one.

Bonaparte v i s i t s Jaffa

For sure, this query is a good starting point, but there is quite a lot of place for im
provement. F i rs t th ing that one might be tempted to do is to relax the ordering of the
words, so that sentences like Jaffa visited by Bonaparte are matched as well . B u t since this
requirement is quite common, it is actually the default behavior. O n the other hand, the
ordering of words can be enforced using the order operator. For some queries this might
be very useful. Let ' s consider the following one.

Gauguin < influenced < Picasso

This query w i l l search for any document where these three words appear in the specified
order. Sometimes it might be important for the words to stand next to each other. For
that, the sequence operator can be used.

"Gauguin influenced Picasso"

1

It is a reference to a painting called Bonaparte Visiting the Plague Victims of Jaffa, see https://

en.wikipedia.org/wiki/Bonaparte_Visiting_the_Plague_Victims_of_Jaffa for more details.

17

http://en.wikipedia.org/wiki/Bonaparte_Visiting_the_Plague_Victims_of_Jaffa

Figure 4.1: Use case diagram

18

Let 's go back to the original Bonaparte visits Jaffa now. Even though the order is not
important , it might be important for these words to appear close to each other. Wi thou t any
modification, the words can be anywhere wi th in the document. To change that, Context
constraints can be used.

Bonaparte v i s i t s Jaffa ctx:par

Bonaparte v i s i t s Jaffa ctx:sent

These two queries require the words to appear i n one paragraph or i n one sentence,
respectively. Let ' s go wi th the latter opt ion for now. Us ing just one verb might be a bit
too specific. Let ' s add a second option, the verb explore. The or operator can be used for
that.

Bonaparte (v i s i t s | explores) Jaffa ctx:sent

Now the search would return documents containing words Bonaparte, Jaffa and either
visi ted or explored, or both. Note that the parenthesis are not necessary i n this case. The
query Bonaparte v i s i t s | explores Jaffa ctx:sent has the same meaning, but the
first version might be a bit more explici t . Wi thou t the parenthesis, it might look like both
words on each side are part of the or, which is not the case. To change the precedence,
parenthesis can be used: (Bonaparte v i s i t s) | (explores Jaffa) ctx:sent.

Let 's focus on the verbs again. There might be documents ta lk ing about Bonaparte
vis i t ing Jaffa, but the shape of the verb visit can be different. For example it might be
wri t ten i n the past tense. To match documents like that, index operator can be used.

So far the query used only the default index, which is token. Th is index contains words
from the original document. The metadata about words can be found in the other indexes.
For example, index lemma contains the lemma for each word.

Bonaparte lemma:visit|explore Jaffa ctx:sent

So far only basic indexes, logic operator and constraints were used. B u t the semantic
enhancement offers a lot more. In E Q L , the query can contain entities instead of exact
words. For example, there might be a sentence ta lk ing about Bonaparte and Jaffa, but it
uses pronouns instead of the direct names. Us ing entities i n the query, such sentences can
be matched as well.

person.name:Bonaparte lemma:visit|explore Jaffa ctx:sent

W o r d Bonaparte was replaced wi th entity person.name:Bonaparte. In this example
person and name are just another indexes that can be queried, just like lemma or token.
This query w i l l be looking for an entity of type person whose name is Bonaparte. It is also
possible to look for any person using the index operator.

nertag:person lemma:visit|explore Jaffa ctx:sent

Nertag is an index that contains the type of the entity. Jaffa can be changed the same
way as Bonaparte.

person.name:Bonaparte lemma:visit|explore place.name:Jaffa ctx:sent

19

B y applying a few operators, the resulting query became more generic and therefore it
matches more documents, while keeping the same requirements.

There is s t i l l one more group of operators to talk about, global constraints. To
illustrate what they are for, let's search for two artists and a relationship between them.
The skeleton of the query is a r t i s t influenced a r t i s t , but a few operators are needed
to make the query more generic.

nertag:person|artist < lemma:((influence|impact) | (pay < tribute))

< nertag:person|artist ctx:par

This query is looking for documents where there is an entity followed by a word or words
followed by an entity. B o t h entities should be of type person or artist. The text between
them must contain either a single word, whose lemma is either influence or impact, or
'pay tr ibute ' , again i n any form thanks to using the lemma index. O n top of that, this
whole query is l imi ted to a single paragraph. B u t unfortunately, there is a problem. There
is no requirement that says that these two entities should be different. To express such
requirements, global constraints can be used. Firs t ly , parts of the query that should
be used wi th in the constraint are identified using the assignment operator, then the
constraint itself can be expressed.

influencer:=nertag:person|artist <

lemma:(influence|impact) | (pay < tribute) <

influencee:=nertag:person|artist ctx:par

&& influencer != influencee

The constraint above ensures that the two artist are different. Notice that no attributes
were specified for the comparison. The default index for comparison is nerid, which contains
a unique identifier for each entity. It is possible to specify any attr ibute for comparison.

... && influencer.name != influencee.name

In the end, one more example is given.

a:=nertag:person|artist < lemma:visit < b:=nertag:person|artist

place.name:Barcelona nertag:event"event.date:[1/1/1960..12/12/2012]

ctx:par && a != b

This query is looking for documents ta lking about one artist v is i t ing another artist in
Barcelona during an event that happened between 1/1/1960 and 12/12/2012. T h e context
is l imi ted to a single paragraph and global constraints are used to ensure that the two
artists are different. Notice that when specifying an event, nertag:event ~ event.date

was used, nertag: event requires that entity of type event has to be in the document while
event. date adds a specific requirement on that event. This form is actually required inter
nally while processing the query, but it is not necessary to do it explicit ly, as the compiler
performs such rewrites on its own. For example place.name:Barcelona is compiled to
nertag:place ~ place.name:Barcelona. It was mentioned here to provide an opportu
nity to introduce the alignment operator ~, which allows to express mult iple requirements
over the same word or entity in the document.

20

Operators

The operators can be divided into four categories.

Basic operators

• Implicit and - A B - If no operator is specified, and is chosen impl ic i t ly . That
means that a l l mentioned words have to be in the document, i n any order.

• Order - A < B - A should appear before B , but they do not have to be next to each
other.

• Sequence - "A B C" - A , B and C have to appear i n this order next to each other.

• A n d - A & B - B o t h A and B have to be i n the document, in any order.

• Or - A | B - A t least one of A , B has to be i n the document.

• Not - !B - B should not be in the document.

• Parenthesis - (A I B) & C - Parenthesis can be used to bu i ld more complex logic
expressions.

• Proximity - A B ~ 5 - A and B should appear at most 5 positions apart.

Index operators

To work wi th meta information, one has to specify index for querying. That can be done
using the following operators.

• Index - index:A

Look for document, where value A is present at given index. For example, lemma:work
w i l l match any document i n which any word, whose lemma is work, appears, e.g. works,
working, worked, etc.

It is also possible to ask more complex queries such as index: AIBIC. Apa r t from another
index operator or entity operator, a query of any form can be used.

W h e n working wi th entities, it is possible to query their attributes as well . Querying
al l the people wi th name Picasso can be done using query person.name:Picasso.

If the index contains only integers or dates, range operator can be used to specify an
interval, such as date:[1/1/1970..2/2/2000] or person.age: [20..30].

• Align - index 1: A ~ index2:B

The al ign operator allows to express mult iple requirements over one word. For exam
ple, it is possible to look for a noun, whose lemma is do. This query can be wri t ten as
pos:noun ~ lemma:do.

Context constraints

The default context for searching is the whole document. For more granular queries, it is
possible to add the following l imitat ions to the query using a special index context or ctx,
bo th options work.

• Paragraph - ctx:par - L i m i t s the query to one paragraph only.

• Sentence - ctx: sent - L i m i t s the query to one sentence only.

21

Document constraints

It is also possible to l imi t the search to a single document or a group of them. T h i s can be
done using a special entity called document or doc. B o t h options work.

• U U I D - doc.uuid
=)

 . . . ' - L i m i t s the query to the document w i th specified U U I D .

U U I D identifies the document internally, but it is not possible to determine it by looking at
the original document. The user knows it only after seeing the document meta information,
so he can't type it into his first query. To compensate for that, the title of the document
or its url can be used as well . B u t please note that these are not always unique, therefore
results from mult iple documents matching the requirements might be returned.

Global constraints

Sometimes it is necessary to specify a relationship between mult iple entities that can't be
expressed using the previous operators. One example might be searching for documents
ta lk ing about two artists influencing each other. A simple query for that would be the
following.

nertag:artist < lemma:influence < nertag:artist

B u t there is a problem wi th this query. It might return irrelevant snippets, because
there is no requirement that the two artist should be different. This is where the global
constraints come into play. The global constraint is a predicate which is separated from the
query by the symbols &&. The constraint consists of one or more equalities and inequalities
connected using logical operators and, or, not and parenthesis, i f necessary.

In order to use the global constraints, relevant parts of the query have to be identified
first.

• Assignment - x: =A - Ass ign an identifier to a certain part of the query.

Afterwards, it is possible to write queries w i t h global constraints.

1:=nertag:artist < lemma:influence < 2:=nertag:artist && l.nerid != 2.nerid

To increase the readability, string identifiers can be used instead of numbers.

influencer:=nertag:artist < lemma:influence < influencee:=nertag:artist

&& influencer.nerid != influencee.nerid

4.3 Component architecture

This section contains the high-level architecture of En t ic ing . It consists of 4 main compo
nents. The diagram i n the figure 4.2 presents these components along wi th their relation
ships. Each of them w i l l now be described.

W e b s e r v e r

Webserver is the first and only component common users w i l l interact wi th . It is also
the only one that is meant to be publ ic ly accessible. A l l requests should pass through it
before being forwarded further into the system. It exposes an A P I that can be used by any

22

corpus 1 7
Indexserver 1 Indexserver N

corpus «7
Indexsserver J Indexserver K

Service layer

Interface layer

Webserver r Console client

Web "frontend

Both can speak to any
number of index serves

Index Builder

Creates input data for
index servers

Figure 4.2: Components Components of the system

third-party service to submit a search query. It is bundled wi th a single page JavaScript
application that serves as a Graph ica l User Interface (GUI) of the system.

