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Abstract 

This thesis is a review of Delay Differential Equations in Dynamical systems.Starting 
wi th a general overview of Delay Differential Equations, we present the concept on De
lay Differentials and the application of its models,ranging from biology and population 
dynamics to physics and engineering.We wi l l also give an overview on Dynamical sys
tems and delay differential equations in the dynamic systems . A n area for modelling wi th 
delay differentials equations is Epidemiology.Emphasis is given to the development of 
the Susceptible-Infected-Removed(SIR) epidemiological model without and with time de
lay. We the analyse our two models under equilibra and local stability using assumed data 
of C O V I D - f 9 .Results would be compared between the model without delays and model 
wi th delays. 
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1 INTRODUCTION 
Delay Differential equations also called time delays has attracted much attention over 200 
years to the field of nonlinear dynamics. It is used for analysis and prediction in various 
fields of biologyphysics and engineering. 

Time delays has its solutions depending on the past history of the system to predict the 
present .It is meaningless for a system not to have a history. Since most dynamic systems 
are governed by the principle of causality(the future state of the system is independent 
of the past but depends solely on the present to predict the future), it is important to 
include the history of the system if we want a realistic model of the system. 
If the model does not depend on history then it generally consists of ordinary differential 
equations or partial differential equations. 
Other model incorporating history generally include Retarded Functional differential 
equations(RFDEs) and Neutral Functional Differential equations(NFDEs). 
Examples of differential equations with past dependence are Delayed Logistic Equation 
wi th a Discrete Delay, Delayed Logistics Equation wi th Distributed delayDelayed Lotka-
Volterra Predator-Prey Systems,Neutral Delay Logistic equation,Delay models in Physi-
ologyDelayed Epidemic models amongst others, see [40] 

Time delays can make unstable a stable equilibrium and can cause populations to 
fluctuate and this makes it more complicated than the ordinary differential equation. 
In this thesis, we review a Delay Differential Equation model arising from analysing an 
epidemiological system. 
Epidemiology aims at investigating diseases and state of health of a specific population 
in order to find solutions to health related problems of that population. 
Time delay mathematical models are used to model the complex dynamics of the diseases 
in the population. 

1.1 B A C K G R O U N D 
The study into delay differential equations has been ongoing for at least two centuries. 
This claim has been referenced to E . Schmitt (1911). 
Some of the early work, like most fields of mathematics, started from geometry and 
number theory. The importance of considering hereditary effects in modelling physical 
systems was emphasized at the International Conference of Mathematicians by Picard 
(1908). Volterra (1931) in his book explained and outlined the role of hereditary effects 
on models for the interaction of species. 

In the Soviet Union of the 1940s, more than in other parts of the world, this subject 
gained pace due to the consideration of meaningful models in engineering systems and 
control. A t the time it was evident, especially to engineers, that physical systems had the 
occurrence of hereditary effects but there was little theory to explain their observations 
in these models. 
In the last half century, there has been tremendous development in the theory of differen
t ial equations to the extent that it is now imbued in the vocabulary of researchers across 
multiple disciplines. 
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Dynamical systems theory also known as Chaos Theory comprises of methods for 
analysing differential equations and iterated mapping. A given deterministic dynamical 
system can be proven to have stable or unstable solutions but this does not necessarily 
mean that the phenomenon it describes behaves likewise; that is dependent on the math
ematical model's quality. 

More than half the research work on delay differential equations dealt primarily wi th 
linear differential equations and the preservation of stability of equilibra under small non
linear perturbations when the linearization was stable (or unstable) see [1]. 
Laplace transforms are naturally used for linear equations wi th constant coefficients. This 
resulted in the expansions of solutions in terms of eigenfunctions and convergence prop
erties of these expansions. 

Understanding the extent to which one could apply Lyapunov's second method (1891) 
was important to study the stability of equilibra. It could be said that the bir th of the 
modern theory came forth from Lyapunov's second method see[l]. 
Poincare's work on celestial mechanics(Poincare, 1899) introduced Qualitative Theory of 
Dynamical systems.The methods he developed prepared the foundation for the local and 
global analysis of non-linear differential equations and many other concepts and theories. 

W i t h the periodically-disturbed pendulum, Poincare showed that mechanical systems 
wi th two or more degrees of freedom might have homoclinic orbits and hence might not 
be integrable. 

G.D.Birkhoff (1927) showed that near any homoclinic point of a two-dimensional 
map,there is an infinite sequence of periodic orbits whose periods approach infinity. He 
also showed (Birkhoff 1932) annulus maps having orbits wi th different periods can possess 
complicated limit sets separating their domains of attraction. 

The theory of dynamical systems does not address specific phenomena nor does it 
propose certain models of reality. Instead,it provides a non strict set of methods for 
analysing O D E s and iterated mappings. Its canonical problem have the form: 

Xj = fj {xi,x2, • • • , £ „ ; / / ! , • • • ,/Xfc), or Xj(l + 1) = Fj {xi(T),...,xn(T);//i,..., fxk) (1.1) 

where xi,... ,xn are state variables and fii,... are external control parameters, 
usually regarded as fixed for the purpose of solving (1.1) to obtain orbits x(£) = (xi(t), x2(t),... ,xn(t)) 
or | x ( / ) } - 0 . see [14] 

The solutions curves of the above equation (all orbits) are studied alongside the de
pendence of the set of solutions (i.e.phase portrait) on the parameters and the description 
of qualitative properties. These study are emphasized by this non-strict set of methods. 

The qualitative theory of dynamical systems is a mathematical theory founded on 
analysis, geometry and topology. 

Currently its reach has gone beyond the field of mathematical sciences. It is providing 
a unifying structure that classifies dynamical systems across a wide range of applications. 
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Delay differential equations share the quite many similarities wi th the general O D E s : 
existence, uniqueness, continuity of solutions and dependence of parameters. D D E s only 
go a step further to add some technicalities due to the infinite dimensional character of 
the problem. 

1.2 SOME MODELS INCORPORATING TIME DELAYS 
The following information was taken from see([40]). 

1.2.1 Delayed Logistic Equation with a Discrete Delay 

Generally, the simplest type of dependence of the past is that which only its state variable 
depends on the past, but the derivative of the state variable does not. This is the known 
retarded functional differential equation ( R F D E ) or the retarded difference differential 
equation ( R D D E ) 

dx 
x(t) = F(t,x(t),x(t-r)), x = — (1.2) 

The Wright 's equation is a well-known special case of 1.2. 

x(t) = 7 x ( t ) [1 - x(t - T)/K] (1.3) 

Equation 1.3 is frequently referred to as the delayed logistic equation with a discrete de
lay. It has known applications in probability methods in distribution of prime numbers 
see ([40]). 

For the study of population dynamics, only non-negative solutions of 1.3 are consid
ered. 

1.2.2 Delayed Logistic Equation with a Distributed Delay 

In a population, the immunological resistance of its members to a parasite that lives its 
complete life cycle in a host, without causing harm to the host, is dependent on the ex
posure of the host to the population of the parasite. "Characteristically, the increase is 
exponential during early stages of infection when the host offers an ideal environment. 
Subsequently, when the host becomes resistant and represents a less suitable environment, 
the rate of increase declines to zero and the population then rapidly decreases." Michel 
(1969) 

The following integro-differential equations is considered an appropriate model for the 
parasite population growth: 

d N 

—— = rN 
dt 

N fl 

I- — - N(s)G(t-s)ds 
K Jo 

; i .4) 

Instantenous self-crowding term is followed by a pollution term. This is most suitable 
when the integral is taken from t = 0, the time the a host ingests or comes in contact wi th 
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the the parasites. The simplest memory function can then be easily adopted, G(t) = k, 
where k is a constant. 

1.2.3 Delayed Epidemic Mode l 

"Mathematical biologist A . J Lotka investigated, in a series of papers from 1912 on, a 
differential equation model of malarial epidemics due to Ross(1911). In particular, he 
examined the effects of incubation delays. " The equations as given by Lotka for human 
population: 

hit) = bgm(t)(p - h(t))/p - Mh{t) - rh(t) (1.5) 

for the mosquito population, we have: 

fn{t) = bfh(t)(q - m{t))/p - Nm(t) - sm{t) (1.6) 

the total number of humans is given by p, the total population of the mosquitoes is 
given by q. These two parameters are treated as constants. The function h(t) stands 
for human population carrying the malaria organism. m(t) stands for mosquito popula
tion carrying the malaria organism, p - h(t) and q - h(t) stand for the healthy population. 

A fixed proportion of each of these populations is assumed to be infective, with the 
infective populations being fh and gm, respectively. The quantities M and TV are death 
rates, while r and s are recovery rates. It is assumed that each mosquito bites b people 
in unit time, and that each person receives a bites in unit time. 

For our present purposes what is of most interest is the modification to include incu
bation delays, quoted from Ross (1911) to be u = 0.5 month in human and v = 0.6 month 
in mosquito. We thus have 

h(t) = bgm(t - u)\p - h(t - u)\/p - ( M + r)h(t) 

fn{t) = bfh{t -v)[q- m(t - v)\/p — (N + S)m(t) 

The delay is from the time of a bite to the time at which the human or mosquito is 
infective. 
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2 DYNAMICAL SYSTEMS 
Dynamical systems generallyis a rule which describes the evolution of a state of a math
ematical model over time and it is given by systems of a differential equations. 
Mathematical models based on real situations are non-linear which makes it quite difficult 
to solve. The systems has its current state depending fully on previous state. 

The aim of dynamical systems is to understand the behavior of the chosen system,given 
rules for which the system evolves. 
These rules help define the changes in the system,given the states of the physical problem. 

The states are variables simply called the state variables and it is anything that can 
be represented wi th a number. 
Examples of these state variables are;population of a colony, the amount of money in an 
account, temperature,density of a chemical in a solution, the position of a particle and so 
on. 

Over the years Dynamical systems has been involved in the study of various math
ematical models which is used in various fields like; physics,biology,economics,chemistry 
and so on.Example is, in the analysis of environmental problems, we have physical models 
used a quantitative tools which constitute dynamical systems. 

A system measured in integer time values is called a Discrete Dynamical system (the 
state of the system evolves in discrete time steps) while a system wi th continuous mea
suring of time is referred to as Continuous Dynamical system whose system of evolution 
occurs smoothly over time. 

In this thesis we focus on a continuous dynamical system, which measures time con
tinuously and the system given by ordinary differential equations. 
We restrict ourselves to autonomous systems of ordinary differential equations of the 
system in Mn, that is for a system given as; 

x ' = / ( x ) 

where function / : Mn —> Mn is a C1 function and does not depend on the variable 
t . B y x ' it means the time derivative of x(x = x(t)). The non autonomous systems are 
not considered here, as any non autonomous system x = / ( x , t) wi th x e Mn can be 
rewritten as autonomous wi th x e Mn+1, by letting xn+i = t. 

