
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

TOOL FOR AUTOMATED TESTING OF WEB SERVERS
NÁSTROJ PRO AUTOMATIZOVANÝ TEST WEBOVÝCH SERVERŮ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. MICHAL RAJECKÝ
AUTOR PRÁCE

SUPERVISOR Mgr. KAMIL MALINKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023

Master's Thesis Assignment
140493

Institut: Department of Intelligent Systems (UITS)
Rajecký Michal, Be.
Information Technology and Artificial Intelligence
Cybersecurity

Student:
Programme:
Specialization:

Title: Tool for Automated Penetration Testing of Web Servers
Security Category:

Academic year: 2022/23

Assignment:

1. Learn about cybersecurity issues, ways to secure web servers, and common vulnerabilities. Learn
penetration testing methodologies and the O W A S P standard.

2. Study existing penetration testing tools. Focus on their applicability for automated operation.
3. Design a tool for automated security analysis of web servers. The tool will integrate selected

penetration testing tools and support their automated operation. The tool will also include reporting
on discovered vulnerabilities.

4. Implement the tool according to the developed design.
5. Verily the functionality and reliability of the resulting implementation in a simulated environment.
6. Describe possible extensions.

Literature:
• O W A S P methodology: https://owasp.org/www-project-web-security-testing-

g u id e/assets/arch i ve/OWASP_Test i ng_Gu ide_v4. pdf
• The Web Application Hacker's Handbook, 2nd Edition, by Dafydd Stuttard, Marcus Pinto.
• The Hacker Playbook 3: Practical Guide to Penetration Testing Kim Peter
• Python Web Penetration Testing Cookbook

Requirements for the semestral defence:
• Items 1 to 3

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Malinka Kamil, Mgr., Ph.D.
Head of Department: Hanacek Petr, doc. Dr. Ing.
Beginning of work: 1.11.2022
Submission deadline: 17.5.2023
Approval date: 3.11.2022

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

https://owasp.org/www-project-web-security-testing-
https://www.fit.vut.cz/study/theses/

Abstract
This thesis delves into the topic of cybersecurity, with an emphasis on the security of
web servers. It covers the technologies that are employed to protect web servers from a
variety of common security threats. Furthermore, this work explores the detection of these
weaknesses using various penetration testing methodologies along with O W A S T P Top 10.
A framework for automatic testing of web servers is developed in the practical part of
the thesis. This framework integrates features from several tools and provides support for
user-defined modules. Lastly, its functionality is verified in a simulated environment.

Abstrakt
Táto práca sa zaoberá témou kybernetickej bezpečnosti s dôrazom na bezpečnosť we­
bových serverov. Zahŕňa technológie, ktoré sa používajú na ochranu webových serverov
pred častými bezpečnostnými hrozbami. Ďalej sa práca venuje spôsobu odhaľovania týchto
bezpečnostných hrozieb pomocou rôznych metodík penetračného testovania a zoznamu
OWASP T O P 10. V praktickej časti je vyvýjaný framework pre automatizované testovanie
webových serverov. Integruje funkcionalitu vybraných nástrojov a poskytuje podporu pre
užívateľom definované moduly. V závere práce je funkčnosť nástroja overená v simulovanom
prostredí.

Keywords
security, threat, vulnerability, internet, OWASP, webový server

Klíčová slova
bezpečnosť, hrozba, zraniteľnosť, internet, OWASP, web server

Reference
RAJECKÝ, Michal. Tool for Automated Testing of Web Servers. Brno, 2023. Master's
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Mgr. Kami l Malinka, Ph.D.

Tool for Automated Testing of Web Servers

Declaration
I hereby declare that this Masters's thesis was prepared as an original work by the au­
thor under the supervision of Mr. Kami l Malinka. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

Michal Rajecký
May 15, 2023

Acknowledgements
I would like to express my gratitude to my supervisor Mr. Kami l Malinka for his approach,
advice, and professional assistance.

Contents

1 Introduction 3

2 Networking and web servers security 4
2.1 Internet protocol stack 4
2.2 Cryptography 6
2.3 Defnese mechanisms 6
2.4 Common web server vulnerabilities 8

3 Penetration testing 10
3.1 Penetration testing explained 11

3.1.1 White box and black box approach 11
3.1.2 Types of penetration tests 12
3.1.3 Ethical and legal considerations 13

3.2 Phases of penetration testing 13
3.3 Attacker ki l l chain 15
3.4 OWASP Top 10 16
3.5 Reconnaissance in details 21

3.5.1 Open ports discovery 21
3.5.2 DNS lookups 21
3.5.3 Word list creation 22
3.5.4 Web source discovery 22
3.5.5 Cipher suits analysis 22
3.5.6 Analyzing software versions 22
3.5.7 SQL injection 23
3.5.8 Testing H T T P Methods 23

4 Existing solutions 25

5 Technical specifications and design 29
5.1 Functional requirements 29
5.2 Non-functional requirements 31
5.3 Design 31

6 Implementation 34
6.1 Technologies used 34
6.2 General overview 34
6.3 Modules 35

6.3.1 Defining module 35

1

6.3.2 A module record 3 6

6.3.3 Modules integrated into the framework 39
6.4 Challenges 4 0

7 Testing 4 1

7.1 Approach 4 ^
7.2 Process 4 2

7.2.1 Adding a user-defined module 4 5

7.3 Results 4 6

47

8 Conclusion

Bibliography 4 ^

A Content of the attached storage media 53

2

Chapter 1

Introduction

Just as communication is vital for humans, the most significant advantage of computers
resides in their ability to communicate with each other. They allow us to store and retrieve
information at any time. In the early days of the Internet, it served merely as a repository
for static documents that were publicly available. There was no division between those who
should have access to certain information and those who should not. Therefore, there was
little concern for cyber-attacks, as attackers could not inflict significant damage. However,
this landscape has gradually changed. The Internet now hosts confidential documents
accessible only to chosen users, while dynamic applications have emerged as well. Wi th
this technological advancement, new opportunities for security threats continue to surface.

The importance of securing web servers increases with the volume of confidential infor­
mation they handle. It's no longer just banks, security agencies, or other large organizations
that rely on data security. Even regular internet users trust web servers with their personal
schedules, details about their health status, or even the management of their assets.

To mitigate the risk of attacks on web servers, it's necessary to eliminate security vul­
nerabilities that allow attackers to compromise the system. To address these security flaws,
they must first be located. Various penetration testing tools serve this purpose, ranging
from the most straightforward command-line tools to complex frameworks covering a wide
range of functionality in penetration testing. Despite their extensive functionality, these
frameworks come with disadvantages, such as high cost, steep learning curve, and low pa-
rameterizability. This thesis aims to design and implement a tool for automated penetration
testing of web servers, which will offer extensibility, a high degree of parameterization, and
be free to use.

In the beginning, Chapter 2 describes the functioning of web servers, ways of securing
them, and the most common security threats they face. Chapter 3 further delves into pen­
etration testing, its methodologies, and the OWASP T O P 10 list. Existing solutions are
covered in Chapter 4. Chapter 5 outlines the design of the developed tool, including func­
tional and non-functional requirements, while Chapter 6 details the process of transforming
the design into implementation. Finally, Chapter 7 describes the process of verifying the
tool's functionality in a simulated environment.

3

Chapter 2

Networking and web servers
security

Nowadays, the Internet provides space for many interests, such as product sales, banking,
personal communication, data storage or business management. People trust the Internet
with sensitive data, such as credit cards, home addresses, personal appointments or health
status. This places high demands on the security of data and communications on the
Internet.

Web servers served only as repositories for static information when the Internet was
starting. There was no access control system, and people could access that information
without authorization because there was no reason to. The web browser served only as a
tool for accessing documents. Attackers would not get access to sensitive data, as all the
information on the servers was public. One of the few things an attacker could do is modify
these documents to spread false information.

In contrast, nowadays, static documents are replaced by web applications that generate
content dynamically and where users with different privileges are often logged in. Thus,
much of the data is confidential. Security threats have become one of the leading topics
in the Internet world, as not only banks or government institutions rely on a high level
of security but also ordinary users who believe their data will remain safe and won't be
misused by third parties. [52]

2.1 Internet protocol stack

Just as human language is an important part of our existence, computer programs' ability
to communicate with each other is a decisive factor of their power. Regardless of the
application type, the data transportation methods don't vary too much. Nowadays, it's a
sure thing for almost all users, but it doesn't imply that the means of data exchange are
untouchable. [21]

Before diving into the topic of web servers and web applications security mechanisms
and their security threats, the communication mechanism of computers will be explained.
Protocols used in the process of transmitting data between computers, along with software
and hardware network devices, are divided into several layers, each of which is responsible
for specific tasks related to data transmission. Wi th this division of the communication
process, network architectures become scalable and easier to comprehend and maintain.
[22] The following section briefly describes the layers.

4

Application layer

The application layer, positioned at the topmost layer of the Internet Protocol Stack, serves
as the interface between users' applications and the underlying network infrastructure. It is
responsible for handling the requirements and functionalities of various applications. Data
transmitted at the application layer is encapsulated within messages, which include the
actual information being exchanged along with any necessary application layer headers
or metadata. Examples of protocols operating at the application layer include H T T P 1 ,
D N S 2 , S M T P 3 or T E L N E T 1 . The application layer ensures efficient network communication
through these protocols, enabling users to interact with various internet-based services. [31]

Transport layer

The messages of the application layer are transmitted by the transport layer using either
T C P or U D P protocol. On the one hand, T C P (Transmission Control Protocol) is con­
nection orientated protocol which focuses on the reliable delivery of application-layer data.
T C P provides, among other mechanisms, error correction and congestion control. It guar­
antees that all data sent is received by the other endpoint, making it a suitable option for
applications requiring error-free message delivery and web browsing. On the other hand,
U D P (User Datagram Protocol) is a lightweight protocol that does not guarantee reliable
delivery of application-layer messages and is incapable of correcting errors. This connec­
tionless service allows data to be delivered quickly and in large quantities if necessary. Its
primal use is in real-time applications, like video streaming or online gaming.

Network layer

The network layer, also known as the Internet layer, is responsible for routing and forward­
ing packets, so-called datagrams, between hosts. It receives, along with the destination IP
address, also the transport-layer segments from the upper layer, which are subsequently
divided into packets, adding additional information to each of them, such as T T L (Time
to live), source IP address, destination IP address and many more. According to the infor­
mation in the routing tables, the network layer also identifies the most efficient and secure
path for each packet to reach its destination. It plays a critically important role in secur­
ing connections between computers worldwide thanks to the IP protocol, which uniquely
identifies devices on various networks and even inside networks of networks.

Link layer

The main responsibility of the link layer is receiving data passed down from the network
layer and encapsulating them into frames which are then sent to the next node along the
route. After reaching the node, the frame is passed up to the network layer. Different link-
layer protocols provide different mechanics for data transmission, one of which is reliable

1 H T T P (Hypertext Transfer Protocol) is an application layer protocol for exchanging data over the
Internet. It's an essential building block for communication for the World Wide Web.[31]

2 DNS (Domain Name System) translates domain names to their IP addresses. When a user enters a
URL into their web browser, it must be translated into the corresponding IP address before fetching the
website. This is only one part of the DNS system. [31]

3 S M T P (Simple Mail Transfer Protocol) is designed to transmit email messages over the internet. [31]
4 T E L N E T is an application layer protocol for remote control of a computer over the Internet by providing

a virtual terminal. It's worth noting that T E L N E T is not considered to be secure. [31]

5

delivery to the destination point over one single link. It differs from the reliable delivery
of T C P protocol, which occurs between end systems. Examples of the link layer protocols
are Ethernet, W i F i or F D D I , just to mention a few of them.

Physical layer

In the physical communication layer, nodes transmit individual raw bits of data through
a dedicated physical transmission channel, such as coaxial cables. This layer focuses on
the physical aspects of data transmission, including the electrical and mechanical charac­
teristics of the communication medium, signal encoding, and modulation techniques. The
physical layer establishes the foundation for higher layers of the network protocol stack to
communicate effectively.

2.2 Cryptography

As an integral part of the Internet infrastructure, web servers are constantly exposed to
numerous threats and attacks. These threats can compromise the integrity, confidential­
ity, and availability of the data stored and transmitted. The three aspects mentioned,
together, form a framework known as the CIA Triad (Confidentiality, Integrity and Avail­
ability Triad). Integrity means ensuring that the data is protected from unauthorized
changes during transmission. Confidentiality pertains to preventing unauthorized access
to data. Availability presents the assurance that authorized users have reliable and timely
access to the data they need. Additionally, two more principles are considered extensions to
this framework. First, authenticity refers to the assurance that information is from verified
and trusted sources. The second principle, non-repudiation, is a way to guarantee that the
sender of a message cannot later deny having sent the message, and the recipient cannot
deny having received it.[49]

Starting at its core, cryptography is a method of protecting information by its trans­
formation into an unreadable format. This encoded data, referred to as ciphertext, should
only be reverted into a readable format with the appropriate decryption key. [46]

There are primarily two types of cryptography: symmetric and asymmetric. Symmetric
cryptography (or secret key cryptography) utilizes a single secret value, also known as the
key, for both encrypting and decrypting. While efficient and fast, its drawback lies in the
problem of secure distribution of the key between communicating parties. Asymmetric or
public key cryptography solves this issue using two mathematically related but not identical
keys. First of them are the public key, which can be distributed widely without any security
risks, and the private key, which remains in the possession of its owner. [50]

2.3 Defnese mechanisms

This section provides a selection of commonly used security mechanisms for securing web
servers. In most cases of web servers, multiple mechanisms are combined to achieve the
highest level of security. [57] [12]

• Cryptographic Hash Functions: Cryptographic hash functions, like SHA-256 (Se­
cure Hash Algorithm 256-bit), are mathematical algorithms that take an input and

5 F D D I (Fiber Distributed Data Interface)is a high-speed L A N (Local area network) protocol developed
in the 1980s, which uses fibre optic cable for data transmission. [31]

6

return a fixed-size string of bytes, typically a hash value. They are designed to be
a one-way function, meaning it should be computationally infeasible to reverse the
process to reveal the original input. The unique hash value produced can authenticate
data integrity. Any alteration in the original data, no matter how small, results in a
drastically different hash.