Apar t from being the entry point for queries, Webserver's responsibilities also include
user management and search settings management.

ConsoleClient

Sometimes, especially for research purposes or testing, it is useful to submit a query from
the command line. ConsoleClient was designed for this use case. It allows to submit a list
of queries in a batch and collect a l l the results into a file. It also has an interactive shell.
Queries can be sent to the Webserver, a group of IndexServers or just a single IndexServer.
ConsoleClient also supports making performance measurements.

IndexServer

IndexServer is a component that maintains a set of indexed documents and exposes an A P I
for querying them. This A P I should be accessible only internally, from the Webserver or
the ConsoleClient . It is not meant to be directly reachable from outside the system.

Internally, the set of documents is d ivided into collections. E a c h of these collections is
handled concurrently.

This component is meant to be deployed mult iple times on mult iple machines to handle
bigger text corpuses.

23

IndexBuilder

This component is a command line tool responsible for preprocessing documents and cre
ating indexes that are later used by IndexServers. The process of indexing is bo th time
and resource consuming, that 's why it is handled separately and not directly from the
IndexServers.

4.4 Module architecture

Components described in the previous section consist of different modules, which can be
classified into two groups. Library modules implement functionality shared across multiple
components. Executable modules contain component specific logic. They group together
necessary library modules and produce jar archives that can be executed on the J V M . Th is
section describes the architecture of these modules. The dependencies between them are
visualized in the diagram in the figure 4.3.

User interface

Language: Typescript

Compiled to: Javascript

Framework: React

, frontend

Language: Kullin & Java

Compiled to: JVM Bytecode

Framework: Spring

eql-compiler

query-dispatcher

Libraries System interface

«external» mg4j

index-lib

, index-builder

, dto

A — s — r ~ , index-server

, webserver , console-client

Figure 4.3: Modules of the system

24

Library modules

Firs t , ind iv idua l l ibrary modules w i l l be presented.

D T O

This is the central l ibrary module. It contains the domain logic shared by a l l components.
Th is includes but is not l imi ted to the following.

• D a t a transfer objects (D T O s) to pass data between components.

• Functions transforming D T O s on each layer of the system.

• Configuration classes and related functions.

• Cus tom logging micro-l ibrary wi th support for remote logging.

• A P I classes for each component, which one component can use to communicate wi th
another.

WebClient

WebClient is a JavaScript single page applicat ion that provides a graphical user interface
over the A P I of the Webserver. It can be used to submit queries, manage search settings
and view search results. The flow between screens i n the WebCl ient is described using the
screen diagram i n the figure 4.4. It is bundled wi th the Webserver component, which serves
it on the root U R L .

IndexLib

IndexLib is a module whose responsibility is to perform indexing and searching. It is buil t
on top of M G 4 J , which internally performs most of the operations. IndexLib provides an
MG4J-agnos t ic interface. The rest of the system should not be dependent on M G 4 J , so
that different search engines can be integrated easily. Th is module also contains search
algorithms used for matching documents using E Q L . These algorithms already use the
MG4J-agnos t ic format, so that they can be used to evaluate results from different engines
i n the future.

E q l C o m p i l e r

A s the name suggests, Eq lCompi l e r analyses and compiles E Q L queries into the query
language used by M G 4 J . The process of compilat ion an E Q L query is described i n the
communicat ion diagram i n the figure 4.5. F i r s t , the text query is parsed using a generated
parser. T h e n the resulting parse tree is transformed into E Q L Abst rac t Syntax Tree (A S T) .
Then the semantic analysis is performed. Equivalent M G 4 J query can then be generated
by traversing the A S T . To integrate a different search engine, a l l that has to be done is to
provide an algori thm transforming the A S T into the format used by the new engine.

QueryDispatcher

QueryDispatcher contains the implementat ion of an algori thm, which dispatches queries to
a given set of nodes in an iterative way unt i l the wanted amount of snippets is collected or

25

save (), close

userSettings(

wSettings()

showSettingsQ

back(), home()

s ignUpQ

query()

back(), home()

ack(), home()

showDocumentQ

^a^d iResu l t^

close() / \ ne^tPage(), query(), context.

^6toSource()

Figure 4.4: WebCl ient screen diagram

:GeneratedParser

:CompilerService
1: parseOrFail(query,config)

f 2 . 1 : parse(input)

2.2: accept(parseTree)
:EqlCompiler

IndexServer

EqlAstGenerationVisitor

\ 2.3: performAnalysis(eqlAst)

SemanticAnalyzer

Figure 4.5: E Q L query compilation

2(i

no nodes can provide more. In each round, a l l remaining nodes are queried i n parallel . The
pseudocode for the a lgor i thm is the following.

def queryDispatcher(query,initialNodes,snippetCount):

snippets = []

nodes = initialNodes

while snippets.size < snippetCount and nodes.isNotEmpty():

results = await parallel_call(query.nodes)

nodes = []

for result i n results:

i f result.isSuccess and result.snippets.isNotEmpty():

snippets.addAll(result.snippets)

i f r e s u lt.offset:

nodes.add(NodeWithOffset(result.node.result.offset))

return snippets

It is possible to prove that this a lgori thm always terminates by exploring the conditions of
the while loop. It w i l l evaluate to true i f and only i f the accumulated amount of snippets is
less than the wanted amount and there are s t i l l some nodes to query. The list of nodes to
query is always cleared inside the loop. New nodes are added to it only i f they successfully
provided some results. Therefore the amount of snippets in each i teration either increases
or there w i l l be no nodes for the next i teration. It can therefore be concluded that the
algori thm always terminates, because it either collects enough results or has no more nodes
to process.

This a lgori thm was intentionally designed to be generic w i th regards to how the nodes
are queried. Inside Ent ic ing , there are two places where it is used. The first place is in the
Webserver or ConsoleClient , when dispatching queries to IndexServers. The second place
is in the IndexServer, when dispatching to ind iv idua l collections. The flow of a single query
is visualized i n the figure 4.6.

Executable modules

The description of the Webserver, IndexServer, ConsoleClient and IndexBuilder as com
ponents was covered i n 4.3. The corresponding executable modules contain the component
specific business logic. A s the name suggest, these components can be executed. E a c h of
them contains an entry point which starts the corresponding component.

4.5 Transferring annotated text

This section covers data structures used wi th in En t i c ing to transfer annotated text of se-
mantical ly enhanced documents. Two different result formats are supported and bo th of
them can use 4 different text formats to transfer the actual text.

Result format

There are two supported result formats - snippet and identifier list. The meaning of snippet
has already been described in the chapter 2. Snippet is generally a very useful format,
but not for every use case. Sometimes a l l that is needed are specific patterns wi th in the
snippet. Identifier list was designed for this use case. It contains only the fragments that
were matched by given E Q L identifiers.

27

CollectionManager[l]

QueryDispatcher
^Collections

QueryService

lndexServer[l]

QueryController

Webserver

QueryDispatcher
< Server?

Query Service

QueryController

, frontend

CnllectionManarjer[N]

EqIService

IndexServer [N]

Figure 4.6: QueryFlow How a query flows through Ent ic ing

28

Text format

Ent ic ing supports four text formats, each of them is useful for different use case.

Pla in text

P l a i n text is the simplest format. A s the name suggest, it contains only the pla in text from
the document, without any metadata. Sometimes it is really a l l that is needed. It can be
useful for the ConsoleClient , since showing metadata i n the terminal is rather complicated.
It is also useful format for testing. Another advantage is that it is the most compact, so it
can come i n handy when a lot of text has to be transferred over a slow network.

H T M L

This format follows the structure of H T M L files. E a c h word that has metadata is wrapped
wi th in a tag and the metadata are encoded as attributes w i th prefix eql. The
matched elements are wrapped wi th in tags. Its advantage is that there are many
tools support ing H T M L files, so it should be fairly easy to read its content. Its main
disadvantage is that it is the hardest to parse. Its properties make it a suitable format
when the content should have metadata (otherwise p la in text is sufficient), but it should
also be displayed directly as a text file, without any specialized graphical user interface.
A n example is given below.

<span eql-word eql-position="10" eql-tag="NN"

eql-lemma="job" eql-parpos="12">

job

<span eql-word eql-position="11" eql-tag="VVZ"

eql-lemma="require" eql-parpos="10">

requires

String with annotations

In this format, the annotations are encoded as intervals over the pla in text. The format
has four parts. Its structure w i l l be presented using a simple example.

{

"text": "job requires expertise i n . . . "

"annotations": {

"w-0": {

"content": {

"position": "10",

"tag": "NN",

"lemma": "job",

"parpos": "12"

>
}

29

}.
"positions": [{

"annotationld": "w-0",

"match": {"from": 0, "size": 3},

"subAnnotations": []

}].
"queryMapping": [{"textlndex": {"from": 0, "size": 3>,

" query Index": {"from": 0, "size": 1 »]

}

Text represents the actual text of the snippet. Annotations is a map of annotations, each
of them has a unique identifier. Positions describe the locations of these annotations. The
definition of an annotat ion and its usage are separated to avoid unnecessary duplicat ion.
This way, each annotation can be used mult iple times. QueryMapping describes how the
query matched the document. Th is format is not very suitable for reading directly, but it is
much easier for automated parsing. Unfortunately, it is rather hard to generate. It requires
a lot of computat ion and object allocations. O n top of that, the description by intervals
also has another bad property. W h e n the text changes, a l l intervals start ing from the point
of change a l l the way to the end of the snippet have to be updated. A n d this is exactly what
happens when the context is extended, so it is quite a common use case. Also , the rendering
pipeline i n the frontend demands a different format, so post-processing i n the browser is
necessary and it can be quite expensive. Exac t measurements were not taken, but they
didn' t even have to be. W h e n mult iple results arrived to the frontend, the slowdown was
so significant, that it was unacceptable. Therefore the text unit list format was designed as
a replacement. Since the format generating pipeline was already implemented, String with
annotations is s t i l l supported, but it is not used by the frontend anymore.

