
BRNO ^^^^H

r U N I V E R S I T Y ^ H
1 • F TECHNOLOGY]

r FACULTY

OF INFORMATION ľ
TECHNOLOGY ESI

depar tment of computer |

REAL-TIME CAMERA POSE ESTIMATION
FOR AUGMENTED REALITY
URČENÍ POZICE KAMERY V REÁLNÉM ČASE PRO ROZŠÍŘENOU REALITU

DOCTORAL THESIS
DISERTAČNÍ PRÁCE

AUTHOR Ing. ISTVÁN SZENTANDRÁSI
AUTOR PRÁCE

SUPERVISOR prof. Ing. ADAM HEROUT, Ph.D.
ŠKOLITEL

BRNO 2016

Curriculum vitae
Personal Data

full name
born

email address
telephone number

languages

István Szentandrási
June 11, 1988, Galanta, Slovakia
iszent@fit.vutbr.cz
+420 776498837
hungarian, Slovak, english, czech

Education

2010 - today Doctoral programme — Computer Science and Engi­
neering
Brno University of Technology
Thesis: Real-Time Camera Pose Estimation for Aug­
mented Reality

2008 - 2010 Masters study programme — Computer Graphics and
Multimedia
Brno University of Technology
Thesis: Modern Methods of Realistic Lighting in Real
Time

2005 - 2008 Bachelors study programme—Information Technology
Brno University of Technology
Thesis: Graphics Applications in Python Using OpenGL

Experience
• Image and video processing

• 3D rendering

• Augmented Reality

II

mailto:iszent@fit.vutbr.cz

• C(++), Java, PHP, JavaScript

• OpenCV, Android, Unity 3D

Teaching

Courses, Laboratories, and Projects

2010 - 2016 Leading diploma and bachelor thesis

2010 - 2013 Graphic and Multimedia Processors
3 laboratories - CUDA, OpenCL, OpenGL shaders

2011 - 2013 Computer Graphics (ERASMUS)
5-10 lectures - Computer graphics, OpenGL

2014 - 2016 Application Development for Mobile Devices
2 lectures - Android development

III

Contents
1 Introduction 1

1.1 Summary of Contributions 2
1.2 Authorship 3

2 State of the Art 4
2.1 Perspective-«-Point Problem 5
2.2 Vision-based Tracking Techniques 6
2.3 Approaches Based on Fiduciary Markers 7
2.4 Augmented Reality Applications 10

3 Uniform Marker Fields 12
3.1 Orientable Window Arrays as Marker Fields 12
3.2 Synthesis of Binary n 2-Window Arrays 13
3.3 Detection of binary U M F 14
3.4 Five Shades of Gray 16
3.5 Indoor Localization by U M F 21

4 Fast Grid Detection 22

5 On-screen Markers 24
5.1 Proposed System Architecture 25
5.2 Marker Field's Design and Detection 26
5.3 Implemented Solution - Chrome and Android 27
5.4 Experiments: Empirical Tests and User Study 27
5.5 Continuous Task Migration using Natural Features 28

6 Poor Man's Virtual Camera 30
6.1 Greenscreen Marker Field 32
6.2 Implementation and Results 33

7 Conclusion 36

IV

Chapter 1

Introduction
Augmented Reality (AR) is viewed as a variation of Virtual Environments. While
immersed in a Virtual Environment, the user is limited to seeing only virtual objects.
Augmented reality, on the other hand, simply enhances the real world with virtual objects.
Azuma [] proposed a commonly accepted definition of augmented reality systems from
1997. Such system is required to have three characteristics: combines real and virtual
environment, it is interactive in real time and registered in 3D. This definition does
not allow simple 2D overlays or (non-interactive) movie effects. On the other hand,
augmented reality based applications on contemporary mobile devices clearly fit all the
required characteristics.

This work is focused on real-time camera pose tracking. The current state of the
art in several areas, such as marker-based tracking, feature point matching and tracking
has achieved great maturity. Objectively, there is still progress to be made in this
field to enhance robustness, reduce computational complexity and increase scalability to
mobile devices. In this work I included an overview of the above mentioned tracking
of the camera pose relative to real-world objects. I pinpointed current limitations and
established possible future directions with a focus on methods with extremely low
computational and memory requirements.

None of the existing marker-based approaches fulfills the requirements set as the
goals of this work: scalable size, reliable and robust detection, and efficient algorithm
suitable for ultra-mobile devices. ALVAR, ARTag, CALTag and similar approaches have
very efficient algorithms, but allow only small individual markers and require complex
setup and calibration, if a larger area is to be used. Random Dot Markers' marker design
theoretically allows for scalable sizes, but the detection algorithm is far from efficient.

These limitations lead to the development of Uniform Marker Fields by me and my
colleagues. My most important contribution was the research of efficient algorithmic ap­
proaches and their maximally efficient implementation on multiple computing platforms.
The marker design and synthesis were done as a joint research with Michal Zacharias,
Adam Herout, Jiff Havel - my contribution to these parts was secondary. Based on the
developed technology of UMF, we opened space for a few distinct applications.

1

1.1 Summary of Contributions

This thesis contributes to the state of the art of fast camera localization using artifical
markers. This work describes the design decisions and proposed algorithms for efficient
detection of the Uniform Marker Fields and its utilizations.

Efficient detection of planar grid structures using vanishing points.
In the industrial manhattan world, the occurrence of tile-based structure is frequent.
Many marker based approaches rely on tiles of black and white fields to encode
information (ARTag, ALVAR, QR code) or to get reliable points for the camera
pose estimation. However, these approaches use only corners or special local
image features to localize the markers (silent areas, length-ratio on line segments,
circular patterns, etc.). The proposed method in this thesis uses a global approach
to detect the grid of tiles as a whole. This is the key part of the camera pose
estimation algorithm for the Uniform Marker Fields.

Novel approach to real-time virtual camera.
Contemporary virtual camera systems used in movie production to replace image
segments with virtual objects use complex and expensive hardware and software
setups. A challenging component in these systems is the real-time camera pose
estimation for live scene previews and storyboarding. This thesis describes an
approach that works on commodity mobile devices in real time.

Estimating relative pose for human computer interactions.
The growing number of user-owned smart devices equipped with camera opened
the door towards new inter-device interaction techniques. Visual one-time transfer
of data with limited size between devices already exists (QR codes, V R codes).
This thesis discusses a novel interaction technique that uses continuous information
flow for interaction. This is achieved by establishing and tracking the smart
devices' camera pose relative to the information provider.

Cross-platform efficient implementation of proposed methods in real-world use cases.

With technological advancement, the number of available computational plat­
forms grows. Mobile architectures focus on low power consumption with rich
support for auxiliary sensors, while desktop architectures aim for maximum pos­
sible performance and ease of development. The methods described in this thesis
were implemented with both these platforms in mind. An efficient, low-memory
footprint algorithm is especially important on mobile platforms, where the com­
putational power is relatively low.

2

1.2 Authorship
Although most of the work presented in this thesis is my own, some parts resulted from
a collaboration with colleagues.

Adam Herout has contributed to my work with many ideas and consultations. He
proposed first the usage of de Bruijn sequences as a perspective direction to solve the
limitations of state-of-the-art marker designs. The initial visual design and synthesis
of such markers (Uniform Marker Fields) were done as a joint research with Michal
Zachariáš, Adam Herout and Jiří Havel - my contribution to these parts was secondary.
My contribution related to Uniform Marker Fields was the proposal of an efficient
detection method, its refinement into a practical algorithm and experimental evaluation.
Jiří Havel's research and consultations were pivotal during this process, who laid down
the mathematical bases of efficient vanishing point detection.

Markéta Dubská proposed the first basic principle of using fiduciary markers as part
of a greenscreen for cheap camera pose estimation in movie production. I refined this
idea into a practical algorithm and tested in the experiments presented in this thesis.

Rudolf Kajan proposed the system for continuous inter-device communication. This
system included the module for relative pose estimation using the camera stream as a
bases for interactions. The parts relevant to this module in this thesis are my own work.

3

Chapter 2

State of the Art
Augmented reality systems are complex systems consisting of many individual sub­
parts or sub-modules from a broad range of fields concerning computer vision, computer
graphics, hardware sensors, robotics, etc. The research on augmented reality is in
consequence highly fragmented.