• Digital Signatures: Digital signatures are cryptographic techniques used for vali­
dating the authenticity and integrity of data. They are created by encrypting a unique
string derived from the data, also known as a hash, using a private key. The receiver
can decrypt the hash using the sender's public key and compare it with the hash of
the received data. If the hashes match, it verifies that the data has not been altered
in transit and confirms the sender's identity. This mechanism is critical to secure dig­
ital communications as it provides non-repudiation, ensuring that the sender cannot
deny sending the message, and data integrity, ensuring that the data has not been
tampered with during transmission.[8]

• Digital Certificates and Public Key Infrastructure (PKI): Digital certificates
serve as electronic documents that verify the ownership of a public key. They con­
tain information about the key, its owner, and the digital signature of a Certificate
Authority (CA) that affirms the certificate's validity. The Public Key Infrastructure
(PKI) system enables entities to exchange information over untrusted networks se­
curely. It manages the creation, distribution, and cancellation of digital certificates,
establishing trust between the server and the client. This system ensures that the
identities of entities involved in a digital transaction are verified.

• Secure Sockets Layer (SSL) and Transport Layer Security (TLS): SSL and
T L S are cryptographic protocols that provide secure communication over a network.
They use symmetric and asymmetric encryption to ensure data confidentiality and
integrity. The protocols initiate a handshake mechanism to establish a secure connec­
tion, which involves the exchange of digital certificates for authentication, followed by
generating and exchanging a shared secret key for encryption. This process ensures
that all data transmitted between the web server and the client is encrypted and
secure, protecting it from potential disclosure or tampering.

• H T T P S : H T T P S (Hypertext Transfer Protocol Secure) is a secure version of H T T P ,
the protocol for transmitting data over the World Wide Web. H T T P S combines
H T T P with S S L / T L S to provide encrypted communication and secure identification
of network web servers. It ensures that all communication between the client and
the server is encrypted, preventing potential interception and modification of the
data. This secure protocol is essential for sensitive data transactions, such as personal
information or credit card details.

• Key Management: Key management involves the procedures and methodologies
for the secure generation, distribution, storage, and disposal of cryptographic keys. It
ensures that encryption keys are changed or rotated regularly to reduce the likelihood
of successful brute-force attacks. Further, it defines the protocols for key recovery in
case a key is lost or compromised and for the secure deletion of no longer required
keys. Despite the fact that this is not a software algorithm like in the case of the
ones discussed before, this approach is vital for server security. Even with the best

7

software protection, negligence by an organization's employees can lead to a security
threat.

These mechanisms, while not exhaustive, represent some of the most important and
widely used techniques in securing web servers. By applying these measures, organiza­
tions can significantly enhance their defences against various cyber threats and protect and
protect their data.

It is worth mentioning that implementing cryptography into web servers can be chal­
lenging. The increasing computational power of modern systems has led to older encryption
algorithms becoming susceptible to brute-force attacks. Therefore, it's essential to regularly
update cryptographic algorithms and protocols to newer, more secure versions to keep the
same level of security. [42]

2.4 Common web server vulnerabilities

In case of improper or incomplete implementation of security measures, a web server may
be left vulnerable to potential security breaches. Despite the exhaustive attempts by secu­
rity professionals to ensure full protection of the system, vulnerabilities may still appear,
potentially leading to a compromise of the system. For this reason, consistent security au­
dits and penetration testing are highly recommended, a subject that is further elaborated
in Chapter 3. Among the common vulnerabilities of web servers are the following: [53] [41]

• Injection Attacks: This vulnerability happens when an attacker introduces harmful
data into a command or query, tricking the interpreter into executing unintended
commands or accessing unauthorized data. SQL injection, a prevalent form of this
attack, involves the insertion of malicious SQL statements into an input field for
execution, potentially leading to data modification or disclosure. A closer look at
SQL injection is provided in Section 3.5.7.

• Cross-Site Scripting (XSS): XSS vulnerabilities allow attackers to inject malicious
scripts into web pages viewed by other users. Upon viewing these pages, the scripts
execute within the user's browser, potentially enabling the attacker to steal sensitive
information such as session cookies or personal data. This could result in identity
theft, unauthorized data access, or malicious actions executed under the victim's
identity. A more detailed explanation of XSS vulnerability offers in Section 3.5.8.

• Cross-Site Request Forgery (CSRF): C S R F is an attack method that manipu­
lates victims into submitting harmful requests. It leverages the identity and privileges
of the victim to perform undesired actions on their behalf, such as changing their
email address or making unintended purchases. This can result in unauthorized data
modification, loss of data integrity, and even possible financial losses.

• Insecure Direct Object References (IDOR): IDOR vulnerabilities occur when
an application provides direct access to objects based on user-supplied input. By
manipulating these references, attackers can gain unauthorized data access. For
instance, altering a parameter value in a U R L could allow the attacker access to
other users' accounts or sensitive data files. A n example could serve the following
U R L : https://bankingsite. com/useraccount?id=123457, which, if the applica­
tion is not properly secured, could give an attacker access to various accounts.

8

https://bankingsite

• Security Misconfigurations: These can occur at any level of an application stack,
including the network services, platform, web server, application server, and database.
Misconfigurations can provide unauthorized access to sensitive data or functionality,
often allowing attackers to fully compromise the system.

• Unvalidated Redirects and Forwards: This vulnerability appears when an ap­
plication redirects or forwards users to other pages or websites without adequately
validating the destination. It can lead to users being redirected to phishing or malware
sites or enable URL-based attacks that trick users into performing harmful actions.

• Server-Side Request Forgery (SSRF): SSRF vulnerabilities occur when an at­
tacker can make a server send a request to other resources. This allows the attacker
to interact with and send requests to internal resources, typically protected behind
firewalls, resulting in exposure of internal systems and potentially sensitive data.

9

Chapter 3

Penetration testing

With the proliferation of web applications, the area of security vulnerabilities also increased
significantly. The more complex the systems and the greater the user interaction, the more
potential holes can be found in a given system, posing a challenge to system security.
Attacks giving access to sensitive data or unrestricted access to the system pose some
of the greatest threats. Another category of cyberattack focuses on overwhelming server
resources to such an extent that the server becomes unable to respond to legitimate users.

Statements like „This site is secure" can be found on many websites. Often, they make
this claim based on SSL encryption (now commonly referred to as TLS) , which is just one
part of the necessary security. S S L / T L S only secures the communication between the client
and server, but vulnerabilities can also occur in other places. Examples include Broken
authentication, where the server fails to prevent attacks on login mechanisms, Broken access
control, where the server does not adequately protect sensitive data; or SQL injection, which
allows an attacker to insert specially crafted input into the input field, just to name a few.

One of the biggest threats to web application security is in accepting user input. It
is not uncommon for a user to be able, or even required to enter an input, which can be
maliciously modified to trigger an unexpected response on the server side that could lead
to gaining unauthorized access to the system or trusted data disclosure. For this reason,
application developers must assume that each input is potentially insecure and must ensure
that it is handled correctly to prevent a successful attack. [44]

Users can tamper with the sequence of requests sent, manipulate cookies, request pa­
rameters, or even H T T P headers. It is common for attackers to craft input to trigger
unexpected behaviour on the server. While S S L / T L S is a valuable tool for secure data
transmission, it alone cannot prevent the forenamed attacks.

In the days when web applications didn't rule the Internet, an organization's security
was based on securing the network and implementing firewalls. But that's very different
today. For an application to work, the firewall must enable the connection through H T T P or
H T T P S protocols while often connected to databases and mainframes. Usually, it is placed
behind network-level security measures. If the application had a security flaw, an attacker
on the public Internet could attack the organization's core system by sending crafted data
to the application overcoming the network's defence mechanisms. Applications serve as
a gateway for all kinds of attacks. Therefore, the security perimeter must have shifted
from networks and firewalls to applications. Another type of threat lies in legitimate users
accessing vulnerable applications. A n attacker could aim at a system user and perform
unauthorized actions on their behalf once a vulnerability is exploited. Nowadays, many
applications provide their users with a password recovery feature, which generates a recovery

10

email without performing any further user verification. Thus, in case of compromising the
user's email, gaining access to the system is trivial. [52]

As Gary McGraw once said:

,ff you fail a penetration test, you know you have a very bad problem indeed.
If you pass a penetration test, you do not know that you don't have a very bad
problem."

3.1 Penetration testing explained

Penetration testing is a process used to simulate the methods used by potential attackers
to bypass an organization's security measures. The objective is not only to identify present
vulnerabilities but also to execute the attack, trying to gain access to all the resources that
an attacker can possibly get to after a successful attack, including sensitive data.

Before attempting to compromise the target system, collecting detailed knowledge about
the target is essential. This includes identifying devices within the network, their corre­
sponding IP addresses, operating systems, installed software along with their versions, open
ports, certificate analyses or cypher suite analyses, among other tasks. [55]

3.1.1 White box and black box approach

Generally speaking, to ensure the correct functioning of a software or system component, a
tester needs to determine a set of conditions or variables, which will be tested and evaluated.
It consists of input data, expected output, and execution conditions, all used to verify if the
software meets the specified requirements. This model is also referred to as a „test case".
In the context of penetration testing, a test case refers to a specific scenario designed to
probe and potentially exploit a particular aspect of the system's security.

In white-box penetration testing, the tester has complete knowledge of the system. The
purpose is to simulate an attack from an insider on the network - someone with detailed
knowledge of the system. Because white box testing requires a deep understanding of the
codebase, developers or testers with a strong programming background often perform it.
For this approach, a test case could involve a detailed examination of a certain part of the
source code to look for vulnerabilities such as buffer overflows or injection flaws. It would
also specify the section of code to be examined and the technique to be used.

This type of testing can be more thorough because it allows the tester to cover all
possible paths and attack vectors. The benefits of white box testing include finding hidden
errors and validating internal logic. However, it also has limitations, like possibly missing
out on system-level or integration-level issues and being time-consuming due to the detailed
analysis of each part of the code.

The second approach looks at the program as a function that accepts some inputs and
provides output. The reason why this is called „black box" testing can be found in the fact
that the tester does not see the details of the implementation. In comparison to everyday
human life, this is a common practice. Most people drive a car with just „black-box"
knowledge. Likewise, a person doesn't need to know the internal workings of an A T M to
withdraw cash.

The test cases for black-box testing are designed without knowledge of the internal
workings of the software or system. Instead, they are based on the system's requirements,
functionality, and specifications. These test cases focus on inputs, outputs, and the expected

11

centring
White box Black box

Figure 3.1: Illustration of white-box testing, where the tester has access to the implemen­
tation of the software and other internal details, and a black-box testing, in which case the
system is viewed just as a function that accepts inputs and returns outputs.

behaviour of the software from a user's perspective and could involve trying to access secured
parts of the system without proper authentication or injecting malicious code through the
user interface. Testers do not need specific programming knowledge to design or execute
black box test cases; they only interact with the software's external interface. This implies
the advantage that when the implementation changes, the test case does not change and
is still usable. At the same time, the development of the implementation can proceed in
parallel. [28]

The visual representation of the idea behind the two approaches can be found in Fig­
ure 3.1. [28]

3.1.2 Types of penetration tests

There are multiple options for approaching penetration testing, depending on the type of
target, organizational needs, and other factors. The broad categories are described in the
following text: [54]

• Network Services Tests: Network services tests, also known as infrastructure pene­
tration testing, focus on identifying vulnerabilities in network devices such as routers,
switches, and firewalls. The testing process involves assessing servers and hosts for
vulnerabilities an attacker could exploit. This includes checking for misconfigurations,
unnecessary services, outdated software versions, and other potential weak points
within the network infrastructure.

• Client-side Tests: Client-side penetration tests focus on the applications and soft­
ware installed on the client machine that interacts with the server-side applications.
This could include web browsers, email clients, or any other locally installed applica­
tions. The primary aim is to identify vulnerabilities that could be exploited through
mechanisms like phishing attacks, drive-by downloads, or other forms of social engi­
neering.

• Web Application Tests: These tests are designed to identify security vulnerabilities
in a web application. This includes reviewing the application for potential vulnera­
bilities as outlined in the OWASP Top 10 (described later in this chapter), such as
SQL injection, Cross-Site Scripting (XSS), Cross-Site Request Forgery (CSRF), and
security misconfigurations. These tests often involve automated scanning and manual
exploitation to identify known and unknown vulnerabilities.

• Wireless Network Tests: Wireless network penetration testing involves evaluating
the security of an organization's wireless networks. The tester will attempt to exploit

12

vulnerabilities related to the wireless protocols in use, weak or default passwords, and
misconfigurations, as well as evaluate the effectiveness of wireless intrusion prevention
systems (WIPS) 1 . [56]

3.1.3 Ethical and legal considerations

Penetration testing involves simulating cyber attacks on a computer system to identify
vulnerabilities. While the intent is clean, the methods employed are indistinguishable from
those used by malicious hackers. The question arises from the dual-use nature of penetration
testing tools and techniques.

The most fundamental rule is that penetration testing should only be performed with
explicit, informed consent from the system owner. Penetration testers must respect the
scope of this consent, refraining from testing systems or using methods not covered in the
agreement. Additionally, penetration testers may gain access to sensitive and confidential
information during their work. They have an ethical duty to protect this data and not
misuse them.

Except for the ethical question, legal frameworks must also be considered. They are not
uniform around the globe as they vary from country to country. Still, in many jurisdictions,
unauthorized access to computer systems is a criminal offence, possibly leading to legal
consequences, regardless of the intent.

In addition to consent, penetration testers must also consider data protection and pri­
vacy laws. For example, the General Data Protection Regulation (GDPR) in the European
Union imposes strict requirements on how personal data is handled, with severe penalties
for non-compliance. Penetration testers who access personal data must ensure they comply
with these requirements. [9]

3.2 Phases of penetration testing

There are various methods to approach the security of an organization's infrastructure.
Typically, this process involves several phases, which begin with collecting information,
continue with the attack, and conclude with the reporting phase. The phases can be
generally outlined as follows [29] [55]:

1. Pre-engagement. The pre-engagement phase is the initial stage of the penetration
testing process and involves clarifying the client's requirements and expected out­
comes. During this phase, it is important to determine the scope of the testing, what
aspects of the organization are most critical, which areas require special attention,
and if any sensitive devices or sites on the network should be excluded from the test­
ing process. Additionally, other details such as the testing time window (whether it
will be continuous or only at specific times of the day), the duration of the testing,
the cost, and the pentest agreement, are serving as written authorization to perform
the testing, need to be arranged.

2. Information Gathering. During the information-gathering phase, the focus is on
collecting information about the target from publicly available sources. The goal

X A Wireless Intrusion Prevention System (WIPS) is a security solution that monitors a network's radio
spectrum for malicious activities, such as unauthorized access or attacks and takes automated actions to
protect the network. [56]

13

is to identify the security mechanisms implemented on the target, how it behaves,
responds to certain requests, and so on. Although the activities of this phase may
be less visible to the system (usually ignored as background noise), they are crucial
to the success of the overall testing process. For more detailed information on the
information gathering phase, please refer to the reconnaissance stage of the attacker
kill chain in Section 3.3.

