VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMACNICH TECHNOLOGIT
USTAV POCITACOVE GRAFIKY A MULTIMEDII

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHIC AND MULTIMEDIA

ADABOOST IN COMPUTER VISION

DIPLOMOVA PRACE
MASTER'S THESIS

AUTOR PRACE Bc. MICHAL HRADIS
AUTHOR

BRNO 2007



VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

N\

FAKULTA INFORMACNICH TECHNOLOG!I
USTAV POCITACOVE GRAFIKY A MULTIMEDIi

N\
FACULTY OF INFORMATION TECHNOLOGY

:[II DEPARTMENT OF COMPUTER GRAPHIC AND MULTIMEDIA

7

ADABOOST V POCITACOVEM VIDENI

ADABOOST IN COMPUTER VISION

DIPLOMOVA PRACE
MASTER'S THESIS

AUTOR PRACE Bc. Michal Hradis
AUTHOR

VEDOUCI PRACE Ing. Igor Potiéek, Ph.D.
SUPERVISOR

BRNO 2007



Zadani diplomové préce/4987/2006/xhradios
Vysoké uceni technické v Brné - Fakulta informaénich technologii
Ustav poditatové grafiky a multimédii Akademicky rok 2006/2007

Zadani diplomové prace
Reditel:  Hradi$ Michal, Bc.

Obor: Inteligentni systémy

Téma:  AdaBoost v poditacovém vidéni
Kategorie: PolitaCova grafika

Pokyny:

1. Prostudujte algoritmus AdaBoost a pfibuzné motody se zamé&Fenim na jejich vyuZiti v
pocitatovém vidéni,

2. Navrhnéte systém pro experimentdini vyhodnocovani vlastnoti riznych modifikaci danych
metod se zaméfenim na vypocetni efektivitu, jednoduchou konfigurovatelnost a
modularitu kédu,

3. NavrZeny systém implementujte spolu s vybranymi verzemi algoritmu AdaBoost.

4. Provedte experimenty na rdiznych typech dat a vyhadnotte vysledky.

Literatura:
e Na vyzadani u skolitele.

PFi obhajob& semestralni ¢asti diplomového projektu je poZadovéano:
e Body 1a 2.

Podrobné zavazné pokyny pro vypracovani diplomové préce naleznete na adrese
http://www.fit.vutbr.cz/info/szz/

Technicka zprava diplomové prace musi obsahovat formulaci cile, charakteristiku souasného stavu,
teoretickd a odbornd vychodiska FeSenych problémil a specifikaci etap, které byly vyfedeny v rdmci
roCnikového a semestréiniho projektu (30 az 40% celkového rozsahu technické zpravy).

Student odevzda v jednorn vytisku technickou zpravu a v elektronické podobé zdrojovy text
technicke zpravy, dplnou programovou dokumentaci a zdrojové texty programdi. Informace v
elektronické podobé budou uloZeny na standardnim pamétfovém médiu (disketa, CD-ROM), které bude
vioZeno do pisemné zpréavy tak, aby nemohlo dojit k jeho ztrdté pfi b&Zné manipulaci.

Vedouci:; Potlcek Igor, Ing., Ph.D., UPGM FIT VUT
Datum zadani: 28. Unora 2006
Datum odevzdani: 22. kvétna Zgggﬁgg uEEn TECHRIDIE v am

. Falata imformacieh ssohnologi
Ustav pedfiacows gratiky a mutimédii
817 6F RrpogYeiatichova 2

yed

doc. Dr. Ing. Pavel Zemé&ik
vedouci Ustavu




LICENCNI SMLOUVA
POSKYTOVANA K VYKONU PRAVA UZ{T SKOLNI DiL.O

uzaviena mezi smluvnimi stranami

1. Pan
Jméno a ptijmeni: Be. Michal Hradi8
Id studenta: 49413
Bytem: Jesenicka 101, 790 81 Ceska Ves
Narozen: 22. 03. 1983, Sumperk

(dale jen "autor")

2. Vysoké udeni technické v Brné
Fakulta informa&nich technologii
se sidlem BoZetéchova 2/1, 612 66 Bmo, ICO 00216305
jejim? jménem jedna na zékladé pisemného povéfeni dékanem fakulty:

...............................................................................

(dale jen "nabyvatel™)

Clanek 1
Specifikace Skolniho dila

1. Piedmstem této smlouvy je vysokokolska kvalifikatni prace (V SKP):

diplomova préace

Nézev VSKP: ~ AdaBoost v potitatovém vidéni
Vedouci/gkolitel VSKP: Potiidek Igor, Ing., Ph.D.

Ustav: Ustav potitadové grafiky a multimédii
Datum obhajoby VEKP: ......covwecumrrerississsssssren

VSKP odevzdal autor nabyvateli v:
tisténé forme pocet exemplait: 1
elektronické form&  polet exemplafd: 2 (1 ve skladu dokumentd, 1 na CD})



2. Autor prohladuje, Ze vytvofil samostatnou vlastai tviirdi Cinnosti dilo shora popsané
a specifikované. Autor déle prohladuje, Ze pii zpracovavani dila se sim nedostal do
rozporu s autorskym zakonem a predpisy souvisejicimi a e je dilo dilem ptvodnim.

3. Dilo je chranéno jako dilo dle autorského zikona v platném znéni.

4. Autor potvrzuje, Ze listinna a elektronicka verze dila je identicka.

élén_ek 2
Udéleni licenéniho opravnéni

1. Autor touto smlouvou poskytuje nabyvateli opravnéni (licenci) k vykonu prava
uvedené dilo nevydgleéné uzit, archivovat a zpiistupnit ke studijnim, vyukovym a
vyzkumnym d&ellim vetné pofizovani vypist, opisd a rozmnoZenin.

2. Licence je poskytovana celosvitove, pro celou dobu trvani autorskych a
majetkovych prav k dilu.

3. Aautor souhlasi se zvefejnénim dila v databizi pfistupné v mezinarodni siti:

Ph ihned po uzavieni této smlouvy

[0 1 rok po uzavieni této smlouvy

0 3 roky po uzavieni této smlouvy

B 5 let po uzavieni této smlouvy

L1 10 let po uzavieni této smlouvy

(z dGvodu utajeni v ném obsaZenych informaci)

4. Nevydéletné zvetejiovani dila nabyvatelem v souladu s ustanovenim § 47b zakona
€. 111/1998 Sb., v platném znéni, nevyZaduje licenci a nabyvatel je k nému
povinen a opravnén ze zakona.

Clanek 3
Zavéredna ustanovenf

1. Smlouva je sepsana ve tfech vyhotovenich s platnost{ originlu, pfi¢em? po jednom
vyhotoveni obdrZi autor a nabyvatel, dal¥i vyhotoveni je vloZeno do VSKP.

2. Vztahy mezi smluvnimi stranami vzniklé a neupravené touto smiouvou se Fidi
autorskym zékonem, ob&anskym zikonikem, vysoko8kolskym zikonem, zikonem
o archivnictvi, v platném znéni a popk. dal§imi pravnimi ptedpisy.

3. Licenéni smlouva byla uzav¥ena na zaklad& svobodné a pravé viile smluvnich stran,
splnym porozumé&nim jejimu textu i dusledkiim, nikoliv v tisni a za napadné
nevyhodnych podminek.

4. Licentni smlouva nabyvé platnosti a u&immosti dnem jejtho podpisu ob&ma
smluvnimi stranami.

.........................................................

Nabyvatel



Abstrakt

V této diplomové praci jsourpdstaveny noveé obrazovéiznaky ,local rank differences” (LRD).
Tyto priznaky jsou invariantnit¢i zménam os¥tleni a jsou vhodné k implementaci deteltor
objekt1 v programovatelném hardwaru, jako je fillad FPGA. Chovani klasifikators LRD
vytvorenych pomoci algoritmu AdaBoost bylo otestovanda@vé saglpro detekci obtieju. LRD
v téchto testech dosahly vysledkrovnatelnych s vysledky klasifikatos Haarovymi giznaky, které
jsou pouzivany v nejlepSich s@msnych detektorech objélpracujicich v readlnérase. Tyto
vysledky ve spojeni s faktem, Ze LRD je moZné v RR@nhodnocovat #kolikanasobg rychleji nez
Haarovy giznaky, naznéuji, Ze by LRD piznaky mohly by¥eSenim pro budouci detekci objiekt
v hardwaru. V této praci také prezentujeme nasimojexperimenty s algoritmy strojovéhéeni
typu boosting, ktery je specid&lmzpisoben oblasti potacového vidni, je velmi flexibilni, a fitom
poskytuje vysokou efektivitudggni a moznost budouci paralelizace WtpoTento nastroj je
dostupny jako open source software a my doufamestanim uleti vyvoj novych algoritni a

piiznalh.

Kli ¢ova slova

Abstract



In this thesis, we present the local rank diffeeen@.RD). These novel image features are invariant
to lighting changes and are suitable for objecéci&in in programmable hardware, such as FPGA.
The performance of AdaBoost classifiers with theDL\Ras tested on a face detection dataset with
results which are similar to the Haar-like featusddch are the state of the art in real-time object
detection. These results together with the fadtttimLRD are evaluated much faster in FPGA then
the Haar-like features are very encouraging andesighat the LRD may be a solution for future
hardware object detectors. We also present a frankefor experiments with boosting methods in
computer vision. This framework is very flexibledamt the same time, offers high learning
performance and a possibility for future parallgfian. The framework is available as open source

software and we hope that it will simplify work fother researchers.

Keywords

Boosting, AdaBoost, Local Rank Differences, LRDnputer Vision, Face Detection, Haar-like

Features, WaldBoost,

Citace

Michal Hradis: AdaBoost in Computer Vision, diplowdoprace, Brno, FIT VUT v Bi) 2007.



AdaBoost in Computer Vision

Prohlaseni

ProhlaSuji, Ze jsem tuto diplomovou praci vyprad®amnostaté pod vedenim Ing. Igora Paka,
Ph.D. a uvedl jsem vSechny literarni prameny aikabté, ze kterych jsekerpal.

Michal Hradi$

© Michal Hradis, 2007.

Tato prace vznikla jako Skolni dilo na Vysokédeni technickém v Beén Fakulié informatnich
technologii. Prace je chrana autorskym zakonem a jeji uZziti beZledi opraveni autorem je
nezakonné, s vyjimkou zakonem definovanyigagi.



Acknowledgements

First of all, I would like to express my thanksAdam Herout for directing my interests towards
computer graphic and later also towards compusoiviand for helping me in many ways during my
work on this thesis. | am very grateful to Igor Rek, Vita Beran, Jana Silhava, Michal Seman,
Michal Spasl and all the other people at UPGM for providingafrinspiration and for their help
with increasing my knowledge of computer vision amachine learning. Especially, | would like to
thank Pavel Zemcik for many interesting and guidiisgussions and for the opportunity to
participate in the research at UPGM. | would likg¢htank Roman Juranek for his help with the
boosting framework and his great support for theeexents we have performed.

A part the work was done at the Spring School ocagenProcessing in Szeged. | would like to thank
my team mates llona Jedyk, Agoston R6th and S&®zaino for their great work on the facial
expression recognition demonstration application.

The work presented in this thesis has been fininaiapported by the Czech Science Agency grant
“Algorithms of image recognition” GACR GA201/06/1B2ST EU grant CARETAKER - “Content
Analysis and REtrieval Technologies to Apply Knogde Extraction to massive Recording” EU-
6FP-IST 027231, Czech Academy of Sciences Granh@ggrant “Rapid prototyping tools for
development of HW-accelerated embedded image- iesprocessing applications” GA AVCR,
1ET400750408, and Ministry of Education, Youth, &mbrt grant “Research of information
technologies form the security point of view”, CEBMT, MSM 0021630528.



Contents

1070 ¢ =] 0| K= TP PPPPTPTT 1.
N 111 (o [ {1 o PR 3
11 INtroduction t0 ClaSSIfICALION ..........uuviiiiiieeiiiie e 4
1.2 Classification FOrmMaliZation.............ooieemeriiiiiiiiie et eeeeee e 6
1.3 Limitations of Classification and Machine Learning.........cccooeeeveeeiiieni e, 6
22 = T To 1= 1] T [ 8
2.1 N F= 1= To o ] PP PPPRP PP 8
2.2 REAI AGBBOOSL. ...ttt ettt e e e e s s e e e e s s e e e e e e e e e aaan 9
2.3 AJBBOOSE DISCUSSION ....ceiiiiiiiiiiiitiiitteeeeeei ettt e e e e e e sttt e e e e e e s st be e e e e s s bbb aeeeeeaeas 11
2.4 IMproving Learning PrOCESS ..........ooiiiiiiiccceeee ettt veeeene e e e eeeeeeees 13
2.5 Speed and Accuracy Tradeoff..........ooeiiiiiiiiiiiiii e 15
2.6 LearNiNg SPEEAUP . ....ciiiiii ittt mmmmmm ettt e e e et e e e e s ssnnr e e e e e e 17
3 Data Transformations in COMPULET VISION ..ottt 18
3.1 b=t 1T T L =SS 18
3.2 GADOT FEALUIES ... et eeeeeee ettt mmmmesseessesensnnnnnnnnnen 20
3.3 Local BINAry PatteINS .....ccoiiiiiiiiiiiee e mceee ettt e e e e e e e 21
34 (I L= T =T ] 0] 0 1 21
4 Weak Learning AlGOItNMS.........oooiiiiiimmmen et e e eees e e e e e e e e aannes 23
4.1 HISTOGIAIMS ...ttt emmmrr ettt e e e e e e s e e e e e e eee s e e e e e e e e e e e e nnnneees 23
4.2 Decision Trees and DeCiSION StUMPS......... o eeerereeeeeieeeeieereeeeeeeesresrrrrrerereeeeee 24
5  NEeW IMAQE FRAIUIES ....cciiieiiiii et e e et e s s e e e e e e ee b e aeeeaaeenes 25
51 MIN/IMEX FEAIUIES ...t e et e ettt e e e e e e s ettt e e e e e s s e e e aaeeeas 26
5.2 Local RANK DIffErENCES.......ccoiiiiiiiiiit ettt 27
5.3 LRD INFPGA. ettt e e ettt e e e ettt e e e e s e e e anst e e e e e enbaeeeeeannes 28
6  Experimental BooSting FrameWOrK .............ueeeeeeei oo, 31
6.1 Lo [ LT (=T 1= €O 31
6.2 BaSIC PriNCIPIES .. ———trartrrr e rnnna 33
6.3 FrameWOork STIUCTUIE ... ..uiiiiiiieee ettt eeer e e e e e e e e 34
6.4 DAtA SOUICE ...t ettt e et ettt e e e e et eettaa s e aaaaeeeaeeesebnn e aeaaeennnns 36
6.5 FEALUIES ..ttt ettt e e e e et et et bt a e e e e e e e ae b e e aaeeaeae 38
6.6 Weak Learners and HYPOtNESES ..........ccuiiiiiiiieeieei e 38
6.7 The Boosting Algorithms and CasCade.........ccceeeuiiiiiiieiiiiiiieeeee e eeeeee e 39
6.8 Potential for Parallelization........... ..o 39
6.9 Effective Computation of FEatUres. ........co et 40



