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Chapter 1 

Introduction 
Augmented Reality (AR) is viewed as a variation of Virtual Environments. While 
immersed in a Virtual Environment, the user is limited to seeing only virtual objects. 
Augmented reality, on the other hand, simply enhances the real world with virtual objects. 
Azuma [ ] proposed a commonly accepted definition of augmented reality systems from 
1997. Such system is required to have three characteristics: combines real and virtual 
environment, it is interactive in real time and registered in 3D. This definition does 
not allow simple 2D overlays or (non-interactive) movie effects. On the other hand, 
augmented reality based applications on contemporary mobile devices clearly fit all the 
required characteristics. 

This work is focused on real-time camera pose tracking. The current state of the 
art in several areas, such as marker-based tracking, feature point matching and tracking 
has achieved great maturity. Objectively, there is still progress to be made in this 
field to enhance robustness, reduce computational complexity and increase scalability to 
mobile devices. In this work I included an overview of the above mentioned tracking 
of the camera pose relative to real-world objects. I pinpointed current limitations and 
established possible future directions with a focus on methods with extremely low 
computational and memory requirements. 

None of the existing marker-based approaches fulfills the requirements set as the 
goals of this work: scalable size, reliable and robust detection, and efficient algorithm 
suitable for ultra-mobile devices. ALVAR, ARTag, CALTag and similar approaches have 
very efficient algorithms, but allow only small individual markers and require complex 
setup and calibration, if a larger area is to be used. Random Dot Markers' marker design 
theoretically allows for scalable sizes, but the detection algorithm is far from efficient. 

These limitations lead to the development of Uniform Marker Fields by me and my 
colleagues. My most important contribution was the research of efficient algorithmic ap­
proaches and their maximally efficient implementation on multiple computing platforms. 
The marker design and synthesis were done as a joint research with Michal Zacharias, 
Adam Herout, Jiff Havel - my contribution to these parts was secondary. Based on the 
developed technology of UMF, we opened space for a few distinct applications. 
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1.1 Summary of Contributions 

This thesis contributes to the state of the art of fast camera localization using artifical 
markers. This work describes the design decisions and proposed algorithms for efficient 
detection of the Uniform Marker Fields and its utilizations. 

Efficient detection of planar grid structures using vanishing points. 
In the industrial manhattan world, the occurrence of tile-based structure is frequent. 
Many marker based approaches rely on tiles of black and white fields to encode 
information (ARTag, ALVAR, QR code) or to get reliable points for the camera 
pose estimation. However, these approaches use only corners or special local 
image features to localize the markers (silent areas, length-ratio on line segments, 
circular patterns, etc.). The proposed method in this thesis uses a global approach 
to detect the grid of tiles as a whole. This is the key part of the camera pose 
estimation algorithm for the Uniform Marker Fields. 

Novel approach to real-time virtual camera. 
Contemporary virtual camera systems used in movie production to replace image 
segments with virtual objects use complex and expensive hardware and software 
setups. A challenging component in these systems is the real-time camera pose 
estimation for live scene previews and storyboarding. This thesis describes an 
approach that works on commodity mobile devices in real time. 

Estimating relative pose for human computer interactions. 
The growing number of user-owned smart devices equipped with camera opened 
the door towards new inter-device interaction techniques. Visual one-time transfer 
of data with limited size between devices already exists (QR codes, V R codes). 
This thesis discusses a novel interaction technique that uses continuous information 
flow for interaction. This is achieved by establishing and tracking the smart 
devices' camera pose relative to the information provider. 

Cross-platform efficient implementation of proposed methods in real-world use cases. 

With technological advancement, the number of available computational plat­
forms grows. Mobile architectures focus on low power consumption with rich 
support for auxiliary sensors, while desktop architectures aim for maximum pos­
sible performance and ease of development. The methods described in this thesis 
were implemented with both these platforms in mind. An efficient, low-memory 
footprint algorithm is especially important on mobile platforms, where the com­
putational power is relatively low. 
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1.2 Authorship 
Although most of the work presented in this thesis is my own, some parts resulted from 
a collaboration with colleagues. 

Adam Herout has contributed to my work with many ideas and consultations. He 
proposed first the usage of de Bruijn sequences as a perspective direction to solve the 
limitations of state-of-the-art marker designs. The initial visual design and synthesis 
of such markers (Uniform Marker Fields) were done as a joint research with Michal 
Zachariáš, Adam Herout and Jiří Havel - my contribution to these parts was secondary. 
My contribution related to Uniform Marker Fields was the proposal of an efficient 
detection method, its refinement into a practical algorithm and experimental evaluation. 
Jiří Havel's research and consultations were pivotal during this process, who laid down 
the mathematical bases of efficient vanishing point detection. 

Markéta Dubská proposed the first basic principle of using fiduciary markers as part 
of a greenscreen for cheap camera pose estimation in movie production. I refined this 
idea into a practical algorithm and tested in the experiments presented in this thesis. 

Rudolf Kajan proposed the system for continuous inter-device communication. This 
system included the module for relative pose estimation using the camera stream as a 
bases for interactions. The parts relevant to this module in this thesis are my own work. 
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Chapter 2 

State of the Art 
Augmented reality systems are complex systems consisting of many individual sub­
parts or sub-modules from a broad range of fields concerning computer vision, computer 
graphics, hardware sensors, robotics, etc. The research on augmented reality is in 
consequence highly fragmented. 

The overwhelming majority of contemporary A R systems solutions use exclusively 
visual information. Even the strict definition of augmented reality systems by Azuma [4] 
does not specify the characteristics of devices used for registering 3D position. Besides 
optical sensors, as the most common sensor used at present, magnetic, acoustic, inertial, 
GPS, mechanical and other sensors can be used. Using captured images alone for 3D 
registering is sometimes insufficient and require relatively large computation power. 

Registration 3D rendering 

* • • • 
• V 1 

Detection & Camera 
Tracking pose 

1 
Matching 
points 

Homography 
PnP 

Lighting 
estimation 

Interaction 

Camera 
calibration 

I 
I 
I 

Figure 2.1: Simplified model of an augmented reality system. For each iteration, the 
system starts with gathering sensory input (Registration) and provides the user with 
an augmented view (3D rendering). Visual data, as the main source for camera pose 
estimation, needs to be further processed (Detection & Tracking, Matching points, 
Homography - PnP calculations). Other sensory information, like GPS or IMU, can 
be directly used for camera pose estimation. An A R system optionally includes several 
other modules. I gave three examples: Lighting estimation for realism, Interaction with 
virtual objets, Camera calibration for improved precision. 

For the remainder of this work, I will focus on augmented reality systems using 
cameras as main input sensors. Figure 2.1 contains a simplified model of such a system. 
The first step is registration - acquiring the input from different sensors. The visual 
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data is then further processed to find important edges, corners, other reliable feature 
points and markers in the image. These points are then matched based on the model 
to 3D positions. The correspondences between the 2D and 3D points can be used to 
calculate a homography, to get the global 6 degrees-of-freedom camera pose (position, 
rotation). Other sensor input can optionally be used to improve precision (dashed line 
between Registration and Camera pose in Figure 2.1). Using the knowledge about the 
camera's internal parameters and its position and rotation, the system is able to augment 
the captured image or video with virtual objects. 

