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Abstract 
This thesis examines the problematics of classification using arti f icial neural networks w i th in 
use of the Keras framework, a high-level deep learning A P I for the P y t h o n programming 
language. The a im of the thesis is to discover the diverse options Keras has to offer in 
the field of classification, and to compare different types and topologies of arti f icial neural 
networks in the form of experiments on selected datasets, complemented by a simple exper
imental appl icat ion whose main purpose is to provide an interface for these experiments. 

Abstrakt 
Tato práce zkoumá problemat iku klasifikace pomocí umělých neuronových sítí s využitím 
knihovny Keras, poskytující vysokoúrovňové rozhraní pro práci s umělými neuronovými 
sítěmi v programovacím jazyce Py thon . Cílem práce je prozkoumat rozsáhlé možnosti této 
knihovny v oblasti klasifikace a porovnat různé typy a topologie umělých neuronových sítí 
formou experimentů na vybraných datasetech, což je doplněno jednoduchou experimentální 
aplikací sloužící především jako rozhraní pro tyto experimenty. 
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Rozšířený abstrakt 
Klasif ikace je jedním z nejběžnějších problémů v oblasti strojového učení. Cílem klasi
fikačního problému je přiřadit jednotlivá vstupní data do předem definovaných kategorií 
(tříd). To lze provést například použitím umělých neuronových sítí (dále jen neuronové sítě), 
které jsou inspirovány biologickými neuronovými sítěmi a jsou běžně využívány v mnoha 
doménách, včetně klasifikace. Vzhledem k tomu, že takové (nejen klasifikační) problémy 
můžou nabývat mnoha dosti odlišných podob, jako je například klasifikace obrázků či mlu
vené řeči, existuje více specializovaných typů těchto sítí. P r o práci s neuronovými sítěmi 
v dnešní době již není třeba znát podrobně jejich vnitřní mechanismy, ale lze využít jedno 
z vysokoúrovňových rozhraní pro práci s n imi , k a m mimo jiné spadá také knihovna Keras. 

Cílem této bakalářské práce je prozkoumat rozsáhlé možnosti prostředí Keras v oblasti 
klasifikace pomocí neuronových sítí a porovnat vlastnosti různých typů a topologií neu
ronových sítí formou experimentů na vybraných datasetech. Jelikož se různé typy neu
ronových sítí v mnoha ohledech výrazně liší, není jejich porovnání snadným problémem. 
Z těchto důvodů byly vybrány tři odlišné datasety, kdy každý dataset svou charakteris
t ikou odpovídá jednomu ze tří hlavních druhů neuronových sítí (vícevrstvý perceptron, 
konvoluční neuronová síť, rekurentní neuronová síť). P r o každý ze tří experimentů byly 
individuálně vytvořeny čtyři neuronové sítě, a to nejen jedna od každého ze tří typů, ale 
dále ještě jedna odpovídající svým typem charakteristice daného experimentu, za účelem 
porovnání vícera topologií neuronových sítí. Jako rozhraní pro průběh experimentů slouží 
jednoduchá experimentální aplikace napsána v programovacím jazyce Py thon s využitím 
knihovny Keras, která zahrnuje mnoho funkcí umožňující důkladně monitorovat průběh 
trénování, a vyhodnocení (nejen) daných neuronových sítí. 

Práce začíná úvodem do problematiky klasifikace představením klíčových pojmů, metr ik 
pro měření výkonnosti klasifikačního modelu, a stručným popisem vybraných alternativních 
klasifikačních algoritmů. Poté jsou představeny umělé neuronové sítě, a to způsobem vhod
ným i pro čtenáře neznalého v dané problematice. Tato část je postupně rozv inuta od nej-
jednodušších stavebních bloků (neuronů) až po rozdíly mezi jednotlivými typy neuronových 
sítí. Dále následuje kapi to la věnující se samotné knihovně Keras, která je strukturována 
chronologicky v souladu s vytvářením vlastních klasifikačních modelů. U každého kroku 
jsou popsány odlišné přístupy a možnosti, které zde Keras nabízí. 

Samotné experimenty začínají jejich přípravou, včetně analýzy jednotlivých datasetů, 
způsobů interpretace odlišných druhů dat jednotlivými typy neuronových sítí, a výběrem 
architektur použitých sítí. Zde jsou také odůvodněny různá rozhodnutí, která jsou klíčová 
pro průběh experimentů a jejich přínos. Po stručném popisu návrhu a implementace exper
imentální aplikace následuje popis průběhu jednotlivých experimentů, především formou 
popisu grafů vygenerovaných pomocí experimentání aplikace, a jejich vyhodnocení formou 
jednotlivých závěrů a konečným shrnutím. Ačkoli by nebylo vhodné dělat příliš vážné závěry 
čistě na základě relativní výkonnosti jednotlivých modelů, jelikož může být silně ovlivněna 
příliš mnoha faktory, byly demonstrovány jednotlivé vlastnosti odlišných typů neuronových 
sítí a jejich využitelnost v oblastech neobvyklých pro daný typ sítě. V rámci experimentů 
byly také nalezeny určité neočekávané poznatky. Po vyvození závěrů byly dále navrženy 
vhodné možnosti pro rozšíření této práce, především v kontextu moderních architektur 
neuronových sítí a aktuálních trendů v této oblasti . 
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Chapter 1 

Introduct ion 

In recent years, the field of art i f ic ial intelligence has seen a significant rise in popularity, 
thanks to advancements in technology and the avai labi l i ty of large datasets. One of the 
most popular and successful computat ional models in this field are art i f ic ial neural networks, 
inspired by the function of real biological brains. These models have been widely used in 
various applications, whether it be simple ones, like digit classification, or complex natura l 
language processing applications, like A I assistants. 

Classif ication is a fundamental task in machine learning, where the goal is to predict 
the class label of a given input, by classifying the input object into one of a finite number 
of classes based on its features. In this sense, an object is nothing more a set of numerical 
values, but they do not always represent its features directly. In the case of, for example, 
images or audio files, the features have to be extracted first. This is usually learned and 
done by the model itself, at least i n the case of deep learning. Ar t i f i c ia l neural networks 
have proven themselves to be especially helpful when it comes to complex non-linear tasks, 
due to their abi l i ty to handle complex relationships between variables and their abi l i ty to 
learn from large amounts of data. There are many different types of neural networks, each 
suitable for problems of a different nature. 

To start solving problems using neural networks today, there's no longer a need for 
learning a l l the mathematical principles of their internal mechanism. A n y of the high-
level deep-learning A P I s currently available, which include the Keras l ibrary, can be used 
instead. The topic of this thesis revolves around ut i l i zat ion of the Keras l ibrary in the field 
of classification using neural networks. The main goals are to introduce neural networks 
in a way that even a reader inexperienced in the problematics can understand, to explore 
Keras ' distinct options in the context of classification using neural networks, and to compare 
different types and topologies of neural networks through thoughtful experiments. 

The theoretical part of the thesis introduces the concepts of classification (chapter 2) 
and art i f ic ial neural networks (chapter 3) from the ground up. Chapter 4 then introduces 
the Keras l ibrary in the form of a chronological use case guide. F inal ly , the pract ica l part 
consists of preparation of the experiments in chapter 5, brief description of the experimental 
appl icat ion (chapter 6), that serves as an interface for the experiments, and ends w i th the 
course and evaluation of the experiments in chapter 7. 
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Chapter 2 

Classif ication 

This chapter is an introduct ion to the problematics of classification, one of the most com
mon kinds of tasks in machine learning—a field of study concerned w i th algorithms that can 
learn to solve many different kinds of tasks by learning from data. The goal of a classifica
t ion task is to assign discrete class labels to objects from the problem domain, for example 
differentiating between pictures of cats and dogs. Classif ication falls into the category of 
supervised learning, since the model learns to predict classes of objects by tra in ing on la
beled datasets. Some other common types of machine learning problems include regression 
(supervised learning), which is about predict ing a continuous values, and clustering (un
supervised learning), whose goal is to group instances into unlabeled categories based on 
their similarity. 

Section 2.1 explains basic classification terminology and types, into which can be differ
ent classification tasks div ided [38], followed by section 2.2, which introduces miscellaneous 
evaluation metrics for measuring a classification model's performance. Besides arti f icial 
neural networks, the pr imary subject of this thesis, explained later i n chapter 3, I consid
ered it appropriate to also mention a few simpler classification algorithms [31] in section 2.3, 
that can sometime be more effective in the cases of simpler problems. 

2.1 Terminology and types of tasks 

This short section explains some of the technical terms that are crucia l to understand before 
reading further. 