6.10  SUPPOIt TOOIS ... ee e 42

7 Results

............................................................................................................................... 43
7.1 Comparison of Different Types Of FEatUIeS. .. oo 44
7.2 Threshold EStimation PreCiSIONS ..... ... e 45
7.3 Restricting the SizeS Of LRD .........coiiiiceeeee et 47
7.4 Prediction Value QUantization ...............oooiioiiiiiiii e 49
7.5 Convolution QUANLIZALION ............oiiee e e e e e e e e ee e e e e e e e e aatar e e e e e eeeeeeeessraneeeens 50

8  Conclusions and FULUre WOTK.............. o e eeeeenenne 52

....................................................................................................................................... 53

References



1 Introduction

This thesis falls into the broad field of machirearhing, which emerged from artificial
intelligence research. Machine learning studies bmwutomatically extract information from data
and possibly act according to that informationtHa context of this work, learning is understood as
inductive inference where rules and patterns argaeted from observed examples which
incompletely represent some stochastic phenomeviore specifically, the theme of this thesis is
supervised machine learning, where each obseragurty example has an explicitly assigned label.
The task of the learning method is then to cregieediction rule based on the information extracted
form the training data and the corresponding lat¥diss prediction rule is then used to predict labe
for unseen data samples. In general, the labelbeaither discrete, in which case we speak about
pattern classification — or real-valued in regrasgiroblems. Only classification is consideredhiis t
thesis.

Relatively recently, large margin classification thugls emerged as practical results of
statistical learning theory. Large margin classsfisearch for such prediction rules which maximize
distance of almost all examples from the decisioanglary. The most theoretically and practically
studied classes of large margin classifiers argp@tpector machines [1] (SVM) and boosting. In
this thesis we focus on AdaBoost [2][3][4], which éne of the boosting methods, and its use in
computer vision.

AdaBoost and its modifications have been succdgsfided in practical computer vision
applications [5][6][7][8][9][10][11][12][13]. For mample, the state of the art object detection
classifiers are variations of cascade of boosteattilee features [7][8][9]. In object detection, age
sub-windows on all positions, of different sizesl ggossibly rotations are scanned with a classifier.
This results in very large number of classified gmaegions which places high demands on the
computational effectiveness of the classifier. Hae features are very suitable for detectiorksas
as they can be computed very fast in constant tmdependent on their size using integral image
[5][6]. In the considered approach, simple (wedk}sifiers are each created based on a single Haar-
like feature. AdaBoost then selects some of thekwsssifiers and combines them into very accurate
prediction rule. The prediction rule is a weightadjority vote of the weak classifiers and gets more
accurate as more weak classifiers are added. Thissatrade-off between classification accuracy
and computational time. To optimize performancansdind of cascade of consequently more
complex classifiers is usually used. In such cascadch stage rejects those image regions which are
classified with enough confidence as backgrounghSmascade gradually lowers the false positive
rate, which has to be very low in detection proldefn chapter 2, we give an overview of some
boosting methods. Chapter 3 presents some of ttaetidansformation techniques used in computer

vision. Namely, the presented techniques are: imlismccomponent analysis (PCA), linear

3



discriminant analysis (LDA), Haar-like features, i®a features and local binary patterns (LBP).
Some of the commonly used weak learners are descmbchapter 4.

Haar-like features offer high performance if thassifier is evaluated on general purpose CPU.
On the other hand, they are not very suitable 6K and generally hardware implementation,
which could be used in diverse embedded applicatidrhe main issues preventing efficient
implementation in FPGA are the need of normalizatimd the need of random memory access to
each pixel of the integral image. Although, therdste some FPGA implementations of object
detectors with Haar-like features [14][15][16], yherovide relatively low performance. In chapter 5,
we present new image features which could be efidgtimplemented in FPGA. Namely, the local
rank differences [17] (LRD, see section 5.2) oftemparable discriminative power as Haar-like
features, but the FPGA implementation [18] can @& one of these features in each clock cycle
instead of six or eight cycles in the case of Hikarfeatures. Moreover, the LRD features do not
require any explicit normalization as they implicinormalize the results with local histogram
equalization.

In the search for new features suitable for FPGAyas necessary to create an experimental
framework which could be used to evaluate perfooeaaf the newly suggested features. This
framework has to be modular and has to offer higtigpmance. Chapter 6 describes the framework.
In chapter 7, we present many experimental restiish were obtained using the framework. These
results are mainly focused on the performance ef tRD. Finally, the achieved results are

summarized and future work is suggested in ch&pter

1.1 Introduction to Classification

Let's now look at an example of supervised macléaening approach to a simple classification task.
Imagine we need to create a machine which canndisgh between horses and zebras. Do not
occupy your mind with the question why should wesdoh thing and let’s focus only on the question
how to do it. Our classification machine will phyaily consist of a large black box with three
doorways. One of the doorways will serve as entaand the other two will serve as exits.
Everything that leaves one exit will be consideaedorse and everything that leaves the other exit
will be further treated as a zebra. Inside the klbaox, there will be a computer to run our
classification program (or prediction rule) andaachworking but simple-mindégerson who will be
able to perform simple routine measurements orati®al inside the box and enter the results of the

measurements into the computer. We will call thesge Sensor in the further text. To sum it up, the

! Field-programmable gate array is a class of imiiegk circuits containing programmable logic compisiand
programmable interconnects.

2 He will not be able, for example, to answer questilike: “Is that a zebra?”



operation of our classification machine will congitfollowing steps. After an animal enters thexbo
Sensor performs some measurements and entersstiits i@to the computer running classification
software. The classification software then decithesfate of the animal based on the data obtained
from Sensor.

Now, as we have the basic structure of the clas¢iin machine, we need to decide what
Sensor will measure and how the classificationvea® will work. Let’s look at the measurements
first. In machine learning, single measurementtlier measurable property of the phenomena being
observed) is called a feature and a set of measmterasults describing single object is called a
feature vector. There are two basic requirementshio features used for classification. First, $be
of features must be discriminative. Meaning theuess should contain relevant information which
can be used to distinguish between objects belgngindifferent classes. For example, a set of
features consisting of the number of legs, the remalb eyes and the weight of the animal does not
contain much relevant information to distinguishveen horses and zebras. On the other hand, a set
of features describing all colors present on thenahskin and average length and width ratio of the
colored patches should provide highly relevantnmiation for our classification task. The features
very much influence quality of the resulting cléissiand their design offers great opportunity for
human innovation.

The other usual requirement is to keep the numbdeaiures reasonably low. The obvious
reason for doing so is computational complexitytludé classifier. The computational complexity
always grows — in some cases (e.g. artificial rleueaworks) even very fast — with the number of
features for both classifier training and predictiule evaluation. There is also the cost of the
measurement itself, which can become very higlages where specific sensors are needed or human
involvement is necessary. An example of such afegplications is medical diagnostic, where each
further examination can cost hundreds of Euroshéncase of our classification machine, there will
be the problem with measurement cost too as wedeéécio use human to carry out the
measurements. To reduce this cost, we will empky gimple-minded person. Because of this, we
need to choose as simple and as well-defined feat@s possible, otherwise the measurement time
may significantly reduce the throughput of the egstOne of such simple features can be the number
of light and dark transitions on the animal skiargj a horizontal line. This feature itself shoulsba
be discriminative enough to distinguish betweersésiand zebras.

Next, we need to choose the classification metfibis is another crucial point and the choice
can influence the performance of the resulting iappbn greatly. Classification methods can differ
in the time needed for learning, computation comxipteof the classifier, the complexity of the
decision boundary, generalization properties (teefgpmance on unseen data) and many other
attributes. Some of the available classificatioethnds are naive Bayes classifier, artificial neura

networks, SVM, decision trees, AdaBoost, K-neane#ghbor and many others. In our case, we have



the advantage of having only one dimensional feasyrace. Moreover, we can assume that zebras
have more light and dark transitions along theZumtal line then most of the horses have. So, it is
not unreasonable to think that we can find a tholekfor this feature which can separate horses from
zebras with relatively low error.

The example of the machine classifying horses a&has is very simple and we could set the
threshold ourselves using only our intuition andyview examples. This way we would, in fact,
become the learning algorithm ourselves. Obviouhklg,is not possible in more complex tasks where
automatic learning algorithms must be used. Simeewant to discus machine learning, we will set
the threshold automatically. To do so, we needtithieing examples first. We have to gather two
separate herds of zebras and horses and let Seressure and note the number of intensity
transitions on the skin of each animal. We alsceh@avnote which measurements belong to zebras
and which belong to horses. Having this trainintadave can easily automatically set the threshold
value such that the classification error on thaing data will be minimal. At this point, we haaé

the parts of the machine ready.

1.2 Classification Formalization

The task of machine learning algorithm in supewbistassification problem is to find a rule (or
hypothesis) which assigns an object to one of sewasses based on external observations. Such
prediction rule can be formalized as a functionX — Y where X is the input domain (the feature
space) anlY is the set of possible labels. L&8={(x,y;)....,(X,, Vin)) be @ set of training examples
where each instance belongs tX and eachy; belongs toY . When referring to single example, a
letter iis usually used. The training samples are usuallypssed to be generated independent
identically distributed (i.i.d) according to unknowerobability distributionP on Z=X xY . The task

of the learning algorithm is then to estimate sfigiction h which minimizes some objective error
function on the training sample s&t Although, Y can be an arbitrary finite set, we consider only

binary classification in this thesis wheve={-1,+1} .

1.3 Limitations of Classification and Machine
Learning

There are many limitations on what can be achidwednhachine learning methods in classification
tasks. The first fundamental limitation is the félcat the true class-conditional probability densit
functions (PDF) of different classes can overlapother words it is possible that single data piint

the feature space can be generated by objectsrfrora than one class. The amount of the overlap



depends on what we can measure about the obsdrjaad. dMore or better sensors can in many cases
solve this kind of difficulties, but this may not easible considering the costs.

Another limitation arises from the size of the teatspace. Considering, we always have only
a finite set of training examples, we are not dblestimate the true class-conditional PDFs exactly
This problem becomes more profound with higher nemdf dimensions. For example, in a small
feature spaces (two or three dimensions), it wdagddpossible to discretize the feature space and
estimate the class-conditional PDFs for each ofdiserete points with high accuracy using only
moderate number of training examples. With highember of dimensions, this approach becomes
infeasible, because the number of examples neetdeacifable PDF estimation becomes extremely
high. To be more precise the size of the featuseespncreases exponentially with the number of
dimensions. This exponential increase is sometiefesred to as the “curse of dimensionality” [19].

The final limitation is caused by our ability togadre suitable training set. In machine
learning, it is generally assumed that the samipbes training set are generated i.i.d. accordinthto
same probability distribution as the unseen samplegractice, this assumption is often violated a
it is not possible or affordable to obtain trainiegt in exactly the same conditions as the regultin
application will work in. The performance of theassifier then largely depends on the degree of

similarity of the probability distributions from wvi¢h both training and unseen samples are generated.



2 Boosting

The term boosting refers to a group of ensemblersiged learning algorithms. The basic idea of
these algorithms is to iteratively combine reldveimple prediction rules (weak classifiers) into
very accurate prediction rule (strong classifidr). most of the boosting algorithms, the weak
classifiers are linearly combined. In the casevad-tlass classification, the strong classifierhe t
weighted majority of the votes. For introductionbimosting look at [3][4].

Boosting has its roots in the PAC (Probably Appnmwedely Correct) machine learning model
[20][21]. In this framework, the learner’s tasktis find — with a high probability — a bounded
approximation of a classification function usinglytraining samples which are labeled by this
particular function. The PAC model constrains tharhing methods in terms of their effectiveness —
the learning time must be polynomial-bounded a¢ asthe number of needed training samples. The
question, if a learning algorithm which performstjalightly better then random guessing in the PAC
model can be boosted into arbitrarily accuratenliegr algorithm was first suggested by Kearns and
Valiant [22][23]. The first polynomial-time boosgralgorithms were introduced by Freund [24] and
Schapire [25]. These early algorithm, however, exgffl from many drawbacks. For example, they
needed some prior knowledge of the accuracieseoivitak classifiers and the performance bound of
the final classifier depended only on the accuEdape least accurate weak classifier.

The AdaBoost algorithm, which was first introdud®dFreund and Schapire [2], solved most
of the practical drawback of the earlier boostitgpdathms. In the original algorithm the output of
weak classifiers is restricted to binary value ahds the algorithm is referred to as discrete
AdaBoost. Schapire and Singer [26] introduced mdhBoost, which allows confidence rated
predictions and is most commonly used in combimatigth domain-partitioning weak hypotheses
(e.g. decision trees). The following text introdsidbe original AdaBoost algorithms and discusses
their general properties and performance. In théhéu text, some modifications of the original
algorithms are discussed mostly focusing on corerarg speed, accuracy-speed trade-off and noise
resistance.

