
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

IMPROVEMENTOFMETHODSFORDETECTIONAND
CLASSIFICATIONOFDAMAGES INFINGERPRINT IM-
AGES
VYLEPŠENÍ METOD DETEKCE A KLASIFIKACE POŠKOZENÍ OTISKU PRSTU

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR LUKÁŠ FOLTYN
AUTOR PRÁCE

SUPERVISOR Ing. ONDŘEJ KANICH, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023

Institut: Department of Intelligent Systems (UITS)

Student: Foltyn Lukáš

Programme: Information Technology

Specialization: Information Technology

Category: Image Processing

Academic year: 2022/23

Assignment:

1. Study the literature on fingerprint biometric recognition, the generation of synthetic fingerprints and
damage artefacts in the fingerprint image. Get acquainted with different methods for detection and
classification using neural networks.

2. Choose two damage artefacts (skin diseases, effects of pressure, etc.). Propose an improvement
for at least three neural networks architectures, which will add detection and classification of the
chosen damage artefacts.

3. Implement the proposed methods from the previous point.
4. Analyse the precision of implemented methods from previous points. Compare the results with the

original methods.
5. Summarise and discuss achieved results.

Literature:
Maltoni, D., Maio, D., Jain, A.K. and Prabhakar, S.: Handbook of Fingerprint Recognition.
Springer, 2009, p. 512. ISBN 978-1-8488-2254-2.
Drahanský, M.: Hand-Based Biometrics: Methods and technology, IET 2018, p. 430, ISBN 978-1-
78561-224-4.
Fořtová, K.: Analysis of Convolutional Neural Networks for Detection and Classification of
Damages in Fingerprint Images, 2022. Master's thesis. FIT BUT in Brno, Brno.

Requirements for the semestral defence:
Items 1 and 2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Kanich Ondřej, Ing., Ph.D.

Head of Department: Hanáček Petr, doc. Dr. Ing.

Beginning of work: 1.11.2022

Submission deadline: 10.5.2023

Approval date: 3.11.2022

Bachelor's Thesis Assignment
148340

Improvement of Methods for Detection and Classification of Damages in
Fingerprint Images

Title:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
This study aims to improve existing methods for detecting and classifying damage in fin-
gerprint images by leveraging previous works conducted by students at Brno University of
Technology. The work is built upon three applications: line damage (scars, hairs, creases)
generator, moisture generator, and application containing multiple different models for fin-
gerprint damage detection and classification. The three best-performing models - Faster-
RCNN ResNet50, Faster-RCNN ResNet101, and CenterNet ResNet101 - were selected for
further improvement. The work describes the creation of a dataset using undamaged syn-
thetic fingerprint images, with the aforementioned damages introduced artificially. Efforts
to improve the prediction accuracy of the models were based on more accurate annota-
tion of bounding boxes and adjusting the hyperparameters. While the work yielded some
improvements, the results are not consistently successful across all models and damage
types.

Abstrakt
Cílem této práce je vylepšit stávající metody detekce a klasifikace poškození na snímcích
otisků prstů s využitím předchozích prací studentů Vysokého učení technického v Brně.
Práce je postavena na třech aplikacích: generátoru čárového poškození (jizvy, vlasy, rýhy),
generátoru vlhkosti a aplikaci poskytující více různých modelů pro detekci a klasifikaci
poškození otisků prstů. Pro vylepšení byly vybrány tři nejpřesnější modely - Faster-RCNN
ResNet50, Faster-RCNN ResNet101 a CenterNet ResNet101. Práce popisuje vytvoření da-
tové sady pomocí nepoškozených syntetických snímků otisků prstů s výše uvedenými uměle
zavedenými poškozeními. Snaha o zlepšení přesnosti predikce modelů byla založena na přes-
nějším anotovaní ohraničujících boxů a úpravě hyperparametrů. Přestože práce přinesla
určitá zlepšení, výsledky nejsou konzistentně úspěšné u všech modelů a typů poškození.

Keywords
fingerprints, synthetic fingerprints, damaged fingerprint images, convolutional neural net-
works, detection, classification

Klíčová slova
otisky prstů, syntetické otisky prstů, poškozené snímky otisků prstů, konvoluční neuronové
sítě, detekce, klasifikace

Reference
FOLTYN, Lukáš. Improvement of Methods for Detection and Classification of Damages in
Fingerprint Images. Brno, 2023. Bachelor’s thesis. Brno University of Technology, Faculty
of Information Technology. Supervisor Ing. Ondřej Kanich, Ph.D.

Rozšířený abstrakt
Tato bakalářská práce se zaměřuje na zlepšení výkonnosti vybraných modelů pro detekci a
klasifikaci čárových poškození a vlhkosti na snímcích otisků prstů. Jsou zde zkoumány
tři detekční modely: Faster R-CNN ResNet50, Faster R-CNN ResNet101 a CenterNet
ResNet101, které jsou trénovány s různými konfiguracemi (kombinace hyperparametrů a
datových sad), aby se následně u zvolené konfigurace mohl posoudit její pozitivní či nega-
tivní vliv na příslušný model během trénovacího procesu.

V první fázi je vytvořena umělá datová sada, která využívá aplikace pro generování
čárových poškození a vlhkosti ve snímcích otisků prstů. Pro trénink modelů je nezbytné
snímky anotovat ohraničujícími boxy, což vedlo k potřebě právě tyto dva zmíněné gen-
erátory o anotace ohraničujících boxů rozšířit. Pro čárová poškození jsou implementovány
dva různé přístupy: první zahrnuje všechna poškození do jednoho velkého boxu, zatímco
druhý přístup se snaží vykreslit boxy tak, aby pokrývaly minimum zdravé plochy, čehož je
dosaženo pužitím velkým množstvím malých boxů přesně vyplňující jednotlivé čáry. V pří-
padě generátoru vlhkosti, který již základní anotace poskytoval, byl implementován druhý
přístup, který se pokoušel některé nadbytečné boxy odstranit a jiné zpřesnit. Všechny
popisované metody jsou poté využity v rámci experimentů.

Experimenty se skládají ze tří částí: 1. použití původních parametrů vybraných mod-
elů, 2. úprava hyperparametrů a 3. změna datových sad s odlišnými metodami ano-
tace ohraničujících boxů. Hlavní metrikou pro porovnání výkonnosti modelů je průměrná
správně detekovaná a klasifikovaná plocha, s vyhodnocením dalších metrik, jako je průměrná
nedetekovaná plocha, průměrná nadbytečně detekovaná plocha a průměrné skóre správně
detekované a klasifikované oblasti.

Výsledky ukázaly, že úpravy hyperparametrů měly minimální vliv na modely Faster
R-CNN, zatímco u modelu CenterNet došlo k výraznému zlepšení, tedy k navýšení přesnoti
o 5 %. Ve třetí sadě experimentů, která používala jiné přístupy k anotaci ohraničujících
boxů, oba modely Faster R-CNN vykazovaly výrazný pokles celkové přesnosti. Nejvíce byl
však ovlivněn model CenterNet, jehož pokles byl více drastický. Tento pokles v přesnosti
byl připisován již zmiňovanému druhému přístupu anotace ohraničujících boxů u čárového
poškození. Modely pravděpodobně považovaly každý malý ohraničující box za samostatný
celek, což je ve výsledku odstínilo od vnímaní čárového poškození v rámci globálního kon-
textu.

Naproti tomu, u vlhkosti druhý přístup anotování přinesl pozitivní výsledky u modelů
Faster R-CNN ResNet50 a ResNet101. Pouze u modelu CenterNet ResNet101 nedošlo k
žádnému zlepšení, kvůli silnému vlivu snímků s čárovým poškozením. Výsledný natrénovaný
model byl tedy prakticky téměř nepoužitelný.

Výsledkem práce je tedy 9 natrénovaných modelů, z nichž byl nejlepší model Faster R-
CNN ResNet101 natrénovaný v 5. experimentu, který dosáhl hodnoty 90,646 % u metriky
správně detekované a klasifikované plochy. Závěrem lze konstatovat, že tato práce poskytuje
pohled na výkonnost různých modelů hlubokého učení pro detekci a klasifikaci poškození
otisků prstů. Zdůrazňuje význam pečlivého výběru architektury modelu, nastavení jed-
notlivých hyperparametrů a metod anotace pro dosažení optimálních výsledků.

Improvement of Methods for Detection and Clas-
sification of Damages in Fingerprint Images

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Ondřej Kanich, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Lukáš Foltyn
May 8, 2023

Contents

1 Introduction 3

2 Fingerprint Biometrics 5
2.1 Skin Structure . 5

2.1.1 Epidermis . 5
2.1.2 Dermis . 5
2.1.3 Subcutaneous Tissue . 6

2.2 Individuality of a Fingerpint . 6
2.3 Skin Diseases and their Impact on a Fingerprint 8

2.3.1 Moisture . 8
2.3.2 Line Damage . 9

2.4 Fingerprint Acquisition . 10
2.4.1 Optical Sensor . 11
2.4.2 Capacitive Sensor . 11
2.4.3 Ultrasound Sensor . 12

2.5 Fingerprint Recognition . 12
2.6 Fingerprint Matching Process . 13
2.7 Synthetic Fingerprint Generation . 14

3 Neural Networks 16
3.1 Biological Neuron . 16
3.2 Artificial Neuron . 17
3.3 Perceptron . 17
3.4 Multi-layer Perceptron . 18
3.5 Activation Function . 19

3.5.1 Sigmoid Function . 19
3.5.2 Hyperbolic Tangent Function . 20
3.5.3 Rectified Linear Unit (ReLU) . 20
3.5.4 Softmax Function . 20

3.6 Loss Function . 20
3.7 Backpropagation . 21

3.7.1 Batch Gradient Descent . 22
3.7.2 Stochastic Gradient Descent . 22
3.7.3 Mini-batch Gradient Descent . 22

3.8 Convolutional Neural Networks . 23
3.9 CNN Architectures . 24

3.9.1 ResNet . 24
3.10 Object Detection with CNNs . 25

1

3.10.1 Faster R-CNN . 25
3.10.2 CenterNet . 26

4 Solution Proposal and Implementation 27
4.1 Fingerprint Images Dataset . 27
4.2 Bounding Boxes . 28
4.3 Data Annotations . 32
4.4 Used Models . 33

4.4.1 Model Configuration . 33
4.4.2 Model Evaluation Metrics . 34

4.5 Experiments . 34
4.5.1 Faster R-CNN ResNet50 V1 640×640 Experiments 35
4.5.2 Faster R-CNN ResNet101 V1 640×640 Experiments 36
4.5.3 CenterNet Resnet101 V1 FPN 512×512 Experiments 37
4.5.4 Summary of Achieved Results . 38

5 Conclusion 42

Bibliography 43

A Contents of the Included Storage Media 47

B Examples of Fingerprint Damage Detection and Classification 48

2

Chapter 1

Introduction

Fingerprint biometrics has become one of the most widely used personal identification meth-
ods due to its reliability and accuracy. The uniqueness of fingerprints and their stability
over time make them an ideal biometric identifier for various applications, including law
enforcement, access control, and mobile device authentication. However, skin diseases and
many external factors can impact the accuracy and reliability of fingerprint recognition
systems. They can alter the patterns and ridges on the fingers, making it difficult for the
sensors to capture a clear and accurate fingerprint image. Therefore, automated detection
and classification of such damaged fingerprint images could contribute to an improvement
of biometric systems.

