BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INFORMATION SYSTEMS
USTAV INFORMACNICH SYSTEMU

CLASSIFICATION WITH NEURAL NETWORKS IN THE
KERAS ENVIRONMENT

KLASIFIKACE POMOCi NEURONOVYCH SiTi V PROSTREDI KERAS

BACHELOR'’S THESIS
BAKALARSKA PRACE

AUTHOR MICHAL PYSiK
AUTOR PRACE
SUPERVISOR Ing. VLADIMIR BARTIK, Ph.D.

VEDOUCI PRACE

BRNO 2023

BRNO FACULTY
UNIVERSITY | OF INFORMATION
OF TECHNOLOGY | TECHNOLOGY

Bachelor's Thesis Assignment ||||||||||||||||"|

145041
Institut: Department of Information Systems (UIFS)
Student: Pysik Michal
Programme: Information Technology
Specialization: Information Technology
Title: Classification with Use of Neural Networks in the Keras Environment
Category: Data Mining

Academic year: 2022/23

Assignment:

1. Get acquainted with the topic of classification, especially using various types of neural networks.

2. Study the possibilities of the Keras environment in detail, especially with regard to different types
and topologies of neural networks.

3. In agreement with the supervisor, select suitable datasets and classification tasks for the purpose
of experiments with this library.

4. Implement an experimental application and perform experiments showing the properties of
individual neural networks.

5. Evaluate the achieved results and other possibilities for extending this project.

Literature:
® Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Third Edition. Morgan Kaufmann
Publishers, 2012, 703 p., ISBN 978-0-12-381479-1.
® Chollet, F.: Keras: the Python Deep Learning API [online]. 2021 [cit. 2021-10-01]. Available at: [
https://keras.io/]

Requirements for the semestral defence:
No requirements.

Detailed formal requirements can be found at https://www fit.vut.cz/study/theses/

Supervisor: Bartik Vladimir, Ing., Ph.D.
Head of Department: Kolar Dusan, doc. Dr. Ing.
Beginning of work: 1.11.2022

Submission deadline: 10.5.2023

Approval date: 24.10.2022

Faculty of Information Technology, Brno University of Technology / Bozetéchova 1/2 / 612 66 / Brno

Abstract

This thesis examines the problematics of classification using artificial neural networks within
use of the Keras framework, a high-level deep learning API for the Python programming
language. The aim of the thesis is to discover the diverse options Keras has to offer in
the field of classification, and to compare different types and topologies of artificial neural
networks in the form of experiments on selected datasets, complemented by a simple exper-
imental application whose main purpose is to provide an interface for these experiments.

Abstrakt

Tato prace zkoumé problematiku klasifikace pomoci umélych neuronovych siti s vyuzitim
knihovny Keras, poskytujici vysokotroviiové rozhrani pro praci s umélymi neuronovymi
sitémi v programovacim jazyce Python. Cilem préace je prozkoumat rozsdhlé moznosti této
knihovny v oblasti klasifikace a porovnat ruzné typy a topologie umélych neuronovych siti
formou experimentl na vybranych datasetech, coz je doplnéno jednoduchou experimentalni
aplikaci slouzici predevsim jako rozhrani pro tyto experimenty.

Keywords

Keras, Tensorflow, classification, artificial neural networks, types of neural networks, topolo-
gies of neural networks, comparison of neural networks, multilayer perceptrons, convolu-
tional neural networks, recurrent neural networks, experiments

Klic¢ova slova

Keras, Tensorflow, klasifikace, umélé neuronové sité, typy neuronovych siti, topologie neu-
ronovych siti, porovnani neuronovych siti, vicevrstvé perceptrony, konvolu¢ni neuronové
sité, rekurentni neuronové sité, experimenty

Reference

PYSIK, Michal. Classification with neural networks in the Keras environment. Brno, 2023.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology. Su-
pervisor Ing. Vladimir Bartik, Ph.D.

Rozsireny abstrakt

Klasifikace je jednim z nejbéznéjsich problémii v oblasti strojového uceni. Cilem klasi-
fikacniho problému je priradit jednotlivd vstupni data do predem definovanych kategorii
(t¥id). To lze provést naptiklad pouzitim umélych neuronovych siti (dale jen neuronové sité),
které jsou inspirovany biologickymi neuronovymi sitémi a jsou bézné vyuziviny v mnoha
doménéch, véetné klasifikace. Vzhledem k tomu, Ze takové (nejen klasifikaéni) problémy
muzou nabyvat mnoha dosti odlisnych podob, jako je napriklad klasifikace obrazka ¢i mlu-
vené Teci, existuje vice specializovanych typu téchto siti. Pro praci s neuronovymi sitémi
v dnesni dobé jiz neni tfeba znat podrobné jejich vnitini mechanismy, ale lze vyuzit jedno
z vysokoturovniovych rozhrani pro praci s nimi, kam mimo jiné spada také knihovna Keras.

Cilem této bakalaiské prace je prozkoumat rozsahlé moznosti prostiedi Keras v oblasti
klasifikace pomoci neuronovych siti a porovnat vlastnosti riznych typu a topologii neu-
ronovych siti formou experimentid na vybranych datasetech. Jelikoz se rtzné typy neu-
ronovych siti v mnoha ohledech vyrazné lisi, neni jejich porovnani snadnym problémem.
Z téchto duvodu byly vybrany tii odliSné datasety, kdy kazdy dataset svou charakteris-
tikou odpovidad jednomu ze tii hlavnich druhti neuronovych siti (vicevrstvy perceptron,
konvolu¢ni neuronova sit, rekurentni neuronova sit). Pro kazdy ze tii experimentu byly
individualné vytvoreny Ctyri neuronové sité, a to nejen jedna od kazdého ze tii typiu, ale
déle jesté jedna odpovidajici svym typem charakteristice daného experimentu, za tucelem
porovnéni vicera topologii neuronovych siti. Jako rozhrani pro pribéh experimentt slouzi
jednoduchd experimentalni aplikace napsdna v programovacim jazyce Python s vyuzitim
knihovny Keras, kterd zahrnuje mnoho funkci umoznujici dikladné monitorovat pribéh
trénovani, a vyhodnoceni (nejen) danych neuronovych siti.

Prace zac¢ina ivodem do problematiky klasifikace predstavenim klicovych pojmu, metrik
pro méteni vykonnosti klasifikacniho modelu, a strué¢nym popisem vybranych alternativnich
klasifika¢nich algoritmt. Poté jsou predstaveny umélé neuronové sité, a to zptisobem vhod-
nym i pro ¢tenaie neznalého v dané problematice. Tato c¢ast je postupné rozvinuta od nej-
jednodussich stavebnich blokt (neuront) az po rozdily mezi jednotlivymi typy neuronovych
siti. Dale nésleduje kapitola vénujici se samotné knihovné Keras, ktera je strukturovina
chronologicky v souladu s vytvarenim vlastnich klasifika¢nich modelt. U kazdého kroku
jsou popsany odlisné pristupy a moznosti, které zde Keras nabizi.

Samotné experimenty zacinaji jejich pripravou, véetné analyzy jednotlivych datasett,
zpusobu interpretace odlisnych druhu dat jednotlivymi typy neuronovych siti, a vybérem
architektur pouzitych siti. Zde jsou také odivodnény rizna rozhodnuti, kterd jsou klicova
pro pribéh experimenti a jejich prinos. Po stru¢ném popisu navrhu a implementace exper-
imentalni aplikace nésleduje popis prubéhu jednotlivych experimenti, predevsim formou
popisu grafti vygenerovanych pomoci experimentani aplikace, a jejich vyhodnoceni formou
jednotlivych zavéra a koneé¢nym shrnutim. Ackoli by nebylo vhodné délat prilis vazné zavéry
¢isté na zakladé relativni vykonnosti jednotlivych modelt, jelikoz mtze byt silné ovlivnéna
prilis mnoha faktory, byly demonstrovany jednotlivé vliastnosti odlisnych typt neuronovych
siti a jejich vyuzitelnost v oblastech neobvyklych pro dany typ sité. V ramci experimenti
byly také nalezeny urc¢ité neocekavané poznatky. Po vyvozeni zavéru byly dale navrzeny
vhodné moznosti pro rozsiteni této prace, predevsim v kontextu modernich architektur
neuronovych siti a aktudlnich trendua v této oblasti.

Classification with neural networks in the Keras
environment

Declaration

I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Mr. Ing. Vladimir Bartik, Ph.D. I have listed all the literary
sources, publications and other sources, which were used during the preparation of this
thesis.

Michal Pysik
May 3, 2023

Acknowledgements

I would like to express my gratitude towards my supervisor, Ing. Vladimir Bartik, Ph.D.,
who was always willing to consult the state of the work with me and whose suggestions
helped greatly towards reaching the thesis’ final state. I would also like to thank my family
and friends for their continuous support throughout my studies.

Contents

1 Introduction
2 Classification
2.1 Terminology and types of tasks
2.2 Evaluating a model’s performance
2.3 Other classification algorithms
3 Artificial neural networks
3.1 Artificial neuron
3.2 Artificial neural network
3.3 Training a neural network
3.4 Main types of neural networks
4 The Keras library
4.1 Buildingamodel
4.2 Compiling a model
4.3 Training a model
4.4 Testing and using a model
5 Preparation of the experiments
5.1 Choosing and analyzing the datasets . . .
5.2 Data preprocessing
5.3 Choosing the neural network architectures
6 The experimental application
6.1 Concept and requirements
6.2 Implementation
7 Course and evaluation of the experiments
7.1 Tabular data classification
7.2 Image data classification
7.3 Sequential data classification
74 Summary
8 Conclusion
Bibliography

A Contents of the included storage media

IS TN

10

11
14
19

23
23
25
27
29

31
31
33
34

37
37
38

40
40
46
50
53

54

56

59

B Model plots of the used neural network architectures 60

B.1 Tabular data - MiniBooNE particle identification 60
B.2 Image data - Fashion-MNIST 62
B.3 Sequential data - IMDB movie review sentiment classification 64

Chapter 1

Introduction

In recent years, the field of artificial intelligence has seen a significant rise in popularity,
thanks to advancements in technology and the availability of large datasets. One of the
most popular and successful computational models in this field are artificial neural networks,
inspired by the function of real biological brains. These models have been widely used in
various applications, whether it be simple ones, like digit classification, or complex natural
language processing applications, like Al assistants.

Classification is a fundamental task in machine learning, where the goal is to predict
the class label of a given input, by classifying the input object into one of a finite number
of classes based on its features. In this sense, an object is nothing more a set of numerical
values, but they do not always represent its features directly. In the case of, for example,
images or audio files, the features have to be extracted first. This is usually learned and
done by the model itself, at least in the case of deep learning. Artificial neural networks
have proven themselves to be especially helpful when it comes to complex non-linear tasks,
due to their ability to handle complex relationships between variables and their ability to
learn from large amounts of data. There are many different types of neural networks, each
suitable for problems of a different nature.

To start solving problems using neural networks today, there’s no longer a need for
learning all the mathematical principles of their internal mechanism. Any of the high-
level deep-learning APIs currently available, which include the Keras library, can be used
instead. The topic of this thesis revolves around utilization of the Keras library in the field
of classification using neural networks. The main goals are to introduce neural networks
in a way that even a reader inexperienced in the problematics can understand, to explore
Keras’ distinct options in the context of classification using neural networks, and to compare
different types and topologies of neural networks through thoughtful experiments.

The theoretical part of the thesis introduces the concepts of classification (chapter 2)
and artificial neural networks (chapter 3) from the ground up. Chapter 4 then introduces
the Keras library in the form of a chronological use case guide. Finally, the practical part
consists of preparation of the experiments in chapter 5, brief description of the experimental
application (chapter 6), that serves as an interface for the experiments, and ends with the
course and evaluation of the experiments in chapter 7.

Chapter 2

Classification

This chapter is an introduction to the problematics of classification, one of the most com-
mon kinds of tasks in machine learning—a field of study concerned with algorithms that can
learn to solve many different kinds of tasks by learning from data. The goal of a classifica-
tion task is to assign discrete class labels to objects from the problem domain, for example
differentiating between pictures of cats and dogs. Classification falls into the category of
supervised learning, since the model learns to predict classes of objects by training on la-
beled datasets. Some other common types of machine learning problems include regression
(supervised learning), which is about predicting a continuous values, and clustering (un-
supervised learning), whose goal is to group instances into unlabeled categories based on
their similarity.

Section 2.1 explains basic classification terminology and types, into which can be differ-
ent classification tasks divided [38], followed by section 2.2, which introduces miscellaneous
evaluation metrics for measuring a classification model’s performance. Besides artificial
neural networks, the primary subject of this thesis, explained later in chapter 3, I consid-
ered it appropriate to also mention a few simpler classification algorithms [31] in section 2.3,
that can sometime be more effective in the cases of simpler problems.

2.1 Terminology and types of tasks

This short section explains some of the technical terms that are crucial to understand before
reading further.

Basic terminology

o Classifier — An algorithm used to map objects from the input set of data to specific
classes. Classifiers can range from simple algorithms all the way to deep neural
networks consisting of many hidden layers.

e Model — A classification model learns to draw some conclusion from the input data
given for training, which can be later utilized to predict class labels of new data.
Simply said, the model consists of the selected classifier and the experience gained by
training on labeled data.

e Feature — An individual measurable property of a phenomenon. Features need to be
transformed into numerical representations before being fed to the classifier.

o Instance — A feature vector, an n-dimensional vector of numerical values that rep-
resent some object. It is referred to as a sample in the context of a dataset. Some
examples can be a single row in a table of data, or a multi-dimensional vector, where
the feature values might correspond to the pixels of an image.

o Dataset — A collection of instances (samples), that is a subset of a given feature
space'. Datasets are used for training, validating and testing the model.

e Model training — The purpose of training is to build the best mathematical repre-
sentation of the relationship between data features and the target labels. This is done
by feeding a labeled training dataset to the model, which then adjusts itself to make
more accurate predictions, by trying to minimize the value of a loss function, which
computes the distance between the expected output and the model’s prediction.

e Model evaluation — Ways to evaluate the performance of the model. A quantifiable
measure is called a metric.

Types of tasks

e Binary classification — Classification tasks that have only two class labels. Ex-
amples include predicting whether an email is a spam based on the most occurring
words, or distinguishing males from females based on their favorite hobbies.

e Multi-class classification — Tasks with more than two class labels. Each instance
is assigned only one label. A good example may be recognizing the species of the
animal in a photo of a single animal.

e Multi-label classification — Each instance may be assigned more than one class
label, including none or all of them. For example, classifying which kinds of fruit are
contained in images of fruit bowls.

« Balanced/imbalanced classification — The distribution of classes in a training
dataset may not always be uniform. A very good example is detection of a certain
medical condition in patients. In these cases, other classification metrics become
prioritized over plain accuracy, as false detection of the condition in a healthy patient
usually leads to less damage than misclassifying a sick patient as healthy.

2.2 Evaluating a model’s performance

There are many different evaluation metrics that can be used to measure a classification
model’s performance [16]. The simplest and also the most commonly used one is accuracy,
which is calculated simply as the number of correct predictions divided by the sum of all
predictions.

All classification metrics are based on the counts of true positives (TP) and true neg-
atives (TN), corresponding to correct predictions, together with false positives (FP) and
false negatives (FN), corresponding to incorrect predictions. A representation of the above
parameters in a matrix format is called a confusion matrix (also known as an error matrix),
an exemplary one is shown as table 2.1. In this context, we assume a binary classification
problem with classes marked as positive and negative (those can for example represent the

!Feature space is the set of all possible values for a chosen set of features from given data.

presence of some disease in a patient), but some of these metrics can also be extended for
use in multi-class and multi-label classification in a few possible ways.
Predicted
P N
P| TP=302| FN =15
N | FP =23 TN = 277

Actual

Table 2.1: A confusion matrix of binary classification.

Some of these metrics, apart from accuracy (2.1), are precision (2.2), which is the
ability to identify only the relevant data points, recall (2.3), referred to as sensitivity in
the statistics domain, which is the ability to find all relevant cases within a dataset, and
specificity (2.4), which is based on the same principle as sensitivity, but in terms of actual
negatives.

TP +TN
aceUracy = op e N T RN (2.1)
precision = TPz;LPFP (2.2)
recall /sensitivity = TP}—;—PFN (2.3)
speci ficity = TNTj—VFP (2.4)

Let’s also take a look at some of the more advanced metrics. The Fy score (2.5) is the
harmonic mean of precision and recall. High F; score can be expected from models that
can successfully classify positive cases, while not going overboard and marking too many
negative cases as positive.

2 2 - precision - recall
F = —— — = — (2.5)
precision™ ' 4 recall precision + recall

In cases where precision and recall are not given equal importance, either weighted-F; score
or plotting a PR or ROG curve may be of use. A PR (precision-recall) curve is a curve that
appears in a graph plotted such that the x-axis represents recall and the y-axis represents
precision, showing the tradeoff between precision and recall at different thresholds. A ROC
(receiver operating characteristic) curve is the same, but with x-axis representing the false
positive rate (FPR; FPR = 1 — specificity) and the y-axis representing the true positive
rate (TPR; TPR = recall), illustrating the diagnostic ability of a binary classifier as its
discrimination threshold is varied. In both of these cases, we aim to maximize the area
under the curve (AUC). Due to the absence of true negatives in its equation, a PR curve
is considered more useful than a ROC curve when dealing with imbalanced classification
with excess of the negative class [34], where correctly detecting positive cases is the main
goal, such as a virus test or cancer detection. A ROC curve might be a better choice in
cases where both classes are given the same importance (but one of the classes is still the
main point of interest), since ROC considers true negatives as well. Both a PR curve and
a ROC curve are plotted in figure 2.1.