Text unit list

A s mentioned in the previous subsection, this format was added later as a replacement for
String with annotations. It covers the same use case - transferring annotated text for client
apps to visualize - but compared to the previous one, it is even a bit easier to read it directly.
However, that is only a fortunate side effect. Let ' s describe its ma in features. Its structure
is visualized i n the diagram in the figure 4.7. The text is a list of TextUni ts , which can be
either a Word , an E n t i t y or a Que ryMatch . E n t i t y can contain mult iple words, Que ryMatch
can contain mult iple TextUni t s . The advantages of the format are the following. It is very
close to the format used for analyzing documents i n the IndexLib, therefore its creation is
a straightforward process. Changes in its structure are always local - they can be performed
without the need to update the rest of the document. A n d on top of that, this format is
suitable for the frontend without any transformations. It can be rendered directly as it is.
Its disadvantage is that it duplicates the entity information. However, the same technique
as in the previous format can be applied i f the memory overhead becomes a problem. A n
example is given below.

{
"content": [

{

"type":"queryMatch",

"subunits": [

30

{

"type": "word",

"content": ["10", "job", "NN", "job", "12"]

}
]

}. {
"type": "word",

"content": ["11", "requires", "VVZ", "require", "10"]

}
]

QueryMatch

+• querylndex: Pair*: Int. I m?

+ s u b units: List<TextUriit>

1 V
«irterface»
Text Unit

Ert ty

7..

• attributes: Lisw Attribute Value

- su bun its: LisKTextUnit?

6

ArrotatedText

+ content: List<TextUnit>

Word

+ content: List<lrdexValue>

Figure 4.7: Text unit list class diagram

31

Chapter 5

Used technology

This chapter describes the programming languages, frameworks and libraries used when
bui lding Ent ic ing . Even though there are many components and modules in the project,
they can be divided into two groups, based on the environment in which they w i l l be
deployed. Frontend technology is discussed i n 5.1, backend i n 5.2.

5.1 Frontend

Frontend components are supposed to run in a web browser. In particular, the WebClient
module falls wi th in this category.

The mainstream language for developing web applications is JavaScript. However, its
dynamic nature makes it hard to develop complex systems and even for a simple one,
a static type system can be a great benefit [10]. Therefore, T y p e S c r i p t 1 was used instead.

According to the previous chapter, WebCl ient is a single page JavaScript web appli
cation. Nowadays, there are many frameworks that help w i t h bui ld ing such applications.
A m o n g those, Reac t 2 was chosen for its simplicity, performance and, last but not least, the
developer experience.

React is focused purely on the user interface. Therefore, another l ibrary called Redux'^
was added for the state management. This combinat ion is quite common nowadays, because
it provides a clean separation between U I and business logic and also it forces the developer
to think about the state of the app and its transitions [1].

TypeScript

TypeScr ip t is a typed superset of JavaScript that compiles to pla in JavaScript . Its goal is
not to replace the language, only to add a static type system to i t . It is a proper superset,
meaning that any JavaScript program is a val id TypeScr ip t program. The type system was
designed in such away to allow for gradual adoption. The typechecks are opt ional and a l l
warnings can be ignored i f necessary. Th is allows developers to incrementally add types to
existing projects instead of doing it a l l at once, which would quite often not be feasible [10].

x

https: //www.typescriptlang.org/
2

https: //react j s.org/
3

https: //redux.js.org/

32

http://www.typescriptlang.org/
http://edux.js.org/

React

React is a JavaScript l ibrary for bui ld ing user interfaces (UI) that is developed and main
tained by Facebook. It is declarative and component based. In the philosophy of React,
the view is a pure function of the state. Developers therefore only declare how the view
should be rendered based on the state and every t ime the state changes, the l ibrary tr ig
gers the min ima l necessary amount of re-rendering. The basic bui ld ing blocks i n React are
components, encapsulated reusable pieces of the user interface that manage their own state
or depend on the state of their parents. Complex user interfaces are created by composing
these components together [17].

Redux

Redux is a state container for JavaScript applications. Its idea is that the state should
be centralized, normalized and, most importantly, never changed directly. Instead, it is
protected inside a container, which allows read-only access and change detection. W h e n
any component wants to change the state, it does so by dispatching an action. The actions
are received by reducers, pure functions that can produce a new state based on the action
and the old state [1].

CodeMirror

CodeMi r ro r is a versatile text editor implemented in JavaScript for the browser [9]. It is
specialized for editing code and provides support for a lot of mainstream languages out of
the box. Fortunately for us, it also supports creating custom language modes. It is used
inside the WebCl ient for the „ s m a r t " search bar. To integrate it w i th React, the l ibrary
React Codemirror ' 1 was used.

5.2 Backend

Since the backend components should interact w i th M G 4 J , using a J V M - b a s e d language is
a necessity. A m o n g those, K o t l i n was chosen. It is fully interoperable w i t h Java and it
provides many useful features such as data classes, extension methods, nul l safety and, last
but not least, full support for functional programming [6].

For developing web services, Spring Framework 6 was used. It is the most popular
framework for bui ld ing backend applications on the J V M [11].

For parsing the custom query language, A n t l r parser generator was used.

Kotl in

K o t l i n is a mul t iparadigm mult ipla t form programming language developed by JetBrains .
It supports both object oriented and functional programming and allows developers to mix
them to get the best from both worlds. Thanks to the fact that it can be compiled into J V M
bytecode, JavaScript and L L V M bitcode, it can be run on almost any platform. It originally
started as a replacement for Java. O n one hand, Je tBrains wanted more expressive language

4

https: //github.com/JedWatson/react-codemirror
5

https://kotlinlang.org/
6

https://spring. 1 0 /
7

https: //www.antlr.org/

33

https://kotlinlang.org/
https://spring
http://www.antlr.org/

having modern features such as data classes, extension methods, functions as types, etc.
O n the other hand, they already had a big codebase wr i t ten i n Java, which they could not
abandon. Therefore they decided to create a new language which would have the features
they wanted, but which would be fully interoperable w i t h Java, so that they could reuse
their existing libraries and tools [6].

Spring Framework

Spring originally started as a dependency injection framework and gradually became an
umbrella project consisting of a huge amount of subprojects handling different needs of
enterprise developers [11]. Inside Ent ic ing , the following subprojects are used.

• Spring M V C - For creating R E S T interfaces.

• Spring D a t a - For connecting to the database.

• Spring Boot - For creating a standalone Spr ing based applicat ion wi th m i n i m u m
amount of configuration.

Antlr

A n t l r is a parser generator created by Terence Parr . It allows developers to define the syntax
of the language using a very expressive grammar, support ing iterations, left recursion and
even semantic predicates. The grammar is then compiled into a parser. A p a r t from the
parser itself, a visitor and a listener are created as well to allow developers to easily iterate
over the parse tree and transform it into custom data structures based on their needs [15].

34

Chapter 6

Implementation of the search
engine

This chapter focuses on the implementat ion of the search engine Ent ic ing . The chapter
4 described the architecture of its core component and modules. This chapter extends it
and provides more technical details. It is d ivided into self contained sections, each of them
describing one part of the platform or one interesting piece of functionality that deserves
a deeper explanation. The section 6.1 discusses the implementat ion of eager result loading.
The topic of search result pagination and offsets is covered in 6.2. The section 6.3 dives
deeper into E Q L and explains how the compiler and searching was implemented. The
process of encapsulation M G 4 J is described i n 6.4. The design of the web user interface is
given i n 6.5. Par t of that interface is a smart search bar, whose implementat ion is discussed
in 6.6. F ina l ly , En t i c ing configuration D S L is introduced i n 6.7.

6.1 Eager result loading

For the testing scenario wi th only a few IndexServers, the QueryDispatcher a lgori thm de
scribed i n the previous chapter was working well . However, once that number increased 1 ,
an unfortunate property of the a lgori thm became apparent. It waits for a l l servers to reply
before returning any result. The servers, on which the platform is deployed, are used for
other tasks as well, quite often computat ional intensive ones. A n d in the current settings,
one busy server causes a l l the results to be delayed, which is of course not acceptable.
Therefore the original implementat ion was extended to allow for eager result loading.

It was done i n the following way. The algori thm now accepts a callback, which is
triggered every t ime new results arrive. This is the only change necessary i n the QueryDis
patcher and a rather simple one. The real difficulty is in sending the results to the client.
Two approaches were considered - pushing and pulling, each of them having different im
plications on the resulting A P I .

In the pushing scenario, results are sent to the client as messages. This is of course
the cleanest solution, but it requires a channel from the server to the client through which
the data should be sent. It can be achieved using WebSockets 2 , which support full-duplex
communicat ion between the server and the client. Unfortunately, WebSockets were not
included i n the original design of the Webserver as their usage d id not seem necessary.

1

 Currently, about 50 servers are used.
2

https: //cs.wikipedia.org/wiki/WebSocket

35

http://wikipedia.org/wiki/WebSocket

Including them now would require significant effort on both client and server side and a lot
of code would have to be updated. That ' s why the solution was discarded as not feasible.
However, it is s t i l l possible to implement it later on as an extension.

In the pulling scenario, the client submits a query and then keeps asking for new results
i n a loop, un t i l everything is delivered. The client code is quite simple, but it requires a stor
age for these temporary results on the server. It would be bad to put them i n a database,
because they are ephemeral and a database is for persistent data. In the end, a simple cus
tom in-memory cache was used. This cache is storing the data i n a Concurren tHashMap,
which is a Java thread safe map implementation. It has to be thread safe, because it w i l l
be used from mult iple threads. The callback of the QueryDispatcher stores the data to the
cache and the calls from the client remove them. Two important follow-up questions had
to be answered.

The first one is how to identify and remove old entries that were not retrieved. It can
happen for example because the user closes the page in the middle of submit t ing a query. If
no cleanup is performed, the map w i l l keep growing unt i l the program runs out of memory.
Therefore a t imestamp was added to each entry and old entries are periodical ly removed.