The overwhelming majority of contemporary A R systems solutions use exclusively
visual information. Even the strict definition of augmented reality systems by Azuma [4]
does not specify the characteristics of devices used for registering 3D position. Besides
optical sensors, as the most common sensor used at present, magnetic, acoustic, inertial,
GPS, mechanical and other sensors can be used. Using captured images alone for 3D
registering is sometimes insufficient and require relatively large computation power.

Registration 3D rendering

* • • •
• V 1

Detection & Camera
Tracking pose

1
Matching
points

Homography
PnP

Lighting
estimation

Interaction

Camera
calibration

I
I
I

Figure 2.1: Simplified model of an augmented reality system. For each iteration, the
system starts with gathering sensory input (Registration) and provides the user with
an augmented view (3D rendering). Visual data, as the main source for camera pose
estimation, needs to be further processed (Detection & Tracking, Matching points,
Homography - PnP calculations). Other sensory information, like GPS or IMU, can
be directly used for camera pose estimation. An A R system optionally includes several
other modules. I gave three examples: Lighting estimation for realism, Interaction with
virtual objets, Camera calibration for improved precision.

For the remainder of this work, I will focus on augmented reality systems using
cameras as main input sensors. Figure 2.1 contains a simplified model of such a system.
The first step is registration - acquiring the input from different sensors. The visual

4

data is then further processed to find important edges, corners, other reliable feature
points and markers in the image. These points are then matched based on the model
to 3D positions. The correspondences between the 2D and 3D points can be used to
calculate a homography, to get the global 6 degrees-of-freedom camera pose (position,
rotation). Other sensor input can optionally be used to improve precision (dashed line
between Registration and Camera pose in Figure 2.1). Using the knowledge about the
camera's internal parameters and its position and rotation, the system is able to augment
the captured image or video with virtual objects.

The three further modules: Lighting estimation, Camera calibration and Interac­
tion are also important to achieve realistic results, good user experience and precise
camera position estimation. Unfortunately, the research on interaction with the virtual
environment is still in early stages.

2.1 Perspective-w-Point Problem
In some computer vision applications, simple 2D homography between consecutive
frames might be enough to track the camera movement. In augmented reality, however,
most applications rely on acquiring the full camera position and orientation relative to
a known origin. In these calculations, the camera's intrinsic parameters are assumed to
be available. The problem of determining the camera pose given the correspondences
between 2D and 3D points and the intrinsic parameters is known as Perspective-n-Point,
where n refers to the number of correspondences.

Generally, P«P solving algorithms try to solve the equations given by the pin-hole
camera model:

for unknowns 3 x 3 orthogonal rotation matrix R and translation vector t for each
correspondence (pi, rrii). Points pi are the undistorted 2D projected points expressed
as a column vector in homogeneous coordinates and 3D homogeneous column vectors
rrii of the model points. K is the camera intrinsic matrix:

where fx, fy are the focal lengths expressed in the same units as the projected points and
(cx, cy) is the principal point.

Solving P«P accurately is computationally expensive even with known camera cal­
ibration. Quan et al. [] described an often used solution for fixed n = 3 (combined
with R A N S A C for n > 3). Usually a fourth point is used for disambiguation between
possible solutions. This is used with markers like ARTag [L2] or ARToolkit [18], which
have exactly 4 corner points. For n > 3 stable non-iterative approaches have complexity

Pi « K (R , t)m; (2.1)

(2.2)

5

of 0 (n 5) [30] or even 0(n8) [3]. From iterative approaches, Lu et al. [23] described a
very accurate algorithm, though slower than non-iterative algorithms without a good ini­
tial pose. More recently, Lepetit et al. [] proposed a non-iterative algorithm combined
with Gauss-Newton optimization algorithm with 0(n) complexity - EP«P.

In an augmented reality setting, the temporal camera pose dependence between
successive frames provides a good enough initial guess for iterative methods to reduce
the number of needed iterations. Methods like EP«P are still useful during initialization
and when the tracking gets lost.

2.2 Vision-based Tracking Techniques

Vision-based tracking have been the most active area of research in augmented reality.
It allows to calculate the camera position with high accuracy compared to other sensor
based techniques. They represent closed loop systems, since they can use results from
previous steps and correct errors dynamically.

Vision-based tracking methods can be separated into two main classes based on the
used information from the image: feature-based and model-based. The feature-based
methods try to find a correspondence between 2D image feature points and 3D world
frame coordinates. Feature-based method can be further split into two groups based on
the type of the features used for detection: fiduciary marker based tracking methods
(Section 2.3) and natural image feature based tracking.

Model based tracking methods explicitly use the features of tracked objects, which
have a 3D model known beforehand. This technique is often combined with methods
based on natural features. The texture of objects provides more easily trackable features
and is usually more dominant than the shape of the objects.

Most modern model based tracking methods, build their own models based on points,
edges, or lines. There are two main families of approaches, depending on how the image
features are being used. The first family tries to match projections of target objects
based on lines and edge positions, as the algorithms described above. The second set of
approaches rely on local information in the image region.

Model based approaches that rely only on geometric properties of the objects are not
scalable enough for larger scenes. In an outside area they fail to register finer geometry,
like the windows on buildings. Simon [33] proposed a hybrid approach combining 3D
model and texture information (Figure 2.2 left).

Most of the 3D reconstruction methods like monocular S L A M , D T A M [26], P T A M [19]
(Figure 2.2 right), etc., could be also classified under model based tracking methods.
Even though these methods can be extended to be used in augmented reality system,
they require large amount of memory and computational power. As a consequence, it
is unrealistic for them to work on contemporary mobile devices and used for consumer
oriented augmented reality applications.

6

Figure 2.2: Left: One iteration of model based tracking combined with feature matching
on textures by Simon []. Right: Parallel tracking and mapping [] (PTAM) demon­
stration. The successful point observation and the maps dominant plane is shown in the
image.

Vision based tracking methods for augmented reality work with high precision and
robustness in confined areas with complex geometry and textures, but fail with fast
motion or in large-scale areas. Using other type of sensors, like GPS or inertial sensors,
works well in these situations. Notable research on combining auxiliary sensors with
visual information is the work of Oskiper et al. [28].

2.3 Approaches Based on Fiduciary Markers

Historically and also in recent literature many augmented reality based research is using
fiduciary markers to reliably establish the camera position within the scene. Popular
designs of fiduciary markers consist of two components: geometrical features which
help localize the marker in the processed image and features defining the identity of the
marker (for example [12, 18]). That allows for placing several (or many) markers into
one scene and their efficient detection. Usage of several markers displaced within the
scene is necessary to allow for free movement of the camera within the scene.

The ARToolKit library was first presented in 1999 []. Even though the detection
algorithm has disadvantages and newer, more robust methods were introduced, it is
still used in research in augmented reality as a fast and simple solution. The detection
algorithm of the markers is based on binarization with adaptive threshold and matching
the rectified content against a library. The corners of the marker are then matched to
their known 3D positions. Based on these correspondences, the algorithm estimates and
iteratively refines the camera pose to get better precision.

ARTag introduced by Fiala [12] has tried to solve these problems (Figure 2.3).

7

They combined Data matrix coding for marker identification with the rectangular thick
border shaped markers used in ARToolKit. In the detection algorithm, they replaced
the adaptive thresholding of image regions with thresholding of extracted edges. These
changes improve detection performance and require lower computational complexity.
The most notable change introduced by ARTag is replacing the template image with
digitally encoded information.

In a follow-up work, Fiala [13] combined several markers on a single plane of known
relative position and rotation to improve the reliability of the camera pose detection. He
used this approach to provide a "magic mirror" system with acceptable accuracy and
delay. One disadvantage of this approach is that individual markers are still detected
and decoded separately, wasting computational time. The second disadvantage is that
the relative position and rotations between markers contributing to a single reference
frame have to be annotated manually. Only after each marker was detected, their corners
are extracted and combined together based on the annotations to improve camera pose
estimation precision.

Nested Markers [] tried to solve the contradictory requirements of small enough
marker size to fit in the frame and large enough to realize accurate geometric registration
by nesting a number smaller markers into a larger one.