ROC curve Precision-recall curve
e 2 AUCpg = 0.726
o o
=] T o |
=
e £3 528 1
g2 23
@ =+ = O et
gfi’-o‘ AUC = 0.846 D‘go‘“
. 2
o Sy
=] o 7]
e (=
° T T T T T T ° T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate Recall
(1-specificity) (sensitivity)

Figure 2.1: Example plots of a ROC curve and a PR curve [2].

2.3 Other classification algorithms

Before the introduction to artificial neural networks, this section briefly introduces a few
other classification algorithms.

Logistic regression

Similar to how linear regression predicts continuous values by assuming a linear relationship
between dependent and independent variables (useful for regression tasks), logistic regres-
sion divides elements into two groups based on a set probability threshold (often called
decision boundary), which makes it a suitable technique for binary classification.

Instead of assuming that the data follow a linear function, they are modeled using a
sigmoid function (Figure 2.2).The range of this function, the interval between 0 and 1, can
then represent the probability of an instance belonging to a certain class. This probability
then rounds to either 0 or 1 depending on whether it lies above or below the set threshold.

1 : ;
_ 1
14+e—=
0.75 H - - - threshold .
o5/
0.25 -
0—6 -4 -2 0 2 4

Figure 2.2: Graph of a sigmoid function and a threshold set to 0.5.

Naive Bayes classifiers

Naive Bayes classifiers are a family of probabilistic machine learning algorithms based on
the Bayes theorem (2.6). They always assume that all the features of an instance being
classified are independent of each other, and their contribution to the final outcome is equal.
These assumptions are generally not present in the real world, hence the name “Naive”.

P(B|A) P(4)

PAIB) = =55,

(2.6)

At first, the dataset is converted into frequency tables, counting the numbers of occur-
rences of different feature values. From this table, a likehood table is generated by finding
the propabilities of given features. After that, the Bayes theorem is used to calculate the
posterior probabilities of the object belonging to a certain class based on its features. There
are three types of Naive Bayes classifiers—Multinomial, Benoulli and Gaussian.

Decision trees

Decision trees model the classification or regression process in the form of a tree structure.
Trees used for classification, with a single discrete class label, are called classification trees.
They consist of decision nodes with two or more branches split according to a certain feature
value and leaf nodes representing classes. An example can be seen in Figure 2.3.

Monkey Human Dog Fish

Figure 2.3: A very simple classification tree.

A decision tree is built using the ID3 algorithm [26], which utilizes entropy and infor-
mation gain. Entropy is used to calculate the homogenity of a sample. The more equally
divided a sample is, the higher its entropy. The information gain depends on the decrease
in entropy after each splitting of the dataset on a feature. At each step, the goal is to find
the feature that returns the highest information gain.

Random forest is an algorithm made out of multiple randomly created decision trees,
where each tree-node works on a random subset of features and the final output is combined
from outputs of the individual trees. As declared by Frangois Chollet in [6, p. 16], “random
forests are applicable to a wide rage of problems—you could say that they’re almost always
the second-best algorithm for any shallow machine learning tasks”.

k-nearest neighbors algorithm

This algorithm classifies new cases based on a similarity measure to already labeled cases.
The new instance inherits the label most common among its k-nearest neighbors measured

by a distance function, where k£ > 1. Larger k value generally increases the precision by
reducing the overall noise, but the optimal value for most datasets was found to be between
3 and 10. The number of dimensions of the space the labeled instances occupy is equal to
the number of input features. Individual feature measures should also be normalized, so
that their contribution to the outcome is ideally the same.

Support vector machines

A support vector machine (SVM) finds the hyperplane in an N-dimensional space (where
N is the number of input features) separating the two classes and maximizing the margin
between them. Support vectors are data points that are closer to the hyperplane and
influence its position and orientation. For 2 input features, the classes are separated by a
line, for 3 of them, a the line is replaced by a plane and this goes on into higher dimensions
as the number of features increases. For data that’s not linearly separable, one can use
a non-linear SVM, which utilizes Kernel functions that transform non-linear spaces into
higher-dimensional linear spaces.

To classify a new sample, we take the output of a linear function. If the output is greater
than 1, the first class is predicted, and if the output is smaller than -1, the other class is
predicted. The interval between -1 and 1 acts only as a margin, in contrast to how logistic
regression works.

Chapter 3

Artificial neural networks

Artificial neural networks (ANNs), usually simply called neural networks (NNs), are com-
putational systems inspired by the function of biological neural networks. They are at the
heart of deep learning algorithms, a subset of machine learning algorithms. Neural net-
works can be used for many kinds of tasks, including classification, pattern recognition or
detection, clustering, and many others. Some of the most notable real world applications
include facial recognition, voice recognition, weather forecasting, or studying the behavior
of social media users.

This chapter serves as a gradual introduction to NNs, which begins by introducing their
basic building blocks in section 3.1, moving up to their structure and behavior in section 3.2.
Section 3.3 covers the principles of their training and common problems to look out for while
training them to solve classification problems. The last section, 3.4, explains the differences
between the main NN types and their use cases.

3.1 Artificial neuron

Artificial neurons [35, p. 5] are the basic building blocks of every artificial neural network. A
biological neuron is made out of dendrites, which act as the input vector, cell body (soma),
which acts as the summation function, and axon, which gets its signal from the summation
behavior inside the soma and transmits the signal to other cells in the body including other
neurons. An artificial neuron (Figure 3.1) is a mathematical function basically mimicking
a biological neuron. It takes the sum of its one or more inputs, each individually multiplied
by its assigned weight, and then adds a constant value called bias to the sum. The sum
is then passed through a function known as an activation function (also called transfer
function), which “fires” to pass the information to subsequent neurons.

Bias
Weights b
1 o——— T Activation
function Output

Inputs ¢ Z2 o - W2 /@ ~@ - Y

Ir3 o— W3

Figure 3.1: Example of an artificial neuron with three inputs.

10

The mechanism of an artificial neuron can be described mathematically:

y = f<b+ Z%M) = f<zl‘iwi>
i=1 i=0

where x; is the i-th input of the neuron out of its n total inputs, w; is the weight assigned
to the ¢-th input, b is bias, often represented by bias input zg = 1 with weight wg = b, f is
an activation function and y is the neuron’s output.

The perceptron algorithm, invented in 1958 at the Cornell Aeronautical Laboratory by
Frank Rosenblatt [27], is considered to be the first artificial neural network, although it
only consists of a single neuron with a binary step activation function (see figure 3.2).

(3.1)

Activation function

Activation function is the part of a neuron that makes the final decision whether it should
“fire” or not. It can be as simple as a binary step (activates above certain threshold)
function or a linear function, but only when a non-linear function is used, then a two-layer
neural network can be proven to be a universal function approximator [7]. When multiple
layers use a linear activation function, the entire network is equivalent to a single-layer
model, since the output of each layer is a linear combination of the inputs, and hence, the
overall output can be expressed as a single linear equation.

There are many different activation functions, each better suited for different scenarios.
Some of the most common ones include sigmoid—activation function of choice for binary
classification, already seen in Figure 2.2, tanh (hyperbolic tangent), which usually finds ap-
plications in recurrent neural networks (introduced later in section 3.4) for natural language
processing and speech recognition, ReLU (Rectified Linear Unit), which outperforms both
sigmoid and tanh in computational speed, and softmax, used to build multi-class classifiers.
Some of the mentioned activation functions are shown in Figure 3.2.

T 1 T T T T 3 T T T T T
Ly _ 0,z<0 e —e? —max(0,)
1,z>0 0.5 et 1 ol |
0.5 . 0 1
1 [-
—0.5} =
0 - 0 i
| _1 | | | | | | | | |
—2 -1 0 1 -3-2-10 1 2 3 -3-2-10 1 2 3

Figure 3.2: Graphs of binary step (left), tanh (middle) and ReLU (right) activation func-
tions.

3.2 Artificial neural network

A collection of interconnected artificial neurons can form an artificial neural network [35,
p. 6]. An ANN is comprised of layers of neurons including the input layer, output layer,
and any number of layers between them, called hidden layers. Neural networks can be
visualised with graphs, where each node represents a neuron and edges represent connections

11

between them, as shown in Figure 3.4. The certain ways in which individual neurons can
be connected are called topologies.

At first, the input layer takes an input in the form of numerical data. The hidden
layers, present between input layer and output layer, perform all the calculations to find
hidden features and patterns in the data. The input therefore goes through a series of
transformations through succeeding layers, which finally results in an output conveyed
using the output layer. In contrast with traditional computing models, an NN acts as a
black box, in the sense that one cannot know what abstractly happens inside, since the
network learns by exposure to labeled data and “stores the gained knowledge” by tweaking
its parameters (weights of the inputs of its neurons). Knowledge in the form of many
floating point numbers is obviously not very human-readable.

Topologies of neural networks

The topology (also called architecture or structure) of a neural network plays a fundamental
role in its functionality and performance [11]. When building an NN to solve a specific
problem, there is no single topology best suited for it, and while there are some empirically
derived guidelines one can follow, it is mostly a matter of trial and error. One thing to keep
in mind is that while adding more layers allows an NN to learn more complex patterns, it
makes the network harder to train and much more prone to overfitting [6, p. 104], a very
common problem explained later near the end of section 3.3.

One way to classify different NN topologies is distinguishing between feed-forward neural
networks (FFNNs) and recurrent neural networks (RNNs), whose direct comparison is
shown in figure 3.3. In a FFNN, the information flows in only one direction, so any layer
can only gain information from the previous layers. In contrast, RNNs (often called feedback
NNs) can have signals traveling in both directions by introducing loops—edges going from a
given neuron to a neuron in either some previous layer or the current layer, which can include
the neuron itself. These feedback loops introduce the concept of a network’s memory, which
is why these networks are used for processing sequential data, where context matters a lot,
such as recognizing spoken sequences, detecting the next word/letter in a text, or even
music composition'.

%
<}
C}

Figure 3.3: The comparison between feed-forward (left) and recurrent (right) neural net-
works. While FFNNs allow the signal to travel one way only, RNNs contain feedback loops.

!Note that in the context of music composition, the term recurrent neural networks refers to their use
as generative models, where the network is trained to generate new music samples based on a given input
sequence

12

With the advancement in digital technologies in the recent years, the demand for an-
alyzing complex, high dimensional, and noise-contaminated datasets has risen quite a lot.
This led to a rapid development of deep learning, part of a broader family of machine
learning methods utilizing NNs. The adjective “deep” refers to the use of multiple layers in
the network, which is then referred to as a deep neural network (DNN). While not being
a formally defined rule, an ANN should contain at least two hidden layers to be called
a DNN. The complexity of these networks makes them a very powerful tool for solving
real-life problems. An example of a DNN is visualized in figure 3.4.

input hidden layers
layer e M

No><7 \N><
}\o,,,{ﬁ\\v,,,{’.\\\\g A\\\v,i‘
\ ”/ "‘ ’/ \‘ X\
A i TATAS
)t N» 4‘ ‘yo)ﬂ(‘ \}& 20;‘ 7 \
33, g X ~¢x‘~.“"§' ~&‘~. wﬁwx“" 0“*;3«&3:““%&3?
;» XKES IQMQ\.« '*"‘Q\"“‘ 104\.« RS20
A ‘ '/0’ A " 01 ”%‘ “ " O "’qi ’7%‘ X2 ’/QAQI“,
'w»' \\\ ’0“‘% . 4 \" ORRRXE AR ~. 7 “3‘\\
' lr \)‘\\ "m)(\ '”)f%\«\\ / \‘
,,, 4\«\\\ Q v 4‘\«\\\ //1»4‘\«\\\] L=
CORUR

N \\\‘////

N

Figure 3.4: A dense deep neural network. The original source code for generating this figure
using TikZ’was taken from [24].

Tensor operations

“Much as any computer program can be ultimately reduced to a small set of binary op-
erations on binary inputs (AND, OR, NOT, and so on), all transformations learned by
artificial neural networks can be reduced to a handful of tensor operations applied to ten-
sors of numeric data” [6, p. 38]. Tensors are the basic data structure used not only by NNs,
but by all current machine learning systems.

Most students and researchers are probably familiar with scalars, vectors and matrices.
Those three structures can be referred to as 0D, 1D and 2D tensors (in this order), since
tensors are a generalization of matrices to an arbitrary number of dimensions, as demon-
strated in figure 3.5. In the context of tensors, a dimension is often called an axis or the
tensor’s rank. The key attributes of a tensor are its number of axes, its shape (dimensions
along each individual axis), and in the context of programming—the data type of its con-
tained data. Even complex data can be broken down into a tensor—a dataset consisting of
multiple videos can be represented as a 5D tensor, whose axes represent a sample’s order,
number of the frame, x-coordinate (width), y-coordinate (height), and (color) channels.

’https://www.ctan.org/pkg/pgt

13

https://www.ctan.org/pkg/pgf

I. _______ Matrix :%'_:%}'_*11‘_=1____.|
a a A

scalar vector matrix

I:’ eee

(-way 1l-way 2-way 3-way 4-way see N-way
tensor tensor tensor tensor tensor tensor

L A ‘.;Fk -/?I.-F 1/F{?J;Jm Akimn .|
Tensor Algebra

Figure 3.5: Tensors as generalizations of scalars, vectors and matrices [32].

Tensors can be added, multiplied and so on. Each layer of an NN can be thought of as a
function that takes a tensor of a certain rank as its input, and returns a tensor of a certain
rank as its output. Since all tensor operations can also be interpreted geometrically, the
goal of a classification algorithm is basically just finding a chain of tensor operations that
“uncrumbles” the feature space in a way that separates the classes.

3.3 Training a neural network

Training a neural network is the optimization process of finding the appropriate weights of
its connections, so that the difference between the network’s output and the expected output
is minimal. This is possible thanks to a feedback loop algorithm called backpropagation
(short for backward propagation of errors), which is the essence of NN training.

Though it is quite useful to know the basics of the mathematical foundation behind the
training mechanism (explained right in the following subsection), a programmer doesn’t
have to worry too much about it when using a high level deep learning APT such as Keras [4].
From the practical standpoint, it’s more important to know how to preprocess data, split
a dataset for training, validation and testing, build a model with reasonable architecture
comprised of layers with activation functions fitting the given type of task, etc. Some
guidelines for these problems are spread throughout this chapter, and mainly through the
next chapter 4, which explores some of the extensive options Keras has to offer.

Loss function

Before diving into the training process itself, let’s introduce a way of measuring the dif-
ference between the expected output and the model’s prediction. This is the role of a loss
function (synonymous with cost function or error function, but cost sometimes refers to the
average loss over the entire training dataset). It maps an event or values of one or more
variables onto a real number representing some “cost” associated with the event called loss,
which we aim to minimize.

The most common loss for classification is cross-entropy, which measures the perfor-
mance of a classification model whose output is a probability value between 0 and 1. Binary
cross-entropy (3.2), a special case of cross-entropy with only two classes, is not only the
most commonly used loss for binary classification, but is also often used for multi-label
classification. Assume that y; € {0,1} marks the correct class of the i-th training sample

14

and p; is the predicted probability of the sample belonging to class 1.

Lpcr(pi,yi) = —(yilog(p:) + (1 — i) log(1 — pi)) (3.2)

The general version of cross-entropy, used for multi-class classification, is often called cate-
gorical cross-entropy (3.3). Assume that M is the total number of classes, ¥ is a vector of
size M that indicates to which class the sample belongs, p; is a vector of predicted proba-
bilities for each class, y; . is a binary indicator whether sample ¢ belongs to class ¢ and p; .
is the corresponding predicted probability.

M
Loop(Pin¥)) = = Y Vielog(pic) (3.3)
c=1

Other classification losses include hinge loss (3.4), developed primarily for SVM model
evaluation, which apart from wrong predictions also penalizes right predictions that are not
confident, negative loglikelihood loss, and KL /JS divergence. Note that in the case of hinge
loss (in the version for binary classfication shown bellow), y; € {—1,1} and p; € (—1,1).

Ly (pisyi) = max(0,1 — yip;) (3.4)

Gradient descent

The gradient of a function of n variables can be interpreted as a vector pointing in the
direction of the fastest growth of the function. In the case of an NN, n is equal to the total
number of weights in the network. Adjusting the network’s weights is done according to
the gradient descend method, since we always want to minimize the loss function with the
goal of finding its global minimum.

Let’s demonstrate this on a simple example of training a linear model consisting of a
single neuron without an activation function [30]. Training on each sample can be thought
of as finding solutions for linear equation (3.5) with variables ag, a1, ..., apn.

y = apro+a1r1 + -+ apxn (3.5)
The model’s guess based on its current weights can then be written down as equation (3.6).
1 = woTo + WiT1 + * - + WpTp (3.6)

We calculate the cost (3.7) between the expected result and the model’s prediction. For the

sake of the example, let’s use the squared error® function, because it’s easy to differentiate.
1 o 1 2

C:§(y—y) =§(y—w0$0—w1$1—---—wnl“n) (3.7)

We calculate the gradient of the cost (3.8), which is nothing more than a vector consisting
of its partial derivatives each with respect to an individual weight (3.9).

.. /oC oC oC

VC (W) = <aw0’ Tu 8wn> (3.8)
oCc 1
8wi = 5 . 2(y — WoTog — WL, — ... — wnxn)(*ﬂfi) (3~9)

3Mean squared error (MSE) is the most commonly used loss function for regression.