The second one is what should be the keys for the cache. It has to be something that
w i l l always be unique for a given user and it can't be his login, because queries can be sent
by anonymous users as well . The first considered approach was generating a U U I D on the
server and sending it back to the client immediately. B u t that would change the old A P I ,
which waited for a l l results. Tha t was unwanted, the old approach is perfectly fine for the
ConsoleClient use case. Eager loading should be optional, not a default. There is no need
to trigger it for clients who do not need it . Therefore it was decided to push this option
downstream. If the client wants to use eager loading, it generates the unique id , includes
it i n the query and then uses it when pul l ing results. The WebCl ient implementat ion
generates random U U I D s , so the collision chances are acceptably low.

6.2 Pagination and offsets

In a distr ibuted environment w i th unpredictable delays, even a simple looking task like
pagination actually presents a challenge. Thanks to the distr ibuted nature of the searching
in Ent ic ing , the results from each IndexServer w i l l l ikely come in different order every time.
A n d inside IndexServers, the same problem appears wi th results from collections. It is of
course possible to sort the results, but that does not play well w i th eager result loading
presented above. The results should be delivered as soon as possible and sorting them in
the G U I would result in an unpleasant gl i tch as the already visible results would have to be
shifted from time to time. Therefore, it was decided to accept the non-determinism rather
then to fight w i th i t . A s a result of that, the pagination information cannot be encoded in
the U R L wi th deterministic outcomes. Even though the same results appear each t ime the
page is loaded, their order is l ikely to be different. Th is poses addi t ional burden on the user,
because i f he wants to share his results w i th someone else, he has to write a query that is
sophisticated enough to return only a few snippets. Document restrictions were originally
designed for this use case, but they turned out to be useful even outside of i t .

Even the structure of the offset is actually quite complex. Normally , one integer is
sufficient. A careful reader might object that result size is also important and he is right.
However, the size is decided by the user of the system, therefore it does not have to be
encoded i n the reply. The user knows it and can submit it w i th the next query. In our
scenario, even the simple offset into one collection actually has two parts - document offset

36

and result offset. The first one indicates which document to start from, while the second
indicates what should be the first returned snippet from the document. Th is offset is merged
wi th offsets from other collections, which yields a map-like structure for the IndexServer
offset. Then, on the webserver, each of these IndexServer offsets has to be merged again.
The resulting structure is then a map of a map of the collection offsets. Fortunately, it is
possible to completely hide this complex structure from the user. The A P I of the Websever
has two endpoints for querying. The first one is for submit t ing the query and the second
one is for requesting more results. The offset is stored in the H T T P session of the user.
The second endpoint does not need any parameters, because it can load everything from
the session.

6.3 Enticing Query Language

This section covers the implementat ion details of the E Q L compiler.

Syntax and Semantic analysis

Almost every compiler consists of the following parts [2].

• Lex ica l analysis

• Syntax analysis

• Semantic analysis

• Opt imizat ions (sometimes optional)

• Target code generation

E Q L compiler is no exception to that rule. A s mentioned earlier, A n t l r is used for the
lexical and syntax analysis. However, the parse tree which A n t l r returns after parsing is
too low-level for more advanced analysis and transformations that are done i n the backend
of the compiler. Therefore a custom Abstrac t Syntax Tree was designed.

Taking inspirat ion from the A n t l r itself, visitors and listeners were designed and im
plemented to allow each step i n the pipeline to easily traverse and modify the A S T . The
difference between a visi tor and a listener is that the visitor has to expl ici t ly ca l l itself on
the children of the current node to proceed. O n the contrary, the listener consists of cal l
backs that are automatical ly executed for each node i n the A S T . B o t h of these traversals
are useful, each for a different type of operation. Transformation from A n t l r parse tree to
E Q L A S T is done using EqlAstGenerating Visitor.

The next step in the pipeline is semantic analysis. Since there are many checks that
should be done and their number can increase over time, a flexible solution was necessary.
Here, the inspirat ion was taken from Intel l iJ I D E A ' \ an open source I D E for Java and
K o t l i n developed by JetBrains . E a c h semantic check is a subclass of EqlAstCheck. These
subclasses are forced to implement a method which takes as input a node in the A S T ,
symbol table and a few other useful objects. EqlAstCheck is generic and using its type
variable, subclasses can specify what type of A S T node they should be run from. The
semantic analyzer takes a list of these checks as input, groups them by the type of node
and then traverses the A S T of the query and runs appropriate checks for each node.

3

https: //github.com/JetBrains/intelli j-community

37

Unfortunately, some of these checks depend on the execution of other checks. For
example, there is a check which verifies that a l l indexes and entities i n the query are from
the corpus configuration. T h e n there are two checks for document restriction and context
restriction, which remove these pseudo nodes from the A S T and save the information about
restrictions i n the root node. If the val idat ion check runs before the transformation checks,
it reports unknown index context and unknown entity document, since they are not part
of the corpus configuration. Similar dependencies appear for other combinations of checks.
To cope wi th that, the checks were grouped into phases. Each check, which is dependent on
the execution of another, is put into a later phase. After running each phase, the semantic
analyser looks for errors and proceeds only if none are found. This also allows for early
exit, since more sophisticated analysis is not necessary i f simple semantic errors are found.

After the semantic analysis, the A S T is ready to be used. The compiler instance, which
is integrated into the webserver, stops here, only returning errors that were encountered
back to the frontend. In the IndexServer, the A S T is used i n two places. The first one is
generating M G 4 J query, which is done using Mgj4QueryGeneratingVisitor. The second one
is in the postprocessing of the results, which is the topic of the following subsection.

EQL-based Searching Algorithms

Unfortunately, M G 4 J does not return a very precise description of how the query matched
the document. It only returns the overall intervals for each index. This is enough for
creating basic snippets, but not enough to highlight the parts of the snippets that were
matched by the query. Also , E Q L has a concept of identifiers, which should be highlighted
as well , but M G 4 J has no support for them. Therefore, after retrieving a document from
the SearchEngine, it is necessary to perform a post-processing to compute which parts
of the documents were matched by which nodes i n the A S T . This information is precise
enough to provide the highlighting, however the computat ion is t ime and space consuming.
It essentially requires to re-implement the searching functionality of M G 4 J , which is not an
easy task. O n the other hand, it gives a chance to create more powerful semantics for the
query, which can be more complex than the underlying technology.

M G 4 J uses Minimal- In terval Semantics, which significantly reduces the number of re
turned snippets and which allows them to use very efficient algorithms [5]. However, it
has drawbacks. Imagine a query about a place and a person. N o w lets say that there is
a document containing three different people and three places and the intervals between
them overlap. M G 4 J would return only one interval connecting one person wi th one place,
but i n En t ic ing , it is preferred to return a l l three combinations that occur, even though
they overlap. M G 4 J does not support that, but it w i l l at least return the document and
then the post-processing generating a l l possible combinations can be performed. The con
of this solution is that the number of results can grow exponentially. To cope wi th that, it
was decided to l imi t the number of snippets per document.

6.4 Encapsulating M G 4 J

Even though M G 4 J is a useful and powerful library, a different indexing technology might
be chosen in the future. Therefore it is important to encapsulate M G 4 J as t ight ly as possible
and provide M G 4 J agnostic abstractions around it . This boundary consists of a set of inter
faces and data transfer objects that can be found i n the package c.v.f.k.e.index.boundary.
The core class of the IndexLib module, CollectionManager, which interacts w i th the in -

38

dexing library, only depends on the boundary classes from the package above. Therefore
the process of integrating new indexing l ibrary would consist only from implementing the
interfaces from the package above and in i t ia l iz ing the CollectionManager w i th them.

The process of searching using a CollectionManager is visualized i n the figure 6.1. F i r s t ,
search query and offset are given to the CollectionManager. It delegates the request to the
SearchEngine, which is an interface providing methods for querying the collection. Docu
ments are represented using an interface IndexedDocument. Results from the SearchEngine
are then given to the Postprocessor, which analyses the document using E Q L searching
algorithms and finds a l l interval matching the query. Previous two steps might be executed
in a loop unt i l wanted amount of results is accumulated or there are no more document
matching the query. In the end, results are genereated using ResultCreator, which is re
sponsible for transforming the document and the query-match information into the result
format specified by the query.

:CollectionManager

query^queiy. offset)

: Search Engine

queryfqijery. offset)

: Postprocessing

Col ectionSeardiResult -UK-

document, intervals

proces5(queryn document. interval_to_analyze)

intB rval_to_query_mapping

: ResultCreator

createRe^ult[documerrt. interval_ta_query_mapping)

C oil ectionSe arcliResu It

Figure 6.1: Collection Manager Searching i n a collection

39

6.5 User interface

G o o d user experience is a must these days. In this section, screenshots of the web frontend
are provided and the thought process behind the design is discussed.

The first screen user sees is the main page, which you can see in the figure 6.2. It was
inspired by the main page of Goog le 1 . It should be minimal is t ic , containing only the bare
min imum one needs to start searching, which is a search bar of course. One difference
between Google and En t i c ing is that i n En t i c ing users can specify corpuses which should be
searched. It was decided to put this opt ion into the main toolbar at the top of the screen,
so that is does not pollute the structure of the page, while s t i l l being easily accessible.

Enticing USING: SMALL-WIKI LOGIN

Enticing
a;=nertag;person < lemma:(influence | Impact | (paid < tribute)) < b:=nertag:person ctx:sent && a.ur

Figure 6.2: M a i n page

After a search query is submitted, the user is redirected to the search result page, which
you can see i n the figure 6.3. This page uses the same toolbar as the main page. The search
bar is positioned right below it to allow users to submit another query quickly if necessary.
Search results presented as snippets follow. O n the left of each snippet are buttons, which
can be used to extend its context, open full document, go to the original source or reduce
the search scope only to given document. E a c h of these buttons has an explanatory tool t ip,
which pops up when user hovers over i t . O n the right is the content of the snippet.