2.1 AdaBoost

AdaBoost calls a given weak learning algorithm edpdly in a series of rounds=1,...,T . In
each iteration, the weak learning algorithm is digppwith different distribution D, over the
example seB. The task of the weak learner is to find a hypsihé, : X - {-1+1} minimizing a

classification error in respect to the currentrdisttion D, :

& =P [h(x)% vl 1)



The weak hypothesis is then added to the stronggsifiler with a coefficienta, which is

selected according to the errgr of the hypothesi$, on the current distributiom, :
1 (1— etj
a, ==In
2 &
The final strong classifier is a linear combinatadrthe selected weak hypothesis:

H () =sig{:;atht(x)J

After a weak hypothesis is selected, new distrdnid,,, is generated in such way that the

weights of the samples which are correctly (respectrongly) classified byh, decrees (respective

increase):

Do (x) =2t (x )eexp- ayihy (x,) )
Zt
Maintaining the distributiod, is one of the fundamental principles of AdaBooBhe
weightD, () of sample in steg reflects how well the sample is classified byvedlak hypotheses

selected in previous rounds. The complete disé&deBoost algorithm is shown in figure 1.

Gven S=((x, V1) ,(xmYm)), X OX,y, OY ={-1+1}
Initialize D,(x)=1m.
for t=1..T:
Train weak | earner using distributionD,.
Get weak hypothesis h :X - {-1+}.
Choose a, =1In(l_£tj
2 &
Updat e: Dt+l(xi ) - Dy (Xi )[ exdz_ a yiht(xi ))
t

where Z, is a normalization factor.

:
Qut put the final hypothesis: H(x)=sig Zatht(x)J

t=1

Figure 1: The original version of AdaBoost[2] with notation dified according to [26].

2.2 Real AdaBoost

Since the output of weak hypothesis in the origihdhBoost algorithm is binary, no information
about how well the samples are classified by thakwe/potheses is available to the strong classifier
This way, valuable information which could othergismprove the classification accuracy is
discarded. Schapire and Singer [26] proposed argkzagion of the original algorithm which can
utilize prediction confidences. The authors have& ahown how to generate the confidences of

predictions and they have defined new function Whibould be minimized by the weak learner to



obtain optimal predictions according to the speddtraining error bound minimization. This
generalization is sometimes referred to as realB&dat, since the output of a weak hypothesis can
be any real number.

The real AdaBoost algorithm is in most aspectstidahto discrete AdaBoost from figure 1.
The only changes are that the weak hypotheses awethe form ofh, : X — R and the selection of
the a, coefficients is not directly specified. The coefficients can be selected in different ways
depending on the type of the weak hypothesis. [Emmstraints are placed on the result of the weak
hypotheses, the optimat, coefficients can not be found analytically. Scheapand Singer [26]
present a general numerical method for choosingnapta, that uses binary search. However, it is
not usually necessary to use this numerical methimdte in the case of domain-partitioning weak
hypotheses it is possible to find optimgl analytically.

To simplify notation, we will omit the subscripts in further text as they will not beekelnt.
Moreover, let us fold ther coefficients intoh. In other word, let's assume that the weak leacaer
freely scale any weak hypothegisby any constant factar [JR.

Let us now explain the selection of the predicti@ues of h in the case of the domain-
partitioning weak hypotheses. Each domain-pariitigrhypothesis is associated with a partition of
X into disjoint blocksX;...., X, which cover all ofX and for whichh(x) = h(x) for all x,x0X .
What this means is that the predictionhﬁf() depends only on which blocK ; the instancex falls
into. Letc, =h(x) for eachxOX . For eachj and for b={-1+1} let

le) = ZD(i)z Pi~D[Xi UX; Oy, :b]

i OX Oy =b

be the weighted fraction of examples with labewhich fall in block j. Then the optimal value of

1 (Wjj ®3)
c. ==In| =
2

) w!

Cj IS:

The blocks of domain-partitioning hypothesis can diner implicitly given or variable (e.g. in
decision trees). If the blocks are variable, sompéinazation criteria must be used to set the
boundaries of the blocks. The weighted error detét) can be used but does not provide optimal
performance. Optimal in terms of training error bduminimizationt is the criteria based on

minimizing the normalization factaZ in the reweighing equation (2):

Z= 22,/w1w_j )
j

! See section 2.3 for further information.

10



2.3 AdaBoost Discussion

The large advantage of the AdaBoost algorithm & th provably and very fast converges to a
hypothesis with low error on the training samplEsis is true if the weak learner can constantly fin
weak hypotheses with an error which is lower thrdom guessing on the current distribufpnin

[26], the authors show that the training errorhaf final classifier is bounded as follows:

T T
£ =%I{i )% vil< []Z =%Zexr{— yi;atht(xi )]
The main consequence of this bound is that the viemier should try to minimiz&, on each
round of boosting. This error bound is also thenftation for the choice of the prediction values in
(3) and the minimization criteria for decision &gd).

The effect of the reweighing equation (2) may netfilly clear. We will now look little bit
closer on the effect it has in the training procdse first insight is that the equation makes g
of the wrongly classified samples larger and weigiitthe correctly classified samples smaller. This
intuitively, causes that the weak learner focusesenon hard examples (the examples mostly
misclassified by the previously selected weak higpsés). The hard examples are close to the
decision boundary in the feature space. In thiseetiney are very similar to the support vectors in
SVM. Another, not so clear, effect of the re-weigbtformula is that the currently selected weak
hypothesis is totally independent on the hypothasiected in the directly preceding round of
boosting. This independence, however, does not foolthe other already selected weak hypothesis.
Sochman and Matas [7] proposed a simple methodtEné this independence to all previously
selected weak hypotheses. Their Adaboost withlyotalrrective updates increases the convergence
rate of learning without increasing the complexifithe combined hypothesis. We discuss this topic
further in chapters 2.4.1.

Let’'s now look little bit closer at the learninggalithm — at its computational complexity and
how it is practically implemented. We will assumgypical problem of image classification. In image
classification, some wavelets are usually usedatostorm the original image data into more suitable
representation. The number of features after stafsformation can be very high. For example, in
[5] the authors use 180,000 Haar-like featuresstomples with dimensions 24x24 pixels. In each
iteration of the learning algorithm, the weak hypses have to be newly learned on the current
distribution, which implies that the features acenputed for each of the training examples. This is
because the feature vectors for the training datelly don't fit into the memory. This is basically
the most time consuming part of the AdaBoost athori The other parts, the choice mtcoefficient
and reweighing of the examples, do not represemhroomputational burden as they already involve
only single weak hypothesis. Based on this, thepgational complexity of the learning algorithm is

H(N M EI') where N represents the number of examples, M septe the number of the features

11



and T is the number of algorithm iterations. Théads to a very nice property of the AdaBoost
algorithm, which is that the computational compiexif the learning algorithm is independent on the
number of previously selected weak hypotheses.ofitth, the computational complexity is relatively

low, it can still be a limiting factor in some casén section 2.6 we discuss some methods to ingprov
the learning speed.

Although, the minimization of error on training sales is necessary, the most important is the
performance on unseen data. In [2], the authorpgs® an upper bound on the generalization error
using the Vapnik-Chernonenkis theory. This uppaurobgets looser with higher VC-dimension of
the strong classifier, in other words, it depends tbe number and complexity of the weak
hypotheses. Such upper bound on generalizatiom suggests that an optimal length of the strong
classifier can found. Classifiers shorter then dp@mal length should be too simple to capture the
structure of the data and longer classifiers shbaldoo complex to be reliable learned from thexdat
available and AdaBoost should overfit. Althoughistimethod is theoretically sound, it is not
consistent with experiments on real-world probld@8][30][31]. In the practical experiments, the
training error often decreases or at lest doesweoéase even after hundreds of training rounds.

To fill the gap between theory and practice, Sateagi al. [32] proposed an alternative method
to study the generalization properties of AdaBedsich is based on margins. The term margin refers
to the distance of samples from the decision bayndkthe classifier. In other words, it represents
the degree of confidence of the classifier. Thehenst show that larger margins imply lower
generalization error independent on the lengthhefdassifier and they show that AdaBoost tends to
increase the margins of the training examples26j, [the authors extend the work of Schapire et al
to real AdaBoost. They propose new upper genetalizaerror bound based on margins. They
conclude, according to this upper bound, that itidad idea to allow weak hypotheses which
sometimes make predictions that are very large @gnitude. Such large predictions may
dramatically reduce the margins of some of theningi samples which can consequently have an
adverse effect on the generalization error.

In the case of the domain-partitioning weak hypsi$eit is possible to obtain very large
prediction values. It may even happen that oné@fiocks contains samples only from single class.
In such case the prediction value, according tcatgu (3), is equal to either positive or negative
infinity. To smooth the prediction values, Schapaed Singer [26] propose to use smoothing

parameters when choosing the prediction value:

1, (w! +e
c ==In| —
2 \w! +e

where e should take some appropriately small value. Bezdashw! andw’ are bounded between
0 and 1, the addition of has the effect of boundidgj‘ by

12



1 (1+¢ 1. (1
=In ==In| =
2 £ 2 &

The effect of the addition of on the convergence of the algorithm is negligiblace the value of

Zis weakened only slightly i <<1/2N:

Z= ZZ,/Wiw_j +/2Neg (5)
]

,where N stands for the number of the block in the partit®ohapire and Singer state that they have
typically usede¢ on the order ofl/ m wheremis the number of training samples.

Although, the resistance of AdaBoost algorithm verditting is very high, on the other hand, it
is highly susceptible to noise in the data. Fomgxe, if the training dataset contains two identica
samples each belonging to different class, therifgo gradually focuses only on these two samples
ignoring the other samples. To be more precisesetlo samples accumulate all the weights from
other samples up to the machine numerical precisitns is caused by the fact that AdaBoost
maximizes margins on all samples. This behaviaelated to the term hard margins. When using
hard margins, the size of margin depends on thelgaafosest to the decision boundary. In SVM,
this problem was revealed very soon, as in the separable case some equations do not have a
solution. On the other hand, the strong hypothés@sd by AdaBoost are often still meaningful. In
SVMs, the non-separable problem was solved bymsafgins [33][34], which allow some samples to
violate the margin. Gunnar Rétsch [35] used thesdigom SVMs and proposed one of the first

modifications of AdaBoost with soft margins whidiil dits into a general boosting framework.

2.4  Improving Learning Process

The AdaBoost algorithm does not find optimal clfissiin the terms of accuracy and the number of
weak hypotheses. This is caused by the greedyenafuhe algorithm. To find optimal classifier of
given length could be vital in some applicationspexially if real time performance is necessary. In
this section, we introduce the totally correctilgoaithm with coefficient updates [7] (TCAcu) which
refines the prediction values of weak hypothesesFoatBoost [8] which performs floating search
in the space of weak hypotheses. Except these lgarithms, other solutions exist, for example,

based on linear programming [36].
241 TCAcu

Sochman and Matas [7] proposed a modification sErdte AdaBoost algorithm which iteratively
refines the predictions of previously selected wiagotheses. The authors named the algorithm the

totally corrective algorithm with coefficient up@at (TCAcu). The idea behind this modification is

13



that the predictions of selected weak hypothese®rbe suboptimal with additional rounds of
boosting, but can be refined in each step of bogsti iterative process which requires only minor
computational power. TCAcu assures that in eachdaf boosting the selected weak hypothesis is
the most independent on all weak hypotheses sdlégatall previous rounds. This is a substantial
improvement over the AdaBoost algorithm where tbelg selected weak hypothesis is independent
only on the weak hypothesis selected in the previound. TCAcu provably tightens the bound on
training error without increasing the classifienquexity.

TCAcu is almost identical to discrete AdaBoost friigure 1 except the totally corrective step
(TCS) which is performed after each round of bowstiSee figure 2 for pseudo code of the totally
corrective step. TCS itself is basically the diseradaBoost algorithm. The major difference is that
in TCS the set of weak hypotheses is limited teady selected ones and the weak hypotheses are not
appended to the strong classifier, rather the spomrdinga, coefficients are summed.

Initialize D',=D,.
for j=1..Jx:

Sel ect weak hypothesis q=argmax,,, Pi~D'; [h ;t yl] 1‘

<A,,then exit the |oop.

| f ‘Pi~D'»[h (Xi)iyi]_%
&, =Pp [y(x)# v

1-¢,
Let o', =1In( ’J
2 &

D (Xi)[exd_alj yihq(xi))
Z;
wher e Z, is a normalization factor.
Assign D, =D,

Update: D'y, (x)=

Figure 2: The totally corrective step [7].
2.4.2 FloatBoost

The FloatBoost algorithm [8] performs floating sdarin the space of weak hypotheses. This
algorithm is based on AdaBoost and adds a baclktggihase. In this backtracking phase, those
hypotheses which cause performance drops are del€tee authors evaluated the performance of
FloatBoost on face detection task and concludedRioatBoost creates classifiers with lower number
of weak hypotheses and lower error rates at theresgof longer training time. They report training

time five times longer than that of AdaBoost.

14



2.5 Speed and Accuracy Tradeoff

For applications where the speed of classificaisoime most critical aspect, it is possible tortriie
classifiers in such way that for samples which easy to classify, only low number of the weak
hypotheses is evaluated. Here the term “easy ssifja refers to samples which can be at certain
point of classifier evaluation assigned an appedpriabel with sufficiently high confidence. This
approach is mostly used in real-time face detedtish. Generally, in object detection, image sub-
windows on all positions, of different sizes andsgbly rotations, are scanned with the classifier.
This gives extremely high number of the classiferaluations and places high demands on
computational effectiveness of the classifier. Aligh, the classifiers used in face detection uguall
consist of hundreds of weak hypotheses, the avenagpder of weak hypotheses evaluated per single
sub-window can drop even to five.

The discussed approach does not have to necesssuit in reduction of classification
accuracy. In the case when large number of traisargples is available, it is possible to discael th
easy examples the same way as during classificaimohthen replenish the training set with new
samples which are not discarded by the currensi@ilass This technique is called bootstrapping and
is commonly used in machine learning.