Bas ic t e rmino logy 

• Classifier - A n algor i thm used to map objects from the input set of data to specific 
classes. Classifiers can range from simple algorithms a l l the way to deep neural 
networks consisting of many hidden layers. 

• Mode l - A classification model learns to draw some conclusion from the input data 
given for tra ining, which can be later ut i l ized to predict class labels of new data. 
S imply said, the model consists of the selected classifier and the experience gained by 
tra in ing on labeled data. 

• Feature - A n ind iv idua l measurable property of a phenomenon. Features need to be 
transformed into numerical representations before being fed to the classifier. 
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• Instance - A feature vector, an n-dimensional vector of numerical values that rep
resent some object. It is referred to as a sample in the context of a dataset. Some 
examples can be a single row in a table of data, or a mult i -dimensional vector, where 
the feature values might correspond to the pixels of an image. 

• Dataset - A collection of instances (samples), that is a subset of a given feature 
space 1 . Datasets are used for tra ining, val idating and testing the model. 

• Mode l training - The purpose of t ra in ing is to bu i ld the best mathematical repre
sentation of the relationship between data features and the target labels. This is done 
by feeding a labeled tra in ing dataset to the model, which then adjusts itself to make 
more accurate predictions, by t ry ing to minimize the value of a loss function, which 
computes the distance between the expected output and the model's predict ion. 

• Mode l evaluation - Ways to evaluate the performance of the model. A quantifiable 
measure is called a metric. 

T y p e s of tasks 

• B inary classification - Classif ication tasks that have only two class labels. E x 
amples include predict ing whether an emai l is a spam based on the most occurring 
words, or dist inguishing males from females based on their favorite hobbies. 

• Multi -class classification - Tasks w i th more than two class labels. Each instance 
is assigned only one label. A good example may be recognizing the species of the 
animal in a photo of a single animal . 

• Mult i - labe l classification - Each instance may be assigned more than one class 
label, inc luding none or a l l of them. For example, classifying which kinds of fruit are 
contained in images of fruit bowls. 

• Balanced/imbalanced classification - The d is tr ibut ion of classes in a tra ining 
dataset may not always be uniform. A very good example is detection of a certain 
medical condit ion in patients. In these cases, other classification metrics become 
priorit ized over p la in accuracy, as false detection of the condit ion in a healthy patient 
usually leads to less damage than misclassifying a sick patient as healthy. 

2.2 Eva lua t ing a model 's performance 

There are many different evaluation metrics that can be used to measure a classification 
model's performance [16]. The simplest and also the most commonly used one is accuracy, 
which is calculated s imply as the number of correct predictions div ided by the sum of a l l 
predictions. 

A l l classification metrics are based on the counts of true positives (TP ) and true neg
atives (TN) , corresponding to correct predictions, together w i th false positives (FP ) and 
false negatives (FN) , corresponding to incorrect predictions. A representation of the above 
parameters i n a matr ix format is called a confusion matr ix (also known as an error matr ix ) , 
an exemplary one is shown as table 2.1. In this context, we assume a binary classification 
problem w i th classes marked as positive and negative (those can for example represent the 

1 Feature space is the set of all possible values for a chosen set of features from given data. 
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presence of some disease in a patient), but some of these metrics can also be extended for 
use in multi-class and mult i - label classification in a few possible ways. 

Predicted 

P N 

$ P 
u 
«! N 

T P = 302 F N = 15 

F P = 23 T N = 277 

Table 2.1: A confusion matr ix of b inary classification. 

Some of these metrics, apart from accuracy (2.1), are precision (2.2), which is the 
abi l i ty to identify only the relevant data points, recall (2.3), referred to as sensitivity in 
the statistics domain, which is the abi l i ty to find a l l relevant cases w i th in a dataset, and 
specificity (2.4), which is based on the same principle as sensitivity, but i n terms of actual 
negatives. 

TP + TN . . 
accuracy = —— ————— —— (2.1) 

TP + FP + TN + FN v ' 

TP . . 
precision = p p - p p (2.2) 

TP 
recall I sensitivity = —— —— (2.3) 

/ T P + FN v ' 

TN 
specificity = p N - p p (2.4) 

Let 's also take a look at some of the more advanced metrics. The F i score (2.5) is the 
harmonic mean of precision and recall. H i gh F i score can be expected from models that 
can successfully classify positive cases, while not going overboard and mark ing too many 
negative cases as positive. 

p 2 2 • precision • recall 
precision-1 + recall-1 precision + recall 

In cases where precision and recall are not given equal importance, either weighted-Fi score 
or plott ing a P R or R O G curve may be of use. A P R (precision-recall) curve is a curve that 
appears in a graph plotted such that the x-axis represents recall and the y-axis represents 
precision, showing the tradeoff between precision and recall at different thresholds. A R O C 
(receiver operating characteristic) curve is the same, but w i th x-axis representing the false 
positive rate ( F P R ; FPR = 1 — specificity) and the y-axis representing the true positive 
rate ( T P R ; TPR = recall), i l lustrat ing the diagnostic abi l i ty of a binary classifier as its 
discr iminat ion threshold is varied. In bo th of these cases, we a im to maximize the area 
under the curve ( A U C ) . Due to the absence of true negatives in its equation, a P R curve 
is considered more useful than a R O C curve when dealing w i th imbalanced classification 
w i th excess of the negative class [34], where correctly detecting positive cases is the main 
goal, such as a virus test or cancer detection. A R O C curve might be a better choice in 
cases where both classes are given the same importance (but one of the classes is s t i l l the 
main point of interest), since R O C considers true negatives as well. B o t h a P R curve and 
a R O C curve are plotted in figure 2.1. 
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ROC curve Precision-recall curve 

False positive rate Recall 
(1 -specificity) (sensitivity) 

Figure 2.1: Example plots of a R O C curve and a P R curve [2]. 

2.3 Other classif ication algor i thms 

Before the introduct ion to art i f ic ial neural networks, this section briefly introduces a few 
other classification algorithms. 

Log is t ic regression 

Simi lar to how linear regression predicts continuous values by assuming a linear relationship 
between dependent and independent variables (useful for regression tasks), logistic regres
sion divides elements into two groups based on a set probabi l i ty threshold (often called 
decision boundary) , which makes it a suitable technique for binary classification. 

Instead of assuming that the data follow a linear function, they are modeled using a 
sigmoid function (Figure 2.2).The range of this function, the interval between 0 and 1, can 
then represent the probabi l i ty of an instance belonging to a certain class. This probabi l i ty 
then rounds to either 0 or 1 depending on whether it lies above or below the set threshold. 

Figure 2.2: G r a p h of a sigmoid function and a threshold set to 0.5. 
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Na ive Bayes classifiers 

Naive Bayes classifiers are a family of probabil ist ic machine learning algorithms based on 
the Bayes theorem (2.6). They always assume that a l l the features of an instance being 
classified are independent of each other, and their contr ibut ion to the f inal outcome is equal. 
These assumptions are generally not present in the real world, hence the name "Naive". 

« m - * % z & (2.6) 

A t first, the dataset is converted into frequency tables, counting the numbers of occur
rences of different feature values. F r om this table, a l ikehood table is generated by finding 
the propabil it ies of given features. After that, the Bayes theorem is used to calculate the 
posterior probabil it ies of the object belonging to a certain class based on its features. There 
are three types of Naive Bayes c lass i f iers—Mult inomial , Benoul l i and Gaussian. 

Dec i s i on trees 

Decision trees model the classification or regression process in the form of a tree structure. 
Trees used for classification, w i th a single discrete class label, are called classification trees. 
They consist of decision nodes w i th two or more branches split according to a certain feature 
value and leaf nodes representing classes. A n example can be seen in Figure 2.3. 

False 

Figure 2.3: A very simple classification tree. 

A decision tree is bui l t using the ID3 algor i thm [26], which utilizes entropy and infor
mat ion gain. Entropy is used to calculate the homogenity of a sample. The more equally 
div ided a sample is, the higher its entropy. The information gain depends on the decrease 
in entropy after each spl i t t ing of the dataset on a feature. A t each step, the goal is to find 
the feature that returns the highest information gain. 

Random forest is an algor i thm made out of mult iple randomly created decision trees, 
where each tree-node works on a random subset of features and the final output is combined 
from outputs of the ind iv idua l trees. A s declared by Frangois Chol let i n [6, p. 16], " random 
forests are applicable to a wide rage of problems—you could say that they're almost always 
the second-best a lgor i thm for any shallow machine learning tasks". 