2.1 DEFINITION OF D Y N A M I C A L SYSTEM 
The following theory can be found in [16],[24],[35]. 

Definition 2.1. A smooth continuous dynamical system denotes a pair where fl 
is a state space and 0 : M x f 2 — > - f 2 i s a continuously differentiable function (0 e C 1(f2)) 
satisfying 

(i) 0o (x) = x , V x e fil 
(ii) 0 t + s ( x ) = 0 t (0 s (x)) , V x e Q and t,s e M 
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The function <ft is often called an evolution operator, where 0t(x) = 0(t, x). 

Definition 2.2. Let Xo G f2 be an init ial state of a system. For a fixed time { 6 R the 
evolution operator 0 transforms x 0 into some state x(t) at time t, i.e. 

x(t) = 0 4 (Xo) 

Remark 1. fi, the state space usually refers to M n , as that is what would be considered in 
this thesis. 

Definition 2.3. Suppose an ini t ial value problem of an autonomous system of O D E s 

x' = /(x) 
x ( t 0 ) = x 0 

where / : E —> M.n, E is an open subset of M.n,f G C1(E) and x i G -E is the ini t ial 
value. 
Then x(t) is a solution of the ini t ial value problem (2.1) — (2.2) on an interval I if to G /, 

x (to) = x 0 and x(t) is a solution of the system of O D E s (1.1) on the interval J 

Remark 2. We assume / to be defined for all x G W1, i.e. / : M.n —>• M.n. 

Theorem 2.1. (The Existence and Uniqueness Theorem): Consider the initial value 
problem (2.1) — (2.2), where f : E —> M n , / G C 1 ( £ ; ) . T/jen t/iere exists an a > 0 snc/i t/jat 
t/ie initial value problem has a unique solution x(t) on the interval [—a, a}. 

Theorem 2.2. Theorem 2: Consider the initial value problem (2.1) — (2.2), then for each 
x 0 G E there is a maximal interval J = (a, (3) on which the initial value problem has a 
unique solution x(t) 

Definition 2.4. Let E C W1 and / G C 1 ^ ) . Let 0 ( t ,x 0 ) be the solution of (2.1) - (2.2) 
defined on its maximal interval J ( x 0 ) , x 0 G E. 
Then for t G J (x 0 ) , the family of evolution operators <f>t defined by 

<f)t ( X 0 ) = 0 ( t , X O ) 

is called the flow of the system (2.1). <ft
t
 is referred to as the flow of the vector field / . 

Definition 2.5. Suppose the ini t ial value xo is fixed and J = J (XQ) . Then the mapping 
0(-,x o) : J —> E defines a solution curve or a trajectory of the system (2.1) through the 
point x 0 G E. 
The trajectory is visualized as a motion along a curve V through the point x 0 . The arrow 
then indicates the orientation of the curve as time increases. 

The phase portrait of the system (2.1) refers to the set of all solution curves of (2.1) 
for different ini t ial points satisfying the init ial value problem (2.1) — (2.2) in the phase 
space. The solution curves in the phase space never intersect each other. 
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Definition 2.6. A point x* e E is called equilibrium point (fixed point, critical point) 
of the system (2.1) if / (x*) = 0(0 means the zero vector ). Moreover, for any trajectory 
starting in x*, i.e. x(0) = x*, is x(t) = <f>t (x*) = x* for any i e l 

In general, trajectories of the solution x(t) can be divided into 3 main categories: 

(i) F ixed point - the solution x(t) is constant, i.e. trajectory stays in the fixed point 
for all time. 

(ii) Cycle, periodic orbit - the solution x(t) is periodic, i.e. the trajectory forms a 
closed curve and stays on this curve for al l time. 

(iii) Open curve - the trajectory is an injective map never intersecting itself. 

2.2 Linear system 

Suppose the system given in (2.1) is linear, i.e. function / consists of linear terms 
only, / : Mn —> Mn. Then the system can be rewritten as 

x' = Ax 

where x e Mn, A is an n x n matrix and the following theorem holds. 

Theorem 2.3. (The Fundamental Theorem for Linear Systems): Let A be an n xn 
matrix. Then for a given x 0 G Mn, the initial value problem x' = A x , x(0) = x 0 has a 
unique solution for all t EM given by 

x(t) = e A t x 0 

2.3 Nonlinear system 
O n an interval J , a unique solution of an init ial valued problem of a non-linear dynamical 
system exists according to Theorem 3 and in very few cases can these non-linear cases be 
solved analytically unlike in the linear cases. 

Non-linear systems usually are made up of topological,geometrical and analytical tech
niques in the investigation of their behaviours. A s part of non-linear system's analy
sis,numerical methods plays an important role. 
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Linearization of nonlinear dynamical systems 
Nonlinear dynamical systems are investigated in the neighborhood of its equilibrium 
points.The local behaviour of the nonlinear system x' = f(x) near a hyperbolic equilib
r ium point x* is qualitatively determined by the behaviour of the linear system x' = A ( x ) , 
where A is the Jacobian matrix evaluated at point x*. 

Remark 3. The Jacobian matrix J evaluated at a fixed point x* e R n is given b y n x n 
matrix 

J = Df(x*) 

\ 
ln(x*) 
dxi dxx J 

The eigenvalues A of the Jacobian matrix can be computed as the roots of characteristic 
polynomial 

P (A) = de t ( J - A / ) 

where I represents the identity matrix. 

Definition 2.7. A n equilibrium point x* of the system (1.1) is called hyperbolic if none 
of the eigenvalues of the Jacobian matrix J = Df(x*) has zero real part. Otherwise, the 
equilibrium point is called non-hyperbolic. 

If the fixed point x* is hyperbolic, then according to Hartman-Grobman Theorem 
[1] there exists a neighborhood of this point, in which the nonlinear system x ' = f(x) is 
topologically conjugate to the system x ' = A ( x ) , where A is the linearization matrix, i.e. 
A D / ( x * ) . 

2.4 Stability : 
Stability of s system is when a small perturbation of ini t ial data yields a small change 
in the solution. Deviation of the solution caused by a perturbation of ini t ial data which 
disappears as t —> oo makes the solution attractive or asymptotically stable. 
In dynamical systems, it is more common to refer to a stability of equilibrium points of 
the given system. 

Definition 2.8. Let <f>t denotes the flow of the system (2.1) defined for all i e 1 . A n 
equilibrium point x* is (locally) stable if for all e > 0 there exists a S > 0 such that for 
all x e Ns (x*) and t > 0 then 

&(x) e Ns(x*) 
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Furthermore, x* is (locally) asymptotically stable if it is stable and if there exists a 
5 > 0 such that for all x G N$ (x*) 

l im 0t(x) = x* 

The equilibrium point is said to be unstable if it is not stable. 

Remark 4. The equilibrium point's stability is determined by the sign of real parts of the 
eigenvalues A of the Jacobian matrix. 

The following theorem holds : 

Theorem 2.4. Let J = Df (x*) be the Jacobian matrix for the system (1.1) evaluated at 
a fixed point x* and let \ be its eigenvalues. 

(i) 7/9ft (Aj) < 0 for all \ , then the fixed point x* is asymptotically stable. 

(ii) 7/3ft (Aj) > 0 for at least one \ , then the fixed point x* is unstable. 

(Hi) If R(\i) = 0 for at least one Aj, then the fired point x* is non-hyperbolic and its 
stability cannot be determined by the linearization method. 

Classification of basic fixed points can be found in the literature. For further inves
tigation of non-hyperbolic points, it is possible to use other methods which can help to 
determine their stability. The stability according to Lyapunov is defined as follows: 

Theorem 2.5. (Lyapunov Function): Suppose the nonlinear system (2.1) with an equi
librium point x* ,x* G E , where E is an open subset in R™. Now, suppose that there exists 
a function V : E —> W1 satisfying 

(i) V (x*) = 0 

(ii) V(x) > 0 J J X ^ X * . 

Then 

(i) ifV(x) < 0 for Vx e E, x* is stable. 

(ii) ifV(x) < 0 for Vx* G E \ {x*} ,x* is asymptotically stable. 

(Hi) if V"(x) > 0 for Vx G E\ {x*} , x* is unstable. 

The function V is called the Lyapunov function. The term V(x) = D V ( x ) f ( x ) , where 
DV = ( £ : ' ( s e e [16][24][35]). 
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3 DELAY DIFFERENTIAL EQUATIONS 

3.1 INTRODUCTION 
Delay differential equations(time delays) or simply, the system of differential equations 
wi th time lags are equations whose solutions depends on the history of a system. 
The solution depends on time,t = to- Time delays can be grouped under Neutral or Re
tarded and Continuous or Discrete. 
Delay differential equations over many years have been used in many fields in applied 
mathematics for example study of epidemics,automation,predator system analysis, other 
areas in engineering and biology. 

3.2 D E L A Y DIFFERENTIAL EQUATION (DDE) 
Let us consider the non-autonomous system of delay differential equations 

x'(t) = / ( t , x t ) , t > t 0 , (3.1) 

where x G Mn, to is the ini t ial time, / is a continuous function / : M x C —> Mn, 
C = C([—r, 0], Mn) is usually called the state of the dynamical system at time t and 
X ( e C is defined by 

x t (0) : = x ( t + 0), - r < 6 < 0. 

A solution of the system (3.1) on the interval [to,h) is a continuous function 
x : [to — r, t i ) —> Mn which satisfies (3.1) on [to,ti) for some t\ > to-

Initial condition for the system (3.1) is given by 

x < 0 = 0 (3.2) 

where 0 G C([—r, 0], Mn) is the state of the system at time t 0 , i.e. 

x ( t o + 0) = 0(0), -r < 6 < 0 

Given to and 0 G C([—r, 0], Mn), we say x(t) is solution of the ini t ial value problem 
(3.1)- (3.3) if it is a solution of the system (3.1) on [ t 0 , t i ) and satisfies condition (3.2). 

Analogous to the ordinary case, we can formulate a theorem on existence and unique
ness for the systems wi th delay (see [13] [40]). 

Theorem 3.1. Let D C M x C be an open set and suppose that f: D —> Mn be continuous 
and f{t, if) be Lipschitzian with respect to the second variable in every compact subset of D. 
7/ ( t o , 0 ) G D, then the initial value problem (3.1)- (3.2) has a unique solution on 
[to — r, to + a] for some a > 0. 
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3.3 L O C A L STABILITY OF DDE 

Let us consider an autonomous non-linear system 

x'(t) = / ( x t ) , t G R (3.3) 

and x* G M™ be an equilibrium point of the system (3.3), i.e. / (x*) = 0. 

