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Abstract 
W h i l e older graphics A P I s (Appl ica t ion Programming Interface) like O p e n G L or D i r e c t X 
of version 11 and lower are s t i l l commonly used nowadays, newer A P I s especially D i r e c t X 
12 and V u l k a n br ing many enhancements like better performance, native Ray- t rac ing on 
supported hardware, and more efficient C P U and G P U usage. Performance and efficiency 
enhancements are the results of the nature of D i r e c t X 12 and V u l k a n A P I s . B o t h are quite 
low-level A P I s . Tha t means that G P U s can be controlled on a much lower level which 
results i n much more code that needs to be wri t ten to get s imilar results as when an older 
A P I is used. This thesis presents a new framework, vkEasy, that encapsulates V u l k a n A P I 
in a way that most of its features stay usable, but makes it much easier to use V u l k a n A P I 
for rendering or compute operations. Source code contains examples that were implemented 
using vkEasy to show simplic i ty of vkEasy and to compare it to raw V u l k a n code. Average 
94 % reduction in needed lines of code was observed. 

Abstrakt 
Zat iaľ čo s ta rš ie grafické A P I (Appl ica t ion Programming Interface) ako O p e n G L alebo 
D i r e c t X verzie 11 a nižšej sa v súčasnos t i s t á le b e ž n e použ íva jú , novšie rozhrania A P I , 
n a j m ä D i r e c t X 12 a Vu lkan , p r i ná ša jú m n o h é vylepšenia , ako je lepší výkon , n a t í v n y Ray-
tracing na podporovanom h a r d v é r i a efektívnejšie využ i t i e C P U a G P U . Vylepšenia výkonu 
a efekt ívnost i sú výs l edkom povahy r o z h r a n í D i r e c t X 12 a V u l k a n A P I . Obidve sú pomerne 
n ízkoúrovňové A P I . To z n a m e n á , že G P U je m o ž n é ovládať na oveľa nižšej ú rovn i , čo m á za 
nás ledok oveľa viac k ó d u p o t r e b n é h o , aby bol i d o s i a h l n u t é p o d o b n é výs ledky ako pr i použ i t í 
s t a r š i eho rozhrania A P I . T á t o p r á c a predstavuje nový framework, vkEasy, k t o r ý zapuz-
druje V u l k a n A P I t a k ý m s p ô s o b o m , že väčš ina jeho funkcií zos táva použi teľná , ale v ý r a z n e 
uľahčuje použ ívan ie V u l k a n A P I na vkresľovacie alebo v ý p o č t o v é operác ie . Zdro jový kód 
obsahuje pr ík lady , k t o r é bol i i m p l e m e n t o v a n é pomocou vkEasy, aby ukáza l i j ednoduchosť 
vkEasy a porovnali ho s k ó d o m n a p í s a n ý m v č i s tom Vulkáne . Bolo pozorované priemerne 
94% zníženie p o t r e b n ý c h riadkov kódu . 
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Rozšírený abstrakt 
H l a v n ý m cieľom tejto p r á c e bolo vytvor iť framework s n á z v o m vkEasy, k t o r ý z jednodušu je 
p r á c u s G P U za využ i t i a Vu lkán A P I . Framework je u rčený pre ľudí, k t o r í m a j ú záu jem o 
rendering alebo využ i t i e v ý p o č t o v é h o výkonu G P U . Vu lkán je m o d e r n é v ý p o č t o v é a grafické 
A P I , k t o r é umožňu je využívať v ý p o č t o v ý v ý k o n G P U veľmi efekt ívne, avšak za cenu zloži
tosti kódu . Úp lné pochopenie Vu lkán A P I nie je ľahká ú l o h a a vkEasy sa snaž í uľahčiť 
p r í s t u p k funkc iám Vu lkán aj bez zloži tých zna los t í j azyka Vulkán . 

Vu lkán je veľmi k o m p l e x n é A P I , p r e tože je p o t r e b n é napísať veľmi veľa k ó d u pre vytvore
nie hoc i jakého Vu lkán objektu. T ý c h t o objektov Vulkán obsahuje veľmi veľa a pre nap í san ie 
funkčného k ó d u je p o t r e b n á znalosť t ý c h t o objektov. N a p r í k l a d j e d n o d u c h é vykreslenie 
t r o j u h o l n í k a vyžadu je vytvorenie m i n i m á l n e 18 Vu lkán objektov. Nehovoriac o tom, že 
pre vytvorenie m n o ž s t v a z t ých to objektov je p o t r e b n é vytvor iť a inicializovat veľmi veľa 
zloži tých š t r u k t ú r . S t r u č n e p o v e d a n é , na vykreslenie j e d n o d u c h é h o t r o j u h o l n í k a pomocou 
č is tého V u l k á n u je p o t r e b n ý c h pr ib l ižne 800 až 900 riadkov k ó d u v j azyku C . Veľkú časť z 
tohto k ó d u m o ž n o určiť z kontextu použ i t i a a od ložen ím vytvorenia objektu, k ý m nebude 
z n á m y celý kontext. vkEasy tohto p r inc ípu využíva . Užívateľ m u s í na jskôr zadefinovať 
vše tko čo je p o t r e b n é pre jeho ap l ikác iu no v t om momente eš te ž i adny Vu lkán objekt ne
existuje. Až ked užívateľ zavolá funkciu kompi lác ie programu sa na p o z a d í vy tvor ia v še tky 
p o t r e b n é Vu lkán objekty bez toho aby užívateľ musel písať obrovské m n o ž s t v o k ó d u pre ich 
m a n u á l n e vytvorenie. 

Ďalš ia n á r o č n á temat ika vo Vu lkán A P I je synchron izác ia p r í s t u p u k zdrojom (obrazové 
a d á t o v é buffere). Keďže G P U d o k á ž u vykonávať p r á c u paralelne vo v iacerých v l áknach , 
je p o t r e b n é synchron izác iu j u vykonať m a n u á l n e . vkEasy rieši tento p r o b l é m automaticky 
a užívateľ synchron izác iu n e m u s í riešiť. vkEasy využ íva sn ímkový graf, k t o r ý slúži ako ab
strakcia vykres lovaného s n í m k u alebo bežných v ý p o č t o v ý c h operác i í na sér iu ú loh . Každe j 
ú lohe je p o t r e b n é pr i radiť zdroje, k t o r é b u d ú využ i t é a z t a k é h o t o grafu je potom m o ž n é 
určiť a k ý m s p ô s o b o m bude r iešená synchronizác ia . 

V neposlednom rade je sp ráva p a m ä t e vo Vu lkán A P I t iež z loži tou t é m o u . P re vytvore
nie ob razového alebo d á t o v é h o bufferu je p o t r e b n é na j skôr alokovat p a m ä ť v y t v o r e n í m 
objektu vkDeviceMemory, ďalej vytvorenie objektu vklmage alebo vkBuffer a nakoniec ich 
napojenie. A na toto vše tko je tak isto p o t r e b n é napísať veľa kódu . Gasť tejto prob
lematiky je vo frameworku vkEasy vyr iešené pomocou knižnice Vu lkán Memory Al loca tor . 
P r i v y t v á r a n í objektov je t iež p o t r e b n é poznať a k ý m s p ô s o b o m b u d ú objekty vklmage a 
vkBuffer využ ívané a toto sa d á zistiť z už vyššie s p o m e n u t é h o sn ímkového grafu. 

Ďa lšou v ý h o d o u frameworku vkEasy je podpora pre p í san ie shaderov v jazykoch H L S L 
a G L S L . Č i s tý Vu lkán podporuje len b i n á r n y jazyk S P I R - V , k t o r ý nie je p r i m á r n e u rčený 
ako jazyk pre užívateľov. vkEasy t iež dokáže vykresľovať do v iacerých okien a používať 
viac grafických kariet paralelne. 

A k t u á l n a i m p l e m e n t á c i a vkEasy znižuje m n o ž s t v o p o t r e b n é h o k ó d u a nu tnosť porozu
mieť V u l k á n u na hlbšej ú rovn i r i ešen ím t ý c h t o p rob l émov . Sú d o s i a h n u t é veľmi veľké reduk
cie p o t r e b n é h o k ó d u , až okolo 94 %. Framework vkEasy je n a p í s a n ý v j azyku C + + a ako 
zostavovací s y s t é m je použ i t ý C M a k e . vkEasy je p o d p o r o v a n ý a o t e s tovaný na o p e r a č n ý c h 
s y s t é m o c h Windows a L inux . 
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C h a p t e r 1 

Introduction 

The main goal of this project is to create a framework named vkEasy simplifying work 
wi th G P U s (Graphics Processing Uni t ) for people who might be interested i n rendering or 
using the computat ional power of G P U s . V u l k a n is a modern compute and graphics A P I 
which allows using of most of the computat ional power G P U s offer very efficiently, but at 
the cost of code complexity for users. F u l l V u l k a n understanding is not an easy task and 
vkEasy tries to make access to V u l k a n features much easier even without complex V u l k a n 
knowledge. 

W h y is V u l k a n so complex? Fi rs t of a l l , there is a lot of boilerplate code that needs to 
be wri t ten for creating any V u l k a n objects. For example, simple triangle rendering requires 
a m i n i m u m of 18 V u l k a n objects to be created. Not to mention that for the creation of a lot 
of those objects, a lot of complex structures need to be created and ini t ia l ized. Summed up, 
to render a simple triangle using raw Vu lkan , around 800 to 900 lines of code are needed. 
A lot of this code can be determined from the context of usage and by postponing object 
creation un t i l the whole context is known. 

Secondly, synchronization of access to resources (textures and buffers) is also not an 
easy task in V u l k a n and needs to be done manually. This can be solved by using a frame 
graph. How the frame graph work is briefly described in Section 3.3. 

Last but not least, memory management is also a difficult topic i n Vu lkan , lucki ly 
l ibrary V M A (more on that i n Section 5.3) that does this automatical ly already exists, and 
is ut i l ized i n vkEasy. 

The actual implementat ion of vkEasy reduces a lot of boilerplate code and the necessity 
to understand V u l k a n on a deeper level by solving those problems. It w i l l hopefully make 
users want to use V u l k a n more and make it easy for them. There is work needed to be 
done, but actual results are promising as can be seen in Section 6. 