The biggest challenge when presenting the results is displaying the metadata. A l l words
have metadata assigned to them and on top of that, some sequences of words represent
entities w i t h attributes. It was decided to display the entities using different colors. User
can configure which color to use for which type of entity in the settings. For displaying a l l
metadata, tooltips are used. These toolt ips appear when user hovers over a word i n the
snippet. A n example of a tool t ip w i th simple word can be seen i n the figure 6.4 and an
example of an entity can be seen i n the figure 6.5. A careful reader can notice that these

4

https: //www.google.com/

40

http://www.google.com/

Enticing USING: SMALL-WIKI LOGIN

^:=nertag:person < lemna :(Influence | tnpact (paid < t r i b u t e)) < b:=nertag:person ctx:sent && a.url ! = b.url

+ / o -
Kuohal , for a whole day , and eventually defeated the allies. He was generally regarded as a hero , but he was negatively influenced by his family, especially his father
Yuwen H u a j i , who killed Yang Guang , the emperor of Sui Dynasty , in a

+ / o -
, for a whole day , and eventually defeated the allies. He was generally regarded as a hero , but lie was negatively influenced by is family , especially his father Yuwen
Huaji , who killed Yang Guang , the emperor of Sui Dynasty , in a military

+ / C-3 -
for a whole day , and eventually defeated the allies. He was generally regarded as a hero , but he was negatively influenced by family , especially his father Yuwen
Huaji , who killed Yang Guang , the emperor of Sui Dynasty, in a military rebellion

+ / C-3 -
The latter, Stalin's r ival , was later assassinated on orders from Stalin . In his book S t a l i n - A n Appraisal of the Man and his Influence , Trotsky analyzed many
publications describing the Tiflis expropriation and other Bolshevik militant activities of that time , and concluded

+ / C-3 -
The latter, Stalin's r ival , was later assassinated on orders from Sea 1 in . In his book S t a l i n - A n Appraisal of the Man and his Influence, Trotsky analyzed many
publications describing the Tiflis expropriation and other Bolshevik militant activities of that time , and concluded,

+ / C-3 -
's r ival , was later assassinated on orders from Stalin . In his book Stalin - A n Appraisal of the Man and his Influence, Trotsky analyzed many publications describing the
Tiflis expropriation and other Bolshevik militant activities of that time , and concluded , " Others did the

+ / O -
State Normal School football team represented Southwest Texas State Normal School in the 1919 college football season . Better known for his basketball influences ,
Oscar W, Strahan became the university s first athletic director, and lead the team to a 4-4 record in 1919 . In

+ / C-3 -
one belonging to the National Liberal Party, written with contributions from Ion L C . Bratianu ; one composed by R. Boila at Cluj , under the influence of the Romanian
National Party ; one by Coustantin Stere , representing the views of the Peasants1 Party ; and a

+ / C-3 -
Pirates . [3] Shore made an impact early, both as a rushing defenseman and as an enforcer, provoking the ire of the Montreal Maroons in a December 23 game in which
he and Sprague Cleghorn both slashed repeatedly at Maroons' star

+ / C-3 -
3] Shore made an impact early , both as a rushing defenseman and as an enforcer, provoking the ire of the Montreal Maroons in a December 23 game in which he and
Sprague Cleghorn both slashed repeatedly at Maroons ' star Nels Stewart, much to

+ / C-3 -
Detroit's Olympia Stadium . Their also received a new coach and general manager in Jack Adams . Adams made an immediate impact, picking up Reg Noble and
quickly naming i Captain . Detroit performed much better to start off the season and only finished two

+ / C-3 -
has it that Bunton , who had dominated in the last match of the season , tried to suck up to " field umpire Jack McMurray as he walked off the playing field , and that
Murray , sensing a blatant and improper attempt to influence his Brownlow voting

+ / C-3 -
it that Bunton , who had dominated in the last match of the season , tried to " suck up to " field umpire Jack McMurray as he walked off the playing field , and that Murray
, sensing a blatant and improper attempt to influence his Brownlow voting ,

+ C-3
, who had dominated in the last match of the season , tried to " suck up to" field umpire Jack McMurray as he walked off the playing field , and that Murray , sensing a

Figure 6.3: Search result page

pictures are a bit transparent. Th is was done on purpose. These tooltips can take quite
a lot of space and this way the user s t i l l sees what is located under them.

Word programming
position : 15 link: 0

tag :NN length: 0

lemma : programmingdocuri : 0

parpos : l6 lower: programming

function : NMOD nerid : 0

parwrod : language nertag : 0

parlemma: language nertype: 0

paroffset: +1 nerlength : 0

.glue: 0

Figure 6.4: Toolt ip with a simple word

6.6 Smart search bar

Since E Q L is a formal language wi th well-defined structure and semantics, giving the user
just a p la in H T M L input field seemed unsatisfactory. The feedback should be given while
typing the query. Syntax highlighting would be a good start, full syntax and semantic
analysis could follow. Autocomplete would also be great. The flow should seem similar to
wr i t ing a program using an I D E .

Unfortunately, there are not so many options for smart text editors in the browser. A n d
the ones that exist usually have some bad properties. They are either not for programming
or they support only syntax highlighting and nothing more or they are very o ld and hard
to use. The remaining editors actually do what is required, but they are way too complex
for a simple search bar.

After a while, it was decided to take inspirat ion at Je tBrains again, par t icular ly at the
way K o t l i n Playgroud ' ' is implemented. K o t l i n P layground is a minimal is t ic online I D E in
which users can experiment w i th K o t l i n in their browser. Fortunately, it is open source 6 ,
so the answers could be found by reading the source code. They are using an editor called
C o d e M i r r o r ' . The first impression categorized it as opt ion three from the list above -
old and hard to use. However, after a deeper analysis, it was fortunately discovered that
only the first part is true. Us ing it is actually quite easy. Syntax highlighting is only
a matter of providing regular expressions describing tokens. Syntax and semantic analysis
were a bigger challenge. Re-implementing the whole E Q L compiler i n JavaScript seemed
wrong, since it would be a lot of work and then two compilers would have to be maintained
instead of one. The inspirat ion was taken from the K o t l i n P layground again, where they
were sending the code to the backend for analysis. Th is options allowed to use the existing
K o t l i n implementat ion of the compiler and just expose it as an endpoint on the Webserver.
It of course introduces some delay, but the experience showed that it was acceptable. This

5

https: //play.kotlinlang.org/
6

https: //github.com/JetBrains/kotlin-playground
7

https://codemirror.net/

42

https://codemirror.net/

Entity person

url: https://en.wikipedia,ora/wiki/Alan_Turinq
name: Alan_Turing
gender: Male
birthplace: Maida_Vale

bhthdate: 1912_06_23
deathplace: Wilmslow
deathdate: 1954_06_07
profession: 0
nationality: 0
nertype: kb
nerlength: 1

Figure 6.5: Toolt ip with an entity

p e r s o n . n n a m e : ' J o h n '
^ w " " w w w w ' * | ABribute 'nname' of entity person is not available |

Figure 6.6: Search bar displaying an error message

way it was managed to get syntax and semantic analysis reasonably fast. Example of
the searchbar displaying an error message can be seen i n the figure 6.6. Unfortunately,
autocomplete was not implemented yet. C o d e M i r r o r supports it , so it can be a nice and
challenging follow-up work.

6.7 Enticing Configuration D S L

K o t l i n has features which allow developers to create their own internal D o m a i n Specific
Languages (DSLs) . The advantage of using them is that they provide a higher level of
abstraction compared to pure K o t l i n , which makes the resulting code easier to read and
therefore it improves the maintainabil i ty. E v e n though some of these abstractions can be
suitable even for general programming, one of the use cases, in which they really shine, are
configuration D S L s . These D S L s provide a more powerful alternative to X M L or J S O N
based configurations. A n y piece of K o t l i n code can be used wi th in them and the I D E s can
provide validat ion and autocomplete for them.

A custom D S L for En t i c ing was created which allows one to easily configure the whole
platform i n a way that should be readable even for a non-programmer. Example of a con-

43

https://en.wikipedia,ora/wiki/Alan_Turinq

figuration wri t ten using the D S L can be seen i n the figure 6.7. Please note the syntax
highlighting and addi t ional semantic information, which the I D E presents to the user for
free.

After the D S L was ready, the question became how to use i t . Configuration is something
rather dynamic, so including it directly into the source code d id not seem like a good option.
Fortunately, K o t l i n has a scripting A P I , which handles this use case very well . Us ing this
A P I , a file containing the configuration can be loaded by each component at runtime and
used to configure it.

enticingCanfiguratian { this: EnticingConfiguration
localHome = ENTICING_HOME
webserver { address = " a t h e n a l B . f i t . v u t b r . c z " }
management { this: ManagementServiceConfiguration

address = " a t h e n a l l . f i t . v u t b r . c z "
heartbeat { per iod = 2_000 >

}

logging {this: LoggingConfiguration
rootD i rec to rv = "$ENTICING_HOHE/logs"
stdoutLogs(LogType.DEBUG, LogType.INFO, LogType.PERF, LogType.WARN, LogType.ERROR)
fi"LeLogs(LogType.INFO, LogType.PERF, LogType.WARN, LogType.ERROR)
managementLogs { logTypes(LogType.PERF, LogType.WARN, LogType.ERROR) }

}

authent icat ion •{ username = "xkozaklS" }
deployment { this: DeploymentConfiguration

server = " a t h e n a l 0 . f i t . y y t b r . c z "
repos i to ry = "/mnt/minerval/nlp/projects/corpproc_search/corpproc_search"
c o n f i g u r a t i o n S c r i p t = "$ repos i to rv/d to/s rc/ tes t/ resources/conf io .k ts "

}

corpusConfig {this: CorpusMap
corpusC name: "w ik i -2018") { this: CorpusConfiguration

c o l l e c t i o n s D i r = "/mnt/data/indexes/xkozakl5/new_wiki"
se rve rF i leC path: "$ENTICING_HOME/dto/src/test/resources/servers.txt")

corpusSource { this: CorpusSourceConfiguration
server = " m i n e r v a 3 . f i t . v u t b r . c z "
d i r e c t o r y = "/var/xdolez52/Zpracovani_Wikipedie/html_f rom_Kiikipedia/6-mg'HJ/old-2O19-10-18"

Y

metadata { ...}

Figure 6.7: Example of Ent ic ing Configuration D S L

44

http://athenalB.fit.vutbr.cz
http://athenall.fit.vutbr.cz
http://athenal0.fit.yytbr.cz
http://minerva3.fit.vutbr.cz

Chapter 7

Testing and evaluation of the
search engine

This chapter covers methods used for testing and evaluation of the En t i c ing platform.
Fi rs t , general overview of the types of tests that were used is given i n 7.1. The section
7.2 describes the testing module, which contains the integration and performance tests of
the whole platform. The section 7.3 focuses on the tests of the E Q L searching algorithms.
Results of the performance measurements are given in 7.4. In the end, the description of
the Continuous Integration and Continuous Delivery setup is presented i n 7.5.

