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Microtubules (MTs) are involved in key processes in plant cells, including cell

division, growth and development. MT-interacting proteins modulate MT dynamics

and organization, mediating functional and structural interaction of MTs with other

cell structures. In addition to conventional microtubule-associated proteins (MAPs) in

plants, there are many other MT-binding proteins whose primary function is not related

to the regulation of MTs. This review focuses on enzymes, chaperones, or proteins

primarily involved in other processes that also bind to MTs. The MT-binding activity

of these multifunctional MAPs is often performed only under specific environmental or

physiological conditions, or they bind to MTs only as components of a larger MT-binding

protein complex. The involvement of multifunctional MAPs in these interactions may

underlie physiological and morphogenetic events, e.g., under specific environmental or

developmental conditions. Uncovering MT-binding activity of these proteins, although

challenging, may contribute to understanding of the novel functions of the MT

cytoskeleton in plant biological processes.
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MAPs AND THEIR ROLE IN PLANT CELLS

Traditional microtubule-associated proteins (MAPs) are typically conserved in eukaryotes.
However, plants possess a set of MAPs specific to plant morphology and physiology (Gardiner,
2013). A fundamental feature of MAPs is their interaction with MTs through a MT-binding
domain that is manifested in MT organization, dynamics or cellular transport, which influences
plant morphogenesis. The localization of MAPs in the cell is well described mainly because of
their close association with MT structures. Consequently, MAPs are direct MT-interactors and
their function is dependent on their MT-binding activity (Buschmann and Lloyd, 2008). MAPs
are motor proteins that utilize MTs as tracks to transport cargo such as kinesins. Structural
MAPs or severing proteins such as MAP65 and katanin bind, bundle or cleave MTs, and
therefore, are involved in MT organization. MT dynamics, on the other hand, is influenced by
MT +tip associated proteins (+TIPs), such as, e.g., CLASP, EB1, etc., through their binding

Abbreviations: CCT, cytosolic chaperonin containing TCP-1; EF1α, elongation factor 1α; EF2, elongation factor 2;
FH2, formin homology 2; GAPDH, glyceraldehyde-3-phosphate-dehydrogenase; GDA, geldanamycin; MAP, microtubule-
associated protein;MDP,microtubule destabilizing protein;MT,microtubule; PA, phosphatidic acid; PcaP, plasmamembrane-
associated Ca2+-binding protein; PLD, phospholipase δ; PPB, preprophase band;+TIP,+tip interacting protein.
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and interactions at the +end of growing MT. Conventional
MAPs have been reviewed in several outstanding reviews (for
instance Lloyd and Hussey, 2001; Akhmanova and Steinmetz,
2008; Sedbrook and Kaloriti, 2008; Gardiner, 2013; Hamada,
2014; Hashimoto, 2015; Li et al., 2015) and will not be discussed
here. MAPs identified in plants are listed in the Table 1.

MULTIFUNCTIONAL MAPs

Additionally to numerous MAPs, MTs probably interact with
other “fine tuning” factors that are most likely required for
microtubular functions as well. The function of these proteins
is not primarily related to MT-binding, but they may bind
to MTs only under specific conditions. The cytoskeleton is a
three-dimensional dynamic structure that can be thought of
as a framework for compartmentalization of cytosolic regions.
Binding of proteins to this scaffold may increase the efficiency
of cellular processes by bringing interacting molecules together
in place and time. In this case, MTs may function as a passive
structure. Additionally, metabolic enzymes such as GAPDH have
been shown to modulate MT cytoskeleton (Sirover, 1999). This
suggests thatmultiple proteinsmay interact withMTs to integrate
signaling pathways and the reorganization of microtubules.
Along with MT-binding, these proteins perform other, MT-
unrelated functions. For this review, we will refer to these
proteins as multifunctional MAPs as a way to distinguish
them from MAPs that exclusively regulate MT structure and
dynamics.

It is possible that multifunctional MAPs lack a well-defined
MT-binding domain, are members of larger protein complexes
and, therefore, are not found using database-based sequence
similarity searches for MAPs. Instead, biochemical methods are
required for their detection. The existence of a large number of
proteins with known MT-unrelated functions that unexpectedly
interacted with MT cytoskeleton has been documented in
proteomic searches for MT-interacting proteins (Chuong et al.,
2004; Korolev et al., 2005; Hamada et al., 2013; Derbyshire
et al., 2015). In these experiments, tens to hundreds of cytosolic
proteins interacting with tubulin or MTs were identified.
However, conventional MAPs represented only a minor portion
of the total MT-interacting fraction. For example, Chuong et al.
(2004) used tubulin-affinity chromatography to identify a set
of proteins interacting with tubulin. Only 6% of proteins were
predicted as known MAPs in this protein group. Similarly, liquid
chromatography-tandem mass spectrometry of MAPs-enriched
fraction from Arabidopsis suspension cells was used by Hamada
et al. (2013) to identify hundreds of proteins. Replication,
transcription and translation-associated proteins were enriched
here as well (Hamada et al., 2013). Derbyshire et al. (2015)
performed a MT-pull-down protein search for MT-interacting
proteins exhibiting differential accumulation during tracheary
element differentiation; only 3% of proteins were classified as
known MAPs (Derbyshire et al., 2015).