One of the latest improved techniques based on individual square-based markers was
proposed by Herout et al. [], who introduced Fractal Marker Fields (Figure 2.4). They
provide the ultimate solution to the contradictory requirements faced by pure marker-
based approaches. These marker fields provide guaranteed density of visible markers in

8

Figure 2.4: Fractal Marker Fields [] with detected sub-markers.

every scale, solving the main problem of limited distance range useable for detection.
Fractal Marker Fields would be an ideal solution in large-scale situations, where

markers are acceptable. Practical applications of the allowed freedom in scale is limited.
In most real-world augmented reality applications: human-computer interaction, 3D
visualization, medical training, etc. - 2-3 scale levels at most are sufficient. The biggest
disadvantage of Fractal Marker Fields is the dependence on computationally complex
detection algorithms.

Uchiyama et al. [] used randomly scattered dots as fiducial markers (Random
Dot Markers - Figure 2.5 left). Compared to traditional markers with square patterns,
Random Dot Markers require slightly larger area, so that the camera could recognize the
individual points for detection. On the other hand, random dot markers are more robust
against occlusion.

Figure 2.5: Random Dot Markers [37] demonstrating robustness against occlusion.
Right: Deformable Random Dot Markers [36] with detected mesh.

The advantage of Random Dot Markers is that it is not constrained by a square area
and it has excellent robustness against occlusion. Theoretically any shape can be used for
the marker. The disadvantages of their approach lie in the memory-intensive keypoint
extraction, questionable choice of descriptors, and the sensitivity of the detection algo­
rithm to the chosen dot size. Since the geometric descriptor uses only local arrangements
of points, the Random Dot Markers could also be applied to slightly curved surfaces
(Figure 2.5 [36]) to recover the deformation.

The amount of research on fiducial marker based tracking has been on decline in
recent years. This suggests that the research in this area has achieved high matu­
rity. Marker based approaches are slowly replaced by natural feature based tracking.
However, where simplicity, precision and computational efficiency is critical, marker
detection based methods are still superior and widely used method.

2.4 Augmented Reality Applications

In the state of the art describing mostly new and improved methods of camera pose
tracking, scene modeling and visually correct rendering, there are many applications
envisioned for Augmented Reality. The fields of these applications also varies widely,
ranging from medical training to children book coloring. Most of the research, though,
is focused on individual pieces required to create a full Augmented Reality experience.
Industry-ready use cases of augmented reality are almost completely non-existent. In
the state of the art also comprehensive user evaluation of the proposed systems is miss­
ing. The enabling technologies and the commodity of high-performance smartphones
represent a landmark, which could boost this research area in the near future. This thesis
also focuses on these realistic use cases and presents several use cases of A R including
a cheap match-moving solution and efficient inter-device content acquisition.

Figure 2.6: Interactive coloring book with live animated characters textured based on
the drawing. The templates for augmentation are on the right.

Recently, Magnenat et al. [25] from Disney Research showcased an application for
an interactive coloring book (see Figure 2.6) using BRISK feature point detector and

10

descriptor. The disadvantage of using feature point descriptors on binary images is
the low discriminatory power between feature points. In their work, they had to use
complex heuristics to filter out outliers and in some cases they added complex visual
patterns around the drawing to achieve reliable camera pose estimation and tracking.

A demonstration of the growing computational power of smartphones and gradually
maturing state of dense tracking algorithms is the work of Ondruska et al. [27]. They
demonstrated an application supporting full volumetric surface reconstruction and dense
tracking in real time on mobile phones.

A frequent A R application in the state of the art is mentoring or training. Recently,
Zhu et al. [] demonstrated a wearable real-time A R mentoring system to assist in com­
plicated maintenance and repair tasks using a hybrid approach with a high-latency visual
landmark matching and feature tracking modules, and a low-latency IMU prediction
module.

Figure 2.7: A user interface design and prototype for professional 3D media production
A R system [20]. (a): the distribution of participants in their survey during the design
process; (b) the envisioned A R system; (c): the implemented prototype.

One of the goals set forth in this thesis was to showcase the possibility to create
real-time functional A R systems with practical use even in the real world and media
production. A similar notion also lies behind the recent work from Krichenbauer et
al. [20]. They explored the possibilities to create an immersive 3D UI for 3D computer
graphics content creation. For robust 6DOF camera pose estimation and hand-tool
localization, they used fiducials in their prototype implementation. These examples
further accentuate the fact that fiduciary markers are still the go-to solution for prototype
systems, when fast and robust solution is required, and that fiduciary markers are still a
relevant research area.

11

Chapter 3

Uniform Marker Fields
This chapter presents the technological core of my PhD research. My main contributions
in this thesis are centered around Uniform Marker Fields generation, detection algorithms
and experimental evaluation. Some of the work resulted from cooperiation with others:
Adam Herout and Michal Zacharias in relation to marker design and generation and Jiff
Havel in relation to de Bruijn tori theory and line parametrization.

3.1 Orientable Window Arrays as Marker Fields

Perfect maps are 2D arrays in which every possible rectangular subarray of a given size
occurs exactly once. The perfect map can be either periodic or aperiodic. An aperiodic
(TO, n)-window array [] is an k-ary 2D array of size h x w

A = (aij e {0, • • • , k - 1}; 0 < i < h; 0 < j < w), (3.1)

in which each subarray ATjC of size TO X n occurs exactly once.
If all possible subarrays are used (i.e. (w + n — 1) (h + TO — 1) = kmn), the (T O , n)-

window array is called aperiodic perfect map [32]. Opposite edges of the array can be
connected together for a periodic window array. Of course, the windows created by the
connection must also be unique (i.e. wh < kmn).

Unfortunately, when the orientation of the array is not known, the simple (TO, n)-
window property of a window array is not enough. It is possible that multiple rotations
of the same window can occur in the array. Orientable window arrays [] solve this
problem.

4-orientable arrays can distinguish all four rotations of the array (e.g. "north", "east",
"south", "west"). The 4-orientability is reasonable only for square windows, that must
be unique in respect to rotation by 90°. It is self-evident that 4-orientable arrays are
always also 2-orientable [].

Contrary to the 1-orientable maps, 4-orientable arrays are much less explored in the
literature and no good construction algorithms existed for them before our proposed
algorithm in [34] and [16]. Similar work on 4-orientable 2D window arrays to the best
of my knowledge have been missing in the literature.

Binary 4-orientable window arrays can be visualized as 2D checkerboard structure,
where the white and black modules are reorganized to match the values in a window

12

array (Figure 3.1). As a more general definition, Uniform Marker Fields are visual
patterns - fiduciary markers - made up of square modules forming a regular grid, where
windows of size n2 are unique in every rotation.

3.2 Synthesis of Binary n 2 -Window Arrays

Binary 4-orientable aperiodic binary n2-window arrays with n = 3, a (square) map
cannot be larger than 12 x 12. Our algorithm described in this section has found a
number of 11 x 11 arrays (Figure 3.1 left). Thus, 32-window arrays can be used as
Uniform Marker Fields, but the dimension of the field is very limited and the benefits
over any existing marker designs are not very interesting. The theoretical upper bound
for the dimensions of a square map with n = 4 is 127 x 127. By the algorithm presented
in this section, 4-orientable 42-window arrays as large as 92 x 92 have been found by
using a supercomputer (Figure 3.1 right).

Figure 3.1: Largest generated 4-orientable n2-window arrays using our synthesis algo­
rithm, with n = 3 on the left and n = 4 on the right.

The literature does not provide any efficient construction method for 2 or 4-orientable
n2-window arrays. Exhaustive search is not feasible as a construction method: for
example, for a 42-window array 90 x 90 modules large, the area of the map to be
searched for is 8100 modules and the state space is just too large (2 8 1 0 0) .

We proposed a genetic algorithm which works with maps containing conflicts and
improves it continually by mutations that lead to decreasing the conflict count. We
also applied several heuristics for faster convergence. In order to distribute calculations
required to solve the conflicts in randomly generated arrays, we used a client-server
architecture.

The genetic algorithm can be characterized by these terms:

• For the initial population we use a number of copies of the same array, or various
arrays are generated randomly.

13

• The fitness function of an individual is based on the number of conflicts in the
given array f(A) = 3 ^ + 1 .

• The fitness threshold, where the algorithm is stopped is set to 1 (the algorithm is
looking for conflict-free maps).

• For selecting members for the next generation, rank selection is used.

• Mutation is defined as replacing a window with randomly generated content. The
windows are selected randomly; the conflicting windows have a higher probability
of being selected for replacement.