The second chapter contains information about the actual state of the implemented 
framework, the most important features of vkEasy, and related work in this field. The 
th i rd chapter describes what is Vu lkan , what are problems wi th V u l k a n are, and the de
scription of what is frame graph. The fourth chapter contains the description of classes 
available i n vkEasy and their usage. Information about used libraries, technologies, and 
some implementat ion details of vkEasy can be found i n the fifth chapter. The s ixth chapter 
shows some examples of usage of vkEasy and measurements of reduction of code using 
vkEasy compared to using raw V u l k a n . The evaluation of the work can be found i n the 
seventh chapter. 
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C h a p t e r 2 

Actual state of vkEasy and related 
work 

A s V u l k a n is a low-level and high-performance A P I it requires a lot of boilerplate code. 
Therefore, to write even a really simple program that uses V u l k a n needs too much code 
which is not too user-friendly. vkEasy solves this and makes usage of V u l k a n much easier 
and reduces needed code by around 94 %. M u l t i p l e examples are implemented, buildable 
and available i n framework source code. Results of comparisons of raw V u l k a n code and 
code wi th the same functionality wri t ten i n vkEasy are available in Section 6. vkEasy is 
open-source and available on G i t H u b [14]. It was also presented at the student conference 
E x c e l @ F I T at the Facul ty of Information Technology. This chapter contains available 
features of vkEasy and a comparison wi th other related frameworks. 

2.1 Features of vkEasy 

Framework vkEasy makes working wi th V u l k a n A P I easier by removing the need for a lot of 
boilerplate code needed by V u l k a n A P I . It also implements features that are not available 
in V u l k a n by default and uses third-party libraries that helped to make the implementat ion 
of some of these features easier. Here are some of the main features offered by vkEasy: 

Compute and Graphics pipelines support 

vkEasy by default supports Compute and Graphics pipelines. It is also planned to extend 
support for the last remaining R a y Tracing pipeline. The actual framework design should 
make it quite easy to extend by the R a y Tracing pipeline. 

Task graph-based work execution 

W r i t i n g programs in vkEasy involves first creating a graph node, which can be imagined as 
one graphics or compute pipeline. It can also encapsulate more nodes into one more complex 
task. T h e n resources that w i l l be used are assigned to the node. The last step is recording 
the order of node execution and compil ing the graph. This graph can be then executed. To 
make this possible frame graph is ut i l ized which is described more i n Section 3.3. 
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Mult ip le G P U s usage in parallel 

vkEasy supports creating more instances of one G P U or more G P U s and executing work on 
more devices. It is possible to use mult iple devices at once i n V u l k a n but as of now, mul t i -
device synchronization is not supported by V u l k a n itself. B u t manual synchronization on 
the C P U is possible. 

G L S L and H L S L support 

V u l k a n supports only S P I R - V shading language which is not user-friendly at a l l . vkEasy 
uses l ibrary Shaderc which supports the compilat ion of G L S L and H L S L into S P I R - V 
therefore both are supported in vkEasy by default. T h i s is described in more detai l in 
Section 5.2. 

Automat ic memory management 

To create resources in V u l k a n , a lot of boilerplate code is needed. vkEasy uses V u l k a n 
Memory Al loca to r that reduces this boilerplate code. More about memory management 
can be found in Section 3.2.3 and about V u l k a n Memory Al loca to r in Section 5.3. 

Automat ic memory access synchronization 

V u l k a n needs expl ic i t ly specified memory access barriers. vkEasy does this automatical ly 
by u t i l iz ing a frame graph (more i n Section 3.3) to collect information about resource usage 
and then correctly placing memory barriers. 

Automat ic data transfer to and from G P U 

In V u l k a n to access G P U memory, it is mostly not s imply mapping memory and copying 
data. Depending on memory type it is necessary to create a staging buffer and enqueue 
copy command from or to this staging buffer. vkEasy does this automatical ly and the user 
just needs to set the data that should be copied. 

Easy rendering into multiple windows and dynamic windows resizing 

vkEasy supports creating mult iple windows and rendering into them easily. It also sup
ports dynamic windows resizing by recreating the swap chain automatical ly without user 
involvement. The usefulness of this feature can be experienced for example i n Microsoft 
F l ight Simulator 2020. It has a feature that allows opening some of the in-game H U D s 
(Head-Up Display) i n other windows, so it does not obstruct the in-game view. Th i s can be 
helpful for mult i -moni tor systems and at least for me, being able to move in-game H U D s 
to a secondary monitor made the gaming experience much better. How this looks can be 
seen in Figure 2.1. 

Support for L inux and Windows Operat ing Systems 

V u l k a n supports a lot of platforms by default. vkEasy contains examples that also serve 
as a testing platform for bui ld ing and running on both Windows and L i n u x Operat ing 
Systems. Designed W i n d o w System Integration (WSI) also supports creating windows 
both on Windows (Desktop W i n d o w Manager) and L i n u x (both X and Wayland display 
servers) OSes. 
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Figure 2.1: Th is figure shows a screenshot from Microsoft F l igh t Simulator 2020 (flying 
over the Facul ty of Information Technology) and shows its feature to open in-game H U D 
in the other than the game window. It is possible to open mult iple windows but only one 
is shown because more windows on one monitor would be too much. 

Easy integration of framework into projects 

Examples available w i th source code serves also as base bui ld ing blocks for potential devel
opers so they can get to know the framework faster. The framework is developed i n C + + 
language and buil t using C M a k e bui ld tools so it can be easily compiled. B u i l d was tested 
wi th Microsoft V i s u a l C + + Compi ler ( M S V C ) and G N U C + + Compi ler (g++). It is also 
developed under an M I T license so everyone can use it for any purpose. G I T version control 
system is used for easier development. The framework is published on G i t H u b [14]. 

2.2 Related Work 

V u l k a n is s t i l l quite a young graphics A P I . The first version of the V u l k a n specification 
was released on February 16th, 2016 [4]. There are already many big game companies 
using V u l k a n for rendering their games and proving that V u l k a n makes games run faster 
on the same hardware compared to D i r e c t X 11 or O p e n G L , but those are mostly closed-
source. There are also a few open-source higher-level rendering frameworks buil t on V u l k a n 
making work wi th it easier. B u t I found only two of them implement a frame graph (more in 
Section 3.3). A n d as this vkEasy also implements frame graph, only those two I considered 
as related to this project. 

The first of these two frameworks is Grani te [13] and the second one is Pumex [17]. 
I started s tudying code and examples and found that both have quite different approaches 
to simplifying V u l k a n and there were reasons I d id not like either of them. W i t h Grani te , 
I dislike the fact that while it uses a render graph implementat ion in the background it is not 
accessible by the user. It looks like the developers tr ied to implement a public A P I similar 
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to O p e n G L . So it can be useful for users who are used to O p e n G L . P u m e x enables the 
users to use frame graph openly but it is sometimes really confusing how to use it because 
al l of its classes can be instantiated without a parent object and users who do not know 
connections between objects can be confused same as I was when I started implementing 
vkEasy wi th zero knowledge about V u l k a n . This is one of the things this vkEasy tries to 
solve. There is a hierarchy of classes start ing wi th the Context object and each class has its 
parent class and can be instantiated only by its parent which makes it easier for the user 
to understand what can be done w i t h each object. 

2.2.1 Contributions of vkEasy compared to Pumex and Granite 

These are some of the contributions vkEasy brings compared to related frameworks: 

• Even simpler use of V u l k a n A P I . 

• V u l k a n A P I s t i l l accessible. 

• Frame graph wi th direct access. 

• Object instantiat ion from the parent. 

G 



C h a p t e r 3 

Programming and working with 
G P U s 

This chapter contains the description of V u l k a n A P I . The chapter w i l l also contain descrip
tions and details of some of the most important objects i n Vu lkan , how they are connected 
to each other and what they are used for i n programming. There w i l l be also a brief intro
duct ion to programming G P U s using Shading Languages and S P I R - V . Different methods 
of sending work to G P U w i l l be described. Resource management and synchronization of 
tasks are also a very important part of this chapter and w i l l be described i n detail i n this 
chapter. Lastly, a brief description and comparison of already existing V u l k a n frameworks 
w i l l be included. 

3.1 Vulkan 

V u l k a n is a graphics and compute open standard A P I that provides high-efficiency, cross-
platform access to modern G P U s . Created and evolved by the Khronos Group standards 
consortium, V u l k a n satisfies the needs of software developers in fields as varied as game, 
mobile, and workstation applicat ion development. Vulkan ' s explicit A P I design enables 
efficient implementations on platforms that span a wide range of mobile, console, embedded 
and desktop hardware using the Windows, L inux , and A n d r o i d operating systems. The A P I 
provides a multi-threading-centric design to leverage modern multi-core C P U s and provide 
access to G P U s v i a mult iple parallel command queues. Some of the latest V u l k a n features 
include ray tracing, bindless resources, and shader programming using G L S L or H L S L . 
V u l k a n is not t ied to a specific platform and enables developers to write G P U code that 
is portable to diverse devices and operating systems. Defini t ion of V u l k a n is taken from 
N V I D I A Developer [12]. 

W h i l e there is quite a big selection of graphics A P I s V u l k a n was chosen for this project 
because of its cross-platform availabil i ty because cross-platform support is planned for W i n 
dows and L i n u x at least. A l so , there is the possibil i ty to achieve some performance gains 
compared to other cross-platform A P I s like O p e n G L . 

3.1.1 Vulkan Objects 

A n important part of learning the V u l k a n A P I just like any other A P I is to understand 
what types of objects are defined i n i t . Every V u l k a n object is a value of a certain type 
prefixed by Vk. These prefixes, like the vk prefix for function names, are eliminated from 
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Vulkan Objects 
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Figure 3.1: Th is figure shows a diagram containing a l l the V u l k a n objects and some of 
their relationships. Those relationships shows mainly the order i n which objects should be 
created one from another. Image is taken from A M D G P U O p e n [18]. 
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the schematic for clarity. Sampler i n the diagram, for example, denotes the existence of 
a V u l k a n object type called VkSampler. These types should not be considered as ordinal 
integers or pointers. The i r values should not be interpreted in any way. They should be 
viewed as opaque handles that can be handed from one function to the next, and should, 
of course, be destroyed when no longer required. Green-background objects (Figure 3.1) do 
not have their own types and instead, they are represented by a uint32_t numeric index 
wi th in their parent object, such as Queries w i th in QueryPool. 

The order of creation is represented in Figure 3.1 by solid lines wi th arrows. To create a 
DescriptorSet, for example, an existing DescriptorPool must be specified. Composi t ion 
is represented by solid lines w i t h a diamond. Tha t means that this object does not need to 
be created because it already exists inside its parent object and can be retrieved from it . 
PhysicalDevice objects can be enumerated from an Instance object, for example. Other 
relationships, such as submit t ing various commands to a CommandBuf f er, are represented 
by dashed lines. 