The three further modules: Lighting estimation, Camera calibration and Interac­
tion are also important to achieve realistic results, good user experience and precise 
camera position estimation. Unfortunately, the research on interaction with the virtual 
environment is still in early stages. 

2.1 Perspective-w-Point Problem 
In some computer vision applications, simple 2D homography between consecutive 
frames might be enough to track the camera movement. In augmented reality, however, 
most applications rely on acquiring the full camera position and orientation relative to 
a known origin. In these calculations, the camera's intrinsic parameters are assumed to 
be available. The problem of determining the camera pose given the correspondences 
between 2D and 3D points and the intrinsic parameters is known as Perspective-n-Point, 
where n refers to the number of correspondences. 

Generally, P«P solving algorithms try to solve the equations given by the pin-hole 
camera model: 

for unknowns 3 x 3 orthogonal rotation matrix R and translation vector t for each 
correspondence (pi, rrii). Points pi are the undistorted 2D projected points expressed 
as a column vector in homogeneous coordinates and 3D homogeneous column vectors 
rrii of the model points. K is the camera intrinsic matrix: 

where fx, fy are the focal lengths expressed in the same units as the projected points and 
(cx, cy) is the principal point. 

Solving P«P accurately is computationally expensive even with known camera cal­
ibration. Quan et al. [ ] described an often used solution for fixed n = 3 (combined 
with R A N S A C for n > 3). Usually a fourth point is used for disambiguation between 
possible solutions. This is used with markers like ARTag [ L2] or ARToolkit [18], which 
have exactly 4 corner points. For n > 3 stable non-iterative approaches have complexity 

Pi « K ( R , t )m; (2.1) 

(2.2) 

5 



of 0 (n 5 ) [30] or even 0(n8) [3]. From iterative approaches, Lu et al. [23] described a 
very accurate algorithm, though slower than non-iterative algorithms without a good ini­
tial pose. More recently, Lepetit et al. [ ] proposed a non-iterative algorithm combined 
with Gauss-Newton optimization algorithm with 0(n) complexity - EP«P. 

In an augmented reality setting, the temporal camera pose dependence between 
successive frames provides a good enough initial guess for iterative methods to reduce 
the number of needed iterations. Methods like EP«P are still useful during initialization 
and when the tracking gets lost. 

2.2 Vision-based Tracking Techniques 

Vision-based tracking have been the most active area of research in augmented reality. 
It allows to calculate the camera position with high accuracy compared to other sensor 
based techniques. They represent closed loop systems, since they can use results from 
previous steps and correct errors dynamically. 

Vision-based tracking methods can be separated into two main classes based on the 
used information from the image: feature-based and model-based. The feature-based 
methods try to find a correspondence between 2D image feature points and 3D world 
frame coordinates. Feature-based method can be further split into two groups based on 
the type of the features used for detection: fiduciary marker based tracking methods 
(Section 2.3) and natural image feature based tracking. 

Model based tracking methods explicitly use the features of tracked objects, which 
have a 3D model known beforehand. This technique is often combined with methods 
based on natural features. The texture of objects provides more easily trackable features 
and is usually more dominant than the shape of the objects. 

Most modern model based tracking methods, build their own models based on points, 
edges, or lines. There are two main families of approaches, depending on how the image 
features are being used. The first family tries to match projections of target objects 
based on lines and edge positions, as the algorithms described above. The second set of 
approaches rely on local information in the image region. 

Model based approaches that rely only on geometric properties of the objects are not 
scalable enough for larger scenes. In an outside area they fail to register finer geometry, 
like the windows on buildings. Simon [33] proposed a hybrid approach combining 3D 
model and texture information (Figure 2.2 left). 

Most of the 3D reconstruction methods like monocular S L A M , D T A M [26], P T A M [ 19] 
(Figure 2.2 right), etc., could be also classified under model based tracking methods. 
Even though these methods can be extended to be used in augmented reality system, 
they require large amount of memory and computational power. As a consequence, it 
is unrealistic for them to work on contemporary mobile devices and used for consumer 
oriented augmented reality applications. 
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Figure 2.2: Left: One iteration of model based tracking combined with feature matching 
on textures by Simon [ ]. Right: Parallel tracking and mapping [ ] (PTAM) demon­
stration. The successful point observation and the maps dominant plane is shown in the 
image. 

Vision based tracking methods for augmented reality work with high precision and 
robustness in confined areas with complex geometry and textures, but fail with fast 
motion or in large-scale areas. Using other type of sensors, like GPS or inertial sensors, 
works well in these situations. Notable research on combining auxiliary sensors with 
visual information is the work of Oskiper et al. [28]. 

2.3 Approaches Based on Fiduciary Markers 

Historically and also in recent literature many augmented reality based research is using 
fiduciary markers to reliably establish the camera position within the scene. Popular 
designs of fiduciary markers consist of two components: geometrical features which 
help localize the marker in the processed image and features defining the identity of the 
marker (for example [12, 18]). That allows for placing several (or many) markers into 
one scene and their efficient detection. Usage of several markers displaced within the 
scene is necessary to allow for free movement of the camera within the scene. 

The ARToolKit library was first presented in 1999 [ ]. Even though the detection 
algorithm has disadvantages and newer, more robust methods were introduced, it is 
still used in research in augmented reality as a fast and simple solution. The detection 
algorithm of the markers is based on binarization with adaptive threshold and matching 
the rectified content against a library. The corners of the marker are then matched to 
their known 3D positions. Based on these correspondences, the algorithm estimates and 
iteratively refines the camera pose to get better precision. 

ARTag introduced by Fiala [12] has tried to solve these problems (Figure 2.3). 
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They combined Data matrix coding for marker identification with the rectangular thick 
border shaped markers used in ARToolKit. In the detection algorithm, they replaced 
the adaptive thresholding of image regions with thresholding of extracted edges. These 
changes improve detection performance and require lower computational complexity. 
The most notable change introduced by ARTag is replacing the template image with 
digitally encoded information. 

In a follow-up work, Fiala [13] combined several markers on a single plane of known 
relative position and rotation to improve the reliability of the camera pose detection. He 
used this approach to provide a "magic mirror" system with acceptable accuracy and 
delay. One disadvantage of this approach is that individual markers are still detected 
and decoded separately, wasting computational time. The second disadvantage is that 
the relative position and rotations between markers contributing to a single reference 
frame have to be annotated manually. Only after each marker was detected, their corners 
are extracted and combined together based on the annotations to improve camera pose 
estimation precision. 

Nested Markers [ ] tried to solve the contradictory requirements of small enough 
marker size to fit in the frame and large enough to realize accurate geometric registration 
by nesting a number smaller markers into a larger one. 

One of the latest improved techniques based on individual square-based markers was 
proposed by Herout et al. [ ], who introduced Fractal Marker Fields (Figure 2.4). They 
provide the ultimate solution to the contradictory requirements faced by pure marker-
based approaches. These marker fields provide guaranteed density of visible markers in 
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Figure 2.4: Fractal Marker Fields [ ] with detected sub-markers. 

every scale, solving the main problem of limited distance range useable for detection. 
Fractal Marker Fields would be an ideal solution in large-scale situations, where 

markers are acceptable. Practical applications of the allowed freedom in scale is limited. 
In most real-world augmented reality applications: human-computer interaction, 3D 
visualization, medical training, etc. - 2-3 scale levels at most are sufficient. The biggest 
disadvantage of Fractal Marker Fields is the dependence on computationally complex 
detection algorithms. 