In the past, skin disease detection and classification were typically done through manual
inspection by dermatologists and other medical professionals. This process involved visually
examining skin lesions, rashes, and other abnormalities. Then the experts using their
experience, made a diagnosis. While this approach can be beneficial, it is time-consuming
and can be subject to human error and bias.

In addition to manual inspection, various computer vision and machine learning tech-
niques have been used for skin disease detection and classification in the past. These include
techniques such as feature extraction and pattern recognition, which involve analyzing spe-
cific features and characteristics of skin lesions to identify specific diseases. However, these
techniques often require extensive feature engineering and may not be able to capture the
full range of variations and complexities in skin diseases.

More recently, deep learning techniques such as convolutional neural networks (CNNs)
have become tremendously helpful in automating the detection and classification of specific
patterns in images, in the case of this work, skin diseases. By analyzing large datasets of
fingerprint images, CNNs can learn to recognize patterns and features indicative of specific
skin diseases or other damages of various types, enabling them to detect and classify a wide
range of dermatological conditions accurately. This work aims to explore the performance
of the top three CNNs presented in Katerina Fortova’s master thesis [16] on fingerprint
images affected by moisture and line damage.

This thesis is organized into five chapters, with the initial chapters gradually explaining
the necessary background for the practical portion of the work. The subsequent chapters
discuss the implementation process and the results obtained. Chapter 2 establishes a fun-
damental understanding of human skin anatomy, the components that form a fingerprint,
and the various types of potential damage artifacts that can affect fingerprints. It also
examines the technologies utilized for capturing fingerprint images and the possibility of
synthetic fingerprint generation. Additionally, this chapter addresses the matching process

3

of images in biometric systems. Chapter 3 delves into the topic of neural networks, starting
with basic concepts such as artificial neurons, multi-layer perceptrons, activation functions,
and loss functions. The chapter then explains how these components function collectively
in the neural network training process, known as backpropagation. Convolutional neural
networks, their architectures, and object detection approaches are outlined at the end of
the chapter. Chapter 4 covers the generation of the synthetic dataset and the essential
preprocessing steps, along with the selected CNN architectures and their respective results.
The final Chapter 5 summarizes the findings and a few thoughts on how the work could be
improved.

4

Chapter 2

Fingerprint Biometrics

This chapter delves into fingerprint biometrics, an effective and widely used identification
method. It starts with an analysis of skin structure and its most relevant parts. The
subsequent section highlights the unique patterns of fingerprints and their individuality,
contributing to their reliability in biometric systems.

Next, the examination focuses on the challenges of damaged fingerprint images due
to factors like moisture and line damage and their influence on fingerprint recognition.
The chapter also describes a range of fingerprint sensor technologies, including optical,
capacitive, and ultrasound sensors, followed by an overview of the fingerprint recognition
process and techniques employed in fingerprint matching. The chapter concludes with a
discussion on synthetic fingerprint generation for research and development purposes.

2.1 Skin Structure
Understanding the basic structure of human skin is crucial for comprehending fingerprints.
The skin is often considered the largest organ of the body, accounting for approximately
16 % of body weight. It performs several vital functions, such as protection against physical
or chemical damage, prevention of excessive water loss from the body, and thermoregulation.
It is divided into three layers (Figure 2.1): the outermost layer, the epidermis; the middle
layer, the dermis; and the innermost layer, the subcutaneous tissue. [29]

2.1.1 Epidermis
The epidermis is the thinnest component of the skin, consisting of a stratified, squamous
epithelium layer containing at least four different cell types: keratinocytes, melanocytes,
Langerhans cells, and Merkel cells [14]. Since no blood vessels exist in the epidermis, the
layer continually dies off and renews [29]. Epidermis cells also contain a protein that is
difficult to dissolve in water, making the skin effectively impermeable [15].

2.1.2 Dermis
The dermis is a connective tissue layer, 15-40 times thicker than the epidermis, with signif-
icantly lower energy requirements. It consists of two distinct layers:

• Reticular dermis: the bottom layer of the dermis, contains blood vessels, glands,
hair follicles, lymphatics, nerves, and fat cells, and is surrounded by collagen and
elastin fibers [45].

5

• Papillary dermis: the thin upper layer of the dermis, consisting of collagen fibers,
fibroblast cells, fat cells, blood vessels, nerve fibers, and touch receptors [45]. The
papillary layer forms irregular projections known as dermal papillae, interlacing with
the epidermal ridges [19].

2.1.3 Subcutaneous Tissue
The subcutaneous tissue, composed of subcutaneous fat and other cell types, primarily
functions in thermoregulation and protecting underlying organs, muscles, and bones from
physical damage by covering them with stored fat. [48]

Figure 2.1: Structure of the human skin [11].

2.2 Individuality of a Fingerpint
Fingerprints are unique, individual characteristics present on the fingers and thumbs of
humans. They form during fetal development and remain unchanged throughout a person’s
life. No two fingerprints are identical, as demonstrated by numerous historical findings and
research studies. [13]

Fingerprints consist of a series of ridges and valleys on the skin’s surface as displayed in
Figure 2.2. These ridges, sometimes called friction ridges, are formed by the dermal papillae
mentioned earlier in Section 2.1.2, which are small protruberances on the skin containing
sweat glands and blood vessels. The patterns formed by the ridges and valleys are what
make each fingerprint unique. [30]

6

Figure 2.2: Fingerprint’s ridges and valleys [30].

The features that can be extracted when analyzing a fingerprint pattern can be divided
into three levels based on different scales [30]:

• Level 1: The overall ridge flow pattern is analyzed at this first global level. This
includes the ridge direction as well as the number of ridges. Then, there are special
regions called singular points, which are assumed to have distinctive shapes. These
regions are usually classified into three types: loop, delta (or arche) and whorl (Fig-
ure 2.3) . [30] [14]

Figure 2.3: Singular point types [30].

• Level 2: The characteristics of ridges and valleys called minutiae can be found at
this local level. Many different local ridge characteristics can be extracted, but most
of them appear very rarely, depending on the fingerprint’s quality. The two most
prominent ones are the ridge endings and ridge bifurcations (Figure 2.4) . Minutiae
are the most commonly used features in automatic fingerprint matching. Finding a
center point called the core is also beneficial if possible. The core is defined as the
center of the northmost loop-type singularity. It can be used for pre-aligning the
fingerprint images when trying to match them. [30]

7

Figure 2.4: Most common minutiae types [30].

• Level 3: At the very-fine level, intra-ridge details can be detected. This includes a
ridge width, shape, curvature, contours, or other permanent details such as incipient
ridges. There are also sweat pores, whose positions and shapes are considered to
be very distinctive. However, to extract these features, a high-resolution fingerprint
image of good quality is required, which is rarely the case in the real world. [30]

2.3 Skin Diseases and their Impact on a Fingerprint
The skin is a very complex organ that is exposed to various external factors every single day.
These factors can cause many skin diseases, which can significantly impact the fingerprint
depending on the severity of the skin disease itself. If the disease or other damaged artifact,
e.g., a cut or burn wound, affects only the surface of the skin, the fingerprint pattern, when
recovered, remains the same. However, if the structure of the ridges in the epidermis and
the underlying dermis is destroyed, the ridges will not grow into the same pattern as before.
The diseases can be divided into three groups based on their impact on the skin. [14]

• Diseases causing histopathological changes of the epidermis and dermis can
cause problems for all kinds of fingerprint scanners since they can influence the color
and internal structure of the skin. Diseases such as fingertip eczema, pyoderma, or
Raynaud’s phenomenon can be found in this group. [14]

• Diseases causing skin discoloration could cause problems for optical scanners or
scanners that use skin color as a part of their antispoof detection. Typical represen-
tatives: pitted keratolysis, carotenosis, or xanthomas. [14]

• Diseases causing histopathological changes at the junction of the epidermis
and dermis, which means potential changes in the structure underneath the skin at
the junction between dermis and epidermis. This could cause some trouble for ultra-
sonic scanners since that is where they acquire fingerprint images. The most common
representatives are hand eczema, verruca vulgaris (warts), psoriasis, or epidermolysis
bullosa. [14]

2.3.1 Moisture
Moisture is not perceived as damage one can have on a fingerprint. However, it plays a cru-
cial role in the quality of fingerprint images as it can heavily degrade the clarity of captured
ridge patterns. When skin is optimally hydrated, the frictional and adhesive properties of
the finger’s surface allow for better contact with the capturing surface, resulting in a more

8

defined and high-quality image. However, excess moisture can lead to smudging and distor-
tion of the fingerprint image, making it difficult to identify unique features. On the other
hand, dehydrated skin may not transfer enough sweat and oils to produce a clear finger-
print. As a result, the fingerprint image may appear faint, with broken or missing ridges,
making it challenging to analyze and match against other prints. Examples of fingerprint
with different moisture levels can be seen in Figure 2.5. [32]

Figure 2.5: Fingerprint samples acquired from the same finger with skin subjectively per-
ceived as (left to right): dry (62.5 %), wet (99.9 %), normally moist (84.6 %), and normally
moist (84.6 %) with finger strongly pressed against the sensor [32].

2.3.2 Line Damage
In this work, the term ”line damage artifact“ refers to three distinct types: creases, scars,
and hairs. Hairs, similarly to moisture, do not cause direct damage to the fingerprint itself
but are an external factor that can degrade the final fingerprint image (fallen hair between
the sensor and the fingerprint). According to Vanessa Joriova’s work [25], hair damage
appears as a thin grey line with a slight white padding around it (Figure 2.6). The padding
is created by the fingerprint wrapping around the hair and not touching the sensor properly.

Figure 2.6: Fingerprint with a hair artifact [25].

Creases are irregular stripes that cross ridges and valleys in the fingerprints (Figure 2.7).
They are a common occurrence among elderly individuals. Aging, manual work, accidents,
and other factors cause them. Without enhancing the final image, creases can cause prob-
lems for minutia extraction algorithms as they can lead to the detection of a spurious
minutia or the omission of some minutia. [49]

9

Figure 2.7: Creases in a fingerprint [49].

Scars are a more severe type of line damage that can sometimes be mistaken for creases
due to their size and shape. Scars may have specific features such as black outlines or
patches inside (Figure 2.8). However, scars are considered more permanent than creases,
mainly if the wound damages the epidermis layer. Following images show examples of
generated scars on a fingerprint. [25]

Figure 2.8: Generated scars (from left to right): normal, patches, outline.