/c-nearest neighbors a l go r i thm 

This a lgor i thm classifies new cases based on a s imi lar i ty measure to already labeled cases. 
The new instance inherits the label most common among its fc-nearest neighbors measured 
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by a distance function, where k > 1. Larger /c value generally increases the precision by 
reducing the overall noise, but the opt imal value for most datasets was found to be between 
3 and 10. The number of dimensions of the space the labeled instances occupy is equal to 
the number of input features. Indiv idual feature measures should also be normalized, so 
that their contr ibut ion to the outcome is ideally the same. 

Suppo r t vector machines 

A support vector machine ( S V M ) finds the hyperplane in an A-d imens iona l space (where 
N is the number of input features) separating the two classes and max imiz ing the margin 
between them. Support vectors are data points that are closer to the hyperplane and 
influence its posit ion and orientation. For 2 input features, the classes are separated by a 
line, for 3 of them, a the line is replaced by a plane and this goes on into higher dimensions 
as the number of features increases. For data that 's not l inearly separable, one can use 
a non-linear S V M , which utilizes Kerne l functions that transform non-linear spaces into 
higher-dimensional l inear spaces. 

To classify a new sample, we take the output of a linear function. If the output is greater 
than 1, the first class is predicted, and if the output is smaller than -1, the other class is 
predicted. The interval between -1 and 1 acts only as a margin, i n contrast to how logistic 
regression works. 
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Chapter 3 

Art i f i c ia l neural networks 

Art i f i c ia l neural networks (ANNs ) , usually s imply called neural networks (NNs) , are com
putat ional systems inspired by the function of biological neural networks. They are at the 
heart of deep learning algorithms, a subset of machine learning algorithms. Neura l net
works can be used for many kinds of tasks, inc luding classification, pattern recognition or 
detection, clustering, and many others. Some of the most notable real world applications 
include facial recognition, voice recognition, weather forecasting, or studying the behavior 
of social media users. 

This chapter serves as a gradual introduct ion to NNs , which begins by introducing their 
basic bui ld ing blocks in section 3.1, moving up to their structure and behavior in section 3.2. 
Section 3.3 covers the principles of their t ra in ing and common problems to look out for while 
t ra in ing them to solve classification problems. The last section, 3.4, explains the differences 
between the main N N types and their use cases. 

3.1 A r t i f i c i a l neuron 

Art i f i c ia l neurons [35, p. 5] are the basic bui ld ing blocks of every art i f ic ial neural network. A 
biological neuron is made out of dendrites, which act as the input vector, cell body (soma), 
which acts as the summation function, and axon, which gets its signal from the summation 
behavior inside the soma and transmits the signal to other cells in the body inc luding other 
neurons. A n arti f icial neuron (Figure 3.1) is a mathemat ica l function basically mimick ing 
a biological neuron. It takes the sum of its one or more inputs, each indiv idual ly mult ip l ied 
by its assigned weight, and then adds a constant value called bias to the sum. The sum 
is then passed through a function known as an act ivat ion function (also called transfer 
function), which "f ires" to pass the information to subsequent neurons. 

Inputs x2 o 

2?3 O 

Weights 
Bias 

b 

Act ivat ion 
function Output 

y 

Figure 3.1: Example of an arti f icial neuron w i th three inputs. 
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The mechanism of an arti f icial neuron can be described mathematical ly: 

V = f[b + ^XiWi\ = fi^XiwA (3.1) 
^ i=l ' ^ i=0 ' 

where Xi is the i - th input of the neuron out of its n to ta l inputs, Wi is the weight assigned 
to the i - th input, b is bias, often represented by bias input XQ = 1 w i th weight WQ = b, f is 
an act ivat ion function and y is the neuron's output. 

The perceptron algori thm, invented in 1958 at the Corne l l Aeronaut ica l Laboratory by 
Frank Rosenblatt [27], is considered to be the first arti f icial neural network, although it 
only consists of a single neuron w i th a binary step activation function (see figure 3.2). 

A c t i v a t i o n funct ion 

Act ivat ion function is the part of a neuron that makes the final decision whether it should 
"f ire" or not. It can be as simple as a binary step (activates above certain threshold) 
function or a l inear function, but only when a non-linear function is used, then a two-layer 
neural network can be proven to be a universal function approximator [7]. W h e n multiple 
layers use a linear activation function, the entire network is equivalent to a single-layer 
model, since the output of each layer is a linear combinat ion of the inputs, and hence, the 
overall output can be expressed as a single l inear equation. 

There are many different activation functions, each better suited for different scenarios. 
Some of the most common ones include s igmoid—act ivat ion function of choice for binary 
classification, already seen in Figure 2.2, tanh (hyperbolic tangent), which usual ly finds ap
plications in recurrent neural networks (introduced later i n section 3.4) for natura l language 
processing and speech recognition, R e L U (Rectified L inear Un i t ) , which outperforms both 
sigmoid and tanh in computat ional speed, and softmax, used to bu i ld multi-class classifiers. 
Some of the mentioned activation functions are shown in Figure 3.2. 

Figure 3.2: Graphs of binary step (left), tanh (middle) and R e L U (right) act ivation func
tions. 

3.2 Ar t i f i c i a l neural network 

A collection of interconnected arti f icial neurons can form an arti f icial neural network [35, 
p. 6]. A n A N N is comprised of layers of neurons inc luding the input layer, output layer, 
and any number of layers between them, called hidden layers. Neura l networks can be 
visualised w i th graphs, where each node represents a neuron and edges represent connections 

11 



between them, as shown in Figure 3.4. The certain ways in which ind iv idua l neurons can 
be connected are called topologies. 

A t first, the input layer takes an input i n the form of numerical data. The hidden 
layers, present between input layer and output layer, perform a l l the calculations to find 
hidden features and patterns in the data. The input therefore goes through a series of 
transformations through succeeding layers, which finally results in an output conveyed 
using the output layer. In contrast w i th t radi t ional comput ing models, an N N acts as a 
black box, i n the sense that one cannot know what abstractly happens inside, since the 
network learns by exposure to labeled data and "stores the gained knowledge" by tweaking 
its parameters (weights of the inputs of its neurons). Knowledge in the form of many 
floating point numbers is obviously not very human-readable. 

Topologies of neura l networks 

The topology (also called architecture or structure) of a neural network plays a fundamental 
role in its functionality and performance [11]. W h e n bui ld ing an N N to solve a specific 
problem, there is no single topology best suited for i t , and while there are some empirical ly 
derived guidelines one can follow, it is mostly a matter of t r i a l and error. One th ing to keep 
in m ind is that while adding more layers allows an N N to learn more complex patterns, it 
makes the network harder to t ra in and much more prone to overfitting [6, p. 104], a very 
common problem explained later near the end of section 3.3. 

One way to classify different N N topologies is dist inguishing between feed-forward neural 
networks ( F F N N s ) and recurrent neural networks (RNNs ) , whose direct comparison is 
shown in figure 3.3. In a F F N N , the information flows i n only one direction, so any layer 
can only gain information from the previous layers. In contrast, R N N s (often called feedback 
NNs) can have signals traveling in both directions by introducing loops—edges going from a 
given neuron to a neuron in either some previous layer or the current layer, which can include 
the neuron itself. These feedback loops introduce the concept of a network's memory, which 
is why these networks are used for processing sequential data, where context matters a lot, 
such as recognizing spoken sequences, detecting the next word/letter in a text, or even 
music composi t ion 1 . 

Figure 3.3: The comparison between feed-forward (left) and recurrent (right) neural net
works. Wh i l e F F N N s allow the signal to travel one way only, R N N s contain feedback loops. 

1 Note that in the context of music composition, the term recurrent neural networks refers to their use 
as generative models, where the network is trained to generate new music samples based on a given input 
sequence 
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W i t h the advancement in dig i ta l technologies i n the recent years, the demand for an
alyzing complex, high dimensional, and noise-contaminated datasets has risen quite a lot. 
Th is led to a rapid development of deep learning, part of a broader family of machine 
learning methods ut i l i z ing NNs . The adjective "deep" refers to the use of mult iple layers in 
the network, which is then referred to as a deep neural network (DNN ) . Wh i l e not being 
a formally defined rule, an A N N should contain at least two hidden layers to be called 
a D N N . The complexity of these networks makes them a very powerful too l for solving 
real-life problems. A n example of a D N N is visualized in figure 3.4. 

input 
layer 

hidden layers 

output 
layer 

Figure 3.4: A dense deep neural network. The orig inal source code for generating this figure 
using T i k Z 2 w a s taken from [24]. 