3. Threat modeling. The threat modelling phase involves creating attack scenarios
using the information obtained during the previous phase. This involves identifying
potential attack methods, determining which data and services are most likely to be
targeted, and examining the target from the perspective of a potential attacker. The
goal is to understand the target's architecture, potential security issues and points of
interest for an attacker.

4. Vulnerability analysis. The vulnerability analysis phase deals with the probability
of successful attacks. This phase often involves running vulnerability scans and con­
ducting manual analysis to identify security weaknesses and determine which attacks
are most likely successful. The goal is to identify vulnerabilities and select the most
likely to have the biggest impact on the target and the highest probability of success.

5. Exploitation. The exploitation phase involves executing the attack. Once vulner­
abilities have been identified, the next step is to exploit them to compromise the
system and get access to the target's resources. Only those vulnerabilities should be
targeted, which turned out to be present and truly exploitable. Blindly attempting
to use all available tools is ineffective and may not yield valuable results. Therefore,
the importance of obtaining accurate target information is again emphasized.

6. Post exploitation. The post-exploitation phase is a critical part of the overall
testing process. Hence this phase provides valuable information, as it allows the tester
to assess the potential damage that a successful attack could cause. Once a system
has been compromised, the attacker will typically seek to expand their privileges,
gain access to other systems, obtain passwords, or access sensitive organizational
data, among other actions. Therefore, it is important to thoroughly evaluate the
consequences of a successful attack during this phase.

7. Reporting.The reporting phase is the final and most important step in the penetra­
tion testing process. The testers provide a detailed report to the customer summariz­
ing their findings. This report should contain what the testers were able to achieve,
how they accomplished it, and, most importantly, what the organization needs to
do to improve its security. By presenting the information from an attacker's per­
spective, the report provides valuable insights into how the organization can better
secure the systems and prevent future attacks. Writing a good report is not an easy
task. It should include technical and non-technical sections, such as an executive sum­
mary describing the testing process, scope, and key findings in language accessible to
non-technical workers. The technical section should provide detailed information on
specific vulnerabilities and recommendations for patching them.

In penetration testing, several methodologies exist, each focusing on slightly different
objectives and procedures. Therefore, each contributes differently to the overall picture of
a company's security. The above text offers a general division of the process into several

14

phases, providing a structural approach. Meanwhile, the following section is dedicated to
another concept primarily focused on successfully attacking the target system without a
specific stage dedicated to reporting.

3.3 Attacker k i l l chain

The „attacker ki l l chain" is a concept developed by Mike Cloppert, the former director
at FireEye company 2. It can be described as a framework consisting of several stages
of a cybersecurity attack, which must be followed to achieve the attackers' goals. After
organizations understand and adapt this concept, they can implement more powerful threat
detection and response strategies. Traditionally, the attacker kil l chain consists of the
following stages: [29] [45]

1. Reconnaissance. The basic idea of the first stage is best described by the adage:
Reconnaissance time is never wasted time", well known among many military organi­
zations, saying that before an attempt to attack the target, it's critically important to
collect as much information as possible. Some sources say penetration testers should
spend over 70% of the overall effort gathering information. This can be done in 2
ways: either passive or active. The passive reconnaissance is based on gathering
information through non-violent means, such as social engineering, searching the In­
ternet for publicly accessible data (employee names, for instance), exploring social
media platforms or performing domain name system lookups. Since the goal is to
better understand the target's infrastructure without using intrusive methods, pas­
sive reconnaissance is hardly distinguishable, if at all, from the ordinary behaviour
of the users. It is important to keep in mind that data collected this way may be
incomplete or outdated. The latter technique, the active reconnaissance, involves
active probing of the target system or network through direct interaction. It involves
host-discovery scans and port scans, vulnerability scanning, security headers analysis,
or brute-forcing3 directories and files. Active reconnaissance is quite noisy and can
be easily detected by the target system and trigger alarms or alerts. If done without
prior mutual consent, it can lead to legal consequences.

2. Weaponization. The goal of weaponization is to create a functional tool (the
weapon) for exploiting a weakness in the target's system or network. This may involve
crafting malware, developing means to target sensitive data and packaging it into a
format suitable for the actual deployment against the target.

3. Delivery. The next step is to deliver the attacker's payload once a vulnerability
or weakness has been discovered and exploited. This can be achieved by several
methods, such as email phishing or social engineering, among others, trying to bypass
security measures implemented by the target and trick the users into downloading
and executing the payload.

4. Exploitation, exploitation, also known as the „compromise phase", is the moment of
the attack kil l chain when the exploit is successfully applied. Techniques used in this
phase include remote code execution, command injection or buffer overflow. It can be
done in a single step, for example, by taking advantage of known system vulnerability

2FireEye is an intelligence-led security company, https://fireeye.dev/docs/about/fireeye/
3Brute-forcing is a trial-and-error method of guessing, usually the username and password[12]

15

https://fireeye.dev/docs/about/fireeye/

thanks to which the attacker gains access, or it can take several steps, such as finding
a hidden login page by brute-forcing files on a web server, gaining access by using
wordlist created from the names of the organization's employee, etc.

5. Achieve phase. At this point, knowing the attackers' objectives is important. Other
goals, except aiming for the target machine's root privileges, could include flooding the
system by DDoS attack 1, sensitive data disclosure or horizontal privilege escalation,
meaning that the attacker is trying to compromise as many accounts as possible (on
the other hand, „vertical escalation" simply means to improve the access privileges
to the highest possible level).

6. Persistence. After compromising the target and potentially gaining elevated privi­
leges, it may be important to maintain persistent access to the target system. This
can be done by installing backdoors, rootkits or other forms of malware, modifying
system settings or creating new user accounts. This is the easiest phase for defenders
to protect their systems or network.

To successfully achieve the goal in penetration testing, it is not enough to have multiple
tools at their disposal; the integral part of the work of penetration testers is also under­
standing principles and methodologies, thanks to which become their work more precise
and efficient.[10]

3.4 O W A S P Top 10

This section covers OWASP guidelines for penetration testing, including OWASP Top 10.
For that, the concept of C W E and C V E will be used. Therefore, their definition and the
relationship will be briefly explained first. Common Weakness Enumeration (CWE) is a
community-developed list that describes weaknesses in both software and hardware, which
could lead to vulnerabilities exploited by attackers. The C W E records usually include
a unique identifier (for example, CWE-862, which is Missing Authorization), describing
the weakness and how it can be exploited. It is widely used in cybersecurity to identify
and mitigate potential security holes in computer systems. On the other hand, Common
Vulnerabilities Exposures (CVE) is a list of publicly known vulnerabilities present in certain
software versions. A C V E contains its unique identifier, description, severity, and potential
consequences.

There are several ways of looking at computer vulnerabilities and their potential conse­
quences, one of them being OWASP Top 10. It's a list representing the most critical security
threats that web applications currently face, according to OWASP. In 2021, a new version
of OWASP Top 10 was released, merging some of the previous categories and introducing
new ones. This text will only discuss the most recent version.

In contrast to the previous version of the OWASP Top 10, where vulnerability categories
were selected based on the frequency of their occurrence and consequential manual edit by
IT experts, the latest version released in 2021 uses a new approach. The new approach
considers two aspects: how easy it is for someone to exploit the vulnerability (exploit
score) and the amount of damage the vulnerability can cause (impact score). C W E s are

4 A Distributed Denial of Service (DDoS) uses many compromised machines to flood the target system,
preventing legitimate users from access. The main goal is to disrupt the normal operation of the system or
network.

16

grouped and ranked according to their level of risk in combination with the severity score
derived from the Common Vulnerability Scoring System .

The OWASP Top 10 consists of eight categories based on hard data and two resulting
from data and experience from security experts. The first of the two approaches works
with approximately 400 CWEs , categorized as either root-cause type (the C W E is the
primary cause leading to a security issue) or symptom type (describing a direct impact and
consequences).

On the other hand, security analysts may discover new vulnerabilities that require de­
veloping and implementing testing mechanisms, which can take considerable time, possibly
even years. To ensure that the Top 10 remains up-to-date with modern trends and real risks
of today, the latter two from the ten categories are based on points derived from question­
naires answered by security professionals. These experts can provide first-hand information
that hard data may not yet capture. [2] [3]. The following section will introduce several
C W E s that are, among many others, relevant to the OWASP Top 10.

1. Broken Access Control. The access control system ensures that users perform
actions and access data that they are authorized to. Failure of this mechanism may
result in access to unauthorized data and damages caused by actions performed out­
side the scope of authorization. Vulnerabilities falling under this category include
granting access to anyone instead of specific roles and users and the ability to bypass
control by modifying URLs, A P I requests or H T M L pages, among others. Overall, in
94% of tested applications, a flawed access control system was detected. This cate­
gory includes 34 Common Weakness Enumerations, such as CWE-35 Path Traversal 6 ,
CWE-352 Cross-Site Request Forgery (CSRF) 7 , and CWE-200 Exposure of Sensitive
Information to an Unauthorized Actor , among others.

2. Cryptographic Failures. In the second place is a category, which is not the primary
cause but rather a symptom of cryptographic errors. This often leads to the exposure
of sensitive and confidential data. As mentioned in section 2.2, cryptography is an
important mechanism to protect data. However, not all types of data require the
most secure algorithms. The first thing to consider is the level of protection needed
for specific types of data (for instance, passwords and credit cards are expected to
have extra protection). The measures against cryptographic failure include identify­
ing which data is sensitive according to laws, regulations and the organization itself
and encrypting them, discarding this data as soon as they are not needed, ensuring
the implementation of modern algorithms and disabling caching for responses that
contains sensitive data. The most significant C W E s are CWE-259: Use of Hard-
coded Password and CWE-327: Broken or Risky Crypto Algorithm. The first refers
to using hard-coded passwords in products, which, if discovered, can lead to massive
attacks on all organizations using the product as each installation contains the same

5 CVSS (Common Vulnerability Scoring System) is a framework which assigns a score to security vulnera­
bilities in software based on several factors, for example, the potential impact on the system, the complexity
of the attack or availability of mitigations[ll].

6 CWE-35: Path Traversal: ' . . ./ . . .// ' is a weakness based on improper handling of pathnames. The
absence of neutralizing of the slash sequences within the pathname can lead to the resolution to a location
that is outside of the directory[l]

7CWE-352 Cross-Site Request Forgery is the incapability of a web application to sufficiently check
whether a well-formed request was provided by the user who submitted the request.

8CWE-200 is a security flaw based on providing the unauthorized actor with data they are not authorized
to have access to [37].

17

password [38]. The CWE-327 relates to cryptography and the use of old or insecure
algorithms, which can lead to the exposure of critical data. Even algorithms once
considered absolutely secure are becoming less secure due to the rapid advancement
of computational power [39].

3. Injection.The danger of this category meets the reality when an application fails to
adequately validate user input, uses dynamic queries in the interpreter, or directly
uses or concatenates user input. The most well-known vulnerabilities include SQL
injection, NoSQL injection, OS command injection 9 , or O R M injection 1 0 . Ways
to prevent these threats include automated testing of all input parameters, headers,
URLs and cookies to identify and patch security holes, among others. To increase
protection from this threat, developers can opt for a secure A P I without an interpreter
or offer a parameterizable interface. Alternatively, using the SQL L I M I T command
is possible to prevent the potential massive leakage of sensitive data. This category
covers, for example, CWE-79: Cross-site Scripting (XSS), where the product fails at
neutralizing an input controlled by a user, which is then saved to the web page and is
accessible to other users. There are three main kinds of XSS; the first is stored XSS,
where malicious code is injected and permanently stored on the server, serving all users
who access the page. Secondarily, reflected XSS, where malicious code is injected into
the U R L and then reflected the user through a web application's response, and the
last DOM-based XSS, where the payload is into the page's Document Object Model
(DOM) instead of the server response, allowing the attacker to manipulate the web
page's behaviour and interact with the user's data. Section 3.5.8 provides a closer
look at this vulnerability. Another C W E covered under this category is CWE-89:
SQL Injection, again a mishandling of user input that allows the user to modify an
SQL statement with subsequent execution in the database. Section 3.5.7 discusses
this vulnerability in more detail.

4. Insecure Design. This category was created in 2021 to address errors arising dur­
ing product design. There is a difference between non-secure design and non-secure
implementation. Even a secure product design can be followed by non-secure im­
plementation, thus potentially introducing security holes which could be exploited.
Conversely, a non-secure design will not be fixed by a perfectly secure implementa­
tion. Therefore, when designing software, it is important to agree with the client
on data security requirements and determine the sensitivity and significance of the
data sets. It should also be taken into consideration how exposed the software will
be. Secure design is a way of developing software that considers potential security
threats and tests the code to prevent known attack methods. It involves integrating
threat modelling into development activities. To prevent insecure design, you can
establish a secure development lifecycle with AppSec professionals, use secure design
patterns and threat modelling or integrate security language and controls into user
stories. This category includes security weaknesses such as CWE-522: Insufficiently
Protected Credentials, which refers to situations where the product stores or uses cre­
dentials in an insecure manner that can be easily acquired by attackers [20]. Another
example is CWE-209: Generation of Error Message Containing Sensitive Information,

9 OS command injection makes the vulnerable application unintentionally execute an attacker's command
as a result of improper input validation (from parameters or input fields) [51].

1 0 O R M injection is a vulnerability where an attacker can manipulate O R M queries to access a database
and therefore being able to read, modify or delete data [53].

18

which exposes sensitive information to potential attackers. Not only does this vul­
nerability reveal sensitive data about the environment or other users, but the error
message contents could also help attackers to compromise the system, for example,
by unintentionally guiding them to a successful SQL injection attack[19].

5. Security Misconriguration. As the trend of highly-configurable software contin­
ues to grow, the fifth most common threat is Security misconfiguration, which was
detected in 90% of the tested applications. To prevent this threat, it's important
to properly configure permissions, disable unnecessary features and default accounts,
and ensure that security settings are set to secure values in all parts of the applica­
tion. Keeping the software up to date is, of course, also an integral part of prevention.
One of the key C W E is CWE-16: Configuration, where weaknesses are typically intro­
duced during the configuration of the software[16]. The second weakness, among many
others, is CWE-611 Improper Restriction of X M L External Entity Reference, where
X M L documents containing entities with URIs can lead to a resolution to documents
outside of the designated scope. One example is Document Type Definition 1 1 which
enables the definition of X M L entities. It is possible to define an entity by providing
a URI which contains a path to some resource (for instance file:///etc/passwd),
which could allow access to files which are not reachable directly [17].