We generated a set of binary aperiodic 4-orientable n2-window arrays. Table 3.1
gives the highest resolutions of the window arrays available for the respective aspect
ratios in the data set.

aspect ratio available dimension
1:1 92 x 92

V2:l 110 x 78
2:1 122 x 61
3:1 159 x 53

Table 3.1: Available sizes of the binary 4-orientable aperiodic 42-window arrays.

3.3 Detection of binary UMF
My main contribution related to Uniform Marker Fields is the efficient detection algo­
rithm. The Uniform Marker Field construction does not distinguish between marker
design features intended for general marker localization and features for marker iden­
tification. Checker-board modules serve simultaneously as the localization and identi­
fication features. This approach is more space efficient and provides more uniformly
distributed points of interest for 2D-3D correspondences.

The detection algorithm was designed so that it visits as small a fraction of the image
pixels as possible, and assumes that a significant portion of the input image is covered
by the marker field. The algorithm performs the following main steps:

1. Extraction of edgels - edgels are described by an image point and edge orientation
(vector) or by two endpoints.

2. Determination of two dominant vanishing points among the edgels. The van­
ishing points define the horizon (a line connecting the vanishing points). Using

14

homogeneous coordinates for the vanishing point v and the cluster of lines 1̂ , all
the lines must be coincident with the vanishing point, i.e.

V« : v • \i = 0. (3.2)

The vanishing point is found as the direction of the least variance by eigendecom-
position of the correlation matrix

C=(\0..AN)(\0...\N)T. (3.3)

3. Finding the grid of checker-board edges as two groups of regularly repeated
lines coincident with each vanishing point. The lines in each group corresponding
to the edges of the grid squares can be computed using the horizon as (x denotes
normalized vector)

h = hase + (ki + q) h, (3.4)

where hase is an arbitrarily chosen base line coincident with the vanishing point,
different from the horizon. First, (ki + q) is estimated for each line. The values
are clustered to recover the density k of the grid and offset q.

4. Extraction of checker-board modules using the grid and localization of the
camera view within the 4-orientable n2-window array. Points

x t / — l(»+i/2) x l(j+i/2)'^'-7 e N (3.5)

are intersections of lines right between the edge lines: points in the middle of the
checker-board square modules. These locations are sampled from the input image.
Once the sampled values have been filtered using an adaptive threshold, each 4 x 4
window's location inside the sampled region is found using a hash function.

Figure 3.2: Left to right: Edgel extraction along scanlines; dominant group of lines;
finding the grid of the marker.

For testing purposes of this initial solution, I collected a set of videos acquired by
3 different smartphone cameras at resolution 640 x 480 or 720 x 480 with 24 frames
per second, each 20 to 30 seconds long. In order to evaluate the detection precision

15

for different types of movements, I split the dataset into 6 categories according to the
dominant movement manifested in each video. I used two different marker fields: a low-
density marker field (14 x 10) and a high-density marker field (28 x 19). To estimate a
baseline of the algorithm's robustness we did not use information from previous frames.
Table 3.2 contains the percentage of frames, where the camera pose was successfully
recovered. The results show that our algorithm performs well even for very challenging
videos with rapid movement causing directional blur, rotation, and high perspective
distortion.

Category Low density High density
Zoom 94.5 % 92.0%

Horizontal 97.3 % 99.4 %
Rotation 99.9% 99.0%

Perspective 99.8 % 99.4 %
General movmement 95.3 % 95.0%

Occlusion 91.9% 92.5 %

Table 3.2: Success rate for detecting the position in the marker with different categories
and marker densities.

I measured the required time of different components of the detection algorithm.
Table 3.3 shows the percental distribution of computational time between different
components.

Algorithm part time percent
Scanlines 0.21 ms 16%
Edgel extraction 0.22 ms 16%
Vanishing points and Grid 0.11ms 8%
Module extraction 0.06 ms 5%
Camera localization (OpenCV) 0.74 ms 55%
Overall 1.34 ms 100%

Table 3.3: Breakdown of computational time into different parts of the algorithm,
measured on an Intel Core i5 661, 3.3 GHz with a DDR2 memory.

3.4 Five Shades of Gray
In a follow-up work, we generalized the Uniform Marker Fields construction to grayscale
or color &-ary marker fields (a^ G {0, — 1}, Figure 3.3). In comparison with
binary marker fields the absolute greyscale or color values of the grid modules cannot

16

be reliably discerned under varying lighting and camera conditions. We used the edge
gradients between the modules in a single n x n window as the unique window array
property for localization within the marker field. Horizontal (3.6) and vertical (3.7) edge
gradients are defined as:

eij = ai,j+i - aiji (3-6)

e\- = di+xj-ciij. (3.7)

The absolute value of the edge gradient is also hard to recognize reliably and thus only
the basic character of the edge is used for recognition: g*- = sgne*, G {—1,0, +1}.
The n2-window used for localization within the marker field then is (Figure 3.3):

Grc = {grc 5 • • • 5 # (r + n _ i) C + n _ 2) > Olc-i • • • i 5 ' (r + n _ 2 , c + n - l)) ' (3.8)

where Grc is the unique window at position (r, c) inside the window array. Given this
ternary classification of edges, grayscale markers can be seen as a generalized version of
k = 3-ary n2-window arrays, and color marker fields as k = 3c-ary n2-window arrays,
where c is the number of channels in the used color model.

Figure 3.3: Uniform Marker Fields with several shades of grey. The highlighted blue
sub-window is unique in the map considering the edge directions as seen on the extracted
region.

Synthesis of the marker field is done in a manner similar to the genetic algorithm
sketched out in Section 3.2. In this case, the fitness function additionally also reflects
the quality of edges between the modules.

Detection

Figure 3.4 summarizes the detection algorithm for grayscale UMF. We added several
improvements to the detection algorithm. We used a simple rectangular mask to filter
out the edges outside the area corresponding to the previously detected marker field. We

17

added one additional step to filter out outliers inside each group of lines using RANS A C -
like approach before the vanishing point calculations. We also used improved clustering
of (ki + q) values using mean-shift.

Figure 3.4: Detection of the greyscale grid of squares. A: The image is processed in
sparse scanlines. On each scanline, edges are detected (Red) and extended to edgels
(Green) by iteratively finding further edge pixels in the direction perpendicular to the
gradient. B: The edgels are grouped into two dominant groups using RANS A C ; two
vanishing points are computed by hyperplane fitting. C: Based on the vanishing points,
the optimal grid is fitted to the set of the edgels (orange dots denote the estimated centers
of grid modules). D: Edges between the modules are classified.

Due to the design decisions for the generalized Uniform Marker Fields, the proposed
algorithm after step 3 diverged significantly from the original algorithm. In order to
correctly classify an edge given the locations of the neighboring marker field modules,
our algorithm samples pixels from the edge's vicinity and compares them to vote for
edge direction. The stopping criterion is given by Wald's sequential probability ratio
test [38], which is proven to be the optimal sequential test for this purpose.

The sub-window described by edges Grc is formulated as a vector of scalars in (3.8).

18

Instead of using a ready-made hash table, we prefer to create a decision tree, which could
be constructed fault-tolerant. For a precise camera pose estimation the algorithm finds
all possible corners between the square modules in the marker field (with a sub-pixel
precision).

Experimental Results

We compared our solution to A L V A R [] as the most mature available ARToolKit
follower (ARTag is no longer publicly available). A L V A R supports arrays of disjointed
square markers. The other baseline is the Random Dot Markers (RDM) [37] as an
alternative "marker field" solution, where individual localization markers overlap in the
field and exhibit robustness against occlusion.

For comparing our solution with the alternatives, we shot videos of side-by-side
markers (Figure 3.5). We evaluated the precision of our algorithm using local variance
(Table 3.4) and performance as the percentage of frames with successfully estimated
camera pose (Table 3.5).

Method RDM ALVAR UMF
Average position variance:
Average rotation variance:

8.5 cm
0.049

3.48 cm
0.035

3.28 cm
0.024

Table 3.4: The average variance in position and rotation change using 10 frames for
averaging in a 1080p 50FPS video. The rotation variance is expressed as variance of
quaternions, since the euler angles are unstable due to the gimbal lock. (Note: R D M
gave highly unstable results and the low average variance in rotation is caused mainly
by the low detection rate. For the rotation test video it gave 0.080 variance.)