There are three sections in the diagram i n Figure 3.1. E a c h section has a central object, 
which is highlighted i n red. A l l other objects i n a section are created from that main object, 
either directly or indirectly. The function vkCreateSampler, for example, takes VkDevice 
as its first parameter when creating a Sampler. For clarity, relationships to the main 
objects are not drawn on this diagram. This entire section is inspired by A M D G P U O p e n ' s 
Understanding V u l k a n Objects [18] and V u l k a n Specification [11]. 

Instance 

The first object that must be created is Instance. It keeps track of a l l application-specific 
V u l k a n states. It should only be used once in a program and also represents the connection 
between an applicat ion and the V u l k a n runtime. W h e n creating a Instance, a l l required 
instance layers (such as the Val ida t ion Layer) and instance extensions must be specified. 

Physical Device 

PhysicalDevice represents a specific Vulkan-compatible device, such as a graphics card 
available to host that implements complete V u l k a n specification. F r o m Instance, a l l com
patible devices can be enumerated and their vendorlD, devicelD, and supported features, 
as well as other properties and l imits , can be queried. A l l available types of queue fam
ilies can be enumerated by PhysicalDevice. Those queue families can support one or 
more queue types. Types contain graphics queue, compute queue, transfer queue or sparse 
binding queue. 

A Memory Heap represents a part icular R A M pool . It can abstract a por t ion of video 
R A M on a dedicated graphics card, a motherboard's system R A M for the integrated graph
ics card, or any other host or device-specific memory that the driver wants to expose. W h e n 
allocating memory, the Memory Type must be specified. Memory blobs that are visible 
to the host have different Memory Type than those that are coherent (between C P U and 
G P U ) , and that are cached. Depending on the device driver, different combinations of 
these types can be used. Memory Heaps and Memory Types can be enumerated from 
PhysicalDevice. 
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Device 

Device is an object that represents a logical or opened device. It is an instance of 
PhysicalDevice ' s implementat ion wi th its own states and resources independent of other 
logical devices. Th is is one of the main objects that after its ini t ia l isat ion it is ready to 
create a l l other objects. The features that w i l l be enabled must be specified during device 
creation. Some of them are essential, such as anisotropic texture filtering. A l l queues that 
w i l l be used, their number, and their queue families must be specified. 

Queue 

Queue is an object that represents a command queue that w i l l be executed on the device. 
Us ing the function vkQueueSubmit, a l l of the work to be done by the G P U is requested 
by fill ing CommandBuf f ers and submit t ing them to Queue. Different CommandBuf f ers can 
be sent to each of the queues, such as the main graphics queue and the compute queue. 
Asynchronous compute can be enabled i n this way, which can result i n a significant speedup 
if done correctly. Queue families also determine which commands are supported by Queue. 
Transfer queue supports only transfer commands, compute queue only compute commands, 
etc., but queue can support mult iple queue families. 

C o m m a n d Pool 

The CommandPool object is a simple object that can be used for al locating CommandBuf f ers. 
It belongs to a part icular queue family and CommandBuffers which were allocated from 
specific CommandPool must be filled only wi th commands supported by a part icular queue 
family. 

C o m m a n d Buffer 

CommandBuf fer is an object that is used to record commands which can be then submitted 
to the Devices 's Queue for execution. CommandBuf fer s can be allocated from a specific 
CommandPool. A command buffer can be used to ca l l a variety of functions, a l l of which 
begin wi th vkCmd. They ' re used to specify the order, type, and parameters of tasks that 
should be performed after the CommandBuf fer is sent to a Queue and then subsequently 
consumed by the Device. 

Buffer, Image and Device M e m o r y 

V u l k a n supports two pr imary types of resources. F i rs t is Buffer which is the simpler one. 
It is a linear array for any unformatted binary data that just has its length, expressed in 
bytes. 

The second one is Image, which is a collection of pixels. It is a mult idimensional array of 
data w i th a lot of parameters. It can store up to three dimensions and during the creation, 
various pixel formats (such as R8G8B8A8_UN0RM or R32_SFL0AT). It can also have multiple 
array layers or M I P levels (or both), resulting i n many discrete images. Because it does 
not always consist of a linear set of pixels that can be accessed directly, Image is a separate 
object type. The graphics driver can manage a different implementation-specific internal 
format (t i l ing and layout) for Images. 

Creat ing a Buffer w i th a specific length or a Image w i th specific dimensions does not 
allocate memory for it automatically. It's a three-step process that the developer must 
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complete manually. The V u l k a n Memory Al loca to r library, which handles the allocation, 
can be used. To create Buffe or Image, firstly a DeviceMemory must be allocated. Then 
Buffer or Image can be created and lastly they must be bound together using function 
vkBindBufferMemory or vkBindlmageMemory. 

A s a result, a DeviceMemory object must be created as well . It specifies a block of 
memory wi th a given length i n bytes allocated from a specific memory type which can be 
enumerated from PhysicalDevice. DeviceMemory should not be allocated separately for 
each Buffer or Image. Instead, larger memory chunks should be allocated and using parts 
of chunks as backing memory for Buffers and Images. A l loca t ion is a t ime-consuming 
process, and the m a x i m u m number of allocations is also l imi ted . A l l of this information 
can be requested from PhysicalDevice. 

Buffer V i e w and Image View 

Buffers and Images are not always used direct ly in rendering. Another layer, called views, 
sits on top of them. Using the set of parameters during the creation of the view it is possible 
to use them to look at underlying data in a certain way. For example, Buf f erView enables 
shaders to interpret buffer data as formatted data. It can also be used to l imi t access to 
buffer to only a subset of buffer data. Similarly, ImageView can be used to l imi t the view to 
a defined range of M I P levels or array layers, and interpret data as other format or swizzle 
components. 

Sampler 

Sampler represents the state of an image sampler. It is a set of parameters, like filtering 
mode, M I P map mode, addressing mode, etc. It is not directly bound to any Image. 

Surface 

Surf aceKHR is an object which represents the presentable surface of the window or screen. 
It can be also thought of as the V u l k a n equivalent of a window. Creat ing a window needs 
a different approach for each operating system and also different display servers i n the 
same operating system (like Wayland and X I 1 on L i n u x ) . The same applies to the creation 
of SurfaceKHR. For the creation of SurfaceKHR, the Instance object is required, as well 
as some operating system specific arguments. These are, for example, instance handle 
(HINSTANCE) and window handle (HWND) on Windows. 

Swapchain 

SwapchainKHR represents a collection of images that can be displayed on the SurfaceKHR 
using double or tr iple buffering. SurfaceKHR is needed to create aSwapchainKHR. A Device 
is required for this object, is an exception to the requirement of al locating and binding 
DeviceMemory for every Image. The SwapchainKHR can be queried for Images contained 
i n i t . The system has already allocated backing memory for these images. 

Descriptor Set Layout 

DescriptorSetLayout acts as a DescriptorSet template and a layout must be specified 
and created to be able to create a DescriptorSet. Descriptors are used by shaders to 
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access resources (Buffers, Images and Samplers). In Vu lkan , descriptors do not exist on 
their own, instead, they are always found i n DescriptorSets. 

Descriptor Pool 

DescriptorPool same as CommandPool is a simple object used to allocate descriptor sets. 
W h e n creating a descriptor pool , the m a x i m u m number of descriptor sets and descriptors 
of various types that w i l l be allocated from it must be specified. 

Descriptor Set 

The DescriptorSet represents memory that stores actual descriptors, and it can be con
figured to point to a specific Buffer, BufferView, Image, or Sampler. A DescriptorSet 
can be allocated from DescriptorPool. To be able to do it , bo th DescriptorPool and 
DescriptorSetLayout are needed. The function vkUpdateDescriptorSets can be used to 
accomplish this. 

Pipeline Layout 

PipelineLayout is a rendering pipeline configuration that specifies which types of descrip
tor sets w i l l be bound to the CommandBuf f er. In a CommandBuf f er, several DescriptorSets 
can be bound as active sets to be used by rendering commands. To accomplish this, 
the function vkCmdBindDescriptorSets can be used. This function also requires another 
object, PipelineLayout, because mult iple DescriptorSets may be bound, and V u l k a n 
needs to know how many and what types of them to expect ahead of t ime. To create 
PipelineLayout, an array of DescriptorSetLayouts can be used. 

Render Pass 

A RenderPass object contains a collection of attachments, subpasses, and dependencies 
between subpasses, as well as information about how the attachments are used throughout 
the subpasses. Draw commands must be recorded wi th in a RenderPass instance. Each 
render pass instance specifies a set of image attachments that are used dur ing rendering. 
The immediate mode approach can be used i n other graphics A P I s to render whatever 
comes next. In Vu lkan , this is not possible. Instead, a frame's rendering must be planned 
ahead of t ime and divided into passes and subpasses. Subpasses are not separate objects, 
but they are an essential part of Vulkan 's rendering system. W h e n defining a RenderPass in 
Vu lkan , the number and formats of attachments that w i l l be used in that pass are extremely 
important . 

Attachment is Vulkan ' s name for what is commonly referred to as a render target, an 
Image that is used as a rendering output. There is no need to point to a specific Image 
here. It is only necessary to describe their formats. A simple rendering pass, for example, 
might include a colour attachment w i th the format R8G8B8A8_UN0RM and a depth-stencil 
attachment w i th the format D16_UN0RM. It should also be specified whether the content of 
an attachment should be saved, discarded, or cleared at the start of the pass. 

Framebuffer 

Framebuffer (which is not the same as SwapchainKHR) represents a collection of actual 
memory attachments (Images) that are used i n RenderPass. B y specifying the RenderPass 
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and a set of ImageViews, a Framebuf f er object can be created. The i r number and formats 
must match the RenderPass specification. The function vkCmdBeginRenderPass must be 
called whenever rendering of a RenderPass begins, and the Framebuf fer must also be 
passed to it. 

Pipeline 

Pipeline represents the configuration of the whole pipeline and it contains many parame
ters. It is one of the largest objects i n V u l k a n is Pipeline, which includes the majority of the 
previously mentioned objects. One of the parameters is PipelineLayout. It specifies the 
layout of descriptors and push constant layout. Depending on how the pipeline is created 
can use one of the G P U pipelines. These include compute pipeline, graphics pipeline and 
ray tracing pipeline. Because it only supports compute-only programs, compute pipeline is 
the simplest of the three (sometimes called compute shader). 