Tensor operat ions 

" M u c h as any computer program can be ul t imate ly reduced to a smal l set of b inary op
erations on binary inputs ( A N D , O R , N O T , and so on), a l l transformations learned by 
arti f icial neural networks can be reduced to a handful of tensor operations applied to ten
sors of numeric da ta " [6, p. 38]. Tensors are the basic data structure used not only by NNs , 
but by a l l current machine learning systems. 

Most students and researchers are probably famil iar w i th scalars, vectors and matrices. 
Those three structures can be referred to as OD, I D and 2D tensors (in this order), since 
tensors are a generalization of matrices to an arbi trary number of dimensions, as demon
strated in figure 3.5. In the context of tensors, a dimension is often called an axis or the 
tensor's rank. The key attributes of a tensor are its number of axes, its shape (dimensions 
along each ind iv idua l axis), and in the context of programming—the data type of its con
tained data. Even complex data can be broken down into a tensor—a dataset consisting of 
mult iple videos can be represented as a 5D tensor, whose axes represent a sample's order, 
number of the frame, x-coordinate (width), y-coordinate (height), and (color) channels. 

2https: //www.ctan.org/pkg/pgf 

13 

http://www.ctan.org/pkg/pgf


h ; 
Matrix Algebra 

scalar vector 

• Z 
0-way 1-way 
tensor tensor 

A 
matrix 

2-way 
tensor 

-1 

y 

3-way 
t elisor 

< 

V 

/ 

-

< 

V 
/ 

< 

V 
y 

4-way 
tensor 

• 'it; h, 

N-wav 
Lelisi iľ 

Tensor Algebra 

Figure 3.5: Tensors as generalizations of scalars, vectors and matrices [32]. 

Tensors can be added, mult ip l ied and so on. Each layer of an N N can be thought of as a 
function that takes a tensor of a certain rank as its input, and returns a tensor of a certain 
rank as its output. Since a l l tensor operations can also be interpreted geometrically, the 
goal of a classification algor i thm is basically just f inding a chain of tensor operations that 
"uncrumbles" the feature space in a way that separates the classes. 

3.3 Tra in ing a neural network 

Training a neural network is the opt imizat ion process of f inding the appropriate weights of 
its connections, so that the difference between the network's output and the expected output 
is min imal . This is possible thanks to a feedback loop algor i thm called backpropagation 
(short for backward propagation of errors), which is the essence of N N training. 

Though it is quite useful to know the basics of the mathemat ica l foundation behind the 
tra in ing mechanism (explained right i n the following subsection), a programmer doesn't 
have to worry too much about it when using a high level deep learning A P I such as Keras [4]. 
F rom the pract ical standpoint, i t 's more important to know how to preprocess data, split 
a dataset for t ra ining, val idation and testing, bu i ld a model w i th reasonable architecture 
comprised of layers w i th act ivat ion functions f i tt ing the given type of task, etc. Some 
guidelines for these problems are spread throughout this chapter, and mainly through the 
next chapter 4, which explores some of the extensive options Keras has to offer. 

Loss funct ion 

Before d iv ing into the tra in ing process itself, let's introduce a way of measuring the dif
ference between the expected output and the model's predict ion. Th is is the role of a loss 
function (synonymous w i th cost function or error function, but cost sometimes refers to the 
average loss over the entire t ra in ing dataset). It maps an event or values of one or more 
variables onto a real number representing some "cost" associated w i th the event called loss, 
which we a im to minimize. 

The most common loss for classification is cross-entropy, which measures the perfor
mance of a classification model whose output is a probabi l i ty value between 0 and 1. B inary 
cross-entropy (3.2), a special case of cross-entropy w i th only two classes, is not only the 
most commonly used loss for binary classification, but is also often used for mult i - label 
classification. Assume that yi £ {0,1} marks the correct class of the i - th tra in ing sample 
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and pi is the predicted probabi l i ty of the sample belonging to class 1. 

LBCE(Pi,Vi) = -G/ilogfe) + (1 - y i ) l o g ( l - pi)) (3.2) 

The general version of cross-entropy, used for multi-class classification, is often called cate
gorical cross-entropy (3.3). Assume that M is the tota l number of classes, Pi is a vector of 
size M that indicates to which class the sample belongs, Pi is a vector of predicted proba
bilities for each class, yifi is a binary indicator whether sample i belongs to class c and pitC 

is the corresponding predicted probabil ity. 

M 

LccE(Pi, Vi) = -^2 Vi,c log(Pi, c) (3.3) 
c=l 

Other classification losses include hinge loss (3.4), developed pr imar i ly for S V M model 
evaluation, which apart from wrong predictions also penalizes right predictions that are not 
confident, negative logl ikel ihood loss, and K L / J S divergence. Note that i n the case of hinge 
loss (in the version for binary classfication shown bellow), y$ G { — 1,1} and pi G (—1,1). 

LH(PU Hi) = max(0,1 - mpi) (3.4) 

Grad i en t descent 

The gradient of a function of n variables can be interpreted as a vector point ing in the 
direction of the fastest growth of the function. In the case of an N N , n is equal to the tota l 
number of weights in the network. Adjust ing the network's weights is done according to 
the gradient descend method, since we always want to minimize the loss function w i th the 
goal of f inding its global m in imum. 

Let 's demonstrate this on a simple example of t ra in ing a linear model consisting of a 
single neuron without an activation function [30]. Tra in ing on each sample can be thought 
of as finding solutions for l inear equation (3.5) w i th variables ao, a i , a n . 

y = a0xo + aixi H h anxn (3.5) 

The model 's guess based on its current weights can then be wr i t ten down as equation (3.6). 

y = WQXQ + wixi H h wnxn (3.6) 

We calculate the cost (3.7) between the expected result and the model's predict ion. For the 
sake of the example, let's use the squared error 3 function, because it 's easy to differentiate. 

C = ^(y - y)2 = ^(y - w0x0 - wixi - ... - wnxn)2 (3.7) 

We calculate the gradient of the cost (3.8), which is nothing more than a vector consisting 
of its par t ia l derivatives each w i th respect to an ind iv idua l weight (3.9). 

/ dC_ dC_ dC \ 

\ dwo' dwi' ' dwn I 

J ^ - = ^ • 2(y - WQXQ - wixi - ... - wnxn)(-Xi) (3.9) 

3 Mean squared error (MSE) is the most commonly used loss function for regression. 

15 



Mov ing to the final step (3.10), the weights are updated by subtract ing the calculated 
gradient mult ip l ied by the learning rate (denoted by rj), a tuning parameter that determines 
the step size at each iteration. Wh i l e the learning rate can be as simple as a constant, there 
are many opt imizat ion algorithms that scale it dynamical ly to ensure faster and more 
reliable convergence towards the function's global m i n i m u m [28]. 

These steps should be repeated unt i l the a lgor i thm converges. Th is special case of calculat
ing the cost for every i teration is called stochastic gradient descent. In practice, the cost is 
usually calculated as the average loss over batches of t ra in ing samples and sometimes even 
over entire epochs 1 . 

Backp ropaga t i on 

Backpropagation, proposed back in 1986 by Dav id E . Rumelhart [29], is an efficient method 
of comput ing gradients i n directed graphs of computations, such as multi- layer neural net
works. W h e n tra in ing an N N , every i teration consists of two passes—the forward pass and 
the backward pass. In the forward pass, the data is fed to the input layer, goes through the 
hidden layers and finally at the output layer, the network's predict ion gets produced, based 
on which the network's error can be calculated v ia the loss function. In the backward pass, 
the flow is reversed so that the error gets propagated from the output layer a l l the way back 
to the input layer, while updat ing the weights i n each layer. Th is process of propagating 
the error backwards is called backward propagation, or s imply backpropagation. 

The following interpretation of the backpropagation algor i thm 3.1 draws inspirat ion 

from [8] and [33]. To understand the notat ion, xfj is the i - th input of neuron j i n layer 

I and wfj is the associated weight. The weighted sum computed by neuron j in layer I is 

denoted by which then transforms to the neuron's output by passing through its 
activation function /. Since this t ime the neurons have an activation function, as wasn't the 
case in the example i n previous subsection, it was appropriate to break down the expressions 
inside step 4 using the chain rule, which states that f((g(x))' = f'(g(x))g'(x). 

4 A n epoch is a single iteration over the entire training dataset. 

dC 
(3.10) 
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Algor i thm 3.1 Backpropagat ion 

1. Initialization 

Set a l l weights w i th in the network to some smal l in i t ia l value. 