In following text, we introduce two techniques tadeoff strong classifier speed and accuracy.
First presented method is a cascade of consequeptly complex classifiers which has been used,
for example, by Viola and Jones [5] in their facgtedtion system. Second presented method to
tradeoff between classifier speed and accurachdsWadlBoost algorithm [37] which introduces

early termination thresholds of the strong class$um.
2.5.1 Cascade of Boosted Classifiers

A cascade of boosted classifiers was first use®ibla and Jones in their real-time face detection
system [5]. This solution was approximately fifte@nes faster than any other face detector of that
time and modifications of their solution still ke#ipe status of the state of the art real-time dbjec
detectors. Viola and Jones used a cascade of amershygmore complex AdaBoost classifiers with
decision stumps as weak classifiers and Haar-tkéufek

The scheme of the classifier cascade can be founth® figure 3. The main idea of the
detection cascade is that smaller, and therefome miificient, boosted classifiers can reject mahy o
the background sub-windows while keeping almostfatle sub-windows. This is achieved by
adjusting the threshold of the boosted classiftethat the false negative rate is close to zer@ Th

cascade is in principle a degenerated decisionwtesre, in each node, is decided if the sample

! For more information about the Haar-like featwses section 3.1.

15



probably belongs to background or further informatis necessary to classify it. The positive result
form one cascade stage triggers the evaluatiommgerjuent classifier. This approach benefits from
the fact that in detection task the overwhelmingamiy of sub-windows belongs to background, thus
the classification speed depends almost only onatlerage classification time for background
samples.

The cascade is trained using bootstrapping — theesuent classifiers are trained using only
those training samples which pass through all efptevious stages. This allows the training preces
to effectively and precisely estimate the weak hlgpses even on the very hard and extremely rare
examples which pass to the final stages of theackscThe bootstrapping requires enormous supply
of background samples as the rejection ratio iflater stages can reach 1:1000 and less.

One of the disadvantages of the detection cascadeat the results of previous stages are
discarded, even thou they can provide relativelydgprediction on the samples which pass the stage.
This results in longer classifiers in the latergst then would be possible to achieve if this
information was used. This fact was addressed layp %t al. [9]. In their boosting chain they use the

classifier of previous stage as the first weak hiypses of current classifier.

All Sub-windows

< Reject Sub-window

Figure 3: The detection cascade of boosted classifiers.

2.5.2 WaldBoost

Further processing

Sochman and Matas in their WaldBoost algorithm [8Finbine AdaBoost with Wald’s sequential
probability ratio test which solves the problemcoéating optimal classification strategy in ternfis o
the shortest average decision time subject to at@int on error rates. WaldBoost classifier is@dtn
identical to the AdaBoost classifier, except eadakvhypothesis can be assigned two (for each class)
early termination thresholds. If the strong classisum exceeds one of these thresholds, the sample
is classified to corresponding class, otherwise élaluation of the classifier continues. The
termination thresholds are selected to achieveratbdalse positive and false negative rates. The
classifier is trained with bootstrapping as in ttese of cascaded classifiers. This implies that in

detection tasks, only thresholds for rejecting lgacknd samples are used, as it is usually not

16



possible to get more face examples. The authoesthat they use independent validation set to selec
the thresholds.

2.6 Learning Speedup

As noted in section 2.3, the computational compyerif the AdaBoost learning algorithm in the
detection tasks ié?(N M EI') where N represents the number of examples, M septe the number

of the features and T is the number of algorithenaitions. Although the computational complexity
seams reasonable, the learning time may still re@afy ours or even days in cases with high number
of samples or many weak hypotheses to choose fatmough this may not be a problem when
creating new classifiers for particular practicgplcations, it may significantly constrain the
possibilities of experimenting with new variatioofdearning algorithms and features.

One way to reduce the learning time, which was gsed by Friedman et. al [38], is to use
only a fraction of examples in each iteration whig@ve currently the highest weights. This approach
has its justification in the fact that samples vhigher weights influence the result more then ¢hos
with low weights. Therefore it is reasonable to treeavailable computational power on the samples
with higher weights. The suggested size of thetivamf samples used is between 0.99 and 0.9 of the
total weight mass. This approach does not redue@éhformance of resulting strong classifier much;
however, it shifts the distribution over the exae®l This may be solved by resampling which
eliminates some of the samples with low weights apropriately raises weights for other samples

with originally low weights.

17



3 Data Transformations in Computer
Vision

One of the important tasks in classification iekiract a set of suitable features from the avhilab
data. The features should have high classificatiaied information content compared to the data in
its original form to enable the machine learningyoaithms to achieve better results. The
transformation of the original data, obviously, slaet add any additional information, but it can
make the relevant information much easier to baxdoby the learning algorithm. In general case,
linear transforms, such as principal componentyamal(PCA) or linear discriminant analysis (LDA),
can be used to extract relevant features. Wheriianali prior knowledge about the data is available,
it should also be utilized in the feature generatla computer vision, the data usually represemts
dimensional discrete signals which exhibit stropgtil relations. Some particular knowledge about
the structure of the data — about the spatial/iaqy relations — can be utilized e.g. by usingdme
transforms with suitable fixed basis vectors sushFaurier transform, discrete cosine transform
(DCT), or wavelet transforms [39]. More specialifedtures are used in some specific task such as
optical character recognition where the image igallg preprocessed and then some features
describing shape are extracted.

When using AdaBoost in computer vision problemss ppossible to use highly over-complete
set of features based, for example, on some kinsirople wavelets. If the weak hypotheses are
simple (e.g. decision stunfpsand each is based on a single feature, then AuktRssentially tries to
select the most discriminative and, at the same,ttbmpact sub-set of the features. This approach
results in higher classification precision and lowmember weak hypotheses in the final classifier,
then if a classic wavelet transform was used. & ftillowing text, we describe some of the most

common data transforms used in computer visioroimection with AdaBoost.

3.1 Haar-like Features

Haar-like features were used in combination witta@Boost for the first time by Viola and Jones in
their face detection system [5]. Since then, marth@as continued this work [6] [7] [8] [9] [10] [11
[13] [37]. Also, other applications of these feasiremerged. For example, in [41] the authors use
WaldBoost classifier with Haar-like features as approximation of Hassian-Laplace detector to
detect points of interest in images. The Haar-fikatures are generally very suitable for detection

tasks as they can be computed very fast and inamntme using a structure called integral image

! For more information about decision stumps setised.2.

18



[5]. One disadvantage of Haar-like features anathiér features based on wavelets is that they need
some normalization to achieve intensity scale ilavere. Normalization by standard deviation of
intensity of the sample is usually used. This ndization, although simple and effective on CPU,
can be problematic on other platforms like GPU BRGA.

Haar-like features are derived from Haar waveleléctv were proposed already in 1909 by
Alfred Haar [40]. Note that this was even before thrm wavelet was established. The Haar wavelets
are the simplest possible wavelets. They are dbsiadocalized step function (see figure 4). The
Haar-like features extend the wavelets to 2D amdesof them are little bit more complex. The most
basic Haar-like features are composed of two adjaexis-aligned rectangular areas of equal size.
The result is then the difference of the averagensity value in the two areas. Also more complex
features exist. Some of the Haar-like features Wwiiiave been used in practical applications are

shown in figure 5.

15

0,5 4

-0,5 I
_l — 4

-1,5

Figure 4: The Haar wavelet.

19



Figure 5: The Haar-like features which were used in pracagglications.

The term integral image was first used by Viola dodes in [5]; however, similar structure called
summed area tables was used earlier in computghigtaThe integral image is an intermediate
representation which makes it possible to computassof values in arbitrary sized axis-aligned
rectangular areas in constant time with only fazgesses to memory. The integral image at location
X,y contains the sum of the pixels above and to thefex, y, inclusive:

i(xy)= Yilx.y)

X'<X,y<y'

whereii(x,y) is the integral image anidx, y) is the original image. Also some modificationstie
integral image exist. In [6], the authors use eaéehset of Haar-features which use integral image
rotated by 45°.

3.2 Gabor Features

Gabor wavelets [44] are preferred for their higldesscriptive power in applications where the
computational time in not so critical [42][43]. Gabwavelets provide ideal trade-off between
frequency resolution and spatial resolution. Anpthgeresting motivation for using 2D Gabor
wavelets in computer vision is that they are clpselated to how the images are processed in the
human visual cortex [44]. Gabor function is a Garssnodulated complex exponential (see Fig 6).
Similarly to the Haar-like features, the Gabor wats also need normalization to achieve intensity

scale invariance.

20



Figure 6: The 2D Gabor wavelet.

3.3 Local Binary Patterns

Local Binary Pattern (LBP) is a texture analysiermpor which provides information about local
texture structure invariant to monotonic changegray-scale and possibly to rotations. LBP creates
binary code by thresholding a small circular nemhiood by the value of its center (see Fig 3). The
original definition of LBP [45] was extended to @rary circular neighborhoods in [46]. Invariance t
rotations can be achieved by merging appropriate ealues [47]. Rotation invariance can be further
improved by distinguishing only uniform patterns/J4- patterns with at most two transitions
between 0 and 1 in the corresponding binary code.

LBP operator was used in many practical applicatimostly tightly connected to static texture
analysis [45][47][48][49] and dynamic texture argdy[50], but also in face recognition[51][52] and
authentication [53], facial expression recognitjpd] and palmprint identification [54]. For furthe

information on LBP and examples of successful aptithtn see [56].

32|18 |25
Threshold
12|27 |50
81|78 |42
Binary Sequences: 10011110
I ]
| | e | ~T%T-
1 1 [ ¥ . i '\.
.tle o | Nl LT -.
[4EIE. ¢ (o e e o] [e
LS . 2 o 7
HEEER Meee | [T
Figure 7: Fig 3: Local binary patterns (LBP) as presentedb#].[

3.4 Linear Transforms

Linear transform is a function between two vectpaces that preserves the operations of vector

addition and scalar multiplication. When considgrfinite-dimensional vector spaces, every linear

21



transformation can be represented as a matrix plindition. When considering the use of linear
transforms in classification applications, they t@nused to reduce the data dimensionality, thay ca
transform the data to a vector space where thanclistiasses can be easily separated and/or threy ca
provide a way how to utilize some knowledge abbatdata.

Linear transforms have many uses in the field ahgater vision and image processing.
Probably the most widely used linear transformnirage processing is the discrete Fourier transform
(DFT), which transforms the original two dimensibiraage signal into a discrete spectrum of its
frequency components. The basis vectors of theadessé-ourier transform are complex exponentials
with rising frequency. It may be beneficial to U3ET to transform images before classification, as
DFT decorrelates the original data using our kndgéeabout some inherent structure of the data. For
practical classification application, it is moreitable to use the discrete cosine transform (DCT)
which provides real-valued results. Except thesethansformations, many other exist. Also wavelet
transformations are linear.

Many general linear transforms are used to suppassification such as principle component
analysis (PCA), linear discriminant analysis (LD#&)d independent component analysis (IDA), etc.
These transforms do not have fixed basis vectons the case of DFT and DCT, but the basis vectors
are rather estimated from the data based on sofeetiob criteria. In PCA, the bases vectors are
computed in such way that the first one reflecesdhiection of the largest variability in the origi
data and this variability decreases for furtherebagectors. For example, in [10], the authors use a
cascade of AdaBoost classifiers where the firglegaise Haar-like features and the later stages use
features derived from PCA. This approach is beradfisince the PCA features offer enough
discriminative power even in the later stages efdhscade where the Haar-like features are too weak
to discriminate the hard examples. On the othedh#ime PCA features are too computationally
expensive to be used in the first stages of theacks This way, the cascade preserves the high
classification speed while increasing its accuradyA is related to PCA, but, in this case, the lsase
vectors represent directions in which samples fdiffierent classes can be best separated. The goal
of ICA is to find such linear transform of non-gaia data so that the resulting features are

statistically independent, or as independent asiples

22



4  Weak Learning Algorithms

Weak learning algorithm in the context of PAC leagnframework is any learning algorithm
which can achieve at least slightly better resthlen random guessing on arbitrary distribution over
the training samples. Although the weak learnirgpathms which can be boosted by AdaBoost are
not restricted in any other way, in practice, ongry simple weak learners are usually used. The
commonly used weak learners include histogramssidecstumps and decision trees. All of these
weak learners are members of a group of so-caltedath-partitioning weak hypothesesnd use
only single feature to form their prediction. Thenthin-partitioning weak hypotheses divide the
feature spaceX into disjoint blocks which cover all ofX and the prediction values of the
hypotheses depend only on which block a samplg ifatid.

Some work has been also done to explore the phigsibiof using more complex weak
learners such as artificial neural networks and SVAdwever, these weak learners are not widely
used.

There are two main reasons to use simple weakitgpatgorithms. The first reason, which is
most relevant in real-time applications, is the losmputational complexity of such algorithms. The
simple weak hypotheses are very fast and more eniplpotheses do not usually provide adequate
speed-up to justify their computational cost. listhontext it is more effective to use some data
transformation technique (Haar-like features, PCA), then to use more complex classifiers. The
second reason is connected with generalizationeptieg of the strong classifier, as it is not fully

clear how the boosting algorithms will perform waihch complex hypotheses.

4.1 Histograms

Histograms are the simplest weak classifiers. Wbemsidering only histograms based on
single feature, the partition blocks are formedeljyidistant hyper planes which are perpendicular to
one of the dimensions of the feature space. Inratioeds, this is equal to dividing the real linetloé
possible feature values into connected intervalghlvhave equal width. In further text, we will call
such partition blocks which are based on singlaufeabins.

As noted in [57], these weak learners are stildusg many authors [58] [59], although they
suffer from many drawbacks. The first drawbackt there is no general rule how to set the number
of bins. The appropriate number of bins is usualhpsen according to experiments. Another
drawback is that the bins are, in every, case famfoptimal. In areas where the probability

distribution functions change rapidly, the equigigtbins are not able to capture the rapid changes.

! See section 2.2 for definition of domain-partitimpweak hypotheses.

23



On the other hand, in stable regions the numbebimdé is unnecessarily high and reduces the

prediction power of the weak hypothesis due tostneothing coefficient (5).

4.2  Decision Trees and Decision Stumps

These weak hypotheses eliminate the main drawb#&dkeohistograms which are the fixed bin
boundaries. The decision stumps were historicdiéy first weak hypotheses used with AdaBoost,
because they are suitable for discrete AdaBootheasinherently divide the samples into two bins.
The decision stumps have been also used in margessfal practical applications [5][6][11]. A
decision stump can be viewed as a degeneratedatetiee with only the root node and two leaf
nodes. As such, the decision stumps contain onblesithreshold which divides the samples into two
bins.