On the other hand, the presence of the protein in MAP
enriched fraction does not always indicate its direct association
withMTs. For each putativemultifunctionalMAP, the association

with MTs or tubulin indicated by biochemical isolation needs to
be tested by other methods. In contrast to MAPs, investigating
the role of multifunctional MAPs associated with MTs is
usually challenging. Multifunctional MAPs often cannot perform
their MT-related function alone; their affinity to MTs may be
dependent on factors such as upstream or feedback regulations,
may be phospho- or ligand-dependent or may be of short
duration, e.g., as for Hsp90 (Krtkova et al., 2012). Here we
review plant proteins repeatedly found to associate with MTs
whose primary function is distinct from MT-binding (Table 2).
If possible, we provide a short description of their physiological
function in the association with MTs.

ENZYMES AND CHAPERONES

Chaperone proteins andmetabolic enzymes have been repeatedly
found in MT-interacting protein fractions. Earlier, these proteins
were considered as sample contaminates and their MT-
binding activity was neglected. Recently, their interaction
with MTs has shown to be of physiological relevance. In
Arabidopsis, metabolism-related proteins were predicted to
form 21% of the tubulin-interacting fraction (Chuong et al.,
2004). Thirteen percent of metabolism-related proteins were
detected while searching for MT-interacting proteins exhibiting
differential accumulation during tracheary element development
(Derbyshire et al., 2015). Nevertheless, only few of these
proteins were well-studied. Examples discussed here are
glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) (Walsh
et al., 1989; Chuong et al., 2004), chaperones Hsp70 and
Hsp90 (Freudenreich and Nick, 1998; Ho et al., 2009), plant
chaperonin complex CCTε subunit (Nick et al., 2000) and
enzyme phospholipase Dδ (PLDδ) (Gardiner et al., 2001).

GAPDH
GAPDH is a conserved glycolytic enzyme that lyses
glyceraldehyde-3-phosphate to 1,3 diphosphoglycerate. GAPDH
was the first glycolytic enzyme found to be associated with
tubulin and with MTs during polymerization/depolymerization
cycles (Kumagai and Sakai, 1983; Somers et al., 1990). It was
shown to interact directly with MTs in animals (Kumagai
and Sakai, 1983; Walsh et al., 1989; Volker and Knull, 1997;
Tisdale et al., 2009). Further, GAPDH plays role in vesicle
trafficking, MT array arrangement, DNA replication and repair,
nuclear RNA export, apoptosis or stress detection in animals
(for review, see Sirover, 1999). GAPDH mediates MT-binding
of other MT-interactors, such as Rab2 GTPase, therefore, it
physically links MTs and membrane structures involved in
secretory pathways of metazoans (Tisdale, 2002; Andrade et al.,
2004). RabGTPases further interact with motor proteins that
modulate vesicle binding to MTs (Hammer and Wu, 2002;
Perez et al., 2002; Howard and Hyman, 2003). Thus, GAPDH
represents a multifunctional MAP with the ability to recruit
a multiprotein complex to MTs in metazoans (for suggested
model, see Figure 1). In plants, GAPDH was found together
with other metabolic and protein synthesis enzymes, as well
as signaling proteins in the tubulin binding protein fraction,
which were isolated from Arabidopsis suspension cultures
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TABLE 1 | List of MAPs described in plants.

MAP Characterized in References Notes

MAP65

MAP65-1 Arabidopsis thaliana Jiang and Sonobe, 1993; Smertenko

et al., 2004; Van Damme et al., 2004

MAP65-2 Arabidopsis thaliana Li et al., 2009

MAP65-3/PLEIADE Arabidopsis thaliana Muller et al., 2004

MAP65-4 Arabidopsis thaliana Van Damme et al., 2004

MAP65-5 Gaillard et al., 2008; Smertenko et al.,

2008

MAP65-6 Mao et al., 2005

MAP65-7 Theologis et al., 2000 Found in silico in Arabidopsis

MAP65-8 Arabidopsis thaliana Smertenko et al., 2008 Does not associate with MT

MAP65-9 Arabidopsis thaliana Smertenko et al., 2008 Pollen, does not associate with MT

MT +END BINDING PROTEINS

EB1 Arabidopsis thaliana Chan et al., 2003; Mathur et al., 2003

CLASP Arabidopsis thaliana Ambrose et al., 2007; Kirik et al., 2007

MOR/GEM1 Arabidopsis thaliana Whittington et al., 2001

TMBP200 Nicotiana tabacum (BY-2) Yasuhara et al., 2002; Hamada et al., 2004

AUG8 Arabidopsis thaliana Cao et al., 2013

KINESINS AND KINESIN-LIKE PROTEINS

ATK5 Arabidopsis thaliana Ambrose et al., 2005 Binds also to MT + ends

KCH1 (kinesin with calponin

homology 1)