15

Moving to the final step (3.10), the weights are updated by subtracting the calculated
gradient multiplied by the learning rate (denoted by 1), a tuning parameter that determines
the step size at each iteration. While the learning rate can be as simple as a constant, there
are many optimization algorithms that scale it dynamically to ensure faster and more
reliable convergence towards the function’s global minimum [28].

oC

11’](—11‘)—77'VC(1TJ)<:>Vi€{0,1,...,n}1wi%’wi—’l7'awl
(3

(3.10)

These steps should be repeated until the algorithm converges. This special case of calculat-
ing the cost for every iteration is called stochastic gradient descent. In practice, the cost is
usually calculated as the average loss over batches of training samples and sometimes even
over entire epochs®.

Backpropagation

Backpropagation, proposed back in 1986 by David E. Rumelhart [29], is an efficient method
of computing gradients in directed graphs of computations, such as multi-layer neural net-
works. When training an NN, every iteration consists of two passes—the forward pass and
the backward pass. In the forward pass, the data is fed to the input layer, goes through the
hidden layers and finally at the output layer, the network’s prediction gets produced, based
on which the network’s error can be calculated via the loss function. In the backward pass,
the flow is reversed so that the error gets propagated from the output layer all the way back
to the input layer, while updating the weights in each layer. This process of propagating
the error backwards is called backward propagation, or simply backpropagation.

The following interpretation of the backpropagation algorithm 3.1 draws inspiration

from [8] and [33]. To understand the notation, :UZ(-D is the i-th input of neuron j in layer

J
0
;i 1s the associated weight. The weighted sum computed by neuron j in layer [is

denoted by zj(-l), which then transforms to the neuron’s output y](-l) by passing through its
activation function f. Since this time the neurons have an activation function, as wasn’t the
case in the example in previous subsection, it was appropriate to break down the expressions

inside step 4 using the chain rule, which states that f((g(z)) = f'(g9(x))g'(x).

{ and w

4An epoch is a single iteration over the entire training dataset.

16

Algorithm 3.1 Backpropagation

1. Initialization

Set all weights within the network to some small initial value.

@)
1]
Set the iteration counter to 0.

w;; (0) = some small initial value
p=0
2. Forward pass

Calculate the output of every neuron j in each layer [starting from the first hidden
layer and ending with the output layer (the input layer only passes raw input).

W= () = (Z w)] <p>)
1=0

Note that n is the number of inputs of neuron j and wgjzg is its bias term.

3. Error calculation

Calculate the error C'(p) between the expected output for the current sample and the
output obtained from the neuron(s) in the output layer.

If the training data is split into batches, repeat step 2 for every sample in the current
batch and then calculate C(p) as the average loss across the batch.
4. Backward pass

First, calculate the derivatives of the error in terms of the weights between the last
hidden layer and the output layer.

oC - aC 8y(~OUt) 82’](-Out)
8w§;mt) ay](out) azj(out) 9 Z(;)ut)

Continue calculating derivatives of the error in terms of the weights between all the
remaining pairs of neighboring layers going from right to left.

oc ac oy o2\ (oC ay,gl“)az,il“)) oy 92!

pr— p— J
awg) 8y](~l) 82](-[) ng) keZK ay,ilﬂ)@z,(fﬂ) 8y](-l) 32](-1) 3w§]l-)

Note that K is the set of all neurons in layer [+ 1 connected to neuron j.

Update all weights within the network.
oC

ow

v

wl) (p+1) = w) (o) = -

5. Repetition
Increase the iteration counter.
p<—p+1

Continue with step 2, until the target number of iterations is reached or until the
error decreases below a certain threshold.

17

Common problems

Training a neural network is not so straightforward, since there many pitfalls one can
find himself in. Some problems can be caused by inappropriately chosen learning rate—a
value too small slows down the progress, while a value too high introduces oscillations and
instabilities leading to divergence. It is also not uncommon to get stuck in a local minimum
while performing gradient descent (since hardly any loss function is convex), in which case
it is recommended to introduce some element of randomness.

On a larger scale, the most common problem is probably overfitting [6, p. 104]. An NN is
trained on a dataset which is meant to represent the problem it is being trained to solve, but
since the dataset contains only finite number of samples, it can only represent a subset of the
problem space. Overfitting occurs when the model becomes too accustomed to its training
data. It fails to generalize the problem and performs poorly when presented with new data.
It is caused by the model memorizing patterns in irrelevant information (noise) within the
dataset, which usually happens when the model trains for too long on sample data or when
the model is too complex. Some techniques to prevent overfitting (other than getting more
training data) include reducing the network’s capacity by removing some hidden layers or
reducing the number of neurons in them, and applying regularization, which adds additional
cost to the loss function for larger weights. Three most popular regularization techniques
are L1 and L2 regularization®, and also introducing dropout layers, which randomly remove
certain features by randomly setting some inputs of a layer to zero.

The opposite phenomenon to overfitting is underfitting [6, p. 104], which occurs when
the model is unable to accurately capture the relationship between input and output vari-
ables, leading to high error rates on both the training set and unseen data. This usually
happens when there is simply not enough training data or the model is too simple. Tech-
niques to reduce underfitting include increasing the model’'s complexity, increasing the
number of features by performing feature engineering, removing unwanted noise from the
data or simply increasing the duration of the training. Underfitting is usually easier to
identify than overfitting, since an overfitted model reaches high accuracy in training. A
visual interpretation of both underfitting and overfitting can be seen in figure 3.6.

Underfit Optimum Overfit
(high bias) (high variance)
8] ®
e ® @
® i
® e
@ e %o

High training error Low training error Low training error
High test error Low test error High test error

Figure 3.6: Visual interpretation of underfitting and overfitting [17].

®Penalizing the total loss by either absolute values (L1) or squares (L2) of the weights.

18

3.4 Main types of neural networks

This section explains the differences between the three main ANN types.

Multi-layer perceptron

Multi-layer perceptron (MLP) refers to a standard feedforward neural network whose three
or more layers are fully connected © and (except for the input layer) utilize some non-linear
activation function. A topology of an MLP may look like the one previously shown in
figure 3.4. Note that the “perceptrons” of which MLPs are composed of are not perceptrons
in the strictest possible sense, but rather ordinary artificial neurons, since they can employ
arbitrary activation functions (not limited to threshold-based functions).

Since an MLP accepts a vector (1D tensor) of numerical features as input, data is mostly
provided in a tabular format, such as csv ' files or spreadsheets. In these datasets, rows
separate individual instances, while columns separate individual features, including the class
label in the case of classification problems. MLPs can also work with more complicated
data, such as images, text data, or timeseries data, if there is a sensible way to convert the
data into a vector. For instance, a 28x28 pixel grayscale image can be converted to a vector
consisting of 784 numerical features representing individual pixels. The main problem with
using MLPs for image classification is that they can only recognize global patterns. For
example, an MLP can be trained to classify different shapes if they’re all similarly scaled
and located in the same part of an image, but fails to classify them once they're presented
in different scales and locations.

Convolutional neural network

A convolutional neural network (CNN/ConvNet) is an NN type most commonly used for
processing image data [25], since unlike an MLP, it has the ability to recognize local patterns
in multidimensional data. A CNN looks for spatial relations (relations between nearby
pixels) instead of only looking at an image as a whole—this property is called translation
invariance and allows the network to recognize objects regardless of their position in an
image. Capturing the spatial and temporal dependencies in an image is done through the
application of relevant filters.

The central part of any CNN;, that also gave this NN type its name, is the convolutional
layer. Convolution is a mathematical operation, in this sense refering to the process of
adding each element of an image to its local neighbors, weighted by a convolutional kernel,
as shown in figure 3.7. A convolutional layer contains a set of kernels, parameters of which
are to be learned throughout the training. Each kernel is used for detecting a specific feature
in the data, creating a feature map. A structure of multiple kernels stacked together is
called a filter. Two important terms when considering convolution are padding—a process
of adding layers of zeros around the image so that the kernel can overlap the image in every
possible position which has an element of the original image at the kernel’s center, so that
the feature map keeps the size of the input image, and stride—the number of elements
traversed between steps. A stride of more than 1 obviously downsamples the image even if
it’s padded along the edges.

A layer that is fully connected with its preceding layer is called a dense layer.
A CSV (comma-separated values) file is a text file that has a specific format which allows data to be
saved in a table structured format.

19

o[L[[Tefa]0] ...
ofo[Tafafo]o {4374]1]
0(0)0f1f1)1|0 1 1 112141313
0[0]0]|TTt}4Q) 07T X 01 = 112131411
ofo[1]t]ofo]0] . T1]o]1 1[3]3]1]1
0[{1]1{0[0]|0]|0O 3{3|1]1(0
1{1]0]0]0]0|0 Convolution

Input image kernel Feature map

Figure 3.7: Convolution of a 7x7 image with a 3x3 kernel (no padding, stride set to 1) [37].

Although convolutional layers summarize the presence of features in an input image,
the feature maps they produce are sensitive to location of the features in the image. A
common approach for reaching local translation invariance is to downsample the feature
map. Although this can be easily achieved by changing the stride, a more robust and com-
mon approach is to introduce pooling layers. Pooling transforms groups of elements (called
patches) in a feature map into single elements, based on the selected pooling operation—the
most common ones are maximum pooling (max pooling), which selects the highest value
in the patch, and average pooling, which calculates the average of the values. Both of
these pooling operations are shown in figure 3.8. Some non-linear function (e.g. ReLU) is
usually applied to a feature map before it gets passed to a pooling layer. It should also
be noted that while pooling can help the network become more translation invariant, it
does not address its variance to other transformations such as rotations or changes in scale
of an object, and even though some special CNN architectures addressing this issue were
already proposed [20], the usual way of combating this issue is to simply include slightly
modified (rotated, mirrored, etc.) copies of images already contained in the dataset when
training—this is part of a technique called data augmentation.

315|138 35|38
01215 N 5(8 0[2]1]5 N 2.514.25
0[9|7|2 9|7 0]19]7]2 3.513.75
112214 Max 1121212 Average

pooling pooling

Figure 3.8: Application of 2x2 max pooling and 2x2 average pooling to a 4x4 feature map.

The overall architecture of a CNN can be broken down into two parts, as can be seen in
figure 3.9. The first part, responsible for feature extraction, is made of convolutional layers,
each usually followed by a pooling layer. The first convolutional layer is usually used to
detect low-level features, such as horizontal or vertical lines, but the deeper a convolutional
layer is, the higher-level features it can recognize, such as entire objects or even facial
expressions. The second part of a CNN, responsible for the classification itself, consists of
dense layers and essentially behaves as a standard MLP. Feature maps usually have more
than one dimension, but a dense layer only accepts a vector as input. To solve this problem,
we can introduce a flatten layer, which transforms all the final pooled feature maps into a
single large vector.

20

Input Feature Maps Feature Maps Feature Maps Feature Maps
48x48 G@44x44 6@22x22 12@ 18x18 12@@ 9x9

Outputs

Convolution Max-pooling Convolution Max-pooling

Classification

Features extraction

Figure 3.9: Architecture of a CNN composed of an input layer, multiple alternating convo-
lution and max-pooling layers, one dense layer and an output layer [1, Figure 9].

Recurrent neural network

Sometimes we might want to work with sequential data (e.g. time series), where the chrono-
logical order of elements creates a certain context. Most prominent is natural language pro-
cessing, which includes both text (as sequences of either words or characters) and speech.
For this kind of problem, let’s consider a special NN type that has a sequential memory,
which provides the ability to remember preceding elements and take them into considera-
tion. This is called a recurrent neural network (RNN), and its concept is based on David
Rumelhart’s work in 1986 [29]. Apart from sequence classification and regression, RNNs
are also great for building generative models that require a sequential output, such as
generating text or even handwriting.

In an RNN, information gets passed not only to succeeding layers, but also backwards
through loops, as was previously shown in figure 3.3 when mentioning RNNs in the context
of NN topologies. Each recurrent cell has its hidden state, which is calculated as a function
of its previous hidden state and its input. This means that the network as a whole has a
hidden state, that strongly affects its response to a given input.

A huge problem RNNSs face is their short-term memory caused by the vanishing gradient
problem [14], from which they tend to suffer more than other NN architectures the more
steps they process. When a FFNN is trained using backpropagation, the backpropagated
error signal typically decreases exponentially as it propagates further from the output layer,
making the weight adjustments in those layers less prominent. All neurons that participated
in the calculation of the output get updated—this gets very complicated in the case of an
RNN, where it’s not just the neurons preceeding the output layer, but all of the neurons
involved back in time, creating a long path for the error to propagate through. This
diminishes the effect of earlier inputs on the network’s training. To overcome this problem,
two specialised versions of RNN were created.

Long Short Term Memory (LSTM), capable of remembering long sequences for a long
period of time, was introduced by Hochreiter and Schmidhuber in 1997 [15]. The new
hidden state of a LSTM cell is calculated not only from the previous hidden state of the
input, but also from information stored in the long term memory. There is a total of three
gates that LSTM uses—at each timestep, the input gate decides what information will be

21

stored in long term memory, the forget gate decides which of this information will be kept
or discarded, and the output gate calculates the new hidden state.

Gated recurrent unit (GRU), introduced in 2014 by Kyunghyun Cho [3], is designed
similarly as LSTM, but it aims to solve the same problem by incorporating an operating
mechanism that consists of the update gate, responsible for determining the amount of
previous information getting passed to the next state, and the reset gate, which decides
how much of the past information is going to be neglected (forgotten). At first, it takes the
input, and the previous hidden state multiplied by the reset gate’s output, which results in
something called the candidate’s hidden state. This state, together with the update gate,
is then used to calculate the current hidden state. The cells of a standard RNN, LSTM
and GRU are all shown in figure 3.10.

RNN LSTM GRU

F 3 by
(w t=1 / -
ie P x +) T
-1 r _n'. { ‘ta:r_\"
fe lzr—)ai: 0:[')-.*
o o | [tah| [@
t=1 1 1 J
X Xe

Figure 3.10: Comparison of standard RNN cell, LSTM cell and GRU cell [21].

22

Chapter 4

The Keras library

Keras is an open source library that provides a high-level interface for working with artificial
neural networks in Python'. It uses the TensorFlow” library as its backend®, for which it
provides a high-level API that makes deep learning more accessible to a wider range of users
through its ease of use. Keras, written in Python, was developed with a focus on enabling
fast experimentation, with the core idea that “being able to go from idea to result as fast
as possible is key to doing good research” [4].

Since the range of options Keras has to offer is very extensive, the goal of this chapter
is to explore some of its main offerings in the context of classification, in the form of a
guide starting with a model’s building phase in section 4.1, followed by it’s compilation
in section 4.2, its training in section 4.3, and finally its testing and general usage in final
section 4.4. Each section briefly introduces the many choices a user has along the way of
solving a given classification problem using Keras. Much of the information in this chapter
is drawn from the official Keras documentation [4], and from the book Deep Learning in
Python [6] written by Frangois Chollet, the author of Keras himself.

4.1 Building a model

There are three ways to create a model in Keras. The most straightforward way is to use
the Sequential class, which groups a linear stack of layers into a sequential model with
a single input and a single output. The second option is using the Keras functional API,
which is more flexible and capable of creating models with non-linear topologies, shared
layers, and even multiple inputs and outputs. It provides an easy-to-use way of creating
directed acyclic graphs of layers. A direct comparison between using the Sequential class
and using the functional API is shown in listing 4.1. The last option is to use model
subclassing, by writing custom subclasses of the Model class and the Layer class.

import tensorflow as tf

model = tf.keras.Sequential()
model.add (tf.keras.layers.Dense(16, activation=’relu’, input_shape=(12,)))

"https://www.python.org/

’https://www.tensorflow.org/

3Up until version 2.3, Keras could also be configured to utilize a different library, such as Theano or
CNTK. Since version 2.4, only TensorFlow is supported. Keras has also been embedded as part of the
TensorFlow package since the release of TensorFlow 2.0.

23

https://www.python.org/
https://www.tensorflow.org/

model .add (tf.keras.layers.Dense(8, activation=’relu’))
model.add (tf.keras.layers.Dense(l, activation=’sigmoid’))

input_layer = tf.keras.Input(shape=(12,))

hidden_layer = tf.keras.layers.Dense(16, activation=’relu’) (input_layer)
hidden_layer = tf.keras.layers.Dense(8, activation=’relu’) (hidden_layer)
output_layer = tf.keras.layers.Dense(l, activation=’sigmoid’) (hidden_layer)
equivalent_model = tf.keras.Model (inputs=input_layer, outputs=output_layer)

Listing 4.1: An MLP binary classification model built using the Sequential class and an
equivalent model built using the functional API.

Layers and activation functions

A model is series of layers grouped into a Model object with training and inference features.
Each layer consists of a tensor-in tensor-out computation function and usually also some
state (the layer’s weights). The most basic is probably the Dense layer, which contains
units number of neurons, each connected to every neuron in the previous layer. All the
available layers can be grouped into the following categories:

e Core layers: Dense, Input object, Embedding, Activation, Masking, Lambda

e Convolution layers: ConviD, Conv2D, Conv3D, SeparableConv2D,
DepthwiseConv2D, Conv2DTranspose, etc.

e Pooling layers: MaxPoolinglD, AveragePooling2D, GlobalMaxPooling2D,
GlobalAveragePooling3D, etc.

e Recurrent layers: SimpleRNN, LSTM, GRU, base RNN, ConvLSTM2D, etc.

o Other layer categories: Preprocessing (e.g. TextVectorization), normalization
(e.g. BatchNormalization), regularization (e.g. Dropout), attention, reshaping (e.g.
Reshape, Flatten), merging, locally-connected layers, and activation layers

Every layer type accepts a different set of arguments, through which can the layer’s
behavior be modified. These arguments range from obvious ones like the number of units
or the activation function, to very specific ones like the kernel regularizer function (which
introduces weight decay). Many of the arguments, including the activation function and
the kernel regularizer, can be passed either as an object instance, whose parameters can
be tweaked, or as a string identifier, in which case the default values will be used. Both of
these options are demonstrated in listing 4.2.