= some small initial value 

Set the i teration counter to 0. 

p = 0 

2. Forward pass 

Calculate the output of every neuron j i n each layer I start ing from the first hidden 
layer and ending w i th the output layer (the input layer only passes raw input) . 

yfip) = f (zf\P)) = f (j2w^(p)x^(p^j 

Note that n is the number of inputs of neuron j and WQJXQ is its bias term. 

3. E r ror calculation 

Calculate the error C(p) between the expected output for the current sample and the 
output obtained from the neuron(s) in the output layer. 

If the tra in ing data is split into batches, repeat step 2 for every sample i n the current 
batch and then calculate C{p) as the average loss across the batch. 

4. Backward pass 

First , calculate the derivatives of the error in terms of the weights between the last 
hidden layer and the output layer. 

dC dC dyfut)dzfut) 

<-, (out) 0 (out) (out) (out) 

Continue calculat ing derivatives of the error i n terms of the weights between a l l the 
remaining pairs of neighboring layers going from right to left. 

dC d C d y f d z f _ ( dC dyl+1) dzl+1)\ dyf dzf 

dw§ dyf dzf dw§ t K V dytl) dzt1] dyf J dzf dw% 

Note that K is the set of a l l neurons in layer I + 1 connected to neuron j. 

Update a l l weights w i th in the network. 

Repetit ion 

Increase the i teration counter. 

p <— p + 1 

Continue w i th step 2, un t i l the target number of iterations is reached or unt i l the 
error decreases below a certain threshold. 
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C o m m o n prob lems 

Training a neural network is not so straightforward, since there many pitfalls one can 
find himself i n . Some problems can be caused by inappropriately chosen learning ra te—a 
value too smal l slows down the progress, while a value too high introduces oscillations and 
instabil it ies leading to divergence. It is also not uncommon to get stuck in a local m in imum 
while performing gradient descent (since hardly any loss function is convex), i n which case 
it is recommended to introduce some element of randomness. 

O n a larger scale, the most common problem is probably overfitting [6, p. 104]. A n N N is 
trained on a dataset which is meant to represent the problem it is being trained to solve, but 
since the dataset contains only finite number of samples, it can only represent a subset of the 
problem space. Overf i t t ing occurs when the model becomes too accustomed to its tra ining 
data. It fails to generalize the problem and performs poorly when presented w i th new data. 
It is caused by the model memoriz ing patterns in irrelevant information (noise) w i th in the 
dataset, which usually happens when the model trains for too long on sample data or when 
the model is too complex. Some techniques to prevent overfitting (other than getting more 
tra in ing data) include reducing the network's capacity by removing some hidden layers or 
reducing the number of neurons in them, and apply ing regularization, which adds addit ional 
cost to the loss function for larger weights. Three most popular regularization techniques 
are L I and L 2 regular izat ion 5 , and also introducing dropout layers, which randomly remove 
certain features by randomly setting some inputs of a layer to zero. 

The opposite phenomenon to overfitting is underf itt ing [6, p. 104], which occurs when 
the model is unable to accurately capture the relationship between input and output vari
ables, leading to high error rates on both the t ra in ing set and unseen data. Th is usually 
happens when there is s imply not enough tra in ing data or the model is too simple. Tech
niques to reduce underf itt ing include increasing the model's complexity, increasing the 
number of features by performing feature engineering, removing unwanted noise from the 
data or s imply increasing the durat ion of the tra ining. Underf i t t ing is usually easier to 
identify than overfitting, since an overfitted model reaches high accuracy i n tra in ing. A 
v isual interpretation of both underf itt ing and overfitting can be seen in figure 3.6. 

Underfit 
(high bias) 

Opt imum Overfit 
(high variance) 

High training error 
High test error 

Low training error 
Low test error 

Low training error 
High test error 

Figure 3.6: V i sua l interpretation of underf itt ing and overfitting [17]. 

5 Penal iz ing the total loss by either absolute values (LI) or squares (L2) of the weights. 
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3.4 M a i n types of neura l networks 

This section explains the differences between the three main A N N types. 

M u l t i - l a y e r pe rcep t ron 

Mult i - layer perceptron ( M L P ) refers to a standard feedforward neural network whose three 
or more layers are fully connected and (except for the input layer) uti l ize some non-linear 
activation function. A topology of an M L P may look like the one previously shown in 
figure 3.4. Note that the "perceptrons" of which M L P s are composed of are not perceptrons 
in the strictest possible sense, but rather ordinary art i f ic ial neurons, since they can employ 
arbitrary activation functions (not l imited to threshold-based functions). 

Since an M L P accepts a vector ( ID tensor) of numerical features as input, data is mostly 
provided in a tabular format, such as csv ' files or spreadsheets. In these datasets, rows 
separate ind iv idua l instances, while columns separate ind iv idua l features, inc luding the class 
label i n the case of classification problems. M L P s can also work w i th more complicated 
data, such as images, text data, or timeseries data, if there is a sensible way to convert the 
data into a vector. For instance, a 28x28 pixel grayscale image can be converted to a vector 
consisting of 784 numerical features representing ind iv idua l pixels. The main problem w i th 
using M L P s for image classification is that they can only recognize global patterns. For 
example, an M L P can be trained to classify different shapes if they're a l l s imi lar ly scaled 
and located in the same part of an image, but fails to classify them once they're presented 
in different scales and locations. 

Convo lu t i ona l neura l network 

A convolutional neural network (CNN/ConvNet ) is an N N type most commonly used for 
processing image data [25], since unlike an M L P , it has the abi l i ty to recognize local patterns 
in mult id imensional data. A C N N looks for spat ial relations (relations between nearby 
pixels) instead of only looking at an image as a whole—this property is called translat ion 
invariance and allows the network to recognize objects regardless of their posit ion i n an 
image. Cap tur ing the spat ial and temporal dependencies i n an image is done through the 
appl icat ion of relevant filters. 

The central part of any C N N , that also gave this N N type its name, is the convolutional 
layer. Convolut ion is a mathemat ica l operation, i n this sense refering to the process of 
adding each element of an image to its local neighbors, weighted by a convolutional kernel, 
as shown in figure 3.7. A convolutional layer contains a set of kernels, parameters of which 
are to be learned throughout the tra ining. Each kernel is used for detecting a specific feature 
in the data, creating a feature map. A structure of mult iple kernels stacked together is 
called a filter. Two important terms when considering convolution are padd ing—a process 
of adding layers of zeros around the image so that the kernel can overlap the image in every 
possible posit ion which has an element of the original image at the kernel's center, so that 
the feature map keeps the size of the input image, and str ide—the number of elements 
traversed between steps. A stride of more than 1 obviously downsamples the image even if 
i t 's padded along the edges. 

A layer that is fully connected with its preceding layer is called a dense layer. 
7 A C S V (comma-separated values) file is a text file that has a specific format which allows data to be 

saved in a table structured format. 
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Figure 3.7: Convolut ion of a 7x7 image w i th a 3x3 kernel (no padding, stride set to 1) [37]. 

A l though convolutional layers summarize the presence of features in an input image, 
the feature maps they produce are sensitive to location of the features in the image. A 
common approach for reaching local translat ion invariance is to downsample the feature 
map. A l though this can be easily achieved by changing the stride, a more robust and com
mon approach is to introduce pool ing layers. Poo l ing transforms groups of elements (called 
patches) i n a feature map into single elements, based on the selected pool ing operat ion—the 
most common ones are max imum pool ing (max pooling), which selects the highest value 
in the patch, and average pooling, which calculates the average of the values. B o t h of 
these pool ing operations are shown in figure 3.8. Some non-linear function (e.g. R e L U ) is 
usually applied to a feature map before it gets passed to a pool ing layer. It should also 
be noted that while pool ing can help the network become more translat ion invariant, it 
does not address its variance to other transformations such as rotations or changes in scale 
of an object, and even though some special C N N architectures addressing this issue were 
already proposed [20], the usual way of combating this issue is to s imply include slightly 
modified (rotated, mirrored, etc.) copies of images already contained in the dataset when 
t ra in ing—this is part of a technique called data augmentation. 

3 5 3 8 
0 2 1 5 
0 9 7 2 
1 4 2 4 M a x 

pooling 

5 8 
9 7 

3 5 3 8 
0 2 1 5 
0 9 7 2 
1 4 2 4 Average 

pooling 

2.5 4.25 
3.5 3.75 

Figure 3.8: App l i ca t i on of 2x2 max pool ing and 2x2 average pool ing to a 4x4 feature map. 