Gossypium hirsutum, Oryza

sativa

Preuss et al., 2004; Frey et al., 2009

KCH2 (kinesin with calponin

homology 2)

Gossypium hirsutum Xu et al., 2009

O12 Oryza sativa Umezu et al., 2011

kinesin 13-A Nicotiana tabacum Wei et al., 2005

KCBP/ZWICKEL Arabidopsis thaliana Krishnakumar and Oppenheimer, 1999

TBK5 Nicotiana tabacum Matsui et al., 2001

AtPAKRP1 Arabidopsis thaliana, Oryza

sativa

Lee and Liu, 2000

DcKRP120-2 Daucus carota Barroso et al., 2000

TKRP125 Nicotiana tabacum Asada et al., 1997

KINID1 Physcomitrella patens Hiwatashi et al., 2014

KatA Arabidopsis thaliana Liu B. et al., 1996

KatD Arabidopsis thaliana Tamura et al., 1999

OTHER PROTEINS

TANGLED 1 Zea mays Smith et al., 2001

p60 katanin subunit (AtKSS,

AtKN1)

Arabidopsis thaliana Burk et al., 2001

p80 katanin subunit Arabidopsis thaliana Bouquin et al., 2003

RUNKEL (RUK) Arabidopsis thaliana Krupnova et al., 2009

Spc98p Arabidopsis thaliana Erhardt et al., 2002

BPP1 Arabidopsis thaliana Hamada et al., 2013

NEDD1 Arabidopsis thaliana Zeng et al., 2009 Acts as an anchoring factor of γ-tubulin

complex, decorates spindle MTs preferentially

toward theirs minus ends

PLANT SPECIFIC MAPS

MAP190 Nicotiana tabacum (BY-2) Igarashi et al., 2000

MAP70 -1 Arabidopsis thaliana Korolev et al., 2005; Pesquet et al., 2010

MAP70 -2 Arabidopsis thaliana Korolev et al., 2005

MAP70 -3 Arabidopsis thaliana Korolev et al., 2005

MAP70 -4 Arabidopsis thaliana Korolev et al., 2005

(Continued)
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TABLE 1 | Continued

MAP Characterized in References Notes

MAP70 -5 Arabidopsis thaliana Korolev et al., 2005, 2007

SPR1 Arabidopsis thaliana Nakajima et al., 2004; Sedbrook, 2004

SPR2 Arabidopsis thaliana Furutani et al., 2000

SB401 Solanum berthaultii Huang et al., 2007

SBgLR Nicotiana tabacum Liu et al., 2013 Potato pollen-specific protein

Atg8 Arabidopsis thaliana Ketelaar et al., 2004 Homolog of autophagy protein

AtMPB2C Arabidopsis thaliana Ruggenthaler et al., 2009 Homolog of MPB2C, involved in the

alignment of cortical MT

MDP40 Arabidopsis thaliana Wang et al., 2012 Regulator of hypocotyl cell elongation

WVD/WDL family Arabidopsis thaliana Perrin et al., 2007

AIR9 Arabidopsis thaliana Buschmann et al., 2006

TABLE 2 | List of multifunctional MAPs described in plants.

MAP Characterized in References Notes

ENZYMES OR CHAPERONS

GAPDH Mammalian cells Sirover, 1999; Tisdale et al., 2009

Glycolytic enzymes: lactate-dehydrogenase,

pyruvate kinase, aldolase and during specific

conditions also for glucose-6-phosphate isomerase

and phosphoglycerate-kinase

Walsh et al., 1989

Hsp70 Arabidopsis thaliana Ho et al., 2009 Also involved in signaling

Hsp90 Koyasu et al., 1986; Sanchez et al., 1988; Williams

and Nelsen, 1997; Freudenreich and Nick, 1998;

Petrasek et al., 1998; Pratt et al., 1999; Lange et al.,

2000; de Carcer et al., 2001; Harrell et al., 2002;

Wegele et al., 2004; Glover, 2005; Basto et al.,

2007; Weis et al., 2010; Krtkova et al., 2012

Also involved in signaling

Plant chaperone CCT Nicotiana tabacum Nick et al., 2000

EF1α Daucus carota Durso and Cyr, 1994

EF-2 Arabidopsis thaliana,

suspension cells

Chuong et al., 2004

PLDδ Nicotiana tabacum Gardiner et al., 2001 Also involved in signaling

THO2 Nicotiana tabacum Hamada et al., 2009 Putative RNA-processing THO2

relative protein

PROTEINS INTERACTING WITH OTHER CELL STRUCTURES

Actin Binding Proteins

FH4 Arabidopsis thaliana Deeks et al., 2010 Also involved in signaling

FH14 Arabidopsis thaliana Li et al., 2010 aLso involved in signaling

FH1 Arabidopsis thaliana Rosero et al., 2013 Also involved in signaling

ARPC2 Nicotiana tabacum Havelková et al., 2015

Proteins Involved in Signaling

PCaP2 (MAP18) Arabidopsis thaliana Wang et al., 2007; Kato et al., 2010

MDP25 (PCaP1) Arabidopsis thaliana Li et al., 2011 PCAP1, MT destabilizing protein