Uchiyama et al. [ ] used randomly scattered dots as fiducial markers (Random 
Dot Markers - Figure 2.5 left). Compared to traditional markers with square patterns, 
Random Dot Markers require slightly larger area, so that the camera could recognize the 
individual points for detection. On the other hand, random dot markers are more robust 
against occlusion. 

Figure 2.5: Random Dot Markers [37] demonstrating robustness against occlusion. 
Right: Deformable Random Dot Markers [36] with detected mesh. 



The advantage of Random Dot Markers is that it is not constrained by a square area 
and it has excellent robustness against occlusion. Theoretically any shape can be used for 
the marker. The disadvantages of their approach lie in the memory-intensive keypoint 
extraction, questionable choice of descriptors, and the sensitivity of the detection algo­
rithm to the chosen dot size. Since the geometric descriptor uses only local arrangements 
of points, the Random Dot Markers could also be applied to slightly curved surfaces 
(Figure 2.5 [36]) to recover the deformation. 

The amount of research on fiducial marker based tracking has been on decline in 
recent years. This suggests that the research in this area has achieved high matu­
rity. Marker based approaches are slowly replaced by natural feature based tracking. 
However, where simplicity, precision and computational efficiency is critical, marker 
detection based methods are still superior and widely used method. 

2.4 Augmented Reality Applications 

In the state of the art describing mostly new and improved methods of camera pose 
tracking, scene modeling and visually correct rendering, there are many applications 
envisioned for Augmented Reality. The fields of these applications also varies widely, 
ranging from medical training to children book coloring. Most of the research, though, 
is focused on individual pieces required to create a full Augmented Reality experience. 
Industry-ready use cases of augmented reality are almost completely non-existent. In 
the state of the art also comprehensive user evaluation of the proposed systems is miss­
ing. The enabling technologies and the commodity of high-performance smartphones 
represent a landmark, which could boost this research area in the near future. This thesis 
also focuses on these realistic use cases and presents several use cases of A R including 
a cheap match-moving solution and efficient inter-device content acquisition. 

Figure 2.6: Interactive coloring book with live animated characters textured based on 
the drawing. The templates for augmentation are on the right. 

Recently, Magnenat et al. [25] from Disney Research showcased an application for 
an interactive coloring book (see Figure 2.6) using BRISK feature point detector and 
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descriptor. The disadvantage of using feature point descriptors on binary images is 
the low discriminatory power between feature points. In their work, they had to use 
complex heuristics to filter out outliers and in some cases they added complex visual 
patterns around the drawing to achieve reliable camera pose estimation and tracking. 

A demonstration of the growing computational power of smartphones and gradually 
maturing state of dense tracking algorithms is the work of Ondruska et al. [27]. They 
demonstrated an application supporting full volumetric surface reconstruction and dense 
tracking in real time on mobile phones. 

A frequent A R application in the state of the art is mentoring or training. Recently, 
Zhu et al. [ ] demonstrated a wearable real-time A R mentoring system to assist in com­
plicated maintenance and repair tasks using a hybrid approach with a high-latency visual 
landmark matching and feature tracking modules, and a low-latency IMU prediction 
module. 

Figure 2.7: A user interface design and prototype for professional 3D media production 
A R system [20]. (a): the distribution of participants in their survey during the design 
process; (b) the envisioned A R system; (c): the implemented prototype. 

One of the goals set forth in this thesis was to showcase the possibility to create 
real-time functional A R systems with practical use even in the real world and media 
production. A similar notion also lies behind the recent work from Krichenbauer et 
al. [20]. They explored the possibilities to create an immersive 3D UI for 3D computer 
graphics content creation. For robust 6DOF camera pose estimation and hand-tool 
localization, they used fiducials in their prototype implementation. These examples 
further accentuate the fact that fiduciary markers are still the go-to solution for prototype 
systems, when fast and robust solution is required, and that fiduciary markers are still a 
relevant research area. 
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Chapter 3 

Uniform Marker Fields 
This chapter presents the technological core of my PhD research. My main contributions 
in this thesis are centered around Uniform Marker Fields generation, detection algorithms 
and experimental evaluation. Some of the work resulted from cooperiation with others: 
Adam Herout and Michal Zacharias in relation to marker design and generation and Jiff 
Havel in relation to de Bruijn tori theory and line parametrization. 

3.1 Orientable Window Arrays as Marker Fields 

Perfect maps are 2D arrays in which every possible rectangular subarray of a given size 
occurs exactly once. The perfect map can be either periodic or aperiodic. An aperiodic 
(TO, n)-window array [ ] is an k-ary 2D array of size h x w 

A = (aij e {0, • • • , k - 1}; 0 < i < h; 0 < j < w), (3.1) 

in which each subarray ATjC of size TO X n occurs exactly once. 
If all possible subarrays are used (i.e. (w + n — 1) (h + TO — 1) = kmn), the ( T O , n)-

window array is called aperiodic perfect map [32]. Opposite edges of the array can be 
connected together for a periodic window array. Of course, the windows created by the 
connection must also be unique (i.e. wh < kmn). 

Unfortunately, when the orientation of the array is not known, the simple (TO, n)-
window property of a window array is not enough. It is possible that multiple rotations 
of the same window can occur in the array. Orientable window arrays [ ] solve this 
problem. 

4-orientable arrays can distinguish all four rotations of the array (e.g. "north", "east", 
"south", "west"). The 4-orientability is reasonable only for square windows, that must 
be unique in respect to rotation by 90°. It is self-evident that 4-orientable arrays are 
always also 2-orientable [ ]. 

Contrary to the 1-orientable maps, 4-orientable arrays are much less explored in the 
literature and no good construction algorithms existed for them before our proposed 
algorithm in [34] and [16]. Similar work on 4-orientable 2D window arrays to the best 
of my knowledge have been missing in the literature. 

Binary 4-orientable window arrays can be visualized as 2D checkerboard structure, 
where the white and black modules are reorganized to match the values in a window 
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array (Figure 3.1). As a more general definition, Uniform Marker Fields are visual 
patterns - fiduciary markers - made up of square modules forming a regular grid, where 
windows of size n2 are unique in every rotation. 

3.2 Synthesis of Binary n 2 -Window Arrays 

Binary 4-orientable aperiodic binary n2-window arrays with n = 3, a (square) map 
cannot be larger than 12 x 12. Our algorithm described in this section has found a 
number of 11 x 11 arrays (Figure 3.1 left). Thus, 32-window arrays can be used as 
Uniform Marker Fields, but the dimension of the field is very limited and the benefits 
over any existing marker designs are not very interesting. The theoretical upper bound 
for the dimensions of a square map with n = 4 is 127 x 127. By the algorithm presented 
in this section, 4-orientable 42-window arrays as large as 92 x 92 have been found by 
using a supercomputer (Figure 3.1 right). 

