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Abstract
This thesis is a review of Delay Differential Equations in Dynamical systems.Starting
with a general overview of Delay Differential Equations, we present the concept on De-
lay Differentials and the application of its models,ranging from biology and population
dynamics to physics and engineering.We will also give an overview on Dynamical sys-
tems and delay differential equations in the dynamic systems .An area for modelling with
delay differentials equations is Epidemiology.Emphasis is given to the development of
the Susceptible-Infected-Removed(SIR) epidemiological model without and with time de-
lay.We the analyse our two models under equilibra and local stability using assumed data
of COVID -19 .Results would be compared between the model without delays and model
with delays.
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1 INTRODUCTION
Delay Differential equations also called time delays has attracted much attention over 200
years to the field of nonlinear dynamics. It is used for analysis and prediction in various
fields of biology,physics and engineering.

Time delays has its solutions depending on the past history of the system to predict the
present .It is meaningless for a system not to have a history. Since most dynamic systems
are governed by the principle of causality(the future state of the system is independent
of the past but depends solely on the present to predict the future), it is important to
include the history of the system if we want a realistic model of the system.
If the model does not depend on history then it generally consists of ordinary differential
equations or partial differential equations.
Other model incorporating history generally include Retarded Functional differential
equations(RFDEs) and Neutral Functional Differential equations(NFDEs).
Examples of differential equations with past dependence are Delayed Logistic Equation
with a Discrete Delay, Delayed Logistics Equation with Distributed delay,Delayed Lotka-
Volterra Predator-Prey Systems,Neutral Delay Logistic equation,Delay models in Physi-
ology,Delayed Epidemic models amongst others. see [40]

Time delays can make unstable a stable equilibrium and can cause populations to
fluctuate and this makes it more complicated than the ordinary differential equation.
In this thesis, we review a Delay Differential Equation model arising from analysing an
epidemiological system.
Epidemiology aims at investigating diseases and state of health of a specific population
in order to find solutions to health related problems of that population.
Time delay mathematical models are used to model the complex dynamics of the diseases
in the population.

1.1 BACKGROUND
The study into delay differential equations has been ongoing for at least two centuries.
This claim has been referenced to E. Schmitt (1911).
Some of the early work, like most fields of mathematics, started from geometry and
number theory. The importance of considering hereditary effects in modelling physical
systems was emphasized at the International Conference of Mathematicians by Picard
(1908). Volterra (1931) in his book explained and outlined the role of hereditary effects
on models for the interaction of species.

In the Soviet Union of the 1940s, more than in other parts of the world, this subject
gained pace due to the consideration of meaningful models in engineering systems and
control. At the time it was evident, especially to engineers, that physical systems had the
occurrence of hereditary effects but there was little theory to explain their observations
in these models.
In the last half century, there has been tremendous development in the theory of differen-
tial equations to the extent that it is now imbued in the vocabulary of researchers across
multiple disciplines.
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Dynamical systems theory also known as Chaos Theory comprises of methods for
analysing differential equations and iterated mapping. A given deterministic dynamical
system can be proven to have stable or unstable solutions but this does not necessarily
mean that the phenomenon it describes behaves likewise; that is dependent on the math-
ematical model’s quality.

More than half the research work on delay differential equations dealt primarily with
linear differential equations and the preservation of stability of equilibra under small non-
linear perturbations when the linearization was stable (or unstable) see [1].
Laplace transforms are naturally used for linear equations with constant coefficients. This
resulted in the expansions of solutions in terms of eigenfunctions and convergence prop-
erties of these expansions.

Understanding the extent to which one could apply Lyapunov’s second method (1891)
was important to study the stability of equilibra. It could be said that the birth of the
modern theory came forth from Lyapunov’s second method see[1].
Poincaré’s work on celestial mechanics(Poincaré, 1899) introduced Qualitative Theory of
Dynamical systems.The methods he developed prepared the foundation for the local and
global analysis of non-linear differential equations and many other concepts and theories.

With the periodically-disturbed pendulum, Poincare showed that mechanical systems
with two or more degrees of freedom might have homoclinic orbits and hence might not
be integrable.

G.D.Birkhoff (1927) showed that near any homoclinic point of a two-dimensional
map,there is an infinite sequence of periodic orbits whose periods approach infinity. He
also showed (Birkhoff 1932) annulus maps having orbits with different periods can possess
complicated limit sets separating their domains of attraction.

The theory of dynamical systems does not address specific phenomena nor does it
propose certain models of reality. Instead,it provides a non strict set of methods for
analysing ODEs and iterated mappings. Its canonical problem have the form:

ẋj = fj (x1, x2, . . . , xn;µ1, . . . , µk) , or xj(l+1) = Fj (x1(T ), . . . , xn(T );µ1, . . . , µk) (1.1)

where x1, . . . , xn are state variables and µ1, . . . , µk are external control parameters,
usually regarded as fixed for the purpose of solving (1.1) to obtain orbits x(t) = (x1(t), x2(t), . . . , xn(t))
or {x(l)}∞l=0. see [14]

The solutions curves of the above equation (all orbits) are studied alongside the de-
pendence of the set of solutions (i.e.phase portrait) on the parameters and the description
of qualitative properties. These study are emphasized by this non-strict set of methods.

The qualitative theory of dynamical systems is a mathematical theory founded on
analysis, geometry and topology.

Currently its reach has gone beyond the field of mathematical sciences. It is providing
a unifying structure that classifies dynamical systems across a wide range of applications.
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Delay differential equations share the quite many similarities with the general ODEs:
existence, uniqueness, continuity of solutions and dependence of parameters. DDEs only
go a step further to add some technicalities due to the infinite dimensional character of
the problem.

1.2 SOME MODELS INCORPORATING TIME DELAYS
The following information was taken from see([40]).

1.2.1 Delayed Logistic Equation with a Discrete Delay

Generally, the simplest type of dependence of the past is that which only its state variable
depends on the past, but the derivative of the state variable does not. This is the known
retarded functional differential equation (RFDE) or the retarded difference differential
equation (RDDE)

ẋ(t) = F (t, x(t), x(t− τ)), ẋ =
dx

dt
(1.2)

The Wright’s equation is a well-known special case of 1.2.

ẋ(t) = γx(t)[1− x(t− τ)/K] (1.3)

Equation 1.3 is frequently referred to as the delayed logistic equation with a discrete de-
lay. It has known applications in probability methods in distribution of prime numbers
see([40]).

For the study of population dynamics, only non-negative solutions of 1.3 are consid-
ered.

1.2.2 Delayed Logistic Equation with a Distributed Delay

In a population, the immunological resistance of its members to a parasite that lives its
complete life cycle in a host, without causing harm to the host, is dependent on the ex-
posure of the host to the population of the parasite. ”Characteristically, the increase is
exponential during early stages of infection when the host offers an ideal environment.
Subsequently, when the host becomes resistant and represents a less suitable environment,
the rate of increase declines to zero and the population then rapidly decreases.” Michel
(1969)

The following integro-differential equations is considered an appropriate model for the
parasite population growth:

dN

dt
= rN

[
1− N

K
−

∫ t

0

N(s)G(t− s)ds

]
. (1.4)

Instantenous self-crowding term is followed by a pollution term. This is most suitable
when the integral is taken from t = 0, the time the a host ingests or comes in contact with
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the the parasites. The simplest memory function can then be easily adopted, G(t) = k,
where k is a constant.

1.2.3 Delayed Epidemic Model

”Mathematical biologist A.J Lotka investigated, in a series of papers from 1912 on, a
differential equation model of malarial epidemics due to Ross(1911). In particular, he
examined the effects of incubation delays. ” The equations as given by Lotka for human
population:

ḣ(t) = bgm(t)(p− h(t))/p−Mh(t)− rh(t) (1.5)
for the mosquito population, we have:

ṁ(t) = bfh(t)(q −m(t))/p−Nm(t)− sm(t) (1.6)
the total number of humans is given by p, the total population of the mosquitoes is

given by q. These two parameters are treated as constants. The function h(t) stands
for human population carrying the malaria organism. m(t) stands for mosquito popula-
tion carrying the malaria organism. p - h(t) and q - h(t) stand for the healthy population.

A fixed proportion of each of these populations is assumed to be infective, with the
infective populations being fh and gm, respectively. The quantities M and N are death
rates, while r and s are recovery rates. It is assumed that each mosquito bites b people
in unit time, and that each person receives a bites in unit time.

For our present purposes what is of most interest is the modification to include incu-
bation delays, quoted from Ross (1911) to be u = 0.5 month in human and v = 0.6 month
in mosquito. We thus have

ḣ(t) = bgm(t− u)[p− h(t− u)]/p− (M + r)h(t)

ṁ(t) = bfh(t− v)[q −m(t− v)]/p− (N + S)m(t)

The delay is from the time of a bite to the time at which the human or mosquito is
infective.
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2 DYNAMICAL SYSTEMS
Dynamical systems generally,is a rule which describes the evolution of a state of a math-
ematical model over time and it is given by systems of a differential equations.
Mathematical models based on real situations are non-linear which makes it quite difficult
to solve. The systems has its current state depending fully on previous state.

The aim of dynamical systems is to understand the behavior of the chosen system,given
rules for which the system evolves.
These rules help define the changes in the system,given the states of the physical problem.

The states are variables simply called the state variables and it is anything that can
be represented with a number.
Examples of these state variables are;population of a colony, the amount of money in an
account, temperature,density of a chemical in a solution, the position of a particle and so
on.

Over the years Dynamical systems has been involved in the study of various math-
ematical models which is used in various fields like; physics,biology,economics,chemistry
and so on.Example is, in the analysis of environmental problems, we have physical models
used a quantitative tools which constitute dynamical systems.

A system measured in integer time values is called a Discrete Dynamical system (the
state of the system evolves in discrete time steps) while a system with continuous mea-
suring of time is referred to as Continuous Dynamical system whose system of evolution
occurs smoothly over time.