Definition 3.1. The equilibrium x* of the system (3.3) is (locally) stable if for any 
e > 0, there exists 8 = S(to,e) such that | |x* — x(to,V ;)||oo < £ for any ip G C satisfying 
\\<f>-ip\\c<6. 
The equilibrium x* of the system (3.3) is asymptotically stable if it is stable and if there 
exists S = 5(to) > 0 such that | |x*—x(t 0 , ip)\\oo —> 0 for any ip G C satisfying |\<f>—ip\\c < S, 
where || • ||oo and || • | |c are usual norms. 
The equilibrium x* of the system (3.3) is unstable if it is not stable. 

Investigating the local stability of a delayed systems is similar to those without delay. 
A linearized system to (3.3) is also studied. For a single delay r at equilibrium x*, the 
linearized system of (3.3) has the form 

x'(t) = A , x + A i x ( t - r ) , (3.4) 

where A0 = Df(x*) is n x n is the Jacobian matrix and Ai is the Jacobian matrix wi th 
respect to x( t — r ) evaluated at an equilibrium point x*. The characteristic equation of 
the system (3.4) is not polynomial but takes the form 

det (A0 + Aie~XT - XE) = 0, (3.5) 

where E represents nxn identity matrix. Let A be the set of all roots of the characteristic 
equation (3.5). Then the following theorem holds (see [13]). 

Theorem 3.2. Let 9l(Aj) < 0 for all Aj G A . Then the equilibrium point x* of the system 
(3.3) is asymptotically stable. If9i(\) > 0 for some characteristic root A G A , then x* is 
unstable. 
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4 EPIDEMIC MODELS 

4.1 INTRODUCTION 
In this chapter, we expatiate on Epidemic dynamics and epidemic models,which are mostly 
based on compartment structures.Researches on communicable diseases or infectious dis
eases can be classified under descriptive,analytic,experimental and theoretic. 

When it comes to the epidemic dynamics, the study is an important approach to in
vestigate the transmission dynamics of an infectious disease. We formulate mathematical 
models to analyze the transmission dynamics of these infectious diseases. 

These models are based on the population dynamics,behavior of the disease transmis
sion,features of the infectious agents and the connections wi th other social and psycho
logical factors. 

Epidemic dynamic models were created under the assumption that the specific pop
ulation under study can be divided into compartments.The compartmental model was 
proposed by W . O . Kermack and A . G . M c K e n d r i c k in the years 1927,1932 and 1933.It was 
then developed over the years by other biomathematicians. 

The Kermack-McKendrick m o d e l ( K M model) was based on relatively simple assump
tions like the rate of flow from one compartment to the other and uses the latency period 
of the disease .It also used the general mode of transmission of the infectious disease 
(see[43][20][4]). 

Using epidemic dynamical models, we discover general principles governing the trans
mission dynamics of the disease and identify important parameters to provide useful 
prevention and control strategies of the disease. 

4.2 EPIDEMIC MODELS 
Diseases especially communicable diseases, from time immemorial have been an important 
part of the human history. 
Worst case scenarios of diseases are pandemics.This is when the infectious disease spreads 
from one border to other borders of countries. 
Epidemics have invaded many populations, causing many deaths before dying out or 
reoccurring in the future.On the economic growth, it causes economic damages like short-
term fiscal shocks and long -term negative shocks. 

In the 14th century, about a th i rd of Europe's population was wiped out by a bubonic 
plague called the Black Death. It also raged through As i a and Africa .The Black Death 
is said to have claim 75 to 200 mil l ion lives between 1346 and 1350. 

In 1918, about 50 mil l ion people died from the Spanish flu. Against popular opinion, 
it derived its name from the place it was first identified: Spain. The period of discovery 
was 1918, towards of the First Wor ld War. The powers of the world at the time were more 
committed to warfare than they were to epidemics. A s a result of this diverted attention, 
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more deaths were recorded. 

The Human Immunodeficiency Virus (HIV) responsible for causing Acquired Immun
odeficiency Syndrome (AIDS) was discovered in 1980. It has since then claimed about 
38 mil l ion lives. In 2008, The United Nations estimated that there were 14 mil l ion A I D S 
orphans and the number would go up by more than 80 percent in 2010. 

In December 2019, a novel disease, the Coronavirus disease, was discovered in Wuhan 
China. Since that time up to this moment, the world has registered 3,283,422 deaths. 
see([8]) 

It is then obvious that to prevent and control infectious diseases more effectively, it 
is important to fully understand the mechanism of the spread and the transmission dy
namics of the disease and then provide useful predictions and guidance so that better 
strategies can be established. Quantitative and qualitative analysis, sensitivity analysis 
and numeric simulations make a mathematical model give us a good understanding of 
how infectious diseases spread. Equipped wi th this, we can make reliable predictions and 
obtain useful information on how to prevent and control the spread of these infectious 
diseases. 
Epidemic models are not exactly novel; they can be traced back to the time of Bernoulli . 
In 1760, he used a mathematical model to study the rate of spread of smallpox. Proper 
research into the field of using mathematical models to study infectious diseases did not 
kick off unti l the 20th century. It was Hamer , in 1906, that came up wi th a discrete 
time model to study the spread of measles. The physician, Dr . Ross, used differential 
equation models to describe the transmission of malaria between the vectors and hosts in 
1911. "He determined that there is a threshold of the size of mosquitoes below which the 
spread of malaria can be controlled." 

Between 1927 and 1933, W . O . Kermack and A . G . McKendr ick formulated the SIR 
compartmental model (Susceptible-Infected-Recovered). This model was used to study 
the outbreak of Black death in London, that broke out in 1665 and ravaged on t i l l 1666. 
They also formulated the SIS compartment model. This model introduced the concept 
of thresholds; the determiner of whether a disease spreads in a population. This concept 
established the fundamental of the theory of epidemic dynamics see([20][4]). 

Mathematical models can be categorized as linear, nonlinear, autonomous, non-autonomous 
based on the described diseases, population and the environment. 

A deterministic mathematical model is a mathematical model which does not allow 
for randomness. It is necessary that the results (output) does not change for given ini t ial 
and final states. Analysis of deterministic models have been focused on the wellposedness 
of the models and their solutions, persistence of the diseases, stability of their steady 
states and the existence. These let us know whether the disease is pestilent or being 
endemic. The existence of periodic solutions describe the oscillatory movement of disease 
transmissions and occurrence of bifurcation and chaotic behaviour. 
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4.3 SOME TYPES OF EPIDEMIC MODELS 
Epidemic models can be broadly classified into two: 

• Stochastic models 
• Deterministic models 

Stochastic models: these rely on chance variation in risk exposure, and this gives better 
insight into an individual level modelling. It incorporates large amount of complexity and 
heterogeneity making it more insightful for monitoring. Parameters in a stochastic model 
gives different outputs 

Deterministic models:also known as compartmental models, depend less on high 
quality data. They are easier to set up as opposed to stochastic models. Under the same 
init ial and final conditions, the same behaviour is expected in the population.The best 
way to model real life problems is by the use of Deterministic models.Here, the specific 
population under observation is divided into compartments which constitutes different 
levels of an epidemic.Transitions from one compartment to the other are illustrated in 
differential equations wi th each compartment being differentiable wi th respect to time 
see([5]). 

Some types of deterministic models are: 
• SIR model (Susceptible-Infected-Removed) 
• SIS model (Susceptible-Infected-Susceptible) 
• SIRS model (Susceptible-Infected-Removed-Susceptible) 
• S E I R model (Susceptible-Exposed-Infected-Recovered) 

SIS Mode l 
This model is made up of two compartments: the Susceptible compartment and the 
Infected compartment. In this model, the infected members of the population become 
susceptible to the disease after they have recovered from their infection. This is because 
the disease gives no immunity against reinfection. 

Examples of these diseases are Influenza,chickenpox and measles.Hence there is a prob
ability individuals who have suffered from the disease before would suffer from that same 
disease in the near future. 

7 / 

Figure 1: Image of the Susceptible-Infected-Susceptible model 

SIRS M o d e l 
This model is made up of three compartments: the Susceptible compartment, the Infected 
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compartment and the Removed Compartment. In this model, transmission of individuals 
from the infected compartment to the removed compartment means either they are re
covered or they are dead. Recovered individuals are not susceptible to the same disease 
unti l they lose their immunity. 

Return to SuEcept ible: Durat ion of immuni ty 1 
Susceptible I I Infectious I I Recovered 

Figure 2: Image of the Susceptible-Infected-Removed-Susceptible model 

S E I R Mode l 
The S E I R model has four compartments: Susceptible, Exposed, Infected, and Recovered 
compartments. The transmission of individuals from the susceptible to the exposed com
partment entails that individuals enter a latent period where the disease is contagious. 
This means they carry the infection but cannot transmit it. 

After a period of time, there is a transmission of these individuals from the exposed to 

1 1 

Figure 3: Image of the Susceptible-Infected-Removed model 

the infected compartment. They finally get recovered: they either get healed or they die. 

SEIRS Mode l 

The S E I R model has five compartments. Like in SEIR,transmission of individuals is from 
the susceptible to the exposed compartment.Individuals enter a latent period where the 
disease is contagious. This means they carry the infection but cannot transmit it.After 
leaving the removed compartment, they move back into the susceptible state when they 
lose their immunity 

1 i N l t K V t N I I U f t 1 H ^ ^ ^ H 1 T H t A I M t N l 1 R 
DEATH J DEATH DEATH 

l 

Figure 4: Image of the Susceptible-Exposed-Infected-Removed-Susceptible model 
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4.3.1 B A S I C O F A C O M P A R T M E N T A L M O D E L 

• V i t a l dynamic factor such as natural death and natural bir th are neglected in the 
model 

• the latent period of the model 

• the population under observation is considered to be of constant size in epidemic 
periods.Hence, we assume that natural bir th rate and death rate equal. 

• The flow transmission of the compartmental model 
— Models wi th vertical transmission flow has most disease origins from natural 

birth.Example is H I V / A I D S 
— Models without vertical transmission means that the disease was not from bir th 

and everyone no matter their age can get infected.Example is S A R s - C O V 2 

4.3.2 B A S I C R E P R O D U C T I V E N U M B E R (TZ0) 

In the study of disease modelling , the basic reproduction number, TZo plays a very im
portant role. Its value tells one if the specific population under observation is at risk or not. 

The basic reproduction number is defined as the average number of secondary infec
tions produced by the primary infection into the total susceptible populat ion.An infected 
person infects others at a rate of /3 during an expected infection period of - see[17]. 