Figure 3.1: Largest generated 4-orientable n2-window arrays using our synthesis algo­
rithm, with n = 3 on the left and n = 4 on the right. 

The literature does not provide any efficient construction method for 2 or 4-orientable 
n2-window arrays. Exhaustive search is not feasible as a construction method: for 
example, for a 42-window array 90 x 90 modules large, the area of the map to be 
searched for is 8100 modules and the state space is just too large (2 8 1 0 0 ) . 

We proposed a genetic algorithm which works with maps containing conflicts and 
improves it continually by mutations that lead to decreasing the conflict count. We 
also applied several heuristics for faster convergence. In order to distribute calculations 
required to solve the conflicts in randomly generated arrays, we used a client-server 
architecture. 

The genetic algorithm can be characterized by these terms: 

• For the initial population we use a number of copies of the same array, or various 
arrays are generated randomly. 
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• The fitness function of an individual is based on the number of conflicts in the 
given array f(A) = 3 ^ + 1 . 

• The fitness threshold, where the algorithm is stopped is set to 1 (the algorithm is 
looking for conflict-free maps). 

• For selecting members for the next generation, rank selection is used. 

• Mutation is defined as replacing a window with randomly generated content. The 
windows are selected randomly; the conflicting windows have a higher probability 
of being selected for replacement. 

We generated a set of binary aperiodic 4-orientable n2-window arrays. Table 3.1 
gives the highest resolutions of the window arrays available for the respective aspect 
ratios in the data set. 

aspect ratio available dimension 
1:1 92 x 92 

V2:l 110 x 78 
2:1 122 x 61 
3:1 159 x 53 

Table 3.1: Available sizes of the binary 4-orientable aperiodic 42-window arrays. 

3.3 Detection of binary UMF 
My main contribution related to Uniform Marker Fields is the efficient detection algo­
rithm. The Uniform Marker Field construction does not distinguish between marker 
design features intended for general marker localization and features for marker iden­
tification. Checker-board modules serve simultaneously as the localization and identi­
fication features. This approach is more space efficient and provides more uniformly 
distributed points of interest for 2D-3D correspondences. 

The detection algorithm was designed so that it visits as small a fraction of the image 
pixels as possible, and assumes that a significant portion of the input image is covered 
by the marker field. The algorithm performs the following main steps: 

1. Extraction of edgels - edgels are described by an image point and edge orientation 
(vector) or by two endpoints. 

2. Determination of two dominant vanishing points among the edgels. The van­
ishing points define the horizon (a line connecting the vanishing points). Using 
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homogeneous coordinates for the vanishing point v and the cluster of lines 1̂ , all 
the lines must be coincident with the vanishing point, i.e. 

V« : v • \i = 0. (3.2) 

The vanishing point is found as the direction of the least variance by eigendecom-
position of the correlation matrix 

C=(\0..AN)(\0...\N)T. (3.3) 

3. Finding the grid of checker-board edges as two groups of regularly repeated 
lines coincident with each vanishing point. The lines in each group corresponding 
to the edges of the grid squares can be computed using the horizon as (x denotes 
normalized vector) 

h = hase + (ki + q) h, (3.4) 

where hase is an arbitrarily chosen base line coincident with the vanishing point, 
different from the horizon. First, (ki + q) is estimated for each line. The values 
are clustered to recover the density k of the grid and offset q. 

4. Extraction of checker-board modules using the grid and localization of the 
camera view within the 4-orientable n2-window array. Points 

x t / — l(»+i/2) x l(j+i/2)'^'-7 e N (3.5) 

are intersections of lines right between the edge lines: points in the middle of the 
checker-board square modules. These locations are sampled from the input image. 
Once the sampled values have been filtered using an adaptive threshold, each 4 x 4 
window's location inside the sampled region is found using a hash function. 

Figure 3.2: Left to right: Edgel extraction along scanlines; dominant group of lines; 
finding the grid of the marker. 

For testing purposes of this initial solution, I collected a set of videos acquired by 
3 different smartphone cameras at resolution 640 x 480 or 720 x 480 with 24 frames 
per second, each 20 to 30 seconds long. In order to evaluate the detection precision 
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for different types of movements, I split the dataset into 6 categories according to the 
dominant movement manifested in each video. I used two different marker fields: a low-
density marker field (14 x 10) and a high-density marker field (28 x 19). To estimate a 
baseline of the algorithm's robustness we did not use information from previous frames. 
Table 3.2 contains the percentage of frames, where the camera pose was successfully 
recovered. The results show that our algorithm performs well even for very challenging 
videos with rapid movement causing directional blur, rotation, and high perspective 
distortion. 

Category Low density High density 
Zoom 94.5 % 92.0% 

Horizontal 97.3 % 99.4 % 
Rotation 99.9% 99.0% 

Perspective 99.8 % 99.4 % 
General movmement 95.3 % 95.0% 

Occlusion 91.9% 92.5 % 

Table 3.2: Success rate for detecting the position in the marker with different categories 
and marker densities. 

I measured the required time of different components of the detection algorithm. 
Table 3.3 shows the percental distribution of computational time between different 
components. 

Algorithm part time percent 
Scanlines 0.21 ms 16% 
Edgel extraction 0.22 ms 16% 
Vanishing points and Grid 0.11ms 8% 
Module extraction 0.06 ms 5% 
Camera localization (OpenCV) 0.74 ms 55% 
Overall 1.34 ms 100% 

Table 3.3: Breakdown of computational time into different parts of the algorithm, 
measured on an Intel Core i5 661, 3.3 GHz with a DDR2 memory. 

3.4 Five Shades of Gray 
In a follow-up work, we generalized the Uniform Marker Fields construction to grayscale 
or color &-ary marker fields (a^ G {0, — 1}, Figure 3.3). In comparison with 
binary marker fields the absolute greyscale or color values of the grid modules cannot 
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be reliably discerned under varying lighting and camera conditions. We used the edge 
gradients between the modules in a single n x n window as the unique window array 
property for localization within the marker field. Horizontal (3.6) and vertical (3.7) edge 
gradients are defined as: 

eij = ai,j+i - aiji (3-6) 

e\- = di+xj-ciij. (3.7) 

The absolute value of the edge gradient is also hard to recognize reliably and thus only 
the basic character of the edge is used for recognition: g*- = sgne*, G {—1,0, +1}. 
The n2-window used for localization within the marker field then is (Figure 3.3): 

Grc = {grc 5 • • • 5 # ( r + n _ i ) C + n _ 2 ) > Olc-i • • • i 5 ' ( r + n _ 2 , c + n - l ) ) ' (3.8) 

where Grc is the unique window at position (r, c) inside the window array. Given this 
ternary classification of edges, grayscale markers can be seen as a generalized version of 
k = 3-ary n2-window arrays, and color marker fields as k = 3c-ary n2-window arrays, 
where c is the number of channels in the used color model. 

Figure 3.3: Uniform Marker Fields with several shades of grey. The highlighted blue 
sub-window is unique in the map considering the edge directions as seen on the extracted 
region. 

Synthesis of the marker field is done in a manner similar to the genetic algorithm 
sketched out in Section 3.2. In this case, the fitness function additionally also reflects 
the quality of edges between the modules. 