The Graphics pipeline is far more complicated because it includes a l l of the shader stages 
such as vertex, fragment, geometry, compute, and tessellation. Its other parameters which 
can be modified are vertex attributes, pr imit ive topology, backface cull ing, blending mode, 
etc. A l l those parameters that were previously separate settings in much older graphics A P I s 
(Di rec tX 9, O p e n G L ) , were later grouped into a smaller number of state objects as the A P I s 
progressed (D i r ec tX 10 and 11), and must now be baked into a single big, immutable object 
w i th today's modern A P I s like V u l k a n . A new Pipeline must be created for each different 
set of parameters required during the process. The function vkCmdBindPipeline can then 
be used to set it as the current active Pipeline in a CommandBuf f er. 

The last one is the ray tracing pipeline which is the newest one and is not supported on 
older hardware. 

Shader M o d u l e 

ShaderModule represents a piece of shader code, possibly par t ia l ly compiled, but not yet 
capable of being executed by the G P U . Shader compilat ion i n V u l k a n is a multi-stage 
process. V u l k a n does not support any high-level shading languages such as G L S L or H L S L . 
Instead, V u l k a n accepts S P I R - V (section 3.1.2), an intermediate format that any higher-
level language can be translated into. To create a ShaderModule, the buffer filled w i th 
S P I R - V data is needed. 

Pipeline Cache 

PipelineCache is a helper object that can be used to speed up pipeline creation. It's 
a simple object that can be passed i n during Pipeline creation, but it significantly improves 
performance by reducing memory usage and pipeline compilat ion t ime. The driver can use it 
internally to store some intermediate data, potential ly speeding up the creation of similar 
Pipelines. A PipelineCache object's state can be saved and loaded to a binary data 
buffer, which can then be saved on disk and used the next t ime the applicat ion is run. It 
is suggested to use them. 

Fence 

Fence is a synchronization object which can be used by the host to wait un t i l a task has been 
successfully completed. O n the host, it can be polled, waited for, and manually unsigned. 
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It doesn't have its own command function, but it is passed when cal l ing vkQueueSubmit. 
The appropriate fence is signalled once the submitted queue is complete. 

Semaphore 

Semaphore is a synchronization object that can be used to manage access to resources across 
mult iple queues. Semaphore can be created without any configuration parameters. It can 
be signalled or waited on as part of command buffer submission, as well as w i th a ca l l to 
vkQueueSubmit, and it can be signalled on one queue (for example compute) and waited 
on another (for example graphics). 

Event 

Event is the last of V u l k a n synchronization objects. Us ing the functions vkCmdSetEvent, 
vkCmdResetEvent, and vkCmdWaitEvents, it can be waited on or signaled on the G P U as 
a separate command submitted to CommandBuff er. It can also be set, reset, and waited on 
(through pol l ing calls to vkGetEventStatus) from one or more C P U threads. Event can 
be created without parameters. 

3.1.2 Shading Languages 

Shading languages are the interface used to program key parts of the modern graphics 
pipeline which have previously been fixed-function state machines without programmabil-
i t y W i t h shading languages, the vertex transformation and l ight ing fixed function pipeline 
is replaced by vertex program instructions supplied by the applicat ion, and key parts of the 
rasterization pipeline, mainly texture environment and fog are replaced by fragment pro
gram instructions supplied by the applicat ion. The key to understanding shaders is that 
vertex shaders are fed by graphics primitives like triangles and lines wi th vertex attributes 
like colour, texture coordinates, posit ion, and other generic attributes, for each vertex the 
program is executed, and the output is screen space primitives wi th s imilar types of per-
vertex data to the input . The output of a vertex shader is then transformed to the viewport 
and cl ipped by the fixed function pipeline. The pr imit ive is rasterized using prudicing per 
fragment interpolated values for the results of the vertex shader. The fragment shader 
program is then executed for each pixel produced by the aforementioned interpolation pro
cess using the interpolated output of the vertex shader as the input to the fragment shader. 
The fragment shader outputs colour attributes and possibly other outputs like zbuffer depth 
(outputs supported depend on specific shader language feature support) . The output from 
the fragment shader is depth tested and stencil tested using fixed-function hardware and i f 
passed the colour is blended w i t h the destination pixel using the fixed-function hardware. 
This section was inspired by Khronos W i k i p e d i a about shading languages [6]. 

S P I R and S P I R - V 

S P I R (Standard Portable Intermediate Representation) was in i t ia l ly developed for use by 
O p e n C L and S P I R versions 1.2 and 2.0 were based on L L V M . S P I R has now evolved into 
a cross-API intermediate language that is fully defined by Khronos wi th native support for 
shader and kernel features used by A P I s such as V u l k a n - called S P I R - V . 

S P I R - V is catalyzing a revolution in the ecosystem for shader and kernel language com
pilers used for expressing parallel computat ion and G P U - b a s e d graphics. S P I R - V enables 
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high-level language front-ends to emit programs in a standardized intermediate form to be 
ingested by Vu lkan , O p e n G L , or O p e n C L drivers. S P I R - V eliminates the need for high-
level language front-end compilers i n device drivers, significantly reducing driver complexity, 
enabling a broad range of language and framework front-ends to run on diverse hardware 
architectures, and encouraging a vibrant ecosystem of open-source analysis, port ing, debug, 
and opt imizat ion tools. 

For developers, using S P I R - V means that kernel source code no longer has to be directly 
exposed, kernel load times can be accelerated, and developers can choose the use of a com
mon language front-end compiler, improving kernel rel iabil i ty and por tabi l i ty across mul t i 
ple hardware implementations. Th is section was inspired by Khronos 's S P I R Overview [3]. 

3.2 M a i n problems of raw Vulkan A P I 

Here are listed main problems in the raw V u l k a n framework which do not make it easy to 
work wi th and possible solutions: 

3.2.1 A lot of boilerplate code 

Some features of V u l k a n or G P U are disabled by default. D u r i n g the ini t ia l izat ion process, 
any of those features must be expl ici t ly enabled. Th i s can be annoying for users because 
during the implementation, they w i l l probably many times come back to the ini t ia l izat ion 
where some settings are missing or incorrect. However, the correct in i t ia l iza t ion can be 
determined from the context of the program and the functionality required by the user. For 
this to be possible, it is necessary to delay the in i t ia l iza t ion of the objects un t i l sufficient 
information is available. Examples of such behaviour are layers, extensions, device features, 
and more. 

W h e n creating V u l k a n Instance, layers and extensions that w i l l be used are needed. The 
same applies to V u l k a n Device which needs to know what extensions, features, and queues 
w i l l be used. A l so , an already ini t ia l ized V u l k a n Instance is needed to create a device. 
V u l k a n Images and Buffers need allocated Device Memory which needs ini t ia l ized V u l k a n 
Device. The same applies to a lot of other V u l k a n Objects (see Figure 3.1). A n d even to 
create any object a lot of information is required. B u t most of the t ime this information 
can be determined automatical ly by knowing the specifications of the program which w i l l 
be executed on the device. 

vkEasy offers a solution to this by collecting information about the context of usage 
by specifying the whole program, a l l resources, and work to be done without creating any 
V u l k a n objects. Deferred in i t ia l iza t ion of a l l needed V u l k a n objects is done when the whole 
context is known. E a c h program w i l l have specified workflow and dependencies sooner 
than a l l V u l k a n objects w i l l be created therefore framework w i l l know how to create a lot 
of objects w i th no user involvement. 

3.2.2 Synchronization of access to buffers and images 

There are more types of synchronization i n V u l k a n . Firs t ly , there is memory access syn
chronization. Barriers are used for this type of synchronization. The next type is synchro
nizat ion between mult iple queues. Semaphores are used for this type of synchronization. 
Those are quite hard to get right and are quite user-error-prone. Frame graph execution of 
work approach w i l l be used which can quite easily track a l l resource usage dependencies and 
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according to those tracked data use barriers and semaphores automatical ly and correctly. 
More about frame graph can be found in Section 3.3. 

3.2.3 Memory management 

Compared to older graphics A P I s like O p e n G L memory al location and resource (buffer and 
image) creation i n V u l k a n is much more complicated. Just like everything else in Vu lkan , 
because it is a low-level and high-performance A P I , it needs a lot of boilerplate code. 
Also VkDeviceMemory is allocated indiv idual ly from creating VkBuffers and Vklmages. 
VkBuffers and Vklmages must be bound to VkDeviceMemory what adds an extra level of 
indirection. Various hardware vendors provide different types of memory. Because of that 
driver must be queried for supported memory heaps and memory types. A l so recommended 
practice is to allocate bigger chunks of memory and assign parts of chunks to part icular 
resources. This can introduce fragmentation. 

3.3 Frame graph 

Depth Pass SSAO Shadows Lighting 
> 

Depth Buffer 

> 

Raw AO 

> 

Filtered AO 

Figure 3.2: This graph consists of five render tasks (brown rectangles) and three resources 
(yellow rectangles). R e d arrows represent wr i t ing to the resource and green arrows repre
sents reading the resource. O n this graph, it can be seen that placing memory barriers is 
pretty straightforward. For example Depth pass render task writes to Depth Buffer re
source and SSAO render task reads from same resource and should be executed after Depth 
pass render task. Tha t means that a memory barrier must be placed between the execu
t ion of those two. Same can be seen wi th SSAO and SSAO F i l t e r render tasks and Raw AO 
resource. Shadows render task has no inputs and outputs therefore if it is not marked as 
having side effects it w i l l be culled from executing. Image is taken from Y u r i y O'Donnel l ' s 
presentation at G D C E x p o 2017 [15]. 

Information in this section is from Y u r i y O 'Donnel l ' s presentation at G D C E x p o 2017 
[15]. A frame graph, also known as a Render graph is a rendering abstraction that describes 
a frame as a directed acyclic graph of render tasks and resources. A render task is any 
compute or graphics task to be performed as part of the rendering pipeline. The resource 
is a buffer or image created, read, or wri t ten by the render task. A n example of a simple 
Frame graph can be seen i n Figure 3.2. 

Frame graph helps to bu i ld high-level knowledge of the entire frame. This knowledge 
then can be used to simplify resource management and rendering pipeline configuration. 
It also makes asynchronous compute tasks easier to implement. P lac ing resource barriers, 
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which can be quite hard to do right i n the case of complex rendering pipelines, is also a 
lot easier. Frame graph also helps to create self-contained and efficient rendering modules 
for example node which implements a deferred shading pipeline that can be reused quite 
easily. A l so , graphs can be visualized and the same applies to frame graphs. Visua l iza t ion 
of the graph can help wi th debugging complex rendering pipelines. 

Using frame graph consists of three phases namely the Setup phase, Compi le phase and 
Execute phase. 

Setup phase 

In Setup phase, render tasks and resources are defined. These resources are then assigned 
as inputs and outputs to and from render tasks and the order of render tasks is specified. 
In this phase, no G P U commands are used and resources are v i r tua l , which means, they do 
not have memory assigned on G P U yet and information about rendering operations for the 
frame is gathered. For example, when creating image resource, dimensions, format, in i t i a l 
data, etc.. is specified here. 