Method RDM ALVAR UMF
Lighting 89.7 100.0 100.0
Perspective 42.7 100.0 100.0
Near/Far 75.8 91.3 93.4, 94.6
Rotate 94.7 100.0 100.0
Zig-Zag 29.6 98.3 97.5, 97.4
Occlusion 38.5 93.0 94.0, 96.5
Overall 61.8 97.1 97.8

Table 3.5: Marker field detection success rates in %. For Uniform Marker Fields,
rates from comparison videos with R D M and A L V A R are given separately, if different.
Success rate is the percental ratio of video frames where at the different markers were
correctly detected.

19

Figure 3.5: Sample images from the dataset. Purple dots are the detected corner points
for U M F used for camera pose estimation.

Table 3.6 shows the speed of the three tested algorithms and the breakdown of speed
of our marker detection algorithm for videos with 1920 x 1080 pa: resolution. Our
algorithm was more than 3x faster than A L V A R and visited on average about 5.3 % of
all pixel points.

We used a cluster of computers (~ 1000 nodes) to synthesize the marker fields with
highest possible resolutions. For n > 3 the several marker fields of size 250 x 250 were
found.

20

RDM ALVAR UMF (edge grid match cam sref)
164.4 30.1 8.8 (3.8 1.1 0.3 0.7 2.9)

Table 3.6: Breakdown of speed in milliseconds for 1080p videos using a mid-range
Intel(R) Core(TM) i5 CPU 661 (3.33GHz) CPU. edge: edgel detection in scanlines;
grid: reconstructing the grid using R A N S A C and vanishing point detection; match:
edge direction detection and position decision making; cam: camera pose estimation
based on the found matches; sref: processing in subwindows and position refinement
by iterative search for more corner points.

3.5 Indoor Localization by UMF
We created a dataset of images to measure the precision of the Uniform Marker Fields
detector in collaboration with M . Zacharias et al. [] as part of our research concerning
indoor navigation. We marked 6 different view points relative to a projected grayscale
Marker Field with 14.3 cm module size.

600

500
X* WW-

* don
% 7 V U

300

"•00

*<

100

Ml

- 9

150 100 50 0 -50 -100 -150

X A X B X C X D X E X F + A m + Bm + C m + Dm + Em + Fm

Figure 3.6: Detected positions from the (15+ photos for each test point)
A, B,C, D, E, F points. The + points are the illustrative reference point positions
Am, Bm, Cm, F)m, Em, Fm.

We took images from the 6 reference points with a smartphone camera (Nokia Lumia
930) at 1920 x 1080 px resolution. For each reference point we took 15+ photos of the
scene at different angles and 3 different heights from the ground.

Figure 3.6 shows the results. The ground truth points in Figure 3.6 are for illustration
purposes only. The overall standard deviation of the distances between pairs of detected
positions from the ground truth was 6.73 cm and the median 3.21 cm.

21

Chapter 4

Fast Grid Detection
One important assumption during the design of U M F and its detection algorithm is that
it covers a significant portion of the input image. For large scenes, this assumption
is unrealistic. In this chapter, I propose an efficient search for candidate positions for
regular grid patterns. While I demonstrate this approach for detecting QR codes, the
algorithm is not limited to any specific marker or Matrix Code.

QR codes [] are a very popular case of matrix codes (or 2D barcodes). They
are receiving an increasing popularity among smartphone users and are becoming the
standard when it comes to short data migration into their devices. Their detection in
high-resolution images of real-world complex scenes is desirable.

Figure 4.1: Left: The original 15MPix image with multiple codes present in the image.
Right: The grid with histograms of oriented gradients.

The QR code was designed in such a way, so that it can be easily localized by finding
the predefined structures at its three main corners. There have been many attempts (e.g.
[6]) to speed up and improve the detection of the QR codes the way it was intended
using the Finder Patterns (FIP), but even for recent solutions [6], it takes 50-150 ms to
process a 640 x 480 image in one pass and several passes are needed.

We proposed a hierarchic segmentation approach based on the distribution of the
histogram of gradients in tiles. The whole algorithm for detection of QR codes in a
high-resolution image is depicted in Algorithm 1, where H n is the histogram with n
bins, and Ti(u, v) is a tile at level / and position (u, v). The probability of a segment
being part of a QR code P(Si), depends on the distribution of gradients and two most
dominant edge orientations.

22

Algorithm 1 QR code detection in high-resolution images
Input: Image /
Output: Detected QR codes

1: compute H n (71 (u, v)) by edge extraction
2: compute Hn(7/(w, v)), / G { 2 , . . . , £ m a a ; } from lower-level histograms
3: foralU G { 1 , . . . , ''max }do
4: compute feature vectors v ; (*u, f) from the histograms
5: compute the segments S = {Si, S2, • • •, Sk}, k G N
6: for all Si e S do
1: compute segment probability P{Si)
8: if C(5i) == 1 then
9: run QR code detection algorithm

10: end if
11: end for
12: end for

In order to evaluate the performance, we collected a dataset of challenging real-life
images. Since no standard dataset was publicly available for evaluation of QR code
detection algorithms, we acquired the images ourselves.

The results show that our candidate search has very low false negative rate (7.4 %)
and acceptable false positive rate (52.9 %). We compared our solution combined with
QR code detection library proposed by Herout et al. [11] with publicly available ZBar 1

library. Our solution gave comparable detection performance, while being 4 times faster
(Figure 4.2).

800

700

600

_ 5 0 0
£

^ 4 0 0

100

0

candidate search
1

decoding
detect code *

overall
segmentation

tiles •
/.bar •

-

,» •

E P ^ ^ - i p — '
1 1 1 ' 1 1 1

0 2 4 6 8 10 12 14
resolution [MPix]

Figure 4.2: The required time for processing in ms. The graph also shows average
required times for different parts of our solution.

zbar.sourceforge.net

23

Chapter 5

On-screen Markers
Our Uniform Marker Field solution enables certain domain-specific augmented reality
applications. One of them, where the markers are placed onto a computer screen so that
it can be detected and recognized by an ultramobile device (typically a smartphone), is
described in this chapter. This work was done in collaboration with other colleagues
(primarily Rudolf Kajan) who provided the user interaction expertise and the use-case
itself. I was responsible mostly for the client-side communication, and smartphone
localization method and its evaluation.

With the appearance of large and cheap high-resolution network-connected displays,
and smartphones becoming a widespread personal accessory, the ubiquity of screen real-
estate naturally drew the interest of many researchers to examine the possibilities for
interaction between these devices.

Figure 5.1: In our work, we aimed at exchange of information between a large screen (a
desktop computer, a public kiosk, etc.) and a mobile device. This information exchange
should be visual and intuitive: based on the metaphor of "video recording" with the
mobile camera. We achieved this by inserting a cutout from a Uniform Marker Field
into the monitor screen that would be reliably detectable and could accurately establish
the location within the screen.

For a vast majority of applications, the initial assumption is still that users interact
with just a single computing device throughout the day. The practical consequence
of this assumption is the lack of collaboration among devices and lack of user-centric
activities that may span multiple devices as well as multiple applications. While there
are initial steps in this direction [5], they must support a wider variety of activities and
fully recognize the members of a user's device collection.

24

Pierce et al. [29] introduced an infrastructure based on instant messaging which
provides mechanisms for applications to send information, events and commands among
devices. Chang and L i proposed DeepShot [8] - a framework for capturing work state
which uses natural visual features and tracks them. Despite various techniques to balance
the features' density in the camera view, it is impossible to ensure the presence of enough
visual features in the whole camera view. In the case of observing a computer screen,
the problem is even more difficult, because unlike the real world, the monitor screen
tends to contain surfaces of exactly constant color

In our research, we wanted to go further and provide users with a lightweight solution
for information transfer, able to work with different types of information and contexts,
respects the need for privacy and supports additional metadata generated through inter­
action which is useful for future interactions on other devices.

5.1 Proposed System Architecture
We have designed a highly responsive system, which allows for intuitive task migra­
tion without the need of manual application state inspection or copying of "raw" pixels
without any additional semantic information (as done in Deep Shot []). The task migra­
tion process from the system architecture's point of view is a two-way communication
between a content provider and a content requester device (see Figure 5.2).