Detection 

Figure 3.4 summarizes the detection algorithm for grayscale UMF. We added several 
improvements to the detection algorithm. We used a simple rectangular mask to filter 
out the edges outside the area corresponding to the previously detected marker field. We 
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added one additional step to filter out outliers inside each group of lines using RANS A C -
like approach before the vanishing point calculations. We also used improved clustering 
of (ki + q) values using mean-shift. 

Figure 3.4: Detection of the greyscale grid of squares. A: The image is processed in 
sparse scanlines. On each scanline, edges are detected (Red) and extended to edgels 
(Green) by iteratively finding further edge pixels in the direction perpendicular to the 
gradient. B: The edgels are grouped into two dominant groups using RANS A C ; two 
vanishing points are computed by hyperplane fitting. C: Based on the vanishing points, 
the optimal grid is fitted to the set of the edgels (orange dots denote the estimated centers 
of grid modules). D: Edges between the modules are classified. 

Due to the design decisions for the generalized Uniform Marker Fields, the proposed 
algorithm after step 3 diverged significantly from the original algorithm. In order to 
correctly classify an edge given the locations of the neighboring marker field modules, 
our algorithm samples pixels from the edge's vicinity and compares them to vote for 
edge direction. The stopping criterion is given by Wald's sequential probability ratio 
test [38], which is proven to be the optimal sequential test for this purpose. 

The sub-window described by edges Grc is formulated as a vector of scalars in (3.8). 
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Instead of using a ready-made hash table, we prefer to create a decision tree, which could 
be constructed fault-tolerant. For a precise camera pose estimation the algorithm finds 
all possible corners between the square modules in the marker field (with a sub-pixel 
precision). 

Experimental Results 

We compared our solution to A L V A R [ ] as the most mature available ARToolKit 
follower (ARTag is no longer publicly available). A L V A R supports arrays of disjointed 
square markers. The other baseline is the Random Dot Markers (RDM) [37] as an 
alternative "marker field" solution, where individual localization markers overlap in the 
field and exhibit robustness against occlusion. 

For comparing our solution with the alternatives, we shot videos of side-by-side 
markers (Figure 3.5). We evaluated the precision of our algorithm using local variance 
(Table 3.4) and performance as the percentage of frames with successfully estimated 
camera pose (Table 3.5). 

Method RDM ALVAR UMF 
Average position variance: 
Average rotation variance: 

8.5 cm 
0.049 

3.48 cm 
0.035 

3.28 cm 
0.024 

Table 3.4: The average variance in position and rotation change using 10 frames for 
averaging in a 1080p 50FPS video. The rotation variance is expressed as variance of 
quaternions, since the euler angles are unstable due to the gimbal lock. (Note: R D M 
gave highly unstable results and the low average variance in rotation is caused mainly 
by the low detection rate. For the rotation test video it gave 0.080 variance.) 

Method RDM ALVAR UMF 
Lighting 89.7 100.0 100.0 
Perspective 42.7 100.0 100.0 
Near/Far 75.8 91.3 93.4, 94.6 
Rotate 94.7 100.0 100.0 
Zig-Zag 29.6 98.3 97.5, 97.4 
Occlusion 38.5 93.0 94.0, 96.5 
Overall 61.8 97.1 97.8 

Table 3.5: Marker field detection success rates in %. For Uniform Marker Fields, 
rates from comparison videos with R D M and A L V A R are given separately, if different. 
Success rate is the percental ratio of video frames where at the different markers were 
correctly detected. 
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Figure 3.5: Sample images from the dataset. Purple dots are the detected corner points 
for U M F used for camera pose estimation. 

Table 3.6 shows the speed of the three tested algorithms and the breakdown of speed 
of our marker detection algorithm for videos with 1920 x 1080 pa: resolution. Our 
algorithm was more than 3x faster than A L V A R and visited on average about 5.3 % of 
all pixel points. 

We used a cluster of computers (~ 1000 nodes) to synthesize the marker fields with 
highest possible resolutions. For n > 3 the several marker fields of size 250 x 250 were 
found. 
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RDM ALVAR UMF (edge grid match cam sref) 
164.4 30.1 8.8 (3.8 1.1 0.3 0.7 2.9) 

Table 3.6: Breakdown of speed in milliseconds for 1080p videos using a mid-range 
Intel(R) Core(TM) i5 CPU 661 (3.33GHz) CPU. edge: edgel detection in scanlines; 
grid: reconstructing the grid using R A N S A C and vanishing point detection; match: 
edge direction detection and position decision making; cam: camera pose estimation 
based on the found matches; sref: processing in subwindows and position refinement 
by iterative search for more corner points. 

3.5 Indoor Localization by UMF 
We created a dataset of images to measure the precision of the Uniform Marker Fields 
detector in collaboration with M . Zacharias et al. [ ] as part of our research concerning 
indoor navigation. We marked 6 different view points relative to a projected grayscale 
Marker Field with 14.3 cm module size. 

600 

500 
X* WW-

* don 
% 7 V U 

300 

"•00 

*< 

100 

Ml 

- 9 

150 100 50 0 -50 -100 -150 

X A X B X C X D X E X F + A m + Bm + C m + Dm + Em + Fm 

Figure 3.6: Detected positions from the (15+ photos for each test point) 
A, B,C, D, E, F points. The + points are the illustrative reference point positions 
Am, Bm, Cm, F)m, Em, Fm. 

We took images from the 6 reference points with a smartphone camera (Nokia Lumia 
930) at 1920 x 1080 px resolution. For each reference point we took 15+ photos of the 
scene at different angles and 3 different heights from the ground. 

Figure 3.6 shows the results. The ground truth points in Figure 3.6 are for illustration 
purposes only. The overall standard deviation of the distances between pairs of detected 
positions from the ground truth was 6.73 cm and the median 3.21 cm. 
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Chapter 4 

Fast Grid Detection 
One important assumption during the design of U M F and its detection algorithm is that 
it covers a significant portion of the input image. For large scenes, this assumption 
is unrealistic. In this chapter, I propose an efficient search for candidate positions for 
regular grid patterns. While I demonstrate this approach for detecting QR codes, the 
algorithm is not limited to any specific marker or Matrix Code. 

QR codes [ ] are a very popular case of matrix codes (or 2D barcodes). They 
are receiving an increasing popularity among smartphone users and are becoming the 
standard when it comes to short data migration into their devices. Their detection in 
high-resolution images of real-world complex scenes is desirable. 

Figure 4.1: Left: The original 15MPix image with multiple codes present in the image. 
Right: The grid with histograms of oriented gradients. 

The QR code was designed in such a way, so that it can be easily localized by finding 
the predefined structures at its three main corners. There have been many attempts (e.g. 
[6]) to speed up and improve the detection of the QR codes the way it was intended 
using the Finder Patterns (FIP), but even for recent solutions [6], it takes 50-150 ms to 
process a 640 x 480 image in one pass and several passes are needed. 