In this thesis we focus on a continuous dynamical system, which measures time con-
tinuously and the system given by ordinary differential equations.
We restrict ourselves to autonomous systems of ordinary differential equations of the
system in Rn, that is for a system given as;

x′ = f(x)

where function f : Rn → Rn is a C1 function and does not depend on the variable
t.By x′ it means the time derivative of x(x = x(t)). The non autonomous systems are
not considered here, as any non autonomous system x

′
= f(x, t) with x ∈ Rn can be

rewritten as autonomous with x ∈ Rn+1, by letting xn+1 = t.

2.1 DEFINITION OF DYNAMICAL SYSTEM
The following theory can be found in [16],[24],[35].

Definition 2.1. A smooth continuous dynamical system denotes a pair {Ω, ϕ}, where Ω
is a state space and ϕ : R× Ω → Ω is a continuously differentiable function (ϕ ∈ C1(Ω))
satisfying

(i) ϕ0(x) = x,∀x ∈ Ω1

(ii) ϕt+s(x) = ϕt (ϕs(x)) ,∀x ∈ Ω and t, s ∈ R
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The function ϕ is often called an evolution operator, where ϕt(x) = ϕ(t,x).

Definition 2.2. Let x0 ∈ Ω be an initial state of a system. For a fixed time t ∈ R the
evolution operator ϕ transforms x0 into some state x(t) at time t, i.e.

x(t) = ϕt (x0)

Remark 1. Ω, the state space usually refers to Rn, as that is what would be considered in
this thesis.

Definition 2.3. Suppose an initial value problem of an autonomous system of ODEs

x′ = f(x)
x (t0) = x0

where f : E → Rn, E is an open subset of Rn, f ∈ C1(E) and x1 ∈ E is the initial
value.
Then x(t) is a solution of the initial value problem (2.1)− (2.2) on an interval I if t0 ∈ I,
x (t0) = x0 and x(t) is a solution of the system of ODEs (1.1) on the interval I.

Remark 2. We assume f to be defined for all x ∈ Rn, i.e. f : Rn → Rn.

Theorem 2.1. (The Existence and Uniqueness Theorem): Consider the initial value
problem (2.1)− (2.2), where f : E → Rn, f ∈ C1(E). Then there exists an a > 0 such that
the initial value problem has a unique solution x(t) on the interval [−a, a].

Theorem 2.2. Theorem 2: Consider the initial value problem (2.1)− (2.2), then for each
x0 ∈ E there is a maximal interval J = (α, β) on which the initial value problem has a
unique solution x(t)

Definition 2.4. Let E ⊆ Rn and f ∈ C1(E). Let ϕ (t, x0) be the solution of (2.1)− (2.2)
defined on its maximal interval J (x0) , x0 ∈ E.
Then for t ∈ J (x0), the family of evolution operators ϕt defined by

ϕt (x0) = ϕ (t,x0)

is called the flow of the system (2.1). ϕt is referred to as the flow of the vector field f .

Definition 2.5. Suppose the initial value x0 is fixed and J = J (x0) . Then the mapping
ϕ (·,x0) : J → E defines a solution curve or a trajectory of the system (2.1) through the
point x0 ∈ E.
The trajectory is visualized as a motion along a curve Γ through the point x0. The arrow
then indicates the orientation of the curve as time increases.

The phase portrait of the system (2.1) refers to the set of all solution curves of (2.1)
for different initial points satisfying the initial value problem (2.1) − (2.2) in the phase
space. The solution curves in the phase space never intersect each other.
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Definition 2.6. A point x∗ ∈ E is called equilibrium point (fixed point, critical point)
of the system (2.1) if f (x∗) = 0(0 means the zero vector ). Moreover, for any trajectory
starting in x∗, i.e. x(0) = x∗, is x(t) = ϕt (x

∗) ≡ x∗ for any t ∈ R

In general, trajectories of the solution x(t) can be divided into 3 main categories:

(i) Fixed point - the solution x(t) is constant, i.e. trajectory stays in the fixed point
for all time.

(ii) Cycle, periodic orbit - the solution x(t) is periodic, i.e. the trajectory forms a
closed curve and stays on this curve for all time.

(iii) Open curve - the trajectory is an injective map never intersecting itself.

2.2 Linear system

Suppose the system given in (2.1) is linear, i.e. function f consists of linear terms
only, f : Rn → Rn. Then the system can be rewritten as

x′ = Ax

where x ∈ Rn, A is an n× n matrix and the following theorem holds.

Theorem 2.3. (The Fundamental Theorem for Linear Systems): Let A be an n ×n
matrix. Then for a given x0 ∈ Rn, the initial value problem x′ = Ax, x(0) = x0 has a
unique solution for all t ∈ R given by

x(t) = eAtx0

2.3 Nonlinear system
On an interval I, a unique solution of an initial valued problem of a non-linear dynamical
system exists according to Theorem 3 and in very few cases can these non-linear cases be
solved analytically unlike in the linear cases.

Non-linear systems usually are made up of topological,geometrical and analytical tech-
niques in the investigation of their behaviours. As part of non-linear system’s analy-
sis,numerical methods plays an important role.
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Linearization of nonlinear dynamical systems
Nonlinear dynamical systems are investigated in the neighborhood of its equilibrium
points.The local behaviour of the nonlinear system x′ = f(x) near a hyperbolic equilib-
rium point x∗ is qualitatively determined by the behaviour of the linear system x′ = A(x),
where A is the Jacobian matrix evaluated at point x∗.

Remark 3. The Jacobian matrix J evaluated at a fixed point x∗ ∈ Rn is given by n × n
matrix

J = Df (x∗) =


fi(x

∗)
∂x1

. . . L1(x∗)
∂x∗... . . . ...

ln(x∗)
∂x1

. . . fn(x∗)
∂xx


The eigenvalues λ of the Jacobian matrix can be computed as the roots of characteristic

polynomial
P (λ) = det(J − λI)

where I represents the identity matrix.

Definition 2.7. An equilibrium point x∗ of the system (1.1) is called hyperbolic if none
of the eigenvalues of the Jacobian matrix J = Df(x∗) has zero real part. Otherwise, the
equilibrium point is called non-hyperbolic.

If the fixed point x∗ is hyperbolic, then according to Hartman-Grobman Theorem
[1] there exists a neighborhood of this point, in which the nonlinear system x′ = f(x) is
topologically conjugate to the system x′ = A(x), where A is the linearization matrix, i.e.
A = Df (x∗).

2.4 Stability :
Stability of s system is when a small perturbation of initial data yields a small change
in the solution. Deviation of the solution caused by a perturbation of initial data which
disappears as t→ ∞ makes the solution attractive or asymptotically stable.
In dynamical systems, it is more common to refer to a stability of equilibrium points of
the given system.

Definition 2.8. Let ϕt denotes the flow of the system (2.1) defined for all t ∈ R. An
equilibrium point x∗ is (locally) stable if for all ε > 0 there exists a δ > 0 such that for
all x ∈ Nδ (x

∗) and t ≥ 0 then
ϕt(x) ∈ Nδ (x

∗)
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Furthermore, x∗ is (locally) asymptotically stable if it is stable and if there exists a
δ > 0 such that for all x ∈ Nδ (x

∗)

lim
t→∞

ϕt(x) = x∗

The equilibrium point is said to be unstable if it is not stable.

Remark 4. The equilibrium point’s stability is determined by the sign of real parts of the
eigenvalues λ of the Jacobian matrix.

The following theorem holds :

Theorem 2.4. Let J = Df (x∗) be the Jacobian matrix for the system (1.1) evaluated at
a fixed point x∗ and let λi be its eigenvalues.

(i) If ℜ (λi) < 0 for all λi, then the fixed point x∗ is asymptotically stable.

(ii) If ℜ (λj) > 0 for at least one λi, then the fixed point x∗ is unstable.

(iii) If R (λi) = 0 for at least one λi, then the fired point x∗ is non-hyperbolic and its
stability cannot be determined by the linearization method.

Classification of basic fixed points can be found in the literature. For further inves-
tigation of non-hyperbolic points, it is possible to use other methods which can help to
determine their stability. The stability according to Lyapunov is defined as follows:

Theorem 2.5. (Lyapunov Function): Suppose the nonlinear system (2.1) with an equi-
librium point x∗,x∗ ∈ E, where E is an open subset in Rn. Now, suppose that there exists
a function V : E → Rn satisfying

(i) V (x∗) = 0

(ii) V (x) > 0 if x ̸= x∗.

Then

(i) if V̇ (x) ≤ 0 for ∀x ∈ E,x∗ is stable.

(ii) if V̇ (x) < 0 for ∀x∗ ∈ E\ {x∗} ,x∗ is asymptotically stable.

(iii) if V̄ (x) > 0 for ∀x ∈ E\ {x∗} ,x∗ is unstable.

The function V is called the Lyapunov function. The term V̇ (x) = DV(x)f(x), where
DV =

(
∂V
∂x1
, . . . , ∂V

∂xn

)
(see [16][24][35]).
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3 DELAY DIFFERENTIAL EQUATIONS
3.1 INTRODUCTION
Delay differential equations(time delays) or simply, the system of differential equations
with time lags are equations whose solutions depends on the history of a system.
The solution depends on time,t = t0. Time delays can be grouped under Neutral or Re-
tarded and Continuous or Discrete.
Delay differential equations over many years have been used in many fields in applied
mathematics for example study of epidemics,automation,predator system analysis, other
areas in engineering and biology.

3.2 DELAY DIFFERENTIAL EQUATION (DDE)
Let us consider the non-autonomous system of delay differential equations

x′(t) = f(t,xt), t ≥ t0, (3.1)

where x ∈ Rn, t0 is the initial time, f is a continuous function f : R × C → Rn,
C = C([−r, 0],Rn) is usually called the state of the dynamical system at time t and
xt ∈ C is defined by

xt(θ) := x(t+ θ), −r ≤ θ ≤ 0.

A solution of the system (3.1) on the interval [t0, t1) is a continuous function
x : [t0 − r, t1) → Rn which satisfies (3.1) on [t0, t1) for some t1 > t0.