Activation function is without a doubt one of the most prominent layer attributes. Keras
activations module offers these built-in functions: relu, sigmoid, softmax, softplus,
softsign, tanh, selu, elu and exponential. Activation functions can not only be passed
as an object instance or a string identifier, but also added as a separate layer (see listing 4.2),
which is also the only was to use activations that maintain a state—for instance PReLU, and
some other advanced activation functions such as LeakyReLU.

In a classification model, the hidden layers usually utilize either relu, sigmoid or tanh
activation function. The output layer, however, depends on the given type of classification.
We use a Dense layer containing either a single neuron with sigmoid for binary classifica-
tion, number of classes neurons with softmax for multi-class classification as, shown at the
end of listing 4.2, or number of classes neurons with sigmoid for multi-label classification.

24

model = tf.keras.Sequential()

model .add (tf.keras.layers.Conv2D(
input_shape=(30, 30, 3), # 30x30 RGB image (3 color channels)
filters=64, kernel_size=(3, 3), strides=(1, 1), padding=’same’,
kernel_regularizer=tf.keras.regularizers.L2(0.001),
kernel_initializer=’zeros’, bias_regularizer=’11’,
bias_initializer=tf.keras.initializers.Zeros()

)

model .add (tf.keras.layers.LeakyReLU(alpha=0.1))

. # Pooling, Flatten, Dense, etc.
model.add (tf.keras.layers.Dense(units=6, activation=’softmax’))

Listing 4.2: A CNN six-class classification model with specifically parameterized layers.

Keras models can be saved to a file by the save_model() function (or Model’s save ()
method) and loaded by the load_model() function. The same can be done with only
the current weights instead of the whole model, by the Model’s save_weights() and
load_weights() methods. The model’s summary, which contains information about the
consecutive layers (e.g. layer type, number of trainable parameters), can be printed using
Model’s summary () method. Models can also be plotted and saved as an image using the
plot_model () function from Keras utilities.

4.2 Compiling a model

Once a model is built, the Model’s compile() method is used to configure it for training.
Apart from some very specific optional arguments, we specify the optimizer and the loss
function to be used for training, and a list of metrics to be evaluated during training and
testing. All of these can be again passed either as a object instance or as an string identifier
(default parameters), an example can be seen in listing 4.3.

model.compile(optimizer=tf.keras.optimizers.Adam(learning rate=1e-3),
loss=tf.keras.losses.BinaryCrossEntropy(),
metrics=[’accuracy’, tf.keras.metrics.FalsePositives()])

Listing 4.3: Configuring a Keras model for training using its compile method.

Optimizer

An optimizer is an algorithm that dictates how the model’s attributes, such as weights and
learning rate, are updated in response to the output of the loss function. The simplest
optimizer Keras offers is SGD, which is the stochastic gradient descent algorithm, with an
optional momentum hyperparameter that accelerates the descent in the relevant direction.

The other available optimizers tend to be more complicated, since they all belong to
the family of adaptive optimizers [28], introduced to solve the issues of gradient descent.
This includes Adagrad, which adapts the learning rate to perform more significant updates
for rarely occurring features, Adadelta and RMSprop, both of which improve the previous
algorithm by taking a fixed number of past gradients into consideration, and Adam—the
overall most commonly used optimizer, which adds to the advantages of all these previ-
ous algorithms by storing an exponentially decaying average of past gradients (similar to
momentum). The remaining Keras optimizers are Adamax, Nadam and Ftrl.

25

Loss

As already explained in section 3.3, the purpose of a loss function is to compute the
quantity that a model seeks to minimize during training. The built-in losses Keras of-
fers can be divided into three categories: Probabilistic losses, regression losses, and hinge
losses for "maximum-margin” classification. Since this thesis revolves around classification,
we can neglect regression losses, apart from maybe mentioning MeanSquaredError and
MeanAbsoluteError since these two are very common.

Cross-entropy based losses can be found in the probabilistic category. For binary classi-
fication, we use BinaryCrossentropy, while for multi-class classification, we can use either
CategoricalCrossentropy in combination with label-encoded (integer) class labels, or
SparseCategoricalCrossentropy with one-hot-encoded class labels (both of these en-
coding techniques will be explained in the next section 4.3). The probabilistic losses also
include KLDivergence (Kullback—Leibler divergence), which measures a very similar quality
to cross-entropy, and Poisson, used for regression with discrete variables.

The last category includes three versions of the hinge loss function: standard Hinge,
SquaredHinge and CategoricalHinge. The usage of these losses in Keras is quite rare,
since they are mostly used for SVMs and only very rarely for NNs.

Metrics

A metric is a function that is used to evaluate the performance of a model, but unlike loss
functions, the results from evaluating a metric are not used when training the model. The
built-in metrics can be grouped into six categories. Three of these categories correspond
to the three previously listed loss categories, since any loss function can also be used as a
metric. Also, there is only a single metric in the image segmentation category—MeanIoU
(mean Intersection over Union), used to measure the accuracy of an object detector.

Probably the most common are accuracy metrics, which tell us how often the model
predicted the correct outcome. When the metric Accuracy is specified, Keras detects the
output shape and automatically determines which type of accuracy shall be used (but it
can also be specified manually). These include BinaryAccuracy, which calculates how
often predictions match binary labels (binary classification), CategoricalAccuracy and
SparseCategoricalAccuracy, which calculate how often predictions match either one-hot
labels or integer labels respectively (multi-class classification), and finally
TopKCategoricalAccuracy and SparseTopKCategoricalAccuracy, which compute how
often targets are in the top K predictions (multi-class classification).

The last category contains classification metrics based on true/false positives and nega-
tives, implementing the metrics defined in section 2.2. The simplest of these metrics are nat-
urally TruePositives, TrueNegatives, FalsePositives and FalseNegatives, which are
self-explanatory, while the most complex one is probably AUC, which approximates the AUC
(Area under the curve) of the ROC or PR curves. The remaining metrics are Precision,
Recall, PrecisionAtRecall, which computes the best precision where recall > specified
value, and SensitivityAtSpecificity complemented by SpecificityAtSensitivity,
which compute the best sensitivity where speci ficity > specified value and vice versa.

26

4.3 Training a model

A Keras model can be trained either by calling its it () method, which trains the model for
a fixed number of epochs, or the train_on_batch() method, which runs a single gradient
update on a single batch of data. The arguments of the fit () method include the input
data (unlabeled samples), target data (corresponding class labels), batch_size (number
of samples per gradient update), epochs (number of epochs to train the model for), and
some others. Keras is usually combined with other Python libraries, since the input and
target data passed to the fit () method can be in the form of Numpy® arrays, TensorFlow
tensors, Pandas® DataFrames, or some of the few other more specialized formats, including
a dictionary mapping input names to the corresponding array/tensors, suitable for models
that have named inputs.

Part of the training data can be used for the model’s validation using either the
validation_split or validation_data argument of the fit() method. A validation
dataset is a sample of data held back from training the model, giving out an unbiased
estimate of the model’s performance, which is especially useful for monitoring the gener-
alizability of the model and detecting overfitting. The fit () method returns a History
object, whose History.history attribute is a record of training loss and metrics values
at successive epochs, as well as validation loss and metrics values (if applicable). Value of
the verbose argument controls how much information will be printed at the end of each
epoch, such as the values of loss and metrics (also for validation if applicable), or even an
animated progress bar.

Keras also offers a few built-in datasets provided by the tf.keras.datasets mod-
ule. These include famous datasets such as the MNIST® handwritten digits classification
dataset [9], the IMDB movie review sentiment classification dataset’ [22], the CIFAR10
and CIFAR100 small images classification datasets®, and three other datasets. Training a
model on a built-in dataset using the fit() method is shown in listing 4.4.

Loading the training and testing data

(X_train, y_train), (X_test, y_test) = tf.keras.datasets.mnist.load_data()
Training the model

model.fit(X_train, y_train, batch_size=32, epochs=80, validation_split=0.1)

Listing 4.4: Training a Keras model on the built-in MNIST handwritten digits classification
datasets using the Model’s fit () method.

Data preprocessing

Since a dataset is usually a set of measurements of some phenomena, the data often has to
be transformed into a form that an NN can accept as input. This includes encoding non-
numerical categorical data into numerical values and reshaping the input—for example, a
2D CNN usually expects an input of shape (rows, cols, channels). Reshaping can be
done in advance (often using Numpy), or by including one or more Reshape layers in the
model’s architecture. Even though Keras offers some utilities (e.g. the to_categorical

“https://numpy.org/

Shttps://pandas.pydata.org/
Shttp://yann.lecun.com/exdb/mnist/
"https://ai.stanford.edu/~amaas/data/sentiment/
8http://www.cs.toronto.edu/~kriz/cifar.html

27

https://numpy.org/
https://pandas.pydata.org/
http://yann.lecun.com/exdb/mnist/
https://ai.stanford.edu/~amaas/data/sentiment/
http://www.cs.toronto.edu/~kriz/cifar.html

function), external libraries including more advanced preprosessing tools, such as scikit-
learn”, are usually used alongside Keras.

There are three main techniques for encoding categorical data. Label encoding (also
called integer or ordinal encoding) represents each of n total categories as an integer (either
from 1 to n or 0 to n — 1). Label encoding should only be used in cases where there is
some kind of hierarchical relationship between the categories. If we tried to encode, let’s
say, a color attribute in that way, the network would learn some unintended relationship
based on the order in which the colors were encoded, such as red < green < yellow. If
no relationship is present between the categories, one-hot encoding should be used, which
means transforming each value into a vector of length n, with all of its components set
to 0 except for the single one representing the given category, which is set to 1. The
direct comparison of label and one-hot encoding on a weather feature example is shown
in table 4.1. The last technique is called learned embedding (or simply embedding) and is
based on mapping each category to a distinct vector, whose properties are adapted while
training the NN, which allows for miscellaneous relationships between the categories to
be learned. This technique is often referred to as word embedding, since it was originally
developed to provide a distributed representation for words (e.g. allowing similar words to
have similar vector representations).

Sample | Default | Label encoded | One-hot encoded
number | feature feature feature

1 "sunny" 1 [1, 0, 0]

2 "cloudy" 2 [0, 1, 0]

3 "sunny" 1 [1, 0, 0]

4 "rainy" 3 [0, 0, 1]

Table 4.1: Direct comparison of label encoding and one-hot encoding.

Further preprocessing can be done to optimize the training process, generally leading
to better results [18]. This includes techniques like data augmentation (explained in the
CNN subsection of section 3.4), normalization, standardization and batch normalization.
Normalization refers to scaling the values from different ranges to a common range, usually
the interval (0,1), while standardization refers to transforming the data such that the
mean of the data is equal to zero and the standard deviation to one. Batch normalization
(BatchNormalization layer in Keras) is based on normalising each batch individually, and
is often used after convolutional layers.

It is extremely important to use different data for training, validation and testing to
check how well the model is generalized and to detect overfitting in time. While there is
no optimal dataset split percentage, since it depends on the given problem, three standard
ways to split a dataset (training|validation|testing) are 80%|10%|10%, 70%|15%|15% and
60%]|20%120%. In general, the larger a dataset is, the lesser proportion of the data is
required for testing and validation. However, much more important than finding good split
percentages is to ensure that these three datasets are about equally balanced with respect
to the distinct classes and feature values.

https://scikit-learn.org

28

https://scikit-learn.org

Callbacks

In Keras, a callback is an object that can perform actions at various stages of training/test-
ing (before/after a batch, at the start/end of an epoch, etc.). There are several built-in
callbacks, such as ModelCheckpoint, which periodically saves the trained model (or its
weights) to a file, CSVLogger, which streams epoch results to a CSV file, or EarlyStopping,
which stops the training when a monitored metric had stopped improving.

To create a custom callback, we simply create a subclass of the Callback class and
override a set of methods called at various stages of training, testing and predicting,
such as on_(train|test|predict)_begin(), on_(train|test|predict)_batch_end(),
on_epoch_begin(), etc. A list of callbacks can be passed to the fit() method (and also
to the evaluate() and predict () methods introduced in the following section 4.4) via the
callbacks argument, as shown in listing 4.5.

Custom callback that prints a message after the training is finished
class CustomCallback(tf.keras.callbacks.Callback):
def on_train_end(self, logs=Nomne):
print ("Training is complete, have a nice day!")

my_callbacks = [tf.keras.EarlyStopping(patience=2), CustomCallback()]
model.fit(X_train, y_train, epochs=30, callbacks=my_callbacks)

Listing 4.5: A class for a custom callback, and training a Keras model using its £it()
method while utilizing multiple callbacks, including the custom one.

4.4 Testing and using a model

The Model’s evaluate () method is used to test/evaluate a model’s performance. Its argu-
ments include the testing data, the corresponding class labels, batch_size, and a few oth-
ers, including callbacks. There are obviously no epochs, since each iteration would show
the same results. The evaluate() method, shown in listing 4.6, returns the loss value and
metrics for the model in test mode (weights don’t get updated), and also prints the relevant
information (controlled by the verbose argument). Alternatively, the test_on_batch()
method can be used instead, to test the model on a single batch of data.

scores = model.evaluate(X_test, y_test, return_dict=True)
return_dict=True => metrics are stored in a dictionary instead of a list
print("Test accuracy: ", scores[’accuracy’])

Listing 4.6: Evaluating a model’s accuracy on a testing dataset.

The Model’s predict () method generates output predictions for given input samples,
as shown in listing 4.7. It accepts similar arguments to the evaluate () method, except for
class labels, since those are returned by the method as a Numpy array(s) of predictions. For
a small number of inputs that fit in one batch (marked as X), we can also use the Model’s
__call__() method as predictions = model(X), or its predict_on_batch() method.

predictions = model.predict (X)
the predicted labels are stored in a list
for i in range(len(predictions)):
print("Class prediction for ", i+l, ". sample:", predictions[i])

Listing 4.7: Using a model to predict class labels for a given set of data.

29

Apart from custom NN architectures created directly by the user, Keras also offers
some pre-built deep learning models, along with pre-trained weights, as Keras Applica-
tions, available from the tensorflow.keras.applications module. They can be used
for prediction, feature extraction, and fine-tuning'’. These models include famous CNN
architectures, such as three different versions of Inception including Xception [5] (Extreme
version of Inception), used in the exemplary use case shown in listing 4.8, multiple versions
of ResNet [13], many version of EfficientNet [36], and a few others.

from tensorflow.keras.applications import xception
from tensorflow.keras.preprocessing.image import load_img, img_to_array
import numpy as np

loading weights from training on the ImageNet dataset

model = xception.Xception(weights="imagenet", include_top=True)

loading and preprocessing hamster image

img = load_img(’hamster.png’, target_size=(299,299))

img = img_to_array(img)

img = np.expand_dims(img, axis=0)

making model predictions (top=3 => show 3 most probable classes)
X = xception.preprocess_input(img)

preds = model.predict(x)

print ("Predicted: ", xception.decode_predictions(preds, top=3)[0])
Predicted: [(’°n02342885°, ’hamster’, 0.9340777),

(°n03794056°, ’mousetrap’, 0.0025085167),

(°n07714990’, ’broccoli’, 0.002150822)]

Listing 4.8: Classifying an image of a hamster by using the Xception [5] NN architecture
along with weights pre-trained on the ImageNet''dataset

OFinetuning means taking weights of a trained neural network and using it as initialization for a new
model being trained on data from the same domain. It is primarily used to speed up the training process
and overcome small dataset size.

Uhttps://www.image-net.org

30

https://www.image-net.org

Chapter 5

Preparation of the experiments

Now that NNs and Keras have been sufficiently introduced, it’s time to move on to the
practical part of the thesis. The objective of the experiments is to choose 3 different
datasets, each suited for a different type of NNs (tabular for MLPs, image for CNNs,
sequential for RNNs), create an NN(s) of each type for each of the datasets, compare their
performances, and experimentally find out how often can an NN, that’s not intuitively
suited for a given task at first glance, outperform the one that is.

Since comparing NNs of different types is a bit like comparing apples to oranges, this
chapter focuses on preparation of the experiments in such a way, that the different NNs can
actually utilize their signature abilities sensibly to their advantage. This heavily depends
on the choice of the datasets in section 5.1, preprocessing of the data in section 5.2, which
dictates how the data will be interpreted by the individual types of NNs, and finally, the
NNs’ architectures in section 5.3.

5.1 Choosing and analyzing the datasets

This section introduces the chosen datasets, along with the reasons for choosing them and
some brief analysis of their compositions.

5.1.1 Tabular data - MiniBooNE particle identification

MiniBooNE (Booster Neutrino Experiment) is a Cherenkov detector experiment at Fer-
milab' designed to observe neutrino oscillations. The MiniBooNE particle identification
dataset had been obtained from the UCI Machine Learning Repository [10] and contains
records of 130,064 events (instances), each consisting of 50 individual particle measurements
(real numbers), and a binary label that marks whether the instance was a signal event (1)
or a background event (0). Since there are only 36,499 (=~ 28 %) signal events, compared
to the remaining 93,565 (=~ 72 %) background events, one might call this an imbalanced
binary classification problem.

Due to the nature of the experiment the dataset captures, the features (particle mea-
surements) in the scope of a single event are obviously not really independent of each other,
so the RNN and 1D-CNN might be able to make use of their unique abilities to identify
some hidden patterns the MLPs are unable to see.