4.3.3 F A C T O R S A F F E C T I N G B A S I C R E P R O D U C T I V E N U M B E R 

• Rate of contact in the specific population under observation 
• Duration of infection and 
• Probabil i ty of transmission per contact 

Being a dimensionless parameter, it determines the threshold condition for a Disease-
Free Equi l ibr ium. When TZ0 < 1, the Disease-Free Equi l ibr ium is said to be locally 
asymptotically stable This means the disease cannot invade the population and wi l l die 
out.This depends on how small TZo is . 

When TZQ > 1, the disease is difficult to contain and the Disease -free Equi l ibr ium is 
unstable but the we get an Endemic Equi l ibr ium.At this point, the value of IZQ is very 
large see ([43] [17]). 

For example, if TZQ > 1 for influenza cases in a specific hostel in a university, then that 
management of that hostel should expect more cases more cases of susceptible students 
infected wi th influenza. But when TZ0 < 1, the management of the hostel is assured that the 
influenza disease would die out. They can then know steps to take to curb the situation. 

17 



TOO 
— 3 

600 ™ 
— 

MO 

v 

500 

!«. 
jj 200 

E 
Z MO 

100 

Day? 
0 so 

•100 

Figure 5: Figure:Above is an image of Epidemic curves of an SIR model with different 
basic reproductive n u m b e r s , ^ > 1 ,7^o = 1 and TZQ < 1 respectively . 

The disease becomes difficult to contain at 1Z0 > 1. This mostly occurs at the begin
ning of the epidemic when it invades the susceptible population.IZo > 1 implies that new 
infections caused by an infected individual is greater than one and leads to the continuous 
growth of the infection.At this point the Disease-Free Equi l ibr ium is unstable 

When 1Z0 — 1, the disease becomes endemic. It is seen on the second plot that the 
infection rate reduces as compared to when 1Z0 > 1.1Z0 = 1 determines if a disease would 
persist or die out. 

A t TZQ < 1 the disease dies out and infection rate decreases monotonically to zero.Infections 
caused by an infected individual become less than one and this shows that,we have a stable 
Disease-Free Equi l ibr ium. 
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Epidemic mathematical models were created wi th the assumption that the population 
under study can be divided into compartments. They capture the dynamics of an infec
tion which gives an individual permanent immunity after they have recovered.Examples 
of these diseases are typhoid fever,measles,small pox amongst others see([28]). 

The compartmental model proposed by Kermack and McKendr ick was based on that 
assumption of the rate of flow from one compartment to the other. It uses the latency 
period or incubation period of the disease, represented by time delay(r) in the model, and 
the general mode of transmission during the spread of the communicable disease. 

This model had the specific population under observation divided into compartments 
namely: the Susceptible compartment, the Infected Compartment and the Removed or 
Resisted compartment see([20]). 

4.4 SUSCEPTIBLE-INFECTED-REMOVED(SIR)MODELS 

The SIR model is in 3 compartments.The Susceptible compartment,Infected compartment 
and Removed compartment. 

A n assumption of the SIR model is that there is a homogeneous mixing of the Infected 
(I) and Susceptible(S) populations and that the total population (N) is constant in time. 

The Susceptible population decreases monotonically towards zero in the model while 
the population of infected people increases. 
A n d as the hosts transition from the Infected compartment to the Removed compart
ment,the population in the Infected compartment reduces as the population in the Re
moved increases 

The SIR model simply implies that: 

• Susceptible:during a pandemic, all individuals in this compartment stand the risk 
of contacting the disease or remain infected over a period of time (t).This includes 
passively immune individuals,once the loose their immunity . The Susceptible pop
ulation would decrease as the virus spreads from one person to the other(one source 
to the other). 

In an SIR model with no vertical transmission,individuals,no matter the gender, age 
and size of the person, they are susceptible to getting infected.This compartment is 
denoted by S(t) at time t 

• Infected: Every Individual in this compartment has been infected by the disease 
.The level of parasite is sufficiently large wi thin the host and they can transmit 
to others in the Susceptible compartment. These people either recover of die.This 
compartment is denoted by I(t) at time t see[28]. 

• Removed:Individuals in this compartment are either healed or died from the dis
ease.Removed compartment is denoted by R(t) at time t 

19 



4.4.1 S O M E B A S I C A S S U M P T I O N S O F T H E SIR M O D E L 

• Specific population under observation is a closed environment.lt is assumed that 
during this period there is no migration nor emigration into this population. 
There is neither a natural death or bir th in this population, so the total population, 
S(t) + I(t) +R(t) = N 

• There is a homogeneous mix of the Susceptible population and the Infected popu
lation. 

• The number of Susceptible individuals who get infected by an individual in the In
fected compartment per unit of time, at time t, is proportional to the total number 
of Susceptible individuals wi th the proportional coefficient (transmission coefficient) 
, so that the total number of newly infected at time t, is S(t)I(t). 

• The number of Removed individuals from the infected compartment per unit time 
is al(t) at time t, where a is the rate of recovery Recovered individuals gain per
manent immunity. 

• A l l infections are assumed to end wi th Removed Compartment. 

• Infection does not depend on age,gender nor social status 

• Recovery rate a of individuals in the Infected region to the Removed or Recovered 
region is constant with time. 

• The dynamical equations are of first order see([43]): 

- New infection rate 

New infection rate - Recovery rate 

Recovery rate 

4.4.2 T I M E D E L A Y I N SIR M O D E L 

The Susceptible individual, after coming in contact wi th an infected person, does not im
mediately transition into the Infected state.There is a latent period of incubation, which 
takes a period of about 5 to 14 days. 
This is from the time of exposure to the virus t i l l symptoms onset.After this period,the 
susceptible individual becomes infectious hosts to other susceptible people. 

About 97% of people in the populations shows symptoms of S A R S - C 0 V 2 within 11.5 
days from the time of exposure. 

Inculcating time delays in epidemic models bring to bear the fact that the transmis
sion dynamic behavior of the disease at time t depends not on only the present state of 
the time t but also on the state of the previous time. 

dS 
~di 
dJ 
~dl 
dR 
~dt 
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We have have two types of time model: 

• Discrete delay: in this time delay the dynamic behavior of time t depends on the 
state of the previous time at t — r , where r is a fixed constant. In this thesis, r is 
the latent period (see [20]). 

• Continuous delay: this delay depends on the whole period before the time t. 

When there is time-delay in a mathematical model, periodic solutions may occur for 
various time delays. 

4.4.3 T H E SIR M O D E L 

In vi ta l demographical statistics we have natural deaths 7 and natural rates of births 
fx. Deaths caused by Coronavirus cannot be considered as a natural death and so it is 
excluded (7 = \i = 0 ). 

For transmission from the susceptible compartment to the infected compartment, we 
represent by (3 (is the average number of contacts per infected individual per day).a rep
resents the rate of outflow into the removed compartment from the infected compartment. 
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S U S C E P T I B L E - I N F E C T E D - R E M O V E D (SIR) MODEL 

SIR MODEL 

The total population is represented as TV = S(t) + I(t) + R(t) 

We derive three non-linear ordinary differential equations from the compartments. 

4.5 GENERALIZED SYSTEM 
f = /x N - l3S(t)I(t) - 7 i S(t) 

%=P S{t) lit) - (72 + a) I{t) 

§ = < * / ( * ) - 7 i R(t) 

During the pandemic it was observed that natural deaths and births are very low and 
so they counterbalance each other, making /x=7=0 
The SIR model is now simplified to the form 

f = -p Sit) lit) 

ft=(3 Sit) lit) - ia) lit) 

f = « I(t) 

As time goes the infection rate of the virus changes and the record of infected persons 
in the beginning of the pandemic would vary from the number of infected persons in the 
present. 

There is also a behavioural change of the Susceptible individuals and the crowding 
effect of the infective individuals due to introduction of safety measures and this prevents 
the unboundedness of the contact rate. 
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ß S I is the bi-linear incidence rate which is suitable for communicable diseases such 
as influenza but not for sexually transmitted diseases. It measures the infection force of 
the disease. 

The model above has no time delays which means it did not include the 

• the latent state of the infection in the vector and 

• latent state of the infection in an infected host. 

There is a need for time to elapse before the host or the vector reaches a sufficiently 
high level to transmit from one person to the other. 

Considering the above description we have our model wi th time delays to be as follows: 

4.6 SIR M O D E L WITH D E L A Y 
f = -P S(t)I(t-T) 

ft=(3 S(t) lit - r ) - (a) lit) 

f = « I(t) 

where r > 0 is the time delay incorporated in the model to represents the latent period 
or incubation period of the disease. 

4.7 GENERALISED SYSTEM WITH DELAYS 

% = nN-pS(t) J ( t - r ) - 7 i S(t) 

%=P S{t) lit - r ) - ( 7 2 + a) lit) 

§ = al{t)- 7 i R(t) 

where S(0) > 0,1(0) > 0, R(0) > 0 and parameter /x, /3,7, a are of positive values .£(0) + 
I(0) + R(0) = - N(t). 

Parameters Definitions 
Natural bir th 

7 Natural death 
a Rate of outflow from the Infectious compartment to the Removed compartment 

ß Rate of outflow from the Susceptible compartment to the Infected Compartment 
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5 Simulation of results 
In this section we find and discuss on the stability and equilibrium of the system wi th 
and without time delays.We then use assume values to show the population dynamics in 
a our model wi th delay and without delays. 

5.0.1 Generalized SIR model without delay 

S' = /J,N — pS(t)I(t) - 7 iS( t ) 
r = (3S(t)I(t)-(l2 + a)I(t) 
Rl = al(t) - 7ii?(t) 

Finding the equilibria of the above system we equate the left side of the equation to 
0. This forms the steady-state of the model.Solving the steady -state equations gives us 
the equilibria of the system.We denote equilibrium of the generalized system as follows: 
E[S*, I*,R*} 

To find E[S*, I*, R*] we have to solve systems 

0 = nN — f3S*I* -
0 = (3S*I* - ( 7 2 + a) I* 
0 = al* - 7 l i T 

Introducing the basic reproductive number, denoted by 1Z0 = ^ ~ q ~ y - The equilibria 
of the generalized system without delay is given as: 

• If TZ0 < 1 then generalized system is always equilibrium of Ei[^-,0, 0] and it is 
locally stable 

• If IZo > 1 then the generalized has two equilibria given as 
£ 4 ^ , 0 , 0 ] , which is unstable and E 2 \ ^ ; vJLt^^L. gfc Nf~lik?t+ "))] w h i c h 

L 71 ' ' •" Z L p ' (72+«)p ' P 7l(72+«) 1 

is locally asymptotically stable. 