Initial condition for the system (3.1) is given by

xt0 = ϕ (3.2)

where ϕ ∈ C([−r, 0],Rn) is the state of the system at time t0, i.e.

x(t0 + θ) = ϕ(θ), −r ≤ θ ≤ 0

Given t0 and ϕ ∈ C([−r, 0],Rn), we say x(t) is solution of the initial value problem
(3.1)– (3.3) if it is a solution of the system (3.1) on [t0, t1) and satisfies condition (3.2).

Analogous to the ordinary case, we can formulate a theorem on existence and unique-
ness for the systems with delay (see[13][40]).

Theorem 3.1. Let D ⊆ R×C be an open set and suppose that f : D → Rn be continuous
and f(t, φ) be Lipschitzian with respect to the second variable in every compact subset of D.
If (t0, ϕ) ∈ D, then the initial value problem (3.1)– (3.2) has a unique solution on
[t0 − r, t0 + a] for some a > 0.
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3.3 LOCAL STABILITY OF DDE
Let us consider an autonomous non-linear system

x′(t) = f(xt), t ∈ R (3.3)

and x∗ ∈ Rn be an equilibrium point of the system (3.3), i.e. f(x∗) = 0.

Definition 3.1. The equilibrium x∗ of the system (3.3) is (locally) stable if for any
ε > 0, there exists δ = δ(t0, ε) such that ||x∗ − x(t0, ψ)||∞ < ε for any ψ ∈ C satisfying
||ϕ− ψ||C < δ.
The equilibrium x∗ of the system (3.3) is asymptotically stable if it is stable and if there
exists δ = δ(t0) > 0 such that ||x∗−x(t0, ψ)||∞ → 0 for any ψ ∈ C satisfying ||ϕ−ψ||C < δ,
where || · ||∞ and || · ||C are usual norms.
The equilibrium x∗ of the system (3.3) is unstable if it is not stable.

Investigating the local stability of a delayed systems is similar to those without delay.
A linearized system to (3.3) is also studied. For a single delay τ at equilibrium x∗, the
linearized system of (3.3) has the form

x′(t) = A0x+ A1x(t− τ), (3.4)

where A0 = Df(x∗) is n× n is the Jacobian matrix and A1 is the Jacobian matrix with
respect to x(t − τ) evaluated at an equilibrium point x∗. The characteristic equation of
the system (3.4) is not polynomial but takes the form

det
(
A0 + A1e−λτ − λE

)
= 0, (3.5)

where E represents n×n identity matrix. Let Λ be the set of all roots of the characteristic
equation (3.5). Then the following theorem holds (see [13]).

Theorem 3.2. Let R(λi) < 0 for all λi ∈ Λ. Then the equilibrium point x∗ of the system
(3.3) is asymptotically stable. If R(λ̄) > 0 for some characteristic root λ̄ ∈ Λ, then x∗ is
unstable.
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4 EPIDEMIC MODELS
4.1 INTRODUCTION
In this chapter, we expatiate on Epidemic dynamics and epidemic models,which are mostly
based on compartment structures.Researches on communicable diseases or infectious dis-
eases can be classified under descriptive,analytic,experimental and theoretic.

When it comes to the epidemic dynamics, the study is an important approach to in-
vestigate the transmission dynamics of an infectious disease. We formulate mathematical
models to analyze the transmission dynamics of these infectious diseases.

These models are based on the population dynamics,behavior of the disease transmis-
sion,features of the infectious agents and the connections with other social and psycho-
logical factors.

Epidemic dynamic models were created under the assumption that the specific pop-
ulation under study can be divided into compartments.The compartmental model was
proposed by W.O. Kermack and A.G.McKendrick in the years 1927,1932 and 1933.It was
then developed over the years by other biomathematicians.

The Kermack-McKendrick model(KM model) was based on relatively simple assump-
tions like the rate of flow from one compartment to the other and uses the latency period
of the disease .It also used the general mode of transmission of the infectious disease
(see[43][20][4]).

Using epidemic dynamical models, we discover general principles governing the trans-
mission dynamics of the disease and identify important parameters to provide useful
prevention and control strategies of the disease.

4.2 EPIDEMIC MODELS
Diseases especially communicable diseases, from time immemorial have been an important
part of the human history.
Worst case scenarios of diseases are pandemics.This is when the infectious disease spreads
from one border to other borders of countries.
Epidemics have invaded many populations, causing many deaths before dying out or
reoccurring in the future.On the economic growth, it causes economic damages like short-
term fiscal shocks and long -term negative shocks.

In the 14th century, about a third of Europe’s population was wiped out by a bubonic
plague called the Black Death. It also raged through Asia and Africa .The Black Death
is said to have claim 75 to 200 million lives between 1346 and 1350.

In 1918, about 50 million people died from the Spanish flu. Against popular opinion,
it derived its name from the place it was first identified: Spain. The period of discovery
was 1918, towards of the First World War. The powers of the world at the time were more
committed to warfare than they were to epidemics. As a result of this diverted attention,
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more deaths were recorded.

The Human Immunodeficiency Virus (HIV) responsible for causing Acquired Immun-
odeficiency Syndrome (AIDS) was discovered in 1980. It has since then claimed about
38 million lives. In 2008, The United Nations estimated that there were 14 million AIDS
orphans and the number would go up by more than 80 percent in 2010.

In December 2019, a novel disease, the Coronavirus disease, was discovered in Wuhan
China. Since that time up to this moment, the world has registered 3,283,422 deaths.
see([8])

It is then obvious that to prevent and control infectious diseases more effectively, it
is important to fully understand the mechanism of the spread and the transmission dy-
namics of the disease and then provide useful predictions and guidance so that better
strategies can be established. Quantitative and qualitative analysis, sensitivity analysis
and numeric simulations make a mathematical model give us a good understanding of
how infectious diseases spread. Equipped with this, we can make reliable predictions and
obtain useful information on how to prevent and control the spread of these infectious
diseases.
Epidemic models are not exactly novel; they can be traced back to the time of Bernoulli.
In 1760, he used a mathematical model to study the rate of spread of smallpox. Proper
research into the field of using mathematical models to study infectious diseases did not
kick off until the 20th century. It was Hamer , in 1906, that came up with a discrete
time model to study the spread of measles. The physician, Dr. Ross, used differential
equation models to describe the transmission of malaria between the vectors and hosts in
1911. ”He determined that there is a threshold of the size of mosquitoes below which the
spread of malaria can be controlled.”

Between 1927 and 1933, W.O. Kermack and A.G. McKendrick formulated the SIR
compartmental model (Susceptible-Infected-Recovered). This model was used to study
the outbreak of Black death in London, that broke out in 1665 and ravaged on till 1666.
They also formulated the SIS compartment model. This model introduced the concept
of thresholds; the determiner of whether a disease spreads in a population. This concept
established the fundamental of the theory of epidemic dynamics see([20][4]).

Mathematical models can be categorized as linear, nonlinear, autonomous, non-autonomous
based on the described diseases, population and the environment.

A deterministic mathematical model is a mathematical model which does not allow
for randomness. It is necessary that the results (output) does not change for given initial
and final states. Analysis of deterministic models have been focused on the wellposedness
of the models and their solutions, persistence of the diseases, stability of their steady
states and the existence. These let us know whether the disease is pestilent or being
endemic. The existence of periodic solutions describe the oscillatory movement of disease
transmissions and occurrence of bifurcation and chaotic behaviour.
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4.3 SOME TYPES OF EPIDEMIC MODELS
Epidemic models can be broadly classified into two:

• Stochastic models
• Deterministic models

Stochastic models: these rely on chance variation in risk exposure, and this gives better
insight into an individual level modelling. It incorporates large amount of complexity and
heterogeneity making it more insightful for monitoring. Parameters in a stochastic model
gives different outputs

Deterministic models:also known as compartmental models, depend less on high
quality data. They are easier to set up as opposed to stochastic models. Under the same
initial and final conditions, the same behaviour is expected in the population.The best
way to model real life problems is by the use of Deterministic models.Here, the specific
population under observation is divided into compartments which constitutes different
levels of an epidemic.Transitions from one compartment to the other are illustrated in
differential equations with each compartment being differentiable with respect to time
see([5]).

Some types of deterministic models are:
• SIR model (Susceptible-Infected-Removed)
• SIS model (Susceptible-Infected-Susceptible)
• SIRS model (Susceptible-Infected-Removed-Susceptible)
• SEIR model (Susceptible-Exposed-Infected-Recovered)

SIS Model
This model is made up of two compartments: the Susceptible compartment and the
Infected compartment. In this model, the infected members of the population become
susceptible to the disease after they have recovered from their infection. This is because
the disease gives no immunity against reinfection.

Examples of these diseases are Influenza,chickenpox and measles.Hence there is a prob-
ability individuals who have suffered from the disease before would suffer from that same
disease in the near future.

[ ]

Figure 1: Image of the Susceptible-Infected-Susceptible model

SIRS Model
This model is made up of three compartments: the Susceptible compartment, the Infected
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compartment and the Removed Compartment. In this model, transmission of individuals
from the infected compartment to the removed compartment means either they are re-
covered or they are dead. Recovered individuals are not susceptible to the same disease
until they lose their immunity.

[ ]

Figure 2: Image of the Susceptible-Infected-Removed-Susceptible model

SEIR Model
The SEIR model has four compartments: Susceptible, Exposed, Infected, and Recovered
compartments. The transmission of individuals from the susceptible to the exposed com-
partment entails that individuals enter a latent period where the disease is contagious.
This means they carry the infection but cannot transmit it.
After a period of time, there is a transmission of these individuals from the exposed to

[ ]

Figure 3: Image of the Susceptible-Infected-Removed model

the infected compartment. They finally get recovered: they either get healed or they die.

SEIRS Model
The SEIR model has five compartments. Like in SEIR,transmission of individuals is from
the susceptible to the exposed compartment.Individuals enter a latent period where the
disease is contagious. This means they carry the infection but cannot transmit it.After
leaving the removed compartment, they move back into the susceptible state when they
lose their immunity

[ ]

Figure 4: Image of the Susceptible-Exposed-Infected-Removed-Susceptible model

16



4.3.1 BASIC OF A COMPARTMENTAL MODEL

• Vital dynamic factor such as natural death and natural birth are neglected in the
model

• the latent period of the model

• the population under observation is considered to be of constant size in epidemic
periods.Hence, we assume that natural birth rate and death rate equal.