The weak learner’s task in the case of decisiomgtuis to find suitable position for the
threshold. The threshold should be set to suchtippsiwhich assures the best classification
performance of the resulting hypothesis. In thescafsdiscrete AdaBoost, weighted classification
error (1) was used as the criteria to place thestiold. In real AdaBoost, the optimal criteriahie t
minimization of theZ, value (4).

The decision trees are basically recursive decistamps. They perform greedy optimization
of some criteria. Again, the optimal criteria whiabsures the fastest minimization of the bound on
the training error is based on tl#& value. Some authors, however, propose differetimigation
criteria. For example, in [57] the authors useecid based on entropy and select the best weak
hypothesis based on Kullback-Liebler divergencethin case of decision, the number of leaf nodes
needs to be somehow controlled. There is the pbsstio explicitly restrict the depth of the trew
the number of nodes. It is also possible to defiome stopping criteria. Such criteria was used in
[57]. In real applications, the need to limit themmber of leaf nodes does not pose a problem, becaus
even very low number of leaf nodes is sufficien(j to achieve best possible performance and in
such case the smoothing coefficient does not sagmifly weaken the predictions.

As noted in the previous text, the decision tree$oom a greedy minimization. The problem
of finding optimal bins can be, however, solved enprecisely. For example, it is possible to use

dynamic programming to find the optimal thresholds.

24



5 New Image Features

In this section, we present newly developed ima&geuires which are suitable for implementation of
object detection classifiers in FPGA.

The contemporary state of the art real-time obgitection classifiers are modifications of
cascadkof boosted decision trees or decision stumpssed on Haar-like featufeSuch classifiers
benefit from the effective computation of the Hake-features which takes constant time for alesiz
of the features. This allows scanning sub-windowslifferent sizes without the need to scale the
image (the classifier is scaled instead). An ineniiate image representation called integral image i
used for evaluation of the features. This integradge is also used to efficiently compute standard
deviation of pixel values in the classified aredyial is used to normalize the features. Another
reason why these classifiers are so fast is thatwbak hypotheses (histograms, decision trees or
decision stumps) are very simple and fast. Findfig, cascaded classifiers make early decisions for
most of the background image areas and thus retlea@ean number of weak classifiers which need
to evaluate (to 5-20 weak classifiers). All of thdacts enable the classifier to scan all the sub-
windows needed to reliably find the object evetigh-resolution video. To sum it up, the speed of
the classifier depends on how fast the weak classifire computed and how much discriminative
power they offer. The demand for high discriminatipower arises from the fact that higher
discriminative power of the weak classifiers implilbwer average number of evaluated weak
hypotheses needed to make reliable classificagoisbn.

The classifiers discussed in the previous textogtemized for general purpose CPUs which
can not be used in many applications due to higivepoconsumption, high cost and/or space
limitations. Such applications include, for exampl@gital cameras, camcorders, surveillance, taffi
monitoring and mobile robots. The solution for sagiplications can offer programmable hardware —
FPGA. In contrast to the CPUs, FPGAs offer bettergy consumption — computational power ratio,
but only if the algorithms can suitably paralleizand mapped to the device. The limitations of
FPGAs include limited numerical precision, low Ibogemory capacity and limited resources for the
algorithm itself.

The classic boosted classifiers based on Haarfgsaare not much suitable for implementation
in FPGA for number of reasons. First, relativelgthprecision is needed for the integral image (16-

18b for features 32x32 pixels large) and the actesthe integral image is absolutely random.

! See section 2.5 for more information.
2 See section 2.2 for more information.
3 See section 4.2 for more information.

4 See section 3.1 for more information.

25



Second, on CPU, the features are normalized bygtdredard deviation of intensity in the classified
window and the integral image of squared pixelsciwhis used to compute the standard deviation
effectively needs even higher bit precision (ccx22 bits). Further, the computation of the staddar
deviation involves square root which is itself degbatic to implement in FPGA. Moreover, it is not
possible to fully take advantage of the fact tha evaluation time of the Haar-like features is
independent on the size of the feature. This adggntwhich is used in the CPU to effectively scale
the classifier, can not be used in FPGA as theigiogcof the integral image is limited and there is
not enough memory on most of the FPGA chips toestignificantly large portion of the image.
Despite all these properties make it difficult tmplement these classifiers in FPGA, some
implementations exist [14][15][16]. However, theyypide only relatively low performance.

In the following text, we introduce new image featiwhich we have developed for classifiers
in FPGA. The Min/Max features, which are preserfiest, were the first development step in the
search for efficient and discriminative featuress Buch, they do not excel in classification
performance, but are still significant as they hdee to more powerful features. During their
description, we also present the principles whigh wsed in the local rank differences (LRD). The
LRD features, which we have presented for the firse in [17], may be the solution for AdaBoost
classifiers in FPGA as they can be efficiently eastd [18] and as they performed similarly to the

Haar-like features in our face detection experirstent

5.1 Min/Max Features

The Min/Max features basically search for minima maxima of intensity in some local
neighborhood and return the position of the extreftes could be done in many ways differing in
the shape of the neighborhood, how the positioaxtfema is encoded and how the scalling of the
feature is performed. In our work, we consider hbiyhoods of rectangular shape and arbitrary size
and we smooth the image with rectangular filteremviscaling the feature — the position encoding
will be explained further.

To make it clear, we will now describe specificatiyr variation of the Min/Max features
which you can see on figure 8. The Min/Max featui@sn a grid over the pixels of the original
image. Both the number of cells in the grid anddize of the cells can be arbitrary. Each of tHis ce
inside the grid is assigned a unique indeX he order of the indexes is, in fact, not impottaetV,
be mean value of intensity in celland lelv :{Vl,VZ,...,VN} then the result of the feature is simply

the index of the cell with minimum or maximuvh:

Frnax (V) = argmax{; ); .., (V) = argmax(; )

! The results of the experiments are presentedapteh 7.

26



HEEEEEN

Vi Vo Vs

i | % | %

Vo s Vo
Figure 8: The Min/Max features.

5.2 Local Rank Differences

Similarly to the Min/Max features, the LRD featuigserate with a set of valudé ={V1,V2,...,VN}
derived from a local image neighborhood. In ouledh® values represent mean intensity value inside
a corresponding grid cells (see figure 9). Butaastof searching for extrema in this set of valtles,
LRD features sort the valudé and then assign each of the cells a r&k Ranl‘(Vi ,V) according

its position in the ordered sequence. The outptii®feature is then a difference of rariRsof two

specifically marked cells andi "

LRD(V,i",i"") = RanKV,,V)- RankV..,V)

Each of the LRD features is fully specified by #iee of the grid, size of the cells, position e t
image and the indexesandi " of the two special cells.

The output of the LRD features is in its meaningchmsimilar to the Haar-like features except
the difference of intensity is replaced by the efiénce of the ranks of the values. The resulth®f t
LRD features are, in fact, differences of the istgnof the two areas normalized by equalization of
local histogram. The equalization of histogrameaseyally considered the best possible normalization
method for preprocessing of images for machinenlagralgorithms, and thus it can be intuitively
expected that the LRD features will provide goodgrenance. Moreover, the number of all possible
LRD features in an image is higher then the nundfeall possible simple Haar-like features. For
example, the number of possible LRD features wlih grid consisting of 3x3 cells in an image
24x24 pixels large is 304,704. The number of Haarfeatures with only two areas is only 86,400 in
the image of the same size. The higher numbereofahtures may be beneficial as it increases the
probability that some of the features will perfomell on the training distributions generated by

AdaBoost (see section 2.2)

27



VAEEEEN ~alRankv,.v)
@ v |y }@-}LRD(V 16)
v | v |4 — > RankV;,V)

violw | Y

Figure 9: The local rank differences.

53 LRDin FPGA

It is obvious that, on general purpose CPU, classifwith the LRD will not be able achieve
classification speeds that would be competitivehwiassifiers based on the Haar-like features. The
LRD are simply too complex compared to the Haae-liikatures. However, this complexity is
compensated by a great potential for parallelipatio fact, an FPGA implementation of a classifier
evaluation engine already exist which is able taleate two LRD each clock cycle running at
100MHz when synthesized for a small and low cosBAR/irtex Il 250. This gives effective speed
of 200,000,000 evaluated features per second. Boe imformation about this classification engine
see [18].

Let’s now look little bit closer at the conceptsigthare used at the FPGA. The “pseudocode”

implementing the features can be e.g. as followgsi¢ 10):

1) Compute a set of mean valuésbased on the grid over the image area
2) CompareV, to allitemsinV - A=Y [V, >=V]
viv

3) CompareV.. to all items inV - B= Z[\/I >= v]
VIV

4) ReturnA-B

Figure 10: Pseudocode for computation of the LRD in FPGA.

Let's note that the classifiers are not resizethécase of LRD features, the images are rathézdsca
Further, the image is not processed at once, bL2&x31 image stripes. Also, the size of the ggid i
restricted to 3x3 cells in the current implememwiati This size of the grid gives 17 possible
predictions.

First of all, the mean valueg are not computed during the evaluation of theuieatbut are

computed in a preprocessing step for every poskibbgion. In the current engine, this restricts th

28



number of possible distinct sizes of the grid cetiSour due to memory limitatiohsWe use, for
example, sizes 1x1, 2x2, 2x4 and 4x2. Althoughs #pproach may, at the first glance, seem as a
waste of computational power, it is, in fact, dweey efficiently and does not slow-down the engine
as it is done parallel to the evaluation of theuess.

These convolved images are stored in the block rafirtbe FPGA in such way, that it is
possible to read values of a 3x3 grid with singlemmory access. This is, in fact, the most important
property of the engine as the number of accessa®toory per feature limits the performance. For
example, the simplest Haar-like features with dmlg areas need six memory accesses when using
the integral image. This effectively makes evers¢hsimplest Haar-like features at least six times
slower then the LRD. The comparisons are done ralleh by block of comparators. A simplified
diagram of the evaluation engine can be seen amdfigjl. As can be seen on the figure, the positive
results of the comparators are summed and the dhees are then subtracted. The result of this
subtraction is used to directly address approppageliction value in the table of predictions. The
predictions are accumulated to get the final cl&sgion result. The engine is also able to tettraf
evaluation of each feature if the current accunedlaum of the weak predictions is lower then some
threshold and if the result of the test is positive classification of the current window is terated

with negative result. The threshold for this eaelymination can be set by the WaldBoost algorithm

Values
Values » Block of »{ Counter
|- »
memory .| comaprators | of“l’s
Ll
» A » A
» »
Ll
» »
Ll L
» »
Ll
» »
Ll L
» » » Subtracor
7'y Value A and B selector
v LRD
Address » Block of »{ Counter P>
|- |-
logic .| comaprators | of“l’s
Ll
» B » B
» >
|- |-
Ll Ll
» >
|- |-
Ll Ll
» »
Ll Ll

Figure 11: A simplified diagram of the FPGA engine for evalaatof the LRD as presented in [17].

! The experiments do not show any significant drogiscriminative power due to the restriction of gizes of
the grid — see section 7.3 for the results of éeviant experiments.

2 For detail on the WaldBoost algorithm see seclin?.

29



The numeric precision of the prediction valueseistricted only to eight bits. However, this
restriction does not lower the classification powethe features. Also, th¥ values are rounded to
eight bits, but this does not pose any problemmBsmation is lost only for larger sizes of thelsel

and even there the lost bits should be mostly noise

30



6 Experimental Boosting Framework

The development of efficient classifiers is to aajrextent an experimental science. All new ideas
have to be tested on representative testing selferasome of the parameters have to be tuned for
specific applications. Although the boosting altforis themselves are mostly relatively simple,
things get complicated with the weak learners,ddia transformations and a need for computational
efficiency. It becomes even more complex when legrobject detectors for images. In such case, it
IS necessary to manage the huge number of backgyreamples which is needed to train classifiers
with the early decision terminatibiWhen considering all of these necessary paris,difficult and
costly to create an application for experimentinithviboosting classifiers in computer vision tasks
from the scratch. On the other hand, all of the tmeed parts are relatively independent and
therefore it should be possible to create a framkwdhere it would be possible to add any new
boosting algorithms, features, etc. To our knowdedguch framework does not exit or it is not
publicly available. On account of these facts, \aeehdecided to develop a boosting framework for
computer vision applications. This boosting framekwis intended for our own experiments focusing
mostly on the development of new features, as aglh contribution to the global research efforts.

In this chapter, we present the experimental bogdtiamework which we have developed.
First, we summarize all of the requirements which r@elevant for the framework. Next, we explain
the basic structure of the framework and basicddehich led to this structure. In further text, we
explain all parts of the framework in more detéle also discuss the possibility of parallelizatig.
the end of this chapter, we describe some of therdsting approaches we have taken during the
realization of the framework and we also presemhes@f the supporting tools which we have

developed to manage image datasets and to prdeesssults obtained during the experiments.

6.1 Requirements

The experimental boosting framework has to satisfge main requirements to be generally usable.
First, the framework should be feely available with any additional expenses. Second, the
framework should be as flexible as possible. Arsl laut not least, the framework should provide
high performance so the time and resources neaxtegkperiments are reduced to minimum. From

this thee basic requirements, we have derivedviitig set of more concrete simple requirements:

! See section 2.5

31



Public availability without additional expenses:
*« The framework should be distributed under suclmBeawhich allows to use the framework for

non-commercial and research purposes.

« All external libraries used by the framework shobidalso free of charge.

« All adopted source codes, if any, should be distetd under the GNU General Public License or
similar one.

¢ No commercial support tools should be needed.

« The framework should be platform-independent -east Windows, Linux and Unix should be

supported.

Flexibility:
« It should be possible to add any new learning @lgorwhich observes the boosting paradigm.

e It should be possible to add data sources.

e It should be possible to add new image featurestmr data transformations.

e It should be possible to add new weak classifiers.

e It should be possible to add new types of perfolgaavaluations and printed outputs.

e All of the parts of the framework should be easibyfigurable.

High performance learning:
« The samples should be represented in such walote efficient computation of the features.

< It should be possible to efficiently exchange thmples in the training datasets during training.
* The framework should try to minimize computatiobatden arising from frequent calls of

simple functions and from data transfers.