We wi l l show in details the local stability of these equilibrium in the following section 

5.0.2 L O C A L S T A B I L I T Y O F E Q U I L I B R I U M O F G E N E R A L I Z E D SIR 
M O D E L W I T H O U T D E L A Y 

We are interested in the sign of the real part of the characteristic equation of the linearized 
system, when finding the local stability of the equilibrium. 

Our linearized system at equilibrium, for XQ G M n is given as (x/) = A x where A is 
the Jacobi matrix Df(xo) • 
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The Jacobi matrix of the generalized SIR model is given as: 

/ -PI ~ 7 i ~PS 0 \ 
A — I (31 (3S-{l2 + a) 0 

\ 0 a - 7 i / 

Then the C H A R A C T E R I S T I C E Q U A T I O N is det(A - XE) = 0, at equilibrium 
E[S*,I*,R*}. 

0 = det 
-PI* ~ 7i 

(31* 
0 

A 
(3S* 

-/3S* 
(72 + a) 

0 
0 

-71 - A 

This implies that, - ( A + 71)(A2 + A(fci + ei) + (fcb + e 0)) = 0. 
The roots of the characteristic equation are: 

• A = -7 < 0 

. and (A 2 + X(h + ex) + (fc0 + e 0) = 0 

Local stability then depends on the equation 

A 2 + A(fci + ei) + (ko + e 0) = 0 (5.1) 

where 
fci = (72 + «) + +

 7 l 

/c0 = (/?/*+7i)(72 + a) 
ei = -/35* 
e 0 = -^5*71 

Equation 5.1 is a second degree transcendental polynomial at r = 0 wi th ki,k0,ei, e 0 

being real numbers. The steady state is asymptotically stable if the roots of the charac
teristic equation has negative real parts (see[29]). 

The roots have negative real parts if and only if ; 
• k\ + ei > 0 and 
• k0 + e 0 > 0 

We see that: 

1. fcx + ei = 72 + a + (31* + 71 + (~PS*) and 
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2. k0 + e 0 = (131* + 7 i)(72 + a) - / 3S* 7 l 

Placing the new values of k\ + e\ and ko + eo into equation (5.1) , we get; 
(A 2 + A(A 2 + A 7 2 + a + (31* + 71 + (-(3S*)) + (((31* + 7l)(72 + a) - /3S* 7 i ) = 0 

I. If 7Z0 = »Nf > < 1, then for 0, 0] 
u

 71(72+«) '
 1 L

 71 ' '
 J 

fc1 + e 1 = 7 2 + a + /30 + 7 l + ( - ^ ) = ( 7 2 + a ) ( ^ + ( l - ^ ) ) > 0 

fc0 + e 0 = ((30 + 7 l ) ( 7 2 + a) - / 3 ( ^ ) 7 i = 71(72 + « ) - > 0 

Therefore. 

(A 2 + X(h + e i ) + fc0 + e 0) = (A 2 + A ( 7 2 + a ) ( ^ + (1 - + 71(72 + 7) - A W ) = 0 

Hence, equation (A 2 + X(k\ + e\) + ko + eo) = 0 has roots wi th negative real parts. 
Consequently, if TZo < 1, then E\ is locally asymptotically stable. 

II. (a) If TZ0 = ^ g f ^ y > 1, then for E^f, 0, 0] , h + e, < 0 

Hence, equation (A 2 + A(/ci + ei) + /c0 + e 0) = 0 has roots wi th positive real parts and 
this implies that E\ is unstable. 

(b) If TZ0 = - J r ¥ r > 1 and then E 2 [ ^ ; *lLfzZte+&. « ( y ) -
7
i ( 7

2
+ « ) i 

V /
 u

 7l(72+«)
 Z L

 P ' (72+«)/3 ' /37l(72+a))
 J 

fci + ei = 7 2 + a + 07* + 7 l + (-/3S*) = 7 2 + a + £7* + 7 l - / 3 ( ^ ) = (31* + 7 l > 0 

ko + eo = (/3/*+7i)(72 + a) - /35 '*7i = ( /37*+ 7 l ) ( 7 2 + a ) - / 3 ( ^ ) 7 l = /37*( 7 2 + a) > 0 

The quadratic equation (A 2 + A(fci + ko) + (Aei + eo)) = 0 has k\ + e\ and ko + eo all 
greater than zero. 

The value of the roots of are A i ] 2 = ~(
f c l

+ei)±v'o w h e r e ]j — (^ _|_ 6iy _|_ 4 ^ _|_ eQ)_ 
For D > 0 D is less than (k\ + e\) and for 7) < 0,D has complex values. Either case the 
value for A has negative real parts.As in I, we obtain roots wi th negative real parts which 
implies that E2 is locally asymptotically stable. 

5.0.3 G E N E R A L I Z E D SIR M O D E L W I T H D E L A Y 

Given our generalized system wi th delay, 

S' = fiN — (3S(t)I(t - r ) - 7 i S ( £ ) 
/' = (3S(t)I(t - r ) - ( 7 2 + a) I(t) 
R' = al(t) - 7 i i ? ( t ) 
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We find the equilibrium E[S*, I*,R*} by solving the systems 

0 = fiN — (3S*I* -
0 = (3S*I* - ( 7 2 + a) I* 
0 = al* - 7 l i T 

Equi l ibr ium calculation and points are the same as for the Generalized SIR model 
without delay. 

• If TZQ < 1 then generalized system is always equilibrium of Ei[^-,0, 0] and it is 
locally stable 

• If TS-o > 1 then the generalized has two equilibria given as Ei[^-, 0, 0], which is un

stable and E2pf±; * N ̂ ~^fa); a^N/~i^i+^a))] which is locally asymptotically 

stable. E2 would only exists if 72-o > 1 

5.0.4 L O C A L S T A B I L I T Y O F E Q U I L I B R I U M O F G E N E R A L I Z E D SIR 
M O D E L W I T H D E L A Y 

Our linearized system at equilibrium, for XQ G M™ is given as x / = A 0 x ( t ) + A x x ( t — r ) 
where A0 is the Jacobi matrix Df(xo) wi th respect to x(t) and A\ is the Jacobi matrix 
Df(xo) wi th respect to x(t — r ) . 

We would differentiate column-wise ,the Jacobi matrix A0 wi th respect to ^ , 5 7 , ^ 
and Jacobi matrix Ai wi th respect to d d d 

dS(t-r) ' dI(t-T) ' dR(t-r) 

Our Jacobi matrices would become : 

-f3r(t - r ) - 71 0 
A0 = I f3I(t - r ) - ( 7 2 + a) 

0 a 

10 -ps(t) 0 \ 
Ax = 0 -pS(t) 0 

\ 0 0 0 / 

Placing both matrices into x/ = Aox(t) + A i x ( t — r ) we solve to find the solutions of the 
linear system. 

We consider the solution of the linear system of a delay differential equation in 
the form, x(t) = exp(—\r)k. This means that with respect to the previous time, 
x(t — r ) = exp(—\(t — r))k. 

A is a root of the characteristic equation de t (A 0 + A\ exp(—\(t — r )) — XE) = 0 where 
E is a unit matrix. The characteristic equation is , at equilibrium E[S*,I*,R*] is given 
as 

0 = det 
-(31* - 71 - A 

(31* 
0 

-(3S* e x p ( - A r ) 
(3S* e x p ( - A r ) - (72 + a) 

a 
- X 

0 
0 

-71 - A 
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This means —(A + 7i)(A 2 + \(ki + k0) + (Aei + e 0) exp(—Ar)) = 0 and we have one 
root is A = —7 < 0 

This implies that the local stability depends on the roots of 

(A 2 + X(h + ho) + ( A e i + e 0) e x p ( - A r ) ) = 0 (5.2) 

•̂0 — ~(Nf s > I? (necessary condition for E to exist) 

To find the local stability of E2 we need to show that equation (5.2) has no pure imag
inary roots.Assuming that as A = iu, u > 0 is a root of the second degree transcendental 
polynomial function equation (5.2) and % is a complex number.We use the Euler equation 
exp(iur) in equation (5.2) to obtain 

to4 + (k2 - 2k0 - e\)u2 + jfcg - e\ = 0 (5.3) 

Substituting z = u in the quadratic equation (5.3) we obtain 

z 4 + (kf - 2k0 - e\)z2 + k\ - e\ = 0 (5.4) 

E ^ T \ M j y S ? i g + t t ) ; tt(MX"(^)+tt))]for J ! W i r r e s P e c t i v e 1 ^ i f 

"° 7i(72+«) 

Using Equation 5.4, we get k2 — e^ = (k0 — e0)(k0 — e 0) > 0 

where 

h = (72 + a) + /3P + 7 l 

k0 = (/3/* + 7i)(72 + «) 

ei = - ^ 5 * 
e 0 = -^5*71 

In varying time, 
• if (ko — eo) > 0 and 
. (k2 - 2k0 + ej) < 0 

then ui2^ and ui2_ is not positive and the roots are also not positive. Hence the characteristic 
equation would not have a purely imaginary root see ([29]). 

k0 + e 0 = ((31* + 7 l ) ( 7 2 + a) - ^ 7 1 > 0 

k0 - e 0 = ((31* + 7 l ) ( 7 2 + a) - (3S*lx > 0 

Hence (ko - e 0 ) 2 = (ko - e0)(k0 - e 0) > 0 when TZ0 = ^ J a ) > 1- We have 
(/c2 — 2/c0 + e 2) = (71 + (3I*)2 < 0 . Consequently equations (5.2) and (5.4) have no 
positive roots and hence has no pure imaginary roots. 

Moreover, as shown in II.(b) the quadratic equation (A 2 + \(k\ + ko) + (e\ + eo)) = 0 
has ki + e\ and k0 + e 0 all greater than zero. 
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The value of the roots of are A i ^ = — 1 + e

2 where D = (ki + e\)2 + 4(/c0 + eo). 
For D > 0, D is less than (ki + e\) and for D < 0,D has complex values. Either case the 
value for A has negative real par ts .And so we obtain roots wi th negative real parts which 
implies that E2 is locally asymptotically stable. 

For the local stability of the characteristic equation at equilibrium Ei[^-, 0, 0],it is 
given as: 

(A 2 + X(ki + ko) + (Aei + eo) exp(—Ar)) = 0, which becomes 

(A 2 + A ( 7 2 + a + 71) + 7i(72 + a)-(f(X + 71) e x p ( - A r ) ) = 0 = F(A) 

F(0) = (0 2 + 0(7
2
 + a + 7i) + 7i(72 + a ) - ( ^ ( 0 + 7i ) exp0r ) = 71 (72 + a) - fiN(3 < 0 

i f M o > l 
O n the other hand, A = 00 when IZo > 1, F(oo) —> 00 hence F(A) has positive roots which 
implies E\ is unstable for IZQ < 1. 