Compi le phase 

Next phase is Compi le phase. In this phase, the graph is being traversed and unreferenced 
render tasks and resources are culled. It is possible to mark render tasks as having some 
side effects, so they are not culled. D u r i n g graph traversal, resource lifetimes are calculated 
and resource b ind flags are derived based on usage. 

Execute phase 

Last phase is Execute phase. Here, a l l render tasks are iterated in the correct order and 
G P U commands of each render task are executed. Also , resources, which were not culled, 
are created whenever they are needed and destroyed when they are not needed anymore. 
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C h a p t e r 4 

Framework design 

This chapter contains information about the design of vkEasy, a description of its classes, 
and how are these classes interconnected. It also contains some code snippets showing some 
of the use cases and how vkEasy can be used. 

4.1 vkEasy's Classes 

creates 

w0..n 

Node O.n uses 

<0..n <0..n 

'0 .1 

creates 

1 
1 creates o..n „ 

<0..n 
1 creates o..n Graph 1 creates o..n „ Resource 

1 

Figure 4.1: This diagram contains simplified class relationships of the vkEasy framework. 
Class Context is singleton class. Class Device encapsulates logical device. One hardware 
device can be used i n mult iple logical device instances. Class Graph encapsulates frame 
graph. Node class is an abstract class that represents one render task. Class Resource is 
also an abstract class and can represent different types of Buffers and Images. 

A l l vkEasy classes are encapsulated i n the C + + namespace vk: :easy. Base classes of 
vkEasy are classes Context, Device, Graph, Node and Resource. To run the render or 
compute task on G P U it is needed to create Node which executes this task. If it is needed 
input and output resources for this node can be specified. B u t to execute the node it must 
be enqueued into a Graph i n which it w i l l be executed. The Node can be created from the 
Graph object and must be executed on the same Graph. The Graph must be created from 
the Device and it w i l l also be executed on the same Device. A n d lastly, the Device must be 
created from Context. These relationships can be seen i n the diagram i n Figure 4.1 shows 
a simplified class relationship diagram. Ownership of objects is designed so destructors of 
al l objects are called in correct order same as V u l k a n needs. This section contains more 
details about these and other vkEasy classes. E a c h subsection of this section corresponds 
exactly by name to one of the vkEasy classes. 

4.1.1 Class Context 

vkEasy ' s main class is singleton class Context. This class serves for creating logical devices 
(vkEasy's class Device) and takes care of creating a V u l k a n instance. W h e n creating a 
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Device, the used G P U is selected automatical ly based on the support of features or can 
be expl ici t ly selected by the user. It is also possible to manual ly add Instance extensions 
and layers if some of them are needed. It is possible to cal l method setDebugOutput () 
to enable or disable debug output. If debug output is enabled, the Context class w i l l 
automatical ly add debugging layer and extension, which w i l l write V u l k a n debug messages 
into the console containing useful data if something is not working properly. 

4.1.2 Class Device 

The Device class represents the logical instance of a hardware device ( G P U ) . It creates 
V u l k a n Device, Queue and C o m m a n d P o o l objects when the whole context of the applicat ion 
is known. It also automatical ly selects the most powerful hardware device if the device is 
not expl ic i t ly selected by the developer. To instantiate class Graph from Device, method 
createGraphO can be called. Dur ing the execution of the program, underlaying V u l k a n 
Device object is available w i th a ca l l of method getLogicalDevice() . If some task is 
executing on G P U it is possible to ca l l the blocking method wait () , which w i l l block unt i l 
work is done. This class also takes care of ini t ia l is ing the V u l k a n Memory Al loca tor library. 
More about V u l k a n Memory Al loca to r can be found i n Section 5.3. 

4.1.3 Class Graph 

Class Graph implements frame graph principles described i n Section 3.3. Graph can only 
be instantiated from class Device. It is possible to create Nodes (more in Section 4.1.5) 
and Resources (more in Section 4.1.7). There is templated method to instantiate any 
class which inherits Node or Resource classes. There are helper methods (for exam
ple createGraphicsNode()) to create a l l existing Nodes and Resources. W i t h method 
setNumberOfFramesInFlight ()) it is possible to set how many frames can be prerecorded 
i n advance while one of them is being rendered. Each graph can use one window and 
to get this window method getGLFWWindowO can be called to create and get this win
dow. More about windows can be found i n Section 4.1.8. Framebuffer (more details 
in Section 4.1.9) can be also created from Graph using method createFramebuffer(). 
M e t h o d compile () serves for compil ing frame graph and should be called after whole con
text (Nodes, Resources, Framebuf f ers and other vkEasy objects) is created and ini t ia l ized. 
Then after compilat ion, method execute () can be called and w i l l execute this Graph. Dur
ing execution Nodes can ask for V u l k a n CommandBuffers so they can record commands 
into them. After execution of a l l nodes in Graph a l l recorded CommandBuffers are sent to 
Device and executed in V u l k a n Queue object owned by Device. 

4.1.4 Class MemoryAllocator 

This class serves as a lightweight wrapper for the V u l k a n Memory Al loca to r l ibrary (more 
about V u l k a n Memory Al loca to r i n Section 5.3). V u l k a n Memory Al loca tor is a C l ibrary 
so its functions for creating and destroying objects must be called manually. Th is class 
uses the R A I I principle, so when MemoryAllocator class is instantiated create function of 
V u l k a n Memory Al loca tor is called and when it goes out of scope or is expl ic i t ly destroyed. 
This makes sure that cleaning up is done every t ime it is needed. It contains functions 
for creating both Images and Buffers easily which use V u l k a n Memory Al loca to r i n the 
background. This class is instantiated once for each Device and each Resource can query 
for Image or Buffer through Device. 
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4.1.5 Class Node 

Node 

PipelineNode MemoryCopyNode 

— n 
Graphic ComputeNode GraphicsNode 

Figure 4.2: This diagram contains a l l classes existing i n vkEasy and inheri t ing from abstract 
class Node. Nodes are executable classes and it is to execute them after enqueueing to 
Graph. 

Abstract class Node serves as an interface for defining the render task. A s of now, two 
classes implement class Node. Classes inheri t ing from class Node can be instantiated only 
from class Graph. A s frame graph can cu l l nodes from execution it is possible to set the 
node as cul l ing immune here. Th is can be helpful for example if the Node has some side 
effects and is being culled by the Graph. It is also possible to add required V u l k a n Device 
extensions which w i l l be then collected from a l l nodes to enable the required features. 
Figure 4.2 shows an inheritance diagram of a l l existing classes w i th Node as the base class. 

Class M e m o r y C o p y N o d e 

MemoryCopyNode really simple class and serves for copying data from one resource to an
other. It is possible to use it to copy data from the buffer to buffer, image to image or 
buffer to image and vice versa. A n example of usage can be copying data to the device's 
local memory. This type of memory cannot be direct ly accessed by mapping it on the C P U 
but first staging buffer must be created. Staging buffer has host visible memory type which 
can be mapped and read or wri t ten by C P U . T h e n this node can be used to copy data to 
or from G P U . 

Class Pipel ineNode 

Abstract class PipelineNode implements class Node and serves as base for a l l nodes that 
uses V u l k a n Pipel ine object. For now, only Compute and Graphics Pipelines are imple
mented i n classes ComputeNode and PipelineNode. Implementing R a y Tracing Pipel ine 
should be as easy as implementing a node for example RayTracingNode, ini t ia l is ing Ray-
Tracing Pipel ine creation info and R a y Tracing should work. A lot of code which is the 
same for a l l Pipelines is already implemented i n PipelineNode. It automatical ly takes 
care of a l l Resources used i n Node by bui ld ing V u l k a n Pipel ineLayout and DescriptorSets 
objects and a l l objects needed to create them. W h a t is only missing for classes inheri t ing 
PipelineNode is to create a V u l k a n Pipel ine object by implementing a pure v i r tua l method 
buildPipeline () and Pipel ine type-specific features. 

Class C o m p u t e N o d e 

Compute pipeline is the simplest type of pipeline. It has only one ShaderStage (more on 
class ShaderStage i n Section 4.1.6) and its only property is setting dispatch size. Whole 
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implementation of compute pipeline after inheri t ing PipelineNode is only around 40 lines 
of code. To get ShaderStage there is method getComputeShaderStage (). 

Class GraphicsNode 

A graphics pipeline is a much more complex pipeline than compute pipeline. It has much 
more properties which can be set. In vkEasy, a lot of them are s t i l l hidden but making them 
visible is only a matter of creating getters and setters and then cal l ing protected method 
needsRebuildO which w i l l make sure that before the next usage of the pipeline it w i l l be 
rebuilt w i th this new property set accordingly. GraphicsNode contains getters for its shader 
stages (for now only Vertex and Fragment shader stages). M e t h o d setFramebuffer() 
serves for setting Framebuffer (more i n Section 4.1.9) which w i l l be rendered into. To 
define vertex attr ibute of some Vertex Buffer def ineAttribute () can be called. Index 
buffer can be used by setting it w i th method setlndexBuf f er (). 

4.1.6 Class ShaderStage 

PipelineNode 1 owns L . n ^ ShaderStage 

Figure 4.3: This diagram shows relationship between class ShaderStage and classes inher
i t ing from PipelineNode. One ShaderStage must belong only to one PipelineNode but 
PipelineNode can contain mult iple ShaderStages. That ' s because for example Graphics 
pipeline consists of Vertex ShaderStage, Fragment ShaderStage, Geometry ShaderStage, 
etc. 

Class ShaderStage implements one programmable pipeline stage like vertex or fragment 
stage in the graphics pipeline. The object of this class can be acquired from nodes inheri t ing 
PipelineNode. In the background creates the V u l k a n ShaderModule object and fills a l l info 
needed to create the V u l k a n PipelineShaderStage object. It supports loading S P I R - V , G L S L 
or H L S L shading languages. To support G L S L and H L S L code it uses Shaderc (more in 
Section 5.2) l ibrary to compile it into S P I R - V . More about shading languages can be found 
in Section 3.1.2. It owns one or more objects of class ShaderStage, which uses Shaderc 
l ibrary for automatic compilat ion to S P I R - V . S P I R - V code can be set to ShaderStage 
wi th method setShaderDataO . If method setShaderFile() is used it determines usage 
of Shaderc compiler based on extension of file. If the file extension is spv it loads the file 
as S P I R - V code and i f not it uses Shaderc l ibrary to compile the file. Figure 4.3 shows 
ShaderStage's relationship wi th PipelineNode. 