"https://www.fnal.gov/

31

https://www.fnal.gov/

5.1.2 Image data - Fashion-MNIST

Fashion-MNIST [39] is a dataset consisting of 60,000 training and 10,000 test grayscale
images of clothes, each belonging in one of the 10 distinct clothing categories shown in
figure 5.1. It was developed as a modern drop-in replacement for the original MNIST
dataset, from which it had inherited the same image resolution (28x28), number of target
classes, and even the total number of samples and the distribution of target classes. The
data was extracted from Zalando’s” arcticle images and the entire dataset is built into Keras
in the exact same manner as the standard MNIST.

T_shirt ' .

Trouser n

Pullover n
-

K |

-

o>
-

Dress

)
A i
P
M
£

A
IR
-
P

Coat ||

Sandal —

Shirt '

Sneaker -

Bag

Ankle boot _

»
-
A & A

Figure 5.1: Sample images from the Fahion-MNIST dataset [1

1 2 e LB
Y=Y 3 Bd ET
K) s B==
Hi®: cmmn= |
N Y A 1 E b
AL v &/ D=B=n

o)

, Figure 8§|.

Searching for patterns among the different clothing categories should be undoubtedly
more challenging than among digits, so Fashion-MNIST might as well be the better choice
for benchmarking NNs built using modern technologies. While MNIST is still often con-
sidered to be the go-to introduction dataset for getting into image classification, it was
first introduced back in 1998 when the average NN had drastically weaker capabilities than
today. The distribution of the target classes has a discrete uniform distribution, so each of
the 10 classes makes up exactly 10 % of both the training set and the test set.

5.1.3 Sequential data - IMDB movie review sentiment classification

The IMDB movie review sentiment classification dataset® [22] is a set of 25,000 different
reviews obtained from the Internet Movie Databased (IMDb?), each binary labeled as either
positive (1) or negative (0). It is a famous dataset very commonly used for natural language
processing or text analytics, that’s also built into Keras. A sample review is shown in
listing 5.1.

2https://github.com/zalandoresearch/fashion-mnist
Shttps://ai.stanford.edu/~amaas/data/sentiment/
“https://www.imdb.com/

32

https://github.com/zalandoresearch/fashion-mnist
https://ai.stanford.edu/~amaas/data/sentiment/
https://www.imdb.com/

lavish production values and solid performances in this straightforward
adaption of jane [00V] satirical classic about the marriage game within

and between the classes in [00V] 18th century england northam and paltrow
are a [00V] mixture as friends who must pass through [00V] and lies to
discover that they love each other good humor is a [00V] virtue which goes
a long way towards explaining the [00V] of the aged source material which
has been toned down a bit in its harsh [00V] i liked the look of the film
and how shots were set up and i thought it didn’t rely too much on [00V]

of head shots like most other films of the 80s and 90s do very good results.

Listing 5.1: A sample positive review from the IMDB movie review sentiment classification
dataset converted into words (OOV is an out-of-vocabulary token representing an unknown
word).

There’s a total of 50,000 reviews, out of which 25,000 are part of the train set and the
other half belongs in the test set. The Keras implementation of this dataset also comes
with options like only considering the X most common words, ignoring the ¥ most common
words (e.g. the word ’the’), etc. Exactly half of the reviews are positive (applies to both
train/test set) and each review is a sequence of anywhere from 7 to 2,494 (not necessarily
distinct) words, with the average being ~ 234.76 words. Each sentence is a list of indexes
(integers). The more often a word is found in the reviews overall, the lower its index in the
words’ dictionary.

5.2 Data preprocessing

Each dataset has to be preprocessed for each type of NNs in a way that will still be sensible,
while also demonstrating the network’s unique abilities. This section describes this process
for all 9 combinations of tasks and NN types. Most of these adjustments will be done by
the networks themselves via preprocessing layers (Reshape, Flatten, etc.). The first axis
of the input shapes, which indicates the batch size, will not be listed here and is implicitly
set to None to obtain a variable batch size.

5.2.1 Tabular data - MiniBooNE particle identification

Each sample is a vector of 50 different numerical (floating point) features and has shape
(50).

e MLP, input_shape=(num_features) — Nothing to be done, each sample will have
shape (50), to be interpreted as 50 separate numerical features.

e 1D CNN, input_shape=(timesteps, num_features) — Each sample will be re-
shaped to (50, 1), to be interpreted as 50 timesteps of a single feature, since in-
terpreting samples as a single timestep of 50 features would somewhat degrade the
network to an MLP.

e RNN, input_shape=(timesteps, num_features) — The exact same shape and ra-
tionalization behind it as in the 1D CNN case.

33

5.2.2 Image data - Fashion-MNIST

Each sample is a 2D tensor of shape (28, 28) containing integer values between 0 and 255.
For all networks, the values will be converted to float32 and normalized between 0 and 1.

e MLP, input_shape=(num_features) — Each sample will be reshaped to (784), so
that the value of each pixel is interpreted as a separate feature.

e 2D CNN, input_shape=(height, width, channels) — Each sample will be re-
shaped to (28, 28, 1), to be interpreted as a single-channel (grayscale) image.

e RNN, input_shape=(timesteps, num_features) — Each sample will be reshaped
to (28, 28, 1), so that each row of pixels will be interpreted as a separate feature,
whose value changes over 28 timesteps.

5.2.3 Sequential data - IMDB movie review sentiment classification

Each sample is a variable-sequence of integer indexes (words label encoded through the
dictionary). For all NN types, only the 10,000 most commonly occurring words will be
considered.

o« MLP, input_shape=(num_features) — Each sample will be vectorized into a vector
of length 10,000, that’s made of binary values indicating whether each word occurs
in the given review or not. This leads to the MLP getting less information on input,
but may also lead to a surprisingly good performance if there’s a strong correlation
between occurrences of certain words and the positivity /negativity of the review. The
shape of each sample will then be (10_000).

e 1D CNN, input_shape=(timesteps, num_features) — The words will be embed-
ded, which means converting them to a fixed-length (in this case 32) vector of floating
point values. The more similar two words are, the lower the euclidean distance be-
tween their corresponding vectors. This gives the network much more context to work
with than one-hot encoding the words (vectors of length 10,000 comprised of Os and
a single 1). The reviews will be cut-off/padded to only the first 500 words, so the
shape of each sample will then be (500, 32).

e RNN, input_shape=(timesteps, num_features) — The exact same shape and ra-
tionalization behind it as in the 1D CNN case. Unlike CNNs, RNNs have the ability
to work with sequences of variable lengths, but for the sake of the experimental com-
parison, they will still be kept at 500 words.

5.3 Choosing the neural network architectures

The obvious problem is that there’s no definitive way of labeling two or more NNs of
different types as equally powerful, since they’re so fundamentally different in the ways
they function. Iteratively building NNs by directly measuring their performance and aiming
for very similar results would somewhat devaluate the results of the experiments, so I've
decided to settle on a different approach—aiming for (approximately) the same number of
trainable parameters. This metric is sometimes used to measure an NN’s “learning power”,
since it provides more flexibility in approximating the function that divides the feature
space. There are still many factors to consider, as these parameters could be “invested”

34

into parts of the network that have only minor impact on performance, so I've done quite
a lot of testing and tweaks before deciding on the final architectures.

There are 4 NNs per experiment—one of each type to compare their core differences,
and one extra network best suited for the given task (e.g. CNN for image classification) to
also compare different topologies of NNs of the same type. For each experiment, there is a
reference number X of trainable parameters obtained by rounding the number of trainable
parameters of one network that’s used as a reference point, and all the other networks
must stay within 10 % error, meaning the interval (X — %,X + %) The NNs were also
regularized by including Dropout layers with rates tuned for reaching similar training and
validation performance (loss and accuracy).

The graphs of all 12 architectures can be found in Appendix B. The naming scheme of
the networks is the name of the given data type and the given NN type, separated by an
underscore (e.g. Sequence MLP). The additional network for each experiment is denoted
by an extra x, which stands for extra (e.g. Image CNNx).

Below are some details about each chosen NN architecture, categorized by the corre-
sponding experiment type. The input layer, and the output layer, which contains either a
single neuron with sigmoid activation (binary classification — tabular, sequential) or num-
ber of classes neuron with softmax (multiclass classification — Image), are implicit (not
mentioned in the architecture details), just as the dropout layers. All models are compiled
with BinaryCrossentropy or CategoricalCrossentropy (in which case the categorical
labels are one-hot encoded first) loss, and Adam (tabular, image) or RMSprop (sequential)
optimizer.

5.3.1 Tabular data

This problem is a lot less difficult then the other two, so the NN architectures are rather
simple. The reference number of trainable parameters (7,500) had been set just through
some experimentation.

o Tabular_ MLP — A single hidden (Dense) layer with 150 neurons and Relu activation
(also used in all further mentioned Dense and Conv layers), so the network is expected
to learn many simple patterns but struggle in drawing some more complex conclusions.

e Tabular_ MLPx — The same as Tabular_ MLP, but has 3 hidden layers, each with
50 neurons. These two networks were created dependently on each other for a width
versus depth comparison of MLPs.

o Tabular_ CNN — A single Conv1D layer with 32 filters, kernel size 3 (each convolu-
tion step is based on 3 subsequential timesteps), and stride of 1, also followed by a
MaxPooling1D layer with pool size of 2. These layers are followed by a Flatten layer
and a Dense layer with 10 neurons, to further reinforce the classification based on the
extracted features.

e Tabular RNN — A single LSTM layer with 42 units. LSTM had been chosen as the
referential building block for all recurrent architectures in the thesis because of its
commonness in the context of modern NN architectures.

35

5.3.2 Image data

The reference number of trainable parameters (240,000) is inherited from the Image_ CINN
and Image_ CINNx architectures, which have been taken from a Kaggle notebook” shared
by Gabriel Preda.

e Image_ MLP — Two Dense layers with 224 neurons each, followed by a third Dense
layer containing 112 neurons. This architecture seems fairly balanced in terms of
width and depth of the hidden layers.

e Image CNN - Three subsequent couples of a Conv2D and a MaxPooling2D layer
with a 3x3 kernel size, 2x2 pool size and an increasing number of filters (32, 64, 128),
to extract features of an increasing complexity level, followed by a Flatten layer and
a Dense layer with 128 neurons, to strongly reinforce the classification, which is based
on the high-level features.

o Image_ CNNx — Exactly the same as Image_ CNN, but not regularized at all (no
Dropout layers). This network was added to demonstrate the need for regularization
by direct comparison to the regularized network.

e« Image_ RNN — A LSTM layer consisting of 180 units, followed by another one with
90 units and Dense layer with 90 neurons. The stacked LSTM layers (with the first one
set to return_sequences=True) allow the network to learn more complex (deeper)
recurrent patterns.

5.3.3 Sequential data

The reference number of trainable parameters (370,000), inherited from the Sequen-
tial__RNN architecture, is the largest out of the three experiments, although a huge part
of the “parameter budget” is “invested” either into word embedding via the Embedding
layer (CNN, RNNs), or having the vectorized sequences at input (MLP).

e Sequential__ MLP — Only two succeeding Dense layers with 36 neurons each. This
might seem like very little for such a large “parameter budget”, but let’s not forget
that the input layer is 10,000 neurons wide, so the number of connections adds up
quickly.

e Sequential_ CNN - The Embedding layer is followed by a Conv1D layer with 64
filters and kernel size of 3, followed by a GlobalMaxPoolinglD layer and a Dense
layer with 256 neurons.

e Sequential RNN — The Embedding layer is followed by a single LSTM layer with
100 units.

e Sequential_ RNNx — The Embedding layer is followed by two LSTM layers with 80
and 40 units respectively (the first one is also set to return_sequences=True), and
a 40-neuron Dense layer. This network was created mainly for a depth versus width
comparison of RNNs.

Shttps://www.kaggle.com/code/gpreda/cnn-with-tensorflow-keras-for-fashion-mnist

36

https://www.kaggle.com/code/gpreda/cnn-with-tensorflow-keras-for-fashion-mnist

Chapter 6

The experimental application

The main role of the application is to provide a very easy-to-understand (graphical) interface
for training and testing the chosen NNs on the corresponding datasets, while still providing
enough modularity to enable slightly more experienced users to change the NN architectures
and possibly even the datasets, wihout having to dissect the entire source code.

Section 6.1 specifies the functionality that the application should provide, the important
implementation details are then noted in section 6.2.

6.1 Concept and requirements

This section is divided into the functional requirements, stating what functionality the
application should provide, and a wireframe, the concept of how the graphical user interface
should look like (mainly the overall layout).

Functional requirements

e A main (text) screen that shows important information/logs about the train/test
progress and feedback for the user interaction.

e Select the active dataset. This also determines the current experiment context.

e Select which of the 4 models are active at the moment. Only the currently selected
models are considered for any kind of interaction at the given time.

e Train the selected models for a selected number of epochs with a selected batch size,
test the selected models with a selected batch size.

e Select the metrics that should be used for training and testing, while allowing each
metric to be also used for validation.

o Plot the progress of the (validation) loss and selected (validation) metrics during
training, plot the confusion matrices after testing.

e Save the current weights and load saved weights of the currently selected models, in
the context of the currently selected experiment.

« Utilities for smoothing the user experience, like the ability to clear the (text) screen
or to save its current state as a text file (log).

e Provide enough modularity for easy NN architecture and dataset changes.

37

Wireframe

| Models || Screen ” Help |

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Phasellus faucibus molestie nisl. Nullam sapien sem,
Selected experiment ornare ac, nonummy non, lobortis a enim. Et harum quidem rerum facilis est et expedita distinctio.

| Tabular v l Integer malesuada. Nulla quis diam.

Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quis nibh at
Selected models felis congue commodo. Praesent vitae arcu tempor neque lacinia pretium. Proin pede metus, vulputate nec,
FIMLP [ZJONN [JRNN fermentum fringilla, vehicula vitae, justo. Integer vulputate sem a nibh rutrum consequat. Maecenas ipsum
velit, consectetuer eu lobortis.
[JExtra

Metrics

Metric 1

Aenean vel massa quis mauris vehicula lacinia. Pellentesque sapien. Quis autem vel eum iure reprehenderit qui

I:‘ Metric n in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
pariatur? Integer tempor. Nam sed tellus id magna elementum tincidunt. In enim a arcu imperdiet malesuada.

validation

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem
aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Class
Plots aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Etiam sapien elit,

s D veilal consequat eget, tristique non, venenatis quis, ante. Sed elit dui, pellentesque a, faucibus vel, interdum nec,
diam. Nullam faucibus mi quis velit. Integer in sapien. Phasellus enim erat, vestibulum vel, aliquam a, posuere
[] Metrics [] valid. eu, velit.

Epochs:
Batch size:

| Train models |

| Test models I

Figure 6.1: Wireframe of the application’s GUIL. The wireframe was created in Figma'.

6.2 Implementation

This section first describes some implementational details of the application logic, and then
notes some details about the application’s graphical user interface.

Application logic

Each time the user selects an experiment, a new instance of the Experiment class is created.
Among its attributes is an array of the 4 corresponding models, the data type, and the
dataset, which is further represented by an instance of the Dataset class, that encapsulates
the data split into train and test sets, and holds additional information, like the number
of classes and the shape of a sample. This class can be easily modified to exchange one of
the datasets for a different one, although some more complex ones, like the IMDB movie
review sentiment classification, have to also store additional information (e.g. both the
embedded and the one-hot encoded version of the data). The app/datasets folder can
be used to store external datasets, although by default, it only contains the MiniBooNE
particle identification dataset, since the other two are loaded directly from Keras.

"https://www.figma.com/

38

https://www.figma.com/

The NN architectures can be changed by modifying the create_network function, just
remember that reshaping is left to the models themselves by including reshaping layers.
There are custom callbacks for training and testing, inheriting from the Keras’ Callback
class, whose purpose is to present selected progress information to the user in a more
minimalistic way. Plots of loss and metrics are handled by Matplotlib?, while Keras handles
all the machine learning backend and its other utilities are also used heavily throughout
the entire application.

Graphical user interface

The application’s graphical user interface (GUI) is built using the Tkinter® framework. The
entire application is then encapsulated in an instance of the View class, whose attributes
include even the current Experiment instance. All user interaction is handled via callbacks
of the GUI’s interactive elements and the standard output is redirected to the text screen.

Smoothness of the user experience had been taken very seriously. For example, even
though the selected models are created each time a dataset is chosen, along with showing
their architecture summaries, when the user selects additional models before beginning
training or testing, these models are additionally silently created (no summary shown).
Each action with the potential to discard unsaved progress, whether it be saving/loading
stored weights or clearing the text screen is guarded by a prompt that informs the user
about the possible consequences and gives him the option to cancel the action.

The finished GUI is shown in figure 6.2. The Models button at the top opens a
drop-down menu for saving and loading stored weights, and the Screen button opens a
drop-down menu for clearing the screen or saving its current state to a text file.

Models Screen Help

max_pooling2d_1 (MaxPooling (None, 5, 5, 64)

Selected experiment 2D)
Image N
dropout_4 (Dropout) (None, 5, 5, 64)
Selected models conv2d 2 (Conv2D) (None, 3, 3, 128)
¥ MLP & CNN " RNN dropout_5 (Dropout) (None, 3, 3, 128)
I Extra
flatten_1 (Flatten) (None, 1152)
dense 4 (Dense) (None, 128)
Metrics -
¥ Accuracy dropout_6 (Dropout) (None, 128)
~ Precission dense 5 (Dense) (None, 10)
| Recall activation_1 (Activation) (None, 10)
I AUC PR
~ AUC ROC

Total params: 241,546

I F1 score Trainable params: 241,546
Non-trainable params: ©

~ validation

ALl selected models have been successfully created.