• The flow transmission of the compartmental model
– Models with vertical transmission flow has most disease origins from natural

birth.Example is HIV/AIDS
– Models without vertical transmission means that the disease was not from birth

and everyone no matter their age can get infected.Example is SARs-COV 2

4.3.2 BASIC REPRODUCTIVE NUMBER (R0)

In the study of disease modelling , the basic reproduction number, R0 plays a very im-
portant role. Its value tells one if the specific population under observation is at risk or not.

The basic reproduction number is defined as the average number of secondary infec-
tions produced by the primary infection into the total susceptible population.An infected
person infects others at a rate of β during an expected infection period of 1

α
see[17].

4.3.3 FACTORS AFFECTING BASIC REPRODUCTIVE NUMBER

• Rate of contact in the specific population under observation
• Duration of infection and
• Probability of transmission per contact

Being a dimensionless parameter, it determines the threshold condition for a Disease-
Free Equilibrium. When R0 < 1, the Disease-Free Equilibrium is said to be locally
asymptotically stable This means the disease cannot invade the population and will die
out.This depends on how small R0 is .

When R0 > 1, the disease is difficult to contain and the Disease -free Equilibrium is
unstable but the we get an Endemic Equilibrium.At this point, the value of R0 is very
large see ([43][17]).

For example, if R0 > 1 for influenza cases in a specific hostel in a university, then that
management of that hostel should expect more cases more cases of susceptible students
infected with influenza.But when R0 < 1, the management of the hostel is assured that the
influenza disease would die out. They can then know steps to take to curb the situation.
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Figure 5: Figure:Above is an image of Epidemic curves of an SIR model with different
basic reproductive numbers,R0 > 1 ,R0 = 1 and R0 < 1 respectively .

The disease becomes difficult to contain at R0 > 1. This mostly occurs at the begin-
ning of the epidemic when it invades the susceptible population.R0 > 1 implies that new
infections caused by an infected individual is greater than one and leads to the continuous
growth of the infection.At this point the Disease-Free Equilibrium is unstable

When R0 = 1, the disease becomes endemic. It is seen on the second plot that the
infection rate reduces as compared to when R0 > 1.R0 = 1 determines if a disease would
persist or die out.

At R0 < 1 the disease dies out and infection rate decreases monotonically to zero.Infections
caused by an infected individual become less than one and this shows that,we have a stable
Disease-Free Equilibrium.
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Epidemic mathematical models were created with the assumption that the population
under study can be divided into compartments. They capture the dynamics of an infec-
tion which gives an individual permanent immunity after they have recovered.Examples
of these diseases are typhoid fever,measles,small pox amongst others see([28]).

The compartmental model proposed by Kermack and McKendrick was based on that
assumption of the rate of flow from one compartment to the other. It uses the latency
period or incubation period of the disease, represented by time delay(τ) in the model, and
the general mode of transmission during the spread of the communicable disease.

This model had the specific population under observation divided into compartments
namely: the Susceptible compartment, the Infected Compartment and the Removed or
Resisted compartment see([20]).

4.4 SUSCEPTIBLE-INFECTED-REMOVED(SIR)MODELS
The SIR model is in 3 compartments.The Susceptible compartment,Infected compartment
and Removed compartment.

An assumption of the SIR model is that there is a homogeneous mixing of the Infected
(I) and Susceptible(S) populations and that the total population (N) is constant in time.

The Susceptible population decreases monotonically towards zero in the model while
the population of infected people increases.
And as the hosts transition from the Infected compartment to the Removed compart-
ment,the population in the Infected compartment reduces as the population in the Re-
moved increases

The SIR model simply implies that:

• Susceptible:during a pandemic, all individuals in this compartment stand the risk
of contacting the disease or remain infected over a period of time (t).This includes
passively immune individuals,once the loose their immunity . The Susceptible pop-
ulation would decrease as the virus spreads from one person to the other(one source
to the other).

In an SIR model with no vertical transmission,individuals,no matter the gender, age
and size of the person, they are susceptible to getting infected.This compartment is
denoted by S(t) at time t

• Infected: Every Individual in this compartment has been infected by the disease
.The level of parasite is sufficiently large within the host and they can transmit
to others in the Susceptible compartment. These people either recover of die.This
compartment is denoted by I(t) at time t see[28].

• Removed:Individuals in this compartment are either healed or died from the dis-
ease.Removed compartment is denoted by R(t) at time t
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4.4.1 SOME BASIC ASSUMPTIONS OF THE SIR MODEL

• Specific population under observation is a closed environment.It is assumed that
during this period there is no migration nor emigration into this population.
There is neither a natural death or birth in this population, so the total population,
S(t) + I(t) + R(t) ≡ N

• There is a homogeneous mix of the Susceptible population and the Infected popu-
lation.

• The number of Susceptible individuals who get infected by an individual in the In-
fected compartment per unit of time, at time t, is proportional to the total number
of Susceptible individuals with the proportional coefficient (transmission coefficient)
�, so that the total number of newly infected at time t, is �S(t)I(t).

• The number of Removed individuals from the infected compartment per unit time
is αI(t) at time t, where α is the rate of recovery Recovered individuals gain per-
manent immunity.

• All infections are assumed to end with Removed Compartment.

• Infection does not depend on age,gender nor social status

• Recovery rate α of individuals in the Infected region to the Removed or Recovered
region is constant with time.

• The dynamical equations are of first order see([43]):

dS

dt
= − New infection rate

dI

dt
= New infection rate - Recovery rate

dR

dt
= Recovery rate

4.4.2 TIME DELAY IN SIR MODEL

The Susceptible individual, after coming in contact with an infected person, does not im-
mediately transition into the Infected state.There is a latent period of incubation, which
takes a period of about 5 to 14 days.
This is from the time of exposure to the virus till symptoms onset.After this period,the
susceptible individual becomes infectious hosts to other susceptible people.

About 97% of people in the populations shows symptoms of SARS-COV2 within 11.5
days from the time of exposure.

Inculcating time delays in epidemic models bring to bear the fact that the transmis-
sion dynamic behavior of the disease at time t depends not on only the present state of
the time t but also on the state of the previous time.
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We have have two types of time model:

• Discrete delay: in this time delay the dynamic behavior of time t depends on the
state of the previous time at t − τ , where τ is a fixed constant. In this thesis, τ is
the latent period (see[20]).

• Continuous delay: this delay depends on the whole period before the time t.

When there is time-delay in a mathematical model, periodic solutions may occur for
various time delays.

4.4.3 THE SIR MODEL

In vital demographical statistics we have natural deaths γ and natural rates of births
µ. Deaths caused by coronavirus cannot be considered as a natural death and so it is
excluded (γ = µ = 0 ).

For transmission from the susceptible compartment to the infected compartment, we
represent by β (is the average number of contacts per infected individual per day).α rep-
resents the rate of outflow into the removed compartment from the infected compartment.
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The total population is represented as N = S(t) + I(t) +R(t)

We derive three non-linear ordinary differential equations from the compartments.

4.5 GENERALIZED SYSTEM
dS
dt

= µ N − βS(t)I(t)− γ1 S(t)

dI
dt

= β S(t) I(t)− (γ2 + α) I(t)

dR
dt

= α I(t)− γ1 R(t)

During the pandemic it was observed that natural deaths and births are very low and
so they counterbalance each other, making µ=γ=0
The SIR model is now simplified to the form

dS
dt

= −β S(t) I(t)

dI
dt

= β S(t) I(t)− (α) I(t)

dR
dt

= α I(t)

As time goes the infection rate of the virus changes and the record of infected persons
in the beginning of the pandemic would vary from the number of infected persons in the
present.

There is also a behavioural change of the Susceptible individuals and the crowding
effect of the infective individuals due to introduction of safety measures and this prevents
the unboundedness of the contact rate.
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β S I is the bi-linear incidence rate which is suitable for communicable diseases such
as influenza but not for sexually transmitted diseases. It measures the infection force of
the disease.

The model above has no time delays which means it did not include the

• the latent state of the infection in the vector and

• latent state of the infection in an infected host.

There is a need for time to elapse before the host or the vector reaches a sufficiently
high level to transmit from one person to the other.
Considering the above description we have our model with time delays to be as follows:

4.6 SIR MODEL WITH DELAY
dS
dt

= −β S(t) I (t− τ)

dI
dt

= β S(t) I(t− τ)− (α) I(t)

dR
dt

= α I(t)

where τ > 0 is the time delay incorporated in the model to represents the latent period
or incubation period of the disease.

4.7 GENERALISED SYSTEM WITH DELAYS
dS
dt

= µ N − β S(t) I(t− τ)− γ1 S(t)

dI
dt

= β S(t) I(t− τ)− (γ2 + α) I(t)

dR
dt

= α I(t)− γ1 R(t)

where S(0) > 0, I(0) > 0, R(0) > 0 and parameter µ, β, γ, α are of positive values.S(0)+
I(0) +R(0) = N(t).

Parameters Definitions
µ Natural birth
γ Natural death
α Rate of outflow from the Infectious compartment to the Removed compartment
β Rate of outflow from the Susceptible compartment to the Infected Compartment
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5 Simulation of results
In this section we find and discuss on the stability and equilibrium of the system with
and without time delays.We then use assume values to show the population dynamics in
a our model with delay and without delays.