The overall architecture of a C N N can be broken down into two parts, as can be seen in 
figure 3.9. The first part, responsible for feature extraction, is made of convolutional layers, 
each usual ly followed by a pool ing layer. The first convolutional layer is usually used to 
detect low-level features, such as horizontal or vert ical lines, but the deeper a convolutional 
layer is, the higher-level features it can recognize, such as entire objects or even facial 
expressions. The second part of a C N N , responsible for the classification itself, consists of 
dense layers and essentially behaves as a standard M L P . Feature maps usually have more 
than one dimension, but a dense layer only accepts a vector as input. To solve this problem, 
we can introduce a flatten layer, which transforms a l l the final pooled feature maps into a 
single large vector. 
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Figure 3.9: Architecture of a C N N composed of an input layer, mult iple alternating convo
lut ion and max-pool ing layers, one dense layer and an output layer [1, Figure 9]. 

Recur r en t neura l network 

Sometimes we might want to work w i th sequential data (e.g. t ime series), where the chrono
logical order of elements creates a certain context. Most prominent is natura l language pro
cessing, which includes both text (as sequences of either words or characters) and speech. 
For this k ind of problem, let's consider a special N N type that has a sequential memory, 
which provides the abi l i ty to remember preceding elements and take them into considera
t ion. Th is is called a recurrent neural network (RNN ) , and its concept is based on Dav id 
Rumelhart 's work i n 1986 [29]. Apar t from sequence classification and regression, R N N s 
are also great for bui ld ing generative models that require a sequential output, such as 
generating text or even handwrit ing. 

In an R N N , information gets passed not only to succeeding layers, but also backwards 
through loops, as was previously shown in figure 3.3 when mentioning R N N s i n the context 
of N N topologies. Each recurrent cell has its hidden state, which is calculated as a function 
of its previous hidden state and its input. Th is means that the network as a whole has a 
hidden state, that strongly affects its response to a given input. 

A huge problem R N N s face is their short-term memory caused by the vanishing gradient 
problem [14], from which they tend to suffer more than other N N architectures the more 
steps they process. W h e n a F F N N is trained using backpropagation, the backpropagated 
error signal typical ly decreases exponential ly as it propagates further from the output layer, 
making the weight adjustments in those layers less prominent. A l l neurons that part ic ipated 
in the calculat ion of the output get updated—this gets very complicated i n the case of an 
R N N , where it 's not just the neurons preceeding the output layer, but a l l of the neurons 
involved back in time, creating a long path for the error to propagate through. This 
diminishes the effect of earlier inputs on the network's tra ining. To overcome this problem, 
two specialised versions of R N N were created. 

Long Short Term Memory ( L S T M ) , capable of remembering long sequences for a long 
period of time, was introduced by Hochreiter and Schmidhuber i n 1997 [15]. The new 
hidden state of a L S T M cell is calculated not only from the previous hidden state of the 
input, but also from information stored i n the long term memory. There is a tota l of three 
gates that L S T M uses—at each timestep, the input gate decides what information w i l l be 
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stored in long term memory, the forget gate decides which of this information w i l l be kept 
or discarded, and the output gate calculates the new hidden state. 

Gated recurrent unit ( G R U ) , introduced in 2014 by Kyunghyun Cho [3], is designed 
simi lar ly as L S T M , but it aims to solve the same problem by incorporat ing an operating 
mechanism that consists of the update gate, responsible for determining the amount of 
previous information getting passed to the next state, and the reset gate, which decides 
how much of the past information is going to be neglected (forgotten). A t first, it takes the 
input, and the previous hidden state mult ip l ied by the reset gate's output, which results in 
something called the candidate's hidden state. This state, together w i th the update gate, 
is then used to calculate the current hidden state. The cells of a standard R N N , L S T M 
and G R U are a l l shown in figure 3.10. 

RNN LSTM GRU 

Figure 3.10: Compar ison of standard R N N cell, L S T M cell and G R U cell [21]. 

22 



Chapter 4 

The Keras l ibrary 

Keras is an open source l ibrary that provides a high-level interface for working w i th arti f icial 
neural networks i n P y t h o n 1 . It uses the TensorF low 2 l ibrary as its backend 3 , for which it 
provides a high-level A P I that makes deep learning more accessible to a wider range of users 
through its ease of use. Keras, wr i t ten i n Py thon , was developed w i th a focus on enabling 
fast experimentation, w i th the core idea that "being able to go from idea to result as fast 
as possible is key to doing good research" [4]. 

Since the range of options Keras has to offer is very extensive, the goal of this chapter 
is to explore some of its ma in offerings in the context of classification, in the form of a 
guide start ing w i th a model's bui ld ing phase in section 4.1, followed by it 's compi lat ion 
in section 4.2, its t ra in ing i n section 4.3, and finally its testing and general usage in final 
section 4.4. Each section briefly introduces the many choices a user has along the way of 
solving a given classification problem using Keras. M u c h of the information i n this chapter 
is drawn from the official Keras documentation [4], and from the book Deep Learning in 
Py thon [6] wr i t ten by Frangois Chollet , the author of Keras himself. 

4.1 B u i l d i n g a mode l 

There are three ways to create a model in Keras. The most straightforward way is to use 
the Sequential class, which groups a linear stack of layers into a sequential model w i th 
a single input and a single output. The second option is using the Keras functional A P I , 
which is more flexible and capable of creating models w i th non-linear topologies, shared 
layers, and even mult iple inputs and outputs. It provides an easy-to-use way of creating 
directed acyclic graphs of layers. A direct comparison between using the Sequential class 
and using the functional A P I is shown in l ist ing 4.1. The last opt ion is to use model 
subclassing, by wr i t ing custom subclasses of the Model class and the Layer class. 

import tensorflow as t f 

model = tf.keras.Sequential() 

model.add(tf.keras.layers.Dense(16, activation='relu', input_shape=(12,))) 

xhttps: //www.python.org/  
2https: //www.tensorflow.org/ 
3 U p unti l version 2.3, Keras could also be configured to utilize a different library, such as Theano or 

C N T K . Since version 2.4, only TensorFlow is supported. Keras lias also been embedded as part of the 
TensorFlow package since the release of TensorFlow 2.0. 
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model.add(tf.keras.layers.Dense(8, a c t i v a t i o n
= ,

r e l u ' ) ) 

model.add(tf.keras.layers.Dense(1, activation^sigmoid*)) 

input_layer = tf.keras.Input(shape=(12,)) 

hidden_layer = tf.keras.layers.Dense(16, activation=
,

relu
)

)(input_layer) 

hidden_layer = tf.keras.layers.Dense(8, activation
= ,

relu')(hidden_layer) 

output_layer = tf.keras.layers.Dense(1, activation='sigmoid')(hidden_layer) 

equivalent_model = tf.keras.Model(inputs=input_layer, outputs=output_layer) 

L is t ing 4.1: A n M L P binary classification model bui l t using the Sequential class and an 
equivalent model bui l t using the functional A P I . 

Layers and act ivat ion functions 

A model is series of layers grouped into a Model object w i th tra in ing and inference features. 
Each layer consists of a tensor-in tensor-out computat ion function and usually also some 
state (the layer's weights). The most basic is probably the Dense layer, which contains 
units number of neurons, each connected to every neuron i n the previous layer. A l l the 
available layers can be grouped into the following categories: 

• Core layers: Dense, Input object, Embedding, Activation, Masking, Lambda 

• Convolution layers: ConvlD, Conv2D, Conv3D, SeparableConv2D, 

DepthwiseConv2D, Conv2DTranspose, etc. 

• Pooling layers: MaxPoolinglD, AveragePooling2D, GlobalMaxPooling2D, 

GlobalAveragePooling3D, etc. 

• Recurrent layers: SimpleRNN, LSTM, GRU, base RNN, ConvLSTM2D, etc. 

• Other layer categories: Preprocessing (e.g. TextVectorization), normal izat ion 
(e.g. BatchNormalization), regularization (e.g. Dropout), attention, reshaping (e.g. 
Reshape, Flatten), merging, locally-connected layers, and act ivat ion layers 

Every layer type accepts a different set of arguments, through which can the layer's 
behavior be modified. These arguments range from obvious ones like the number of units 
or the activation function, to very specific ones like the kernel regularizer function (which 
introduces weight decay). M a n y of the arguments, inc luding the act ivat ion function and 
the kernel regularizer, can be passed either as an object instance, whose parameters can 
be tweaked, or as a str ing identifier, i n which case the default values w i l l be used. B o t h of 
these options are demonstrated i n l ist ing 4.2. 