Plots
¥ Loss ~ valid.
Starting training of Image MLP...
¥ Metrics T valid.
Beginning epoch 1 of training Image MLP...
Epoch: 1/10
loss: 0.7262630462646484 val _loss: 0.4497479498386383

. al =
AR O . Curacy: 0.7376999855041504 val accuracy: ©.8403800235557556
Batch size:[128 ﬂ precission: 0.8392674326896667 val_precission: 0.8865932822227478
Beginning epoch 2 of training Image MLP...
Train models Epoch: 2/10
loss: 0.47785109281539917 val loss: 0.41305050253868103
Test models accuracy: 0.8329833149909973 val_accuracy: 0.8546000123023987
precission: 0.8777746558189392 val precission: 0.8912161588668823

W (ST e Beginning epoch 3 of training Image_MLP...

Figure 6.2: The experimental application’s GUI created using Tkinter.

’https://matplotlib.org/
3https://docs.python.org/3/library/tkinter.html

39

https://matplotlib.org/
https://docs.python.org/3/library/tkinter.html

Chapter 7

Course and evaluation of the
experiments

The description of each experiment’s course starts with a reasoned choice of the batch size,
the number of epochs, and the selected metrics. The results are then presented, mainly in
the form of generated graphs, and some conclusions are made based on the visible trends
and patterns. Each dataset had been only split into train and test subsets, with the test
set also being used as the validation set, and validation happening every training epoch, so
testing a model at any given time is expected to yield results very similar to the validation
phase of its most recent training epoch.

This chapter is split into sections 7.1, 7.2 and 7.3, corresponding to the individual
experiments. All measured values are rounded to four (training) or eight (testing) decimal
places for the sake of the readability.

7.1 Tabular data classification

This experiment could be considered an anomaly detection problem, since we’re more fo-
cused on detecting a rare event (less commonly occurring positive class) and less concerned
about the nagative cases. For this reason, most of the available metrics (see figure 6.2)
had been measured, as they’re mostly based on precision and recall, both of which are very
relevant for this kind of problem. The only metric to be left out is area under the ROC
curve, as ROC curves can sometimes be misleadingly optimistic in imbalanced problems,
while misclassifying most of the minority class cases.

A rule of thumb for choosing the number of epochs for training on data with extracted
features is to start with the number of features multiplied by 3 (in this case 50 * 3 = 150).
After some experimentation with larger numbers of epochs, I decided to settle on this value
as the visible trends didn’t really change and the improvement progress stagnated heavily
after that point. The batch size had been set to 256, which should be large enough to
average out random fluctuations given the size of the dataset.

40

7.1.1 Results

First, the graphs of the training metrics’ progress are shown and described, then the testing
phase is presented via the confusion matrices and a table of the measured metrics.

Training phase

Tabular_loss Tabular_val_loss
50 —— Tabular_MLP 0.9 —— Tabular_MLP
—— Tabular_CNN —— Tabular_CNN
—— Tabular_RNN 0.8 —— Tabular_RNN
40 Tabular_MLPx Tabular_MLPx
0.7
30 0.6

loss
val_loss

0.5

20

0.4
10 o3 W
\ 0.2 f o=
o L A
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
epochs epochs
Figure 7.1: Training loss progress. Figure 7.2: Validation loss progress.

Since the graph of training loss (figure 7.1) is very “zoomed out”, most of the following
information was derived from the training logs. The most prominent progress happened
in the first four epochs, where all models reached training loss of about 0.4. Tabular_CNN
ended up being the worst with 0.2535 loss after the entire training, while the best performing
was surprisingly Tabular _RNN with loss of 0.1635, closely followed by Tabular_MLP (0.1774).
Somewhere in the middle ended up Tabular_MLPx with 0.2093 loss.

All models seem to generalize very well, as quite unexpectedly, most models’ validation
loss (figure 7.2) was about 0.4 to 0.8 lower than its training loss. Tabular_RNN took this
trend even further with an impressive 0.2096 validation loss. The relative performance of
the models is consistent in terms of training and validation loss.

41

Tabular_accuracy Tabular_val_accuracy

0.94
0.925 WWWMWV/
! I \
0.92 /
0.900
0.875 0.90
>
20.850"]
2 3088
> o
S0.825! i
® s
2086
0.800-
0.7751 —— Tabular_MLP 0.84 / —— Tabular_MLP
—— Tabular_CNN —— Tabular_CNN
0.750 —— Tabular_RNN —— Tabular_RNN
Tabular_MLPx 0.82 Tabular_MLPx
0.725-
0 20 40 60 80 100 120 140 0 20 70 50 80 100 120 140
epochs epochs
Figure 7.3: Training accuracy progress. Figure 7.4: Validation accuracy progress.

All models reached at least 0.875 training (figure 7.3) and 0.9 validation (figure 7.4)
accuracy in the first 20 epochs, and drastically slowed down their improvement after that
point. Even though Tabular_MLP performed the best in the beginning, it was, again, closely
outperformed by Tabular_RNN, which ended up with 0.935 training and 0.9369 validation
accuracy. The worst performing was again Tabular_CNN with 0.892 training and 0.9137
validation accuracy. Just as was the case with loss, all models showed better validation
performance than training performance and the models’ relative performance is basically
the same.

Tabular_precission Tabular_val_precission
0.85 OO e eepvTa SR S 0.90 Wy /\ |
/A
0.80
0.85
0.75 c
s s
S 2
80.70 g 0-80
1] =
o EI
0.65 >
0.75
0.60 —— Tabular_MLP —— Tabular_MLP
—— Tabular_CNN 0.70 —— Tabular_CNN
0.55 —— Tabular_RNN ! —— Tabular_RNN
Tabular_MLPx Tabular_MLPx
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
epochs epochs
Figure 7.5: Training precision progress. Figure 7.6: Validation precision progress.

In both cases, precision split the models into two pairs. In the case of training precision
(figure 7.5), the better pair consists of Tabular_RNN and Tabular_MLP, which reached
0.8755 precision, while the worse pair converged to a value about 0.035 lower, Tabular_MLPx
reaching the worst training precision of only 0.8426.

Interestingly enough, in validation precision (figure 7.6, whose graph seems to be quite
noisy because of many spikes), Tabular_MLPx was, along with Tabular_MLP, part of the
better performing pair, and the only model to end up with above 0.9 precision, with a value
of 0.9102. It also proved itself as the most consistent model, as its spikes didn’t dip as low
as the ones of all the other models.

42

Tabular_recall Tabular_val_recall

0.9
0.9
0.8
0.8
=0.7 r:30,7
© (9]
e -
g VI
0.6
0.6
—— Tabular_MLP 0.5 —— Tabular_MLP
—— Tabular_CNN —— Tabular_CNN
0.5 —— Tabular_RNN —— Tabular_RNN
Tabular_MLPx 0.4 Tabular_MLPx
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
epochs epochs
Figure 7.7: Training recall progress. Figure 7.8: Validation recall progress.

Both training (figure 7.7) and validation (figure 7.8) recall were visibly dominated by
Tabular_RNN, reaching values of 0.8979 and 0.8908 respectively, although the validation
recall dipped in the last epoch and peaked at 0.9546 during the 30th epoch. Not too
far behind were the MLPs, both reaching about 0.87 £ 0.005 training recall. Horrible
performance can be seen from Tabular_CNN, which started stagnating at a value of about
0.75, although it tightly outperformed Tabular_MLPx in validation, where it also peaked
during the 75th epoch at a more “respectable” value of 0.8479.

Tabular_auc_pr

Tabular_val_auc_pr

0.95
0.9
0.90
0.8
5 5
g $0.85
S ©
207 (_>u|
0.80
0.6
—— Tabular_MLP —— Tabular_MLP
—— Tabular_CNN —— Tabular_CNN
—— Tabular_RNN 0.75 —— Tabular_RNN
0.5 Tabular_MLPx Tabular_MLPx
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
epochs epochs
Figure 7.9: Training AUC PR progress. Figure 7.10: Validation AUC PR progress.

The AUC PR (Area unded the precision-recall curve) graphs look very similar to the
accuracy graphs. This applies to the AUC PR graph (figure 7.9) compared to figure 7.3,
as well as the validation AUC PR graph (figure 7.10) compared to figure 7.4. The best
performer, Tabular_RNN, reached 0.9442 training and 0.9482 validation AUC PR in the
last epoch, while the worst one, Tabular_CNN, only reached values of 0.8855 and 0.9171
respectively.

43

Tabular_f1_score Tabular_val_f1_score

0.90 0.90
0.85 0.85
0.80 0.80
0.75
o % 0.75
] 2
£10.70 = 0.70
o T>u| N
0.65 0.65
0.60 —— Tabular_MLP 0.60 —— Tabular_MLP
—— Tabular_CNN —— Tabular_CNN
0.55 —— Tabular_RNN —— Tabular_RNN
. Tabular_MLPx 0.55 Tabular_MLPx
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
epochs epochs
Figure 7.11: Training F score progress. Figure 7.12: Validation F} score progress.

Measures of the F} score are, again, very similar to both accuracy and AUC PR. The
most visible difference is the training F} score (figure 7.11) of Tabular_CNN, as F} score
strongly punishes the trade-off between precision and recall, in which Tabular_CNN strug-
gled a lot (see figure 7.7). Overall, the highest training F; score (0.8859) in the last epoch
was, again, obtained by Tabular_RNN, while Tabular_CNN only reached a value of 0.7973.

Results of the validation F1 score (figure 7.12) seem more balanced, as in the last
epoch, Tabular_RNN measured 0.8876 and Tabular_CNN measured 0.8426, which is not too
far behind given the difference of their training F} scores.

Testing phase

Please note that this is the only experiment where the test set was resampled from the
dataset between training and testing, so it doesn’t directly correspond to the validation set.

confusion_matrix_Tabular MLP confusion_matrix_Tabular MLPx

12000 12000

580 429

10000 10000

8000

T T 8000
= s
El L
= I 6000 = F 6000
14 613 4818 r 4000 1 1117 4314 r 4000
I 2000 r 2000
0 i - 0 1 o
Predicted label Predicted label
Figure 7.13: Confusion matrix of Figure 7.14: Confusion matrix of
Tabular_MLP. Tabular_MLPx.

The confusion matrices of the two MLPs (figures 7.13 and 7.14) reveal that Tabular_MLP,
with it’s lesser depth and wider layers, was more prone to predicting the less occurring pos-
itive label than its deeper counterpart, especially when the actual label was positive. Its

44

positive predictions make up 27.6679 %, while Tabular_MLPx’s make up only 24.3106 % of
all predicted labels (the actual occurrence of the positive class in the test set was 27.837 %).

confusion_matrix_Tabular RNN confusion_matrix_Tabular CNN

12000 12000

618 702

10000 10000

8000 8000

True label
True label

6000 r 6000

14 509 4922 I 4000 14 928 4503 I 4000

[2000 I 2000

Predicted label Predicted label

Figure 7.15: Confusion matrix of
Tabular_RNN.

Figure 7.16: Confusion matrix of
Tabular_CNN.

As its confusion matrix (figure 7.15) shows, Tabular_RNN improved on Tabular_MLP’s
amount of TPs by 104, for the cost of only 38 more FPs. Its positive predictions make up
28.3957 %, making it the only overly optimistic model, as well as the best performing.

Even though Tabular_CNN (figure 7.16) counts less FNs than Tabular_MLPx, the count
is still unimpressive as well as its FP count, making it the worst overall performing model
in terms of rounded predictions, with a 26.6786% positive prediction rate.

Metric | Tabular MLP | Tabular CNN | Tabular RNN | Tabular_ MLPx
Loss 0.16712075 0.20510150 0.14320368 0.19452372
Accuracy 0.93885189 0.92765248 0.93251324 0.92957455
Precision 0.89255279 0.87909085 0.88230193 0.88848990
Recall 0.88712943 0.85812926 0.87417912 0.85421652
AUC PR 0.94987130 0.93610001 0.94286144 0.93956620
F1 score 0.88983280 0.86848354 0.87822169 0.87101614

Table 7.1: Loss and metrics values measured during the testing phase of the tabular data
experiment.

Table 7.1 shows all values measured in testing. Not that surprisingly, Tabular_MLP beat
Tabular_MLPx by every metric (and loss). What’s interesting is that while Tabular_RNN
measured lower loss than Tabular_MLP, it got slightly outperformed by every single metric.
The overall worst performing model seems to be Tabular_CNN, mainly due to its low preci-
sion and recall (low AUC PR and F} score are direct consequences of that). Even though
Tabular_MLPx measured very slightly lower recall, it “redeemed” itself by the measured
precision.

7.1.2 Conclusion

The comparison of MLPs with more width (number of neurons in a layer), represented
by Tabular_MLP, and those with more depth (more layers), represented by Tabular_MLPx,

45

is pretty straightforward in this case, as Tabular_MLP outperformed the latter by almost
every measure, although usually not by a too large margin. It can be concluded that at
least on this scale and in this kind of problem, an increase in width should precede stacking
more layers, that also leads to slower training and unnecessary complexity.

As for the other NN types, Tabular_RNN proved itself as a very competent alternative
to MLPs for when the features measure the same kind of phenomena, happening just at
different time or space points. Not only were its results very impressive, but also consistent,
and the model seemed to learn very quickly. The 1D convolutional network, Tabular_CNN,
performed poorly compared to the other models, but a very possible explanation might be
that its bottleneck was the small convolutional kernel size (3), limiting its ability to recognize
global patterns, as opposed to the MLPs, working only globally, and Tabular_RNN, which
was able to store much more context in its recurrent memory. It is very much possible that
increasing the kernel size would’ve had a strong positive impact on the model’s performance,
as 1D convolutional networks are very commonly used for handling problems of similar
nature.

7.2 Image data classification

The only metric to be measured in this balanced multi-class image classification experiment
is accuracy, as the other available metrics (see figure 6.2) would have to be measured with
respect to a specific class, but in this case, all classes share an equal importance (any
important characteristics of the trained models will still be visible in the confusion matrices).

The number of epochs had been set to 200, which is quite a lot, but some interesting
changes in the graphs were happening around the 150th epoch. The batch size had been
kept at 32, as small mini-batches are very common for computer vision problems.

7.2.1 Results

Again, first the training results and then the testing results are presented.

46

Training phase

Image_loss Image_val_loss
07 —— Image_MLP —— Image_MLP
— Image_CNN 3.0f — Image_CNN
0.6 —— Image_RNN —— Image_RNN
Image_CNNx Image_CNNx

05 25

0.4 mZ.O
2 8
<] ~
- ©

0.3 15

0.2 1.0

0.1

o2 W
N
0.0
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
epochs epochs
Figure 7.17: Training loss progress. Figure 7.18: Validation loss progress.

First thing to notice in the training (figure 7.17) and validation (figure 7.18) loss graphs
is how quickly Image_CNNx, the only unregularized model, reached training loss of only
about 0.025 (0.021 in the final epoch). This is obviously a case of strong overfitting, as
its validation loss was steadily increasing, peaking at 3.246 in the 196th epoch, and would
probably keep increasing even more if the training continued. In the contrary, the training
loss of Image_CNN, which shares the same architecture but heavily regularized, basically
converged to values of about 0.215. This paid off well, as its validation loss reached values
as small as 0.2326 (49th epoch) very quickly, outperforming the other models effortlessly.

The battle between Image_ RNN and Image_ MLP ended up in favor of the former, as in
the final epoch, Image_RNN reached training loss about twice as low (0.0961 vs 0.198) for
the cost of only about 10 % higher validation loss (0.4636 vs 0.4295).

Image_accuracy Image_val_accuracy

W\%WWN\W\MWWMW

1.00 0.92

0.95

Y

o

©

o
o
©
©

accuracy

val_accurac

o

®

o
o
®
o

—— Image_MLP 0.84 —— Image_MLP
0.80 —— Image_CNN —— Image_CNN
—— Image_RNN —— Image_RNN
Image_CNNx 0.82 Image_CNNx
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
epochs epochs
Figure 7.19: Training accuracy progress. Figure 7.20: Validation accuracy progress.

The unregularized Image_CNNx seems to had reached training accuracy (figure 7.19) of
around 0.99 (peaking at 0.9968 during the 147th epoch) extremely quickly. Just as was the
case with loss, the second most accurate model was Image_RNN, with a training accuracy of
0.9643 in the last epoch. The main CNN representative, Image_CNN, plateaud very quicky

47

when reaching values of around 0.92, and it even got outperformed by Image_MLP at about
the 150th epoch and onwards.

When it comes to validation accuracy (figure 7.20), Image_CNN proved itself as the
best, although its performance doesn’t seem great enough to excuse the poor training
performance, given that it may had been intuitively expected to perform the best. It ended
up at 0.9152 (last epoch), but Image_CNNx was really close behind with a value of 0.9077.
This was really unexpected, as one would assume the accuracy would decrease much quicker,
complementing the loss increase due to overfitting, but it seemed to be almost unaffected.
At about the 45th epoch, Image_RNN started showing obvious signs of overfitting, as its
validation accuracy went from around 0.905 down to around 0.89, more or less matching
Image_MLP, which was the worst performing model in terms of accuracy.