Device in the role Device in the role

of content provider of content requester

Figure 5.2: The task migration process between a content requester and a content
provider device. The content provider device creates an unobtrusive maker field overlay
which enables fast and accurate within-screen view localization of the requester device.
This localization information is used to select either full application state or to migrate
selected content to the requester device.

25

5.2 Marker Field's Design and Detection
In our approach we tried to minimize the required time to localize the client relative to
the content provider with high stability. We achieved this by using grayscale Uniform
Marker Fields (Section 3.4).

Showing the whole marker on the whole display would be highly obtrusive. Instead,
only a small part of marker is shown, which is still reliably detectable by our detection
algorithm (see below). We tested constant transparency or pulsing between transparency
levels (25 — 75% during performance evaluations) to achieve high detection rates and
make the marker less obtrusive.

In order to minimize the outliers caused by the most commonly occurring horizontal
and vertical lines in display content (window borders, menus, vertical panels), we rotated
the whole marker by angle a (a = j in our tests). To avoid introducing additional long
edgels into the content provider's display, we also used smoothed or sinus border mask.

There were no major changes necessary to the detection algorithm (Section 3.4). The
content provider's orientation is assumed to be mounted on the wall without any rotation.
A minor improvement is that the extracted edgels in the mobile device's view are filtered
based on the its orientation acquired from its built-in accelerometer or gyroscope and
the marker orientation (a) on the content provider. To make the edge classification more
robust against transparency, we checked more sample points than the stopping criterion
by Wald's sequential probability test [38] for reduncancy.

Figure 5.3: A succesfully detected Uniform Marker Field as seen by the requester
device's camera with a crosshair shown to aid the user with targeting. The purple
highlight is the content provider's reaction to targeted content based on continuous
interaction.

The algorithm also does not compute the full homography, since the detected grid
and marker position is sufficient to compute for arbitrary image pixel the position inside

26

the marker field (Figure 5.3). Given the decoded marker position, 10 in each pencil
represents either a set of rows starting at index l0r or columns starting at Iqc. The
position (r a r ; mc) in the marker field of an arbitrary point p in the camera image can be
determined by solving:

p x v r = k\or + (mr — /or)h, (5.1)

p x v c = k\0c + (mc - / 0 c) h , (5.2)

where v r and v c are the determined vanishing point for the pencils representing rows
and columns, and h is the horizon. We used Kalman Filter to achieve smooth interaction.

5.3 Implemented Solution - Chrome and Android
As a proof of concept and as the testing prototype for user testing and exact experimental
evaluation, we created a pilot version of the whole system. It consisted of:

• The content provider background service for Microsoft Windows,

• Google Chrome extension as the application-side provider module,

• Android application as the client.

My contributions in this prototype was the client side communication and Uniform
Marker Fields detection.

The application uses the video stream from the camera to identify the position and
orientation of the content requester relative to the content provider. The marker field
detection algorithm was implemented in native code through Android N D K toolset that
allows implementation application parts using native-code languages such as C and C++.

The detection algorithm computes the position inside the marker and also the position
of a virtual cursor (see Figure 5.3). These coordinates are sent to the content provider,
which uses them to extract semantic content and move the visible marker field fragment
on the content provider device.

5.4 Experiments: Empirical Tests and User Study
We conducted an initial user study to observe how would people use our prototype. Our
main goal was to find out how obtrusive was the usage of marker fields for task migration
for participants and whether this approach is feasible also for inexperienced users.

In general, our system was perceived very positively, with 86% of participants stating
that it would definitely help them with content reaccess. 72% of participants would use
it to obtain information from public displays. In this case, the biggest concern were
privacy issues.

27

We tested the reliability of our marker field detection algorithm, with the marker
mixed into natural screen contents. The results show, that we were able to detect reliably
the content requester's position and viewing angle within 5 frames with 95 % probability
on average over all angles and marker types (constant opacity, pulsing, different borders,
etc.).

For accuracy measurements, the mobile device was fixed with the visible fix-sized
marker segment moving around on the screen. Table 5.1 shows the standard deviation
of the determined position of the crosshair on the content provider's display in pixels.
We did not use Kalman filter for these measurements.

[pixels] 75° 90° 105° 120°
10cm constant
10cm pulsing

11.0
6.3

10.0
7.6

10.0
8.9

27.6
11.8

20cm constant
20cm pulsing

27.7
17.0

19.4
24.1

21.9
24.3

26.4
27.0

30cm constant
30cm pulsing

34.4
25.0

27.2
27.2

22.6
23.9

23.4
23.0

Table 5.1: Standard deviation of the detected positions in content provider's coordinate
system in pixels.

The accuracy of the algorithm without corner detection and full homography calcula­
tions is relatively low. On the other hand, an unstabilized hand-held mobile device would
cause even larger variance in position. As a solution we used a Kalman filter, modelling
position and speed of the detected position (measurement variance set to a2 = AOOpx).
The accuracy was sufficient to select blocks of text, map regions, images or menu entries.

The overall average time required by our baseline implementation for mobile plat­
forms - excluding the system overhead to acquire the image - was 24.5 ms (~40 FPS)
for 800 x 480 resolution. The results show a significant speed increase when compared
to task migration solutions based on visual features - authors of the DeepShot [] task
migration framework report 7.7 seconds (SD 0.3 seconds) for processing the request.
Our approach allows for real-time information feedback for a selected screen area.

5.5 Continuous Task Migration using Natural Features
In our follow-up work in collaboration with Rudolf Kajan, Adam Herout and Alena
Pavelkova we improved on the proposed system above. We created a full augmented
reality experience on the mobile phone. We combined our natural feature point based
detection with natural image tracking using the Vuforia library1.

'https://www.vuforia.com/

28

https://www.vuforia.com/

Figure 5.4: Left: GUI layers of the content requester application. Right: The migration
process.

During the initialization phase and in case of fast camera movement, we employed
natural features based detection similar to []. The difference is, that our solution
does not stream the video, as it would generate high network traffic. Instead, we use
natural features detection as a fallback method, and send frames only in large intervals
(1 second).

A major disadvantage of pure natural features based methods is that they rely on
rich features being present on the target display. This assumption is rarely met in the
highly manhattanic world of desktop and web applications. As a solution, we utilize a
virtual cursor using the Vuforia library on the content requester side combined with a
small natural image target on the content provider. The on-screen position of the target
follows the content requester's view.

The results show that after 4s the cursor tracking algorithm was able to restore
tracking with 99 % probability. Our system required on average 2.5 x less bandwidth than
the theoretical minimum bandwidth used up by a pure natural features-based approach.
However, 88.4 % of the time during interactions (cursor tracking) our system requires
just 0.5 kBIs bandwidth, which is approximately 35 x less than a natural features based
approach.

In order to measure accuracy of content selection with our system, we have used
targeting tasks based on ISO 9241-9 standard [24]. When compared to commonly used
pointing devices, our system had a lower throughput (TP 0.9-1.1 bps), and relatively
low error rate (ER 4-21%) for primary migration targets - images, text paragraphs, links.
In [24] the reported values were: joystick TP 1.8 bps ER 9%, touchpad TP 2.9 bps ER
7%, trackball TP 3.0 bps ER 8.6%, mouse TP 4.9 bps ER 9.4%.

29

Chapter 6

Poor Man's Virtual Camera
This chapter describes another important and distinct usecase of the Uniform Marker
Fields which constitute the core of my work. In this case, I, with my colleagues, proposed
to use the marker fields in the film-making domain for a structured greenscreen canvas.
We created a real-time mobile solution for virtual production for preview purposes and
as a fast, simple, and cheap solution for low quality production. Previously (e.g. Cyclops
or Mi lo 1 , TechnoDolly2, Insight V C S 3 , [10], [21], etc.) such task required complex and
costly setup of infrared cameras, additional tracking extensions for the main cameras
and external servers. These provide real-time visualization only for the virtual scene and
not the augmented result.

We proposed a method based on camera pose estimation using Uniform Marker
Fields as part of the greenscreen. During the shooting, the camera position is established
and a preview of the mixed scene is rendered in real time on the device. This solution
is unprecedentedly cheap - it is available for a wide range of filmmakers, including
amateurs.

This research has been a result of collaboration between Dubska, M . , Herout, A. ,
Zacharias, M . and myself. My main contributions in this research are the following:

• Proposed color mapping for A R use and color selection for the greenscreen marker
fields.

• Proposed automatic color calibration for matting by sampling the marker field.