7.1 Types of tests

Since the project is very complex, mult iple different types of tests were used together to
ensure its quality. E a c h module has its own unit tests verifying its functionality. W h e n
unit testing ind iv idua l units of code, it is sometimes necessary to mock the behavior of
their dependencies. For that, mocking libraries were used. Different modules are combined
together into components and integration tests verify the communicat ion between them.
The searching algorithms were mostly verified using functional tests, ensuring that correct
outputs are returned for specified inputs. However, wr i t ing these functional tests is time
consuming, because for each tested query, one has to find suitable test documents and then
specify what should be matched. Therefore the number of these tests is l imi ted . To increase
the confidence wi th the quali ty of the searching algorithms, a declarative D S L was created.
It can be run on any group of mg4j files, veryfying that the returned results have declared
properties. More details about these tests w i l l be given i n the section 7.3. Performance
tests were implemented to measure the performance of the engine. They were very useful
when opt imizing the search performance.

7.2 Overview of the testing module

The integration and performance tests were created i n a special testing module. New
management module is used to start, monitor and k i l l components under test. For querying
the components, ConsoleClient module is used. This way the tests are done by using real
A P I calls, therefore the components are tested i n a very realistic scenarios. However, these
tests are very expensive, therefore they are not included i n the C I pipeline.

45

The first group of tests i n the module are integration tests. Us ing them, the following
properties are verified.

• After submit t ing a query, results are successfully returned.

• The structure of the results is correct.

• The results match the requirements specified i n the query.

• The same results are returned every t ime the same query is submitted.

• Paginat ion works as expected. M a k i n g one big query or adequate amount of small
ones should produce the same results.

The tests are generic w i th respect to the querying mechanism. This way, the same suite
can be executed on three layers - IndexServer, QueryDispatcher and Webserver.

The second group are performance tests. In these, the queries are submitted multiple
times and the t ime of their execution is measured. It is then possible to compute the average
value, the deviance, min , max, etc. These tests can be performed on the three different
layers mentioned above.

7.3 Testing the searching algorithms

One of the biggest challenges when testing the platform was testing the searching algorithms
based on E Q L . They form the very core of the search engine functionality and therefore
their correctness is of the highest importance. Since the interactions i n the search engine
are very t ight ly coupled, it was decided to create functional tests verifying that correct
outputs are produced for given inputs. The tests can be categorized into two groups.

Tests performed on dummy documents

In these tests, the documents are handcrafted to contain specified keywords and then they
are send to the search engine. Since the documents were created manually, it is exactly
known what results should be returned, therefore it is easy to check them. However, the
setup phase of these tests is very t ime consuming, therefore their amount is l imi ted.

DSL-based tests performed on real data

Another option is to use real mg4j files for the tests. The advantage of this approach is that
the inputs are real documents, therefore the tests are more realistic. The disadvantage is
that it is necessary to read the documents beforehand to know what k ind of results should
be expected.

To automate this process, another D S L was created. It allows one to declare what
properties should hold for every result returned for a given query. A smal l test engine was
then implemented, which queries given set of documents and and then verifies that the
results given by the CollectionManager are val id . Th is of course does not guarantee that
al l results are returned, but it at least guarantees that the returned results are meaningful.
These tests can also be scaled very easily s imply by adding more mg4j files as input.
Example of one test wri t ten using this D S L is given below.

46

@DisplayName("That Motion three")

©Test

fun simpleQuery() = forEachMatchC'That Motion three") {

forEachInterval("all three words should be there") {

val text = textAt("token", interval)

verify("that" i n text) { "'that' should be in '$text'" }

verifyC'motion" in text) { "'motion* should be i n '$text'" }

verify("three" i n text) { "'three' should be i n '$text'" >

verifyLeafCount(3)

}

}

7.4 Performance measurements

Apar t from the correctness itself, performance is very important . Users expect search
results to be delivered fast and therefore the whole system has to be opt imized to satisfy
that. In order to perform any optimizations, measurements have to be taken first, to make
sure that the optimizations work as expected.

The first measurements were taken i n the end of M a r c h 2020. Thei r results are presented
in the table 7.1. The durat ion of querying one IndexServer was measured, as it is the most
important use case to optimize. Wanted amount of snippets was 20. Tested IndexServer
instance was deployed on K N O T server knot01.fit.vutbr.cz. Th is server has Intel X e o n E 5 -
2630 2.3 G H z processor w i th 1 5 M B cache and 6 cores. Tota l ram size is 65536 M B . The
IndexServer instance was handling 10 mg4j files, which together had 2.9 G B and contained
24371 documents. A list of queries was created and then submitted 100 times, taking the
average, deviation, m i n and max value. The testing started wi th simple single word queries,
which were then combined together using logical operators. In the end, context restrictions
and global constraints were added. Contrary to what was expected, more complex queries
were not always significantly slower. The number of occurences of searched terms and their
locations played a significant role as well . For example, there were only 1285 matches of
the word water, but there were more than 10000 entities of type person. Therefore less
documents had to be iterated when providing 20 results. Y o u can also notice a significant
slowdown i n the query water nertag:person nertag:location ctx:sent. The author in i t ia l ly
thought that it was because the context restrictions operators were not very optimized, but
the second measurements showed otherwise.

The second measurements were taken i n the middle of M a y 2020. Y o u can see their
results i n the table 7.2. The same server and the same set of documents were used. However,
there were a lot minor updates of the searching algorithms in the meantime, which targeted
both bugs and performance issues. The context restriction evaluation was updated as well.
A s you can see, the searching became faster, but the difference is unfortunately not as big
as the author hoped, especially for the query water nertag:person nertag.'location ctx:sent.
It seems that even though new context restriction evaluation had a positive impact , a lot
of documents have to be processed to provide snippets, which slows down the search.

It is also important to note that other processes are running on the tested server, which
influences the results. O n top of that, the whole end to end t ime for each query is measured,
which is also a subject to a lot of noise from the environment. O n the other hand, this
way of testing is as close to what the user experiences as possible. However, it might be

47

http://knot01.fit.vutbr.cz

E Q L Query Average [ms] Deviat ion [ms] min[ms] max[ms]

water 711.4 65843.12 337 1823
nertag:person 155.4 2263.76 104 421

nertag:location 177.73 24321.48 93 835
water nertag:person 503.0 35445.24 355 1259
water nertag:person ctx:sent 423.15 8891.11 321 771
nertag:person nertag:location 130.24 1919.32 96 433
nertag:person nertag:location ctx:sent 287.09 2490.72 220 463
water nertag:person nertag:location 453.82 14603.47 331 1056
water nertag:person nertag:location ctx:sent 4317.23 16767.16 4071 4828
nertag:person nertag:person 119.28 1071.40 96 403
nertag:person nertag:person ctx:sent 124.48 828.09 100 330
a:=nertag person b =nertag:person 117.31 699.074 97 287
a:=nertag person b =nertag:person ctx:sent 130.61 667.64 104 247
a:=nertag person b =nertag:person & & a.url != b.url 126.33 801.48 98 263
a:=nertag person b =nertag:person ctx:sent & & a.url != b.url 353.91 10034.46 250 801

Table 7.1: Results of the first performance measurements

E Q L Query Average [ms] Deviat ion [ms] min[ms] max[ms]

water 191.41 196.86 118 2033
nertag:person 35.46 52.47 22 546
nertag:location 33.43 30.50 23 313
water nertag:person 303.10 122.36 220 1071
water nertag:person ctx:sent 149.35 108.73 93 846
nertag:person nertag:location 41.10 37.48 24 298
nertag:person nertag:location ctx:sent 154.03 42.00 116 349
water nertag:person nertag:location 787.29 105.52 657 1030
water nertag:person nertag:location ctx:sent 4016.33 147.78 3860 5075
nertag:person nertag:person 30.72 25.89 23 286
nertag:person nertag:person ctx:sent 42.69 20.67 31 163
a:=nertag person b =nertag:person 33.81 15.44 24 113
a:=nertag person b =nertag:person ctx:sent 44.62 19.85 31 220
a:=nertag person b =nertag:person & & a.url != b.url 34.73 17.22 24 138
a:=nertag person b =nertag:person ctx:sent & & a.url != b.url 306.94 74.51 254 776

Table 7.2: Results of the second performance measurements

beneficial to create a suite of performance tests targeting just the searching algorithms in
isolation i n the future.

Also , please note that the system is s t i l l being developed, so the results presented here
might not be aligned wi th the performance you are experiencing when using Ent ic ing .
Hopefully, the system w i l l be even faster by the t ime you experiment w i t h i t .

7.5 Continuous Integration and Continuous Delivery

Since running the tests became more and more t ime consuming after a while, a Continous
Integration (CI) was configured for the G i t H u b repository of the project. After every
commit to the master and release branches, the full test suite is run remotely. The C I was
setup using C i r l c e C I 1 .

x

https: //circled.com/

18

Chapter 8

Deployment of the search engine

This chapter covers the deployment of the platform. In a system wi th more than 50 servers
involved, deploying, moni tor ing and logging efficiently becomes a real challenge. The section
8.1 covers the deployment scripts that were used in the beginning. C u s t o m logging l ibrary
that was developed as a part of this project is introduced i n 8.2. F ina l ly , the section 8.3
introduces the management module that was added as an extension of the platform. Once
the platform was successfully deployed, it was presented at E x c e l @ F I T 2020 1 , where it
received an Exper t Panel A w a r d [13].