4.1.7 Class Resource 

Abstract class Resource is for implementat ion of different types of Buffers and Images 
like Uni fo rm Buffers, Storage Buffers, At tachment Images, etc. Here V u l k a n Image or 
Buffer object is stored after acquiring it from MemoryAllocator as wri t ten in Section 4.1.4. 
It automatical ly takes of copying data to G P U what is needed if Resource lives i n a 
device's local memory and is not directly accessible from the C P U . It automatical ly creates 
StagingBuf f er and MemoryCopyNode and uses them when needed. Persistence can be also 
set for each resource. It means that it w i l l not be created and destroyed in each frame but it 
w i l l persist un t i l it is not destroyed manually. Th is can be useful for big read-only data like 

21 



Resource 1 uses i n MemoryAllocator::Resource 

A 
Image 

1 
ColorAttachment Depth Sten cilBuffer 

A 
Staging Buffer Storage Buffer 

Texturelmage SwapChain Image VertexBuffer UniformBuffer IndexBuffer 

Figure 4.4: This diagram contains a l l classes existing i n vkEasy and inheri t ing from abstract 
class Resource. Resources can be assigned to Nodes and then after enqueueing nodes to 
Graph it is possible to calculate resource lifetimes and places where pipeline barriers must 
be placed. Also as mentioned i n Section 4.1.4, Resources can ask for V u l k a n Image or 
Buffer which is wrapped i n class MemoryAllocator: :Resource. 

textures or vertex buffers. If rendering into W i n d o w is used V u l k a n SwapCha in object w i l l 
also exist. Accord ing to the count of images i n SwapChain non-persistent, the same number 
of underlying V u l k a n Image or Buffer objects must be created and it is done automatical ly 
in the background. A n d each frame's correct resource index is used depending on the actual 
frame index. It also takes care of recording usage by nodes and then it is possible to place 
buffer and image barriers i n the correct places. Classes inheri t ing abstract class Resource 
can be instantiated only from class Graph. Figure 4.4 shows an inheritance diagram of a l l 
existing classes w i th Resource as the base class. 

Class Buffer 

Class Buffer serves as the base class for a l l resources which use V u l k a n object Buffer. 
Dur ing the execution of Graph, it is possible to get the underlying V u l k a n Buffer object by 
call ing method getVkBuf f er () . Most of the classes which inherit from Buffer only set the 
correct buffer usage flags needed by V u l k a n to create the buffer. B u t their functionality 
can greatly differ. More about the available Buffer types i n vkEasy is below. 

Class StagingBuffer 

StagingBuf f er is a buffer which is always host visible and therefore mappable and writable 
by C P U . This buffer can be used as a destination or source buffer for MemoryCopyNode and 
used transfer medium between G P U and C P U . 

Class UniformBuffer 

UniformBuffer serves for creating buffer used as constant data readable by G P U i n shaders. 
It is always available to read from G P U but sometimes it is possible to make it also host 
visible so the C P U can write or read it directly. It is mostly used for smal l data. 

Class StorageBuffer 

StorageBuf f er is the type of buffer serving as storage for big data like holding data of an 
entire scene, geometry, etc. Usually, it is a l i t t le slower as UniformBuffer but can hold 
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much more data. It is always available to be used from G P U but sometimes can also be 
host visible. 

Class VertexBuffer 

VertexBuffer is a buffer which can be used for drawing i n GraphicsNode's Graphics 
Pipel ine as the source for Vertex attributes. It is possible to set Vertex data w i th the 
method setVertices(). 

Class IndexBuffer 

IndexBuf f er can be used for indexed drawing i n GraphicsNode's Graphics Pipel ine . It is 
possible to set indices wi th the method setlndices(). 

Class Image 

Class Image serves as the base class for a l l resources which use V u l k a n object Image. Dur ing 
the execution of Graph, it is possible to get the underlying V u l k a n Image object by call ing 
method getVklmage () . Most of the classes which inherit from Image only set the correct 
image usage flags needed by V u l k a n to create the image. B u t their functionality can differ. 
A l l images have getters and setters for different properties like format, dimensions, number 
of M I P levels, etc. More about actually available Image types are wri t ten below. 

Class DepthStencilBuffer 

Even though class DepthStencilBuffer contains Buffer in its name its underlying V u l k a n 
object Image and therefore it is inheri t ing vkEasy ' s Image class. The naming is the same 
in raw V u l k a n so it was kept. DepthStencilBuffer serves for Z-buffering or Stencil testing 
or both. It can be used i n GraphicsNode's Graphics Pipel ine . For now, only Z-buffering 
works but support for Stenci l testing is also planned. It is possible to set a clear value using 
method setClearValueO: 

Class ColorAttachment 

ColorAttachment class serves as the base for a l l Image classes which can be used as color 
attachments in the graphics pipeline which means that the graphics pipeline can use them as 
render targets. B y default ColorAttachment object can be instantiated from Framebuf f er 
object (more about Framebuffer object in Section 4.1.9). It is possible to set a clear color 
using method setClearColor(): 

Class SwapChainlmage 

SwapChainlmage inherits class ColorAttachment and serves as render target for graphics 
pipeline which can be drawn into window. It is a special case of Resource. A s mentioned 
in Section 4.1.7 each Resource can be chosen to be persistent or not. SwapChainlmage is 
persistent by default but s t i l l can contain mult iple underlying V u l k a n Image objects. The 
number of images can be specified during the creation of the V u l k a n SwapChain object and 
is chosen by vkEasy automatically. Other resources used i n the same graph w i l l have the 
same number of underlying V u l k a n Image of Buffer objects depending on the number of 
V u l k a n Images created wi th the V u l k a n SwapChain object. O n l y one SwapChainlmage can 
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exist for one Graph and can be acquired from classes inheri t ing class WSI (more about W S I 
in Section 4.1.8). These relationships can be seen i n Figure 4.5. 

Class Texturelmage 

Texturelmage inherits class ColorAttachment and serves as image which can be sampled 
from i n shaders in graphics pipeline. 

4.1.8 Class W S I 

Graph 1 owns i WSI 1 owns i SwapChainlmage 

GLFWWindow 

Figure 4.5: This diagram shows relationships of other classes to class WSI. E a c h Graph can 
own only one WSI and WSI owns one SwapChainlmage. A l so each WSI is unique to its creating 
Graph and SwapChainlmage is unique to its creating WSI. WSI is for now implemented only 
by one class GLFWWindow. 

Abstract class WSI serves as an abstraction over windows. It can be implemented us
ing different libraries like Simple D i r ec tMed ia Layer ( S D L ) , Graphics L i b r a r y Framework 
( G L F W ) , etc. More about that in Section 5.4. G L F W is already implemented and available 
for testing. WSI should exist only once per Graph. Internally it creates SwapChainlmage 
which can be used as render target i n graphics pipeline i n GraphicsNode. Implementing 
classes must provide the V u l k a n S u r f a c e K H R object. Relations to other classes can be seen 
in Figure 4.5. 

Class G L F W W i n d o w 

GLFWWindow is simple class implementing WSI using G L F W l ibrary (more i n Section 5.4) to 
create windows and V u l k a n S u r f a c e K H R object. 

4.1.9 Class Framebuffer 

0..n uses 1 „ 

Graph 

0..n uses 1 „ 0..n uses 1 „ 

1 
creates 

• 0..n 

GraphicsNode 0..n uses 1 „ Framebuffer 0..n uses 0..^ ColorAttachment 

Figure 4.6: This diagram shows relationships of other classes to class Framebuffer. 
Framebuffer can be created from Graph and as many ColorAttachments can be assigned 
to it as needed. Framebuffer then can be used by GraphicsNode. 

Framebuffer class has more use cases. F i r s t l y it groups a l l render targets which are 
somehow related to each other, they must share same resolution, and can serve as render 
targets, depth or stencil buffers. One render pass contains one or more subpasses where 
subpass consists of one graphics pipeline (more i n Section 3.1.1). A l l GraphicsNodes which 

24 



share same Framebuf f er objects are grouped to one render pass where each GraphicsNode 
is taken as one subpass. A l so it is possible to set classes implementing WSI to it as Window. 
This makes sure that a l l render targets are set to correct resolution depending on resolution 
of window which is rendered into. In Figure 4.6 relationships to other classes can be seen. 

4.2 Interface design and usage 

Now when classes and their purpose are known, this section shows an example of usage of 
vkEasy. vkEasy was developed from top to bot tom. Tha t means that firstly its expected 
interface and classes were designed and then the backend was implemented. This section 
shows some important parts of the vkEasy ' s interface needed for drawing rotat ing textured 
triangle using vkEasy. Parts of code are from example 5 which is described i n Section 6.1.5 
and is available i n source code [14]. Figure 6.4 shows what the output of the code described 
looks like. L i b r a r y O p e n G L Mathemat ics ( G L M ) is used to represent vectors and matrices 
(types in namespace glm::) in this example. 

Including vkEasy 

Lis t ing 4.1: Pre t ty straightforward code just showing how to include vkEasy into project. 