5.0.1 Generalized SIR model without delay
S ′ = µN − βS(t)I(t)− γ1S(t)
I ′ = βS(t)I(t)− (γ2 + α) I(t)
R′ = αI(t)− γ1R(t)

Finding the equilibria of the above system we equate the left side of the equation to
0. This forms the steady-state of the model.Solving the steady -state equations gives us
the equilibria of the system.We denote equilibrium of the generalized system as follows:
E[S∗, I∗, R∗]

To find E[S∗, I∗, R∗] we have to solve systems

0 = µN − βS∗I∗ − γ1S
∗

0 = βS∗I∗ − (γ2 + α) I∗

0 = αI∗ − γ1R
∗

Introducing the basic reproductive number, denoted by R0 =
µ N β

γ1(γ2+α)
. The equilibria

of the generalized system without delay is given as:

• If R0 < 1 then generalized system is always equilibrium of E1[
µ N
γ1
, 0, 0] and it is

locally stable

• If R0 > 1 then the generalized has two equilibria given as
E1[

µ N
γ1
, 0, 0], which is unstable and E2[

γ2+α
β

; µ N β−γ1(γ2+α)
(γ2+α)β

; α(µ Nβ− γ1(γ2+ α))
β γ1(γ2+α)

] which
is locally asymptotically stable.

We will show in details the local stability of these equilibrium in the following section

5.0.2 LOCAL STABILITY OF EQUILIBRIUM OF GENERALIZED SIR
MODEL WITHOUT DELAY

We are interested in the sign of the real part of the characteristic equation of the linearized
system, when finding the local stability of the equilibrium.

Our linearized system at equilibrium, for x0 ∈ Rn is given as (x′) = Ax where A is
the Jacobi matrix Df(x0) .
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The Jacobi matrix of the generalized SIR model is given as:

A =

 −βI − γ1 −βS 0
βI βS − (γ2 + α) 0
0 α −γ1



Then the CHARACTERISTIC EQUATION is det(A − λE) = 0, at equilibrium
E[S∗, I∗, R∗].

0 = det

 −βI∗ − γ1 − λ −βS∗ 0
βI∗ βS∗ − (γ2 + α)− λ 0
0 α −γ1 − λ



This implies that, −(λ+ γ1)(λ
2 + λ(k1 + e1) + (k0 + e0)) = 0.

The roots of the characteristic equation are:
• λ = −γ < 0

• and (λ2 + λ(k1 + e1) + (k0 + e0) = 0

Local stability then depends on the equation

λ2 + λ(k1 + e1) + (k0 + e0) = 0 (5.1)

where
k1 = (γ2 + α) + βI∗ + γ1
k0 = (βI∗ + γ1)(γ2 + α)
e1 = −βS∗

e0 = −βS∗γ1

Equation 5.1 is a second degree transcendental polynomial at τ = 0 with k1, k0, e1, e0
being real numbers. The steady state is asymptotically stable if the roots of the charac-
teristic equation has negative real parts (see[29]).

The roots have negative real parts if and only if ;
• k1 + e1 > 0 and
• k0 + e0 > 0

We see that:

1. k1 + e1 = γ2 + α + βI∗ + γ1 + (−βS∗) and
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2. k0 + e0 = (βI∗ + γ1)(γ2 + α)− βS∗γ1

Placing the new values of k1 + e1 and k0 + e0 into equation (5.1) , we get;
(λ2 + λ(λ2 + λγ2 + α + βI∗ + γ1 + (−βS∗)) + ((βI∗ + γ1)(γ2 + α)− βS∗γ1) = 0

I. If R0 =
µ N β

γ1(γ2+α)
< 1, then for E1[

µN
γ1
, 0, 0]

k1 + e1 = γ2 + α + β0 + γ1 + (−β µN
γ1
) = (γ2 + α)( γ1

γ2α
+ (1− βµN

γ1
)) > 0

k0 + e0 = (β0 + γ1)(γ2 + α)− β(µN
γ1
)γ1 = γ1(γ2 + α)− βµN > 0

Therefore,

(λ2+λ(k1+ e1)+ k0+ e0) = (λ2+λ(γ2+α)(
γ1
γ2α

+(1− βµN
γ1

))+ γ1(γ2+ γ)−βµN) = 0

Hence, equation (λ2 + λ(k1 + e1) + k0 + e0) = 0 has roots with negative real parts.
Consequently, if R0 < 1, then E1 is locally asymptotically stable.

II.(a) If R0 =
µNβ

γ1(γ2+α)
> 1, then for E1[

µN
γ1
, 0, 0] , k1 + e1 < 0

Hence, equation (λ2 + λ(k1 + e1) + k0 + e0) = 0 has roots with positive real parts and
this implies that E1 is unstable.

(b) If R0 =
µ N β

γ1(γ2+α)
> 1 and then E2[

γ2+α
β

; µ N β−γ1(γ2+α)
(γ2+α)β

; α((µNβ)−γ1(γ2+α)
βγ1(γ2+α))

]

k1 + e1 = γ2 + α + βI∗ + γ1 + (−βS∗) = γ2 + α + βI∗ + γ1 − β(γ2+α
β

) = βI∗ + γ1 > 0

k0+e0 = (βI∗+γ1)(γ2+α)−βS∗γ1 = (βI∗+γ1)(γ2+α)−β(γ2+α
β

)γ1 = βI∗(γ2+α) > 0

The quadratic equation (λ2 + λ(k1 + k0) + (λe1 + e0)) = 0 has k1 + e1 and k0 + e0 all
greater than zero.

The value of the roots of are λ1,2 = −(k1+e1)±
√
D

2
where D = (k1 + e1)

2 + 4(k0 + e0).
For D ≥ 0 D is less than (k1 + e1) and for D < 0,D has complex values. Either case the
value for λ has negative real parts.As in I, we obtain roots with negative real parts which
implies that E2 is locally asymptotically stable.

5.0.3 GENERALIZED SIR MODEL WITH DELAY

Given our generalized system with delay,

S ′ = µN − βS(t)I(t− τ)− γ1S(t)
I ′ = βS(t)I(t− τ)− (γ2 + α) I(t)
R′ = αI(t)− γ1R(t)
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We find the equilibrium E[S∗, I∗, R∗] by solving the systems

0 = µN − βS∗I∗ − γ1S
∗

0 = βS∗I∗ − (γ2 + α) I∗

0 = αI∗ − γ1R
∗

Equilibrium calculation and points are the same as for the Generalized SIR model
without delay.

• If R0 < 1 then generalized system is always equilibrium of E1[
µ N
γ1
, 0, 0] and it is

locally stable

• If R0 > 1 then the generalized has two equilibria given as E1[
µ N
γ1
, 0, 0], which is un-

stable and E2[
γ2+α
β

; µ N β−γ1(γ2+α)
(γ2+α)β

; α(µ Nβ− γ1(γ2+ α))
β γ1(γ2+α)

] which is locally asymptotically
stable. E2 would only exists if R0 > 1

5.0.4 LOCAL STABILITY OF EQUILIBRIUM OF GENERALIZED SIR
MODEL WITH DELAY

Our linearized system at equilibrium, for x0 ∈ Rn is given as x′ = A0x(t) +A1x(t− τ)
where A0 is the Jacobi matrix Df(x0) with respect to x(t) and A1 is the Jacobi matrix
Df(x0) with respect to x(t− τ).

We would differentiate column-wise ,the Jacobi matrix A0 with respect to d
dS
, d
dI
, d
dR

and Jacobi matrix A1 with respect to d
dS(t−τ)

, d
dI(t−τ)

, d
dR(t−τ)

Our Jacobi matrices would become :

A0 =

 −βτ(t− τ)− γ1 0 0
βI(t− τ) − (γ2 + α) 0

0 α −γ1



A1 =

 0 −βS(t) 0
0 −βS(t) 0
0 0 0


Placing both matrices into x′ = A0x(t)+A1x(t− τ) we solve to find the solutions of the
linear system.

We consider the solution of the linear system of a delay differential equation in
the form, x(t) = exp(−λτ)k. This means that with respect to the previous time,
x(t− τ) = exp(−λ(t− τ))k.

λ is a root of the characteristic equation det(A0+A1 exp(−λ(t− τ))−λE) = 0 where
E is a unit matrix. The characteristic equation is , at equilibrium E[S∗, I∗, R∗] is given
as

0 = det

 −βI∗ − γ1 − λ −βS∗ exp(−λτ) 0
βI∗ βS∗ exp(−λτ)− (γ2 + α)− λ 0
0 α −γ1 − λ


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This means −(λ + γ1)(λ
2 + λ(k1 + k0) + (λe1 + e0) exp(−λτ)) = 0 and we have one

root is λ = −γ < 0

This implies that the local stability depends on the roots of

(λ2 + λ(k1 + k0) + (λe1 + e0) exp(−λτ)) = 0 (5.2)

To find the local stability of E2 we need to show that equation (5.2) has no pure imag-
inary roots.Assuming that as λ = iω, ω > 0 is a root of the second degree transcendental
polynomial function equation (5.2) and i is a complex number.We use the Euler equation
exp(iωτ) in equation (5.2) to obtain

ω4 + (k21 − 2k0 − e21)ω
2 + k20 − e20 = 0 (5.3)

Substituting z = ω in the quadratic equation (5.3) we obtain

z4 + (k21 − 2k0 − e21)z
2 + k20 − e20 = 0 (5.4)

E2[
γ2+α
β

; µ N β−γ1(γ2+α)
(γ2+α)β

; α(µ Nβ− γ1(γ2+ α))
βγ1(γ2+α)

] for S∗, I∗andR∗ respectively, if

R0 =
µ N β

γ1(γ2+α)
> 1, (necessary condition for E to exist).

Using Equation 5.4, we get k20 − e20 = (k0 − e0)(k0 − e0) > 0

where
k1 = (γ2 + α) + βI∗ + γ1
k0 = (βI∗ + γ1)(γ2 + α)
e1 = −βS∗

e0 = −βS∗γ1

In varying time,
• if (k0 − e0) > 0 and
• (k21 − 2k0 + e21) < 0

then ω2
+ and ω2

− is not positive and the roots are also not positive. Hence the characteristic
equation would not have a purely imaginary root see ([29]).

k0 + e0 = (βI∗ + γ1)(γ2 + α)− βS∗γ1 > 0

k0 − e0 = (βI∗ + γ1)(γ2 + α)− βS∗γ1 > 0

Hence (k0 − e0)
2 = (k0 − e0)(k0 − e0) > 0 when R0 = µ N β

γ1(γ2+α)
> 1. We have

(k21 − 2k0 + e21) = (γ1 + βI∗)2 < 0 . Consequently equations (5.2) and (5.4) have no
positive roots and hence has no pure imaginary roots.