6. Vulnerable and Outdated Components. This category was in second place in the
community survey. The product may be vulnerable to this threat if its components'
versions are unknown, the software is outdated or vulnerable (including the operat­
ing system, database management system, etc.), and the security scans don't occur
regularly. Prevention strategy includes removing unused dependencies and unneces­
sary features, regular scanning to identify vulnerable components, using only official
sources, securing the correct configuration of updated components, and monitoring if
the libraries are maintained and regularly patched. Only 3 C W E s are mapped to this
category, one of which is CWE-1104: Use of Unmaintained Third-Party Components,
where the product uses libraries and components that lack regular maintenance on the
part of the developers. In that case, it is difficult to address and fix the vulnerabilities
and other bugs[14].

7. Identification and Authentication Failures. This category, previously known as
Broken Authentication, covers threats related to confirming the user's identity and
authentication. The vulnerability may be present if the application allows repeti­
tive guessing of credentials, permits default or weak passwords if it uses insecure
password-recover mechanisms (like the knowledge-based answer), exposes the session
identifier in the U R L , or if the application uses plaintext or weak hashing algorithms
for storing passwords. Part of the solution might be implementing multi-factor au­
thentication, preventing product deployment with default passwords, and aligning
user's password requirements with National Institute of Standards and Technology
(NIST) guidelines 1 2 , or ensuring that credentials-recovery mechanisms are resistant
against account enumeration. Important C W E s are CWE-287: Improper Authenti­
cation, in which case the product fails to adequately verify the claimed identity of

11Document Type Definition (DTD) is a set of rules defining an X M L document's structure, elements and
attributes. It is also used to validate X M L documents [26].

1 2 NIST 800-63b is a set of guidelines for digital identity management that includes recommendations for
creating and managing secure passwords [13].

19

file:///etc/passwd

the user[18], and CWE-297: Improper Validation of Certificate with Host Mismatch,
when the product fails to verify that a certificate received from a host is associated
with the sender, potentially allowing an attacker with a valid certificate to act like
the trusted host[?].

8. Software and Data Integrity Failures. Software and Data Integrity Failures,
the new category for 2021, occur when code or the infrastructure does not prevent
integrity violations, for example, when an application relies on untrusted plugins, l i ­
braries, or modules. Insecure C I / C D pipelines 1 3 can introduce unauthorized access,
malicious code, or system compromise. At the same time, the absence of sufficient
verification of auto-updates might lead to the distribution of fake updates. To pro­
tect from this threat, OWASP recommends using digital signatures 1 1 to ensure the
integrity of transmitted data, that libraries are being downloaded from trusted reposi­
tories, verify components for known vulnerabilities and implement a review process for
code changes. This category maps CWE-494: Download of Code Without Integrity
Check, which allows an attacker to execute a malicious program thanks to insuffi­
cient checks. Another C W E is CWE-829: Inclusion of Functionality from Untrusted
Control Sphere, when a product imports executable functionality from an untrusted
source (which can include web widgets, libraries, or other third-party sources). This
can lead to malicious functionality being included, potentially resulting in severe con­
sequences.

9. Security Logging and Monitoring Failures. This category refers to the impor­
tance of detecting, escalating and responding to security incidents and active breaches,
which can be achieved by implementing proper logging and monitoring mechanisms.
However, testing these techniques is not easy; the process usually involves interviews
and asking if attacks were detected properly. Failures described by this category are
likely to happen whenever errors and warning messages contain incomplete or unclear
information, when logs are stored only locally, or when monitoring for suspicious ac­
tivity doesn't take place at all. Countermeasures against this threat include logging
all the unsuccessful login attempts with the broad context to be able to detect po­
tentially malicious activity, storing logged data for an extended period of time to
allow later analysis, ensuring proper encryption of logs to prevent attacks on logging
systems, and implementing effective means of monitoring and alerting to be able to
respond quickly on incidents, among others. This category covers, for example, C W E -
778 Insufficient Logging when an organization logs a security-critical event with no
or insufficient information needed for further analysis or does not log the events at
all. One of the reasons is the additional cost an organization might have to pay. That
way, it is challenging to detect malicious behaviour and therefore increase the chances
of a successful attack[5].

10. Server-Side Request Forgery (SSRF). By exploiting a lack of input validation or
insecure handling of user-controlled data, it is possible to modify a request, making
the server execute the attacker's command. The result of the attack varies depending

1 3 C I / C D pipelines, or Continuous Integration/Continuous Deployment pipelines, are processes used in
software development to automate the building, testing, and deployment of software applications[23].

1 4 A digital signature is a cryptographic method based on asymmetric cryptography (explained in Sec­
tion 2.2) used to verify the authenticity and integrity of digital data. It creates a unique digital code that
can only be generated by the sender and verified by the recipient using a public key.

20

on the specific vulnerability and what the attacker does with the access. Still, a usual
case includes performing internal scans (open ports, for example) or reading files. As
a preventive measure, it is possible to intervene at the level of several layers. Details
on the operation of the individual layers are given in Section 2.1. At the application
level, it is recommended to check user data, not send raw responses to clients, disable
H T T P redirections or allow only explicitly defined URLs with specific schemas, ports,
and destinations. At the network layer, it is possible to use „deny by default" firewall
policies, to log all accepted and blocked traffic on firewalls, or to separate remote
resource access into different networks. The only C W E in this category is C W E -
918: Server-Side Request Forgery (SSRF)[15], which is a category by itself, to raise
awareness and draw attention to this threat.

To summarise this section, OWASP Top 10 is a useful framework for understanding
the most significant web application security weaknesses. It categorizes these weaknesses
based on hard data and expert experience, thereby staying up-to-date in a rapidly evolving
cybersecurity field. However, it is crucial to remember that while the Top 10 provides a
strong foundation, it is not exhaustive. For good security, it's important to stay updated
on new threats and always be alert.

3.5 Reconnaissance in details

Since this thesis is centred on developing a tool for penetration testing with a focus on the
data-gathering phase, the following text will provide an overview of the data collected for
penetration testing purposes.

3.5.1 Open ports discovery

Identifying open ports and running services is key in the early stages of penetration testing.
Open ports are gateways into a system and are usually linked to specific services, like H T T P
on port 80 or H T T P S on port 443 1 5 . Each open port could be a vulnerability and a possible
attack route.

Running services are active programs on a system, like a web or a database server,
which, if outdated, can have known vulnerabilities. Knowing the open ports and active
services significantly helps penetration testers plan their next steps and can be considered
a critical part of the process.

3.5.2 DNS lookups

In the digital world, servers and computers communicate using IP addresses, not human-
friendly names. When users visit a webpage, they typically enter a URI into the browser.
This starts when a DNS server takes the domain name from the user's input and translates
it into an IP address. This IP address sends the user's request to its final destination.

Because DNS servers play such a central role in internet use, they are a key topic in
cybersecurity. Their job of turning domain names into IP addresses can create potential
security issues. This makes understanding DNS servers and their vulnerabilities a critical
part of the process .[31]

1 5 In some cases, services run on non-standard ports, in which case it can be challenging to detect them. [52]

21

3.5.3 Word list creation
Websites are rich sources of words and phrases tied to their specific areas of interest. These
words may appear in subdomain names or form parts of usernames and passwords. As such,
generating a custom word list from a specific web page's content can benefit cybersecurity
tasks. For instance, these custom word lists can aid in enumerating subdomains or brute-
forcing usernames and passwords. This approach allows for targeted and efficient testing
based on the unique content and context of the target website. [47]

3.5.4 Web source discovery

Discovering directories on the target server is an important part of penetration testing
because it can reveal a lot of information about the server's structure, configuration, and
potentially sensitive data.

Web servers often host numerous files and directories not directly linked to the site's
main pages. Some of these directories might contain backup files, configuration files, or
old versions of scripts, which could have vulnerabilities or sensitive information. By know­
ing the directory structure, a penetration tester can better understand the application's
functionality and potential of vulnerability. [12]

3.5.5 Cipher suits analysis

A cypher suite is a set of algorithms that help secure a network connection that uses
Transport Layer Security (TLS) or its predecessor Secure Socket Layer (SSL). The suite
typically contains one cryptographic algorithm for each of the following tasks:

1. Key exchange: Determines how both parties - the client and the server - will agree
on the secret key for that session (ex.: RSA, D H E , E C D H E) .

2. Digital signature: Provides authentication, integrity and non-repudiation to the key
exchange process (ex.: RSA, E C D S A) .

3. Cipher: Determines how the data will be encrypted (ex.: A E S , ChaCha20).

4. M A C (Message Authentication Code): Provides integrity and authentication to the
encrypted data (ex: SHA256, Polyl305).

Cypher suite analysis examines the specific cypher suites a server configures for use.
This helps determine if the server is configured to use strong cypher suites, if the server still
supports outdated or weak cypher suites that could compromise the data's confidentiality
and integrity and if the server is configured to prefer more secure cypher suites over less
secure ones when negotiating encrypted connections. [44]

3.5.6 Analyzing software versions

It is common for many web frameworks to have security flaws discovered in a previous
version, which were patched afterwards. However, if an outdated framework runs on the
target machine, it is possible to use known misconfigurations or vulnerabilities. This is one
of the reasons why it is essential to find out the framework and its version.

One of the options how to find out the framework is by inspecting the H T T P header sent
by the server. This value is determined by the type of the server. However, the pentester

22

needs to keep in mind that the field can be modified or even disabled on the server side.
That way, the attacker is given false information.

Another option is analyzing Cookies in the H T T P response header, where tempering
with the content is less common but still possible.

Next, analyzing the source of the actual web page is an option where various indicators of
the framework could be present, such as comments, framework-specific paths and variables,
and so on.

From the point of view of the owner of a website, it is recommended to modify H T T P
headers and cookies, remove unneeded lines of comments, delete unnecessary folders and
files, and so on, in order to hide information about the technology and to make it less likely
for an attack to happen. [54]

3.5.7 SQL injection

SQL Injection is a type of security vulnerability that allows an attacker to interfere with
the queries an application makes to its database. Typically, it involves an attacker inserting
malicious SQL code within a query, which can trick the system into executing unintended
commands or accessing data without proper authorization. [41]

Here are the typical steps that an attacker might take when exploiting a SQL injection
vulnerability:

1. Identification: The attacker identifies a point of input within the application (such as
a user form) included in an SQL query.

2. Injection: The attacker provides input that includes malicious SQL statements. This
is often done through trial and error, with the attacker observing the application's
responses to refine their approach.

3. Execution: If the application does not properly sanitize the input (i.e., it does not
ensure the input is safe before including it in an SQL query), the database may execute
the attacker's injected SQL commands.

4. Exploitation: Depending on the nature of the SQL injection, the attacker may be
able to extract sensitive information from the database, modify database data, exe­
cute administrative operations on the database (such as shutdown), or even execute
commands on the operating system.

Finding an SQL injection vulnerability in the target system could lead to precious
information, increasing the chance of a successful attack.

3.5.8 Testing HTTP Methods

H T T P (Hyper Text Transfer Protocol) in R F C 2616 1 6 defines eight methods which serve
web programmers when building a web application. They are H E A D , G E T , POST, P U T ,
D E L E T E , T R A C E , OPTIONS, C O N N E C T . If the server is misconfigured, some of them
could be used by an attacker to temper files stored on the server or even obtain sensitive
information.

Some H T T P methods mentioned above carry a certain level of risk as the attacker can
use them. If the web developer decides to use them, a certain level of cautiousness needs

1 6https: / / www.rfc-editor.org/rfc/rfc2616.html

23

http://www.rfc-editor.org/

to be applied. Starting with PUT, this method servers for uploading files on the web server,
which the attacker can use to get malware on the server. This could lead to remote code
execution, among others. On the other hand, DELETE allows users to remove files on the
server. A n attacker could use the H T T P method CONNECT to use the server as a proxy.
The Cross Site Tracing attack can be performed with the method TRACE allowed, which is
meant to serve for debugging purposes. [25]

Cross-site scripting

Cross-site scripting, also known as XSS, was first defined in 2000 by a Microsoft security
engineer and still represents a considerable threat in the world of web applications. Cross-
site scripting attack is based on injecting the attacker's code into a web application so that
legitimate users execute it unknowingly, which can lead to sensitive information leakage,
executing unauthorized operations, and so on. [40]

There are several types of cross-site scripting attacks: Reflected XSS, Stored XSS,

and DOM-based XSS [40].
The Reflected XSS, or non-persistent XSS, involves modifying a legitimate H T T P

request to a vulnerable web server in such a way that it injects a malicious script into the
request. This could be, for example, within the parameters of a U R L . The attack is typically
propagated through social engineering techniques, convincing the victim to open a crafted
U R L . Once opened, the victim's browser sends the injected request to the server, which, if
vulnerable, reflects it to the victim's browser. As the browser processes the returned code,
it executes the malicious script. This script, often written in JavaScript, can be used for
various malicious activities such as installing keyloggers, stealing cookies, or defacing the
web page. [?]

In contrast, the Stored XSS attack, also known as a persistent attack, injects a malicious
script directly into the server. If the server fails to validate the input properly, the malicious
script is stored and executed each time a user accesses the associated U R L . The malicious
code persists on the server until it is removed.

The third category, DOM-based XSS, is neither reflected nor stored. The underlying
issue is that the server uses D O M objects, such as document. location or document .URL
that are not fully controllable and can be manipulated by the attacker. Unlike other types
of XSS attacks, detection techniques often overlook DOM-based XSS as they typically
focus on injecting the H T T P request/response, which is irrelevant to this type of attack.
Consequently, the detection often fails in such cases. [30]

24

Chapter 4

Exist ing solutions

The following text explores existing tools used in penetration testing, focusing on those
being used, especially in the reconnaissance phase of the process, and with a secondary em­
phasis on their automation potential. The penetration testing process employs a wide range
of tools across different categories, from passively collecting publicly available information
to more aggressive forms of target analysis, all the way to deploying the actual attack,
which involves compromising the system itself. The selection of the most widespread tools
will be described in this section, which at the same time will serve as a reference point
for the design and implementation of the tool being developed in the practical part of this
thesis.