8.1 Deployment scripts

The first chosen approach for deployment were command line scripts. The high level func
tions orchestrating the execution were wri t ten in P y t h o n 3, the low level interactions were
wri t ten i n Bash . The main script loaded its configuration from .ini file and then executed
actions specified as command line flags.

This approach was working well for a while, main ly because the number of running
components was rather small . However, once that number increased, the drawbacks of this
solution became more and more visible. It gave no feedback about the current state of the
platform. If something had gone wrong, it would be good to be notified about that. A n d
even better, automatic error recovery should be used whenever possible.

Another problem was testing. These scripts started expensive computations on a large
amount of servers. Therefore it was important to test them properly. For the P y t h o n scripts,
unit tests were wri t ten, but they could not be run from the C I pipeline. The developer had
to start them manual ly every t ime and it was of course easy (and sometimes tempting) to
forget about that. A n d testing the shell scripts presented even bigger challenge.

The .ini file was also a bit problematic. It essentially contained the same information as
given i n the En t i c ing configuration script. So some unfortunate redundancy was involved.
It would be much better to load the configuration from the well-tested stat ically typed
K o t l i n D S L instead of dupl icat ing it in this file. B u t loading K o t l i n code into P y t h o n script
is of course quite complicated.

For the reasons stated above, the decision was made to create a more robust deployment
solution, preferably i n K o t l i n , so that the already implemented business logic could be
reused whenever possible.

x

http: //excel.fit. vutbr.cz/

49

http://vutbr.cz/

8.2 Logging

It is important to gather a l l relevant information about the execution of the components,
but not to get overwhelmed wi th them. Al so , from the software engineering perspective, it
is important not to pollute the client code w i t h too many logging specific calls, as it hurts
the readabili ty and maintainabil i ty. Basic Java logging solutions usually allow developers to
configure the level of logs per classes, but they provide support neither for remote logging,
nor for performance measurements. Therefore they were not usable for our purpose. A cus
tom logging l ibrary was wri t ten instead. This l ibrary configures itself from the En t i c ing
configuration D S L and has three types of supported destinations for log messages - stdout,
file and a remote server. E a c h of these destinations can have different filters regarding log
importance. A l so , a support for performance measurements was added.

The main abstraction of this l ibrary is a Logger Factory, which creates ind iv idua l Log
gers. A Logger can either be created w i t h a specified name or its name can be inferred
automatical ly from the surrounding class. Using a Logger instance, a function can write
logs of various importance using the typica l A P I and on top of that, it can wrap any piece
of code and measure its execution. Internally, the logs are filtered and dispatched to a l l
configured destinations.

8.3 Management and monitoring infrastructure

A s the number of used servers increased, a need for a management component became
apparent. It was very easy to loose track about which components were running on which
servers and what was their current state. Therefore a management server was designed
and implemented as another component wri t ten i n K o t l i n . Th is server receives important
logs from a l l other components, so that the system administrators can easily monitor and
manage the system from one place.

Each component of the system is given a U R L to the management system. Once it is
started, it registers itself and then starts sending heartbeats periodically. These heartbeats
also contain information about the server the component is running on. Dur ing registration,
static information such as the number of cores and the R A M size is sent. Then, current
C P U and R A M usage is sent i n each heartbeat message. A s an example of the G U I , the
table wi th running components can be seen i n the figure 8.1.

Apar t from the moni tor ing purposes, this server can also start and k i l l components.
In the future, it can be extended to perform other maintenance tasks, some of them long-
running, such as the dis t r ibut ion of mg4j files and their indexing. These long running tasks
are modelled as commands and executed v i a special subsystem.

To allow for easier deployment of new versions of the platform, the management also
supports its own Continuous Deployment pipeline, whose goal is to make the deployment
as smooth as possible. It is possible to submit a build command, whose result are new jar
files that can be used to start components. Screenshot of the running bu i ld can be seen in
the figure 8.2.

This management server consists of three modules. The first one is management-core,
which contains support for executing commands that start, monitor and k i l l other com
ponents of the platform. It can also be started as a command-line too l working i n a very
similar way to the previous solution based on P y t h o n scripts. B u t thanks to the fact that
it is a K o t l i n module, it can use the En t i c ing configuration script instead of the redundant

50

Enticing Management 6 ao™

Components

Q Serves

D Components

0 Logs

(7> Perfnrmnnoe

Q) Commands

\ Du,ld,

KNOT02 F T.VUTBR.CZ

KMOT01 F T.VUTBR.CZ

NDEX SERVER

NDEX_SERVER L:\-7\-7 18:=:2C2D

O

O

e

Figure 8.1: L i s t of running components in the management server

Command details
Type: BUILD

A.guments:

Submitted ty: admin

Submitted at: 15:58:50 18/5/2020

Start at: 16:58:50 1675/2020

Finished at:

: Executing command SinpLeComandlvalue^i.nt/minerval/nlp/projectB/torpprcc.sejrch/torpproc.sea-tt'/biii/liKa.-bull
repository found at: ,'irait/minerval/nlp.'proiects/corpproc_searcn/(orpp-oc_5=arch
Running build vith id -AS3n-

Cloning into 'corpproc_5earch'...
3 Triggering local build

; i w: /tmp/Ktozikl5,-,=Liil(l̂ .'-S301/corpproc_Di>jn:h,'dto/^rc/irQin/-!(itlin/cj/'jjtb-/fLt/knot/onticLiig/dtc/utilG/HRcsilt.
12 w: /lBp/xkozakl5/biiilil3/4BMI/carpprcit_aeBrch;d1o/Brc/Min/katlin/iz/vu1br/fit/linot/eiiticing/log/LDg5ing.kt: IB
13 » : /lriipAtu;dkL5/jiiiUi.'iE391/Ljr j|jr :>i. ied rdi/d lu/ = r i/ruin/kulUri/LZ/vj Ibr / f .L/knoL/siititiny/luy/Lugyiuy .k l : 17
14 w: /tmp/xtoz5kl5,-3uii.!ls,'-i391/corpproc_5earch/dto/irc/rain/<otliii/cz.'',;Jtbr/fit/knot/entlclng/log/util/cUssh-ars

16 > Task :d-o:conpileJa.a NO-SOURCE

IB > Task :dto:cla55es
13 > Task :d:o:in;pectClas5esForKntlinIC
26 > Task :dto:jar

esolver.kt: (3, 1): Expected performance impact of inlining public inline fun resolvenamelno:

processcr/asynchnirvdispat.che-.kt: (IS. S3): This dsclaration i 5 experinntal and its usage si

Figure 8.2: Running bu i ld command

51

file://L:/-7/-7

Ani file. O n top of that, it can be tested thoroughly and these tests can be included i n the
C I pipeline.

The second module, management-server, provides a R E S T interface over the core mod
ule support ing a l l the operations described above. It also persists currently known servers
and components to the database, along w i t h their heartbeats and logs. It was developed
as a Spring Boot applicat ion. It also contains a command subsystem for execution and
monitor ing of commands submitted from the G U I .

The last module, management-frontend, contains a JavaScript single page applicat ion
which serves as the G U I of the component. It was wri t ten in Typescript using React ÍL
Redux.

52

Chapter 9

Conclusion

The topic of this thesis was semantic searching over big textual data. The Knowledge
Technology Research Group (K N O T) 1 at the Facul ty of Information Technology Brno U n i
versity of Technology (F I T B U T) has a N a t u r a l language processing (N L P) pipeline which
can analyse documents wri t ten in natural languages and add addi t ional meta information
to them. Such information can be syntactic, such as lemma of the word or their posi t ion
wi th in sentences and paragraphs, or semantic, such as entities like people and places. The
output of this pipeline is a big volume of textual data. It is already a great piece of work
on its own, but without the abi l i ty to query these semantically enhanced documents, their
usage is l imi ted. The goal of this thesis was to design and develop a search engine that
would query the documents efficiently while al lowing to use a l l the meta information i n the
queries.

Firs t ly , the topic of indexing and searching inside search engines was introduced. Then
M G 4 J 2 , a search engine used internally i n the resulting infrastructure, was discussed. Af
terwards, followed the topic of semantic enhancement of natural languages. The corpora
processing pipeline'^ used wi th in K N O T to create semantically enhanced documents was
described. Several state of the art search engines wi th support for semantic search have
been analyzed along wi th their strengths and shortcomings.

After providing an overview of related theory, the design of the new search engine called
Ent ic ing was presented. It is a distr ibuted system consisting of mult iple components. The
most important ones are the IndexServer for maintaining and querying slices of the data
and the Webserver for dispatching requests to IndexServers and presenting results to the
user. E a c h of these components consists of several modules wi th well-defined interfaces.

These components were designed to be deployed as separate processes on different
servers. Therefore, the system handles most of possible exceptions i n its components wi th
out shutt ing down total ly and at least par t ia l results are presented to the user whenever
possible. O n the other hand, it was necessary to design, implement and test the system very
carefully, as the distr ibuted nature created a lot of challenges. Some of the most interesting
ones were discussed.

In order to query the semantic metadata, new query language called E Q L (Ent ic ing
Query Language) was designed. This language is powerful enough to query a l l the entities
inside semantically enhanced documents but also simple to understand, so that users from

x

https: //www. f i t . vut.cz/research/group/knot/
2

http: / /mg4j .di.unimi.it/
3

http: //knot.fit.vutbr.cz/corpproc/corpproc_en.html

53

http://vut.cz/research/group/knot/
http://di.unimi.it/
http://fit.vutbr.cz/

other domains can use it as well . A compiler for E Q L was implemented and integrated into
the platform, which also included creating specialized searching algorithms based on E Q L .