Moreover, as shown in II.(b) the quadratic equation (λ2 + λ(k1 + k0) + (e1 + e0)) = 0
has k1 + e1 and k0 + e0 all greater than zero.
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The value of the roots of are λ1,2 = −(k1+e1)±
√
D

2
where D = (k1 + e1)

2 + 4(k0 + e0).
For D ≥ 0, D is less than (k1 + e1) and for D < 0,D has complex values. Either case the
value for λ has negative real parts.And so we obtain roots with negative real parts which
implies that E2 is locally asymptotically stable.

For the local stability of the characteristic equation at equilibrium E1[
µ N
γ1
, 0, 0],it is

given as:

(λ2 + λ(k1 + k0) + (λe1 + e0) exp(−λτ)) = 0, which becomes

(λ2 + λ(γ2 + α + γ1) + γ1(γ2 + α)− (µN
γ1
(λ+ γ1) exp(−λτ)) = 0 = F(λ)

F(0) = (02+0(γ2+α+ γ1)+ γ1(γ2+α)− (µN
γ1
(0+ γ1) exp 0τ) = γ1(γ2+α)−µNβ < 0

if R0 > 1
On the other hand, λ = ∞ when R0 > 1, F(∞) → ∞ hence F(λ) has positive roots which
implies E1 is unstable for R0 < 1.

The above analysis of the basic reproductive number at the equilibrium points of the
system corresponds to the average number of infections caused by an infected person on
susceptible population. When R0 > 1, the disease would be difficult to contain and might
become endemic to the specific population under observation. The disease goes extinct
when R0 < 1.

5.1 EPIDEMIC CURVES FOR SIR MODEL
Using a projected population ofN = 624, 404 with an initial number of infected individuals
of COVID-19 to be, I(0) = 600 and R(0) = 0,to be initial recovered individuals. We
deduce our S(0) = N − I(0) − R(0) = 623504.The time length τ , from exposure to
symptoms is commonly between 5 to 14 days. We used an average time length of 11.5
days.About 97 percent of people show symptoms in that time length . Our α = 1

timelength
=

0.105 and assumed rate of transmission from the susceptible region to the infected region
is given as β = 0.3 and 0.03.We want to examine the dynamics of two basic reproductive
number for the system, when R0 > 1 and when R0 < 1, to know the evolution of the
Epidemic SIR model curves and also determine the local stability of the population.Below
are images of the SIR model with and without delay produced using our assumed values
in MATLAB.

5.1.1 SIR MODEL WITHOUT TIME DELAY

In Figure 6, we compare the epidemic curves of an SIR model with a basic reproductive
number of R0 > 1 set at 3 and R0 < 1 set at 0.3 respectively.

Each figure was generated over a time period of 365 days. Incubation period or
latency period was not considered in the generation of these epidemic curves.This means
that Susceptible individuals would get infected immediately. When R0 > 1, infection
rate rises exponentially to a peak of morbidity, which falls on 49 days and reaches 175
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Figure 6: Epidemic curves of an SIR model without delay with basic reproductive num-
bers, R0 > 1 and R0 < 1 respectively .

individuals per a 1000 population.It then decays into an endemic stage. The pandemic
lasts in about 100 days . Fewer people may get infected but the disease would take quite
some time to go extinct.
When R0 < 1, the rate of infection dies out and the susceptible population remains
constant. At this point, the population or system is said to have a disease- free equilibrium.

5.1.2 SIR MODEL WITH TIME DELAY

Figure 7 included the incubation period before the host becomes infectious. The Epidemic
curves of the SIR model with delay has a basic reproductive number of R0 > 1 set at 3
and R0 < 1 set at 0.3.

[ ]

Figure 7: Epidemic curves of an SIR model with delay with basic reproductive
numbers,R0 > 1 and R0 < 1 respectively

The average incubation period is τ = 11.5. Susceptible individuals who get infected
show symptoms within this period and are infectious. When R0 > 1 , rate of infection
grows steadily to a peak of morbidity,which falls on 110 days and reaches 80 individuals
per a 1000 population.It decays into an endemic stage. Here the pandemic lasts in about
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177 days. When R0 < 1 , the disease dies out and the Susceptible population remains
constant and disease-free.

5.1.3 GENERALIZED SIR MODEL WITHOUT TIME DELAY

In Figure 8, we compare the epidemic curves of Generalized SIR model without delay
with a basic reproductive number of R0 > 1 set at 3 and R0 < 1 set at 0.3

[ ]

Figure 8: Epidemic curves of the Generalized SIR model without delay with basic repro-
ductive numbers,R0 > 1 and R0 < 1 respectively

In the generalized SIR model without delay, pandemic lasts for about 93 days.The
susceptible region decreases sharply not to zero.The infected region rises exponentially
to a peak of morbidity ,which falls on 43 days and reaches 119 individuals per a 1000
population.It decays to the endemic stage after 96 days. At R0 > 1 , it stays in its
endemic stage and would take some time to go extinct.

5.1.4 GENERALIZED SIR MODEL WITH TIME DELAY

Figure 9, we compares the epidemic curves of Generalized SIR model with delay with a
basic reproductive number of R0 > 1 set at 3 and R0 < 1 set at 0.3

The susceptible region decreases at a steady rate.This makes the infected region to
increase slowly .It decays to an endemic state,with approximately no peak of morbidity.It
can happen that safety measures are put in place after the pandemic started and this
slows down infection rate.The pandemic takes 180 days and may take a while for the
disease to die out. At R0 < 1, the population has a disease-free equilibrium.
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Figure 9: Epidemic curves of the Generalized SIR model with delay with basic reproduc-
tive numbers,R0 > 1 and R0 < 1 respectively

5.1.5 SIR MODEL WITH AND WITHOUT TIME DELAY

We compare the SIR model without to the generalized SIR model with delay. We set the
basic reproductive number R0 > 1 at 3 and R0 < 1 at 0.3.

[ ]

Figure 10: Epidemic curves of the Susceptible Compartment of an SIR model with and
without delay with basic reproductive numbers,R0 > 1 and R0 < 1 respectively

[ ]

Figure 11: Epidemic curves of the Infected Compartment an SIR model with and without
delay with basic reproductive numbers,R0 > 1 and R0 < 1 respectively
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Figure 12: Epidemic curves of the Removed Compartment of an SIR model with and
without delay with basic reproductive numbers,R0 > 1 and R0 < 1 respectively

[ ]

Figure 13: Epidemic curves of the SIR model with and without delay with basic repro-
ductive numbers,R0 > 1 and R0 < 1 respectively . Susceptible(red),Infected(blue) and
Removed (Green)

When R0 > 1 ,the SIR model without delay has pandemic lasting 100 days.There is a
sharp decrease in the susceptible population and the rate of infection grows exponentially
to a peak of morbidity, which falls on 40 days, and reaches 175 individuals per 1000 pop-
ulation.Due to increase in infection of the population,many would recover (either heal or
die). Comparing to the SIR model without delay, the SIR model with delay has infection
rate growing gradually at a steady pace .It reaches a peak of morbidity, which falls on 110
days and reaches 80 individuals per 1000 population. The pandemic lasts for 200days.
SIR model with delay is more realistic than the SIR model without delay because it
involves the latency period. The Susceptible population decreases at a slower pace .In-
dividuals, after coming in contact with an infected individual, might not be infected
(the individual might be immune),unless symptoms of disease show after incubation pe-
riod.Hence,the infected population increases at a slower pace which is more realistic.At
R0 < 1, the disease dies out,making the system disease free.

5.1.6 GENERALIZED SIR MODEL WITH AND WITHOUT TIME DELAY

We compare the generalized SIR model without delay to the generalized SIR model with
delay at R0 < 1 set at 0.3 and R0 > 1 set at 3.
In R0 > 1, Susceptible region decreases but never to zero in each model. In the SIR
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model with delay, the infected region rises exponentially to a peak of morbidity which
falls on 43 days reaching 119 individuals per 1000 population.The pandemic in the model
without delay lasts 96 days.In the model with delay, there is a gradual decrease in the
susceptible population which makes transmission into the infected compartment low.There
is approximately no peak of morbidity.

[ ]

Figure 14: Epidemic curves of the Susceptible compartment of the Generalized SIR model
with and without delay with basic reproductive numbers,R0 > 1 and R0 < 1 respectively

[ ]

Figure 15: Epidemic curves of the Infected compartment of the Generalized SIR model
with and without delay with basic reproductive numbers,R0 > 1 and R0 < 1 respectively

[ ]

Figure 16: Epidemic curves of the Removed compartment of the Generalized SIR model
with and without delay with basic reproductive numbers,R0 > 1 and R0 < 1 respectively
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Figure 17: Epidemic curves of the Generalized SIR model with and without delay with ba-
sic reproductive numbers,R0 > 1 and R0 < 1 respectively .Susceptible(red),Infected(blue)
and Removed (Green)

5.1.7 SIR MODEL WITH DIFFERENT TIME DELAY

We describe the evolution of the epidemic curve at different time delays. The incubation
period of COVID-19 is from 5 to 14 days. We chose time variations of 5, 8.5, 11.5 and
14. Susceptible without delay, Infected without delay and
Removed without delay(blueshortdashes), τ1 = 5(bluecurve), τ2 = 9.5(yellowcurve), τ3 =
11.5(greencurve)andτ4 = 14(redcurve). We set R0 < 1 at 0.3 and R0 > 1 set 3

[ ]

Figure 18: Figure:Epidemic curves of the Susceptible compartment with Different time
delays and basic reproductive numbers,R0 > 1 and R0 < 1 respectively

[ ]

Figure 19: Figure:Epidemic curves of the Infected compartment with Different time delays
and basic reproductive numbers,R0 > 1 and R0 < 1 respectively

We compare the SIR model with different time delays.The SIR curve without time
delay was fixed into it to show the dynamics of the disease in those two cases.
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Figure 20: Epidemic curves of the Removed Compartment with Different time delay with
basic reproductive numbers, R0 > 1 and R0 < 1 respectively

[ ]

Figure 21: Epidemic curves of the SIR model with Different time delay with basic repro-
ductive numbers, R0 > 1 and R0 < 1 respectively .