The above analysis of the basic reproductive number at the equilibrium points of the 
system corresponds to the average number of infections caused by an infected person on 
susceptible population. When RQ > 1, the disease would be difficult to contain and might 
become endemic to the specific population under observation. The disease goes extinct 
when TZQ < 1. 

5.1 EPIDEMIC CURVES FOR SIR M O D E L 
Using a projected population of A = 624,404 wi th an init ial number of infected individuals 
of C O V I D - 1 9 to be, 1(0) = 600 and R(0) = 0,to be ini t ial recovered individuals. We 
deduce our S(0) = N — 1(0) — R(0) = 623504.The time length r , from exposure to 
symptoms is commonly between 5 to 14 days. We used an average time length of 11.5 
days.About 97 percent of people show symptoms in that time length . Our a = t i m J e n g t h = 
0.105 and assumed rate of transmission from the susceptible region to the infected region 
is given as (3 = 0.3 and 0.03.We want to examine the dynamics of two basic reproductive 
number for the system, when 1Z0 > 1 and when 1Z0 < 1, to know the evolution of the 
Epidemic SIR model curves and also determine the local stability of the population.Below 
are images of the SIR model with and without delay produced using our assumed values 
in M A T L A B . 

5.1.1 SIR M O D E L W I T H O U T T I M E D E L A Y 

In Figure 6, we compare the epidemic curves of an SIR model wi th a basic reproductive 
number of IZo > 1 set at 3 and IZo < 1 set at 0.3 respectively. 

Each figure was generated over a time period of 365 days. Incubation period or 
latency period was not considered in the generation of these epidemic curves.This means 
that Susceptible individuals would get infected immediately. When 1Z0 > 1, infection 
rate rises exponentially to a peak of morbidity, which falls on 49 days and reaches 175 
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Figure 6: Epidemic curves of an SIR model without delay wi th basic reproductive num
bers, 1Z0 > 1 and 1Z0 < 1 respectively . 

individuals per a 1000 population.lt then decays into an endemic stage. The pandemic 
lasts in about 100 days . Fewer people may get infected but the disease would take quite 
some time to go extinct. 
When IZo < 1, the rate of infection dies out and the susceptible population remains 
constant. A t this point, the population or system is said to have a disease- free equilibrium. 

5.1.2 SIR M O D E L W I T H T I M E D E L A Y 

Figure 7 included the incubation period before the host becomes infectious. The Epidemic 
curves of the SIR model wi th delay has a basic reproductive number of IZo > 1 set at 3 
and TZQ < 1 set at 0.3. 

^ Days D a y s J 

Figure 7: Epidemic curves of an SIR model wi th delay wi th basic reproductive 
numbers,7^ 0 > 1 and 1Z0 < 1 respectively 

The average incubation period is r = 11.5. Susceptible individuals who get infected 
show symptoms within this period and are infectious. When TZQ > 1 , rate of infection 
grows steadily to a peak of morbidity,which falls on 110 days and reaches 80 individuals 
per a 1000 population.lt decays into an endemic stage. Here the pandemic lasts in about 
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177 days. When 7Z0 < 1 , the disease dies out and the Susceptible population remains 
constant and disease-free. 

5.1.3 G E N E R A L I Z E D SIR M O D E L W I T H O U T T I M E D E L A Y 

In Figure 8, we compare the epidemic curves of Generalized SIR model without delay 
wi th a basic reproductive number of TZQ > 1 set at 3 and TZQ < 1 set at 0.3 
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Figure 8: Epidemic curves of the Generalized SIR model without delay wi th basic repro
ductive numbers,TZo > 1 and TZo < 1 respectively 

In the generalized SIR model without delay, pandemic lasts for about 93 days.The 
susceptible region decreases sharply not to zero.The infected region rises exponentially 
to a peak of morbidity ,which falls on 43 days and reaches 119 individuals per a 1000 
population.lt decays to the endemic stage after 96 days. A t IZo > 1 , it stays in its 
endemic stage and would take some time to go extinct. 

5.1.4 G E N E R A L I Z E D SIR M O D E L W I T H T I M E D E L A Y 

Figure 9, we compares the epidemic curves of Generalized SIR model wi th delay wi th a 
basic reproductive number of 7Zo > 1 set at 3 and TZo < 1 set at 0.3 

The susceptible region decreases at a steady rate.This makes the infected region to 
increase slowly .It decays to an endemic state,with approximately no peak of morbidity.lt 
can happen that safety measures are put in place after the pandemic started and this 
slows down infection rate.The pandemic takes 180 days and may take a while for the 
disease to die out. A t IZQ < 1, the population has a disease-free equilibrium. 
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5.1.5 SIR M O D E L W I T H A N D W I T H O U T T I M E D E L A Y 

We compare the SIR model without to the generalized SIR model wi th delay. We set the 
basic reproductive number 1Z0 > 1 at 3 and 1Z0 < 1 at 0.3. 

- DDE model 
- O D E model 

50 100 150 200 250 300 350 400 

D a y s 

Figure 10: Epidemic curves of the Susceptible Compartment of an SIR model wi th and 
without delay wi th basic reproductive numbers,7ZQ > 1 and TZQ < 1 respectively 

Figure 11: Epidemic curves of the Infected Compartment an SIR model wi th and without 
delay wi th basic reproductive n u m b e r s , ^ > 1 and 7ZQ < 1 respectively 
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Figure 12: Epidemic curves of the Removed Compartment of an SIR model wi th and 
without delay wi th basic reproductive numbers, 1Z0 > 1 and 1Z0 < 1 respectively 

^ Days Days J 

Figure 13: Epidemic curves of the SIR model wi th and without delay wi th basic repro
ductive numbers,7?.o > 1 and IZo < 1 respectively . Susceptible(red),Infected(blue) and 
Removed (Green) 

When IZo > 1 ,the SIR model without delay has pandemic lasting 100 days.There is a 
sharp decrease in the susceptible population and the rate of infection grows exponentially 
to a peak of morbidity, which falls on 40 days, and reaches 175 individuals per 1000 pop
ulation.Due to increase in infection of the population,many would recover (either heal or 
die). Comparing to the SIR model without delay, the SIR model with delay has infection 
rate growing gradually at a steady pace .It reaches a peak of morbidity, which falls on 110 
days and reaches 80 individuals per 1000 population. The pandemic lasts for 200days. 
SIR model wi th delay is more realistic than the SIR model without delay because it 
involves the latency period. The Susceptible population decreases at a slower pace .In
dividuals, after coming in contact wi th an infected individual, might not be infected 
(the individual might be immune),unless symptoms of disease show after incubation pe
riod.Hence,the infected population increases at a slower pace which is more realistic.At 
IZo < 1, the disease dies out,making the system disease free. 

5.1.6 G E N E R A L I Z E D SIR M O D E L W I T H A N D W I T H O U T T I M E D E L A Y 

We compare the generalized SIR model without delay to the generalized SIR model wi th 
delay at 1Z0 < 1 set at 0.3 and 1Z0 > 1 set at 3. 
In 1Z0 > 1; Susceptible region decreases but never to zero in each model. In the SIR 
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model wi th delay, the infected region rises exponentially to a peak of morbidity which 
falls on 43 days reaching 119 individuals per 1000 population.The pandemic in the model 
without delay lasts 96 days.In the model with delay, there is a gradual decrease in the 
susceptible population which makes transmission into the infected compartment low.There 
is approximately no peak of morbidity. 
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Figure 14: Epidemic curves of the Susceptible compartment of the Generalized SIR model 
wi th and without delay wi th basic reproductive numbers,7?-o > 1 and TZQ < 1 respectively 
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Figure 15: Epidemic curves of the Infected compartment of the Generalized SIR model 
wi th and without delay wi th basic reproductive numbers,7?-o > 1 and 1Z0 < 1 respectively 
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Figure 17: Epidemic curves of the Generalized SIR model wi th and without delay wi th ba
sic reproductive numbers,TZo > 1 and TZo < 1 respectively .Susceptible(red),Infected(blue) 
and Removed (Green) 

5.1.7 SIR M O D E L W I T H D I F F E R E N T T I M E D E L A Y 

We describe the evolution of the epidemic curve at different time delays. The incubation 
period of C O V I D - 1 9 is from 5 to 14 days. We chose time variations of 5, 8.5, 11.5 and 
14. Susceptible without delay, Infected without delay and 
Removed without delay(blueshortdashes),Ti = 5(bluecurve), T<I = 9.5(yellowcurve),T3 = 
11.5(greencurve)andT4 = 14(redcurve). We set 1Z0 < 1 at 0.3 and 1ZQ > 1 set 3 
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Figure 18: Figure:Epidemic curves of the Susceptible compartment wi th Different time 
delays and basic reproductive n u m b e r s , ^ > 1 and TZQ < 1 respectively 
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Figure 19: Figure:Epidemic curves of the Infected compartment with Different time delays 
and basic reproductive numbers, 1Z0 > 1 and 1Z0 < 1 respectively 

We compare the SIR model with different time delays.The SIR curve without time 
delay was fixed into it to show the dynamics of the disease in those two cases. 
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Figure 20: Epidemic curves of the Removed Compartment wi th Different time delay wi th 
basic reproductive numbers, 1Z0 > 1 and 1Z0 < 1 respectively 
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Figure 21: Epidemic curves of the SIR model wi th Different time delay wi th basic repro
ductive numbers, TZQ > 1 and TZQ < 1 respectively . 

When 7ZQ > 1, the individuals in the Susceptible compartment get the infection immedi-
ately.IT causes an increase in the Infected region in earlier times (r < 14) wi thin a short 
pandemic period and more recoveries. 
A s the latency period increases, it would take a longer time for a susceptible individual 
to get infectious.The latency period elongates the timeline of the epidemic. 