2.4 Fingerprint Acquisition
In today’s world, fingerprint images can be acquired through various methods, typically
classified into two main categories: offline and live-scan [30]. The offline image acquisition
process involves pressing or rolling an ink-smeared fingertip onto paper, which is then
digitized. Latent fingerprints, which play a significant role in forensic applications, can be
found at crime scenes and lifted from surfaces using specific chemical techniques. These
latent fingerprints also fall under the offline category. [30]

Live-scan fingerprint acquisition is now more convenient and has become the preferred
method [30]. In contrast, live-scan images are captured by placing the finger on an electronic
fingerprint sensor and scanning it in real time. The technologies utilized for these sensors
will be discussed later in this chapter.

Figure 2.9 illustrates the primary function executed by the fingerprint scanner. Ini-
tially, the sensor captures the ridge pattern of the positioned fingertip. Generally, the
acquired signal is in analog form, though exceptions may occur. Subsequently, the analog
signal undergoes processing via an A/D (Analog to Digital) converter and afterward can
be transferred to a computer through the interface module in the digital form. [30]

10

Figure 2.9: Block diagram of a fingerprint scanner [30].

The two most commonly used sensor technologies today are optical and capacitive, along
with the more advanced ultrasound sensor [6][36]. Additionally, there are other technologies
available for fingerprint acquisition, including thermal, pressure, electro-optical, e-field, and
MEMS [14].

2.4.1 Optical Sensor
The optical sensor operates on the principle of light reflection demonstrated in Figure 2.10.
Typically, a light source, such as an LED, illuminates the protective glass at an angle that
reflects all the light to the camera (usually a CCD or CMOS sensor) when no finger touches
the surface. However, when a finger is placed on the surface, the glass makes contact with
the ridges, disrupting the reflection and causing little to no light to be reflected. As a result,
the ridges in the final fingerprint image appear dark, while the valleys appear bright. The
height difference between ridges and valleys is significant, making this sensor a reliable
anti-spoofing mechanism. [30][26]

Figure 2.10: Principle of the optical sensor [30].

2.4.2 Capacitive Sensor
A capacitive sensor consists of a grid of micro-capacitor plates embedded within a chip,
covered by a non-conductive silicon dioxide layer where the finger is placed. The capaci-
tor’s discharge is based on the distance between the finger’s surface and the capacitor plate
(Figure 2.11). The closer the skin, the more the capacitor discharges, resulting in a distinc-
tion between the ridges and valleys. Similar to optical sensors, capacitive sensors are not

11

easily deceived by flat images of fingerprints, providing a reliable anti-spoofing mechanism.
[30][14][6]

Figure 2.11: Principle of the capacitive sensor [30].

2.4.3 Ultrasound Sensor
Ultrasound sensors emit ultrasound pulses and measure the returning signals after they
bounce off the surface (Figure 2.12) . Due to the ultrasound waves’ ability to penetrate
beneath the skin’s surface, the resulting ridge pattern image is captured from a deeper skin
layer. Consequently, this method demonstrates resistance to potential damage or impurities
found on the skin’s surface, providing a more reliable and secure fingerprint recognition.
[30][14][6]

Figure 2.12: Principle of the capacitive sensor [30].

2.5 Fingerprint Recognition
Before an individual’s fingerprint can be recognized, they must undergo an enrollment or
registration process. This process takes longer, as the acquired image and its template
creation must be of high quality [14]. The template is then stored in a data storage system,
from which the biometric system later retrieves it. When designing a biometric system, it
is crucial to determine how an individual will be recognized. Based on the application’s
requirements, the system can function as either a verification or an identification system.
The primary difference between these systems is the number of comparisons required when
matching user-obtained fingerprints [30].

A verification system serves to confirm the identity claimed by the user. It performs a
one-to-one comparison between the currently captured biometric data and the previously
enrolled template. At the end of the process, the user is either granted or denied access.
[30]

Conversely, an identification system searches a database of biometric templates to find a
match and identify the user. In this case, one-to-many comparisons must be conducted. For
larger systems, a pre-selection process can be implemented to eliminate some templates and
perform matching against a smaller subset of the database. In the identification system,

12

the user does not claim any identity, as it is determined by the system itself if a template
match is found. [30]

2.6 Fingerprint Matching Process
The matching process consists of a series of steps and algorithms applied to the captured
input fingerprint, enabling it to be compared with another fingerprint. The returned results
can be either a binary value indicating a match (success/failure) or a percentage score rep-
resenting the similarity between the compared fingerprints. Generally, the process involves
the following steps:

• Fingerprint image capture: This step can be accomplished using any of the sensor
technologies mentioned in Section 2.4. However, it is essential to consider the finger-
print image quality, as it can significantly impact the final result. A liveness check is
also crucial to prevent attempts at system spoofing. [14]

• Fingerprint Processing: The primary objective of this step is to extract minutiae
from the fingerprint image accurately. While this is relatively straightforward when
the input is of high quality, it is not always the case. Fingerprint images can often
be less than ideal due to factors like skin conditions, sensor noise, and other elements
[24]. In such instances, enhancement techniques must be employed.
Examples of these enhancements include histogram equalization for improving image
contrast [18] and the 2D Gabor filter, which is frequently associated with the compu-
tation of the orientation field. The orientation field serves as a map of the fingerprint
image, indicating the direction of ridges. Additional steps, such as binarization and
thinning, are often performed before the minutiae extraction itself. During binariza-
tion, each pixel in the image is assigned a new value (1 or 0) based on the intensity
of surrounding pixels compared to a given local threshold. Thinning, on the other
hand, ensures ridges are only 1-pixel wide [14].
Minutiae extraction techniques can be broadly classified into those that work on
binarized images and those that work on grayscale images [5]. For each identified
minutia, the x and y coordinates, minutia type (ending, bifurcation), and gradient
(ridge orientation) are stored [14]. All extracted minutiae form the final biometric
template, which is subsequently used for matching.
During these various processing stages, artificial noise may be introduced into the
image, resulting in the detection of false minutiae. In such situations, post-processing
techniques can be employed [18]. Suppose the fingerprint image contains missing or
damaged ridges. In that case, interpolation techniques can be utilized to fill in the
missing data [30], or cubic Bezier curves can be used to restore ridges [44].
The overall process is illustrated in Figure 2.13.

13

Figure 2.13: Feature extraction process [24].

• Final Comparison: As discussed earlier, the extracted features form the biometric
template. When a system acquires a new fingerprint for verification or identification
purposes, the same features are extracted and compared to a stored template. How-
ever, matching techniques are not limited to minutiae-based methods. Alternative
approaches include correlation-based methods, analysis of papillary line properties,
and even examination of 3D fingerprint characteristics. [14]

2.7 Synthetic Fingerprint Generation
With the widespread use of fingerprints in today’s security systems, there is a continuous
effort to develop and refine fingerprint recognition algorithms. However, obtaining sizable
datasets of real fingerprint images can be costly, time-consuming, and challenging to share
due to personal data protection concerns. To accurately assess the effectiveness of an
algorithm, it needs to be thoroughly tested and evaluated using large fingerprint datasets.
[30]

This is where synthetic fingerprint generation (SFinGe) comes into play, reversing some
of the steps outlined in Section 2.6. A fingerprint area, orientation image, and frequency
image are generated independently and then used as inputs for the ridge generation process.
The resulting binary ridge pattern is rendered, incorporating additional fingerprint-specific
noise (Figure 2.14). [30]

Suppose multiple impressions of the same synthetic fingerprint need to be created, a
master fingerprint is initially generated. This master fingerprint serves as a template, which
can then produce impressions by applying displacement, rotation, distortion, skin condition,
and noise. [30]

When generating damaged fingerprints affected by skin diseases, a master fingerprint is
first created. The skin condition can be incorporated using a specially designed algorithm,

14

through an in-depth study of the specific skin disease is necessary. Alternatively, the damage
caused by the disease can be extracted from a real fingerprint image and mapped onto the
master fingerprint. [27]

Figure 2.14: Synthetic fingerprint generation process [30].

15

Chapter 3

Neural Networks

Neural networks provide a range of powerful techniques for solving problems in fields like
pattern recognition or data analysis. While it may seem to many that neural networks
are a relatively new concept, the opposite is true. They were first introduced back in
1943. Since then, they have been slowly evolving and improving. However, it was not until
the 1990s that they started gaining real popularity. The main reasons for that are the
massive quantity of data available to train the neural networks, the tremendous increase in
computing power, and the improvements in the algorithms themselves [22]. In this chapter,
the similarity between human neurons and artificial ones will be briefly discussed. Then,
the essential building blocks of neural networks will be described. The end of the chapter
provides an overview of Convolutional Neural Network architectures and touches on the
topic of possible approaches in object detection.

3.1 Biological Neuron
Neurons are the fundamental units of the human brain and nervous system. They are
divided into three main parts: dendrities, an axon, and soma (cell body) as displayed in
Figure 3.1. Both the axon and dendrites have a tree-like structure. The axon branches are
called synapses and are connected to other neurons’ dendrites (sometimes directly to the cell
body). In that way, neurons can communicate by sending short electrical signals through
axons. When another neuron receives a sufficient number of signals in a short period from
other neurons, it fires its own signal. Even though the individual neuron may seem to
behave relatively simply, the complexity lies in the whole network containing billions of
neurons, where each neuron is typically connected to thousands of others. [22] [47]

16

Figure 3.1: Biological neuron structure [22].

3.2 Artificial Neuron
An artificial neuron is an essential building block of every artificial neural network. It has a
set of inputs, where each input is assigned a weight for multiplying the input values. There
is usually also one extra input called bias. The inputs can be compared to the dendrites of
a biological neuron. In the body (soma) of the artificial neuron, the weighted inputs and
bias are summed together and run through an activation function. The obtained value from
the activation function is the neuron (axon) output, which is then passed to other neurons
in the network, if there are any. Otherwise, it is considered to be a final result. No matter
how many inputs the neuron has, the output is always a single value. A simple schema of
an artificial neuron is shown in Figure 3.2. [4] [22]

Figure 3.2: Artificial neuron schema [4].

3.3 Perceptron
The perceptron, illustrated in Figure 3.3, is one of the simplest and most well-known artifi-
cial neural network architectures. It is a single-layer neural network containing only linear
threshold units (LTUs). LTU is a type of artificial neuron whose output is always binary.
Such output can be achieved by using the Heavside step activation function. [22]

17

ℎ𝑒𝑎𝑣𝑠𝑖𝑑𝑒(𝑥) =

{︃
0 if 𝑥 < 0

1 if 𝑥 ≥ 0
(3.1)

The perceptron is fed one training instance at a time, which results in predictions. For
every neuron that produced a wrong prediction, the connection weights from the inputs that
would have contributed to the correct prediction are reinforced. Therefore, the perceptron
can classify instances simultaneously into multiple binary classes based on the number of
used LTUs. [22]

Figure 3.3: Perceptron [22].

3.4 Multi-layer Perceptron
Since it has been shown that perceptrons have many weaknesses, in particular the fact
that they are incapable of solving some trivial problems (e.g., the exclusive OR (XOR)
classification problem), the multi-layer perceptron (MLP) was introduced (Figure 3.4). It
is a feedforward neural network consisting of an input layer, one or more hidden layers, and
the output layer. All the layers are fully connected, which means that the output of each
neuron is connected to the input of all neurons in the following layer. The hidden layers are
responsible for learning the complex patterns in the data. The MLP is trained using the
backpropagation algorithm described in Section 3.7. However, it is essential to note that
for the backpropagation to work correctly, the Heavside step activation function had to be
replaced by one of many different but suiting activation functions. Some examples of such
functions are described in the next section. [22]

18

Figure 3.4: Multi-Layer Perceptron [22].