When R0 > 1, the individuals in the Susceptible compartment get the infection immedi-
ately.IT causes an increase in the Infected region in earlier times (τ < 14) within a short
pandemic period and more recoveries.
As the latency period increases, it would take a longer time for a susceptible individual
to get infectious.The latency period elongates the timeline of the epidemic.

5.1.8 GENERALIZED SIR MODEL WITH DIFFERENT TIME DELAY

Describing the evolution of the Generalized epidemic SIR model curve at different time
delays. The incubation period of COVID-19 is from 5 to 14 days. We choose time
variations of 5, 8.5, 11.5 and 14. Susceptible without delay, Infected
without delay and Removed without delay(blueshortdashes), τ1 = 5(bluecurve), τ2 =
9.5(yellowcurve), τ3 = 11.5(greencurve)andτ4 = 14(redcurve).We set R0 < 1 at 0.3 and
R0 > 1 set 3
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Figure 22: Epidemic curves of the Susceptible compartment of the Generalized SIR model
with Different time delay with basic reproductive numbers,R0 > 1 and R0 < 1 respectively

[ ]

Figure 23: Epidemic curves of the Infected compartment of the Generalized SIR model
with Different time delay with basic reproductive numbers,R0 > 1 and R0 < 1 respectively

[ ]

Figure 24: Epidemic curves of the Removed compartment of the Generalized SIR model
with Different time delay with basic reproductive numbers,R0 > 1 and R0 < 1 respectively

[ ]

Figure 25: Epidemic curves of a Generalized SIR model with Different time delay. We
included the basic reproductive numbers,R0 > 1 and R0 < 1 respectively to show,if it
was disease-free or endemic of at different time delays .
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6 Conclusion
Time delays have been used over many years to solve problems in various fields; from
biology,physics,engineering and other fields. Time delays in a dynamical system system
yields more realistic results than the ordinary differential equation.
In this thesis, we give an insight on delay differential equations in a dynamical sys-
tem,especially in the view of the stability of their solution. In chapter one, we gave a
theoretical background of delay differential, some examples and general principle sur-
rounding the Delay Differential Equation.
In Chapter 2, we discussed about dynamical systems and the fundamental theories neces-
sary for stability of a system.In Chapter 3 we discuss more on delay differential equations
and it theories that accounts for stability.

In Chapter 4, we discussed epidemic dynamic models, types of the epidemic mathe-
matical models and basic reproductive number.We formulated a mathematical model to
solve an epidemiological dynamical problem.This model described the spread of a disease
in a specific population under investigation.The vital demographic quantities were in-
cluded in the formulation of this model.We chose the SIR model to analyze the spread of
the Novel Coronavirus disease.We formulated the model without delays and then involved
time delays.Epidemic problems are first written in Ordinary differential equations when
solving.Because we want a more realistic result ,we involve time delays.

In Chapter 5, we assumed data was to analyze the dynamics of the disease using the
SIR with delay and without delay. We observed how parameters like the basic reproduc-
tive number R0 affects the dynamics of the disease using the SIR model.

It is observed that, when the SIR model is without delay, it does not involve the la-
tency period of the disease and hence gives unrealistic results.With time delays involved,
the results of the SIR turns out to be more realistic compared to the SIR model without
delay. Analysis of the basic reproductive number,R0 using the SIR model, shows that
the disease is driven out at R0 < 1.This gives a disease-free equilibrium and the system,
asymptotically stable. At R0 > 1, the disease is in an endemic state and would take a
while to be die out.

Due to how realistic the results of the SIR model with delay is, it helps the right
stakeholders to take steps that would curbed the disease spread. Using the model figures
to analyze, stakeholders can rules for everyone in the susceptible population to observe
social distancing and use nose masks. As the disease rises exponentially to a peak of mor-
bidity, social distancing will not be enough. Public gatherings of more than two people is
then cancelled. The disease decreases gradually into an endemic state. This shows that
the steps taken were good. To wipe the disease out completely, stakeholders introduce
vaccines and regular checkups.
Stakeholders are able to know using the SIR model with delay that, the disease may or
may not be difficult to contain.

We resolve that ,ordinary differential equations,although it gives good approximations
of a situation, fails to show the dynamics of the system well.This is done better by delay
differential equation in the chosen dynamical system.It gives realistic results, although it
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is difficult to analyze.
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7 APPENDIX
{SIR MODEL FUNCTION}
% This function solves SIR model.

function [t,S] = modelSIR(S0,I0,R0,beta,alpha, t,N)
x0 = [S0 I0 R0];

[T,Sv] = ode15s(@DifEq, t, x0);

function dS = DifEq(t, x)
xdot = zeros(3,1);
xdot(1) = -beta.* x(1).* x(2)/N ;
xdot(2) = beta.* x(1).* x(2)/N - alpha.*x(2);
xdot(3) = alpha.*x(2);
dS = xdot;

end

% S = Sv(:,1);
S = Sv;
end

GENERALIZED SIR MODEL FUNCTION

function [t,S] = gen_modelSIR(S0,I0,R0,beta,alpha, t,N,mu,gamma1,gamma2)
% This function solves generalized SIR model.
x0 = [S0 I0 R0];

[T,Sv] = ode15s(@DifEq, t, x0);

function dS = DifEq(t, x)
xdot = zeros(3,1);
xdot(1) = mu-beta.* x(1).* x(2)/N-gamma1.* x(1) ;
xdot(2) = beta.* x(1).* x(2)/N - (gamma2+alpha).*x(2);
xdot(3) = alpha.*x(2)-gamma1.* x(3);
dS = xdot;

end

% S = Sv(:,1);
S = Sv;
end

SIR MODEL WITHOUT DELAY

N = 624404;\\
S0 = 623504;\\ % initial susceptible
I0 = 600;\\ % initial infections
R0 = 0;\\ % initial removed
beta = 0.3;\\ % rate of infection
alpha = 0.1052;\\ % rate of recovery
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time = 0:1:365;\\ % time interval
tv = linspace(time(1), time(end),365); \\

SIR = model(S0,I0,R0,beta,alpha,tv,N);\\
figure(1)\\
plot(tv,SIR(:,1),'r',tv,SIR(:,2),'b',tv,SIR(:,3),'g','LineWidth',2); grid on;\\
xlabel('Days');ylabel('Number of individuals');\\
legend('S','I','R');\\
function S = model(S0,I0,R0,beta,alpha, t,N)\\
x0 = [S0 I0 R0];\\

[T,Sv] = ode15s(@DifEq, t, x0);\\

function dS = DifEq(t, x)\\
xdot = zeros(3,1);\\
xdot(1) = -beta.* x(1).* x(2)/N ;\\
xdot(2) = beta.* x(1).* x(2)/N - alpha.*x(2);\\
xdot(3) = alpha.*x(2);\\
dS = xdot;\\

end\\

% S = Sv(:,1);
S = Sv;\\
end\\

SIR MODEL WITH DELAY
clear all; close all;

N = 624404; % population
beta = 0.3; % rate of infection
alpha = 0.1052; % rate of recovery
S0 = 623504; % initial susceptible
I0 = 600; % initial infections
R0 = 0; % initial removed
tv = 0:1:365;
tau= 11.5; % delay
sol = dde23(@kmf,[tau],[S0;I0 ;R0 ],[0, 365]);

hold on;
figure(1)
plot(sol.x,sol.y,'LineWidth',2);
legend('S(t)','I(t)','R(t)')
name=sprintf('SIR model with delay (tau = %0.0f days )',tau); %title of graph
title(name)
xlabel('Days');ylabel('Number of individuals');
grid on;

function v = kmf(t,y,Z)
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ylag1 = Z(:,1);
v = zeros(3,1);
N = 624404;
beta = 0.3; % rate of infection
alpha = 0.1052; % rate of recovery
v(1) = - beta*y(1)*ylag1(2)/N;
v(2) = beta*y(1)*ylag1(2)/N - alpha*y(2);
v(3) = alpha*y(2);
end

GENERAL SIR MODEL WITHOUT DELAY
% This Matlab script solve generalized SIR model

close all;
clear all;
N = 624400;
S0 = 623500; % initial susceptible
I0 = 600; % initial infections
R0 = 0; % initial removed
beta = 0.3; % rate of infection
alpha = 0.1052; % rate of recovery
time = 0:1:365; % time interval
tv = linspace(time(1), time(end),365);
mu=0.004;
gamma1=0.005;
gamma2=0.001;
tv = 0:1:365;

SIR = model(S0,I0,R0,beta,alpha, tv,N,mu,gamma1,gamma2);

figure(1)
plot(tv,SIR(:,1),'b',tv,SIR(:,2),'r',tv,SIR(:,3),'g','LineWidth',2); grid on;
xlabel('Days');ylabel('Number of individuals');
legend('S','I','R');

function [S] = model(S0,I0,R0,beta,alpha, t,N,mu,gamma1,gamma2)
% generalized SIR model.
x0 = [S0 I0 R0];

[T,Sv] = ode15s(@DifEq, t, x0);

function dS = DifEq(t, x)
xdot = zeros(3,1);
xdot(1) = mu-beta.* x(1).* x(2)/N-gamma1.* x(1) ;
xdot(2) = beta.* x(1).* x(2)/N - (gamma2+alpha).*x(2);
xdot(3) = alpha.*x(2)-gamma1.* x(3);
dS = xdot;

end
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% S = Sv(:,1);
S = Sv;

end

GENERAL SIR MODEL WITH DELAY
% This script solves generalized SIR model with delay
clear all; close all;
N = 624404; % population
beta = 0.3; % rate of infection
alpha = 0.1052; % rate of recovery
S0 = 623504; % initial susceptible
I0 = 600; % initial infections
R0 = 0; % initial removed
tv = 0:1:365;
tau= 11.5; % delay
sol = dde23(@kmf,[tau],[S0;I0 ;R0 ],[0, 365]);

hold on;
figure(1)
plot(sol.x,sol.y,'LineWidth',2);
legend('S(t)','I(t)','R(t)')
name=sprintf('SIR model with delay (tau = %0.0f days )',tau); %title of graph
title(name)
xlabel('Days');ylabel('Number of individuals');
grid on;