#include <vkEasy/vkEasy.h> 

Creat ing all of needed vkEasy objects 

Lis t ing 4.2: Code below shows how easy it is to create any of vkEasy objects. F i r s t Device 
object must be created, then Graph object can be created from i t . A l l other objects are 
then created from Graph. 

autofe device = vk::easy::Context::get().createDevice(); 
autofe graph = device. createGraphO ; 
auto& framebuffer = graph.createFramebuffer(); 
autofe vertexBuffer = graph.createVertexBuffer(); 
auto& indexBuffer = graph.createlndexBuffer(); 
auto& uniformBuffer = graph.createUniformBuffer(); 
auto& graphics = graph.createGraphicsNode(); 
autofe texturelmage = graph.createTextureImage(); 
autofe window = graph.getGLFWWindow(800, 600, "Graphics Test"); 
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Preparing VertexBuffer 

Lis t ing 4.3: Code bellow shows creates four vertices w i t h posit ion, color and uv attributes 
in vector vertices. Then previously created vertexBuf f er is filled w i th vertices. 

struct Vertex { 
glm::vec2 pos; 
glm::vec3 color; 
glm::vec2 uv; 

"I . 
j > 
const std::vector<Vertex> vertices = 
{ { { -0.5f, -0.5f }, { l.Of, O.Of, 0 Of }, { 1 Of, 0 Of 
{ { 0.5f, -0.5f }, { O.Of, l.Of, 0 Of }. { 0 Of, 0 Of >}, 
{ { 0.5f, 0.5f }, { O.Of, O.Of, 1 Of }. { 0 Of, 1 Of >}, 
{ { -0.5f, 0.5f }, { l.Of, l.Of, 1 Of }. { 1 Of, 1 Of } } }; 

vertexBuffer.setVertices(vertices); 

Preparing IndexBuffer 

Lis t ing 4.4: Code below shows filling of vector indices, and filling previously created 
indexBuf f er object w i th vector indices. 

const std::vector<uintl6_t> indices = { 0, 1, 2, 2, 3, 0 }; 
indexBuffer.setlndices(indices); 

Preparing Texturelmage 

Lis t ing 4.5: Code below shows filling of previously created texturelmage w i th pixel data 
loaded by some third-party image loader. texWidth, texWidth are dimensions of texture 
loaded from file and pixels is pointer to data w i th size of imageSize. Load ing data part 
was skipped because any image loader can be used. 

auto& texturelmage = graph.createTexturelmage(); 
texturelmage.setDimensions(vk::Extent3D(texWidth, texHeight, 1)); 
texturelmage.setDimensionality(vk::ImageType::e2D); 
texturelmage.setData(pixels, imageSize); 
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Preparing Framebuffer and GLFWWindow 

Lis t ing 4.6: Code below shows how previously created window can be set to framebuffer 
object. This w i l l ensure that a l l framebuffer ' s attachments w i l l be resized according to 
window size. Then framebuf f er is assigned to GraphicsNode graphics. ColorAttachment 
obtainable from window is then set to graphics and w i l l be accessible from shaders at 
layout 0. 

framebuffer.setWindow(window); 
graphics.setFramebuffer(framebuffer); 

graphics.setColorAttachment(window.getAttachment(), 0); 

Preparing vertex and fragment shaders 

Lis t ing 4.7: Here is shown how easy it its to set shaders to graphics node. Corresponding 
ShaderStage is obtained and then shader file can be set. Shaders are wri t ten i n G L S L and 
internally compiled into S P I R - V using Shaderc 
graphics.getVertexShaderStage().setShaderFile("shader.vert"); 
graphics.getFragmentShaderStage().setShaderFile("shader.frag"); 

Using indexBuffer, vertexBuffer and defining its attributes 

Lis t ing 4.8: Th is code shows how attribute can be defined using vertexBuffer and 
graphics node. M e t h o d def ineAttribute of GraphicsNode takes as first parameter lo
cation as accessible from shaders. Second parameter is offset in buffer, th i rd parameter is 
stride in buffer and last parameter is buffer itself. There is also untemplated version where 
format can be set manually. Last line shows setting indexBuffer to graphics node. 

graphics.defineAttribute<glm::vec2>(0, offsetof(Vertex, pos), 
sizeof(Vertex), fevertexBuffer); 

graphics.defineAttribute<glm::vec3>(l, offsetof(Vertex, color), 
sizeof(Vertex), fevertexBuffer); 

graphics.defineAttribute<glm::vec2>(2, offsetof(Vertex, uv), 
sizeof(Vertex), fevertexBuffer); 

graphics.setlndexBuffer(feindexBuffer); 

Using uniformBuffer and texturelmage 

Lis t ing 4.9: Code below shows creating descriptors. Code is same for any node inheri t ing 
from class PipelineNode. F i r s t parameter is resource, second and th i rd are binding and 
set under which resource is available i n shader. 

graphics.createDescriptor({ &uniformBuffer >, 0, 0); 
graphics.createDescriptor({ fetexturelmage }, 1, 0); 
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Enqueueing GraphicsNode to Graph 

Lis t ing 4.10: Code below shows enqueueing graphics node to graph and than compil ing 
graph before it can be executed. Here any number of nodes can be enqueued. 

graph.enqueueNode(graphics); 
graph.compile(); 

G r a p h execution 

Lis t ing 4.11: A n d the last part is execution itself. The first lines show creating structure, 
which holds rendering data which w i l l fill unif ormBuf f er every frame. M o d e l , view and 
projection matrices respectively. This structure is filled w i th calculated data for every frame 
and w i l l rotate the rectangle i n the scene. Calculat ions of these matrices are skipped in 
this code example. W h i l e cycle w i l l end i f the close but ton of the window is clicked. 

struct UniformBufferObject { 
glm::mat4 model; 
glm::mat4 view; 
glm::mat4 proj; 

}; 

std::vector<UniformBufferObject> ubo; 
ubo.resize(1); 
while (!window.shouldClose()) { 

// c a l c u l a t i n g model, view and projection matrices 
// and f i l l i n g ubo vector with data 
uniformBuffer.setData(ubo); 
graph.execute(); 

> 

Result 

After compil ing and running the program, a window should open and a rotat ing and tex
tured rectangle should be seen. Same as can be seen in Figure 6.4. 
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C h a p t e r 5 

Implementation 

GLFW 
implements 

• indow System 
Integration (WSI) 
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GLSL 
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opera t ing System^ 
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J 
Figure 5.1: This figure shows the graph of used technologies and libraries and their rela
tionship to vkEasy. Yel low rectangles are representing libraries, blue rectangles represent 
used and programmable languages, orange rectangles represent used tools, and lastly, green 
rectangles represent classes of vkEasy. 

vkEasy is wri t ten i n C+-1- language and it is required for the compiler to be able to bu i ld 
code wri t ten in CH—1-17. C M a k e is used as the bu i ld system and at least version 3.16 is 
required. vkEasy is buildable on Windows and L i n u x operating systems and was tested wi th 
Microsoft V i s u a l C+-1- ( M S V C ) compiler and G N U C + + (g++) compilers. Th is chapter 
contains information about libraries used by vkEasy. G r a p h wi th relationships of tools, 
languages, and libraries to vkEasy can be seen i n Figure 5.1. 

5.1 Vulkan CH—|- wrapper 
V u l k a n is a graphics A P I implemented in the C language. W h i l e it is possible to use raw 
V u l k a n C A P I vkEasy uses C + + language there are V u l k a n C + + wrappers that do work 
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wi th V u l k a n just a l i t t le easier. There are two well-known C + + wrappers, namely Vu lkan-
H p p and V u l k a n - R A I I (available at Khronos V u l k a n - H p p G i t H u b repository [7] [10]). 

Vulkan-Hpp 

V u l k a n - H p p provides header-only C + + bindings for V u l k a n C A P I . Its goal is to improve 
the developer's V u l k a n experience without introducing C P U runtime costs. It adds new 
features like type safety for enums and bitfields, S T L container support, exceptions, and 
simple enumerations. More information, examples and source code can be found at Khronos 
V u l k a n - H p p G i t H u b repository [7]. 

Vulkan-RAII 

V u l k a n - R A I I adds addi t ional C + + layer on the top Vu lkan -Hpp . It uses a l l the enums and 
structure wrappers from Vu lkan -Hpp . It also provides new wrapper classes for the V u l k a n 
handle types but in a more refined way than Vu lkan -Hpp . A s its name already suggests 
it follows the R A I I principle ( R A I L Resource Acquis i t ion Is Ini t ial izat ion). Instead of 
creating V u l k a n handles wi th vkAllocate or vkCreate and destroying them wi th vkFree 
or vkDestroy, constructor and destructor of corresponding V u l k a n handle wrapper is used 
called. More information, examples and source code can be found also at Khronos Vu lkan -
H p p G i t H u b repository [7]. P rogramming guide for V u l k a n - R A I I can be found G i t H u b 
repository [10]. 

W h y Vulkan-RAII 

V u l k a n - R A I I is used in vkEasy because of the ease of use of the R A I I principle. It also 
contains simple to use dynamic loader of Vu lkan , which means that there is no need to use 
a dynamic loader l ibrary like Volk . 

5.2 G L S L / H L S L to S P I R - V compiler 

B y default, V u l k a n accepts only programs wri t ten using S P I R - V unlike O p e n G L , which also 
accepts G L S L ( O p e n G L shading language). There are two probably best-known shading 
language compilers named Gls lang and Shaderc, respectively. 

G l s l a n g 

Glslang is the official reference compiler by Khronos Group for the E S S L ( O p e n G L E S 
shading language), G L S L ( O p e n G L shading language) and H L S L . It firstly translates those 
languages to Glslang's internal abstract syntax tree ( A S L ) . Then A S L is translated to 
Khronos-specified S P I R - V intermediate language. It is open and free for anyone to use, 
either from a command line or programmatically. The O p e n G L and O p e n G L E S are main
taining consistency between the reference compiler and the corresponding G L S L and E S S L 
specifications. More information and source code can be found at Khronos 's glslang G i t H u b 
repository [2]. 

Shaderc 

Shaderc is composed of l ibrary libshaderc and command line tool glslc. glslc is a command 
line compiler used for compil ing shader strings from G L S L and H L S L to S P I R - V . In the 
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background, it uses above mentioned Gls lang and also S P I R V - T o o l . L i b r a r y libshaderc is 
an A P I for accessing glslc functionality. Compared to glslang it comes wi th a simpler A P I 
and increased functionality like support for #include directives. More information and 
source code can be found at Google's Shaderc G i t H u b repository [5]. 

W h y Shaderc 

S P I R - V is not a user-friendly language so l ibrary Shaderc [5] is used to make vkEasy 
compatible w i th G L S L and H L S L (High-level shader language). Shaderc supports both 
G L S L and H L S L and it also comes wi th support for #include directives which are very 
useful. G L S L i n O p e n G L does not support #include directives and if code needs to be 
reused it must be copied into every shader. 

5.3 Memory Management 

A s mentioned i n Section 3.2.3, memory management and resource al location is quite a 
difficult topic. There is already a really good library, V u l k a n Memory Al loca tor , created 
by A M D G P U O p e n , which is ut i l ized in vkEasy. 

Vulkan Memory Allocator 

The V u l k a n Memory Al loca to r ( V M A ) [8] l ibrary is a simple and easy to integrate A P I , 
which helps wi th al locat ing memory and creation of V u l k a n Buffer and Image objects. To 
make memory allocations and resource creation easier it offers some higher-level functions: 

• functions that help to choose the correct and opt imal memory type based on the 
intended usage of the memory. 

— required or preferred traits of the memory are expressed using higher-level de
scription compared to V u l k a n flags. 

• functions that allocate memory blocks, reserve and return parts of them 
(VkDeviceMemory + offset + size) to the user. 

— l ibrary keeps track of allocated memory blocks, used and unused ranges inside 
them finds best matching unused ranges for new allocations, and respects a l l the 
rules of alignment and buffer/image granularity. 

• functions that can create an image/buffer, allocate memory and b ind it to the corre
sponding image/buffer - a l l in one cal l . 

• functions that can defragment already allocated memory. 