3.5 Activation Function
When designing a neural network, deciding what activation functions to use for each layer is
crucial as it can significantly influence performance and prediction accuracy. The activation
function transforms an input signal into an output signal, fed as an input to the next layer
in the stack. The neural network would be equivalent to a linear regression model if no
activation functions were present. Thus using them introduces a non-linearity and allows
the creation of complex prediction models. An essential feature of an activation function
must be differentiability so that backpropagation can be implemented. The most common
activation functions are the sigmoid function, the hyperbolic tangent function, the rectified
linear unit (ReLU), and the softmax function, some of them being shown in Figure 3.5
together with their derivatives. [42]

Figure 3.5: Activation functions and their derivatives [22].

3.5.1 Sigmoid Function
Sigmoid is a simple activation function centered around 0.5 that outputs values from the
interval (0,1) [42]. Due to its properties, if the sigmoid function is used in multiple layers,
a vanishing gradient problem can occur. This problem is caused by the fact that the
derivatives of the sigmoid function are close to zero for most input values, which results in
the gradient being minimal. Thus, the weights and biases corrections are barely propagated
to the initial layers of the neural network [46]. However, the function can be useful for

19

models where the outputs are considered to be predicted probabilities since the value is
always between 0 and 1 [41]. The sigmoid function is defined as:

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
(3.2)

3.5.2 Hyperbolic Tangent Function
The hyperbolic tangent activation function is very similar to the sigmoid function, but
its range differs by going from -1 to 1 instead of (0,1). In hidden layers, tanh is almost
always preferred over the sigmoid since its gradient is steeper; therefore, the neural network
training should converge quicker. Tanh can also be used in the output layer for mapping the
output values as strongly negative, neutral, or strongly positive. Unfortunately, tanh suffers
from the same vanishing gradient problem as the sigmoid function [42][4]. The formula for
tanh is:

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(3.3)

3.5.3 Rectified Linear Unit (ReLU)
The ReLU is the most popular activation function used in hidden layers of neural networks.
It outputs the values from interval [0, infinity). Since for the negative input values, the
result is zero; the neuron does not get activated, thus taking less computational time than
sigmoid or tanh. On the other hand, the gradient always being zero for any negative value
can create dead neurons that are never activated as their weights and biases do not get
updated. This problem can be solved using Leaky ReLU, which returns a small negative
number instead of zero [21]. The ReLU is defined as:

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (3.4)

3.5.4 Softmax Function
The softmax activation function is used exclusively in the output layer of the neural network
for classification problems. It transforms the raw outputs of the neural network into a
vector of probabilities, essentially a probability distribution over the possible classes [35].
The softmax function is defined as:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(�⃗�)𝑖 =
𝑒𝑥𝑖∑︀𝑛
𝑗=1 𝑒

𝑥𝑗
(3.5)

3.6 Loss Function
Loss function plays a vital role in the training of the neural network. It is used to measure
how well the model is performing and how much it needs to be improved by computing
the distance between the current output of the algorithm and the expected output. It
can be categorized into two groups: regression loss functions and classification loss
functions. The most common regression loss functions are the mean squared error (MSE)
and the mean absolute error (MAE). The most common classification loss functions are the
cross-entropy loss and the hinge loss. [34]

20

• Mean Squared Error (MSE) - is the most common loss function used for regression
problems. It is calculated as the average of the squared differences between the
predicted and the actual values [41].

𝑀𝑆𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2 (3.6)

• Cross-entropy loss - is one of the most commonly used loss functions for classification
problems. It is closely connected to the softmax activation function returning a vector
of probabilities. Each predicted class probability is compared to the actual output of 0
or 1, and a loss is calculated, penalizing the probability based on the distance from the
expected value. Thanks to its logarithmic nature, the penalty is large for differences
close to 1 and small for differences approaching 0 [28]. The overall cross-entropy loss
can be calculated with the following formula:

𝐶𝐸 = − 1

𝑛

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑦𝑖𝑗 log(𝑦𝑖𝑗), 𝑤ℎ𝑒𝑟𝑒 𝑚 𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (3.7)

3.7 Backpropagation
Backpropagation is an algorithm used to train neural networks. The algorithm’s name
comes from the error being propagated backward through the network from the output
layer to the input layer. The error is calculated using the mentioned loss function 𝐿(𝑤).
The goal is to minimize the error by adjusting the weights and biases of the neural network
or, in other words, to find the local minimum of the loss function. In searching for the local
minimum, the gradient of the loss function with respect to each weight and bias has to be
calculated. The gradient could be defined in the following way:

∇𝐿 =

(︂
𝜕𝐿

𝜕𝑤1
;
𝜕𝐿

𝜕𝑤2
; . . . ;

𝜕𝐿

𝜕𝑤𝑛

)︂
(3.8)

The weights and biases are then modified, going in the opposite direction of the gradient.
If the partial derivative is negative, the weight is increased. If the partial derivative is
positive, the weight is decreased [20][39]. A simple illustration can be seen in the Figure 3.6.

Figure 3.6: A simple example of finding a local minimum of the loss function [20].

The process is repeated until the error is minimized or the maximum number of itera-
tions is reached. When it comes to the step length, it is based on the learning rate 𝜂 and

21

the steepness of the gradient itself. All partial derivatives can be calculated using the chain
rule since the whole neural network is a composition of integration and activation functions
[20]. The overall searching process of the local minimum is called gradient descent. Three
types of gradient descent differ in the amount of data used to compute the gradient of the
loss function. Depending on a chosen gradient descent type, there is a trade-off between
the model’s accuracy and the training computational time [39].

3.7.1 Batch Gradient Descent
Batch gradient descent computes the gradient of the loss function using the entire training
set. The formula for updating each of the parameters is following:

𝑤𝑖 = 𝑤𝑖 − 𝜂
𝜕

𝜕𝑤𝑖
𝐿(𝑤) (3.9)

Even though it is the most accurate method, the computational time could be extremely
high since the gradient has to be computed in every single iteration. It also does not allow
for online learning, which means adding new data to the training set on the fly. In this
case, the whole neural network would have to be retrained. [39]

3.7.2 Stochastic Gradient Descent
The introduction of the Stochastic gradient descent reduced the high computational time
of the Batch Gradient Descent. It computes the gradient of the loss function using only
one randomly picked training sample at a time.

𝑤𝑖 = 𝑤𝑖 − 𝜂
𝜕

𝜕𝑤𝑖
𝐿𝑗(𝑤) (3.10)

However, using just one training sample at a time can lead to parameter updates having
a higher variance, which causes the loss function to fluctuate more on each iteration, thus
making it harder to converge to the local minimum. To overcome this potential problem,
the learning rate is decreased over time. The Stochastic Gradient Descent can be used for
online learning. [39][7]

3.7.3 Mini-batch Gradient Descent
The Mini-batch Gradient Descent combines the advantages of the Batch Gradient Descent
and the Stochastic Gradient Descent. It performs an update for every mini-batch of 𝑛
training samples.

𝑤𝑖 = 𝑤𝑖 − 𝜂
𝜕

𝜕𝑤𝑖
𝐿(𝑗:𝑗+𝑛)(𝑤) (3.11)

Using fewer training samples than BGD speeds up the training process. On the other
hand, using more training examples than SGD reduces the variance of the parameter up-
dates, contributing to a smoother convergence. The mini-batch size depends on each ap-
plication’s needs. [39]

22

3.8 Convolutional Neural Networks
The Convolutional Neural Network (CNN) is a particular type of neural network mostly
used when working with images. It can solve tasks like image classification, pattern recog-
nition, or image segmentation. Nevertheless, CNN is not limited to images only, as it is
also used in voice recognition. The CNNs follow the same principles as traditional Artificial
Neural Networks (ANNs). However, they add new layers that deal with the dimensionality
reduction of the input data while preserving the essential features. This is a massive advan-
tage over the traditional ANNs as they would struggle with the computational complexity
required to process the high-dimensional data. They would also lose the spatial information
as they flattened the input data to a vector. The CNNs generally consist of one or more
convolutional layers, pooling layers, and finally, a fully connected layer [33][3]. An example
of such architecture can be seen in the Figure 3.7.

Figure 3.7: A general example of CNN architecture [40].

The convolutional layer plays a vital role in how CNNs operate. It consists of a set of
learnable kernels, sometimes called convolutional filters. The kernels are usually relatively
small square matrices following the depth of the input image (e.g., the depth of the RGB
image is 3). Each kernel is applied by sliding over the input image with a given stride
and computing the dot product between the kernel and the currently pooled part of the
image (Figure 3.8). The result is then stored in a 2D feature map. The main objective of
the convolutional layer is to extract spatial features from the input image. Typically, the
first convolutional layer extracts quite simple features such as edges. However, by stacking
multiple convolutional layers, the CNN can learn more complex features. [33][3][40]

Figure 3.8: Image convolution [37].

23

Usually, every convolutional layer is followed by a pooling layer, whose job is to reduce
the feature map’s dimensionality and thus decrease the computational complexity. In most
CNNs, the pooling layers use a kernel size of 2× 2 and stride of 2. This scales the feature
map down to 25 % of its original size as it maps 4 pixels into one. The standard pooling
layer is the max pooling layer, which simply takes the maximum value from the portion of
the image covered by the kernel. [33][3][40]

3.9 CNN Architectures
Over the past decade, many CNN architectures have been presented with various modifica-
tions. While modifications to the architectures, such as structural reformulation, regular-
ization, and parameter optimization, have played a role in improving performance, the most
significant advancements have come from processing unit reorganization and the develop-
ment of novel blocks. Processing unit reorganization refers to the optimization of hardware
for CNN computations. This includes using specialized hardware, such as Graphics Pro-
cessing Units (GPUs) and Tensor Processing Units (TPUs), to accelerate the computation
of CNNs. These advancements have allowed for the processing of larger datasets and deeper
architectures. Novel blocks refer to the building blocks of CNN architectures, which have
been improved to better capture essential features in the input data. The most significant
development has been using deeper architectures, allowing for better feature representation.
In the following section ResNet model will be described as it is used later for experiments.
However, many widely used models exist, such as VGGNet, DensNet, and EfficientNet.
They all differ in their input size, depth, and robustness. Understanding these architec-
tures’ features can help engineers choose the most suitable one for their task. [2]

3.9.1 ResNet
ResNet (Residual Network) was first introduced in 2015 by four Microsoft researchers. The
idea is described in their paper ”Deep Residual Learning for Image Recognition“ [23]. The
objective was to design a deep neural network that would not suffer from the vanishing
gradient compared to other CNN architectures that started encountering such difficulties
as more layers were added. ResNet uses residual blocks (Figure 3.9) to build the network.
The residual block contains one or more convolutional layers alongside a skip connection
that adds the input of the residual block (in other words, output from the previous layers)
to the output features created by the residual block. The skip connection allows setting
up an alternate shortcut for the gradient to pass through. This enables the network to
learn the residual mappings, i.e., the difference between the input and output of the con-
volutional layers. Doing so shows that the network converges much more easily despite
having hundreds of layers. Resnet comes in many variants, including ResNet-34, ResNet-
50, ResNet-101, and ResNet-152. The number of layers in the network comes as a part of
the model’s name, e.g., ResNet-50 has 50 layers [2][8].