% generalized system with delay
function v = kmf(t,y,Z)
ylag1 = Z(:,1);
v = zeros(3,1);
N = 624404;
beta = 0.3; % rate of infection
alpha = 0.1052; % rate of recovery
mu=0.004;
gamma1=0.005;
gamma2=0.001;
v(1) = mu- beta*y(1)*ylag1(2)/N-gamma1.*y(1);
v(2) = beta*y(1)*ylag1(2)/N - (gamma2+alpha)*y(2);
v(3) = alpha*y(2)-gamma1*y(3);
end

COMPARING SIR MODEL WITH AND WITHOUT DELAY
clear all; close all;
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%comparison of SIR delay with and without time delay
%global beta;
N = 624404; % population
beta = 0.3; % rate of infection
alpha = 0.1052; % rate of recovery
S0 = 623504; % initial susceptible
I0 = 600; % initial infections
R0 = 0; % initial removed
tv = 0:1:365;

[t,SIR] = modelSIR(S0,I0,R0,beta,alpha,tv,N); % solution of SIR model without
delay - calling function modelSIR.m

sol = dde23(@kmf,[11.5],[S0;I0 ;R0 ],[0, 365]);

hold on;
figure(1)
plot(sol.x,sol.y(1,:),'r--',tv,SIR(:,1),'r');
legend('DDE model','ODE model')
title('S(t)')
xlabel('Days');ylabel('Number of individuals');
grid on;
figure
plot(sol.x,sol.y(2,:),'b--',tv,SIR(:,2),'b');
legend('DDE model','ODE model')
title('I(t)')
xlabel('Days');ylabel('Number of individuals');
grid on;
figure
plot(sol.x,sol.y(3,:),'g--',tv,SIR(:,3),'g');
legend('DDE model','ODE model')
title('R(t)')
xlabel('Days');ylabel('Number of individuals');
grid on;
figure
plot(sol.x,sol.y(1,:),'r--',tv,SIR(:,1),'r',sol.x,sol.y(2,:),
'b--',tv,SIR(:,2),'b',
sol.x,sol.y(3,:),'g--',
tv,SIR(:,3),'g');
legend('DDE model','ODE model')
title('S(t), I(t), R(t)')
xlabel('Days');ylabel('Number of individuals');
grid on;
function v = kmf(t,y,Z)
ylag1 = Z(:,1);
v = zeros(3,1);
N = 624404;
beta = 0.3; % rate of infection
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alpha = 0.1052; % rate of recovery
v(1) = - beta*y(1)*ylag1(2)/N;
v(2) = beta*y(1)*ylag1(2)/N - alpha*y(2);
v(3) = alpha*y(2);
end

COMPARING GENERALIZED SIR MODEL WITH AND WITHOUT DELAY
%This script compares generalized SIR model with and without delay

clear all; close all;
N = 624404; % population
beta = 0.3; % rate of infection
alpha = 0.1052; % rate of recovery
S0 = 623504; % initial susceptible
I0 = 600; % initial infections
R0 = 0; % initial removed
tv = 0:1:365;
mu=0.004;
gamma1=0.005;
gamma2=0.001;
tau= 11.5; % delay
sol = dde23(@kmf,[tau],[S0;I0 ;R0 ],[0, 365]);

% solution of generalized SIR model without delay - calling function gen_modelSIR.m
[t,SIR] = gen_modelSIR(S0,I0,R0,beta,alpha, tv,N,mu,gamma1,gamma2);

sol = dde23(@kmf,[11.5],[S0;I0 ;R0 ],[0, 365]);

hold on;
figure(1)
plot(sol.x,sol.y(1,:),'r--',tv,SIR(:,1),'r');
legend('DDE model','ODE model')
title('S(t)')
xlabel('Days');ylabel('Number of individuals');
grid on;
figure
plot(sol.x,sol.y(2,:),'b--',tv,SIR(:,2),'b');
legend('DDE model','ODE model')
title('I(t)')
xlabel('Days');ylabel('Number of individuals');
grid on;
figure
plot(sol.x,sol.y(3,:),'g--',tv,SIR(:,3),'g');
legend('DDE model','ODE model')
title('R(t)')
xlabel('Days');ylabel('Number of individuals');
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grid on;
figure
plot(sol.x,sol.y(1,:),'r--',tv,SIR(:,1),'r',sol.x,sol.y(2,:),
'b--',tv,SIR(:,2),'b',sol.x,sol.y(3,:),'g--',tv,SIR(:,3),'g');
legend('DDE model','ODE model')
title('S(t), I(t), R(t)')
xlabel('Days');ylabel('Number of individuals');
grid on;

% generalized system with delay
function v = kmf(t,y,Z)
ylag1 = Z(:,1);
v = zeros(3,1);
N = 624404;
beta = 0.3; % rate of infection
alpha = 0.1052; % rate of recovery
mu=0.004;
gamma1=0.005;
gamma2=0.001;
v(1) = mu- beta*y(1)*ylag1(2)/N-gamma1.*y(1);
v(2) = beta*y(1)*ylag1(2)/N - (gamma2+alpha)*y(2);
v(3) = alpha*y(2)-gamma1*y(3);
end

COMPARING SIR MODEL WITH DIFFERENT DELAY
clear all;
close all;
%comparing model with different time delays
%global beta;
N = 624404; % population
beta = 0.3; % rate of infection
alpha = 0.1052; % rate of recovery
S0 = 623504; % initial susceptible
I0 = 600; % initial infections
R0 = 0; % initial removed
tv = 0:1:365;

[t,SIR] = modelSIR(S0,I0,R0,beta,alpha,tv,N); % solution of SIR model without
delay - calling function modelSIR.m

tau= [5,9.5,11.5,14]; % vector of different delays,
there can be also more or less delay
for i= 1 : length(tau)
sol(i) = dde23(@kmf,[tau(i)],[S0;I0 ;R0 ],[0, 365]);
end
hold on;
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% comparison S(t) with different delay
for i=1:length(tau)
plot(sol(i).x,sol(i).y(1,:),'LineWidth',2);
plot(tv,SIR(:,1),'--','LineWidth',2) % S(t) without delay
title('S(t) with different delays')
xlabel('Days');ylabel('Number of individuals');
end;
figure;

% comparison I(t) with different delay
for i=1:length(tau)
hold on;
plot(sol(i).x,sol(i).y(2,:),'LineWidth',2);
plot(tv,SIR(:,2),'--','LineWidth',2) % I(t) without delay
title('I(t) with different delays')
xlabel('Days');ylabel('Number of individuals');
end;
figure;

% comparison R(t) with different delay
for i=1:length(tau)
hold on;
plot(sol(i).x,sol(i).y(3,:),'LineWidth',2);
plot(tv,SIR(:,3),'--','LineWidth',2) % R(t) without delay
title('R(t) with different delays')
xlabel('Days');ylabel('Number of individuals');
end;

figure;

plot(sol(1).x,sol(1).y,sol(2).x,sol(2).y,'--','LineWidth',2);

function v = kmf(t,y,Z)
ylag1 = Z(:,1);
v = zeros(3,1);
N = 624404;
beta = 0.3; % rate of infection
alpha = 0.1052; % rate of recovery
v(1) = - beta*y(1)*ylag1(2)/N;
v(2) = beta*y(1)*ylag1(2)/N - alpha*y(2);
v(3) = alpha*y(2);
end

51



COMPARING GENERALIZED SIR MODEL WITH DIFFERENT DELAYS
%This script shows the change of generalized SIR model
with different delays and also compare with generalized SIR model without delay

clear all; close all;
N = 624404; % population
beta = 0.3; % rate of infection
alpha = 0.1052; % rate of recovery
S0 = 623504; % initial susceptible
I0 = 600; % initial infections
R0 = 0; % initial removed
tv = 0:1:365;
mu=0.004;
gamma1=0.005;
gamma2=0.001;

% solution of generalized SIR model without delay - calling function gen_modelSIR.m
[t,SIR] = gen_modelSIR(S0,I0,R0,beta,alpha, tv,N,mu,gamma1,gamma2);

% vector of different delays, there can be also more or less delay
tau= [5,9.5,11.5,14];
for i= 1 : length(tau)
sol(i) = dde23(@kmf,[tau(i)],[S0;I0 ;R0 ],[0, 365]);
end
hold on;

% comparison S(t) with different delays
for i=1:length(tau)
plot(sol(i).x,sol(i).y(1,:),'LineWidth',2);
plot(tv,SIR(:,1),'--','LineWidth',2) % S(t) without delay
title('S(t) with different delays')
xlabel('Days');ylabel('Number of individuals');
end;
figure;

% comparison I(t) with different delays
for i=1:length(tau)
hold on;
plot(sol(i).x,sol(i).y(2,:),'LineWidth',2);
plot(tv,SIR(:,2),'--','LineWidth',2) % I(t) without delay
title('I(t) with different delays')
xlabel('Days');ylabel('Number of individuals');
end;
figure;

% comparison R(t) with different delays
for i=1:length(tau)
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hold on;
plot(sol(i).x,sol(i).y(3,:),'LineWidth',2);
plot(tv,SIR(:,3),'--','LineWidth',2) % R(t) without delay
title('R(t) with different delays')
xlabel('Days');ylabel('Number of individuals');
end;

figure;

plot(sol(1).x,sol(1).y,sol(2).x,sol(2).y,'--','LineWidth',2);

% generalized system with delays
function v = kmf(t,y,Z)
ylag1 = Z(:,1);
v = zeros(3,1);
N = 624404;
beta = 0.3; % rate of infection
alpha = 0.1052; % rate of recovery
mu=0.004;
gamma1=0.005;
gamma2=0.001;
v(1) = mu- beta*y(1)*ylag1(2)/N-gamma1.*y(1);
v(2) = beta*y(1)*ylag1(2)/N - (gamma2+alpha)*y(2);
v(3) = alpha*y(2)-gamma1*y(3);
end
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