The platform was tested thoroughly, bo th for correctness and for performance, and then
successfully deployed. The resulting system is now publ ic ly available v i a the Internet' 1. It
was presented at E x c e l @ F I T 2020 , where it received an Exper t Pane l Award . A t the
t ime of wr i t ing this text, it is running stable for days without any significant issues. The
core was further extended by adding a monitor ing infrastructure, maintenance system,
configuration D S L , support for eager result loading and a smart search bar w i th syntax and
semantic validation. It can be further extended by adding support for inheritance between
entities, new types of IndexServers, for example backed by a neural network based question
answering model, or by adding a native mobile client. Another interesting extension might
be autocomplete support for the smart search bar.

4

At the time of writing this thesis, it was deployed at http://athenalO.fit.vutbr.cz: 8080/
5

http: //excel.fit. vutbr.cz/

54

http://athenalO.fit.vutbr.cz
http://vutbr.cz/

Bibliography

[1] A B R A M O V , D . et a l . Redux - A Predictable State Container for JS Apps [online].
2020 [cit. 2020-03-05]. Available at: h t t p s : / / r e d u x . j s . o r g / .

[2] A H O , A . V . , S E T H I , R . and U L L M A N , J . D . Compilers principles, techniques, and
tools. Reading, M A : Addison-Wesley, 1986.

[3] B O L D I , P . and V I G N A , S. Mg4j (big) The Manual, [cit. 2020-03-20]. Available at
h t t p : / /mg4j . d i . u n i m i . i t / m a n - b i g / m a n u a l . p d f .

[4] B O L D I , P . and V I G N A , S. MGJ^J: high-performance text indexing for Java [online].
2005 [cit. 2020-03-15]. Available at: ht tp: / /www.mg4j.di .unimi. i t / .

[5] B O L D I , P . and V I G N A , S. Efficient opt imal ly lazy algorithms for minimal- interval
semantics. In: Theoretical Computer Science. Dipar t imento d i Informatica,
Univers i ta degli S tudi d i Mi lano , Italy: [b.n.], 2016, p. 8-25. I S S N 0304-3975.

[6] B R E S L A V , A . et a l . Kotlin programming language [online]. 2020 [cit. 2020-03-27].
Available at: h t t p s : / / k o t l i n l a n g . o r g / .

[7] D O L E Ž A L , J . Komponent pro sémantické obohacení. Brno , C Z , 2018. Master Thesis.
Vysoké učen í t echn ické v Brně , Faku l ta in formačních technologi í . Available at:
h t tp s : //www. f i t . v u t . c z / s t u d y / t h e s i s / 7 8 4 8 / .

[8] G R E Š O V Á , K . Searching Semantically Annotated Texts. Brno , 2018. Bachelor's thesis.
B rno Universi ty of Technology, Facul ty of Information Technology.

[9] H A V E R B E K E , M . et a l . CodeMirror [online]. 2020 [cit. 2020-03-09]. Available at:
h t tp s : / / codemirror.net/ .

[10] H E J L S B E R G , A . et a l . TypeScript - JavaScript that scales [online]. 2020 [cit.
2020-04-03]. Available at: h t tps : / /www.typescr ip t lang .org / .

[11] H O E L L E R , J . , D E L E U Z E , S., L O N G , J . et a l . Spring Framework [online]. 2020 [cit.
2020-03-21]. Available at: h t t p s : / / s p r i n g . i o / .

[12] K I L G A R R I F F , A . , R Y C H L Ý , P . , J A K U B Í Č E K , M . et a l . SketchEgine [online], [cit.
2020-03-23]. Available at: www.sketchengine.eu.

[13] K O Z Á K , D . En t i c ing - Semantic Search Engine. Excel@FIT 2020. 2020, [cit.
2020-06-01]. Available at: h t tp : / / exce l . f i t .vu tbr .cz / submiss ions /2020/019/19 .pdf .

[14] P A N O V , S. Indexing and Searching Semantically Annotated Texts. Brno , 2017.
Bachelor's thesis. Brno Univers i ty of Technology, Facul ty of Information Technology.

55

https://redux.js.org/
http://unimi.it/man-big/manual.pdf
http://www.mg4j.di.unimi.it/
https://kotlinlang.org/
http://fit.vut.cz/
http://codemirror.net/
https://www.typescriptlang.org/
https://spring.io/
http://www.sketchengine.eu
http://excel.fit.vutbr.cz/submissions/2020/019/19.pdf

[15] P A R R , T . et a l . ANTLR [online]. 2020 [cit. 2020-03-12]. Available at:
h t tp s : / /www.antlr .org/ .

[16] T A B L A N , V . , B O N T C H E V A , K . , R O B E R T S , I. and C U N N I N G H A M , H . M i m i r : an
Open-Source Semantic Search Framework for Interactive Information Seeking and
Discovery. Journal of Web Semantics. 2014. Available at:
http://dx.doi.org/10.1016/j.websem.2014.10.002.

[17] V A U G H N , B . , A B R A M O V , D . , G A N N A W A Y , D . et a l . React - A JavaScript library for
building user interfaces [online]. 2020 [cit. 2020-03-05]. Available at:
h t t p s : / / r e a c t j s . o r g / .

[18] V I G N A , S. Quasi-succinct indices. In: Proceedings of the 6th ACM International
Conference on Web Search and Data Mining. Rome, Italy: A C M , 2013, p. 83-92.
I S B N 978-1-4503-1869-3.

56

http://www.antlr.org/
http://dx.doi
https://reactjs.org/

Appendix A

Contents of the included storage
media

The storage media contains a clone of the project git repository at the t ime of submit t ing
the thesis 1 , text of the thesis and a poster. The structure is as follows,

root

repository Ent i c ing git repository
bin Scripts for starting ind iv idua l components
console-client ConsoleClient module
data Input data for testing
deploy Deployment configuration files
documentation High-level documentation
dto Core dto module
eql-compiler Eql-compiler module
index-builder IndexBuilder module
index-lib IndexLib module
index-server IndexServer module
l i b . Compi led components as jar archives and dependencies
management-core Management core module
management-frontend. Management frontend module
management-service. . Management service module
query-dispatcher QueryDispatcher module
scripts Orig ina l management scripts
testings Integration and performance tests
webserver-frontend . . Webserver frontend module
webserver Webserver module
README.md M a i n readme file

thesis

thesis-pc.pdf P D F version for reading on a P C
thesis-print.pdf P D F version for pr int ing
source Directory w i t h WF^K. source files of this thesis

poster

poster.pdf P D F version of the poster
source Directory wi th D T J H] X source files of the poster

l T Jp to date version can be found on GitHub at https://github.com/d-kozak/enticing

57

https://github.com/d-kozak/enticing

Appendix B

Manual

B . l Dependencies

To bu i ld and run the components, following dependencies are needed.

• Java - version 1.8 or higher

• Gradle - version 5.3.1 or higher

B.2 Bu i ld

To bu i ld the project, you can either use a script file in the bin folder or use gradle command
directly. B o t h of the options below w i l l work.

. /bin/build

gradle b u i l d A l l

B.3 Testing

Unit tests

To run the unit tests, gradle can be used,

gradle clean test — i n f o

Integration and performance tests

These tests are very expensive to run and cannot be performed from the C I pipeline, that's
why they are disabled by default. To run them, open the testing module in the I D E of your
choice and select wanted tests manually.

58

Appendix C

E Q L Grammar

This chapter contains the grammar of E Q L wri t ten i n the A n t l r 4 format .

grammar Eql;

root: queryElem (CONSTRAINT_SEPARATOR constraint)? EOF;

queryElem:

IDENTIFIER COLON EQ queryElem #assign

I NOT queryElem #notQuery
I(RAW I IDENTIFIER | ANY_TEXT | interval) #simpleQuery
I IDENTIFIER COLON queryElem #index
I IDENTIFIER DOT IDENTIFIER COLON queryElem #attribute
I queryElem EXPONENT queryElem #align
I PAREN_OPEN queryElem PAREN_CLOSE proximity? #parenQuery
I queryElem booleanOperator queryElem proximity? #booleanQuery

I queryElem LT queryElem proximity? #order
I QUOTATION queryElem+ QUOTATION #sequence
I queryElem queryElem proximity? #tuple

proximity : SIMILARITY IDENTIFIER ;

inter v a l : BRACKET_OPEN (ANY_TEXT|IDENTIFIER) D0UBLE_D0T

(ANY_TEXT|IDENTIFIER) BRACKET_CLOSE;

constraint: booleanExpression;

booleanExpression:

comparison #simpleComparison

I NOT booleanExpression #notExpression

I PAREN_OPEN booleanExpression PAREN_CLOSE #parenExpression

I booleanExpression booleanOperator booleanExpression #binaryExpression

1See https://www.antlr.org/ for details

59

https://www.antlr.org/

comparison: reference comparisonOperator referenceOrValue;

referenceOrValue: reference | nestedReference;

reference: IDENTIFIER (DOT nestedReference)?;

nestedReference: IDENTIFIER | RAW;

booleanOperator: AND | OR ;

comparisonOperator: EQ | NE | GT | GE | LT | LE ;

RAW: [']-['] + ['];

CONSTRAINT_SEPARATOR: 'kk';

COLON:':';

D0UBLE_D0T

DOT: '.':

EQ

NE > j = >

GT >>>;

GE >>=>

LT ><>;

LE ><=>

EXPONENT: '~> ;

SIMILARITY:'-';

SENT: '_SENT_';

PAR: '_PAR_';

NOT: '!';

AND: '&';

OR: ' I ' ;
PAREN_OPEN : ' (' ;

PAREN_CLOSE : ') ' ;

BRACKET_OPEN: ' [';

BRACKET_CLOSE: '] ' ;

MINUS:'-';

QUOTATION: >"';

IDENTIFIER: [_]?[a-zA-ZO-9][a-zA-Z0-9_]*;

ANY_TEXT: - [!"'\u005B\u005D\t\r&|=<>:.()*"-]+[*]?
 ;

/** ignore whitespace */

WS : [\t\r] -> skip;

60