5.1.8 G E N E R A L I Z E D SIR M O D E L W I T H D I F F E R E N T T I M E D E L A Y 

Describing the evolution of the Generalized epidemic SIR model curve at different time 
delays. The incubation period of C O V I D - 1 9 is from 5 to 14 days. We choose time 
variations of 5, 8.5, 11.5 and 14. Susceptible without delay, Infected 
without delay and Removed without delay(blueshortdashes), Ti = 5(bluecurve), r 2 = 
9.5(yellowcurve),r3 = 11.5(greencurve)andTi = 14(redcurve).We set IZQ < 1 at 0.3 and 
TZQ > 1 set 3 
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Figure 22: Epidemic curves of the Susceptible compartment of the Generalized SIR model 
wi th Different time delay wi th basic reproductive numbers, 1Z0 > 1 and 1Z0 < 1 respectively 
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Figure 23: Epidemic curves of the Infected compartment of the Generalized SIR model 
wi th Different time delay wi th basic reproductive numbers,7Z0 > 1 and 1ZQ < 1 respectively 

Figure 24: Epidemic curves of the Removed compartment of the Generalized SIR model 
wi th Different time delay wi th basic reproductive numbers, 1ZQ > 1 and 1ZQ < 1 respectively 

Figure 25: Epidemic curves of a Generalized SIR model wi th Different time delay. We 
included the basic reproductive n u m b e r s , ^ > 1 and TZQ < 1 respectively to show,if it 
was disease-free or endemic of at different time delays . 
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6 Conclusion 
Time delays have been used over many years to solve problems in various fields; from 
biology,physics,engineering and other fields. Time delays in a dynamical system system 
yields more realistic results than the ordinary differential equation. 
In this thesis, we give an insight on delay differential equations in a dynamical sys-
tem,especially in the view of the stability of their solution. In chapter one, we gave a 
theoretical background of delay differential, some examples and general principle sur
rounding the Delay Differential Equation. 
In Chapter 2, we discussed about dynamical systems and the fundamental theories neces
sary for stability of a system.In Chapter 3 we discuss more on delay differential equations 
and it theories that accounts for stability. 

In Chapter 4, we discussed epidemic dynamic models, types of the epidemic mathe
matical models and basic reproductive number.We formulated a mathematical model to 
solve an epidemiological dynamical problem.This model described the spread of a disease 
in a specific population under investigation.The vi tal demographic quantities were in
cluded in the formulation of this model.We chose the SIR model to analyze the spread of 
the Novel Coronavirus disease. We formulated the model without delays and then involved 
time delays.Epidemic problems are first written in Ordinary differential equations when 
solving.Because we want a more realistic result ,we involve time delays. 

In Chapter 5, we assumed data was to analyze the dynamics of the disease using the 
SIR with delay and without delay. We observed how parameters like the basic reproduc
tive number IZo affects the dynamics of the disease using the SIR model. 

It is observed that, when the SIR model is without delay, it does not involve the la
tency period of the disease and hence gives unrealistic results.With time delays involved, 
the results of the SIR turns out to be more realistic compared to the SIR model without 
delay. Analysis of the basic reproductive number,7^ 0 using the SIR model, shows that 
the disease is driven out at TZo < l .Th i s gives a disease-free equilibrium and the system, 
asymptotically stable. A t TZo > 1, the disease is in an endemic state and would take a 
while to be die out. 

Due to how realistic the results of the SIR model with delay is, it helps the right 
stakeholders to take steps that would curbed the disease spread. Using the model figures 
to analyze, stakeholders can rules for everyone in the susceptible population to observe 
social distancing and use nose masks. A s the disease rises exponentially to a peak of mor
bidity, social distancing wi l l not be enough. Publ ic gatherings of more than two people is 
then cancelled. The disease decreases gradually into an endemic state. This shows that 
the steps taken were good. To wipe the disease out completely, stakeholders introduce 
vaccines and regular checkups. 
Stakeholders are able to know using the SIR model with delay that, the disease may or 
may not be difficult to contain. 

We resolve that ,ordinary differential equations,although it gives good approximations 
of a situation, fails to show the dynamics of the system well.This is done better by delay 
differential equation in the chosen dynamical system.lt gives realistic results, although it 
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difficult to analyze. 
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7 APPENDIX 
{SIR MODEL FUNCTION} 

% This function solves SIR model. 

function [t,S] = modelSIR(SO,10,RO,beta,alpha, t,N) 

xO = [SO 10 RO]; 

[T,Sv] = odel5s(@DifEq, t, xO); 

function dS = DifEq(t, x) 

xdot = zeros(3,1); 

xdot(l) = -beta.* x(l).* x(2)/N ; 

xdot(2) = beta.* x(l).* x(2)/N - alpha.*x(2); 

xdot(3) = alpha.*x(2); 

dS = xdot; 

end 

°/„ S = Sv(:,l); 

S = Sv; 

end 

GENERALIZED SIR MODEL FUNCTION 

function [t,S] = gen_modelSIR(SO,10,RO,beta,alpha, t,N,mu,gamma1,gamma2) 

% This function solves generalized SIR model. 

xO = [SO 10 RO]; 

[T,Sv] = odel5s(@DifEq, t, xO); 

function dS = DifEq(t, x) 

xdot = zeros(3,1); 

xdot(l) = mu-beta.* x(l).* x(2)/N-gammal.* x(l) ; 

xdot(2) = beta.* x(l).* x(2)/N - (gamma2+alpha).*x(2); 

xdot(3) = alpha.*x(2)-gammal.* x(3); 

dS = xdot; 

end 

°/„ S = Sv(:,l); 

S = Sv; 

end 

SIR MODEL WITHOUT DELAY 

N = 624404;\\ 

SO = 623504;\\ % i n i t i a l susceptible 

10 = 600;\\ % i n i t i a l infections 

RO = 0;\\ % i n i t i a l removed 

beta = 0.3;\\ % rate of infection 

alpha = 0.1052;\\ % rate of recovery 
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time = 0:1:365;\\ °/„ time interval 

tv = linspace(time(l), time(end),365); \\ 

SIR = model(SO,10,R0,beta,alpha,tv,N);\\ 

figure(1)\\ 

plot(tv,SIR(:,1),'r',tv,SIR(:,2),
1

b
1

,tv,SIR(:,3),'g','LineWidth',2); grid on;\\ 

xlabel('Days
 1

);ylabel('Number of individuals');\\ 

legendCS
1

 , 'I' , 'R');\\ 

function S = model(SO,10,R0,beta,alpha, t,N)\\ 

xO = [SO 10 R0];\\ 

[T,Sv] = odel5s(@DifEq, t, x0);\\ 

function dS = DifEq(t, x)\\ 

xdot = zeros(3,1);\\ 

xdot(l) = -beta.* x(l).* x(2)/N ;\\ 

xdot(2) = beta.* x(l).* x(2)/N - alpha.*x(2);\\ 

xdot(3) = alpha.*x(2);\\ 

dS = xdot;\\ 

end\\ 

% S = Sv(:,1); 

S = Sv;\\ 

end\\ 

SIR MODEL WITH DELAY 

clear a l l ; close a l l ; 

N = 624404; % population 

beta = 0.3; °/
0
 rate of infection 

alpha = 0.1052; °/„ rate of recovery 

SO = 623504; °/
0
 i n i t i a l susceptible 

10 = 600; % i n i t i a l infections 

R0 = 0; % i n i t i a l removed 

tv = 0:1:365; 

tau= 11.5; °/
0
 delay 

sol = dde23(@kmf,[tau],[SO;10 ;R0 ] , [0, 365]); 

hold on; 

figure(l) 

plot(sol.x,sol.y,'LineWidth',2); 

legendCS(t) ' , 'l(t) ' , 'R(t) ') 

name=sprintf ('SIR model with delay (tau = °/„0.0f days ) ' ,tau) ; % t i t l e of graph 

title(name) 

xlabel('Days');ylabel('Number of individuals'); 

grid on; 

function v = kmf(t,y,Z) 
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ylagl = Z(:,l); 

v = zeros(3,1); 

N = 624404; 

beta = 0.3; % rate of infection 

alpha = 0.1052; % rate of recovery 

v(l) = - beta*y(l)*ylagl(2)/N; 

v(2) = beta*y(l)*ylagl(2)/N - alpha*y(2); 

v(3) = alpha*y(2); 

end 

GENERAL SIR MODEL WITHOUT DELAY 

% This Matlab script solve generalized SIR model 

close a l l ; 

clear a l l ; 

N = 624400; 

SO = 623500; % i n i t i a l susceptible 

10 = 600; % i n i t i a l infections 

R0 = 0; % i n i t i a l removed 

beta = 0.3; % rate of infection 

alpha = 0.1052; % rate of recovery 

time = 0:1:365; % time interval 

tv = linspace(time(l), time(end),365); 

mu=0.004; 

gammal=0.005; 

gamma2=0.001; 

tv = 0:1:365; 

SIR = model(SO,10,R0,beta,alpha, tv,N,mu,gammal,gamma2); 

figure(1) 

plot(tv,SIR(:,1),'b',tv,SIR(:,2),'r',tv,SIR(:,3),'g','LineWidth',2); grid on; 

xlabel('Days');ylabel('Number of individuals'); 

legendCS' , 'I' , 'R'); 

function [S] = model(SO,10,R0,beta,alpha, t,N,mu,gammal,gamma2) 

% generalized SIR model. 

xO = [SO 10 R0]; 

[T,Sv] = odel5s(@DifEq, t, xO); 

function dS = DifEq(t, x) 

xdot = zeros(3,1); 

xdot(l) = mu-beta.* x(l).* x(2)/N-gammal.* x(l) ; 

xdot(2) = beta.* x(l).* x(2)/N - (gamma2+alpha).*x(2); 

xdot(3) = alpha.*x(2)-gammal.* x(3); 

dS = xdot; 

end 
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°/„ S = Sv(:,l); 
S = Sv; 

end 

GENERAL SIR MODEL WITH DELAY 

% This script solves generalized SIR model with delay 

clear a l l ; close a l l ; 

N = 624404; % population 

beta = 0.3; % rate of infection 

alpha = 0.1052; % rate of recovery 

SO = 623504; % i n i t i a l susceptible 

10 = 600; % i n i t i a l infections 

R0 = 0; % i n i t i a l removed 

tv = 0:1:365; 

tau= 11.5; % delay 

sol = dde23(@kmf,[tau],[SO;10 ;R0 ] , [0, 365]); 

hold on; 

figure(1) 

plot(sol.x,sol.y,'LineWidth',2); 

legendCS(t)
 1

 , 'l(t)
 1

 , 'R(t) ') 

name=sprintf ('SIR model with delay (tau = %0.0f days )',tau); °/„title of graph 

title(name) 

xlabel('Days');ylabel('Number of individuals'); 

grid on; 

% generalized system with delay 

function v = kmf(t,y,Z) 

ylagl = Z(:,l); 

v = zeros(3,1); 

N = 624404; 

beta = 0.3; % rate of infection 

alpha = 0.1052; % rate of recovery 

mu=0.004; 

gammal=0.005; 

gamma2=0.001; 

v(l) = mu- beta*y(l)*ylagl(2)/N-gammal.*y(l); 

v(2) = beta*y(l)*ylagl(2)/N - (gamma2+alpha)*y(2); 

v(3) = alpha*y(2)-gammal*y(3); 

end 

COMPARING SIR MODEL WITH AND WITHOUT DELAY 

clear a l l ; close a l l ; 
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"/comparison of SIR delay with and without time delay 