Additionally, we have formulated few requirementdiot arise specifically from our area of
research. We needed that it was possible to expatimith specific properties of the classifiers in

FPGA. This includes mostly quantization of somaugal The specific requirements are:
* Possibility to limit the precision of the weak pigitbn values.

« Possibility to limit the precision of computatiodsring evaluation of the features.

As the framework is primarily intended to be usedtie area of computer vision, it can not
work with precomputed feature vectors. The featugetors in computer vision classification tasks

are often so lorigthat even moderate number of feature vectors amesfit into memory of

! For example the length of feature vector derivadnfimage 24x24 pixels large could be 180,000 énchse
of Haar-likefeatures or 300,000 in the case of LRD.

32



contemporary computers. Due to this fact, the featactors have to be computed during the learning
from the original data. The possibility to transfothe data during the learning could be also
beneficial because it may enable to estimate soamsformations like PCA directly on current

distribution over the learning data samples whichenerated by AdaBoost.

6.2 Basic Principles

During the design of the framework, we consideberhost important requirement to be the need for
flexibility and extensibility. We wanted to redutiee number of changes needed when adding any
new code to the framework. Quite naturally, we dedito use object oriented design to reduce the
dependencies between distinct parts of the codegpalythorphism to achieve almost plug and play
extensibility.

The requirements for flexibility and extensibiliye deeply connected with the requirement for
transparent configurability, as it is needed thet hew parts of code manage their configuration
themselves without the need to communicate witterofharts of the code. We have solved this
requirement by using XML for configuration. We uX®&IL in such way, that constructor of each
object in the framework takes an XML node as ampatar and the constructor itself decides if it
should process the XML node. If the XML node isogized, the object processes the configuration
information contained in the XML node and optiogghasses some of the child nodes to globally
defined functions which distribute the child node®ther constructors. This solution is possible du
to the fact, that the objects in the boosting franm form a tree structure.

Let’s now illustrate this concept on a practicahmple. Consider a boosting algorithm which
uses some weak learners. In our framework, thetimgpalgorithm as well as the weak learners is
represented each by XML nodes in the configurafilen Moreover, the nodes representing the weak
learners are children of the node representindbtiwsting algorithm. During the initialization ofeth
framework, constructor of the boosting algorithrogiges the relevant XML node. It recognizes this
node, processes the configuration information aas$@s all child nodes to a global function which is
responsible for initialization of the weak learnefhis global function passes the child nodes to
constructors of all weak learners in the framewankl if any of the nodes are recognized then the
function returns the successfully created instan¢d¢ke weak learners. The instance of the boosting
algorithm receives the weak learners and inseets fimto its pool of weak learners.

The result of this approach is that it is realipgie to add new features to the framework. It is
only needed to create a class which implementgsponding well-defined interface and add a call of
its constructor to a global function which initidis this kind of objects.

The use of XML goes even further then the configareof the framework. Each object in the

framework is able to store its content in the foomXML. This is used to export the resulting

33



classifiers, but also, for example, to copy theeotg§ and other manipulation with the objects. This
ability to store itself into XML could be also ustxsend the objects between different computationa

nodes during eventual parallel execution

6.3 Framework Structure

As described earlier, the framework is object dedrand uses polymorphism. The interfaces which
form the framework mirror the basic objects fronosting learning in computer vision tasks. There
are also some additional interfaces and classeshghovide access to data sets.

We will first introduce the part of the frameworincerning the data sets. The interfaces and
classes which provide access to the datasets avensh the figure 12. This part of the framework
consists of three levels of classes. The top-lelasds unifies access to different subsets of saniple
the dataset. These subsets can represent sampiesdifferent classes, samples obtained from
different sources, etc. The subsets unify accesarous physical data sources which are heredtalle
repositories. The repositories provide access ttirée the physical data and provide a way how to
add new sources of data in the future. At the pitestate, all of the repositories access datarim fo
of feature vectors or images. In the future, ip@ssible to add, for example, generators of aiific
datasets. For more information about this parhefftamework and how the samples are loaded see
section 6.4.

SampleSource Subset

+0K() *_ |+OK()
+LoadSamples() LN +GetName()
+Reset() +LoadSamples()

+0 +UnusedSamleCount()
+Reset()

_

V*
<<type>>
Repository

+0K()
+LoadSamples()
+UnusedSampleCount()

+Reset()
A

[FeatureVectors————RawFile]
lAnnotated Rawf——
[mageSamples——

Figure 12: The part of the framework which is responsibledocessing the datasets.

! For discussion about possibilities for paralletextion see section 6.8.

34



The structure of classes which perform learninghewn in figure 13. If we consider only
simple classifiers without early termination of kaion, the learning is performed by an object
implementing the BasicBoosting interface. Such abjeceives training set of samples and returns
learned strong classifier. In each iteration of Blm®sting algorithm, the object passes the training
examples to the weak learners together with cudisttibution over the examples. The weak learners
may use some data transformations provided by gatiimplementing the interface Features. There
are two types of the transformations. The resultthe first type of features are real numbers — for
example the Haar-like features, Gabor featuregsalicombinations, etc. The results of the second
type of features are integer values — for exampellRD, LBP and Min/Max features. Each of the
weak learners produces the best weak hypothesghim®n the current distribution. The boosting
algorithm then selects from the weak hypotheseswiich performs the best and adds it into the
strong classifier (class LinearTwoClassClassifii@he prediction values can be set directly by some
of the weak learners or are adjusted by the bapstgorithm.

The samples for the boosting algorithm can be plexviby some simple top level routine or
they can be obtained form a cascade learning #hgorfimplementing interface Cascadelearning).
The cascade algorithm loads the training sampleks catls the boosting algorithm. The cascade
algorithm then receives a classifier and adds it the@ cascade of classifiers (interface
CascadeCalssifier) which is then used to prundrtiring set. After the training set is pruned and
replenished to desired size, the process repeais.ag

The framework consists of even more classes aratfaces which are, however, not so
important for the learning part. To mention some,irgerface for evaluation of the classifiers and

output of the results is defined.

35



<<type>>

<<type>> jCascadeCIassifier
Cascadelearning TR0
+StoreToXML()
Igt}é%mm L() :ggézjsg:fy() .
+LearnClassifier() assifier()

*

> inearTwoClassClassifie
<<type>>
BasicBoosting +OK()
o +StoreToXML()
+0K() +Classify()
+storeToXML() +Classify(HypothesisID)
+LearnClassifier(examples) +PushBackHypothesis()
+RemoveHypothesis()
\/* ;I/*
<<type>> <<type>>
WeakLearner .~ Z|WeakHypothesis
1
+OK() I +OK()
+StoreToXml() 1 +StoreToXml()
+GetBestWeakHypothesis() | - - +ClassifySample()
<<type>>
RealFeatures
(I . <<type>>
+GetWeakHypothesis(ID) p o= = == =2 - - - | = .
! s eluatagopoinesisib) >| DiscreteFeature
! Evaluate(): float
| <<type>> +
T DiscreteFeatures \ +GetReSUItF ange()
! : <<type>> I
1 +GetWeakHypothesis(ID) | = = - —->
| +Evaluate(): int RealFeature :
1
| <<type>> +Evaluate(): float :
- D Features <<type>> ! ,
Feature [ ----t-------
+0K()
+StoreToXML() +OK()
+getFeatureCount() +StoreToXML()

Figure 13: The classes and interfaces forming the learninggfdhe framework.

6.4 Data Source

The structure of classes responsible for loadingpéas is presented on figure 12. Each dataset is
defined by single XML file. This file defines th@dical structure of the dataset and contains
references to the physical data which is storesbparate data files. The dataset consists of subket

samples. These subsets are not identical with edaassigned to the samples during learning, but
samples from more subsets can be combined intdesolgss. This can be used, for example, to
merge training and validation sets for some expemi: only by slight modification of the

configuration file and without any change in theadat file. Each of the subsets has a unique textua

identifier and may contain multiple physical sampleurces which are called repositories in the

36



framework. These repositories abstract accessriougasources of samples like image files, raw data
files, text files with feature vectors, annotatethges and annotated raw data files, generators of
artificial data, etc.

For experiments in classification, it is often negédo load the samples in random order.
Further, some experiments require that a singlaseatis repeatedly randomly divided into disjoint
training, testing or validation sets. To make segperiments more efficient and the preparation of
the experiments easier, these possibilities aegiated directly into the framework. When loading
samples in random order from multiple subsets,nin@mber of samples is distributed between the
relevant subsets proportionally to the number afs@d samples in each of the subsets. The number
of loaded samples is then further distributed betwtne repositories again according to the number
of unused samples. It is also possible to loads#mples in linear order. The boosting algorithms ca
be stopped in any iteration, while the learnedrgjroassifier effectively holds all information ahio
the previous rounds of the algorithm. This impliest it is possible to stop boosting at any timd an
later continue learning from that point. To congrorrectly, it is necessary to load exactly thmesa
training samples as in the suspended learninghdnframework, this is assured by custom pseudo-
random number generator which generates the saqoersees of numbers regardless which compiler
and operating system is used. The seed numbehifigénerator is stored together with exported
classifiers.

The possibility to divide the data randomly intgjdint training, testing and possibly validation
sets is tightly connected with the possibility épeatedly load samples from a single subset. Ih suc
case, the previously loaded samples must be markeahot available next time. This in combination
with the random loading of samples allows assigmaigdom samples into disjoint training and
testing set.

The samples are not loaded separately, but préferalitiple samples are loaded at once. This
increases efficiency and makes it possible to usple and efficient algorithm to distribute the
loading of the samples between subsets and repesit?When loading samples in random order,
random access to files can significantly slow-datva loading process. A way to eliminate this
would be to load all data into memory in advancet this could be memory consuming and
inefficient. In the framework, only the contenttbbse files which have been accessed is cached in
memory. It is possible to explicitly clear this bacas well as the lists of used samples. This ogchi
is provided by the repositories on local level las tepositories can use their knowledge about the
data to store it and access it in the most efftoieay.

In the section describing the requirements, wedttat the samples should be represented in
such way to allow efficient computation of the f@at. According to this, each sample may contain

the original data, integral image, the result ofifier transform and, possibly, other representatiufn

37



the original data. Each sample also contains inftion about its class and weight currently assigned

by the boosting algorithm.

6.5 Features

There are two fundamental types of features irfrdm@ework which differ in the type of their results
The results of the first type of features are reahbers and the results of the second type ofesitu
are integer values. Moreover, each of these grbagstwo interfaces to be implemented. The first
interface is designed to be used for classes imgiding the features for the training part of the
framework. The instances of these classes holdiptaulteatures of the same kind. This enables to
compute multiple features with only single methad evhich reduces the overhead caused by the
method call. More importantly, this allows usinguss computed for one feature to compute the
result of other features. This reduces the leartiing by 85 % in the case of LPBnd in some cases
even more. For example, it is possible to compespaonses of Gabor features on all positions of a
sample by simple multiplication of the image and thabor wavelet in the frequency domain and
then use IFFT to get the results. Such approachspaed up the learning with Gabor features
significantly especially for larger sizes of sangple/ithin the scope of the objects, single featares
addressed with unique integer index.

The second interface is designed to be used bgedashose instances are part of the strong
classifier. These objects hold only single featWé.course, it is possible that both interfaces are
implemented by single class, but it is usually msui¢able to have two separate classes.

Except the actual features and data transformati@re are two classes implementing the
interface Feature and Features which only manieute results of other features. First of these is
class which converts the real results of featunés integer values and second is a class which

manipulates the integer results — it can be useedioce the number of possible outputs of a feature

6.6 Weak Learners and Hypotheses

The weak learner’s task is to learn a weak hyp@hekich is successful on the current distribution
over the training samples provided by the boosdilggrithm. Although, any classification algorithm

can be used as a weak learner, the framework dlyrieoludes only simple weak learners which are

! See section 6.9 for more information about effitieomputation of the LPB and the Haar-like feaswtaring
learning.

38



frequently used in computer vision taSkEhese weak learners produce weak hypotheses wihich
the definition of domain partitioning weak hypotags The class representing weak hypotheses
produced by these weak learners contains publialarwhich holds the prediction values for each
block of the partition. Although, the weak learneasild choose the prediction values themselves, the
prediction values are rather computed by the bogstigorithm. This solution was chosen for the
reason that different boosting algorithms can cbhabg prediction values in different ways or they

can adjust the predictions in further iterationdobsting.

6.7 The Boosting Algorithms and Cascade

Most learning algorithms which fit the boosting @digm can be integrated into the framework. Such
classes must implement tBasicBoostinginterface. The boosting algorithms take as antigpt of
examples and, optionally, validation set. Thera @mple routine in the framework which takes care
of loading the data sets and which also can ealina performance of resulting classifiers andtprin
the results.

Classifiers with early termination of evaluatidake care of loading samples themselves. They
also implement different interface then the basiogting algorithms — CascadelLearning. The name
can be little misleading as these classifiers winly termination of evaluation do not need to be
really some form of classifier cascade. For examgle WaldBoost algorithm also implements this
interface. In the framework, there is a simple ir@itwhich can evaluate the performance of these

classifiers.

6.8 Potential for Parallelization

The boosting algorithms are, in fact, very suitdbleparallelization as they can be effectively
partitioned. The natural way to parallelize theoailpm is to distribute the estimation of weak
hypotheses on more computational nodes. This chisicguite natural as the learning of weak
hypotheses is significantly the most time consungiag of leaning. When using such parallelization

of the learning algorithm, no information needsbt transferred between the computational nodes

! The decision trees, decision stumps and histogeaesurrently part of the framework. For more infation
about these weak learners see chapter 4.

2 For definition of domain partitioning weak hyposies see section 2.2.

% For example, the TCAcu adjusts the prediction eslim each iteration of the boosting algorithm. Fore
information about this algorithm see section 2.4.1.

4 Some of the classifiers with early decision teration are cascade of boosted classifiers, boostiagn and

WaldBoost algorithm. More information about thefgoathms can be found in section 2.5.