• Mobile prototype implementation of the 3D preview application.

• Real-time performance even on mobile platforms using multi-platform optimiza­
tion (Halide [31]).

• Evaluation and testing of the prototype system.

http://www.mrmoco.com
2 http://www.supertechno.com/product/technodolly.html
3 http://www.naturalpoint.com/optitrack/products/insight-vcs/

30

http://www.mrmoco.com
http://www.supertechno.com/product/technodolly.html
http://www.naturalpoint.com/optitrack/products/insight-vcs/

Figure 6.1: Detection of the grid of squares composed of suitable shades of green. A :
The YCbCr image is mapped to grayscale for the detection algorithm. B: The grayscale
image is processed in very sparse scanlines (for better visualization we use the source
image). On each scanline, edges are detected (yellow points) and extended to edgels
(red lines). C : The edgels are grouped into two dominant groups using R A N S A C ; two
vanishing points are computed by hyperplane fitting. D: Based on the vanishing points,
the optimal grid is fitted to the set of the edgels. E: Edges between the modules are
classified. F: The annotated corner points are used for tracking and computing the 3D
camera pose.

31

6.1 Greenscreen Marker Field
In a chromakeying setting, the proposed algorithm first computes the chromakeying
mask to segment out the background containing a fiduciary marker. The marker field
modules' color must be a compromise between usage of as-similar-as-possible colors
for the chroma keying and colors different enough to detect the edges. The selection
also depends on the selected chroma keying algorithm.

Contemporary mobile device cameras provide raw data in this YCbCr color space
(or a variant of it). Choosing this colorspace to encode gradient direction between
modules, initially means no information loss for the matting process due to conversion
and saves computational time. Encoding the marker into the CbCr channels provides
more robustness against intensity changes (shadows) and white balance. For matting, in
our experiments we are using the method based on [].

1

s
N

S

l h / S Cb

x / •
' " - • V

Figure 6.2: The normalized C&CV mapping to XZ space. The red dot represents the
main keying color. The red and yellow dots are used for the U M F fields. The half arc
demonstrates the mapping of the XZ space to grayscale for the detector.

The detection algorithm was adopted from Section 3.4. For the detection algorithm
we encoded the edge direction between modules of the U M F into the C5CV channels. A
good mapping is:

where Im is the mapped image and X, Z are the rotated Cb, Cr channels respectively
by the 4> angle of the average key color in the C5CV space (Figure 6.2). An alternative
simple choice for mapping could be:

Im(x,y) = 2(Cb-Cr) + l, (6.2)

32

with Cb,Cr G (—1,1). The detection algorithm then uses the resulting Im mapped
image as a grayscale image to detect U M F in further processing. The chromakeying
mask was also used to filter out foreground edgels during the edgel extraction step
(Figure 6.IB).

For camera pose reconstruction, a low-quality mask creation is sufficient to guide
the detection algorithm to discard foreground pixels. For the user interface a high
quality matting is done on the GPU, freeing resources for image processing on the CPU.
Due to white balancing and other automatic image capture controls (generally present
in commodity smartphones), having a predefined set of key colors is insufficient. We
proposed to progressively optimize the exact key colors once the marker was successfully
detected in the image.

6.2 Implementation and Results

We targeted live streaming applications using a webcam for PC or an integrated camera
on smartphones. We created a plugin for Unity 3D, that integrates with our proof-of-
concept implementation. Unity 3D 4 is a free and cross-platform 3D game engine, that
supports all our targeted platforms (Figure 6.3).

Figure 6.3: Camera pose estimation and chromakeying using greenscreen markers on
mobile and PC platforms.

To re-evaluate and compare the detection rates between grayscale and greenscreen
markers, we created a small video dataset (16 videos). We used a setup with a projector
projecting the marker from the front. We used two different projectors in combina­
tion with a smartphone (1280 x 720, 30Hz) and a hand-held dedicated video camera
(1920 x 1080, 50Hz). With tracking enabled, our algorithm was able to localize the
camera in 99.9% of frames. Since tracking is a replacable part of the pipeline, Ta­
ble 6.1 summarizes the percentage of frames for all combinations where the camera was
successfully localized without tracking.

4http://unity3d.com

33

http://unity3d.com

Camera/UMF marker grayscale greenscreen
smartphone

camera
94.5 % 96.9 %
97.7% 87.7%

Table 6.1: Detection rates between grayscale and greenscreen markers projected on
canvas.

For the speed performance evaluations we tested our solution for preview purposes
with V G A (640 x 480) resolution camera stream. For the tracking, the algorithm used a
sub-sampled resolution of 320 x 240. Since contemporary cameras provide sub-sampled
color channels (C&, Cr channels) used in our mapping to grayscale representation, sub-
sampling should theoretically not cause any loss in the detection precision. We tested
our solution both on PC (Intel(R) Core(TM) i7 2.2 GHz) and A R M platform (ARMv7
Processor rev. 9, 1.5 GHz).

The measurement results are shown in Table 6.2 (chroma: the chromakeying process
for the detector; tracking and detection (t&d): the detection and tracking average time;
camera pose: camera pose estimation based on the found matches). The times include
conversion from RGB to YC^Cr for the PC and communication overhead from native
to managed code for the A R M platform. The main part of computational time on the
A R M platform (~ 63%) was taken by simple image manipulation. We used the Halide
language [31] to create a solution for these tasks with more optimized memory access
patterns.

Platform total (chroma t&d cam.)
PC

PC with Halide
A R M

A R M with Halide

10.7 3.7 1.9 1.4
6.3 0.2 1.9 1.4

25.3 4.8 14.0 2.1
23.4 4.1 12.8 2.1

Table 6.2: Breakdown of the processing time in milliseconds, for V G A video.

To evaluate the camera pose precision for the preview use-case, we created a second
small video dataset. The videos were shot with the smartphone camera (720p, 30Hz)
from a 2-5 m distance from the canvas. We used our detector without any optimization
and with precise calibration to establish a reliable reference for each frame. To simulate
the video stream processed by the detector on the mobile platform, we scaled down and
cropped each video to V G A resolution. As calibration, we only used the camera fovy
defined by the manufacturer. The median difference in the detected camera angle was
1.5° and the median distance from the reference camera pose was 5.91 cm.

We evaluated the precision of our matting algorithm using GPU shaders with ref­
erence to a state-of-the-art alpha-matting approach (KNNMatting [] with manual an-

34

Figure 6.4: left: The original image from the camera, middle: Matting results from
GPU shaders. right: Reference alpha mask acquired using KNNmatting with manual
annotation.

notation, see Figure 6.4). We quantified the error in the resulting alpha masks as the
standard deviation of the difference of transparency values [0,100). There was only a
small difference in precision for the plain green color (standard deviation 3.62) and with
the U M F marker present (standard deviation 4.5).

35

Chapter 7

Conclusion
This thesis presents in its core an efficient camera pose estimation for real-time augmented
reality applications. Most importantly, I introduced the concept of Uniform Marker
Fields, which overcome limitations of existing marker designs. The detection algorithm
proposed in this thesis was designed to be highly efficient and have a small memory
footprint. The algorithm relies on long edgels (connected edge pixels) to estimate two
vanishing points and recover the marker fields' grid structure by line parametrization.
The interrelation between neighbor modules is used to recover the marker fields rotation
and position. This information provides 2D-3D correspondences for module corners,
which can be used to compute a full 6 degrees of freedom camera pose. Comprehensive
evaluation shows that the described algorithm for Uniform Marker Fields was faster than
alternative marker-based approaches with comparable or better performance.

The efficient implementation of the detection algorithm and its various modifications
enabled real-time camera pose tracking even on mid-range commodity smartphones.
I have demonstrated this on several applications of Uniform Marker Fields. These
included the on-screen markers used for document reaccess, task migration, and other
user-centric tasks. The last important application was the use of the U M F in film-making
domain as a structured and "intelligent" green screen.

My PhD research was centered around the topic of camera pose estimation (mostly
based on markers), but it naturally visited other related fields, such as mobile app
development, algorithmic optimization, rendering, human-computer interactions, and a
few distinct and specific applications. I would also like to give credit to my colleagues
for providing knowledge and assistance in the vast research fields associated with this
thesis.