MIDD1 Arabidopsis thaliana Oda et al., 2010 MT-end tracking protein

(Chuong et al., 2004). Further, GAPDH interacted with MTs
in maize endosperms (Azama et al., 2003). GAPDH was found
in the Arabidopsis proteomic screen for MT-binding proteins
(Derbyshire et al., 2015). However, the physiological role of plant
GAPDH interaction with MTs and probable role in multiprotein
complex recruitment to MTs remains unknown.

In animals, numerous glycolytic and sucrose metabolism
enzymes were found to bind MTs: lactate-dehydrogenase,
pyruvate kinase, aldolase, glucose-6-phosphate isomerase,
phosphoglycerate-kinase, sucrose synthase, sucrose-UDP
glucosyltransferase (Walsh et al., 1989). In plants, enzymes
of folate-dependent pathways, fatty acid metabolism, pentose
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FIGURE 1 | Model of GAPDH interactions in animal cells. GAPDH,

athough primarily glycolytic enzyme, is an example of a multifunctional MAP

that binds to MTs and recruits a multiprotein complex to them. GAPDH binds

directly to C-terminus of α-tubulin (Kumagai and Sakai, 1983). Together with

PKCι, an atypical protein kinase Cι, GAPDH recruits Rab2GTPase to MTs.

Additionally, Rab2GTPase and PKCι recruit dynein motor protein to the

complex, which presumably links the complex to vesicle trafficking (Tisdale,

2002; Tisdale et al., 2009). A broader importance of GAPDH complex is

suggested by reported binding of other proteins to the complex, such as p22

(Andrade et al., 2004) and MAP1B (Cueille et al., 2007).

phosphate pathway, phosphate metabolism, amino acid
biosynthesis, the tricarboxylic acid cycle, anaerobic glycolysis,
and panthothenate biosynthesis enzymes were reported in the
tubulin-binding fraction in Arabidopsis (Chuong et al., 2004).
The significance of these interactions remains to be elucidated,
but, as indicated in animals, the interactions of metabolism–
related proteins with MTs signify a promising area of discoveries
with high biological importance.

Heat Shock Protein 90
Heat shock protein 90 (Hsp90) is a highly conserved molecular
chaperone essential for protein folding and stability. Along with
binding various substrates in animals (Wegele et al., 2004), Hsp90
mediates switches between active and inactive states of regulatory
and signaling proteins (Rutherford and Zuker, 1994). In plants,
Hsp90 is involved in MAPK cascades (Takabatake et al., 2007)
and R-proteins-triggered stress response (Takahashi et al., 2003;
Boter et al., 2007). Hsp90 also interacts with actin and tubulin
cytoskeleton (Koyasu et al., 1986; Sanchez et al., 1988; Wegele
et al., 2004). Due to its numerous substrates and interacting
structures including MTs, Hsp90 functions at the interface of
several developmental pathways in eukaryotes (Rutherford and
Lindquist, 1998).

FIGURE 2 | Model of plant MTs interactions with plasma membrane

microdomains. The multiprotein complex composed of flotillin, PLDδ, MTs,

AFs, Hsp70, and clathrin possibly creates the PM-cytoskeleton continuum and

thus may be involved in cell signaling transduction and vesicle trafficking. PLDδ

links PM with cortical MTs (Marc et al., 1996; Gardiner et al., 2001) at sites

where cell signaling processes take place, since it binds to plant flotillin, a

microdomain marker (Ho et al., 2009). Actin, tubulin, Hsp70, Hsp90, and

clathrin heavy chain are further PLDδ interactors (Ho et al., 2009). Furthermore,

plant MTs interact directly with both Hsp70 (Parrotta et al., 2013), and Hsp90

(Krtkova et al., 2012). Assumed heterocomplex chaperone machinery

consisting of Hsp70 and Hsp90 (Pratt et al., 2001) may further control the

reorganization of MTs (Hsp90, Krtkova et al., 2012) or interaction with kinesins

(Hsp70, Parrotta et al., 2013). Model adapted from Ho et al. (2009).

In animal cells, Hsp90 interaction with MTs appears to be
complex; it interacts with tubulin dimers (Sanchez et al., 1988;
Weis et al., 2010), with polymerized MTs (Fostinis et al., 1992;
Williams and Nelsen, 1997) and, Hsp90 is a subunit of the
heterocomplex associated with MTs during the nuclear transport
of steroid hormones (Pratt et al., 1999; Harrell et al., 2002). It is
found in the centrosome (Lange et al., 2000). Together with other
centrosomal proteins, Hsp90 is involved in centrosome assembly
and function (de Carcer et al., 2001; Glover, 2005; Basto et al.,
2007).