Zglobal beta; 

N = 624404; % population 

beta = 0.3; % rate of infection 

alpha = 0.1052; % rate of recovery 

SO = 623504; % i n i t i a l susceptible 

10 = 600; % i n i t i a l infections 

R0 = 0; % i n i t i a l removed 

tv = 0:1:365; 

[t,SIR] = modelSIR(S0,10,R0,beta,alpha,tv,N); '/, solution of SIR model without 

delay - calling function modelSIR.m 

sol = dde23(@kmf,[11.5],[SO;10 ;R0 ],[0, 365]); 

hold on; 

figure(1) 

plot (sol. x, sol. y ( l , :), ' r — ' ,tv,SIR(: ,1) , 'r'); 

legend('DDE model','ODE model') 

title('S(t)') 

xlabel('Days');ylabel('Number of individuals'); 

grid on; 

f igure 

plot (sol. x, sol. y (2, :) , 'b—' ,tv,SIR(: ,2) , 'b') ; 

legend('DDE model','ODE model') 

t i t l e ( ' K t ) ') 
xlabel('Days');ylabel('Number of individuals'); 

grid on; 

f igure 

plot (sol. x, sol. y (3, :) , 'g— ' ,tv,SIR(: ,3) , 'g'); 

legend('DDE model','ODE model') 

title('R(t)') 

xlabel('Days');ylabel('Number of individuals'); 

grid on; 

f igure 

plot(sol.x,sol.y(l,:),'r—',tv,SIR(:,1),'r',sol.x,sol.y(2,:), 

'b—' ,tv,SIR(: ,2) , 'b' , 

sol.x,sol.y(3,:),'g—', 

tv,SIR(:,3),'g'); 

legend('DDE model','ODE model') 

title('S(t), I(t), R(t)') 

xlabel('Days');ylabel('Number of individuals'); 

grid on; 

function v = kmf(t,y,Z) 

ylagl = Z(:,l); 

v = zeros(3,1); 

N = 624404; 

beta = 0.3; % rate of infection 
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alpha = 0.1052; % rate of recovery 

v(l) = - beta*y(l)*ylagl(2)/N; 

v(2) = beta*y(l)*ylagl(2)/N - alpha*y(2); 

v(3) = alpha*y(2); 

end 

COMPARING GENERALIZED SIR MODEL WITH AND WITHOUT DELAY 

°/
0
This script compares generalized SIR model with and without delay 

clear a l l ; close a l l ; 

N = 624404; % population 

beta = 0.3; % rate of infection 

alpha = 0.1052; % rate of recovery 

SO = 623504; % i n i t i a l susceptible 

10 = 600; % i n i t i a l infections 

R0 = 0; % i n i t i a l removed 

tv = 0:1:365; 

mu=0.004; 

gammal=0.005; 

gamma2=0.001; 

tau= 11.5; % delay 

sol = dde23(@kmf,[tau],[SO;10 ;R0 ] , [0, 365]); 

% solution of generalized SIR model without delay - calling function gen_modelSIR.m 

[t,SIR] = gen_modelSIR(S0,10,R0,beta,alpha, tv,N,mu,gammal,gamma2); 

sol = dde23(@kmf,[11.5],[SO;10 ;R0 ],[0, 365]); 

hold on; 

figure(1) 

plot (sol. x, sol. y ( l , :), ' r — ' ,tv,SIR(: ,1) , 'r'); 

legend('DDE model','ODE model
1

) 

titleCS(t) ') 

xlabel('Days');ylabel('Number of individuals'); 

grid on; 

f igure 

plot (sol. x, sol. y (2, :) , 'b—' ,tv,SIR(: ,2) , 'b') ; 

legend('DDE model','ODE model') 

ti t l e ( ' K t ) ') 

xlabel('Days');ylabel('Number of individuals'); 

grid on; 

f igure 

plot (sol. x, sol. y (3, :) , 'g— ' ,tv,SIR(: ,3) , 'g'); 

legend('DDE model','ODE model') 

title('R(t)') 

xlabel('Days');ylabel('Number of individuals'); 
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grid on; 

f igure 

plot(sol.x,sol.y(l,:),'r—',tv,SIR(:,1),'r',sol.x,sol.y(2,:), 

'b—
 1

 ,tv,SIR(: ,2) , 'b' ,sol.x,sol.y(3, :), 'g— ' ,tv,SIR(: ,3) , 'g'); 

legend('DDE model','ODE model') 

t i t l e C S ( t ) , I(t), R(t) ') 

xlabel('Days');ylabel('Number of individuals'); 

grid on; 

% generalized system with delay 

function v = kmf(t,y,Z) 

ylagl = Z(:,l); 

v = zeros(3,1); 

N = 624404; 

beta = 0.3; % rate of infection 

alpha = 0.1052; % rate of recovery 

mu=0.004; 

gammal=0.005; 

gamma2=0.001; 

v(l) = mu- beta*y(l)*ylagl(2)/N-gammal.*y(l); 

v(2) = beta*y(l)*ylagl(2)/N - (gamma2+alpha)*y(2); 

v(3) = alpha*y(2)-gammal*y(3); 

end 

COMPARING SIR MODEL WITH DIFFERENT DELAY 

clear a l l ; 

close a l l ; 

"/comparing model with different time delays 

Zglobal beta; 
N = 624404; % population 

beta = 0.3; % rate of infection 

alpha = 0.1052; % rate of recovery 

SO = 623504; % i n i t i a l susceptible 

10 = 600; % i n i t i a l infections 

R0 = 0; % i n i t i a l removed 

tv = 0:1:365; 

[t,SIR] = modelSIR(S0,10,R0,beta,alpha,tv,N); °/„ solution of SIR model without 

delay - calling function modelSIR.m 

tau= [5,9.5,11.5,14]; % vector of different delays, 

there can be also more or less delay 

for i= 1 : length(tau) 

sol(i) = dde23(@kmf,[tau(i)], [S0;I0 ;R0 ], [0, 365]); 

end 

hold on; 
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% comparison S(t) with different delay 

for i=l:length(tau) 

plot(sol(i).x,sol(i).y(l,:),'LineWidth',2); 

plot(tv,SIR(: ,1),' — ','LineWidth',2) % S(t) without delay 

title('S(t) with different delays') 

xlabel('Days');ylabel('Number of individuals'); 

end; 

f igure; 

% comparison I(t) with different delay 

for i=l:length(tau) 

hold on; 

plot(sol(i).x,sol(i).y(2,:),'LineWidth',2); 

plot(tv,SIR(: ,2),' — 'LineWidth',2) % I(t) without delay 

title('I(t) with different delays') 

xlabel('Days');ylabel('Number of individuals'); 

end; 

f igure; 

% comparison R(t) with different delay 

for i=l:length(tau) 

hold on; 

plot(sol(i).x,sol(i).y(3,:),'LineWidth',2); 

plot(tv,SIR(: ,3),' — ','LineWidth',2) % R(t) without delay 

title('R(t) with different delays') 

xlabel('Days');ylabel('Number of individuals'); 

end; 

f igure; 

plot(sol(1).x,sol(l).y,sol(2).x,sol(2).y,'—','LineWidth',2); 

function v = kmf(t,y,Z) 

ylagl = Z(:,l); 

v = zeros(3,1); 

N = 624404; 

beta = 0.3; % rate of infection 

alpha = 0.1052; % rate of recovery 

v(l) = - beta*y(l)*ylagl(2)/N; 

v(2) = beta*y(l)*ylagl(2)/N - alpha*y(2); 

v(3) = alpha*y(2); 

end 
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COMPARING GENERALIZED SIR MODEL WITH DIFFERENT DELAYS 

%This script shows the change of generalized SIR model 

with different delays and also compare with generalized SIR model without delay 

clear a l l ; close a l l ; 

N = 624404; % population 

beta = 0.3; % rate of infection 

alpha = 0.1052; % rate of recovery 

SO = 623504; % i n i t i a l susceptible 

10 = 600; % i n i t i a l infections 

R0 = 0; % i n i t i a l removed 

tv = 0:1:365; 

mu=0.004; 

gammal=0.005; 

gamma2=0.001; 

% solution of generalized SIR model without delay - calling function gen_modelSIR.m 

[t,SIR] = gen_modelSIR(S0,10,R0,beta,alpha, tv,N,mu,gammal,gamma2); 

°/
0
 vector of different delays, there can be also more or less delay 

tau= [5,9.5,11.5,14]; 

for i= 1 : length(tau) 

sol(i) = dde23(@kmf,[tau(i)],[S0;I0 ;R0 ], [0, 365]); 

end 

hold on; 

% comparison S(t) with different delays 

for i=l:length(tau) 

plot(sol(i).x,sol(i).y(l,:),'LineWidth',2); 

plot(tv,SIR(:,1)'LineWidth',2) % S(t) without delay 

title('S(t) with different delays') 

xlabel('Days');ylabel('Number of individuals'); 

end; 

f igure; 

% comparison I(t) with different delays 

for i=l:length(tau) 

hold on; 

plot(sol(i).x,sol(i).y(2,:),'LineWidth',2); 

plot(tv,SIR(:,2),'--','LineWidth',2) % I(t) without delay 

title('I(t) with different delays') 

xlabel('Days');ylabel('Number of individuals'); 

end; 

f igure; 

% comparison R(t) with different delays 

for i=l:length(tau) 
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hold, on; 
plot ( s o K i ) .x , sol(i) .y(3, :), 'LineWidth' ,2) ; 
plot(tv,SIR(: ,3), ' — ' , 'Line-Width' ,2) % R(t) without delay 

title('R(t) with different delays') 

xlabel('Days');ylabel('Number of individuals'); 

end; 

f igure; 

plot(sol(1).x,sol(l).y,sol(2).x,sol(2).y,'--','LineWidth',2); 

% generalized system with delays 

function v = kmf(t,y,Z) 

ylagl = Z(:,l); 

v = zeros(3,1); 

N = 624404; 

beta = 0.3; % rate of infection 

alpha = 0.1052; % rate of recovery 

mu=0.004; 

gammal=0.005; 

gamma2=0.001; 

v(l) = mu- beta*y(l)*ylagl(2)/N-gammal.*y(l); 

v(2) = beta*y(l)*ylagl(2)/N - (gamma2+alpha)*y(2); 

v(3) = alpha*y(2)-gammal*y(3); 

end 
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