24

Figure 3.9: Residual block [23].

3.10 Object Detection with CNNs
Object detection is a fundamental task in computer vision that focuses on identifying and lo-
cating objects within an image or video frame. It plays a crucial role in various applications,
including autonomous vehicles, robotics, video surveillance, and image recognition systems.
Over the years, object detection has evolved significantly, and Convolutional Neural Net-
works (CNNs) have become the backbone of modern object detection methods. These deep
learning models have demonstrated superior performance compared to traditional machine
learning techniques. Object detection models can generally be categorized into two types
[38] [31]:

• Single-stage networks are designed for speed and efficiency. These models directly
predict object locations and class probabilities in a single forward pass without re-
quiring a separate region proposal step. Popular single-stage networks include YOLO
(You Only Look Once) and SSD (Single Shot MultiBox Detector).

• Two-stage networks divide the object detection task into two stages: a region
proposal step and a classification and bounding box regression. This approach allows
for more accurate localization of objects at the cost of increased complexity and
computation time. Examples of two-stage networks include R-CNN (Region-based
Convolutional Neural Networks) and its variants, such as Fast R-CNN and Faster
R-CNN.

3.10.1 Faster R-CNN
Faster R-CNN is a deep convolutional network designed for object detection, which evolved
from its predecessors, R-CNN and Fast R-CNN. R-CNN is the first attempt at an object
detection model that uses a pre-trained CNN to extract the features from generated region
proposals made by a Selective search algorithm. However, the R-CNN suffers from slow
processing and high storage requirements. Fast R-CNN improved upon R-CNN by imple-
menting the ROI (region of interest) Pooling layer, enabling shared computations across
region proposals, which increased speed and reduced storage needs. However, Fast R-CNN
still relies on the time-consuming Selective Search algorithm. Faster R-CNN addresses this
limitation by introducing the Region Proposal Network (RPN), a fully convolutional net-
work that generates region proposals. The final architecture of Faster R-CNN comprises
two main modules: the RPN, which generates region proposals, and Fast R-CNN, which
detects objects within these proposed regions. The process is illustrated in Figure 3.10. [17]

25

Figure 3.10: Faster R-CNN architecture [17].

3.10.2 CenterNet
CenterNet is an object detection architecture (Figure 3.11) , first published in 2019, that
does not rely on anchors (predefined bounding boxes of specific size and shape), typically
used in other detection models. Anchor-based models generate many incorrect predictions,
which have to be filtered out by the NMS (Non-Maximum Suppression). Instead, CenterNet
uses a more efficient method to eliminate irrelevant predictions, speeding up the detection
process. The model generates a confidence heatmap highlighting objects’ centers in an
image. CenterNet can discard unnecessary predictions without needing computationally
intensive NMS techniques by focusing on object centers. In addition to predicting a confi-
dence heatmap that shows object centers, CenterNet also has a second part, similar to other
detectors, that estimates the size (width and height) and position (x- and y-coordinates) of
the bounding boxes relative to the object centers determined by the heatmap. By working
together, these two components enable accurate and efficient object detection without the
need for anchor boxes. [1]

Figure 3.11: CenterNet architecture [1].

26

Chapter 4

Solution Proposal and
Implementation

This chapter presents a solution for detecting and classifying line damage and moisture
effects in fingerprint images, outlining the implementation process. Initially, the prereq-
uisites for training the convolutional neural networks are discussed, which involve several
crucial steps. These include acquiring a dataset of healthy synthetic master prints, intro-
ducing damage to those master prints, and generating annotation files containing essential
information about the damage, such as the bounding boxes and the respective damage
class.

Subsequently, the chapter delves into training the three most performant combinations
of CNN architectures and object detection approaches, as identified in Katerina Fortova’s
work [16]. Each model will undergo four training iterations, with variations in the dataset,
hyperparameters, or both. This iterative approach aims to progressively enhance the mod-
els’ performance and observe the effects of the individual adjustments.

4.1 Fingerprint Images Dataset
For the purpose of this work, a generated dataset of 3000 synthetic master prints was
provided by the STRaDe research group from the Brno University of Technology. To
augment the number of samples, the dataset was expanded by applying a horizontal flip
to each image and introducing a minor rotation of up to 10 degrees in either direction
with a 50 % likelihood for increased variation. Given that this work addresses two types
of damage, the final dataset of 6000 images was partitioned into three distinct groups.
The first group consists of 2900 images dedicated to moisture generation, while the second
group, also containing 2900 images, is reserved for line damage generation. The residual 200
undamaged images are retained for subsequent testing. The distribution of these groups is
illustrated in the Table 4.1.

27

Damage type Synthetic fingerprints
Moisture 2900

Line damage 2900
Healthy 200
Total 6000

Table 4.1: Dataset split for damage generation.

The line damage generation is made possible by a python console application devel-
oped by Vanessa Joriova [25]. This application is capable of generating three previously
mentioned types of line damage as described in Section 2.3.2: hairs, creases, and scars.
Numerous configuration options are available for damage generation, such as length, width,
intensity for creases, and patch or outline parameters for scars. The ultimate configuration
applied to each sample is determined randomly, ensuring equal probability for each damage
type.

A C++/Qt application created by Veronika Svoradova [43] is utilized for moisture gen-
eration. To enable execution by an external script for automated generation, the application
was modified into a console application. Similar to the line damage generator, moisture
intensity is randomly assigned for each sample.

Further, the damaged samples were divided into training, validation, and test sets in
a 70:15:15 ratio (Table 4.2). The test set additionally incorporates 200 healthy samples.
Two distinct datasets will be employed throughout the experiments to explore different
approaches for generating bounding boxes, as explained in the following section.

Damage type Training set Validation set Test set
Line damage 2030 435 435

Moisture 2030 435 435
Healthy 0 0 200
Total 4060 870 1070

Table 4.2: Dataset split resulting in training, validation, and test set.

4.2 Bounding Boxes
Bounding boxes represents a crucial part of training models to detect objects within images.
While the line damage generator application did not initially provide bounding boxes, it
did save the coordinates of the pixels where the damage was introduced. Consequently,
the application was modified to make use of this information and generate bounding boxes
accordingly.

The first and more straightforward approach to creating bounding boxes involved taking
the damaged pixels and rendering them on a black canvas in white. Then, a bitwise_and
operation was performed between the damaged canvas and the binary mask to eliminate
damaged pixels outside the fingerprint (Figure 4.1). In the final step, the bounding box
was created by finding the minimum and maximum coordinates of the remaining damaged
pixels. This approach is illustrated in Figure 4.2.

28

Figure 4.1: All damaged pixels (left) and damaged pixels inside the fingerprint (right).

The previously mentioned approach, while simplistic, raises concerns regarding its effi-
ciency in handling specific scenarios, such as when a lengthy hair is generated diagonally
across the fingerprint or when multiple small creases are dispersed throughout the finger-
print area. In such cases, the resulting bounding box could be disproportionally large,
encompassing nearly the entire fingerprint. This excessive size could negatively impact the
model’s performance, diminishing its capacity to accurately detect and classify the relevant
damage features within the fingerprint images.

Figure 4.2: Bounding boxes for hair damage (left) and creases (right).

To address this potential issue, a second approach was developed. Initially, damaged
pixels within the fingerprint were identified and clustered based on their connectivity to
other damaged pixels. In essence, each cluster represents a group of damaged pixels sur-
rounded by an undamaged area. These clusters were then filtered according to the ratio of
damaged to undamaged area within their bounding boxes. A threshold of 0.5 was estab-
lished, implying that a cluster’s bounding box must contain at least 50 % damaged pixels.
Accepted clusters were then removed from the damaged canvas.

The remaining clusters that were not immediately accepted underwent further process-
ing using a separate algorithm. This algorithm iteratively examines lines from the top to
the bottom of the bounding box, encompassing all remaining damage. For each line, the
left and right extremes are identified. The left extreme is defined as the first damaged co-

29

ordinate at the transition between undamaged and damaged pixels. In contrast, the right
extreme is the last damaged coordinate at the transition between damaged and undamaged
pixels. After examining a fixed number of lines, in this case, 12, the extremes are divided
into groups. This step is primarily employed to handle creases, as multiple creases may
appear on the same line. In contrast, there is typically only one group for hairs or scars
since the damage is considered as a whole.

Using the extremes from each group and the processed lines, the final bounding box
is created by calculating the min_x, max_x, min_y, and max_y coordinates. The algorithm
continues until the bottom of the bounding box (encompassing all the damage) is reached.
The outcome of this approach is illustrated in Figure 4.3 and can be compared to the
Figure 4.2.

Figure 4.3: Result of a different approach for finding bounding boxes: hair damage (left)
and creases (right).

Conversely, the moisture generator application supplied a data structure comprising
all bounding boxes for the generated damage. However, visualizing these bounding boxes
made it evident that they were not always accurate. Some bounding boxes were depicted
outside the fingerprint, while others heavily overlapped, sharing the same area (Figure 4.4).
Although the latter issue might not pose significant problems, efforts were made to reduce
the number of overlapping bounding boxes to improve the overall accuracy and efficiency
of the model training process.

30

Figure 4.4: Original moisture bounding boxes.

The process of modifying moisture bounding boxes was more straightforward compared
to that of line damage. The first step involved cropping any bounding boxes that extended
beyond the fingerprint’s bounding box. The second step removed all bounding boxes whose
area remained predominantly outside the fingerprint, with a removal threshold set at ap-
proximately 70 %. The final step consisted of performing ten iterations of merging bound-
ing boxes with at least 70 % intersection in their areas. The number of iterations was
determined through experimentation, as additional iterations did not contribute to further
merging.

Figure 4.5: Modified moisture bounding boxes.

Throughout the process of handling bounding boxes in both the Python line damage
generator and the C++ moisture generator, the OpenCV computer vision library was
employed as a valuable tool to facilitate many of the mentioned tasks. [9]

31

4.3 Data Annotations
In order to utilize the models from Katerina Fortova’s work [16], it is necessary to adhere
to a specific annotation format. These annotations are stored in XML files, with each
file containing information about its corresponding image in the <file> tag, the image
dimensions in the <size> tag, and a list of bounding boxes in the <object> tag. Each
bounding box is defined by its coordinates <xmin>, <ymin>, <xmax>, and <ymax> and a
<name> tag that specifies the type of damage enclosed within the bounding box. The
following listing presents an example of an XML file containing annotations for a single
moisture image:

<annotation>
<filename>moisture_SG_1689_2.png</filename>
<size>

<width>416</width>
<height>560</height>

</size>
<object>

<name>moisture</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>

<xmin>95</xmin>
<ymin>144</ymin>
<xmax>134</xmax>
<ymax>185</ymax>

</bndbox>
</object>
<object>

<name>moisture</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>

<xmin>147</xmin>
<ymin>196</ymin>
<xmax>223</xmax>
<ymax>279</ymax>

</bndbox>
</object>

</annotation>

To simplify the process and given that the generators were written in different pro-
gramming languages, the generators were designed to output the coordinates of bounding
boxes to the standard output. The script executing these generators processed this output,
generating the final XML file.