39



except the information about the best weak hypighd$he computation of the new distribution
D, can be performed separately on each of the nodes.way the speedup factor can grow almost
linearly with the number of computational nodesrefa relatively high number of the nodes

Our framework, although it was not one of the aligjoals, provides simple and at the same
time effective support for this parallel learninigweeak hypotheses. If more weak learners are difine
in the configuration file, the boosting algorithrancsend each of the weak learners to different
computational node and then receive the best wgadthesis from each of the nodes and choose the
overall best hypothesis. This hypothesis can be tent to the nodes which compute the new
weights. This kind of communication between thee®does not require any changes in the weak
hypotheses and learners as these are alreadyoaitee themselves in XML. This representation can
be easily sent over the computer network and tised to create corresponding objects at the receiver
node. The training samples can be also transfeieedetwork or the computational nodes cam load
the samples themselves according to XML configarateceived from the master node.

Although, this approach is very simple, it is a#fiat only under certain conditions. This kind
of distribution of work load between the nodes deneffective only if the granularity of weak
learners is adequate. If there is low number ofkwlearners then it is not possible to balance the
work load between the nodes. On the other handheéfe are too many weak learners, the
communication needed to transfer the weak hyposhesel possibly weak learners significantly
slows-down the learning process. Moreover, thenfirigtation of weak learners has to be defined in
the configuration file which may be annoying foe tisers.

The mentioned problem with granularity can be, hawveeasily solved by slight modification
of the weak learners. As the weak learners whiehcarrently used in the framework construct each
of the weak hypotheses on top of a single featndetlhen only chose the best, it is possible toadd
new method which restricts the weak learner onlgddain features. The boosting algorithm could
then assign the computational nodes not only thekwearners, but also the portion of features which

they should consider during learning.

6.9 Effective Computation of Features

As the feature vectors used in computer visionstfiaation tasks are usually very Idngt is not
possible to precompute the training feature vediodvance and store them in RAM. The feature

vectors must be instead computed on the fly dueagning. Even thou some of the features can be

! This depends on the time needed to estimate th& tygpotheses which depends on the number of sample
and weak hypotheses. If this time is low, the sppdédctor may drop as a result of delays during
synchronization of the computational nodes.

2 See chapter 3 for more information about the ttatesforms used in computer vision.

40



computed very efficiently, their computation stibnsumes most of the learning tim&hat is why
any attempts to reduce the learning time shouldgamn effective computation of the features. The
techniques which are discussed in the following tawovide significant speed-up (for example,
approximately 400% the case of Haar-like features).

Generally, it is a good idea to reduce access tMRFo achieve this, we can improve data
locality during learning and take advantage of tagthe or we can even try to reduce the amount of
data which needs to be loaded from memory by coimpgome of the data on the fly. The data
which needs to be loaded from memory is represdmntébe samples and some information about the
features. There are usually also some temporarghlas used by the weak learner. For example the
histogram weak learners use an array of accumslaboaccumulate the weights of samples. In such
case, the best data locality is achieved when plelfieatures are computed for single sample and
after the weak learner accumulates the weight ef dample features are evaluated for the next
sample. The number of features must be reasonablgd all the data needed by the features and the
accumulators used by the weak learner fit intod&ghe. This way, cache misses happen only when
accessing a sample for the first time. In our fraom we use this technique with good results. For
example, in the case of Haar-like features we caenfiie positions of the features on the fly which i
the combination with the improved data locality\gdes approximately 400% speed-up compared to
the original solution where the positions of thatfees were stored in RAM. The performance during
learning is now 37M Haar-like features computed pecond on Intel Core 2 CPU running at
1.66GHz.

Other features can benefit form the fact that mpldtifeatures are computed from a single
sample at the same time by sharing some of the atipns. For example, in the case of I'RD
features, we compute the sums of intensity in #ils of the grid and then compute the ranks of each
cell. With these ranks, we can compute rank diffees of all possible combinations of the cells.
There are 36 cell combinations for grid size 3xBe Tact that the 36 features share the computation
of the ranks provides significant additional speed-In fact the LRD achieve almost the same

performance during learning like the Haar-like tgas, even thou, they are mum more complex.

! The computation of features usually consumes bEivg® % and 98 % of the total learning time foribas
boosting algorithms.
% For detailed information about the LRD see sechi¢h

41



6.10 Support Tools

During the development of the framework, many suppuols were creatédvhich either manage
datasets or allow more effective work with the feamork. One of these tools is an image annotation
tool which can be used to define regions of intereBnages. Next, there is a dataset generatoctwhi
is able to process these annotations and creasatstcompatible with the framework. The dataset
generator can add random geometric transformatindsnoise to the data. There is also a tool which
is able to read a dataset and convert it back hotated image. Finally, we have created a tool whic
can be used to automatically generate configurdileas for experiments. All these tools are also

available with the framework.

! These tools were created by various authors. ficpéar, the image annotation tool as well as péthe

dataset generator was not created by the authtbrsathesis.

42



7 Results

We have used the boosting framework to perform nepgriments focusing mainly on performance
of the new LRD features compared to the classiailea features. Further experiments studied how
the LRD features perform when implemented in FPG#ere the sizes of LRD features as well as the
computational precision are limited. Some experimaevere also concluded to estimate influence of
some parameters of the learning algorithms on pmdoce of the resulting classifiers.

We considered a face detection problem as a baseallfthe experiments. We chose this
problem, because the boosted classifiers are masey for face detection in the area of computer
vision. There are, however, some differences beiwee face detection classifiers and those created
in our experiments. Although, we used datasets lwhie suitable for face detection, we did not use
classifiers with early termination of evaluationdanve did not try to achieve asymmetric
classification errors with extremely low false g rate, which would have been necessary if we
had intended to usee the classifiers in a realctlete application. This was not necessary in the
experiments as we only needed to mutually compéfiereht versions of the classifiers at this stage
of the research. We used the real AdaBoost algorithall of the experiments.

For the experiments all samples were resized t®R24ixels. A dataset of 5,000 hand-
annotated face images was divided into training tasting set of equal sizes. This face dataset was
originally used as training and validation sets face detection system described in [37]. The
samples were mirrored to effectively double theimber. The test set was additionally supplemented
with 470" faces from MIT+CMU dataset and 1,200 faces fromosated group photos. The non-face
samples were randomly selected from a pool of simolews from a large set of non-face images. If
not stated otherwise, 10,000 non-face samples weed for learning and the performance of the
classifiers was estimated on 300,000 non-face sniplthe experiments. As this testing set is kighl

unbalanced (1:45), we report error rates whiclr@zemputed as if the testing set was balanced:

FP+FN
2

where FP is the false positive rate arieN is the false negative rate.

‘E=

Except the classification error on independentsidtaet, we also report how the classifiers are
able to reduce th& normalization factdr Although the classification error gives infornmtiabout
the generalization properties of the classifier abhadut its real-world performance, thé value

carries information about how well examples frordiidual classes are separated by the classifier.

! Only images of real human faces were used fronMife-CMU dataset.
% This is the normalization factor used in the regh@ig formula in the AdaBoost algorithm. For more
information see section 2.1.

43



To achieve good separation of the training daienfgortant for classifiers with en early termination
of decision, where faster separation of the trgnilata implies faster average decision. Thus, the
speed of minimization of th& value can be used to predict properties of a ifikassvith early

termination of decision learned with the same patans.

7.1 Comparison of Different Types of Features

In this experiment, we compared performance of @lassifiers with different sets of features. First
classifier uses only the simplest Haar-like feagunéth two areas. These simplest Haar-like features
are supplemented with the features with three dm@ahe second classifier. Another two classifiers
use LRD. The first one uses all possible LRD witlll gize 3x3 and the second uses only restricted
set of the LRD with possible sizes of cells in tral 1x1, 2x2, 2x4 and 4x2. The last classifier is
based on LBP. Decision tree with eight leaf nodes used as a weak learner for the Haar-like
features as well as for the LRD. Since the LBP gi®wnly eight possible output values, histogram
weak learner was used in this case.

The speed oZ minimization of the classifiers is shown in figuré. The full set of Haar-like
features provides the best performance in term& ehinimization and the restricted set of LRDs is
comparable to the reduced set of Haar-like featufé® full set of LRD provides only slight
improvement over the reduced set. The LBP do naihg® be suitable for the face detection task as
they provide the worst results. The reason of Itlaid performance is probably the fact that the LBP

discard large portion of the available information.
1

\ — Haar Double
01 \ — Haar Ternal
NN LRD All
\ LRD Restricted
0,01 —LBP

0,001
0,0001 -
0,00001
0,000001 T T T T T T T T
0 20 40 60 80 100 120 140 160 180
Figure 14: The speed ofZ normalization factor minimization. The x-axis repents the number of

weak hypotheses and the y-axis represents the gélde.

44



The classification error of the classifiers is shom figure 15. Both LRD and LBP seem to
generalize better compared to the Haar-like feataomsidering their speed d@f minimization. Here

the LRD slightly outperform the full set of Haakdi features and the LBP outperform the reduced set
of Haar-like features. This phenomenon is quitexpeeted and requires further analysis.

0,1

\\ ——Haar Double

\\\ ——Haar Ternal
\\\ LRD All
\\/\ LRD Restricted

\ —LBP
X \/\'\«\M\
0,01 T T T T T T T T
0 20 40 60 80 100 120 140 160 180

Figure 15: The classification error for different numbers oéalt hypotheses. The x-axis represents the
number of weak hypotheses and the y-axis repretfemtdassification error.

7.2 Threshold Estimation Precisions

The decision stumps and decision trees weak learoeuld estimate thresholds directly on the
samples. This would provide best precision of teneated positions of threshold, but it would be
also computationally very inefficient as the samapteed to bee sorted according to the result of the
feature before the estimation. Another possibtlitystimate the thresholds is to discretize theltes
of the features and estimate the thresholds ostadram. This approach is computationally efficient
but could reduce the performance of the resultiagsifiers. The results of this experiment should
answer the question how the discretization inflesngerformance of the weak learner and how fine
the disretization should be to prevent degradaticthe weak learner. Haar-like features and degisio
tree weak learner were used in the experimentladuamber of leaf nodes was set to eight.

The results, which are presented on figure 16, ghaivthere is no measurable improvement in
classification error of the resulting classifierbiem there are more then 32 bins in the histogram.
However, the speed of minimization still slightly increases even withgher number of bins.

According to these results it should be safe toquemtization with 64 or more bins.

45



0,1 \

®
®

S

*

@
0,01 T T T T T
0 50 100 150 200 250 300
——4WC —8—-8WC 16 WC 32WC —%—64WC —e—128WC
Figure 16: Relation between classification error and precisibtihreshold estimation for the decision tree
weak learner. Each of the lines represents sirgigth of the boosted classifier and the x-axisesgmts the
number of bins in the histogram.
1
M o o ~
e 5 M- — = M
0,1
0,01 -
0,001
0,0001
—o
0,00001 ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300
——4WC —B—8WC 16 WC 32 WC —%—64 WC —@—128 WC
Figure 17: Relation between speed of minimization and precision of threshold estimatiom the

decision tree weak learner. Each of the lines ssprs single length of the boosted classifier dredxtaxis
represents the number of bins in the histogram.

46



7.3 Restricting the Sizes of LRD

When using the LRD in FPGA, it is necessary totlitheé number of distinct sizes of the grid celis. |
the current FPGA evaluation engine [18], only feires of grid cells can be used at the same time.
The important question is what combination of sigahe best for certain application.

The figure 18 shows histograms of grid cell sizEfeatures in a face detection classifier. It is
clearly visible that majority of the features hasadl sizes of cells — more then 80 % of the feature
have both sizes of the cells smaller then 4. Tdus $uggests that it should be possible to usetbely

small sizes without a need to increase the numbieatures in the classifiers.

0,8

06 -
04
02 -

Figure 18: The upper chart shows 2D histogram of the cebssiaf a face detection classifier, where
both horizontal and vertical size of the cellséssidered. The lower chart shows portions of festim a face
detection classifier which have grid cells with izontal and vertical sizes smaller then certairugallThe x-
axis represents the maximum size of the grid cell.

To answer the question, what is the best combinatfcsizes for face detection, we have compared
several classifiers with different combinationstiodé cell sizes. The results are shown on figures 19
and 20. According to this data, there is no cleddgt combination of sizes. The differences in

classification performance are only slight and eattandom. Also the speed @f minimization is not

47



conclusive. According to the results, there is igmificant degradation of classification performanc

when the sizes of grid cells are restricted.

1,2

11

/

d M i N/@‘A
e, P

W A\
0.9 , ‘ | /\w/\/v
0,8 I ,\/ \ \ \ \ \ \ \ \

0 20 40 60 80 100 120 140 160

180

‘— 11-22-44 ——11-12-21-22 11-12-21-44 11-22-42-24 ——11-42-24-44 —— 11-22-44-66 ‘

Figure 19: Classification error of face detection classifierghwrestricted sizes of LRD relative to the
classification error of a classifier with full set LRD. The x-axis represents the number of weghollyeses and the
y-axis represents relative classification errow@o numbers are better). The pairs of digits indascription of the
classifiers correspond to the sizes of the gritscel

4
—11-22-44 /
3’5 — 11'12'21'22
11-12-21-44
11-22-42-24 /
3 ——11-42-24-44
—11-22-44-66
2,5 4
2 /_/
15
4 —
1 T T T T T T T T
0 20 40 60 80 100 120 140 160 180
Figure 20: Speed of Z minimization of face detection classifieith restricted sizes of LRD relative to the

speed of Z minimization of a classifier with fuletsof LRD. The x-axis represents the number of weak
hypotheses and the y-axis represents relative\ile(lmumbers are better). The pairs of digits indascription
of the classifiers correspond to the sizes of tie cglls.

48



7.4  Prediction Value Quantization

One of the limitations of an LRD evaluation engind=PGA is the memory capacity needed to store
the prediction values. Each LRD with grid size 3»®ds 17 prediction values. In this context, lower
precision of the prediction values implicates asuifity to use higher number of features in a kng
classifier. On the other hand, the reduced pratisibthe prediction values could result in higher
error rate of the classifier or a need for londassifiers to achieve the same error rate.

The figures 21 and 22 show the influence of redydie precision of the prediction values on
the classification error. The results show thatnevery low precision is sufficient. There is no
measurable improvement of the classification ewith more then 4b precision and the speedof

minimization also almost does not increase witthigprecision.