Nmap

Nmap (Network mapper) is an open-source tool for collecting network-related data. Despite
the fact that its primary function is to scan large networks, it can also be effectively used
against individual targets. It can provide the user with precious information regarding
the „up" hosts, operating systems and software versions, open ports and much more. In
the context of the tool developed within this thesis, Nmap is a viable option for several
purposes. [34]

Obtaining information about which targets are online is the initial step in security
testing, and for this, Nmap offers a variety of options and techniques. While the host
discovery process is sometimes called a „ping scan," Nmap can go beyond simple I C M P
scans and utilize other techniques, such as T C P S Y N or T C P A C K packets.[33]

Moreover, Nmap offers many other useful functionalities such as firewall bypassing,
backdoor detection, checking for known vulnerabilities, scripts to analyze specific services
and much more. [35]

Masscan

Masscan is an open-source network scanning tool that's highly revered in the field of pen­
etration testing. As one of its advantages can be considered its high speed. Using an
asynchronous transmission technique, Masscan is capable of transmitting millions of pack­
ets per second, which allows it to scan a multitude of ports on multiple IP addresses
concurrently. [43]

Thanks to its scalability and adaptability, Masscan can be used effectively in small-scale
and large-scale operations, making it possible to map active hosts, track the distribution
of malicious botnets across the internet or analyze certain services. Since Masscan is a

25

community-driven tool, users can modify it according to their requirements. This trans­
parency and adaptability make it a valuable part of a job in the cybersecurity domain.
[48]

There is a claim about Masscan's capability to scan the internet in under 6 minutes,
made by its creator, Robert David Graham. According to Graham, under ideal conditions
and with sufficiently powerful hardware, Masscan can send out around 10 million packets
per second, fast enough to scan the entire internet's IP addresses in a few minutes. [24] [7]
[6]

However, in practice, the time to scan the entire internet would likely be much longer
due to a variety of factors, including network congestion, packet loss, the need to wait for
responses, and the potential for such rapid scanning to be classified as a denial-of-service
attack and subsequently blocked.

C e W L

Cewl is an open-source custom word list generator crucial in penetration testing. It works
by spidering a target website's URLs to extract unique words, forming a list, which can
be used in password-guessing attacks such as a dictionary or brute force attacks. In each
case, the result contains words relevant to the specific field, target's language and topic,
thereby increasing the chance of success in password attacks. [4] Cewl provides the user
with minimal or maximal word length, contributing to overall versatility. It also offers
options to consider or disregard email addresses and numbers during extraction. Cewl's ca­
pabilities make it a valuable tool, increasing the effectiveness of password-cracking methods
in cybersecurity. [29]

Dnsrecon

DNSRecon is a robust DNS enumeration tool for information gathering and network map­
ping. It is designed for querying DNS records associated with a target network. The records
queried can include SOA, NS, A , A A A A , M X , T X T , and SRV records, providing a detailed
view of a network's DNS setup1

DNSRecon's functionality is wider than just enumerating DNS records. It also allows
for zone transfers to identify hosts in a network, checks for wildcard resolution, attempts
reverse lookups on netblocks, and even performs brute-force attacks against subdomains
and hostnames.

DNSRecon can extract a significant amount of data about a target, which can then be
utilized to identify potential weak spots in a network's configuration. Its versatility in DNS
enumeration makes it a vital resource in the reconnaissance phase of penetration testing.
[41]

Shcheck

SHCheck (a shorter version of Shell Checker) is a penetration testing tool utilized primarily
for checking H T T P headers and cookies. Its main function is to assess the security of

l rThe Domain Name System (DNS) is a decentralized system that translates human-friendly domain
names, like „www.example.com", into their corresponding IP addresses, which computers use to locate each
other on the internet. DNS records are entries in a DNS database that provide information about a domain,
including its IP address (A or A A A A record), mail servers (MX record), and many others. Among other
sources, more details on DNS can be found in [32].

26

http://�www.example.com

H T T P headers in web applications. By analyzing the H T T P response headers, SHCheck
can provide information about potential security vulnerabilities in a web application's setup.

SHCheck's capabilities extend to examining security mechanisms like H T T P Strict
Transport Security (HSTS), X-Content-Type-Options, and X-XSS-Protection. Addition­
ally, it can analyze cookies to check for flags such as HttpOnly and Secure, which can have
a major impact on the security of a web application.

Overall, SHCheck provides a simple method to assess the security of H T T P headers and
cookies. [27]

Whatweb

What Web is a flexible and comprehensive web scanner specializing in identifying web tech­
nologies. It is used to collect information about a target website's technology. This includes
information about the type of web server, scripting languages, content management sys­
tems, and even specific plugins being used.

What Web has an advanced plugin system, offering over 1800 of them. Each plugin is
designed to recognize and report specific technologies. Therefore What Web can identify
a wide range of systems and software. Additionally, What Web supports an aggressive
mode which uses additional techniques, such as error-based detection, for a more in-depth
analysis. [44]

Sslscan

SSLScan is used for evaluating a network service's S S L / T L S configuration. It is widely
used in penetration testing and cybersecurity, as it can identify vulnerabilities within an
S S L / T L S setup.

The core functionality of SSLScan includes determining the SSL protocols (e.g., SSLv2,
SSLv3, T L S v l , etc.) supported by a server, as well as the specific cipher suites it can use.
It also identifies server preferences, certificate information, and potential vulnerabilities
associated with weak cypher suites or protocol versions.

Since communication is a fundamental part of a computer's characteristics, it is essential
to keep it safe. By discovering misconfigurations and weaknesses in the target systems'
S S L / T L S setup, SSLScan can reduce the risk of data breaches. [36]

Issues associated with complex penetration testing frameworks

In this context, the category of complex penetration testing systems offering extensive
functionality can not be missed. While these systems provide undeniable advantages, they
also come with certain drawbacks that can be decisive in specific situations:

• Cost: Although some of these tools offer free or community versions, the full-featured
versions typically require a paid license. This can pose a barrier for individuals or
smaller organizations with limited budgets.

• Complexity: These tools encompass many features and capabilities, resulting in high
complexity. Consequently, learning to use them effectively can demand a significant
time investment, particularly for beginners.

• Limited Parameterization: Some tools may have restricted options for configuring
scans or filtering results, which could be limiting in certain testing scenarios.

27

• Insufficient Extensibility: These tools may provide a given functionality but lack
the possibility to extend it further. This limitation can constrain in certain cases
where customization or expansion is required.

Nessus, developed by Tenable, Inc., is a renowned vulnerability assessment tool with a
vast set of features, including vulnerability scanning, configuration audits, and asset profil­
ing. Nessus provides over 100,000 plugins, each designed to detect a specific vulnerability
or a set of vulnerabilities. Despite its extensive capabilities, Nessus comes with certain
limitations. Its complexity might pose a steep learning curve for beginners. Additionally,
while a powerful tool, the full-featured version of Nessus can be costly, which might become
the reason why an organization chooses a different solution.

OpenVAS, an open-source vulnerability scanner and manager, stands out for its af-
fordability and comprehensive vulnerability detection. It has a routinely updated database
and offers a user-friendly web interface and customization possibilities for scans. Draw­
backs include limited professional support, confined to the paid version, and a potentially
complex and long-lasting setup process. Additionally, when managing large networks, its
performance may be outpaced by commercial tools.

As the last penetration testing solution on this list, Burp Suite will be mentioned, a
web application security testing platform from PortSwigger. It offers many tools, including
a proxy server, web spider, scanner, and more. Among other advantages, it provides an
intuitive interface and extensive customization options. However, the drawbacks include a
potentially steep learning curve for beginners, costliness for the feature-rich version, and
limitations in non-web application penetration testing

28

Chapter 5

Technical specifications and design

As described in Chapter 3, penetration testing can take many forms, but data collection
plays a key role in each of them. This thesis aims to provide penetration testers with a
software solution for data collection on targets, which will be modular, parametrizable, and
free to use.

This chapter presents the requirements and design of the tool. Firstly, the general
requirements that the tool must meet are described, followed by a breakdown of both
functional and non-functional requirements. Finally, the tool's design is laid out with
accompanying figures.

The minimum requirement for the design of this automated penetration testing tool is
the integration and automation of chosen tools (as outlined later in this chapter). The tool
will be capable of providing reports on information about the targets and found vulnerabili­
ties while also listing other potential points of interest for penetration testers. Additionally,
it will offer options for expanding functionality through modules.

The final goal is to get as much data as possible on all targets. Penetration testers will
use this information to make the process as accurate as possible.

5.1 Functional requirements

This section details the main functional requirements for the proposed penetration testing
framework. These are the essential tasks that the framework needs to carry out to sup­
port penetration testing effectively. They're designed to make the framework user-friendly,
efficient, and valuable to penetration testers.

• Target Scanning: The tool should be able to scan specified targets, which could
be IP addresses or domains. It evaluates whether the target is up, performs host
discovery and identifies open ports and running services.

• Generating custom word lists: Ability to generate custom word lists, which can
be later used in dictionary attacks on folders, directories or user accounts.

• S S L / T L S configurations: Analysis of the servers' security headers and S S L / T L S
configurations.

• DNS lookup: The tool provides the user with a reverse DNS lookup option.

• Reporting: The tool should generate comprehensive reports detailing the penetra­
tion test findings. These reports should be clear and understandable.

29

• Module Support: The framework should support the integration of additional tools
or modules to extend its functionality.

• Configuration and Customization: The framework should provide options for
customization, allowing testers to adjust its behaviour based on their specific testing
requirements.

• Automation: The framework should support automation for regular, scheduled pen­
etration tests.

Use-cases and scenarios

Next, real-world situations or 'use cases' will be examined. These use cases will better
explain the application of the concepts discussed above.

• Gathering information on targets. If the user knows a target address or possesses
a list of addresses, they will initiate a scan on these targets:

1. The user selects desired modules in the configuration file, determining which
scan will be executed.

2. In case of multiple targets, a text file containing the list of the addresses is
created.

3. Through command line options, the user decides whether to save the program's
output to a file.

4. Once the tool starts, it analyzes the chosen targets, prints the information via
standard output, or saves it to a file.

5. The results are formatted to be easily readable.

• Host discovery. Let's consider a situation where a penetration tester has access
to a single computer within an organization's network or has been granted network
access from their device. The objective is to gather information on as many potential
targets as possible:

1. The user enables the „host discovery" feature in the tool to scan the subnet.

2. The user then selects the modules to be executed on all discovered targets.

3. After running the program, the results are displayed through standard output
or saved to a file.

• Adding a user-defined module. If the process of penetration testing demands new
functionality through an already integrated tool, a tool which is new to the framework,
or based on features provided by the Python programming language:

1. User decides to add new functionality.

2. Thanks to its extensibility, users can develop a new module by creating a parser
for the chosen tool's output and formatting the results according to their pref­
erences.

3. A reference to the newly developed module is added to the mapping file, enabling
the framework to recognize and execute it.

4. This newly created module can be switched on or off for each future run.

30

5.2 Non-functional requirements

The focus of this section turns to non-functional requirements, which also represent an
essential part of the overall quality of the framework.

• Extensibility: It will be possible to add functionality easily without changing the
existing architecture. The design presumes that new tools may be developed, and
their functionality could be desirable in this framework. It also considers that each
penetration tester has different preferences and favours different tools.

• Modularity: The framework's functionality comes from several components (mod­
ules) that can be freely enabled or disabled at startup. The user has the option to
add modules according to their requirements for functionality. Modifying the existing
modules without affecting the rest of the architecture is also possible.

• Portability: Given the widespread use of the Linux operating system in penetration
testing, the program will be designed specifically for this operating system.

• Fault Isolation: As this involves integrating several tools under one roof, it is
desirable that a fault in one of them does not cause the entire framework to fail.
Each of the selected tools is well- maintained and widely used, which could lead to
updates that might cause, for example, a change in the output format and, therefore,
incompatibility with the parser of a given module. Modifying a specific module is
sufficient for any repair without the need for intervention in the entire system.

5.3 Design

From a high-level view, the tool's core will consist of a set of Python files responsible for the
framework's functionality and the integration of all modules. The input to this „Python
core" will be the target or a list of targets, along with a configuration file specifying which
modules should be executed. Subsequently, the Python core will perform port scanning on
the specified targets and run the selected modules on the running services. Each module
covers the specific functionality of a Unix tool, which is encapsulated in a Docker image
and executed by the framework. The outputs of the tool's execution in the Docker images
are processed and presented to the user in a comprehensive format on the standard output
or/and written to a file. This is also shown in Figure 5.1

Modularity

The tool will be highly extensible thanks to the ability to add custom modules. Choosing a
new combination of parameters for an already integrated tool or adding a new one will be
possible. As for the second option, a docker image must first be created. Adding modules
for both integrated and new tools is the same. A new parser needs to be constructed so the
output can be processed correctly, along with a simple function which allows the program
to use the module. Then all that remains is to add the new test option to the configuration
file.

The tool will consist of multiple modules, each addressing a specific functionality. Each
module will be composed of the following components, as also shown in Figure 5.2

1. Record, which servers as a mapping file linking all the components together

31

Figure 5.1: High-level overview of the architecture of the tool. The main Python program
accepts user input in the form of targets and also reads the scan configuration from the
corresponding file. Based on these instructions, it runs the relevant Docker images and
then outputs the target scan results on the standard output or into a file.

module record functions

create_command()

p a r s e _ o u t p u t (]

docker image

dockerimage:v1

configuration
f i l e

Module ON

Figure 5.2: Overwiev of a module. In general, it consists of four parts. First is a module
record, which serves as a mapping file containing information about which docker image
should be run, which functions to use, for which service it is designed, etc. Second, are the
functions which create the command for the docker image and parse its output. Next is the
docker image itself. Finishing with the last part of a module, an entry in the configuration
file, which switches on/off the module.

32

2. Unix tool packaged in a docker image.

3. Functions needed for the module to be operational

4. Parser to interpret the tool's output.

33

Chapter 6

Implementation

This chapter details the process of converting the design into program implementation.
The selected technologies for the tool's implementation will be discussed, followed by a
description of the module architecture and its connections. Next, details regarding the
possibility of extending functionality with user modules will be provided, and finally, the
challenges associated with developing this framework will be addressed.

6.1 Technologies used

Docker was chosen as it provides an efficient and lightweight way to create isolated and
reproducible environments, so-called containers. These containers can run anywhere Docker
is installed, supporting portability. Wi th Docker, individual tools within the penetration
testing framework can be isolated in separate containers, reducing the risk that a failure or
security issue in one tool will affect others. This approach aligns well with the principle of
fault isolation.

As for the solution of a programming language technology, Python3 was chosen for this
project. Its simplicity and readability make it a good choice for many users. Python3
has a rich ecosystem of libraries and modules, many of which are network-focused and
security-focused and can be easily incorporated into a penetration testing framework. The
support for Docker was also a key factor. Furthermore, Python3, being the latest version of
Python, includes many improvements and features not found in Python2 and is the version
that currently receives updates and bug fixes.

6.2 General overview

The developed framework is based on the Python programming language, specifically ver­
sion Python3.10, which is one of the minimum requirements for the framework to be oper­
ational.

A distinguishing feature of the tool is its extensibility with user-defined modules. Hence
its architecture is fundamentally modular. It is comprised of a collection of Python files
collectively responsible for the entire operation of the framework. The following describes
the key libraries and functions that the framework employs:

• argparse: One of the initial steps in launching the framework involves processing
command-line arguments facilitated by the Python library argparse. This library is
user-friendly and offers a wide range of argument processing options.