In plants, Hsp90 is known to associate with tubulin dimers,
cortical MTs and phragmoplast MTs (Freudenreich and Nick,
1998; Petrasek et al., 1998; Krtkova et al., 2012). Tobacco Hsp90
binds directly to polymerized MTs in vitro (Krtkova et al., 2012).
Since the inhibition of Hsp90 severely impairs MT re-assembly
after cold-induced de-polymerization, Hsp90 interaction with
MTs conceivably plays a role in rapid MT re-assembly important
during environmental changes or stress (Krtkova et al., 2012;
Figure 2).

The Cytosolic Chaperonin-Containing
TCP-1 Complex
The cytosolic chaperonin-containing TCP-1 complex (CCT),
also known as the TCP1 ring complex (TRiC), plays a role in
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folding of newly synthetized actin and tubulin molecule and
in organization of the MT cytoskeleton in mammalian cells
(Lewis et al., 1997). In plant cells, its CCTε subunit localizes
along phragmoplast MTs and cortical bundles that accompany
secondary-wall thickenings (Nick et al., 2000). It is possible
that CCTε is involved in the reorganization of microtubular
cytoskeleton by regulating tubulin folding (Moser et al., 2000).

Heat Shock Protein 70
Proteins of Hsp70 family are involved in a range of cellular
processes, predominantly under stress conditions, such as heat.
They prevent protein aggregation, assist in protein refolding,
import and translocation, signal transduction and transcriptional
activation (for review, see (Zhang and Glaser, 2002; Wang
et al., 2004). In the plant cortical region, Hsp70 associates
with MTs and tubulin, as well as with PLDδ (Ho et al., 2009).
In Chlamydomonas, the failure of the Hsp70-Hsp40 chaperone
system to recognize or fold the client protein(s) results in
increased MT stability and resistance to the MT-destabilizing
effect of the herbicides (Silflow et al., 2011). Parrotta et al. (2013)
identified a Hsp70 isoform in the pollen tube of tobacco that
binds to MTs in an ATP-dependent manner. Interestingly, Hsp70
binding to MTs was also dependent on the binding of a kinesin
motor p90 (Parrotta et al., 2013). This raises a possibility that
Hsp70 may modulate kinesin action on MTs, a phenomenon
observed also in other systems (Terada et al., 2010).

PROTEIN TRANSLATION MACHINERY
PROTEINS

The interaction of cytoskeleton with polysomes was first
identified in the 1970’s. Since then, many data supporting
the role of actin and MTs in metazoan translation machinery
localization and regulation were published (for review see Kim
and Coulombe, 2010). Plant transcription machinery seems
to interact with the cytoskeleton as well (Muench and Park,
2006). In proteomic screens performed in plants, large groups
of proteins interacting with MTs are primarily involved in
RNA transcription processes. For example, Chuong et al. (2004)
predicted 21% of tubulin-binding proteins assist in RNA binding
and 19% in translation. Similarly, in the screen of MT-associated
proteins with changed expression during tracheary element
differentiation, 13% of isolated proteins were predicted to be
involved in protein synthesis, and 19% in DNA or RNA binding
(Derbyshire et al., 2015). In a model proposed for plant cells, the
predominant role in the transport and localization of translation
machinery components is assigned to actin cytoskeleton, whereas
MTs may anchor and perhaps influence the translation process
(Muench and Park, 2006). Indeed, some proteins participating
in the translation are repeatedly reported to associate with MTs
or tubulin. Here, elongation factor 1α and THO2 proteins are
discussed.

Elongation Factor 1α

Elongation factor 1α (EF1α) is a translational factor that binds
aminoacyl-tRNA and ribosomes in a GTP-dependent manner
(Carneiro et al., 1999). Additionally, EF1α was reported to bind

and to bundle actin filaments (AFs) in animal cells (Murray et al.,
1996). It is believed that F-actin-bound EF1α is translationally
inactive, since F-actin sequesters elongation factor 1α from the
interaction with aminoacyl-tRNA in a pH-dependent reaction
(Liu G. et al., 1996). This suggests the role of EF1α binding
to F-actin in the regulation of proteosynthesis. In addition to
this, this protein was shown to sever MTs (Shiina et al., 1994).
EF1α is repeatedly present in plant MAP-enriched protein
fractions (for example Durso and Cyr, 1994; Chuong et al.,
2004; Hamada et al., 2013; Derbyshire et al., 2015). EF1α
influences AF dynamics (Murray et al., 1996) and MT dynamics
in Ca2+ and calmodulin-dependent manner (Durso and Cyr,
1994; Moore et al., 1998). Since Ca2+ and calmodulin are key
players in plant cell signaling, EF1α regulation of cytoskeletal
dynamics can serve as a manual transmission stick connecting
the cytoskeleton and plant developmental and signaling
pathways.