We proposed a hierarchic segmentation approach based on the distribution of the 
histogram of gradients in tiles. The whole algorithm for detection of QR codes in a 
high-resolution image is depicted in Algorithm 1, where H n is the histogram with n 
bins, and Ti(u, v) is a tile at level / and position (u, v). The probability of a segment 
being part of a QR code P(Si), depends on the distribution of gradients and two most 
dominant edge orientations. 
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Algorithm 1 QR code detection in high-resolution images 
Input: Image / 
Output: Detected QR codes 

1: compute H n (71 (u, v)) by edge extraction 
2: compute Hn(7/(w, v)), / G { 2 , . . . , £ m a a ; } from lower-level histograms 
3: foralU G { 1 , . . . , ''max }do 
4: compute feature vectors v ; (*u, f) from the histograms 
5: compute the segments S = {Si, S2, • • •, Sk}, k G N 
6: for all Si e S do 
1: compute segment probability P{Si) 
8: if C(5i) == 1 then 
9: run QR code detection algorithm 

10: end if 
11: end for 
12: end for 

In order to evaluate the performance, we collected a dataset of challenging real-life 
images. Since no standard dataset was publicly available for evaluation of QR code 
detection algorithms, we acquired the images ourselves. 

The results show that our candidate search has very low false negative rate (7.4 %) 
and acceptable false positive rate (52.9 %). We compared our solution combined with 
QR code detection library proposed by Herout et al. [11] with publicly available ZBar 1 

library. Our solution gave comparable detection performance, while being 4 times faster 
(Figure 4.2). 
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Figure 4.2: The required time for processing in ms. The graph also shows average 
required times for different parts of our solution. 
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Chapter 5 

On-screen Markers 
Our Uniform Marker Field solution enables certain domain-specific augmented reality 
applications. One of them, where the markers are placed onto a computer screen so that 
it can be detected and recognized by an ultramobile device (typically a smartphone), is 
described in this chapter. This work was done in collaboration with other colleagues 
(primarily Rudolf Kajan) who provided the user interaction expertise and the use-case 
itself. I was responsible mostly for the client-side communication, and smartphone 
localization method and its evaluation. 

With the appearance of large and cheap high-resolution network-connected displays, 
and smartphones becoming a widespread personal accessory, the ubiquity of screen real-
estate naturally drew the interest of many researchers to examine the possibilities for 
interaction between these devices. 

Figure 5.1: In our work, we aimed at exchange of information between a large screen (a 
desktop computer, a public kiosk, etc.) and a mobile device. This information exchange 
should be visual and intuitive: based on the metaphor of "video recording" with the 
mobile camera. We achieved this by inserting a cutout from a Uniform Marker Field 
into the monitor screen that would be reliably detectable and could accurately establish 
the location within the screen. 

For a vast majority of applications, the initial assumption is still that users interact 
with just a single computing device throughout the day. The practical consequence 
of this assumption is the lack of collaboration among devices and lack of user-centric 
activities that may span multiple devices as well as multiple applications. While there 
are initial steps in this direction [5], they must support a wider variety of activities and 
fully recognize the members of a user's device collection. 
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Pierce et al. [29] introduced an infrastructure based on instant messaging which 
provides mechanisms for applications to send information, events and commands among 
devices. Chang and L i proposed DeepShot [8] - a framework for capturing work state 
which uses natural visual features and tracks them. Despite various techniques to balance 
the features' density in the camera view, it is impossible to ensure the presence of enough 
visual features in the whole camera view. In the case of observing a computer screen, 
the problem is even more difficult, because unlike the real world, the monitor screen 
tends to contain surfaces of exactly constant color 

In our research, we wanted to go further and provide users with a lightweight solution 
for information transfer, able to work with different types of information and contexts, 
respects the need for privacy and supports additional metadata generated through inter­
action which is useful for future interactions on other devices. 

5.1 Proposed System Architecture 
We have designed a highly responsive system, which allows for intuitive task migra­
tion without the need of manual application state inspection or copying of "raw" pixels 
without any additional semantic information (as done in Deep Shot [ ]). The task migra­
tion process from the system architecture's point of view is a two-way communication 
between a content provider and a content requester device (see Figure 5.2). 

Device in the role Device in the role 

of content provider of content requester 

Figure 5.2: The task migration process between a content requester and a content 
provider device. The content provider device creates an unobtrusive maker field overlay 
which enables fast and accurate within-screen view localization of the requester device. 
This localization information is used to select either full application state or to migrate 
selected content to the requester device. 
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5.2 Marker Field's Design and Detection 
In our approach we tried to minimize the required time to localize the client relative to 
the content provider with high stability. We achieved this by using grayscale Uniform 
Marker Fields (Section 3.4). 

Showing the whole marker on the whole display would be highly obtrusive. Instead, 
only a small part of marker is shown, which is still reliably detectable by our detection 
algorithm (see below). We tested constant transparency or pulsing between transparency 
levels (25 — 75% during performance evaluations) to achieve high detection rates and 
make the marker less obtrusive. 

In order to minimize the outliers caused by the most commonly occurring horizontal 
and vertical lines in display content (window borders, menus, vertical panels), we rotated 
the whole marker by angle a (a = j in our tests). To avoid introducing additional long 
edgels into the content provider's display, we also used smoothed or sinus border mask. 

There were no major changes necessary to the detection algorithm (Section 3.4). The 
content provider's orientation is assumed to be mounted on the wall without any rotation. 
A minor improvement is that the extracted edgels in the mobile device's view are filtered 
based on the its orientation acquired from its built-in accelerometer or gyroscope and 
the marker orientation (a) on the content provider. To make the edge classification more 
robust against transparency, we checked more sample points than the stopping criterion 
by Wald's sequential probability test [38] for reduncancy. 

Figure 5.3: A succesfully detected Uniform Marker Field as seen by the requester 
device's camera with a crosshair shown to aid the user with targeting. The purple 
highlight is the content provider's reaction to targeted content based on continuous 
interaction. 

The algorithm also does not compute the full homography, since the detected grid 
and marker position is sufficient to compute for arbitrary image pixel the position inside 

26 



the marker field (Figure 5.3). Given the decoded marker position, 10 in each pencil 
represents either a set of rows starting at index l0r or columns starting at Iqc. The 
position ( r a r ; mc) in the marker field of an arbitrary point p in the camera image can be 
determined by solving: 

p x v r = k\or + (mr — /or)h, (5.1) 

p x v c = k\0c + (mc - / 0 c ) h , (5.2) 

where v r and v c are the determined vanishing point for the pencils representing rows 
and columns, and h is the horizon. We used Kalman Filter to achieve smooth interaction. 

5.3 Implemented Solution - Chrome and Android 
As a proof of concept and as the testing prototype for user testing and exact experimental 
evaluation, we created a pilot version of the whole system. It consisted of: 

• The content provider background service for Microsoft Windows, 

• Google Chrome extension as the application-side provider module, 

• Android application as the client. 

My contributions in this prototype was the client side communication and Uniform 
Marker Fields detection. 

The application uses the video stream from the camera to identify the position and 
orientation of the content requester relative to the content provider. The marker field 
detection algorithm was implemented in native code through Android N D K toolset that 
allows implementation application parts using native-code languages such as C and C++. 

The detection algorithm computes the position inside the marker and also the position 
of a virtual cursor (see Figure 5.3). These coordinates are sent to the content provider, 
which uses them to extract semantic content and move the visible marker field fragment 
on the content provider device. 