34

• importlib: To run selected modules, dynamic importing is employed. Each run may
theoretically contain a different path to the required function within the module,
facilitated by the importlib library.

• appdirs: The appears library is used to identify the folder where a specific operating
system stores configuration files so that the framework's configuration files can also
be placed there.

• Python function getattr(): In addition to dynamically specifying Python modules,
calls to dynamically specified functions are also performed. The specific function used
to create the Docker command and the function used to process the raw Docker output
is unknown at the beginning of the framework's operation. The Python function
getattr() is employed for this purpose.

• configparser: The configparser library, which provides an intuitive format for con­
figuration files and their simple processing, forms the basis for the configuration files.

• docker: The Docker library runs the Docker image with the appropriate parameters.

• xmltodict, json, termcolor : The Docker image run provides the output of the
specific tool, which needs to be processed and formatted. Several libraries are utilized
here. The libraries xmltodict, and json offer easy handling of these data formats. The
term colour library is used for formatting the parsed information.

Those mentioned above are only selected important modules; the framework uses many
others, most commonly used for basic tasks such as file and system operations.

6.3 Modules

The following text will describe the functionality covered by the modules. As previously
mentioned, the tool's capabilities can be expanded. Thus, the selection of integrated tools
isn't neither definitive nor limiting. Each user is free to extend the tool's functionality in
the required direction. The modules described in this chapter represent what a penetration
testing tool should cover.

6.3.1 Defining module

The whole tool is composed of several modules. Visual representation of modules is shown
in Figure 6.1 and will be explained in the following text. The tool is designed to easily add
another module according to the user's specific needs. In general, each module consists of:

1. A record in dipmodules .py

2. A docker image of the chosen tool

3. Necessary Python functions

4. A n entry in the configuration file

Docker image is not mandatory; it can have the value of None. Each of these parts will
be explained in the following text:

35

dwhatweb:v1 Whatweb

dipmodules.py

Whatweb: { J
'image' : ' dwhatweb :v1 ' ,
'service' : 'https',
'params' '-a1',
'command' : 'src.path.to.whatwebfuncs.create_command',^
'parser'

}
'src.path.to.whatwebfuncs.parse_output' • — —

./src/path/to/whatwebfuncs.py

def create_command() :
create the command
return command

def parse_output():
parse the output
format the output
return result

Figure 6.1: Illustration of a module consisting of several parts. There is a record in the
python file dipmodules.py, a corresponding docker image (which can be shared among
several modules), functions for the command creation and output parsing and as the last
component, a switch button in the configuration file.

6.3.2 A module record

As shown in Figure 6.1, each record in dipmodules .py contains several keys with their cor­
responding value. Not all of them are required. Minimal keys are those that the framework
counts during its run. A n error will be raised if any of the minimal keys are missing. The
minimal keys are:

• ' image': A docker image which will run its tool. Note that the entry point of the
specified image must be set to run that tool. A special value which 'image' can be set
to is None. In that case, no image will be run. It may be useful in some cases when
building a module, especially when the functionality of the module depends solely on
Python features.

• ' service ' : For which service it is designed. If it's desired to run a module on multiple
services, creating a separate module for that is necessary. Service cannot be an array.
Ex. 'https' or 'domain'

• 'params': A string specifying the parameters for the tool (ex.: -p443 -script
ssl-cert for nmap). This is quite benevolent option since the only one accessing
this value is again the user in 'command' function and 'additional' function, as de­
scribed below. This means that the parameter can be hard-coded into those functions
instead, leaving an empty string in the record in dipmodules.py. However, in terms
of good practice, it is recommended not to do so.

• 'command': Path of a python function that creates the docker run command. This
function can be defined in any Python file in any (accessible) folder. The framework
will decode the path and run the specified function. Three arguments will be passed
and must be accepted:

1. type:string - target address
2. type: int - port

3. type: string - 'params' value from the corresponding module record (which
stayed untouched by the framework, as explained in the previous point)

36

— return: string - a command which will be supplied to the docker container for
its run, which would be equivalent to

docker run imgname <returned_string>

• 'parser': Path of a python function which processes the output of the docker image.
The guidelines for specifying this key are the same as above. It takes one argument:

1. type: <container> - raw output from Docker; to get the text representation
of the output, the first action must be the following:

data = ""

for output line.logs(stream=True):

data += line.decode("utf-8")

— return: string - a string which will be printed out as a final result of the module
(including extracting the desired info and formatting).

There are two more keys, which are recognized by the framework, providing the user
with flexibility in creating new modules:

• 'additional': Path of a python function according to rules described above. This
function provides a way for the user to perform any actions which wouldn't be oth­
erwise possible due to the strict rules of the framework. If used, the user can define
any behaviour here. It takes six arguments and returns nothing:

1. type: string - a command which was created in the function specified in 'com­
mand' key

2. type: string - target

3. type:port - port

4. type:diet - the module with all the „key-value" pairs

5. type: function - for printing to stdout or a file, according to -q and -o options.
It takes two parameters, the first of which is the 6th argument (see the line
below). The second argument is a text you wish to print as a result of your
module.

6. type:diet - first argument for the function (see the line above) (it contains the
info if the -quiet option was specified and if -output f i l e was specified)

• '_abort_regular_run': If present, the execution of the docker image won't occur.
The value doesn't matter since it is not evaluated.

It is possible to add completely new keys if desired (and use it through the 4th argument
of the „additional" function. It won't cause any conflicts.

37

A docker image

The technology of docker images provides an isolated environment for each integrated tool,
isolating possible incompatibilities and errors. Every Docker image included in the frame­
work is built from a Dockerfile with the following structure:

FROM ubuntu

RUN apt update && apt install -y \

dnsrecon

ENTRYPOINT ["dnsrecon"]

CMD ["--help"]

Docker images are based on the ubuntu docker image, which is well maintained and
up-to-date, accessible from the official Docker Hub 1 . When creating a user-defined module,
Dockerfile doesn't necessarily need to follow described structure. However, it could lead to
unexpected errors.

As mentioned above, creating a docker image is not critical for a module, as it can use
an existing one or none.

Necessary python functions

To tell the framework how to run the tool and what to do with the output, two functions
need to be defined, as mentioned previously. Third, the optional function (specified with
'additional' key) offers users an option to define custom behaviour.

Entry in the configuration file

The configuration file is based on a structure defined by conf igparser module in Python,
and it instructs the framework for which modules should be run. Each entry should contain
the exact name of the module and switched_on option. The name must match the one
specified in the record in dipmodules .py file. Otherwise, the framework wouldn't be able
to map the module correctly. If switched_on option has a value of 1, the corresponding
module will be executed. Other options are not taken into consideration as the framework
evaluates only swtiched_on

[NmapSSL]

switched_on = 0

[Sslscan]

switched_on = 1

[Cewl]

switched_on = 1
1

Docker Hub - https://hub.docker.eom/_/ubuntu

38

https://hub.docker.eom/_/ubuntu

6.3.3 Modules integrated into the framework
Each module has its corresponding entry in the configuration file. This entry allows the
user to tell the framework whether or not the module will be activated. Barring a single
exception, every module executes its associated tool via a Docker image, created during the
tool's installation phase. The outputs generated by these modules are formatted to provide
good readability and intuitiveness. The results of these modules' operations are presented

part of the testing described in Chapter 7.

• nmap S: Module designed for host discovery. Its function is to scan the current
subnet utilizing the -sn parameter of the Nmap tool, a scan type also known as a
'no-port-scan'. This module uses I C M P requests to get the status—up or down of a
given computer on the network.

• nmap, masscan: These two basic modules discover open ports and their operating
services. Users can specify any desired ports or ranges they wish the framework
includes in scans. Users can select either one or both modules to identify open ports.
When both modules are run, the open port lists from both tools are merged, possibly
discovering a bigger number of services. Despite the fact that these two modules
utilize Nmap and mass can for one specific purpose, other modules can use them with
different parameters for different purposes.

• shcheck basic: This module checks the H T T P S protocol using the shcheck tool.
This tool examines security headers, which can protect against common web attacks
such as XSS, Clickjacking, and code injection attacks. The output includes the list of
missing headers along with a brief description of the corresponding risks.

• whatweb, Whatweb http: These modules use the What Web tool to identify tech­
nologies used by websites. One is for H T T P S services, and the other is for H T T P .
The output includes the target's IP address, origin country, X-Frame-Options, and
non-standard headers, among other information.

• Dnsrecon, Dnsrecon reverse: This module is for the „domain" service. It uses
DNSRecon, a tool that performs various DNS queries such as standard record queries,
zone transfers, reverse lookups, and more. It shows T X T records, which might contain
interesting information, and P T R records from reverse lookups.

• cewl, cewl http: This module creates custom word lists based on a webpage's
content using the CeWL tool. It uses a custom key in the dipmodules .py record for
specifying a path to the file where the list should be saved.

• nmapSSL: This module uses the nmap tool with the ssl-cert script to gather infor­
mation about a target's SSL certificate.

• sslscan: This module uses the sslscan tool to analyze a target's S S L / T L S setup. The
output is a list of enabled T L S / S S L versions and used cypher suites sorted by security
level. It also displays information about possible threats like T L S Renegotiation and
the Heartbleed vulnerability.

• ftpAnonLogin: The only module not using any Docker image and is entirely based
on Python, therefore using 'additional' key for specifying the extra function. It
uses f tplib library to try and connect to the F T P service and perform an anonymous
login. If the login succeeds, the user is notified.

39

6.4 Challenges

The following section will highlight some of the challenges associated with software devel­
opment.

Dealing with parsing

Output parsing was notably significant among the challenges encountered during the de­
velopment of this tool. Creating a universal parser for the integrated tools was impractical
due to the diversity of the outputs. Even a change in the parameters of the same tool could,
in some cases, alter the format or content of the output. Moreover, such a universal parser
would conflict with the tool's principle of simple extensibility. For these reasons, it was
determined that each module must include a parser for the specific tool or, more precisely,
for a particular combination of the tool's parameters. If one parser would be suitable for
multiple modules, reusing it multiple times would be no issue.

Offering modularity

Another challenge was to provide the user with extensibility in its broadest, simplest, and
cleanest form. As previously mentioned, the cybersecurity and penetration testing field
evolves rapidly, with security vulnerabilities appearing and disappearing daily and the tools
used in this sphere following a similar trajectory. Therefore, every user will likely have
slightly different requirements and needs related to penentration-testing tools. Support for
extensibility is thus one of the fundamental features of this tool. The goal was to facilitate
the use of user-defined modules, the creation of which would require the user to expend only
the minimal necessary effort while also offering the broadest possible options. The solution
was a combination of several elements. The first is constructing the tool's architecture
so that the core of the framework (a file of Python functions) manages the coordination
and interconnection of modules. Integrated modules are written in the same format a user
would define their new ones. The second is including the 'additional' key in the module
description, the value of which is a path pointing to a user-defined function.

40

Chapter 7

Testing

The following text describes the process and evaluation of the functional verification of the
framework. The virtual machines used will be discussed, along with the chosen approach,
output images, and finally, a review of how closely the framework aligned with the design.

7.1 Approach

As mentioned in Chapter 3.1.3, in the case of most of the implemented modules, testing
public applications is, for several reasons, not possible. For testing purposes, the technol­
ogy of virtual machines was chosen, specifically two virtualization software: VMware by
VMware, Inc. and VirtualBox by Oracle Corporation. Both create a virtual environment,
allowing the operating system to operate as if running directly from the hardware while
running on a software-emulated virtual machine. Thanks to this, it provides isolation, thus
making it suitable for testing the framework.

This is also suitable for another type of testing, where the installation process's func­
tionality and the tool's operation in a new environment will be evaluated.

Four publicly available virtual machines were selected from the vulnhub. com
1

 website.
The first one is the b W A P P project2, which provides a web application with several vul­
nerabilities. The project used to be under active development, with the last version being
v2.2 in 2014. The second chosen is the Broken Web Applications Project developed by
O W A S P 3 . It also provides several versions, and for the purpose of this work, version 1.2
was chosen. The last two virtual machines are ZorZ 4 and R P I M E R 5 . For clarity in the
following text, these tools will be referred to as „bWAPP V M " , „BWA V M " , „ZozR V M "
and „RPIMER V M " .

The tests were also conducted among other individuals in the IT field. Specifically, it
involved a group of 5 people using Linux and MacOS operating systems, who were provided
with this tool to verify its functionality.

1

 vulnhub. com
2

bWAPP - https ://www.vulnhub.com/entry/bwapp-bee-box-vl6,53/
3

https: //www.vulnhub.com/entry/owasp-broken-web-applications-project-12,46/
4

ZorZ - https ://www.vulnhub.com/entry/tophatsec-zorz, 117/
5

 RPIMER - https://www.vulnhub.com/entry/primer-101,136/

41

http://www.vulnhub.com/entry/bwapp-bee-box-vl6,53/
http://www.vulnhub.com/entry/owasp-broken-web-applications-project-12,46/
http://www.vulnhub.com/entry/tophatsec-zorz
https://www.vulnhub.com/

- 192.168.0.206 -

Ports (192.168.0.206)
21 : open : : ftp
22 : open : : ssh
25 : open : : smtp
80 : open : : http
139 : open : netbios-ssn
443 : open : https
445 : open : microsoft-ds
3306 : open : mysql
8080 : open : http-proxy

192.168.0.38

Ports (192.168.0.38)
22 : open : : ssh
80 : open : : http
139 : open : netbios-ssn
143 : open : imap
443 : open : https
445 : open : microsoft-ds
8080 : open : http-proxy

Figure 7.1: Resut of a combination of mod­
ules mas scan and Nmap_S, providing informa­
tion about open ports on b W A P P V M .

Figure 7.2: Output of a single module
Nmap_S, showing open ports and running ser­
vices on B W A V M .

7.2 Process

The tool was executed against the selected virtual machines and the outputs are presented
below.

The port scanning can be done using either nmap, masscan or both. Using both tools
increases the chances of discovering a greater number of ports. However, it takes longer.
The results can be seen in Figure 7.1 for b W A P P V M and Figure 7.2 for B W A V M .