THO2
In animal and yeast cells, THO2 is part of the THO-TREX
complex that participates in mRNA metabolism and nuclear
export (Koehler and Hurt, 2007). Hamada et al. (2009) described
tobacco putative THO2-related protein (NtTHO2) as a MT-
associated protein which binds directly to MTs in vitro and
co-localizes with cortical MTs in vivo, indicating its role in
translation targeted to specific plant cell compartments.

PLASMA MEMBRANE INTERACTING
PROTEINS

In plant cells, cortical MTs underlie the plasma membrane
(PM) (Dixit and Cyr, 2004). The association of cortical MTs
to the PM is related to the guiding of cellulose synthase
complexes (CESAs), enzyme complexes in the plasma membrane
that synthesize cellulose into the extracellular space (Paredez
et al., 2006). Surprisingly, only a subtle number of proteins
were proven to mediate the interaction of cortical MTs
with the plasma membrane. In this section, phospholipase D
and developmentally-regulated plasma membrane polypeptide
(DREPP) proteins are discussed. Both were first reported to
participate in MT unrelated processes, however, their roles
associated withMTs were revealed later. Some plant formins were
reported to interact with the PM andMTs as well. Being primarily
actin-associated proteins, they are discussed later in a separate
chapter.

Phospholipase D
PLDs with N-terminal lipid binding domain are important
signaling enzymes in plant cells (Munnik, 2001; Elias et al.,
2002). Various PLD isoforms differ in their affinity to different
substrates—membrane phospholipids. These are cleaved by
PLDs to produce signaling molecules (Munnik, 2001; Wang,
2002).

Phospholipase D δ (PLDδ) is a central enzyme of
phospholipid signaling in plants. It cleaves plasma membrane
(PM) phospholipids to produce phosphatidic acid (PA) and
predominantly ethanolamine and choline (for review, see Wang,
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2002). PLDδ isoform strongly associates with PM (Gardiner
et al., 2001; Wang and Wang, 2001) and connects it physically
with cortical MTs (Marc et al., 1996; Gardiner et al., 2001). Upon
stress, e.g., NaCl, hypoosmotic stress, xylanase or mastoparane
treatment, PLDδ is activated and triggers MT reorganization
(Dhonukshe et al., 2003). The mechanism of PLD-triggered
reorganization is likely based on the activation of PLD on the
plasma membrane, which leads to the release of MTs from the
membrane and MTs reorientation (Dhonukshe et al., 2003).
Another potential mechanism of PLD-based MT reorganization
mechanism may involve the role of PLD signaling product, PA,
on MT (for review see Pleskot et al., 2014).

The importance of PLDδ in plants is confirmed by the plasma
membrane and MT-binding discussed above and its interaction
with actin (Ho et al., 2009). Phospholipase Dδ is thus discussed
hereinafter as an example of a protein potentially integrating
multiple structures into a functional complex in plants.

PCaP1/MDP25 and PCaP2/MAP18
DREPP (Developmentally-Regulated Plasma membrane
Polypeptide) proteins include a family of plant-specific proteins
that interact with the plasma membrane (Gantet et al., 1996).
Arabidopsis DREPP family contains proteins PCaP1 named
also MDP25 (Ide et al., 2007; Li et al., 2011), and a divergent
paralog PCaP2, first described as a Microtubule-Associated
Protein 18 kDa MAP18 (Wang et al., 2007; Kato et al., 2010).
PCaP1/MDP25 links calcium signaling to the regulation
of cytoskeleton organization. Under normal conditions,
PCaP1/MDP25 is localized to the plasma membrane. Increased
calcium levels cause PCaP1/MDP25 to partially dissociate
from the plasma membrane and to move into the cytosol. In
the hypocotyl, cytosolic PCaP1/MDP25 binds and destabilizes
cortical MTs by depolymerization and subsequently inhibits
hypocotyl cell elongation (Li et al., 2011). In the subapical
region of pollen tubes, PCaP1/MDP25 binds directly to
actin cytoskeleton and severs individual actin filaments, thus
negatively regulating pollen tube growth (Qin et al., 2014).
PCaP2, previously reported as MT-binding MAP18 (Wang et al.,
2007), is a plant-specific protein found only in Arabidopsis that
is involved in intracellular signaling in growing root hairs and
pollen tubes. PCaP2/MAP18 is localized in plasma membranes
possibly via N-myristoylation, and destabilizes MTs (Keech et al.,
2010). It is associated with specific PtdInsPs and it exhibits the
capacity to bind calcium and calcium–calmodulin (Ca2+–CaM)
complex (Kato et al., 2010). It is possible that association and/or
dissociation of PCaP2/MAP18 with PtdInsPs via oscillation in
Ca2+ cytosolic concentration regulate the signaling function of
PtdIns(4,5)P2, which includes regulation of ion channels (Suh
and Hille, 2008), cytoskeletal organization and membrane traffic
(Meijer and Munnik, 2003; Lee et al., 2007; Kato et al., 2010).