Coming into this research, I was focusing on computer graphics and rendering
during my earlier studies. I was pleased with the opportunity to further my education
and broaden my horizon. Not only was I fortunate enough to dive into several fresh and
rapidly developing research fields, I also contributed my own ideas and created original
solutions. My work is already cited and used in several publications authored by other
researchers.

36

Bibliography
[1] A L V A R tracking subroutines library web page, 2012.

http://www.vtt.fi/multimedia/alvar.html.

[2] Qr-code bar code symbology specification. ISO/IEC 18004:2015, 2015.

[3] A . Ansar and K. Daniilidis. Linear pose estimation from points or lines. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 25(5):578 - 589, may
2003.

[4] Ronald T Azuma. A survey of augmented reality. Presence-Teleoperators and
Virtual Environments, 6(4):355-385, 1997.

[5] E. Bardram. Activity-based computing: support for mobility and collaboration in
ubiquitous computing. Personal Ubiquitous Comput., 9(5):312-322, September
2005.

[6] L.F.F. Belussi and N.S.T. Hirata. Fast QR code detection in arbitrarily acquired
images. In Conference on Graphics, Patterns and Images, SIBGRAPI2011, pages
281 -288,aug. 2011.

[7] J Burns and C J Mitchell. Coding schemes for two-dimensional position sensing.
Institute of Mathematics and Its Applications Conference Series, 45:31, 1993.

[8] Tsung-Hsiang Chang and Yang L i . Deep Shot: a framework for migrating tasks
across devices using mobile phone cameras. In Proc. SIGCHI, 2011.

[9] Qifeng Chen, Dingzeyu L i , and Chi-Keung Tang. Knn matting. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 35(9):2175-2188, Sept 2013.

[10] T. Dobbert. Matchmoving: The Invisible Art of Camera Tracking. Wiley Desktop
Editions. John Wiley & Sons, 2006.

[11] Markéta Dubská, Adam Herout, and Jiří Havel. Real-time precise detection of
regular grids and matrix codes. Journal of Real-Time Image Processing,
11(1): 193-200, 2013.

[12] M . Fiala. ARTag, a fiducial marker system using digital techniques. In
Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR'05) - Volume 2 - Volume 02, CVPR '05, pages
590-596, Washington, DC, USA, 2005. IEEE Computer Society.

37

http://www.vtt.fi/multimedia/alvar.html

[13] Mark Fiala. Magic mirror system with hand-held and wearable augmentations.
IEEE Virtual Reality (VR), 0:251-254, 2007.

[14] Stephen G. Hartke. Binary De Bruijn cycles under different equivalence relations.
Discrete Mathematics, 215:93- 102, 2000.

[15] A . Herout, M . Zachariáš, M . Dubská, and J. Havel. Fractal marker fields: No
more scale limitations for fiduciary markers. In Mixed and Augmented Reality
(ISMAR), 2012 IEEE International Symposium on, pages 285-286, Nov 2012.

[16] Adam Herout, István Szentandrási, Michal Zachariáš, Markéta Dubská, and
Rudolf Kaj an. Five shades of grey for fast and reliable camera pose estimation. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
1384-1390. IEEE Computer Society, 2013.

[17] Keith Jack. Video Demystified: A Handbook for the Digital Engineer, 5th Edition.
Newnes, Newton, M A , USA, 5th edition, 2007.

[18] H . Kato and M . Billinghurst. Marker tracking and H M D calibration for a
video-based augmented reality conferencing system. In IWAR'99, 1999.

[19] G. Klein and D. Murray. Parallel tracking and mapping for small A R workspaces.
In Proc. 6th IEEE and ACM International Symposium on Mixed and Augmented
Reality (ISMAR'07), Nara, Japan, November 2007.

[20] M . Krichenbauer, G. Yamamoto, T. Taketomi, C. Sandor, and H. Kato. Towards
augmented reality user interfaces in 3d media production. In Mixed and
Augmented Reality (ISMAR), 2014 IEEE International Symposium on, pages
23-28, Sept 2014.

[21] B.-J. Lee, J.-S. Park, and M . Sung. Vision-based real-time camera matchmoving
with a known marker. In Entertainment Computing - ICEC 2006. 2006.

[22] V. Lepetit, F. Moreno-Noguer, and P. Fua. EPnP: An accurate O(N) solution to the
PnP problem. Int. J. Comput. Vision, 81(2): 155-166, February 2009.

[23] C.-P. Lu, G.D. Hager, and E. Mjolsness. Fast and globally convergent pose
estimation from video images. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 22(6):610 -622, jun 2000.

[24] I. Scott MacKenzie, Tatu Kauppinen, and Miika Silfverberg. Accuracy measures
for evaluating computer pointing devices. In CHI, 2001.

[25] Stéphane Magnenat, Dat Tien Ngo, Fabio Zund, Mattia Ryffel, Gioacchino Noris,
Gerhard Rothlin, Alessia Marra, Maurizio Nitti, Pascal Fua, Markus Gross, et al.
Live texturing of augmented reality characters from colored drawings.

38

Visualization and Computer Graphics, IEEE Transactions on, 21(11): 1201—1210,
2015.

[26] R.A. Newcombe, S. Lovegrove, and A.J . Davison. Dtam: Dense tracking and
mapping in real-time. In Proc. of the Intl. Conf. on Computer Vision (ICCV),
Barcelona, Spain, volume 1, 2011.

[27] Peter Ondruska, Pushmeet Kohli, and Shahram Izadi. Mobilefusion: Real-time
volumetric surface reconstruction and dense tracking on mobile phones.
Visualization and Computer Graphics, IEEE Transactions on, 21(11): 1251-1258,
2015.

[28] T. Oskiper, S. Samarasekera, and R. Kumar. Multi-sensor navigation algorithm
using monocular camera, imu and gps for large scale augmented reality. In Mixed
and Augmented Reality (ISMAR), 2012 IEEE International Symposium on, pages
71-80, nov. 2012.

[29] Jeffrey S. Pierce and Jeffrey Nichols. An infrastructure for extending
applications' user experiences across multiple personal devices. In Proceedings of
the 21st annual ACM symposium on User interface software and technology,
UIST '08, pages 101-110, New York, NY, USA, 2008. A C M .

[30] L . Quan and Z. Lan. Linear n-point camera pose determination. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 21(8):774 -780, aug 1999.

[31] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman
Amarasinghe, and Fredo Durand. Decoupling algorithms from schedules for easy
optimization of image processing pipelines. ACM Trans. Graph.,
31(4):32:1-32:12, July 2012.

[32] I. S. Reed and R. M . Stewart. Note on the existence of perfect maps. IRE
Transactions on Information Theory, 8:10-12, 1962.

[33] G. Simon. Tracking-by-synthesis using point features and pyramidal blurring. In
IEEE International Symposium on Mixed and Augmented Reality, pages 85-92,
2011.

[34] I. Szentandrasi, M . Zacharias, J. Havel, A . Herout, M . Dubska, and R. Kajan.
Uniform Marker Fields: Camera localization by orientable De Bruijn tori. In 11th
IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2012.

[35] Keisuke Tateno, Itaru Kitahara, and Yuichi Ohta. A nested marker for augmented
reality. In ACM SIGGRAPH 2006 Sketches, SIGGRAPH '06, New York, NY,
USA, 2006. A C M .

39

[36] H . Uchiyama and E. Marchand. Deformable random dot markers. In Proceedings
of the 2011 10th IEEE International Symposium on Mixed and Augmented
Reality, ISMAR '11, pages 237-238, Washington, DC, USA, 2011. IEEE
Computer Society.

[37] H . Uchiyama and H. Saito. Random dot markers. In IEEE Virtual Reality Conf.
(VR), 2011.

[38] A . Wald. Sequential tests of statistical hypotheses. The Annals of Mathematical
Statistics, 16(2): 117-186, 1945.

[39] M . Zacharias, I. Szentandräsi, and A. Herout. Visual correction of position drift
using uniform marker fields. In Spring conference on Computer Graphics,
Bratislava, SK, 2016. UNIBA.

[40] Zhiwei Zhu, V. Branzoi, M . Wolverton, G. Murray, N . Vitovitch, L. Yarnall,
G. Acharya, S. Samarasekera, and R. Kumar. Ar-mentor: Augmented reality
based mentoring system. In Mixed and Augmented Reality (ISMAR), 2014 IEEE
International Symposium on, pages 17-22, Sept 2014.

40