Execution of sslscan module is shown in Figures 7.3 and 7.4
Whatweb module outputs information about the web itself, and the example can be seen

in Figures 7.5 and 7.6. The second mentioned is the output of scanning Zorz V M .
The output upon discovering an anonymous login vulnerability of the F T P service is

illustrated in Figure 7.7
Next, the option of using the DISC scan was tested, which obtains information about tar­

gets marked as „up" by sending I C M P requests. This is accomplished using the „Nmap_s"
module. However, the DISC mode was supplemented with the - c l option, which instructs
the framework to run all enabled modules against each of the discovered targets. The
complete output can be seen in Figure 7.8. When the framework encounters an issue, it
correctly informs the user and immediately continues with the next module instead of stop­
ping its progress. For better orientation, the list of online virtual machines, along with the
corresponding IP addresses, is for this test as follows:

. b W A P P V M - 192.168.0.206

. B W A V M - 192.168.0.38

. ZorZ V M - 192.168.0.136

. R P I M E R V M - 192.168.0.101

42

Module: Sslscan

ssl 3
tl s 1.0

Acceptable ciphers:
TLSvl.O 256 b i t s DHE-RSA-AES256-SHA
TLSvl.O 256 b i t s AES256-SHA
TLSvl.O 128 b i t s DHE-RSA-AES128-SHA
TLSvl.O 128 b i t s AES128-SHA

Medium ciphers:
TLSvl.O 128 b i t s TLS_RSA_WITH_RC4_128_MD5
TLSvl.O 128 b i t s TLS_RSA_WITH_RC4_128_SHA
TLSvl.O 112 b i t s TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLSvl.O 112 b i t s TLSDHE_RSA_WITH3DESEDECBCSHA

TLS Renegotiation: supported (and secure)

Module: Sslscan

ssl 2
ssl 3
tls l.e

Weak ciphers:
TLSvl.O 49 b i t s TLS_RSA_EXP0RT_WITH_RC4_40_MD5
TLSvl.O 40 b i t s TLS_RSA_EXP0RT_WITH_RC2_CBC_40_MD5
TLSvl.O 40 b i t s TLS_RSA_EXP0RT_WITH_DES40_CBC_SHA
TLSvl.O 40 b i t s TLSDHE RSA EXPORTWITH DES40 CBC SHA

Acceptable ciphers:
TLSvl.O 256 b i t s DHE-RSA-AES256-SHA
TLSvl.O 256 b i t s AES256-SHA
TLSvl.O 123 b i t s DHE-RSA-AES128-SHA
TLSvl.O 128 b i t s AES128-SHA

Medium ciphers:
TLSvl.O 128 b i t s TLS_RSA_WITH_RC4_128_MD5
TLSvl.O 128 b i t s TLS_RSA_WITH_RC4_128_SHA
TLSvl.O 112 b i t s TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLSvl.O 112 b i t s TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
TLSvl.O 56 b i t s TLSRSAWITHDESCBCSHA
TLSvl.O 56 b i t s TLSDHERSAWITHDESCBCSHA

TLS Renegotiation: supported (and secure)

Figure 7.3: The output of the SSL scan mod­
ule runs against b W A P P V M , which provides
a clear division of T L S / S S L protocols and
supported cypher suites.

Figure 7.4: Sslscan module run against
B W A V M , showing many supported cyphers,
among which there are also weak cyphers.

Module: Whatweb_http
T a r g e t : http://192.168.0.38:80
I P : 192.168.0.38
Cou n t r y : ZZ
E m a i l : admin@metacorp.com
JOuery: 1.3.2
Uncommon headers:
X-Frame-Options:

Module: Whatweb_http
Target: http://192.168.0.136:80
IP: 192.168.0.136
Country: ZZ
Email:
JQuery:
Uncommon headers:
X-Frame-Options:

Figure 7.5: Outputu of Whatweb_http mod­
ule provided after scanning b W A P P V M .

Figure 7.6: Result of Whatweb_http module
from scanning Zorz V M .

Module: ftpAnonLogin
[+] 192.168.0.206 allows anonymous FTP login

Figure 7.7: Alerting the user to the presence of anonymous F T P login vulnerability.

43

http://192.168.0.38:80
mailto:admin@metacorp.com
http://192.168.0.136:80

L# dipscan DISC -cl TLSvl.0 128 bus AES128-SHA
Discovered hosts: Medium ciphers: Ports (192.166.6.136)

192.168.8.1 TLSvl.0 128 bits TLS RSA WITH RC4 128 MD5 22 : open :: ssh
192.168.8.39 TLSvl.0 : TLS RSA WITH RC4 128 SHA 86 : open :: http
192.168.0.87 TLSvl.0 r: bitf TLS RSA WITH 3DES EDE CBC SHA
192.168.9.191 TLSvl.0 112 bits TL5 DHE RSA WITH 3DE5 EDE CBC SHA Module: Whatweb
192.168.0.108 TLS Renegotiation: supported (and secure) Module: Whatweb http
192.168.0.136 Module: Cewl Target: http://192.168.0.136:80
192.168.0.199 Not possible to connect to: https://192.168.0.38:443 IP: 192.168.6.136
192.168.G.206 Module: Cewl http Country: ZZ

Custom word l i s t (port 8G) generated into; /home/kali/i :ewl ou Email:
ts/http/192.168.6.38 cewl.out JQuery:
Module: Dnsrecon Uncommon headers:

192.168.0.1 Module: Dnsrecon_reverse X-Frame-Qptions:
Module: Shcheck basic

Ports (192.168.6.1) Something went wrong when running image "dshcheck:vl".
53 : open :: domain Module: ftpAnonLogin Module: NmapSSL
86 : open :: http Module: Sslscan

Module: Cewl
Module: Whatweb 192.168.0.87 Module: Cewl http
Module: Whatweb http Custom word list (port 80) generated into; /home/kali/cewl ou
Target: http://192.168.0.1/common page/login.html Ports (192.168.6.87) ts/http/192.15B.0.136_cewl.out
IP: 192.168.6.1 Module: Dnsrecon
Country: ZZ Module: Hhatweb Module: Dnsrecon reverse
Email: Module: Hhatweb http Module: Shcheck Jiasic
JQuery: 1.11.1 Module: NmapSSL Module: ftpAnonLogin
Uncommon headers: access-control-allow-origin,referrer-policy Module: Sslscan
,content-security-policy,x-content-type-opt ions Module: Cewl
X-Frame-Options: SAMEORIGIN Module: Cewl_http 192.168.D.199

Module: Dnsrecon
Module: Dnsrecon reverse Ports (192.168.6.199)

Module: NmapSSL Module: Shcheck_basic
Module: Sslscan Module: ftpAnonLogin Module: Whatweb
Module: Cewl Module: Whatweb http
Module: Cewljittp Module: NmapSSL
Custom word li s t (port 88) generated into: /home/kali/cewl ou 192.168.6.161 • Module: Sslscan
ts/http/192.168.0.l_cewl.out Module: Cewl
Module: Dnsrecon Ports (192.168.6.161) 1 Module: Cewljittp

22 : open :: ssh Module: Dnsrecon
Module: Dnsrecon reverse 86 : open :: http Module: Dnsreconreverse
PTR (reverse lookup) records; 111 : open :: rpebind Module: Shcheck .basic

Address: 192.166.0.1, Name: compalhub.home •Mule: ftpAnonLogin

Module: Hhatweb
Module: Hhatweb http 192.166.6.266

Module: Shcheck basic Target: http://192.168.9.191:88
Module: ftpAnonLogin IP: 192.168.0.101 Ports (192 168.6 266) Module: ftpAnonLogin

Country: ZZ 21 : Open :: ftp
Email: 22 : open :: sih

192.168.0.38 JQuery: 23 : OPCn : smtp
Uncommon headers: 80 opfn : http

Ports (192.168.0.38) X-Frame-Options: 139 : open :; netbios-ssn
22 : open :: ssh 443 : 03CI1 : : httpS
86 : open :: http 445 : open :: microsoft-ds
139 : open :: netbios-ssn Module: NmapSSL 3368 . open :: nysql
143 : open :: imap Module: Sslscan 6689 : open :: http-proxy
443 : open :: https Module: Cewl
445 : open :: microsoft-ds Module: Cewljittp Module: Whatweb
8688 : open :: http-proxy Custom word list (port 80) generated into; /home/kali/i :ewl_ou

ts/http/192.168.0.lOlcewl.out Module: Whatweb http
Module: Whatweb Module: Dnsrecon Target: http://192.163.0.206:80

Module: Dnsrecon reverse IP: 192.168.0.206
Module: Whatweb http Module: Shcheck_basic Country: ZZ
Target: http://192.168.0.38:8G Module: ftpAnonLogin Email:
IP: 192.168.0.38 JQuery:
Country: ZZ Uncommon headers:
Email: admin@metacorp.com 192.168.6.168 X-Frame-Qptions:
JQuery: 1.3.2
Uncommon headers: Ports (192.168.6.168)
X-Frame-Options: Module: NmapSSL

Module: Hhatweb Something went wrong when running image "dnmap:vl",
Module: Hhatweb http Module: Sslscan

Module: NmapSSL Module: NmapSSL
Something went wrong when running image "dnmap:vl". Module: Sslscan ssl 2
Module: Sslscan Module: Cewl ssl 3

Module: Cewljittp tls 1.0
ssl 3 Module: Dnsrecon Weak ciphers:
tls 1.6 Module: Dnsrecon reverse TLSvl.0 40 bits TLS RSA EXPORT WITH RC4 48 MD5

Acceptable ciphers: Module: Shcheck_basic TLSvl.0 41 bit! TLS RSA EXPORT WITH RC2 CBC 40 MD5
TL5V1.0 bit DHE-R5A-AE5256-5HA Module: ftpAnonLogin TLSvl.0 48 bits TL5 R5A EXPORT WITH DES40 CBC SHA
TLSvl.9 256 bits AES256-SHA TLSvl.0 ! 1 TLS DHE RSA EXPORT WITH DES40 CBC SHA
TLSvl.0 [26 bit! DHE-RSA-AES128-SHA Acceptable ciphers:
TLSvl.0 128 bits AES128-SHA 192.168.6.136 TLSvl.0 lit DHE-RSA-AES256-SHA

Medium ciphers: TLSvl.0 256 bits AES256-SHA
TLSvl.0 128 bit TLS RSA WITH RC4 128 MD5

Figure 7.8: Ouput of dispcan DISC - c l , which first discovers all the visible hosts (DISC)
and subsequently runs all the enabled modules against each of them (-cl. Four virtual
machines were running among other IPs (as the gateway or mobile phone). Due to space
reasons, the last few lines were not included in the image.

44

http://192.168
https://192.168
http://192.168.0.1/common
http://192.168.9.191:88
http://192.163
http://192.168
mailto:admin@metacorp.com

7.2.1 Adding a user-defined module
To verify the functionality of adding user-defined modules, the feature of retrieving the
content of robots.txt

6

 was chosen. The task is to add a module without manipulating
the framework's source code.

Before starting, it is necessary to determine the location of the configuration file and
the mapping file for the modules since this location can be different for each user. For this
purpose, CONF mode will be used, which task is to print the location of the module file and
configuration file with the user's system:

$ sudo dipscan CONF

The two f i l e s with the description and settings of the module are the following:

Details on modules: /root/.config/dipconf/dipmodules.py

Turn on/off modules: /root/.config/dipconf/run.cfg

First, a new record was added to dipmodules .py:

'robots': {

'image': None,

'service': 'HTTP',

'params': ",

'additional': '/home/kali/new mod/func.robots_additional',

'command': '/home/kali/new mod/func.cmd',

'parser': '/home/kali/new mod/func.parse',

}

The image is set to None since the module will operate using Python. It is designed
for H T T P protocol, and no parameters are needed. As this module will not be using any
Docker image, it is not necessary to construct a command for Docker or a parser for its
output. However, based on the conditions implied in the tool's description, it is necessary
to have these paths defined. Therefore, the only functional key remaining is „additional",
which points to a function that will handle everything the module is supposed to provide.
As stated before, the function under the key „additional" must always take six arguments,
some of which will not be utilized in this case.

Therefore, the file /home/kali/newmod/func .py contains three functions, two of which
(cmd() and parseO) return an empty string, since their result is not used. A l l the func­
tionality is covered by robots_additional(). Thanks to requests module in Python,
it tries to connect to the destination and obtain robots.txt file. In case of success, the
content is printed out, while in case of the absence of the text file, a corresponding message
is provided. The core of the function is shown below:

import requests

url = "http://" + target + "/robots.txt"

6The „robots.txt" file is a standard used by websites to communicate with web crawlers and other web
robots, providing instructions about which areas of the website should not be processed or scanned.[52]

45

192.168.0.181

Ports (192.168.8.101)
22 : open :: ssh
86 : open :: http
111 : open :: rpcbind

Module: robots
h t t p : / / 1 9 2 . 1 6 8 . 0 . 1 0 1 / r o b o t s . t x t :

User-agent: *

D i s a l l o w : /4 8fl4e45fceeal67a5a36dedd4bea2543

Done i n 1.5351 seconds.

Figure 7.9: The output of the user-defined
module for detecting robots. txt file. In this
case, the file was found on P R I M E R V M and
its content was printed on standard output.

response = requests.get(URL)

result = ''

if response.status_code == 200:
print robots.txt

else:

print the message

A n example of the output of both cases (found and not found) is shown in Figures 7.9
and 7.10.

The functionality of this module is intentionally kept simple to provide a clear and
concise illustration of how to create such a module. The primary aim is to demonstrate the
process of adding user-defined modules rather than significantly expanding the framework's
functionality.

7.3 Results

The tests fulfilled the functional requirements stated in chapter 5 and successfully satisfied
the use cases. The extensibility was also verified, both on users' computers and in the virtual
environment of a freshly installed Linux distribution. Testing of other individuals showed
that, upon meeting dependency requirements, the tool is operational on both Linux and
MacOS. In the case of all five people involved in the testing, all modules were successfully
launched. Of these, four people also verified the extensibility by creating a new user module,
which was, in all 4 cases, successfully incorporated into the framework's functionality.

Overall, the framework fulfils the specified functionality.

192.168.0.38

Ports (192.168.0.38)
22 : open :: ssh
80 : open :: http
139 : open :: netbios-ssn
143 : open :: imap
443 : open :: https
445 : open :: microsoft-ds
8080 : open :: http-proxy

Module: robots

h t t p : / / 1 9 2 . 1 6 8 . 0 . 3 8 / r o b o t s . t x t : not found

Done i n 1.0943 seconds.

Figure 7.10: Warning message indicating
that the user-defined module for detecting
robots.txt files did not find it at the tar­
get machine, which is B W A V M .

46

http://192.168.0.101/robots.txt
http://192.168

Chapter 8

Conclusion

This work focused on cybersecurity with an emphasis on web server security. Initially,
methods of securing web servers were described along with common vulnerabilities, followed
by an explanation of ways to detect these security flaws. It was accomplished using OWASP
methodology and various penetration testing techniques. In the practical part, a tool
for automated testing of web servers was developed, which combines the functionality of
modules and offers the ability to add user-defined modules. Its functionality was verified
in a simulated environment. Possible extensions include expanding functionality through
additional modules, adding the option to follow redirections, or adding a proxy feature to
provide users with further valuable information.