The l ibrary really helped to make memory management i n vkEasy much easier and it also 
has high-quality documentation which helped to get to know it really quickly. Th is section 
was inspired by and more information about V M A can be found at A M D G P U O p e n [8] 
and V u l k a n Memory Al loca to r G i t H u b repository [9]. 
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5.4 Rendering into window 

For V u l k a n to be able to render into a window it needs a Surface object. Creat ing the 
surface object needs system-dependent parameters (as wri t ten i n Section 3.1.1). To make 
this easier libraries like Simple D i r ec tMed ia Layer ( S D L ) or Graphics L ib ra ry Framework 
( G L F W ) . 

Graphics Library Framework 

Graphics L ib ra ry Framework is an Open Source, mult i -platform l ibrary for O p e n G L , 
O p e n G L E S , and V u l k a n applicat ion development. It provides a simple, platform-
independent A P I for creating windows, contexts and surfaces, reading input, handling 
events, etc. G L F W natively supports Windows, macOS, L i n u x and other Unix- l ike sys
tems. O n L i n u x , bo th X I 1 and Wayland are supported. More information about G L F W 
can be found at G L F W G i t H u b [1]. 

W h y G L F W 

S D L l ibrary is a quite complex and big l ibrary wi th a lot of functionality most of which is 
not needed for testing of vkEasy. G L F W is a lightweight framework and that is the reason 
why it is used. A n d as stated in Section 4.1.8 it is possible to use other frameworks like 
G L F W by inheri t ing and implementing the abstract class W S I . 
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C h a p t e r 6 

Experiments 

This chapter shows how much code can be reduced by using the framework vkEasy. F i rs t , it 
shows implemented and working examples available in source code [14] and then compares 
lines of code needed to write these examples in raw V u l k a n wi th lines of code needed to 
write the same example i n vkEasy. 

6.1 Examples 

This section contains examples implemented using vkEasy and their description. They are 
al l available i n source code [14]. Compute example 1 was inspired by an example by Sascha 
Wi l l ems [19] and graphics examples by some examples from V u l k a n Tutor ia l [16]. They are 
wri t ten i n raw V u l k a n and were used to compare usabil i ty and lines of code reduction of 
vkEasy. They also serve as tests i f the framework works correctly. 

6.1.1 Example 1 — Compute pipeline — Fibonacci sequence 

This example serves as a test for the compute pipeline. A simple F ibonacc i sequence shader 
is used to calculate the first 32 numbers of the sequence on G P U and write the contents 
of the output buffer to the console. Shader source code is taken from min ima l headless 
compute example by Sascha W i l l e m s 1 . In vkEasy source code name of this example is 
vkEasyCompute . 

6.1.2 Example 2 — Graphics pipeline — Triangle 

This example serves as a basic test of the graphics pipeline. It draws a coloured triangle 
into the window as shown in Figure 6.1. Triangle is hardcoded i n the shader so no vertex 
buffer is used. Shader source code and inspirat ion were taken from V u l k a n T u t o r i a l 2 . Name 
of this example i n vkEasy source code is vkEasyGraphics . 

6.1.3 Example 3 — Graphics pipeline — Vertex and index buffers 

This example draws a coloured rectangle (two triangles) into the window as shown in 
Figure 6.2. The rectangle is now stored i n the vertex buffer and the index buffer is also 

x h t t p s : //github.com/SaschaWillems/Vulkan/blob/master/examples/computeheadless/ 
c omput eheadle s s. cpp 

2 h t t p s : //github.com/Overv/VulkanTutorial/blob/master/code/ 15_hello_triangle.cpp 
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Figure 6.1: Basic test of graphics pipeline drawing shader hardcoded triangle to window. 

used. Vertex buffer consists of two attributes one of which is posit ion and the second is 
colour. Shader source code and inspirat ion were taken from V u l k a n T u t o r i a l 3 . Name of 
this example in vkEasy source code is vkEasyGraphicsVertexIndexBuffers . 

6.1.4 Example 4 — Graphics pipeline — Uniform buffer 

This example draws the same rectangle as in example 3 but now also uses a uniform buffer 
containing model, view, and projection matrices updated every frame causing rotat ion of 
triangle i n 3D space. W h a t this example looks like is shown i n Figure 6.3. Shader source 
code and inspirat ion were taken from V u l k a n T u t o r i a l 1 . Name of this example i n vkEasy 
source code is vkEasyGraphicsUniformBuffers . 

6.1.5 Example 5 — Graphics pipeline — Texture 

This example draws the same rotat ing rectangle as in example 4 but this rectangle is now 
textured instead of interpolated colour as shown i n Figure 6.4. Vertex buffer now contains 
a new attr ibute that is texture coordinate. Shader source code, texture, and inspirat ion 
were taken from V u l k a n T u t o r i a l ' . The name of this example in the vkEasy source code is 
vkEasyGraphics Texture. 

6.1.6 Example 6 — Graphics pipeline — Depth buffer 

This example draws two rectangles w i th offset on the z-axis. E a c h rectangle is the same as in 
example 5 and this example shows how to use a depth buffer. W h a t this example looks like 

3 h t t p s : //github.com/Overv/VulkanTutorial/blob/master/code/21_index_buf f er.cpp 
4 h t t p s : //github.com/Overv/VulkanTutorial/blob/master/code/23_descriptor_sets.cpp 
5 h t t p s : //github. com/Overv/VulkanTutorial /blob/master/code/25_sampler.cpp 
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Figure 6.2: Example that draws colored rectangle into window using vertex and index 
buffer. 

is shown i n Figure 6.5. Shader source code, texture, and inspirat ion were taken from V u l k a n 
T u t o r i a l 6 . Name of this example i n vkEasy source code is vkEasyGraphicsDepthBuffer . 

6.1.7 Example 7 — Graphics pipeline — 3 D Mode l 

This example draws a rotat ing 3D model as shown i n Figure 6.6. Shader source code, 3D 
model, texture, and inspirat ion were taken from V u l k a n T u t o r i a l ' . Name of this example 
in vkEasy source code is vkEasyGraph ic sMode l . 

6.2 Code Reductions 

This section summarizes code reductions of examples presented in the previous section. 
App l i ca t ion C L O C was used to count an exact number of lines except for empty lines and 
comments. For results to be more precise a l l include directives were removed because they 
are different for every code. A l l sources were formatted using the same C + + language 
formatter so it corresponds to each other also wi th the format. A l so in Sascha's example, 
there were code parts containing code intended to be used wi th A n d r o i d O S which was also 
removed from counting. Results were as follows: 
A s seen in Table 6.1, using vkEasy reduces the code needed for using V u l k a n by a lot. 
For examples implemented in this project, the average reduction of lines of code is 94 %. 
Also from the table, it can be seen that the lowest reduction of 90 % was achieved i n the 
first example and the highest reduction of 97 % i n the second example. The first example 
has the lowest reduction because the raw V u l k a n part for creating a l l necessary objects for 
the compute pipeline does not create as many V u l k a n objects as a l l other examples. The 

6 h t t p s : //github.com/Overv/VulkanTutorial/blob/master/code/27_depth_buffering.cpp 
7 h t t p s : //github.com/Overv/VulkanTutorial/blob/master/code/28_model_loading.cpp 
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Figure 6.3: Example that draws same rectangle as i n example 3 but it is rotat ing using 
model, view and projection matrices from uniform buffer. 

Table 6.1: Table of lines of code reductions 

Example R a w V u l k a n lines vkEasy lines Reduct ion 

1 335 33 90 % 
2 757 21 97 % 
3 958 38 96 % 
4 1074 64 94 % 
5 1245 80 94 % 
6 1359 86 94 % 
7 1396 114 92 % 

graphics pipeline is much more complex and much more boilerplate code is needed. A n d 
that 's why the second example achieved the highest reduction. Triangle is hardcoded into 
shaders so code like loading filling vertex buffers, loading texture and data from disk or 
loading 3D model from disk is not needed. Therefore reduction is really high in this case. 
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Figure 6.4: Th is example tests textur ing rotat ing rectangle wi th loaded texture from file. 



Figure 6.6: Th is example tests drawing of more complex textured 3D model. 
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C h a p t e r 7 

Conclusion 

W h i l e V u l k a n is a very complex and low-level A P I , there are ways to make work wi th it 
much easier. vkEasy implements deferred V u l k a n object creation to hide a lot of boilerplate 
code. It also implements a frame graph, which makes it easier for the user to th ink about 
a frame as a series of graphics or compute tasks, which need to be done to get the final 
frame or desired compute results. Next , it uses the V u l k a n Memory Al loca tor framework so 
the user doesn't need to th ink about complex memory allocation. It also uses the Shaderc 
l ibrary to compile much more user-friendly shading languages such as G L S L or H L S L to 
S P I R - V which is the language that V u l k a n can understand. vkEasy makes it easy to use 
mult iple G P U s for compute and render tasks. It also automatical ly manages memory and 
synchronizes access to i t . vkEasy also makes it easy to send and read data from G P U . The 
framework was tested and supports L i n u x and Windows operating systems and makes it 
easy to create windows that can be rendered into. 

The proposed architecture helps to increase the ease of use of V u l k a n and reduces lines of 
code needed to use G P U s . Specifically as mentioned i n Section 6, it reduced needed lines 
of code in examples on average by 94 %. 
Compared to related framework Grani te it does not go by way of t ry ing to be similar A P I 
like O p e n G L but opens possibilities of frame graph for the user. Compared to framework 
Pumex it has a strict class hierarchy that cannot be disobeyed and makes it easier for the 
user to understand which class is good for what. 
There is s t i l l a lot of space for improvements. User testing and feedback on ease of use by 
users of vkEasy would be really helpful to make it even more user-friendly. Re th ink ing some 
parts of the class hierarchy could reduce the complexity of use even more. Br ing ing support 
for the ray-tracing pipeline would be also a nice addi t ion. More complex features like M I P 
mapping, mult i -sampling, and other things that are mostly related to Image V u l k a n objects 
and are planned but not supported yet. Also , a lot of features are not yet visible i n the 
graphics pipeline but it is only a matter of creating getters and setters for them. The 
goal of creating vkEasy was not to develop a good performance framework but to make 
work wi th V u l k a n easier so there are a lot of things to increase the performance of vkEasy. 
W h i l e automatic memory access synchronization works on the inter-pipeline level, it can 
be done on the inter-pipeline stage level to increase performance. This can be achieved 
wi th shader reflection. For now, there is support only for one universal queue. Support 
for asynchronous compute queue, separate transfer queue and sparse binding queues would 
be a nice addi t ion and could increase performance. Also , multi-threaded command buffer 
recording is planned and should increase performance. 
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