32

4.4 Used Models
As previously mentioned, the models utilized in this work are the three best-performing
combinations of backbone CNNs for feature extraction and object detection approaches.
These combinations were selected based on their performance on a dataset containing real
and synthetic fingerprints in [16] master thesis. The list is as follows:

• Faster R-CNN ResNet50 V1 640×640

• Faster R-CNN ResNet101 V1 640×640

• CenterNet Resnet101 V1 FPN 512×512

4.4.1 Model Configuration
Each model has its own configuration file called pipeline.config, which stores all the in-
formation about the model, such as architecture, hyperparameters, and data input settings.
The configuration files may differ from model to model due to their unique architectures.
However, some core parameters are identical for all of them. Almost all parameters adjusted
in attempts to improve the results are shared between the models. The only exception is
the use_dropout along with the keep_dropout_probability parameter, which are not
present in the CenterNet approach.

• batch_size: determines the number of training samples processed at once during
a single pass through the model, in other words, the number of samples used for
one update of the network’s weights. Larger batch sizes can lead to a smoother
convergence but may require more memory, especially if the model is large. A smaller
batch size can produce noisier gradient estimates, but it can also help to avoid local
minima, potentially leading to better solutions.

• num_steps: the overall number of training steps to perform.

• learning_rate: all models trained in this work use cosine learning rate decay. This
method is slowly decreasing the learning rate with increased steps performed [12].
The following parameters define the configuration of the decay:

– total_steps: specifies the total number of steps over which the cosine decay,
even using the warmup phase, is performed. In the case of this work, it is always
equal to the num_steps parameter.

– learning_rate_base: is the initial learning rate value used by the cosine decay
learning rate. The learning rate will gradually decrease from this value over the
training steps.

– warmup_learning_rate: is the initial learning rate used during the warmup
phase of training. It is lower than the base learning rate, allowing the model to
gradually adapt to the training data before larger updates are applied.

– warmup_steps: specifies the number of steps the model takes during the warmup
phase. During this period, the learning rate linearly increases from the warmup
learning rate to the base learning rate.

33

• use_dropout: a boolean parameter indicating whether a dropout should be used
during training. Dropout is a regularization technique that helps prevent overfitting
by randomly setting a portion of the neurons to zero during the training process.
If a neuron is dropped, other neurons have to step in handle the correct feature
representation. This can lead to a network capable of better generalization [10].

• keep_dropout_probability: represents a probability that a neuron will be kept
during training. In this work, the probability is set to 0.75, meaning that each neuron
has a 75 % chance of being kept during training.

4.4.2 Model Evaluation Metrics
The master thesis [16] provides various evaluation metrics to assess the model’s performance.
For the purpose of this work, the following metrics were chosen:

• Average correctly detected and classified area: This metric represents the per-
centage size of the correctly detected and classified area relative to all annotated
bounding boxes. The implementation involves calculating the intersection of all de-
tected and annotated bounding box pixels for correct classification. If the metric’s
value is 100 %, then the model would also correctly predict all annotated bounding
boxes. Since fingerprints without damage have no annotations in their annotation
files and do not contain any damaged bounding boxes, a 0 % result is obtained if
any bounding box prediction is made. In contrast, a 100 % result is achieved if no
bounding box is predicted.

• Average not detected annotated area: This metric measures the percentage size
of the annotated area within bounding boxes that the trained model did not detect
during evaluation.

• Average extra detected area: This metric indicates the percentage of pixels in
predicted bounding boxes that were detected in addition to all annotated bounding
boxes. The implementation calculates the difference between the pixels of the pre-
dicted bounding boxes and the pixels of the annotated bounding boxes. For example,
if the value of this metric was 15 %, then 15 % of the area of all predicted bounding
boxes had not been annotated.

• Average detection score of a correctly detected and classified area: When
a trained model predicts a bounding box, it assigns a detection score alongside the
prediction. The detection score signifies the confidence level of the trained model
regarding the classification of a bounding box in a given class. A detection score
is obtained for each correctly detected and classified pixel. However, a given pixel
may be part of multiple predicted bounding boxes with different detection scores, in
which case only the highest detection score of all possible occurrences is considered.
Subsequently, all correctly detected and classified pixels and their detection scores are
summed, and the average is calculated.

4.5 Experiments
This final section of the chapter delves into the experiments conducted with the models
referenced in Section 4.4. The subsections are primarily centered around experimenting with

34

a single architecture, employing various configuration parameters or datasets, specifically
regarding the annotation’s bounding box types. Each experiment is assigned a unique ID,
which is used in tables and figures for identification purposes. Every experiment undergoes
a new training process, followed by testing and evaluation. Within each experiment, a table
outlining the configuration parameters for each model is presented, alongside a table that
evaluates the models based on the metrics listed in Section 4.4.2. Due to the lengthy names
of metrics, tables use the following abbreviations:

• AVG correct D&C - Average correctly detected and classified area

• AVG not detected - Average not detected annotated area

• AVG extra detected - Average extra detected area

• AVG detection score D&C - Average detection score of a correctly detected and clas-
sified area

It is important to mention that two distinct datasets for training are utilized through-
out the experiments. The first dataset comprises fingerprints damaged by the methods
depicted in Figures 4.2 and 4.4, whereas the second dataset employs approaches illustrated
in Figures 4.3 and 4.5.

During the evaluation phase of the experiments, the model assesses each image within
the test dataset. For every analyzed image, the predicted bounding boxes are drawn and
marked with their associated damage type and detection score. Sample images illustrating
these predictions can be found in Appendix B.

4.5.1 Faster R-CNN ResNet50 V1 640×640 Experiments
This section explores experiments with Faster R-CNN combined with a ResNet50. The first
experiment was configured identically to the master thesis [16]. In the second experiment,
several parameters were modified, including adding 5 000 training steps, reducing the base
and warmup learning rates, and introducing a 25 % chance of dropping a neuron during
training. Attempts were made to increase the batch size to values like 16 or 32; however, this
was impossible due to GPU memory limitations. Therefore, the batch size was increased
only by two samples. Both experiments were trained on the first dataset, and their results
did not significantly differ. Nevertheless, as the first experiment took less time to train, the
final experiment using the second dataset was configured in the same manner as the first
experiment. Individual configurations are presented in Table 4.3.

ID lr_base num_steps warmup_lr warmup_steps batch_size dropout dataset
1 0.04 25 000 0.013333 2 000 2 - first
2 0.002 30 000 0.0002 3 000 4 0.25 first
3 0.04 25 000 0.013333 2 000 2 - second

Table 4.3: Faster R-CNN ResNet50 V1 640×640 training configurations.

The outcomes of the experiments can be found in Tables 4.4, 4.5, and 4.6. Among
the three experiments, the first one had the best results, achieving an average correctly
detected and classified area of 89.277 %. The second experiment followed closely with
87.522 %. Although it demonstrated improved moisture accuracy, it misclassified 10.5 %
of healthy fingerprints as damaged. The final experiment, which was trained on the second

35

dataset, ended up with the lowest total accuracy among the three. Its line damage accuracy
was significantly worse, falling short by 20 %. However, the moisture detection performance
was increased quite a bit, with an added accuracy of approximately 6-7 % compared to the
other two experiments. It is important to highlight that when comparing the outcomes of
the first and third experiments, which differ solely in the datasets used, the confidence in
predictions on the first dataset was higher, even for moisture detection, where the accuracy
was lower.

Metric Line damage Moisture Healthy Total
AVG correct D&C 92.621 81.004 100.0 89.277
AVG not detected 7.379 18.996 - 10.723

AVG extra detected 3.895 3.939 - 3.185
AVG detection score D&C 96.223 92.678 - 76.796

Table 4.4: Metrics results for ID 1.

Metric Line damage Moisture Healthy Total
AVG correct D&C 92.443 81.693 89.5 87.522
AVG not detected 7.557 18.307 - 12.478

AVG extra detected 4.618 4.408 - 3.67
AVG detection score D&C 96.689 90.995 - 76.302

Table 4.5: Metrics results for ID 2.

Metric Line damage Moisture Healthy Total
AVG correct D&C 72.183 87.902 98.5 83.493
AVG not detected 27.817 12.098 - 16.507

AVG extra detected 21.574 5.7 - 11.088
AVG detection score D&C 70.368 89.079 - 64.822

Table 4.6: Metrics results for ID 3.

4.5.2 Faster R-CNN ResNet101 V1 640×640 Experiments
This section is experimenting with the combination of Faster R-CNN and ResNet101. All
the experiments have the same configuration as ResNet50 in the previous section. While
there was a slight improvement in the second experiment, the third one, which employs the
second dataset, utilized the configuration from the first experiment once more, primarily
due to time complexity considerations (Table 4.7).

ID lr_base num_steps warmup_lr warmup_steps batch_size dropout dataset
4 0.04 25 000 0.013333 2 000 2 - first
5 0.002 30 000 0.0002 3 000 4 0.25 first
6 0.04 25 000 0.013333 2 000 2 - second

Table 4.7: Faster R-CNN ResNet101 V1 640×640 training configurations.

The results of these experiments can be found in Tables 4.8, 4.9, and 4.10. In this
case, using ResNet101, the modified parameters in the second experiment outperformed

36

the original configuration, although it resulted in a minor difference of 0.5 % and a total
accuracy of 90.646 %. The third experiment, which utilized numerous small bounding
boxes for line damage annotation, created an even larger gap in the model’s performance
compared to ResNet50. The line damage accuracy dropped to 70.596 %, a 25 % decrease
compared to the first two experiments that used a simpler bounding box approach.

When comparing the best results of ResNet50 and ResNet101, the latter surpassed the
former by roughly 3 % in line damage accuracy, leading ResNet101 to achieve a slightly
higher overall accuracy. Furthermore, ResNet101 demonstrated greater confidence in its
predictions than ResNet50, reaching almost 100 % confidence for the line damage class.

Metric Line damage Moisture Healthy Total
AVG correct D&C 95.555 80.637 99.0 90.134
AVG not detected 4.445 19.363 - 9.866

AVG extra detected 3.506 4.205 - 3.135
AVG detection score D&C 99.66 94.331 - 78.865

Table 4.8: Metrics results for ID 4.

Metric Line damage Moisture Healthy Total
AVG correct D&C 95.566 81.884 99.0 90.646
AVG not detected 4.434 18.116 - 9.354

AVG extra detected 3.884 4.385 - 3.361
AVG detection score D&C 99.301 92.486 - 77.969

Table 4.9: Metrics results for ID 5.