Act ivat ion function is without a doubt one of the most prominent layer attr ibutes. Keras 
activations module offers these bui l t - in functions: relu, sigmoid, softmax, softplus, 

softsign, tanh, selu, elu and exponential. Act ivat ion functions can not only be passed 
as an object instance or a str ing identifier, but also added as a separate layer (see l ist ing 4.2), 
which is also the only was to use activations that mainta in a state—for instance PReLU, and 
some other advanced activation functions such as LeakyReLU. 

In a classification model, the hidden layers usually uti l ize either relu, sigmoid or tanh 
activation function. The output layer, however, depends on the given type of classification. 
We use a Dense layer containing either a single neuron w i th sigmoid for binary classifica
t ion, number of classes neurons w i th softmax for multi-class classification as, shown at the 
end of l ist ing 1.2, or number of classes neurons w i th sigmoid for mult i - label classification. 
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model = tf.keras.Sequential() 

model.add(tf.keras.layers.Conv2D( 

input_shape=(30, 30, 3), # 30x30 RGB image (3 c o l o r channe l s ) 
filters=64, kernel_size=(3, 3), strides=(l, 1), padding='same', 

kernel_regularizer=tf.keras.regularizers.L2(0.001), 

k e r n e l _ i n i t i a l i z e r
= )

z e r o s ' , b i a s _ r e g u l a r i z e r
= ,

l l ' , 

b i a s _ i n i t i a l i z e r = t f . k e r a s . i n i t i a l i z e r s . Z e r o s ( ) 

)) 
model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) 

... # Pooling, Flatten, Dense, etc. 

model.add(tf.keras.layers.Dense(units=6, activation
= )

softmax')) 

Lis t ing 4.2: A C N N six-class classification model w i th specifically parameterized layers. 

Keras models can be saved to a file by the save_model() function (or Model's save() 
method) and loaded by the load_model() function. The same can be done w i th only 
the current weights instead of the whole model, by the Model's save_weights() and 
load_weights () methods. The model's summary, which contains information about the 
consecutive layers (e.g. layer type, number of trainable parameters), can be printed using 
Model's summary() method. Models can also be plotted and saved as an image using the 
plot_model() function from Keras uti l it ies. 

4.2 Comp i l i n g a mode l 

Once a model is bui l t , the Model's compile() method is used to configure it for training. 
Apar t from some very specific opt ional arguments, we specify the optimizer and the loss 
function to be used for training, and a list of metrics to be evaluated dur ing tra in ing and 
testing. A l l of these can be again passed either as a object instance or as an str ing identifier 
(default parameters), an example can be seen in l ist ing 4.3. 

model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=le-3), 

loss=tf.keras.losses.BinaryCrossEntropy(), 

metrics=['accuracy ', tf.keras.metrics.FalsePositives()]) 

Lis t ing 4.3: Configuring a Keras model for tra in ing using its compile method. 

O p t i m i z e r 

A n optimizer is an algor i thm that dictates how the model's attributes, such as weights and 
learning rate, are updated i n response to the output of the loss function. The simplest 
optimizer Keras offers is SGD, which is the stochastic gradient descent algori thm, w i th an 
optional momentum hyperparameter that accelerates the descent i n the relevant direction. 

The other available optimizers tend to be more complicated, since they a l l belong to 
the family of adaptive optimizers [28], introduced to solve the issues of gradient descent. 
Th is includes Adagrad, which adapts the learning rate to perform more significant updates 
for rarely occurring features, Adadelta and RMSprop, bo th of which improve the previous 
algor i thm by tak ing a fixed number of past gradients into consideration, and Adam—the 
overall most commonly used optimizer, which adds to the advantages of a l l these previ
ous algorithms by storing an exponential ly decaying average of past gradients (similar to 
momentum). The remaining Keras optimizers are Adamax, Nadam and F t r l . 
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Loss 

As already explained in section 3.3, the purpose of a loss function is to compute the 
quantity that a model seeks to minimize dur ing tra ining. The bui l t - in losses Keras of
fers can be div ided into three categories: Probabi l is t ic losses, regression losses, and hinge 
losses for "max imum-marg in " classification. Since this thesis revolves around classification, 
we can neglect regression losses, apart from maybe mentioning MeanSquaredError and 
MeanAbsoluteError since these two are very common. 

Cross-entropy based losses can be found in the probabil ist ic category. For binary classi
fication, we use BinaryCrossentropy, while for multi-class classification, we can use either 
CategoricalCrossentropy in combination w i th label-encoded (integer) class labels, or 
SparseCategoricalCrossentropy w i th one-hot-encoded class labels (both of these en
coding techniques w i l l be explained in the next section 4.3). The probabil ist ic losses also 
include KLDivergence (Ku l lback-Le ib le r divergence), which measures a very similar quality 
to cross-entropy, and Poisson, used for regression w i th discrete variables. 

The last category includes three versions of the hinge loss function: standard Hinge, 
SquaredHinge and CategoricalHinge. The usage of these losses i n Keras is quite rare, 
since they are mostly used for S V M s and only very rarely for NNs . 

M e t r i c s 

A metric is a function that is used to evaluate the performance of a model, but unlike loss 
functions, the results from evaluating a metric are not used when tra in ing the model. The 
bui l t - in metrics can be grouped into six categories. Three of these categories correspond 
to the three previously l isted loss categories, since any loss function can also be used as a 
metric. A lso , there is only a single metric in the image segmentation category—MeanloU 

(mean Intersection over Union) , used to measure the accuracy of an object detector. 
Probably the most common are accuracy metrics, which tel l us how often the model 

predicted the correct outcome. W h e n the metric Accuracy is specified, Keras detects the 
output shape and automatical ly determines which type of accuracy shal l be used (but it 
can also be specified manual ly ) . These include BinaryAccuracy, which calculates how 
often predictions match binary labels (binary classification), CategoricalAccuracy and 
SparseCategoricalAccuracy, which calculate how often predictions match either one-hot 
labels or integer labels respectively (multi-class classification), and finally 
TopKCategoricalAccuracy and SparseTopKCategoricalAccuracy, which compute how 
often targets are in the top K predictions (multi-class classification). 

The last category contains classification metrics based on true/false positives and nega
tives, implementing the metrics defined in section 2.2. The simplest of these metrics are nat
ural ly TruePositives, TrueNegatives, FalsePositives and FalseNegatives, which are 
self-explanatory, while the most complex one is probably AUC, which approximates the A U G 
(Area under the curve) of the R O C or P R curves. The remaining metrics are Precision, 
Recall, PrecisionAtRecall, which computes the best precision where recall > specified 
value, and S e n s i t i v i t y A t S p e c i f i c i t y complemented by S p e c i f i c i t y A t S e n s i t i v i t y , 
which compute the best sensitivity where specificity > specified value and vice versa. 
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4.3 Tra in ing a mode l 

A Keras model can be trained either by cal l ing its f i t () method, which trains the model for 
a fixed number of epochs, or the train_on_batch() method, which runs a single gradient 
update on a single batch of data. The arguments of the f i t () method include the input 
data (unlabeled samples), target data (corresponding class labels), batch_size (number 
of samples per gradient update), epochs (number of epochs to t ra in the model for), and 
some others. Keras is usually combined w i th other P y t h o n libraries, since the input and 
target data passed to the f i t () method can be in the form of Numpy arrays, TensorFlow 
tensors, Pandas' ' DataFrames, or some of the few other more specialized formats, including 
a dict ionary mapping input names to the corresponding array/tensors, suitable for models 
that have named inputs. 

Part of the tra in ing data can be used for the model's val idation using either the 
v a l i d a t i o n _ s p l i t or validation_data argument of the f i t ( ) method. A val idation 
dataset is a sample of data held back from tra in ing the model, giving out an unbiased 
estimate of the model's performance, which is especially useful for monitor ing the gener-
al izabi l i ty of the model and detecting overfitting. The f i t ( ) method returns a History 
object, whose History .history attr ibute is a record of tra in ing loss and metrics values 
at successive epochs, as well as val idation loss and metrics values (if applicable). Value of 
the verbose argument controls how much information w i l l be printed at the end of each 
epoch, such as the values of loss and metrics (also for val idat ion i f applicable), or even an 
animated progress bar. 

Keras also offers a few bui l t - in datasets provided by the t f .keras.datasets mod
ule. These include famous datasets such as the M N I S T handwri t ten digits classification 
dataset [9], the I M D B movie review sentiment classification dataset [22], the C I F A R 1 0 
and C I F A R 1 0 0 smal l images classification datasets 8 , and three other datasets. Tra in ing a 
model on a bui l t - in dataset using the f i t ( ) method is shown in l ist ing 4.4. 