ACTIN BINDING PROTEINS AS
MULTIFUNCTIONAL MAPs

In plants, AFs are crucial for cell polarity, division, membrane
trafficking and thus, growth and development. Their

organization and dynamics is modulated by actin binding
proteins, such as formins, Arp2/3 complex, profilin, cofilin,
myosin etc. (for review see Thomas et al., 2009). An increasing
list of proteins interacting with both actin and MTs in plants
was reported (for review see Petrasek and Schwarzerova, 2009).
The existence of proteins interacting with both AF and MT is
not surprising, since actin-cytoskeletal functions are fulfilled
in a close collaboration with MT cytoskeleton (Collings, 2008;
Smertenko et al., 2010; Sampathkumar et al., 2011), e.g., during
plant cell division, in PPB and phragmoplast (Traas et al., 1987;
Mineyuki, 1999; Sano et al., 2005; Wu and Bezanilla, 2014). The
following examples were reported to interact with both AFs and
MTs: plant formins (Deeks et al., 2010; Li et al., 2010), a subunit
of ARP2/3 protein complex ARPC2 (Havelková et al., 2015),
conventional MAPs, such as kinesins (Preuss et al., 2004; Frey
et al., 2009; Klotz and Nick, 2012; Schneider and Persson, 2015),
plant specific MAPs, such as 190 kDa polypeptide (Igarashi et al.,
2000) and SB401 in Solanaceae (Huang et al., 2007), enzyme
PLDδ (Ho et al., 2009) or protein DREPP/AtPCaP1/MDP25
(Li et al., 2011; Qin et al., 2014). Here, proteins with primary
functions related to actin cytoskeleton organization that were
found to interact also with MTs (formins and ARPC2) are
discussed.

AtFH4 and AFH14
Formins nucleate actin and contribute to the filament growth,
thus, they participate in cell polarity, morphogenesis and division
(Sagot et al., 2002; Kovar and Pollard, 2004; Pruyne et al., 2004;
Ingouff et al., 2005). However, some plant formins also bind
directly to MTs (Deeks et al., 2010; Li et al., 2010). Formins are
characterized by the presence of formin homology-2 and formin
homology-1 (FH2 and FH1, respectively) domains that are
common in mammals and plants (Blanchoin and Staiger, 2010).
Besides FH1 and FH2 domains important for actin nucleation,
plant AtFH4 contains a plant-specific transmembrane domain,
and a specific GOE domain that binds directly to MTs (Deeks
et al., 2010). Thus, AtFH4 represents a protein that links both
membranes, MTs and AFs in plant cells. Another plant formin
called FORMIN14 (AFH14) appeared to bind directly either AF
orMTs (Li et al., 2010). Unlike AtFH4, the FH2 domain of AFH14
is critical for both MT and AF binding and bundling. AFH14
localized to typical plant MT structures, such as preprophase
band (PPB), spindles, or phragmoplast. MTs competed with
AFs to bind AFH14, and the overexpression of AFH14 caused
co-alignment of MTs with AFs, which perturbed the progress
of cell division (Li et al., 2010). Therefore, actin-binding
proteins formin AtFH4 and AFH14 represent multifunctional
MAPs with specialized function in mediating AF and MT
crosstalk.

Actin Related Protein 2/3 Complex
Subunit 2
Arp2/3 complex represents the second mechanism of AF
nucleation. This evolutionarily conserved complex of 7 subunits
(Welch et al., 1997) is functional also in plants, where it
controls several aspects of plant morphogenesis (for review see
Deeks and Hussey, 2005; Yanagisawa et al., 2013). Recently,
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it has been shown that actin related protein 2/3 complex
subunit 2 (ARPC2) of Arp2/3 complex binds directly to MTs.
It is possible that the ARPC2 subunit of Arp2/3 complex
mediates the interaction between MTs and AFs in plants
(Havelková et al., 2015). Alternatively, Arp2/3-based interaction
of MTs and AFs may contribute to mutual dynamic regulation
of AFs and MTs. ARPC2 protein thus, represents another
multifunctional MAP with the primary role unrelated to MT
binding.

MULTIFUNCTIONAL MAPs INVOLVED IN
SIGNALING CROSSTALKS

Stimuli from the outer environment are transferred into the
plant cell across the rigid cellulose cell wall and lipid plasma
membrane. Specific receptors on the plasma membrane may
transfer stimuli by the cell wall-PM-cortical MT continuum.
According to the recent studies, mediators in this physical
continuum may be PLDδ and/or plant-specific formins with
transmembrane domains. These proteins bind to the plasma
membrane, are associated with cortical MTs and actin, and
as in the case of AtFH4, possess extracellular extensin-
like motifs that can anchor it to the cell wall compounds
(Baluska and Hlavacka, 2005; Deeks et al., 2005, 2010; Ho
et al., 2009; Cvrckova, 2013). Formins can further mediate
attachment of endomembrane compartments, such as the ER
or secretory vesicles, to the MT cytoskeleton (Cvrckova et al.,
2015).