Testing phase

confusion_matrix_Image_CNN confusion_matrix_Image_CNNx
18 18 2 0 74 0 4 0

T-shirt/top T-shirt/top 20 19 8 3 116 0 8 O

Trouser 4 8 1. 0 0 0 2 0O Trouser 4 5

pullover - 48 0 57 0 0 ©

Pullover 1
Dress{ 2 2 1 u Dress { 18
— 600 _ 600
2 coat{ 1 0 43 & Coat { 2
))
UEJ sandal{ @ 0 0 § sandal { ©
= 400 = 400
Shirt {108 0 61 shirt { 73

Sneaker4 0 0 0 sneaker { 0

Bag-4 0 1 Bag A

Ankle boot 4 1 0 0 Ankle boot { ©

R & e}c?%"'b‘b\&i“ & O o K & a‘c?'b"o‘a\\é' & &
L:c,\\@"’@o"’ Q&\u“ & & o § ;& \gfp ‘},\\@‘400"’ Q&\n“ & ¢ 5 Y é@# & @zvo
“ b ~ iS
Predicted label Predicted label
Figure 7.21: Confusion matrix of Figure 7.22: Confusion matrix of
Image_CNN. Image_CNNx.

To help interpret the following confusion matrices (figures 7.21 and 7.22), remember
that a perfectly accurate model would have 1,000s on the diagonal and Os everywhere else,
as there are precisely 1,000 samples of each class in the test set.

Even at first glance, it can be seen that both models seem to have problems with clas-
sifying shirts. Not only are they (mainly Image_CNN) likely to classify a shirt as something
similar, like a T-shirt/top or a coat, but they (mainly the more overfitted Image_CNNx) also
often tend to classify those as a shirt.

48

confusion_matrix_Image_MLP
13 18 1 2 75 0 3 0

confusion_matrix_Image_RNN
GRSl 1 20 22 1 0 114 0 7 O

T-shirt/top T-shirt/top

Trouser 4 9 3 0 1 0 1 0 Trouser 1 4 1 0 3 0 1 0
800 800

Pullover q ey 1 i 0 Pullover 4 S

Dress - 25 Dress -
600 600

Coat{ 1 0 Coat{ 1 1

sandal{ @ 0 0 sandal{ 0 ©

True label
True label

400 400

Shirt 4 shirt
sneaker sneaker { 0 0
200 200

Bag Bag] 2 O

Ankle boot{ © 0 0 Ankle boot { © 0

> & e]
& &)
& &

T T
o %
&

— ——
<N S s 5
& F é‘\(& e Q?Q 0of.) & _@:)\

'@ > °
& S F
& <5 Lol

Predicted label Predicted label

Figure 7.23: Confusion matrix of
Image_MLP.

Figure 7.24: Confusion matrix of
Image_RNN.

Similar pattern can be seen in the confusion matrices of the worse performing models
(figures 7.23 and 7.24). Even more prominent than in the previous case is the problem with
classifying shirts and coats. Image_MLP classified only 645 shirts correctly, predicting 162
of them to be a T-shirt/top, and Image_RNN managed to classify 143 coats as a pullover.
When it comes to clothes for the lower body, and accessories, the two models performed
almost as well as the convolutional models (and were slightly better at classifying ankle
boots for some reason).

Metric | Image MLP | Image_CNN | Image RNN | Image_CNNx
Loss 0.42950425 | 0.24873139 | 0.46358573 | 2.96167660
Accuracy | 0.89109999 | 0.90315002 | 0.89950001 | 0.90154999

Table 7.2: Loss and metrics values measured during the testing phase of the image data
experiment.

Table 7.2 shows almost nothing new. All models seem to perform just about the same
in terms of accuracy, except for Tabular_MLP, that scored about 0.01 lower than the rest.

7.2.2 Conclusion

The steadily increasing loss of Image_CNNx was very much expected, but its great test accu-
racy was very surprising. This demonstrates that when the data is split uniformly between
classes in the train set and small enough batches are used (smaller batches introduce noise
that has a regularizing effect [23]), the negative impacts of overfitting reduce drastically.

I would advise against using MLPs for image classification outside of educational pur-
poses, due to their inability to recognize local patterns. Even though the worst performing
model, Image_MLP, didn’t perform that much more poorly than the rest, keep in mind that
the images were very small, grayscale, quite simple, and standardized.

Although not as magnificently as in the tabular experiment (section 7.2), RNNs some-
what proved themselves again as a possible viable alternative, this time to CNNs. But
one can wonder how well this scales to more complex problems, as my understanding
of Image_RNN’s mechanism somewhat reminded me of a barcode scanner, scanning the

49

grayscale image from left to right in parallel with respect to the rows of pixels (but please
take this statement with a grain of salt). One also has to decide between interpreting
rows of pixels as features and columns as timesteps, or the other way around—this is also
dependent on the given problem and should be expected to impact the model’s performance.

7.3 Sequential data classification

Again, the only metric to be measured in this experiment is accuracy, as for the other
available metrics (see figure 6.2), the positive class would have to be the main point of
interest (or the class labels could get flipped to relate the metrics to the negative class), but
I figured it might be a better idea to consider positive and negative movie reviews equally
(both the train/test sets are also perfectly balanced in terms of class distribution).

Given that training these models (especially the RNNs) was more time demanding than
the previous experiments, the training was done over 100 epochs, which should yield results
scaled similarly to the previous experiments. The batch size had been set to 64—an optimal
batch size for training LSTM-based models in most cases [12].

7.3.1 Results

Once again, first the training results and then the testing results are presented.

Training phase

Sequential_loss Sequential_val_loss
0.7
—— Sequential_MLP 0.9 —— Sequential_MLP
—— Sequential_CNN ’ —— Sequential_CNN
0.6 —— Sequential_RNN —— Sequential_RNN
Sequential_RNNx 0.8 Sequential_RNNx

30.4 gIO.G
0.3] 0.5 M
\ b
0 A \y
o1 0.3 \/ﬁ
0 20 40 60 80 100 80 100
epochs epochs
Figure 7.25: Training loss progress. Figure 7.26: Validation loss progress.

It is clearly visible from both training loss (figure 7.25) and validation loss (figure 7.26)
graphs, that the more complicated Sequential_ RNNx performed objectively worse than
Sequential_RNN. Not only did its loss decrease slow down quite early, but there also seems
to be more prominent and unstable overfitting (based on the validation loss).

Image_CNN’s performance seems to be just as good as Sequential_RNN’s in both cases.
It measured 0.0834 loss in the last epoch, a bit lower than Sequential_RNN’s 0.0877, but its
validation loss was hovering around slightly higher values during the last few epochs. Very
surprising was the training performance of Sequential_MLP, as it performed similarly to
Sequential_RNNx in terms of loss, and much better that all the other models in terms of
validation loss (0.35 during the last epoch, other models measured between 0.45 and 0.49).

50

This is very impressive, since it only had limited training information available (vectorized
words) compared to the other models (embedded words).

Sequential_accuracy Sequential_val_accuracy

0.90

" oiss]’ i Q*WWWQ%W}V%WVV
=

accuracy
o
©
w
val_accuracy

o

©

=}
o
o
a

—— Sequential_MLP —— Sequential_MLP
—— Sequential_CNN —— Sequential_CNN
—— Sequential_RNN

o
o
o

0.75

0.55 —— Sequential_RNN
Sequential_RNNx Sequential_RNNx
0.70
0 20 40 60 80 100 0 20 40 60 80 100
epochs epochs
Figure 7.27: Training accuracy progress. Figure 7.28: Validation accuracy progress.

In terms of training accuracy (figure 7.27), the best performing (0.9716, 100th epoch)
was Sequential_RNN, but Sequential_CNN kept staying extremely close (0.9706) and based
on the curves, it seems that it maybe could have outran Sequential_CNN if the training
continued. The worst training accuracy was measured by Sequential_ MLP (0.9446, 100th
epoch), but it was still quite good.

All models performed quite similarly in terms of validation accuracy (figure 7.28), al-
though Sequential_RNN’s and Sequential_MLP’s graphs are more consistent (less spikes).

During the last epoch, all models measured between 0.875 (Sequential_CNN) and 0.8839
(Sequential_MLP) validation accuracy.

Testing phase

confusion_matrix_Sequential_RNN

confusion_matrix_Sequential_RNNx

10000 10000

Negative 10636 Negative

8000 8000

True label
True label

r 6000 r 6000

F 4000 5 [4000
Positive Positive 10540

L 2000 r 2000

Negative Positive Negative Positive

Predicted label Predicted label

Figure 7.29: Confusion matrix of Figure 7.30: Confusion matrix of
Sequential_RNN. Sequential_ RNNx.

Judging from the confusion matrices, it seems that the recurrent models have developed

opposite biases. While Sequential RNN (figure 7.29), having only one LSTM-based layer,
is more prone to misclassifying a negative review as positive, the deeper (stacked)

51

Sequential _RNNx (7.30) seems to have an even stronger bias, but this time towards false
negatives.

confusion_matrix_Sequential_MLP confusion_matrix_Sequential CNN

10000
10000

Negative Negative

8000 8000

True label
True label

r 6000 r 6000

r 4000

Positive r 4000 Positive

r 2000
r 2000

Negative Positive

Negative
Predicted label

Positive
Predicted label

Figure 7.31: Confusion matrix of
Sequential_MLP.

Figure 7.32: Confusion matrix of
Sequential_CNN.

Since the only information available for Sequential MLP (figure 7.31) is the occurrence
(0/1) of each word, I really expected it to strongly associate certain words with a certain
class and build up a strong bias. The opposite is actually true, as it is surprisingly the least
biased model.

On the contrary, Sequential_ CNN (figure 7.32) is more than three times as likely to
predict a false negative than to predict a false positive, making it the most biased model of
the experiment.

Metric | Sequential MLP | Sequential_ CNN | Sequential_ RNN | Sequential_RNNx
Loss 0.34997347 0.47943094 0.45871839 0.48976046
Accuracy 0.88388002 0.87944001 0.87922668 0.88009000

Table 7.3: Loss and metrics values measured during the testing phase of the sequential data
experiment.

Table 7.3 confirms that the performance of Sequential RNN and Sequential_CNN is
roughly the same. Sequential_RNNx has worse test performance than Sequential_ MLP,
even though it’s training performance was not marginally better, which is quite bad for a
recurrent model considering the nature of the experiment (natural language processing).

7.3.2 Conclusion

The convolutional model, Sequential_ CNN, managed to reach the same levels of perfor-
mance as the better one of the recurrent models (Sequential_RNN), while only having
convolutional kernels of size 3. It should also be mentioned that none of the recurrent
models had recurrent dropout (setting some of the “remembered” context to zero, instead
of the input), as that massively slowed down their training when I experimented with it,
so I decided to only use standard dropouts with very high rates, that could have possibly
negatively impacted the performance of both models.

Comparing the two recurrent models, there was really no criteria by which the stacked
Sequential_RNNx would beat the “simpler” model, so I assume that unless the problem is

52

quite complex, adding additional layers may have a negative impact, while simply adding
more recurrent cells usually shouldn’t cause much harm and should be preferred.

What attracts the most attention is the performance of Sequential_ MLP. It demon-
strated that using less information might be even beneficial in cases where the ocurrence
of certain tokens (words) strongly characterizes the classes. Word embedding could have
been used for training this model as well, in which case each word-vector would be simply
interpreted as 32 individual features, but the input layer would be massively wide and I
also wanted to try something different, which, I suppose, actually paid off.

7.4 Summary

It is crucial to realize that comparing the models based solely on performance shouldn’t
be the only focus, as there are just too many factors that can influence the results. The
models were regularized heavily to generalize well, but for example, once model A shows
better training performance, but worse validation/test performance than model B, it can
imply that model B was just regularized a bit more. One should also focus on the visible
characteristics of the models shown throughout the experiments.

What the experiments demonstrated very well is that when presented with a problem,
one should not simply choose the “canonical” NN type suited for the problem, but also
consider the alternatives based on analyzing the problem first. The best examples seem to
be Tabular_RNN from the first experiment and Sequential_CNN from the third experiment.
The third experiment also demonstrated (through Sequential_ MLP’s performance), that
sometimes, it might be worth to consider a simplification of the data’s interpretation, as it
might be even beneficial for dealing with some shortcomings (the class bias in this case).

In summary, usually all models performed fairly well regardless of the type of the prob-
lem (I would consider Tabular_CNN in the first problem as the worst exception), but keep
in mind that the problems were rather simple, so this trend is not guaranteed to transfer to
marginally larger scales of most modern practical problems, that are often solved by models
with complex architectures and billions of trainable parameters.

53

Chapter 8

Conclusion

The first goal of the thesis was to introduce classification and artificial neural networks,
preferably to a reader with no prior knowledge of the problematics. The important classi-
fication terminology and metrics, understanding of which is crucial for understanding the
rest of the work, were explained clearly, and also some other common classification algo-
rithms were briefly introduced. Artificial neural networks were explained very gradually,
starting from a single neuron, all the way to the three main ANN types. Modern architec-
tural advancements (e.g. transformers) were either left out completely or just very briefly
mentioned, to really focus on the understanding of the fundamentals.

The second goal was to introduce Keras in the context of classification with ANNs.
The given section was very practically focused, and ordered in the same way a user would
approach when building a classification model. The code snippets often purposely demon-
strated different ways of performing a certain action, and while some parts of the text
might seem overfilled with Keras’ diverse options (loss, metrics, etc.), those options were
introduced practically, to guide the reader’s choices when building his own models.

The third and last goal was to perform experiments showing the differences between the
three main ANN types. Since the original ideas for the experiments were lacking in many
aspects, there was a need for a way to compare all three ANN types on a problem, that
unbiasedly favors none of them. This was solved by performing an individual experiment
for each of the corresponding data types, and the requirement for comparing different
ANN topologies was met by always introducing an additional ANN of the given type. The
preparation of the experiments was crucial in this case, and all choices, including selecting
the number of trainable parameters as the performance-similarity benchmark, were backed
up by an explanation. The experimental application is rather simple and focused mainly
on its main purpose, but also provides many utilities for a smooth practical usage.

Even though a straight performance comparison of different ANN types is almost im-
possible, since there are simply too many factors having possibly detrimental effects on the
results to consider, the experiments demonstrated the usefulness of the individual ANN
types on problems where they may have not been considered normally. Some interesting,
unexpected findings emerged throughout the course of the experiments too.

A very appropriate way of extending this work might be a continuation focusing on
modern ANN architectures and even on specific models, possibly with an emphasis on
generative models, which have been rapidly gaining popularity by the time of finishing
this thesis. This could also incorporate inventing some creative ways of comparing such
models. Some other possibilities include comparing different classification algorithms (not

54

only ANNs) or extending the work to a different problem domain (e.g. regression), but
today’s circumstances create many great opportunities favoring the first approach.

55

Bibliography

1]

[10]

[11]

Avom, M. Z., Tana, T., Yakoprcic, C., WESTBERG, S., SIDIKE, P. et al. A
State-of-the-Art Survey on Deep Learning Theory and Architectures. Electronics.
march 2019, vol. 8, p. 292. DOI: 10.3390/electronics8030292.

BARBOSA, A. Area under the precision-recall curve [online]. Jan 2020 [cit. 2022-06-09)].
Available at: https:

//modtools.wordpress.com/2020/01/17/area-under-the-precision-recall-curve/.

CHoO, K., MERRIENBOER, B. van, BAHDANAU, D. and BENGIO, Y. On the Properties
of Neural Machine Translation: Encoder-Decoder Approaches. arXiv, 2014. DOI:
10.48550/ARXIV.1409.1259. Available at: https://arxiv.org/abs/1409.1259.

CHOLLET, F. et al. Keras: the Python Deep Learning API [online]. 2021 [cit.
2022-05-03]. Available at: https://keras.io.

CHOLLET, F. Xception: Deep Learning with Depthwise Separable Convolutions.
CoRR. 2016, abs/1610.02357. Available at: http://arxiv.org/abs/1610.02357.

CHOLLET, F. Deep learning with Python. 1st ed. Shelter Island, NY: Manning, 2018.
ISBN 978-1-61729-443-3.

CYBENKO, G. Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems. Springer. 1989, vol. 2, no. 4, p. 303-314.

DALECKY S. Neuro-fuzzy systémy. Brno, CZ, 2014. Diplomova préace. Vysoké uceni
technické v Brné, Fakulta informacnich technologii. Available at:
https://www.fit.vut.cz/study/thesis/16598/.

DENG, L. The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine. IEEE. 2012, vol. 29, no. 6, p. 141-142.

Dua, D. and GRAFF, C. UCI Machine Learning Repository. 2017. Available at:

http://archive.ics.uci.edu/ml.

FIESLER, E. and BEALE, R. Neural network topologies. The Handbook of Neural
Computation, E. Fiesler and R. Beale (Editors-in-Chief), Oxford University Press
and IOP Publishing. Citeseer. 1996.

GURES, C. Selecting Optimal LSTM Batch Size [online]. Medium, Mar 2020 [cit.
2023-04-05]. Available at: https:
//medium.com/@canerkilinc/selecting-optimal-1lstm-batch-size-63066d88b96b.

56

https://modtools.wordpress.com/2020/01/17/area-under-the-precision-recall-curve/
https://modtools.wordpress.com/2020/01/17/area-under-the-precision-recall-curve/
https://arxiv.org/abs/1409.1259
https://keras.io
http://arxiv.org/abs/1610.02357
https://www.fit.vut.cz/study/thesis/16598/
http://archive.ics.uci.edu/ml
https://medium.com/@canerkilinc/selecting-optimal-lstm-batch-size-63066d88b96b
https://medium.com/@canerkilinc/selecting-optimal-lstm-batch-size-63066d88b96b

[13]

[14]

[15]

[16]

[17]

[18]

[23]

[24]

[25]

[26]

HE, K., Zuang, X., REN, S. and SuUN, J. Deep Residual Learning for Image
Recognition. CoRR. 2015, abs/1512.03385. Available at:
http://arxiv.org/abs/1512.03385.

HOCHREITER, S. Untersuchungen zu dynamischen neuronalen Netzen. Diploma,
Technische Universitdt Minchen. 1991, vol. 91, no. 1.