5.4 Experiments: Empirical Tests and User Study 
We conducted an initial user study to observe how would people use our prototype. Our 
main goal was to find out how obtrusive was the usage of marker fields for task migration 
for participants and whether this approach is feasible also for inexperienced users. 

In general, our system was perceived very positively, with 86% of participants stating 
that it would definitely help them with content reaccess. 72% of participants would use 
it to obtain information from public displays. In this case, the biggest concern were 
privacy issues. 
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We tested the reliability of our marker field detection algorithm, with the marker 
mixed into natural screen contents. The results show, that we were able to detect reliably 
the content requester's position and viewing angle within 5 frames with 95 % probability 
on average over all angles and marker types (constant opacity, pulsing, different borders, 
etc.). 

For accuracy measurements, the mobile device was fixed with the visible fix-sized 
marker segment moving around on the screen. Table 5.1 shows the standard deviation 
of the determined position of the crosshair on the content provider's display in pixels. 
We did not use Kalman filter for these measurements. 

[pixels] 75° 90° 105° 120° 
10cm constant 
10cm pulsing 

11.0 
6.3 

10.0 
7.6 

10.0 
8.9 

27.6 
11.8 

20cm constant 
20cm pulsing 

27.7 
17.0 

19.4 
24.1 

21.9 
24.3 

26.4 
27.0 

30cm constant 
30cm pulsing 

34.4 
25.0 

27.2 
27.2 

22.6 
23.9 

23.4 
23.0 

Table 5.1: Standard deviation of the detected positions in content provider's coordinate 
system in pixels. 

The accuracy of the algorithm without corner detection and full homography calcula­
tions is relatively low. On the other hand, an unstabilized hand-held mobile device would 
cause even larger variance in position. As a solution we used a Kalman filter, modelling 
position and speed of the detected position (measurement variance set to a2 = AOOpx). 
The accuracy was sufficient to select blocks of text, map regions, images or menu entries. 

The overall average time required by our baseline implementation for mobile plat­
forms - excluding the system overhead to acquire the image - was 24.5 ms (~40 FPS) 
for 800 x 480 resolution. The results show a significant speed increase when compared 
to task migration solutions based on visual features - authors of the DeepShot [ ] task 
migration framework report 7.7 seconds (SD 0.3 seconds) for processing the request. 
Our approach allows for real-time information feedback for a selected screen area. 

5.5 Continuous Task Migration using Natural Features 
In our follow-up work in collaboration with Rudolf Kajan, Adam Herout and Alena 
Pavelkova we improved on the proposed system above. We created a full augmented 
reality experience on the mobile phone. We combined our natural feature point based 
detection with natural image tracking using the Vuforia library1. 

'https://www.vuforia.com/ 
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Figure 5.4: Left: GUI layers of the content requester application. Right: The migration 
process. 

During the initialization phase and in case of fast camera movement, we employed 
natural features based detection similar to [ ]. The difference is, that our solution 
does not stream the video, as it would generate high network traffic. Instead, we use 
natural features detection as a fallback method, and send frames only in large intervals 
(1 second). 

A major disadvantage of pure natural features based methods is that they rely on 
rich features being present on the target display. This assumption is rarely met in the 
highly manhattanic world of desktop and web applications. As a solution, we utilize a 
virtual cursor using the Vuforia library on the content requester side combined with a 
small natural image target on the content provider. The on-screen position of the target 
follows the content requester's view. 

The results show that after 4s the cursor tracking algorithm was able to restore 
tracking with 99 % probability. Our system required on average 2.5 x less bandwidth than 
the theoretical minimum bandwidth used up by a pure natural features-based approach. 
However, 88.4 % of the time during interactions (cursor tracking) our system requires 
just 0.5 kBIs bandwidth, which is approximately 35 x less than a natural features based 
approach. 

In order to measure accuracy of content selection with our system, we have used 
targeting tasks based on ISO 9241-9 standard [24]. When compared to commonly used 
pointing devices, our system had a lower throughput (TP 0.9-1.1 bps), and relatively 
low error rate (ER 4-21%) for primary migration targets - images, text paragraphs, links. 
In [24] the reported values were: joystick TP 1.8 bps ER 9%, touchpad TP 2.9 bps ER 
7%, trackball TP 3.0 bps ER 8.6%, mouse TP 4.9 bps ER 9.4%. 
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Chapter 6 

Poor Man's Virtual Camera 
This chapter describes another important and distinct usecase of the Uniform Marker 
Fields which constitute the core of my work. In this case, I, with my colleagues, proposed 
to use the marker fields in the film-making domain for a structured greenscreen canvas. 
We created a real-time mobile solution for virtual production for preview purposes and 
as a fast, simple, and cheap solution for low quality production. Previously (e.g. Cyclops 
or Mi lo 1 , TechnoDolly2, Insight V C S 3 , [10], [21], etc.) such task required complex and 
costly setup of infrared cameras, additional tracking extensions for the main cameras 
and external servers. These provide real-time visualization only for the virtual scene and 
not the augmented result. 

We proposed a method based on camera pose estimation using Uniform Marker 
Fields as part of the greenscreen. During the shooting, the camera position is established 
and a preview of the mixed scene is rendered in real time on the device. This solution 
is unprecedentedly cheap - it is available for a wide range of filmmakers, including 
amateurs. 

This research has been a result of collaboration between Dubska, M . , Herout, A. , 
Zacharias, M . and myself. My main contributions in this research are the following: 

• Proposed color mapping for A R use and color selection for the greenscreen marker 
fields. 

• Proposed automatic color calibration for matting by sampling the marker field. 

• Mobile prototype implementation of the 3D preview application. 

• Real-time performance even on mobile platforms using multi-platform optimiza­
tion (Halide [31]). 

• Evaluation and testing of the prototype system. 

http://www.mrmoco.com 
2 http://www.supertechno.com/product/technodolly.html 
3 http://www.naturalpoint.com/optitrack/products/insight-vcs/ 
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Figure 6.1: Detection of the grid of squares composed of suitable shades of green. A : 
The YCbCr image is mapped to grayscale for the detection algorithm. B: The grayscale 
image is processed in very sparse scanlines (for better visualization we use the source 
image). On each scanline, edges are detected (yellow points) and extended to edgels 
(red lines). C : The edgels are grouped into two dominant groups using R A N S A C ; two 
vanishing points are computed by hyperplane fitting. D: Based on the vanishing points, 
the optimal grid is fitted to the set of the edgels. E: Edges between the modules are 
classified. F: The annotated corner points are used for tracking and computing the 3D 
camera pose. 
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6.1 Greenscreen Marker Field 
In a chromakeying setting, the proposed algorithm first computes the chromakeying 
mask to segment out the background containing a fiduciary marker. The marker field 
modules' color must be a compromise between usage of as-similar-as-possible colors 
for the chroma keying and colors different enough to detect the edges. The selection 
also depends on the selected chroma keying algorithm. 