0,1
7Y
.
K -
o —o— —®
0,01
0 5 10 15 20 25 30 35
——4 —8-38 16 32 —%—64 —@—128
Figure 21: Relation between classification error and precisidnthe predictions. Each of the lines

represents single length of the boosted classifier the x-axis represents the number of bits usedpresent
the prediction values.

49



0,1

*

N

0,001
0,0001 - —0—0—0—0—0—0— PY

0,00001 T T T T T T
0 5 10 15 20 25 30 35
——4 —8—8 16 32 —k—64 —@— 128
Figure 22: Relation between speed & minimization and precision of the predictions. Ea¢ the lines

represents single length of the boosted classifiet the x-axis represents the number of bits usedhe
prediction values.

7.5 Convolution Quantization

The value of each grid cell of the LRD featuresased on mean intensity value inside the'.cell
These mean intensities can be viewed as a coneolutith a rectangular filter. In the FPGA, these
convolutions are precomputed and stored locallyhenFPGA chip. The lower the bit resolution of
these convolutions is the larger part of the imfitgein the memory of FPGA and, consequently,
lager part of the image can be processed at siimgte With lower bit resolution it is also possilie
increase the number of distinct sizes of the camian filters (the grid cells). On the other hand,
lower bit precision results in loss of informatiespecially for higher sizes of the cells.

To estimate the impact of reducing the precisiorthef convolutions, we created classifiers
with artificially restricted convolution precisioffhe results of these classifiers are shown orrdigu
23. The convolution sizes used in this experimeamtandx1, 2x2, 2x4 and 4x2. The results show that

there is no significant degradation of performawité precision 5b and higher.

! For more information about LRD features see sadi@.

50



0,01 T T T T T T T T T T T T T T

——4 —B—38 16 32 —%—64 —@—128

Figure 23: Relation between classification error and precisddrthe convolutions in LRD. Each of the
lines represents single length of the boosted ifilisand the x-axis represents the number of btsd for the
convolutions.

51



8 Conclusions and Future Work

In this thesis, novel image features are preseifiteel LRD are suitable for object detection classsi
which can be efficiently evaluated in FPGA. Thefgpanance of AdaBoost classifiers with the LRD
was tested on a face detection dataset with restliish are similar to the state of the art Haaelik
features. Other experiments were performed to astirperformance of the classifiers with LRD
when evaluated in FPGA. This was done because $omtations of the FPGA evaluation engine
could degrade the classifier performance. The ptederesults show that the limitations do not
degrade the classification performance in any Sgamt way. These results are very encouraging and
suggest that the LRD may be a solution for objetéctors in hardware.

The thesis also presents a framework for experimgmtith boosting methods focusing mainly
on computer vision applications. This frameworkésy flexible and makes it possible to simply plug
in a new code with boosting algorithm, weak learrieatures or data source. The framework also
offers high efficiency when learning classifiersdaa possibility for future parallelization. The
framework is available as open source software vaachope that it will simplify work for other
researchers.

In the feature, we plan to add other boosting dlgms into the framework as well as some of
the early decision termination classifiers. Furthee plan to explore possible applications of
classifiers with the LRD in FPGA. For example, wanwvto experiment with emulation of corner

detectors.

52



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Boser, B., Guyon, |, Vapnik, V.: A training algthm for optimal margin classifiers. In D.
Haussler, editor, 5th Annual ACM Workshop on COPittsburgh, PA, ACM Press, 1992, s.
144-152.

Freund, Y., Schapire, R.: A decision-theoretic galieation of on-line learning and an
application to boosting. Journal of Computer angt&y Sciences, 55(1):119--139, August
1997.

Freund, Y., Schapire, R..: A short introductiorbtmsting. J. Japan. Soc. for Artif. Intel. 14(5),
1999, s. 771-780.

Schapire, R.: The boosting approach to machinailegir An overview. In MSRI Workshop on
Nonlinear Estimation and Classification, Berkeley, Mar. 2001.

Viola, P., Jones, M.: Rapid object detection ustngoosted cascade of simple features. In
CVPR, 2001.

Lienhart, R., Maydt, J.: An extended set of Hake-lieatures for rapid object detection. ICIP
(1) 2002, s. 900-903.

Sochman, J., Matas, J.: Adaboost with totally cuive updates for fast face detection.
AFGRO04, 2004, s. 445-450.

Li, S.Z., Zhang, Z.Q., Shum, H, Zhang, H.J.: FlaaiBt learning for classification. In S. Thrun
S. Becker and K. Obermayer, editors, NIPS 15. Mi@sB, December 2002.

Xiao, R., Zhu, L., Zhang, H.J.: Boosting Chain Lreag for Object Detection. ICCV03, Nice,
France, 2003.

Dong Zhang, Li, S.Z., Gatica-Perez, D.: Real-timeef detection using boosting in hierarchical
feature spaces. Proceedings of the 17th Interratidonference on Pattern Recognition, ICPR
2004, Vol.2., 2004, s. 411-414.

Takeshi Mita, Toshimitsu Kaneko, Osamu Hori: Jd#latar-like Features for Face Detection.
ICCV 2005, s. 1619-1626.

Yubo Wang, Haizhou Ai, Bo Wu, Chang Huang: Realktifacial expression recognition with
AdaBoost. In Proceedings of the 17th Internati€®ahference on Pattern Recognition, 2004.
Xinwen Hou, Cheng-Lin Liu, Tieniu Tan: Learning Bxted Asymmetric Classifiers for Object
Detection. Proceedings of the 2006 IEEE Computaie®p Conference on Computer Vision
and Pattern Recognition - Volume 1, 2006, s. 33388-

Theocharides, T., Vijaykrishnan, N., Irwin, M.: AaRallel Architecture for Hardware Face
Detection. isvlsi, IEEE Computer Society Annual $gsium on Emerging VLSI Technologies
and Architectures (ISVLSI'06), 2006, s. 452-453.

53



[15]

[16]

[17]

[18]
[19]

[20]
[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

Ming Yang, Ying Wu, Crenshaw, J., Augustine, B., rBchen, R.: Face detection for
automatic exposure control in handheld camera, i€@irth IEEE International Conference on
Computer Vision Systems (ICVS'06), 2006, s. 17.

Granat, J., Herout, A. Hradis, M., Zéik, P.. Hardware Acceleration of AdaBoost Classifie
Poster MLMI, 2007.

Zenxik, P. Hradi§, M., Herout, A.: Local Rank Differexsc - Novel Features for Image
Processing. Poster MLMI, 2007.

Zenvik, P., Zadnik, M.: AdaBoost Engine. In FPL, 2007.

Koeppen, M.: The Curse of Dimensionality. 5th OalWorld Conference on Soft Computing
in Industrial Applications (WSC5), held on the imtet, September 4-18, 2000.

Valiant, L. G.: A theory of the learnable. Commuations of the ACM 1984, s. 1134-1142.
Haussler, D.: Overview of the Probably Approximat€lorrect (PAC) Learning Framework.
1995.

Kearns, M., Valiant, L.: Learning Boolean Formulae Finite Automata is as Hard as
Factoring. Technical Report TR-14-88, Harvard Ursity Aiken Computation Laboratory,
August 1988.

Kearns, M., Valiant, L.: Cryptographic limitatiorm learning Boolean formulae and finite
automata. Journal of the Association for Compulitaghinery, 41(1), January 1994, s. 67-95.
Schapire, R.: The strength of weak learnabilitychae Learning, 5(2), 1990, s. 197-227.
Freund, Y.: Boosting a weak learning algorithm bgjonity. Information and Computation,
121(2), 1995, s. 256-285.

Schapire, R., Singer, Y.: Improved boosting aldon$ using confidence-rated predictions. In:
Machine Learning, 37(3), 1999, s. 297-336.

Boser, B., Guyon, I., Vapnik, V.: A training algtmn for optimal margin classifiers. In D.
Haussler, editor, 5th Annual ACM Workshop on COPittsburgh, PA, ACM Press, 1992, s.
144-152.

Blumer, A., Ehrenfeucht, A., Haussler, D., WarmuM,: Learnability and the Vapnik-
Chervonenkis Dimension. Journal of the ACM, 36(439, s. 929-965.

Breiman, L.: Arcing classifiers. The Annals of 8ttts, 26(3), 1998, s. 801-849.

Drucker, H., Cortes, C.: Boosting decision trees.Advances in Neural dings Information
Processing Systems 8, 1996, s. 47-485.

Quinlan, J.: Bagging, boosting, and C4.5. In Prdoegs of the Thirteenth international
Conference on Artificial Intelligence, 1996, s 7230.

Schapire, R., Freund, Y., Bartlett, P., Wee Sun: [Bmosting the margin: A new explanation
for the effectiveness of voting methods. In Machirgarning: Proceedings of the Fourteenth

International Conference, 1997.

54



[33]

[34]
[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Bennett, K., Mangasarian, O.: Robust linear prognamg discrimination of two linearly
inseparable sets. Optimization Methods and Softwiar&992, s. 23-34.

Cortes, C., Vapnik, V.: Support vector networks.ckiae Learning, 20, 1995, s. 273-297.
Rétsch, G.: Robust boosting via convex optimizatidigsertation Universitat Potsdam, Institut
fur Informatik, Potsdam, 2001.

Demiriz, A., Bennett, K., Shawe-Taylor, J.: Lineprogramming boosting via column
generation. J. of Mach. Learning Research, 46(012s. 225-254.

Sochman, J., Matas, J.: WaldBoost - Learning foneliConstrained Sequential Detection.
CVPR, (2), 2005, s. 150-156.

Friedman, J., Hastie, T., Tibshirani, R.: Additilegistic regression: a statistical view of
boosting. The Annals of Statistics, 28(2), ApriDBQs. 337-374.

Chui, C.: An introduction to wavelets. Elsevier929ISBN 0121745848

Haar, A.: Zur Theorie der orthogonalen Funktionstesye. Mathematische Annalen, 69, 1910,
s. 331-371,

Matas, J., Sochman, J.: Wald’s Sequential AnalfggisTime-constrained Vision Problems. In
ICRA'07, 2007.

Bartlett, M. et al.: Recognizing Facial Expressidviachine Learning and Application to
Spontaneous Behavior. In Proceedings of the 20EE IEomputer Society Conference on
Computer Vision and Pattern Recognition (CVPR'08plume 2, 2005, s. 56-573.

Zhou, M., Hong, W.: Face Verification Using Gaborwkets and AdaBoost. icpr, 18th
International Conference on Pattern Recognitiof? @06), 2006, s. 404-407.

Lee, T.S.:.Image representation using 2D Gabor letae [IEEE Transaction of Pattern
Analysis and Machine Intelligence. Vol. 18, No. 1096, s. 959-971.

Ojala, T., Pietikdinen, M.: Unsupervised texturgmentation using feature distributions.
Pattern Recognition, 32(3), 1999, s. 477-486.

Maenpaa, T., Pietikdinen, M.: Multi-scale binaryttpems for texture analysis. In: Image
Analysis, SCIA 2003 Proceedings, Lecture Notesam@uter Science 2749, Springer, 2003, s.
885-892.

Ojala, T., Pietikdinen, M., Maenpaa, T.: Gray saaid rotation invariant texture classification
with local binary patterns. In: Computer Vision, € 2000 Proceedings, Lecture Notes in
Computer Science 1842, Springer, 2000, s. 404-420.

Ojala, T., Pietikainen, M., Harwood, D.. A comparat study of texture measures with
classification based on feature distributions.d?atRecognition, 29, 1996, s. 51-59.

Ojala, T., Pietikdinen, M., Maenpaa, T.. Multiragidn gray-scale and rotation invariant
texture classification with local binary pattertEEE Transactions on Pattern Analysis and
Machine Intelligence. 24(7), 2002, s. 971-987.

55



[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Zhao, G., Pietikdinen, M.: Dynamic texture recoigmitusing volume local binary patterns.
Proc. ECCV 2006 Workshop on Dynamical Vision, Graastria, 2006, s. 12.

Ahonen, T., Hadid, A., Pietikédinen, M., Face dgstoin with local binary patterns: application
to face recognition. IEEE Transactions on Pattemalysis and Machine Intelligence 28(12),
2006, s. 2037-2041.

Heusch, G., Rodriguez, Y., Marcel, S.: Local Bin&gtterns as an Image Preprocessing for
Face Authentication. 7th International ConferenceAatomatic Face and Gesture Recognition
(FG2006), Southampton, UK, April 2006, s. 9-14.

Rodriguez, Y., Marcel, S.: Face Authentication dsidapted Local Binary Pattern
Histograms. Proc. 9th European Conference on Canpision (ECCV 2006), Graz, Austria,
Vol. 4, May 7 — 13 2006, s. 321-332.

Liao, S., Fan, W., Chung, A.C.S., Yeung, D.Y.: Bhe&xpression recognition using advanced
local binary patterns, Tsallis entropies and gloappearance features. IEEE International
Conference on Image Processing (ICIP 2006), 2006.

Xianji Wang, Haifeng Gong, Hao Zhang, Bin Li, Zheag Zhuang:
Palmprint Identification using Boosting Local BigarPattern. Proc. 18th International
Conference on Pattern Recognition (ICPR 2006), Homog, 2006.

Pietikdinen, M.: Image analysis with local binargtterns. In: Image Analysis, SCIA 2005
Proceedings, Lecture Notes in Computer Science ,33fringer, 115-118, plenary
presentation, 2005, s. 115-118.

Ce Liu, Hueng-Yeung Shum.: Kullback-Leibler Boostirtvpr, 2003 IEEE Computer Society
Conference on Computer Vision and Pattern RecagniCVPR '03) - Volume 1, 2003, s.
587.

Chang Huang, Haizhou Ai, Bo Wu, Shihong Lao: Baustilested Cascade Detector for Multi-
View Face Detection. icpr, 17th International Coafece on Pattern Recognition (ICPR'04) -
Volume 2, 2004, s. 415-418.

Duy-Dinh Le, Shinichi Satoh: Ent-Boost: Boostingitus Entropy Measure for Robust Object
Detection. icpr, 18th International Conference attétn Recognition (ICPR'06), 2006, s. 602-
605.

56