In addition to binding to PM phospholipids, PLDδ binds to
plant flotillin homolog (Ho et al., 2009), a lipid microdomain
marker (Martin et al., 2005). Lipid microdomains are PM
detergent-resistant regions that are important for the assembly
of multimolecular signaling complexes containing G-proteins
or kinases (Martin et al., 2005; Dunkley et al., 2006; Tapken
and Murphy, 2015). Therefore, PLDδ may link PM with MTs
at sites where cell-signaling processes take place. However,
PM and MTs are not PLDδ’s sole interacting structures. F-
actin (Kusner et al., 2003), Actin 7, Hsp70, ATPase and
clathrin heavy chain (Ho et al., 2009) were reported as PLDδ

interactors, too. Thus, by interacting with both cytoskeletal
networks, PLDδ is a possible mediator in the cell wall-PM-
cytoskeleton continuum. Its additional interaction with Hsp70
may contribute to the signal transduction to the cytosol (Ho
et al., 2009). This interaction is probably mediated by MTs.
As authors hypothesize, multiprotein complexes composed of
flotillin, PLDδ, MTs, AFs, Hsp70, and clathrin indirectly bound
to PLD are involved in cell signaling and vesicle trafficking (Ho
et al., 2009).

Hsp70 and Hsp90 cooperate in the signaling, protein folding,
stabilization, and turnover by the formation of multichaperone
complexes (Pratt et al., 2001, 2010). They have been reported as
tubulin interactors as well (Freudenreich and Nick, 1998; Garnier
et al., 1998; Petrasek et al., 1998; Parrotta et al., 2013). Since
Hsp90 localizes to the corticalMTs and was isolated as the protein
interacting with both PM and MTs (Krtkova et al., 2012), it is
likely that the whole complex composed of Hsp90, Hsp70, MTs

and actin is linked to the lipid microdomain platforms by PLDδ.
By this mean, the PM-cytoskeleton continuum involved in cell
signaling may be established (Figure 2).

Formin interacting with both AFs and MTs (AtFH4) is
possibly involved in cell signaling as well. Via its extracellular and
transmembrane domain, it may transduce mechanical stimuli
from the plant cell wall across PM to both cytoskeletal networks.
According to themodel for AtFH4 proposed in Deeks et al. (2010;
see also Figure 3), mechanical stimuli transduced by formin-
mediating PM-cytoskeleton continuum may be preferentially
manifested in actin dynamics changes. In this hypothesis, MTs
represent structural scaffolds enabling FH2 domain of AtFH4
to perform its actin-nucleating function. AtFH4 also co-aligns
MTs with endoplasmic reticulum, suggesting a further role of
AtFH4 at the interface of actin andMT cytoskeleton (Deeks et al.,
2010).

PHYSIOLOGICAL DEMONSTRATION OF
MULTIFUNCTIONAL MAPS-MT
INTERACTION—FUTURE PROSPECTS

Stability, dynamics and organization of MTs is modulated
by their interacting proteins. MAPs, such as +TIPs (for
review, see e.g., Akhmanova and Steinmetz, 2008) or other
structural MAPs (Gardiner, 2013) coordinate MT reorganization
events spatiotemporally, thus controlling the localization
of MTs in the plant cell during specific environmental or
developmental conditions. Such events underlie plant cell
shape changes and plant tissue differentiation, determining
survival of the plant organism through proper growth
regulation.

MTs apparently require further mediating-proteins as well.
These mediators may be the traditional motor or structural
MAPs, but also proteins with another primary function than
MT-binding. These proteins may interact with MTs in short time
limits, under specific environmental conditions or interact with

FIGURE 3 | Model of plant MTs interactions with actin filaments based

on actin nucleators. Formin AtFH4 is anchored in the PM and binds to AFs,

providing a supportive scaffold for MTs attachment (Deeks et al., 2010).

ARPC2 subunit of Arp2/3 complex binds directly to MTs (Havelková et al.,

2015). The role of ARPC2-MTs interaction in the cross-linking of AFs and MTs

through Arp2/3 complex, or in the regulation of AFs and MTs dynamics,

remains to be elucidated (question mark). Model adapted from Deeks et al.

(2010).

Frontiers in Plant Science | www.frontiersin.org 8 April 2016 | Volume 7 | Article 474

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Krtková et al. Multifunctional Microtubule-Associated Proteins in Plants

MTsweakly or indirectly asmembers ofMT-associated structures
or complexes. Some of these proteins were discussed in this
review. These spatiotemporally tightly regulated physiological
functions, or secondary interactions, as well as functions of
single complex subunits, are difficult to detect. Nevertheless,
important progress has been made recently in identifying
new multifunctional MAPs; new proteins will be added to
the list in the future. Plant hormone signaling, stress and
pathogen response, development of specific morphological
structures and other plant specific processes represent areas
for investigating new highly specific MT-associated proteins.
Investigating into the functional interactions between MTs
and both protein synthesis machinery and metabolism-related
enzymes in plants is an exciting research area awaiting deeper
exploration.
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