Metric Line damage Moisture Healthy Total
AVG correct D&C 70.596 88.145 100.0 83.227
AVG not detected 29.404 11.855 - 16.773

AVG extra detected 20.74 5.781 - 10.782
AVG detection score D&C 70.986 90.225 - 65.539

Table 4.10: Metrics results for ID 6.

4.5.3 CenterNet Resnet101 V1 FPN 512×512 Experiments
In the final experiments, CenterNet and ResNet101 were combined. As this model uses an
input image size of 512× 512 pixels, the number of steps was set to 60 000, anticipating a
faster processing time. This is over twice the amount of steps used for the Faster-RCNN
models. In the first experiment, the original configuration was left unchanged. The second
experiment attempted to increase the batch size to a number greater than 4, given the
lower image resolution. However, GPU limitations were exceeded once again. As a result,
the second experiment increased the batch size from 2 to 4 and decreased the learning rate
from 0.003 to 0.0005 and the warmup learning rate from 0.0003 to 0.00005. This change led
to a significant improvement in prediction accuracy. Consequently, the third experiment,
trained on the second dataset, utilized the configuration from the second experiment. The
final confugurations are also displayed in Table 4.11.

37

ID lr_base num_steps warmup_lr warmup_steps batch_size dataset
7 0.003 60 000 0.0003 4 000 2 first
8 0.0005 60 000 0.00005 4 000 4 first
9 0.0005 60 000 0.00005 4 000 4 second

Table 4.11: CenterNet Resnet101 V1 FPN 512×512 training configurations.

The final experiments are displayed in the Tables 4.12, 4.13, and 4.14: The outcomes of
the first experiment are rather disappointing compared to the initial experiments of Faster-
RCNN models, with the total accuracy lagging behind by approximately 5 %. However,
adjusting the parameters in the second experiment led to a significant improvement, adding
over 5 % accuracy to line damage and 6 % accuracy to moisture detection, resulting in a
total accuracy of 89.414 %. The third experiment, trained on the second dataset, did
not work well with the CenterNet object detection approach. While the performance of
Faster-RCNN models dropped by 7 %, here it dropped by a full 36 % compared to the best
experiment using CenterNet. This is a very significant drop in performance, making the
network unusable.

Metric Line damage Moisture Healthy Total
AVG correct D&C 88.313 74.006 100.0 84.681
AVG not detected 11.687 25.994 - 15.319

AVG extra detected 3.276 4.492 - 3.158
AVG detection score D&C 78.235 64.493 - 58.025

Table 4.12: Metrics results for ID 7.

Metric Line damage Moisture Healthy Total
AVG correct D&C 93.878 80.082 100.0 89.414
AVG not detected 6.122 19.918 - 10.586

AVG extra detected 2.311 4.047 - 2.585
AVG detection score D&C 91.064 71.59 - 66.126

Table 4.13: Metrics results for ID 8.

Metric Line damage Moisture Healthy Total
AVG Correct D&C 19.602 65.669 100.0 53.358
AVG not detected 80.398 34.331 - 46.642

AVG extra detected 8.262 4.703 - 5.271
AVG detection score D&C 41.109 64.853 - 43.078

Table 4.14: Metrics results for ID 9.

4.5.4 Summary of Achieved Results
This final section of the chapter presents a comprehensive summary of the results obtained
from all experiments conducted. Three detection models, namely Faster-RCNN ResNet50,
Faster-RCNN ResNet101, and CenterNet ResNet101, were each trained three times with
varying parameters or datasets.

38

The primary objective was to enhance the performance of each model compared to
the initial experiment, which utilized original parameters taken from [16]. The second
experiment aimed to augment performance by modifying the hyperparameters of the trained
models, whereas the third experiment sought to further boost performance by adopting a
more sophisticated approach for annotating bounding boxes.

The average correctly detected and classified area serves as the most informative metric
and is thus employed to draw final conclusions. The Figure 4.6 illustrates the comparisons
between the first and second experiments. Alterations in hyperparameters for the Faster-
RCNN models exhibited negligible impact. Utilizing ResNet50 as a backbone resulted in a
minor performance decline while employing ResNet101 led to a slight performance increase.
Conversely, the CenterNet model demonstrated a significant performance improvement,
achieving the greatest enhancement among the three models.

Figure 4.6: Performance of the first and second experiments.

For the third experiment, the hyperparameters were selected based on superior per-
formance in either the first or second experiments. The sole distinction was the method
employed for annotating bounding boxes. However, the outcomes deviated significantly
from initial expectations. Both Faster-RCNN models displayed a noticeable decline in total
accuracy, and the CenterNet model experienced a drastic performance drop. These results
are depicted in Figure 4.7, where the abovementioned experiments can be seen under IDs
3, 6, and 9.

39

Figure 4.7: Average correctly detected and classified area for each experiment.

The suboptimal performance of third experiments is attributed to the approach adopted
for annotating line damage, as illustrated in Figure 4.8. This method employed numerous
small bounding boxes to cover line damage, minimizing the extent of the healthy area being
annotated. The issue likely stems from the object detection models treating each bounding
box as a separate object, thereby failing to learn the global pattern of line damage.

Figure 4.8: Comparison of third experiments for line damage detection.

While the endeavor to enhance annotations for line damage detection proved unsuccess-
ful, the attempt to refine moisture bounding boxes yielded positive results. The performance
of Faster-RCNN ResNet50 and ResNet101 models improved, as evidenced by Figure 4.9.

40

The CenterNet model did not benefit from the altered moisture annotation approach, likely
due to the heavy influence of line damage fingerprint images.

Figure 4.9: Comparison of third experiments for moisture detection.

41

Chapter 5

Conclusion

The primary goal of this bachelor thesis was to investigate three existing object detection
models and develop enhancements for the task of detecting and classifying line damage and
moisture in fingerprint images. The Faster-RCNN ResNet50, Faster-RCNN ResNet101,
and CenterNet ResNet101 models were chosen for experimentation in order to obtain the
most optimal results. The experiments focused on improving each model’s performance
by adjusting hyperparameters and exploring alternative methods of annotating bounding
boxes, which were incorporated into applications capable of generating line damage and
moisture.

Although some models, such as CenterNet ResNet101, demonstrated substantial perfor-
mance improvements upon hyperparameter adjustment, the attempt to refine annotations
for line damage detection was unsuccessful. This was attributed to the object detection
models treating each bounding box as a separate entity, which prevented the models from
learning the global pattern of line damage. In contrast, refining moisture bounding boxes
enhanced performance for Faster-RCNN ResNet50 and ResNet101 models. Moreover, the
Faster R-CNN with ResNet101 model delivered the best overall performance, achieving a
total accuracy of 90.646 % and the highest confidence when assigning a bounding box to a
class, with an average of 78.865 %.

To further improve the performance of the models, a comprehensive revision of the
bounding box annotation system would be recommended. Instead of employing small
bounding boxes to cover line damage, a single bounding box could encompass the entire
line damage area, utilizing a rotated bounding box for diagonal lines. In the case of creases,
each crease would have its own bounding box. Additional performance improvements could
be realized through further hyperparameter experimentation, particularly with batch size
and learning rate, as all models experienced convergence difficulties. However, in the case
of batch size, such experimentation would necessitate more powerful GPUs with increased
memory capacity or multi-GPU training.

Alternatively, considering a different approach, such as segmentation or pixel-wise clas-
sification, may be more suitable for this task. Assigning a class label to each pixel in the
image rather than detecting distinct objects would enable the model to identify damaged
fingerprint regions without requiring bounding boxes. U-Net and DeepLab are popular
architectures for similar purposes and may be worth exploring.

42

Bibliography

[1] Almog, U. CenterNet. 2021. Available at:
https://towardsdatascience.com/centernet-explained-a7386f368962.

[2] Alzubaidi, L., Zhang, J., Humaidi, A. J., Al Dujaili, A., Duan, Y. et al. Review
of deep learning: Concepts, CNN architectures, challenges, applications, future
directions. Journal of big Data. Springer. 2021, vol. 8, p. 1–74. DOI:
https://doi.org/10.1186/s40537-021-00444-8.

[3] Amini, A. MIT 6.S191: Convolutional Neural Networks. 2022. Available at:
https://www.youtube.com/watch?v=uapdILWYTzE.

[4] Baheti, P. Activation Functions in Neural Networks. Available at:
https://www.v7labs.com/blog/neural-networks-activation-functions.

[5] Bansal, R., Sehgal, P. and Bedi, P. Minutiae extraction from fingerprint images-a
review. ArXiv preprint arXiv:1201.1422. 2011.

[6] Bentley, P. How does a smartphone ‘read’ my fingerprint? Available at:
https://www.sciencefocus.com/science/smartphone-fingerprint-scanners/.

[7] Bento, C. Stochastic Gradient Descent explained in real life. 2021. Available at:
https://towardsdatascience.com/stochastic-gradient-descent-explained-in-real-
life-predicting-your-pizzas-cooking-time-b7639d5e6a32.

[8] Boesch, G. Deep Residual Networks (ResNet, ResNet50). 2023. Available at:
https://viso.ai/deep-learning/resnet-residual-neural-network/.

[9] Bradski, G. The OpenCV Library. Dr. Dobb’s Journal of Software Tools. 2000.

[10] Brownlee, J. Dropout Regularization in Deep Learning Models with Keras. 2022.
Available at: https://machinelearningmastery.com/dropout-regularization-deep-
learning-models-keras/.

[11] Cooney, L. Introduction to Fingerprint Evidence. Available at:
https://projects.nfstc.org/ipes/presentations/Cooney-prints.pdf.

[12] Correa, S. Cosine Learning rate decay. 2019. Available at:
https://scorrea92.medium.com/cosine-learning-rate-decay-e8b50aa455b.

[13] Drahanský, M. Biometrické systémy - Studijní opora. Available at:
https://www.fit.vutbr.cz/study/courses/BIO/private/BIO_Studijni_opora.pdf.

43

https://towardsdatascience.com/centernet-explained-a7386f368962
https://www.youtube.com/watch?v=uapdILWYTzE
https://www.v7labs.com/blog/neural-networks-activation-functions
https://www.sciencefocus.com/science/smartphone-fingerprint-scanners/
https://towardsdatascience.com/stochastic-gradient-descent-explained-in-real-life-predicting-your-pizzas-cooking-time-b7639d5e6a32
https://towardsdatascience.com/stochastic-gradient-descent-explained-in-real-life-predicting-your-pizzas-cooking-time-b7639d5e6a32
https://viso.ai/deep-learning/resnet-residual-neural-network/
https://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/
https://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/
https://projects.nfstc.org/ipes/presentations/Cooney-prints.pdf
https://scorrea92.medium.com/cosine-learning-rate-decay-e8b50aa455b
https://www.fit.vutbr.cz/study/courses/BIO/private/BIO_Studijni_opora.pdf

[14] Drahanský, M. Hand-Based Biometrics: Methods and Technology. The Institution
of Engineering and Technology, 2018. 1–430 p. ISBN 978-1-78561-224-4. Available at:
https://www.fit.vut.cz/research/publication/11556.