47

Bibliography

[1] CWE-35: Path Traversal [https://cwe.mitre.org/data/definitions/35.html].
Accessed: April 30, 2023. Page Last Updated: April 27, 2023.

[2] OWASP Top Ten Project [https://owasp.org/www-project-top-ten/].

[3] OWASP TOP10 [https://www.owasptopten.org/].

[4] Web Penetration Testing with Kali Linux - Third Edition. 3rd editionth ed. Packt
Publishing, 2018. ISBN 1-78862-337-1.

[5] C WE-778: Insufficient Logging
[https://cwe.mitre.org/data/definitions/778.html]. 2023. Accessed: May 2, 2023.

[6] How to scan the Internet in 5 minutes [https:
//thechief .io/c/edit or ial/how- to-scan- the-internet-in- 5-minutes/].
TheChief, 2023.

[7] Masscan: TCP port scanner, spews SYN packets asynchronously, scanning entire
Internet in under 5 minutes / Hacker News
[https: //news.ycombinator.com/item?id=28682986]. 2023.

[8] A L E N C A R , M . S. Cryptography and network security. 1st ed.th ed. New York, New
York: River Publishers, 2022. River Publishers Series in Security and Digital
Forensics Ser. ISBN 9781000792935.

[9] B A R K E R , J . Confident Cyber Security : How to Get Started in Cyber Security and
Futureproof Your Career. London ;: Kogan Page, Limited, 2020. Confident series.
ISBN 1789663415.

[10] B A R N E T T , R. and G R O S S M A N , J . Web Application Defender's Cookbook: Battling
Hackers and Protecting Users. Wiley, 2013. ISBN 9781118417058. Available at:
https: //books.google.cz/books?id=f lC9dFFLWIsC.

[11] B L O K D Y K , G . CVSS: A Complete Guide - 2021 Edition. Charleston, South Carolina:
5STARCooks, 2021. ISBN 978-1867384744.

[12] B U C H A N A N , C , I P , T., M A B B I T T , A . , M A Y , B . and M O U N D , D. Python Web

Penetration Testing Cookbook. Packt Publishing, 2015. ISBN 1784392936.

[13] B U R R , W . E . , D O D S O N , D. F . and N E W T O N , E . M . Digital Identity Guidelines: NIST
Special Publication 800-63B. National Institute of Standards and Technology, 2017.

18

http://cwe.mitre.org/data/definitions/35.html
http://owasp.org/www-project-top-ten/
http://www.owasptopten.org/
http://cwe.mitre.org/data/definitions/778.html

[14] C O R P O R A T I O N , M . CWE-1104: Use of Unmaintained Third Party Components
[https://cwe.mitre.org/data/definitions/1104.html]. 2021. [Online; accessed
1- May-2023].

[15] C O R P O R A T I O N , M . CWE-918: Server-Side Request Forgery (SSRF)
[https://cwe.mitre.org/data/definitions/918.html]. 2021. [Online; accessed
2- May-2023].

[16] C O R P O R A T I O N , M . CWE-16: Configuration
[https://cwe.mitre.org/data/definitions/16.html]. 2023. [Accessed: May 1, 2023].

[17] C O R P O R A T I O N , M . CWE-611: Improper Restriction of XML External Entity
Reference ('XXE') [https://cwe.mitre.org/data/definitions/611.html]. 2023.
[Accessed: May 1, 2023].

[18] C O R P O R A T I O N , M . CWE-287: Improper Authentication
[https://cwe.mitre.org/data/definitions/287.html]. 2023 (last updated).
[Online; accessed Ol-May-2023].

[19] C O R P O R A T I O N , T. M . CWE-209: Generation of Error Message Containing Sensitive
Information [https://cwe.mitre.org/data/definitions/209.html]. 2010. [Online;
accessed l-May-2023].

[20] C O R P O R A T I O N , T. M . CWE-522: Insufficiently Protected Credentials
[https://cwe.mitre.org/data/definitions/522.html]. 2010. [Online; accessed
l-May-2023].

[21] E R I C K S O N , J . Hacking: The Art of Exploitation, 2nd Edition. No Starch Press, 2008.
No Starch Press Series. ISBN 9781593271442. Available at:
https: //books.google.cz/books?id=0FW3DMNhllEC.

[22] F A L L , K . and S T E V E N S , W . TCP/IP Illustrated, Volume 1: The Protocols. Pearson
Education, 2011. Addison-Wesley Professional Computing Series. ISBN
9780132808187. Available at: https://books.google.cz/books?id=a230An5i8R0C.

[23] F O R S G R E N , N . , H U M B L E , J . and K I M , G . Accelerate: The Science of Lean Software
and DevOps Building and Scaling High Performing Technology Organizations, lst th
ed. IT Revolution Press, 2018. ISBN 1942788339.

[24] G R A H A M , R. D. Masscan: TCP port scanner, spews SYN packets asynchronously,
scanning entire Internet in under 5 minutes
[https://github.com/robertdavidgraham/masscan]. GitHub, 2023.

[25] G R O S S M A N , J . CROSS-SITE TRACING (XST) THE NEW TECHNIQUES AND
EMERGING THREATS TO BYPASS CURRENT WEB SECURITY MEASURES
USING TRACE AND XSS [online]. Santa Clara, C A , USA: www.whitehatsec.com,
2003 [cit. 2023-01-03]. Available at:
https: //www. cgisecurity.com/whitehat-mirror/WH-WhitePaper_XST_ebook.pdf.

[26] H A R O L D , E . R. XML in a Nutshell. 2nd ed. O'Reilly Media, Inc., 2002. ISBN
0596002920.

49

http://cwe.mitre.org/data/definitions/1104.html
http://cwe.mitre.org/data/definitions/918.html
http://cwe.mitre.org/data/definitions/16.html
http://cwe.mitre.org/data/definitions/611.html
http://cwe.mitre.org/data/definitions/287.html
http://cwe.mitre.org/data/definitions/209.html
http://cwe.mitre.org/data/definitions/522.html
https://books.google.cz/books?id=a230An5i8R0C
http://github.com/robertdavidgraham/masscan
http://www.whitehatsec.com
http://cgisecurity.com/whitehat-mirror/WH-WhitePaper_XST_ebook.pdf

[27] H O F F M A N , A . Web Application Security: Exploitation and Countermeasures for
Modern Web Applications. O'Reilly Media, Inc., 2020. ISBN 978-1-492-05756-9.

[28] J O R G E N S E N , P. Software Testing: A Craftsman's Approach, Fourth Edition. Taylor &
Francis, 2013. A n Auerbach book. ISBN 9781466560680. Available at:
https: //books.google.cz/books?id=6WlmAQAAQBAJ.

[29] K E N N E D Y , D., O ' G O R M A N , J. , K E A R N S , D . and A H A R O N I , M . Metasploit: The
Penetration Tester's Guide. No Starch Press, 2011. ISBN 9781593274023.

[30] K L E I N , A . D O M Based Cross Site Scripting or XSS of the Third Kind . Annals of
Mathematics. 2005. Available at:
http: / / www.webappsec.org/proj ects/articles/071105.shtml#r5.

[31] K U R O S E , J . F . Computer networking : a top-down approach. 6th ed., International.th
ed. Boston ; London: Pearson, 2013. ISBN 978-0-273-76896-8.

[32] L i u , C. and A L B I T Z , P. DNS and BIND. O'Reilly Media, Inc., 2006. ISBN
978-0-596-10057-5.

[33] L Y O N , G . Nmap Reference Guide. In: F Y O D O R , ed. Nmap Network Scanning: The
Official Nmap Project Guide. 3rd Editionth ed. Insecure.Com L L C , 2021.

[34] L Y O N , G . Nmap: Free Security Scanner, Port Scanner, Network Exploration Tool
[https://nmap.org/]. Accessed: 2023.

[35] M A R S H , N . Nmap Cookbook: The Fat-free Guide to Network Scanning. CreateSpace
Independent Publishing Platform, 2010. Y B P O R D E R . ISBN 9781449902520.
Available at: https://books.google.cz/books?id=U4H3QwAACAAJ.

[36] M C N A B , C. Network Security Assessment: Know Your Network. O'Reilly Media,
2004. Know your network. ISBN 9780596006112. Available at:
https: //books.google.cz/books?id=JNSbAgAAQBAJ.

[37] M I T R E . CWE-200: Exposure of Sensitive Information to an Unauthorized Actor
[https://cwe.mitre.org/data/definitions/200.html]. 2021. [Online; accessed
30-April-2023].

[38] M I T R E C O R P O R A T I O N . CWE-259: Use of Hard-coded Password
[https://cwe.mitre.org/data/definitions/259.html]. 2011. [Online; accessed April
30, 2023].

[39] M I T R E C O R P O R A T I O N . CWE-327: Broken or Risky Crypto Algorithm
[https://cwe.mitre.org/data/definitions/327.html]. 2011. [Online; accessed April
30, 2023].

[40] N A G A R J U N , P. and A H A M A D , S. S. Cross-site Scripting Research: A Review.
International Journal of Advanced Computer Science and Applications. The Science
and Information Organization. 2020, vol. 11, no. 4. DOI:
10.14569/IJACSA.2020.0110481. Available at:
http://dx.doi.org/10.14569/IJACSA.2020.0110481.

50

http://www.webappsec.org/proj
http://nmap.org/
https://books.google.cz/books?id=U4H3QwAACAAJ
http://cwe.mitre.org/data/definitions/200.html
http://cwe.mitre.org/data/definitions/259.html
http://cwe.mitre.org/data/definitions/327.html
http://dx.doi.org/10.14569/IJACSA.2020.0110481

[41] O R T E G A , J . M . Mastering Python for Networking and Security. September 2018.
ISBN 9781788992510.

[42] P A A R , C. and P E L Z L , J . Understanding Cryptography: A Textbook for Students and
Practitioners. Springer Berlin Heidelberg, 2011. ISBN 9783642041006.

[43] P A U L T R O N C O N E , C. A . Cybersecurity Ops with Bash : Attack Defend and Analyze
from the Command Line. Sebastopol, C A , : O'Reilly Media, 2019. ISBN 1788839234.

[44] P R A S A D , P. Mastering Modern Web Penetration Testing. Packt Publishing, 2016.
ISBN 9781785284588.

[45] S C A M B R A Y , J. , L i u , V . and S I M A , C. Hacking Exposed Web Applications, Third
Edition. McGraw Hi l l L L C , 2010. ISBN 9780071740425. Available at:
https: //books.google.cz/books?id=tleXSTnyCXcC.

[46] S C H N E I E R , B . Applied Cryptography: Protocols, Algorithms, and Source Code in C.
John Wiley & Sons, 2015. ISBN 9781119183471.

[47] S E I T Z , J . Black Hat Python: Python Programming for Hackers and Pentesters. No
Starch Press, 2014. ISBN 9781593275907.

[48] S I N G H C H A U H A N , A . and S I N G H . , A . Practical Network Scanning: Capture Network
Vulnerabilities Using Standard Tools Such As Nmap and Nessus. Birmingham: Packt
Publishing, Limited, 2018. ISBN 1788839234.

[49] S T A L L I N G S , W . Network Security Essentials: Applications and Standards. Prentice
Hall , 2007. Will iam Stallings books on computer and data communications
technology. ISBN 9780132380331.

[50] S T A L L I N G S , W . Cryptography and Network Security: Principles and Practice, 5/e.
Pearson Education, 2011. ISBN 9788131761663.

[51] S T E I N , L . D . Web Security: A Step-by-Step Reference Guide. Addison-Wesley
Professional, 2021.

[52] S T U T T A R D , D . , P I N T O , M . and S A F A R I , a. O. M . C. The Web Application Hacker's
Handbook, 2nd Edition. Wiley, 2011. Available at:
https: //books.google.sk/books?id=C0h0zQEACAAJ.

[53] S U L L I V A N , B . and L i u , V . Web Application Security: A Beginner's Guide.
McGraw-Hill Osborne Media, 2011.

[54] T H E O P E N W E B A P P L I C A T I O N S E C U R I T Y P R O J E C T . OWASP Testing Guide v4-0.
The Open Web Application Security Project, 2014.

[55] W E I D M A N , G. Penetration Testing: A Hands-On Introduction to Hacking. No Starch
Press, 2014. ISBN 9781593275648. Available at:
https: //books.google.cz/books?id=T_LlAwAAQBAJ.

[56] W R I G H T , J . and C A C H E , J . Hacking Exposed Wireless, Third Edition: Wireless
Security Secrets & Solutions. McGraw Hi l l L L C , 2015. Hacking Exposed. ISBN
9780071827621.

51

[57] Y O U N G , S. and A I T E L , D . The Hacker's Handbook: The Strategy Behind Breaking
Into and Defending Networks. C R C P R E S S C O M P A N Y , 2004. I S B N 9780849308888.

52

Appendix A

Content of the attached storage
media

In this section, the contents of the attached storage media are described. Its directory
structure with a depth of 2 is as follows:

ii J n

I /imagesFromDocker

I | /cewl

I | /dnsrecon

I I /gobuster

I | /masscan

I | / nmap

I | /shcheck

I | /sslscan

I | /whatweb

I main .py

I— README, md

I requirements.txt

I setup.py

I /src

I | argParser.py

I | classes.py

I | /cores

I | dckrChiefExecutive.py

I | init .py

I | /parsers

I | portFuncs.py

I I— p-py

I | scanCoordination.py
I | /secondary

53

R E A D M E . m d

The R E A D M E . m d file contains instructions for the installation of the dipscan tool, includ­
ing dependencies. Furthermore, it provides a description of the individual structures of the
architecture and a guide to creating your own module. Finally, it mentions some common
errors that may occur when working with the tool.

/ imagesFromDocker

This folder contains Dockerfile files for creating Docker images. During the installation of
the tool, all of these are processed and installed. The format of the individual Dockerfiles
is very similar, usually differing only in which tool the respective Docker image covers.

src/cores

The src/cores folder contains Python files with functions necessary for the operation of
the modules. These are the functions that the pointers in the module descriptions ('core',
'command') point to.

src/parsers

This folder contains Python files with functions for parsing and formatting the outputs of
Docker images. These are pointed to by the 'parser' field in the module description. It
would also be possible to eliminate the src/parser file and insert the functions into the file
containing the functions mentioned in the previous point, but for clarity purposes, it is
split. When defining a user module, all functions can be located in one file.

src / secondary

The src/secondary folder contains auxiliary functions for the correct operation of the frame­
work as well as default configuration files, which are, during the installation process, copied
to the default location for configuration files of the given system.

54