Contemporary mobile device cameras provide raw data in this YCbCr color space 
(or a variant of it). Choosing this colorspace to encode gradient direction between 
modules, initially means no information loss for the matting process due to conversion 
and saves computational time. Encoding the marker into the CbCr channels provides 
more robustness against intensity changes (shadows) and white balance. For matting, in 
our experiments we are using the method based on [ ]. 
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Figure 6.2: The normalized C&CV mapping to XZ space. The red dot represents the 
main keying color. The red and yellow dots are used for the U M F fields. The half arc 
demonstrates the mapping of the XZ space to grayscale for the detector. 

The detection algorithm was adopted from Section 3.4. For the detection algorithm 
we encoded the edge direction between modules of the U M F into the C5CV channels. A 
good mapping is: 

where Im is the mapped image and X, Z are the rotated Cb, Cr channels respectively 
by the 4> angle of the average key color in the C5CV space (Figure 6.2). An alternative 
simple choice for mapping could be: 

Im(x,y) = 2(Cb-Cr) + l, (6.2) 
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with Cb,Cr G (—1,1). The detection algorithm then uses the resulting Im mapped 
image as a grayscale image to detect U M F in further processing. The chromakeying 
mask was also used to filter out foreground edgels during the edgel extraction step 
(Figure 6.IB). 

For camera pose reconstruction, a low-quality mask creation is sufficient to guide 
the detection algorithm to discard foreground pixels. For the user interface a high 
quality matting is done on the GPU, freeing resources for image processing on the CPU. 
Due to white balancing and other automatic image capture controls (generally present 
in commodity smartphones), having a predefined set of key colors is insufficient. We 
proposed to progressively optimize the exact key colors once the marker was successfully 
detected in the image. 

6.2 Implementation and Results 

We targeted live streaming applications using a webcam for PC or an integrated camera 
on smartphones. We created a plugin for Unity 3D, that integrates with our proof-of-
concept implementation. Unity 3D 4 is a free and cross-platform 3D game engine, that 
supports all our targeted platforms (Figure 6.3). 

Figure 6.3: Camera pose estimation and chromakeying using greenscreen markers on 
mobile and PC platforms. 

To re-evaluate and compare the detection rates between grayscale and greenscreen 
markers, we created a small video dataset (16 videos). We used a setup with a projector 
projecting the marker from the front. We used two different projectors in combina­
tion with a smartphone (1280 x 720, 30Hz) and a hand-held dedicated video camera 
(1920 x 1080, 50Hz). With tracking enabled, our algorithm was able to localize the 
camera in 99.9% of frames. Since tracking is a replacable part of the pipeline, Ta­
ble 6.1 summarizes the percentage of frames for all combinations where the camera was 
successfully localized without tracking. 

4http://unity3d.com 

33 

http://unity3d.com


Camera/UMF marker grayscale greenscreen 
smartphone 

camera 
94.5 % 96.9 % 
97.7% 87.7% 

Table 6.1: Detection rates between grayscale and greenscreen markers projected on 
canvas. 

For the speed performance evaluations we tested our solution for preview purposes 
with V G A (640 x 480) resolution camera stream. For the tracking, the algorithm used a 
sub-sampled resolution of 320 x 240. Since contemporary cameras provide sub-sampled 
color channels (C&, Cr channels) used in our mapping to grayscale representation, sub-
sampling should theoretically not cause any loss in the detection precision. We tested 
our solution both on PC (Intel(R) Core(TM) i7 2.2 GHz) and A R M platform (ARMv7 
Processor rev. 9, 1.5 GHz). 

The measurement results are shown in Table 6.2 (chroma: the chromakeying process 
for the detector; tracking and detection (t&d): the detection and tracking average time; 
camera pose: camera pose estimation based on the found matches). The times include 
conversion from RGB to YC^Cr for the PC and communication overhead from native 
to managed code for the A R M platform. The main part of computational time on the 
A R M platform (~ 63%) was taken by simple image manipulation. We used the Halide 
language [31] to create a solution for these tasks with more optimized memory access 
patterns. 

Platform total (chroma t&d cam.) 
PC 

PC with Halide 
A R M 

A R M with Halide 

10.7 3.7 1.9 1.4 
6.3 0.2 1.9 1.4 

25.3 4.8 14.0 2.1 
23.4 4.1 12.8 2.1 

Table 6.2: Breakdown of the processing time in milliseconds, for V G A video. 

To evaluate the camera pose precision for the preview use-case, we created a second 
small video dataset. The videos were shot with the smartphone camera (720p, 30Hz) 
from a 2-5 m distance from the canvas. We used our detector without any optimization 
and with precise calibration to establish a reliable reference for each frame. To simulate 
the video stream processed by the detector on the mobile platform, we scaled down and 
cropped each video to V G A resolution. As calibration, we only used the camera fovy 
defined by the manufacturer. The median difference in the detected camera angle was 
1.5° and the median distance from the reference camera pose was 5.91 cm. 

We evaluated the precision of our matting algorithm using GPU shaders with ref­
erence to a state-of-the-art alpha-matting approach (KNNMatting [ ] with manual an-
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Figure 6.4: left: The original image from the camera, middle: Matting results from 
GPU shaders. right: Reference alpha mask acquired using KNNmatting with manual 
annotation. 

notation, see Figure 6.4). We quantified the error in the resulting alpha masks as the 
standard deviation of the difference of transparency values [0,100). There was only a 
small difference in precision for the plain green color (standard deviation 3.62) and with 
the U M F marker present (standard deviation 4.5). 
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Chapter 7 

Conclusion 
This thesis presents in its core an efficient camera pose estimation for real-time augmented 
reality applications. Most importantly, I introduced the concept of Uniform Marker 
Fields, which overcome limitations of existing marker designs. The detection algorithm 
proposed in this thesis was designed to be highly efficient and have a small memory 
footprint. The algorithm relies on long edgels (connected edge pixels) to estimate two 
vanishing points and recover the marker fields' grid structure by line parametrization. 
The interrelation between neighbor modules is used to recover the marker fields rotation 
and position. This information provides 2D-3D correspondences for module corners, 
which can be used to compute a full 6 degrees of freedom camera pose. Comprehensive 
evaluation shows that the described algorithm for Uniform Marker Fields was faster than 
alternative marker-based approaches with comparable or better performance. 

The efficient implementation of the detection algorithm and its various modifications 
enabled real-time camera pose tracking even on mid-range commodity smartphones. 
I have demonstrated this on several applications of Uniform Marker Fields. These 
included the on-screen markers used for document reaccess, task migration, and other 
user-centric tasks. The last important application was the use of the U M F in film-making 
domain as a structured and "intelligent" green screen. 

My PhD research was centered around the topic of camera pose estimation (mostly 
based on markers), but it naturally visited other related fields, such as mobile app 
development, algorithmic optimization, rendering, human-computer interactions, and a 
few distinct and specific applications. I would also like to give credit to my colleagues 
for providing knowledge and assistance in the vast research fields associated with this 
thesis. 

Coming into this research, I was focusing on computer graphics and rendering 
during my earlier studies. I was pleased with the opportunity to further my education 
and broaden my horizon. Not only was I fortunate enough to dive into several fresh and 
rapidly developing research fields, I also contributed my own ideas and created original 
solutions. My work is already cited and used in several publications authored by other 
researchers. 
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