[15] Dylevský, P. Kožní ústrojí - Anatomie kůže. Available at:
https://vos.palestra.cz/skripta/anatomie/12a1.htm.

[16] Fořtová, K. Analýza konvolučních neuronových sítí pro detekci a klasifikaci
poškození otisku prstu. Brno, CZ, 2022. Diplomová práce. Vysoké učení technické v
Brně, Fakulta informačních technologií. Available at:
https://www.fit.vut.cz/study/thesis/25006/.

[17] Gad, A. F. Faster R-CNN Explained for Object Detection Tasks. 2021. Available at:
https://blog.paperspace.com/faster-r-cnn-explained-object-detection/.

[18] Greenberg, S., Aladjem, M., Kogan, D. and Dimitrov, I. Fingerprint image
enhancement using filtering techniques. In:. February 2000, vol. 15, p. 322–325 vol.3.
DOI: https://doi.org/10.1109/ICPR.2000.903550. ISBN 0-7695-0750-6.

[19] Grujičić, R. Papillary layer of dermis. Available at:
https://www.kenhub.com/en/library/anatomy/papillary-layer-of-dermis.

[20] Günther, F. and Fritsch, S. Neuralnet: training of neural networks. R J. 2010,
vol. 2, no. 1, p. 30.

[21] Gupta, D. Fundamentals of Deep Learning – Activation Functions and When to Use
Them? 2020. Available at: https://www.analyticsvidhya.com/blog/2020/01/
fundamentals-deep-learning-activation-functions-when-to-use-them/.

[22] Géron, A. Neural networks and deep learning. O’Reilly Media, Inc., 2018. Available
at:
https://learning.oreilly.com/library/view/neural-networks-and/9781492037354/.

[23] He, K., Zhang, X., Ren, S. and Sun, J. Deep Residual Learning for Image
Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2016, p. 770–778. DOI: https://doi.org/10.1109/CVPR.2016.90.

[24] Jain, A. and Pankanti, S. Chapter 23 - Fingerprint Recognition. In: Bovik, A.,
ed. The Essential Guide to Image Processing. Boston: Academic Press, 2009,
p. 649–676. DOI: https://doi.org/10.1016/B978-0-12-374457-9.00023-8. ISBN
978-0-12-374457-9. Available at:
https://www.sciencedirect.com/science/article/pii/B9780123744579000238.

[25] Jóriová, V. Generování čárových poškození do syntetického otisku prstu. Brno, CZ,
2022. Bakalářská práce. Vysoké učení technické v Brně, Fakulta informačních
technologií. Available at: https://www.fit.vut.cz/study/thesis/25005/.

[26] Jun, W. J. How Does an Optical Fingerprint Sensor Work? Available at:
https://www.youtube.com/watch?v=CLdrbn8XYIw.

[27] Kanich, O., Kośťák, D. and Drahanský, M. Psoriasis Damage Simulation into
Synthetic Fingerprint. In: 2019 International Conference of the Biometrics Special
Interest Group (BIOSIG). 2019, p. 1–4. ISSN 1617-5468.

44

https://www.fit.vut.cz/research/publication/11556
https://vos.palestra.cz/skripta/anatomie/12a1.htm.
https://www.fit.vut.cz/study/thesis/25006/
https://blog.paperspace.com/faster-r-cnn-explained-object-detection/
https://www.kenhub.com/en/library/anatomy/papillary-layer-of-dermis
https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-use-them/
https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-use-them/
https://learning.oreilly.com/library/view/neural-networks-and/9781492037354/
https://www.sciencedirect.com/science/article/pii/B9780123744579000238
https://www.fit.vut.cz/study/thesis/25005/
https://www.youtube.com/watch?v=CLdrbn8XYIw

[28] Koech, K. E. Cross-Entropy Loss Function. 2020. Available at:
https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e.

[29] Kolarsick, P. A., Kolarsick, M. A. and Goodwin, C. Anatomy and physiology
of the skin. Journal of the Dermatology Nurses’ Association. LWW. 2011, vol. 3,
no. 4, p. 203–213. DOI: https://doi.org/10.1097/JDN.0b013e3182274a98.

[30] Maltoni, D., Maio, D., Jain, A. K. and Prabhakar, S. Handbook of fingerprint
recognition. Springer Science & Business Media, 2009.

[31] MathWorks. What Is Object Detection? Available at:
https://www.mathworks.com/discovery/object-detection.html.

[32] Olsen, M. A., Dusio, M. and Busch, C. Fingerprint skin moisture impact on
biometric performance. In: IEEE. 3rd International Workshop on Biometrics and
Forensics (IWBF 2015). 2015, p. 1–6. DOI:
https://doi.org/10.1109/IWBF.2015.7110223.

[33] O’Shea, K. and Nash, R. An introduction to convolutional neural networks. ArXiv
preprint arXiv:1511.08458. 2015. DOI: https://doi.org/10.48550/arXiv.1511.08458.

[34] Pere, C. What are Loss Functions? 2020. Available at:
https://towardsdatascience.com/what-is-loss-function-1e2605aeb904.

[35] Priya, B. Softmax Activation Function: Everything You Need to Know. Available at:
https://www.pinecone.io/learn/softmax-activation/.

[36] Ramteke, M. Fingerprint Sensor – Working & Its Applications. Available at:
https://www.semiconductorforu.com/fingerprint-sensor-working-its-applications/.

[37] Riebesell, J. Convolution Operator. Available at: https://tikz.net/conv2d/.

[38] Rizzoli, A. The Ultimate Guide to Object Detection. Available at:
https://www.v7labs.com/blog/object-detection-guide.

[39] Ruder, S. An overview of gradient descent optimization algorithms. CoRR. 2016,
abs/1609.04747. DOI: https://doi.org/10.48550/arXiv.1609.04747. Available at:
http://arxiv.org/abs/1609.04747.

[40] Saha, S. A Comprehensive Guide to Convolutional Neural Networks — the ELI5
way. 2018. Available at: https://towardsdatascience.com/a-comprehensive-guide-
to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

[41] Sharma, S. Activation Functions in Neural Networks. 2017. Available at: https:
//towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6.

[42] Sharma, S., Sharma, S. and Athaiya, A. Activation functions in neural networks.
Towards Data Sci. 2017, vol. 6, no. 12, p. 310–316. ISSN 2455-2143.

[43] Svoradová, V. Pokročilé generování projevů poškození do syntetických otisků prstů.
Brno, CZ, 2021. Diplomová práce. Vysoké učení technické v Brně, Fakulta
informačních technologií. Available at: https://www.fit.vut.cz/study/thesis/24014/.

45

https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e
https://www.mathworks.com/discovery/object-detection.html
https://towardsdatascience.com/what-is-loss-function-1e2605aeb904
https://www.pinecone.io/learn/softmax-activation/
https://www.semiconductorforu.com/fingerprint-sensor-working-its-applications/
https://tikz.net/conv2d/
https://www.v7labs.com/blog/object-detection-guide
http://arxiv.org/abs/1609.04747
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://www.fit.vut.cz/study/thesis/24014/

[44] Tu, Y., Yao, Z., Xu, J., Liu, Y. and Zhang, Z. Fingerprint restoration using cubic
Bezier curve. BMC bioinformatics. Springer. 2020, vol. 21, no. 21, p. 1–19. DOI:
https://doi.org/10.1186/s12859-020-03857-z.

[45] Venus, M., Waterman, J. and McNab, I. Basic physiology of the skin. Surgery
(Oxford). Elsevier. 2010, vol. 28, no. 10, p. 469–472. DOI:
https://doi.org/10.1016/j.mpsur.2010.07.011.

[46] Wang, C.-F. The Vanishing Gradient Problem. 2019. Available at:
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484.

[47] Woodruff, D. A. What is a neuron? Queensland Brain Institute. Available at:
https://qbi.uq.edu.au/brain/brain-anatomy/what-neuron.

[48] Yolanda Smith, B. What is Subcutaneous Tissue? Available at:
https://www.news-medical.net/health/What-is-Subcutaneous-Tissue.aspx.

[49] Zhou, J., Chen, F., Wu, N. and Wu, C. Crease detection from fingerprint images
and its applications in elderly people. Pattern Recognition. Elsevier. 2009, vol. 42,
no. 5, p. 896–906. DOI: https://doi.org/10.1016/j.patcog.2008.09.011.

46

https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://qbi.uq.edu.au/brain/brain-anatomy/what-neuron
https://www.news-medical.net/health/What-is-Subcutaneous-Tissue.aspx

Appendix A

Contents of the Included Storage
Media

This appendix serves to list the contents of the attached storage media. Due to its size, the
contents are in compressed form. The decompressed archive has the following structure:

• experiments/ - Contains nine trained models for detecting and classifying line dam-
age and moisture in fingerprint images.

• LineDamageGenerator/ - Source codes of the line damage generator.

• master-prints/ - Contains 3000 generated master prints used to generate damaged
fingerprints.

• Masters-Thesis/ - Scripts for downloading, training, and testing the models.

• MoistureGenerator/ - Source codes of the moisture generator.

• text/ - Source codes of the thesis in LATEX format.

• create_dataset.py - Script for creating the dataset of damaged fingerprints.

• README.md - File containing instructions for working with the attached files.

• xfolty17.pdf - Final version of the thesis in PDF format.

47

Appendix B

Examples of Fingerprint Damage
Detection and Classification

Figure B.1: Creases Figure B.2: Scar with patches

48

Figure B.3: Hair Figure B.4: Scar with outline

Figure B.5: Minor moisture influence Figure B.6: Greater moisture influence

49

	Introduction
	Fingerprint Biometrics
	Skin Structure
	Epidermis
	Dermis
	Subcutaneous Tissue

	Individuality of a Fingerpint
	Skin Diseases and their Impact on a Fingerprint
	Moisture
	Line Damage

	Fingerprint Acquisition
	Optical Sensor
	Capacitive Sensor
	Ultrasound Sensor

	Fingerprint Recognition
	Fingerprint Matching Process
	Synthetic Fingerprint Generation

	Neural Networks
	Biological Neuron
	Artificial Neuron
	Perceptron
	Multi-layer Perceptron
	Activation Function
	Sigmoid Function
	Hyperbolic Tangent Function
	Rectified Linear Unit (ReLU)
	Softmax Function

	Loss Function
	Backpropagation
	Batch Gradient Descent
	Stochastic Gradient Descent
	Mini-batch Gradient Descent

	Convolutional Neural Networks
	CNN Architectures
	ResNet

	Object Detection with CNNs
	Faster R-CNN
	CenterNet

	Solution Proposal and Implementation
	Fingerprint Images Dataset
	Bounding Boxes
	Data Annotations
	Used Models
	Model Configuration
	Model Evaluation Metrics

	Experiments
	Faster R-CNN ResNet50 V1 640×640 Experiments
	Faster R-CNN ResNet101 V1 640×640 Experiments
	CenterNet Resnet101 V1 FPN 512×512 Experiments
	Summary of Achieved Results

	Conclusion
	Bibliography
	Contents of the Included Storage Media
	Examples of Fingerprint Damage Detection and Classification