HOCHREITER, S. and SCHMIDHUBER, J. Long short-term memory. Neural
computation. MIT Press. 1997, vol. 9, no. 8, p. 1735-1780.

Hossin, M. and SULAIMAN, M. N. A review on evaluation metrics for data
classification evaluations. International journal of data mining € knowledge
management process. Academy & Industry Research Collaboration Center (AIRCC).
2015, vol. 5, no. 2, p. 1.

IBM CLouD EDUCATION . Querfitting [online]. March 2021 [cit. 2022-05-13].
Available at: https://www.ibm.com/cloud/learn/overfitting.

Isik, F., OzDEN, G. and KUNTALP, M. Importance of data preprocessing for neural
networks modeling: The case of estimating the compaction parameters of soils.
Energy Educ Sci Technol Part A: Energy Sci Res. april 2012, vol. 29, p. 463-474.

KHERADPISHEH, S. R., MIRSADEGHI, M. and MASQUELIER, T. BS4NN: Binarized
Spiking Neural Networks with Temporal Coding and Learning. CoRR. 2020,
abs/2007.04039. Available at: https://arxiv.org/abs/2007.04039.

L1, S. Rotation Invariance Neural Network. arXiv, 2017. DOL:
10.48550/ARXIV.1706.05534. Available at: https://arxiv.org/abs/1706.05534.

LoPEz, D. RNN, LSTM & GRU: Recurrent Neural Network (RNN), Long-Short
Term Memory (LSTM) & Gated Recurrent Unit (GRU) [online|. dprogrammer, april
2019 [cit. 2022-05-23]. Available at: http://dprogrammer.org/rnn-1lstm-gru.

Maas, A. L., DALy, R. E., PHAM, P. T., HuaNG, D., NG, A. Y. et al. Learning
Word Vectors for Sentiment Analysis. In: Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies.
Portland, Oregon, USA: Association for Computational Linguistics, June 2011,

p. 142-150. Available at: http://www.aclweb.org/anthology/P11-1015.

MAsTERS, D. and LuscHi, C. Revisiting Small Batch Training for Deep Neural
Networks. CoRR. 2018, abs/1804.07612, p. 1. Available at:
http://arxiv.org/abs/1804.07612.

NEUTELINGS, 1. Neural networks [online]. TikZ.net, april 2022 [cit. 2022-05-01].
Available at: https://tikz.net/neural_networks/.

O’SHEA, K. and NAsH, R. An Introduction to Convolutional Neural Networks. arXiv,
2015. DOI: 10.48550/ARXIV.1511.08458. Available at:
https://arxiv.org/abs/1511.08458.

QUINLAN, J. R. Induction of decision trees. Machine learning. Springer. 1986, vol. 1,
no. 1, p. 81-106.

57

http://arxiv.org/abs/1512.03385
https://www.ibm.com/cloud/learn/overfitting
https://arxiv.org/abs/2007.04039
https://arxiv.org/abs/1706.05534
http://dprogrammer.org/rnn-lstm-gru
http://www.aclweb.org/anthology/P11-1015
http://arxiv.org/abs/1804.07612
https://tikz.net/neural_networks/
https://arxiv.org/abs/1511.08458

[27]

[28]

[29]

[37]

[38]

[39]

ROSENBLATT, F. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review. American Psychological Association.
1958, vol. 65, no. 6, p. 386.

RUDER, S. An overview of gradient descent optimization algorithms. arXiv, 2016.
DOI: 10.48550/ARXIV.1609.04747. Available at: https://arxiv.org/abs/1609.04747.

RUMELHART, D. E., HINTON, G. E. and WiLLIAMS, R. J. Learning representations
by back-propagating errors. Nature. Nature Publishing Group. 1986, vol. 323,
no. 6088, p. 533-536.

SAHU, V. Power of a Single Neuron [online]. Medium, june 2018 [cit. 2022-05-06].
Available at: https:
//towardsdatascience.com/power-of-a-single-neuron-perceptron-c418ba445095.

SAYAD, S. Classification [online]. Dr. Saed Sayad, may 2015 [cit. 2022-04-07].
Available at: https://www.saedsayad.com/classification.htm.

SHULGA, D., Morozov, O., RoTH, V., FRIEDRICH, F. and HUNZIKER, P. Tensor
B-Spline Numerical Methods for PDEs: a High-Performance Alternative to FEM.
arXiv. 2019. DOI: 10.48550/ARXIV.1904.03057. Available at:
https://arxiv.org/abs/1904.03057.

SLAVKA, M. Playing Gomoku with Neural Networks. Brno, CZ, 2019. Bakalafska
prace. Vysoké uceni technické v Brné, Fakulta informacnich technologii. Available at:
https://www.fit.vut.cz/study/thesis/21764/.

SOFAER, H. R., HOETING, J. A. and JARNEVICH, C. S. The area under the

precision-recall curve as a performance metric for rare binary events. Methods in
Ecology and Evolution. Wiley Online Library. 2019, vol. 10, no. 4, p. 565-577.

Suzuki, K. Artificial Neural Networks. Rijeka: IntechOpen, april 2011. Available at:
https://doi.org/10.5772/644.

TaN, M. and LE, Q. V. EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks. CoRR. 2019, abs/1905.11946. Available at:
http://arxiv.org/abs/1905.11946.

VELICKOVIC, P. TikZ/2D Convolution [online]. GitHub, 2016. Available at:
https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution.

WASEEM, M. How To Implement Classification In Machine Learning? [online].
Edureka, march 2022 [cit. 2022-04-04]. Available at:
https://www.edureka.co/blog/classification-in-machine-learning/.

X1A0, H., RasuL, K. and VOLLGRAF, R. Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms. CoRR. 2017, abs/1708.07747.
Available at: http://arxiv.org/abs/1708.07747.

58

https://arxiv.org/abs/1609.04747
https://towardsdatascience.com/power-of-a-single-neuron-perceptron-c418ba445095
https://towardsdatascience.com/power-of-a-single-neuron-perceptron-c418ba445095
https://www.saedsayad.com/classification.htm
https://arxiv.org/abs/1904.03057
https://www.fit.vut.cz/study/thesis/21764/
https://doi.org/10.5772/644
http://arxiv.org/abs/1905.11946
https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution
https://www.edureka.co/blog/classification-in-machine-learning/
http://arxiv.org/abs/1708.07747

Appendix A

Contents of the included storage
media

o /app/ — The experimental application (source code, datasets, working directories,
instructions).

e /experiments_results/ — Results of the experiments generated by the experimental
application.

e /model_plots/ — Model plots of the neural network architectures used in the exper-
iments.

e /text/ — IATEXsource codes of this thesis.

e xpysik00-thesis.pdf — This thesis in PDF format.

59

Appendix B

Model plots of the used neural
network architectures

B.1 Tabular data - MiniBooNE particle identification

flatten input | input: | [(None, 50)]
InputLayer | output: | [(None, 50)]

Y
flatten | input: | (None, 50)

Flatten | output: | (None, 50)

A 4

flatten_input | input: | [(None, 50)] dense input: | (None, 50)
InputLayer | output: | [(None, 50)] Dense | relu | output: | (None, 50)
flatten | input: | (None, 50) dropout | input: | (None, 50)
Flatten | output: | (None, 50) Dropout | output: | (None, 50)

l h 4

dense input: (None, 50) dense 1 input: | (None, 50)
Dense | relu | output: | (None, 150) Dense | relu | output: | (None, 50)
‘ '

dropout | input: | (None, 150) dropout_1 | input: | (None, 50)
Dropout | output: | (None, 150) Dropout | output: | (None, 50)
Y Y
dense 1 input: | (None, 150) dense 2 input: | (None, 50)
Dense ‘ linear | output: (None, 1) Dense | relu | output: | (None, 50)
‘ :
activation input: | (None, 1) dropout_2 | input: | (None, 50)
Activation | sigmoid | output: | (None, 1) Dropout | output: | (None, 50)
. . Y
Figure B.1: Tabular MLP donse 3 input: | (Nome, 50)

Dense | linear | output: | (None, 1)

l

activation input: | (None, 1)

Activation | sigmoid | output: | (None, 1)

Figure B.2: Tabular MLPx

60

reshape_input | input: | [(None, 50)]
InputLayer output: | [(None, 50)]
y
reshape | input: (None, 50)
Reshape | output: | (None, 50, 1)
convld input: (None, 50, 1) reshape_input | input: | [(None, 50)]
ConvlD | linear | output: | (None, 48, 32) InputLayer | output: | [(None, 50)]
Y
max_poolingld | input: | (None, 48, 32) reshape | input: (None, 50)
MaxPooling1D | output: | (None, 24, 32) Reshape | output: | (None, 50, 1)
y Y
dropout | input: | (None, 24, 32) Istm input: | (None, 50, 1)
Dropout | output: | (None, 24, 32) LSTM | tanh | output: (None, 42)
Y
flatten | input: | (None, 24, 32) dropout | input: | (None, 42)
Flatten | output: (None, 768) Dropout | output: | (None, 42)
dense input: | (None, 768) dense input: | (None, 42)
Dense | relu | output: | (None, 10) Dense ‘ linear | output: | (None, 1)
- Y
dropout_1 | input: | (None, 10) activation input: | (None, 1)
Dropout | output: | (None, 10) Activation | sigmoid | output: | (None, 1)
Figure B.4: Tabular RNN
dense_ 1 input: | (None, 10)
Dense ‘ linear | output: | (None, 1)
activation input: | (None, 1)
Activation l sigmoid | output: | (None, 1)

Figure B.3: Tabular CNN

61

B.2 Image data - Fashion-MNIST

reshape_input | input: | [(None, 28, 28)]
output: | [(None, 28, 28)]

InputLayer

reshape | input: (None, 28, 28)
Reshape | output: | (None, 28, 28, 1)

flatten_input | input: | [(None, 28, 28)] conv2d input: | (None, 28, 28, 1)

InputLayer | output: | [(None, 28, 28)] Conv2D | relu | output: | (None, 26, 26, 32)
f - A N 28 28 max pooling2d | input: | (None, 26, 26, 32)

atten | input: | (None, 28, 28) MaxPooling2D | output: | (Nene, 13, 13, 32)

Flatten | output: (None, 784)

dropout | input: | (None, 13, 13, 32)
dense input: | (None, 784) Dropout | output: | (None, 13, 13, 32)
Dense | relu | output: | (None, 224)
conv2d_1 input: | (None, 13, 13, 32)

Conv2D | relu | output: | (None, 11, 11, 64)

dropout | input: | (None, 224)

Dropout | output: | (None, 224)

(None, 11, 11, 64)

max_pooling2d 1 | input:
MaxPooling2D output: (None, 5, 5, 64)

dense 1 input: | (None, 224)

Dense | relu | output: | (None, 224)
dropout_1 | input: | (None, 5, 5, 64)

Dropout | output: | (None, 5, 5, 64)

dropout_1 | input: | (None, 224)
output: | (None, 224)

convad 2 input: (None, 5, 5, 64)
(None, 3, 3, 128)

Dropout

Conv2D | relu | output:

dense 2 input: | (None, 224)
relu | output: | (None, 112) dropout 2 | input: | (None, 3, 3, 128)
Dropout output: | (None, 3, 3, 128)

Dense

dropout_2 | input: | (None, 112)
flatten | input: | (None, 3, 3, 128)

Flatten | output: (None, 1152)

Dropout | output: | (None, 112)

dense 3 input: | (None, 112)
d i t: N 1152
Dense | linear | output: | (None, 10) ense mpn (None,)
Dense | relu | output: | (None, 128)
activation input: | (None, 10) dropout 3 | input: | (None, 128)
Activation | softmax | output: | (None, 10) Dropout | output: | (None, 128)

. . 4
Flgure B.5: Image_MLP dense_1 input: | (None, 128)

Dense ‘ linear | output: | (None, 10)

input: | (None, 10)
(None, 10)

activation
Activation ‘ softmax | output:

Figure B.6: Image MLPx

62

reshape_input | input: | [(None, 28, 28)]
InputLayer output: | [(None, 28, 28)]
y
reshape | input: (None, 28, 28) - n - P N 28 28
Reshape | output: | (None, 28, 28, 1) St ihpu put: [(None, !)]
InputLayer | output: | [(None, 28, 28)]
conv2d input: (None, 28, 28, 1) A
Conv2D | relu | output: | (None, 26, 26, 32) Istm input: (None, 28, 28)
LSTM ‘ tanh | output: | (None, 28, 180)
max_pooling2d | input: | (None, 26, 26, 32)
MaxPooling2D | output: | (None, 13, 13, 32) Istm 1 input: | (None, 28, 180)
’ LSTM \ tanh | output: (None, 90)
convZd 1 input: | (None, 13, 13, 32)
Conv2D | relu | output: | (None, 11, 11, 64)
dropout | input: | (None, 90)
Dropout | output: | (None, 90)
max pooling2d 1 | input: | (None, 11, 11, 64)
MaxPooling2D output: (None, 5, 5, 64) ¥
dense input: | (None, 90)
Dense | relu | output: | (None, 90)
conv2d 2 input: (None, 5, 5, 64)
Conv2D | relu | output: | (None, 3, 3, 128)
dropout_1 | input: | (None, 90)
Yy
flatten | input: | (None, 3, 3, 128) Dropout | output: | (None, 90)
Flatten | output: (None, 1152)
dense 1 input: | (None, 90)
dense input: | (None, 1152) Dense | linear | output: | (None, 10)
Dense | relu | output: | (None, 128)
L J
activation input: | (None, 10)
d 1 i t: N 128
ense. mnp (None,) Activation | softmax | output: | (None, 10)
Dense llinear output: | (None, 10)
! Figure B.8: Image RNN
activation input: | (None, 10)
Activation | softmax | output: | (None, 10)

Figure B.7: Image_ CNN

63

B.3 Sequential data - IMDB movie review sentiment classi-
fication

flatten_input | input: | [(None, 10000)]
InputLayer | output: | [(None, 10000)]

l embedding input | input: | [(None, 500)]
InputLayer output: | [(None, 500)]

flatten | input: | (None, 10000)
Flatten | output: | (None, 10000) L d
embedding | input: (None, 500)

v Embedding | output: | (None, 500, 32)
dropout | input: | (None, 10000)
Dropout | output: | (None, 10000)

dropout | input: | (None, 500, 32)
Dropout | output: | (None, 500, 32)

Y

dense input: | (None, 10000) 4
1d i t: None, 500, 32
Dense | relu | output: (None, 36) conv e (None)
ConvlD | relu | output: | (None, 500, 64)
Y v
dropout_1 | input: | (None, 36) global max poolingld | input: | (None, 500, 64)
Dropout output: | (None, 36) GlobalMaxPoolinglD | output: (None, 64)
v Y
q 1 - N 36 dense input: (None, 64)
ense_ mnput: (None,) Dense | relu | output: | (None, 256)
Dense | relu | output: | (None, 36)
Y
¥ dropout_1 | input: | (None, 256)
dropout_2 input: (None, 36) Dropout | output: | (None, 256)
Dropout | output: | (None, 36) v
l dense 1 input: | (None, 256)
Dense | linear | output: (None, 1)
dense 2 input: | (None, 36)
Dense ‘ linear | output: | (None, 1) Y
activation input: | (None, 1)

Activation | sigmoid | output: | (None, 1)

activation input: | (None, 1)

Figure B.10: Sequential CNN

Activation | sigmoid | output: | (None, 1)

Figure B.9: Sequential MLP

64

embedding input | input: | [(None, 500)]

InputLayer output: | [(None, 500)]

'

embedding | input: (None, 500)
Embedding | output: | (None, 500, 32)

embedding input | input: | [(None, 500)]

InputLayer output: | [(None, 500)] Y

lstm input: | (None, 500, 32)

L J LSTM | tanh | output: | (None, 500, 80)
embedding | input: (None, 500)

Embedding | output: | (None, 500, 32) L
Istm 1 input: | (None, 500, 80)
L J LSTM | tanh | output: (None, 40)
Istm input: | (None, 500, 32)
LSTM | tanh | output: (None, 100) Y
dropout | input: | (None, 40)
L J Dropout | output: | (None, 40)
dropout | input: | (None, 100)
Dropout | output: | (None, 100) Y
dense input: | (None, 40)
L J Dense | relu | output: | (None, 40)
dense input: | (None, 100)
Dense ‘ linear | output: (None, 1) \

dropout_1 | input: | (None, 40)

| Dropout | output: | (None, 40)

activation input: | (None, 1)
Activation | sigmoid | output: | (None, 1)

dense 1 input: | (None, 40)
Figure B.11: Sequential RNN Dense ‘ linear | output: | (None, 1)
Y
activation input: | (None, 1)

Activation | sigmoid | output: | (None, 1)

Figure B.12: Sequential RNNx

65

	Introduction
	Classification
	Terminology and types of tasks
	Evaluating a model's performance
	Other classification algorithms

	Artificial neural networks
	Artificial neuron
	Artificial neural network
	Training a neural network
	Main types of neural networks

	The Keras library
	Building a model
	Compiling a model
	Training a model
	Testing and using a model

	Preparation of the experiments
	Choosing and analyzing the datasets
	Data preprocessing
	Choosing the neural network architectures

	The experimental application
	Concept and requirements
	Implementation

	Course and evaluation of the experiments
	Tabular data classification
	Image data classification
	Sequential data classification
	Summary

	Conclusion
	Bibliography
	Contents of the included storage media
	Model plots of the used neural network architectures
	Tabular data - MiniBooNE particle identification
	Image data - Fashion-MNIST
	Sequential data - IMDB movie review sentiment classification