# Loading the training and testing data 

(X_train, y _ t r a i n ) , (X_test, y_test) = tf.keras.datasets.mnist.load_data() 

# Training the model 

model.fit(X_train, y _ t r a i n , batch_size=32, epochs=80, validation_split=0.1) 

L is t ing 4.4: Tra in ing a Keras model on the bui l t - in M N I S T handwri t ten digits classification 
datasets using the Model's f i t ( ) method. 

D a t a preprocess ing 

Since a dataset is usually a set of measurements of some phenomena, the data often has to 
be transformed into a form that an N N can accept as input. Th is includes encoding non-
numerical categorical data into numerical values and reshaping the input—for example, a 
2D C N N usual ly expects an input of shape (rows, cols , channels). Reshaping can be 
done in advance (often using Numpy) , or by inc luding one or more Reshape layers i n the 
model's architecture. Even though Keras offers some uti l it ies (e.g. the to_categorical 

4https: //numpy.org/ 
5https: //pandas.pydata.org/ 
6 http: //yann. lecun.com/exdb/mnist/ 
7https: //ai. stanford.edu/-amaas/dat a/sentiment/ 
8 http: //www.cs.toronto.edu/-kriz/cifar.html 
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function), external l ibraries inc luding more advanced preprosessing tools, such as scikit-
l earn 9 , are usually used alongside Keras. 

There are three ma in techniques for encoding categorical data. Labe l encoding (also 
called integer or ordinal encoding) represents each of n to ta l categories as an integer (either 
from 1 to n or 0 to n - 1). Labe l encoding should only be used i n cases where there is 
some k ind of hierarchical relationship between the categories. If we tr ied to encode, let's 
say, a color attr ibute in that way, the network would learn some unintended relationship 
based on the order in which the colors were encoded, such as red < green < yellow. If 
no relationship is present between the categories, one-hot encoding should be used, which 
means transforming each value into a vector of length n , w i th a l l of its components set 
to 0 except for the single one representing the given category, which is set to 1. The 
direct comparison of label and one-hot encoding on a weather feature example is shown 
in table 4.1. The last technique is called learned embedding (or s imply embedding) and is 
based on mapping each category to a dist inct vector, whose properties are adapted while 
t ra in ing the N N , which allows for miscellaneous relationships between the categories to 
be learned. Th is technique is often referred to as word embedding, since it was originally 
developed to provide a distr ibuted representation for words (e.g. al lowing s imi lar words to 
have similar vector representations). 

Sample Default Label encoded One-hot encoded 

number feature feature feature 

1 "sunny" 1 [1, 0, 0] 
2 "cloudy" 2 [0, 1, 0] 
3 "sunny" 1 [1, 0, 0] 
4 "rainy" 3 [0, 0, 1] 

Table 4.1: Direct comparison of label encoding and one-hot encoding. 

Further preprocessing can be done to optimize the tra in ing process, generally leading 
to better results [18]. Th is includes techniques like data augmentation (explained i n the 
C N N subsection of section 3.4), normal izat ion, standardizat ion and batch normal izat ion. 
Normal izat ion refers to scaling the values from different ranges to a common range, usually 
the interval (0,1), while standardizat ion refers to transforming the data such that the 
mean of the data is equal to zero and the standard deviation to one. Ba t ch normal izat ion 
(BatchNormalization layer i n Keras) is based on normalis ing each batch individual ly, and 
is often used after convolutional layers. 

It is extremely important to use different data for training, val idation and testing to 
check how well the model is generalized and to detect overfitting i n t ime. Wh i l e there is 
no opt imal dataset split percentage, since it depends on the given problem, three standard 
ways to split a dataset (training|validation)testing) are 80%|10%|10%, 70%|15%|15% and 
60%120%120%. In general, the larger a dataset is, the lesser proport ion of the data is 
required for testing and val idat ion. However, much more important than finding good split 
percentages is to ensure that these three datasets are about equally balanced w i th respect 
to the distinct classes and feature values. 

'https: //scikit-learn.org 
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Ca l lbacks 

In Keras, a callback is an object that can perform actions at various stages of training/test
ing (before/after a batch, at the start/end of an epoch, etc.). There are several bu i l t - in 
callbacks, such as ModelCheckpoint, which periodical ly saves the trained model (or its 
weights) to a file, CSVLogger, which streams epoch results to a C S V file, or EarlyStopping, 
which stops the tra in ing when a monitored metric had stopped improving. 

To create a custom callback, we s imply create a subclass of the Callback class and 
override a set of methods called at various stages of training, testing and predicting, 
such as on_(train|test|predict)_begin(), on_(train|test|predict)_batch_end(), 
on_epoch_begin(), etc. A list of callbacks can be passed to the f i t ( ) method (and also 
to the evaluate () and predict () methods introduced in the following section 4.4) v ia the 
callbacks argument, as shown in l ist ing 4.5. 

# Custom callback that prints a message after the training i s finished 

class CustomCallback(tf.keras.callbacks.Callback): 

def on_train_end(self, logs=None): 

print("Training i s complete, have a nice day!") 

my_callbacks = [tf.keras.EarlyStopping(patience=2), CustomCallback()] 

model.fit(X_train, y _ t r a i n , epochs=30, callbacks=my_callbacks) 

L is t ing 4.5: A class for a custom callback, and tra in ing a Keras model using its f i t O 
method while ut i l i z ing mult iple callbacks, inc luding the custom one. 

4.4 Test ing and using a mode l 

The Model's evaluate () method is used to test/evaluate a model's performance. Its argu
ments include the testing data, the corresponding class labels, batch_size, and a few oth
ers, inc luding callbacks. There are obviously no epochs, since each iteration would show 
the same results. The evaluate() method, shown in l ist ing 4.6, returns the loss value and 
metrics for the model in test mode (weights don't get updated), and also prints the relevant 
information (controlled by the verbose argument). Alternatively, the test_on_batch() 
method can be used instead, to test the model on a single batch of data. 

scores = model.evaluate(X_test, y_test, return_dict=True) 

# return_dict=True => metrics are stored i n a dictionary instead of a l i s t 

print("Test accuracy: ", scores['accuracy']) 

Lis t ing 4.6: Eva luat ing a model's accuracy on a testing dataset. 

The Model's predict() method generates output predictions for given input samples, 
as shown in l ist ing 4.7. It accepts s imi lar arguments to the evaluate () method, except for 
class labels, since those are returned by the method as a Numpy array(s) of predictions. For 
a smal l number of inputs that fit i n one batch (marked as X), we can also use the Model's 

c a l l () method as predictions = model(X), or its predict_on_batch() method. 

predictions = model.predict(X) 

# the predicted labels are stored i n a l i s t 

for i i n range(len(predictions)): 

print("Class prediction for ", i+1, ". sample:", predictions [i]) 

Lis t ing 4.7: Us ing a model to predict class labels for a given set of data. 
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Apar t from custom N N architectures created direct ly by the user, Keras also offers 
some pre-built deep learning models, along w i th pre-trained weights, as Keras App l i ca 
tions, available from the t e n s o r f l o w . k e r a s . a p p l i c a t i o n s module. They can be used 
for predict ion, feature extraction, and f ine- tuning 1 0 . These models include famous C N N 
architectures, such as three different versions of Inception inc luding Xcept ion [5] (Extreme 
version of Inception), used in the exemplary use case shown in l ist ing 4.8, mult iple versions 
of ResNet [13], many version of EfficientNet [36], and a few others. 

f rom t e n s o r f l o w . k e r a s . a p p l i c a t i o n s impor t x c e p t i o n 
f rom t e n s o r f l o w . k e r a s . p r e p r o c e s s i n g . i m a g e impor t l o a d _ i m g , i m g _ t o _ a r r a y 
impor t numpy as np 

# l o a d i n g we i gh t s from t r a i n i n g on the ImageNet d a t a s e t 
model = x c e p t i o n . X c e p t i o n ( w e i g h t s = " i m a g e n e t " , i n c lude_ t op=True ) 
# l o a d i n g and p r e p r o c e s s i n g hamster image 
img = l o a d _ i m g ( ' h a m s t e r . p n g ' , t a r g e t _ s i z e = ( 2 9 9 , 2 9 9 ) ) 
img = img_ t o _a r ray ( img ) 
img = np . expand_d ims ( img , ax is=0) 
# making model p r e d i c t i o n s (top=3 => show 3 most p r o b a b l e c l a s s e s ) 
x = x c e p t i o n . p r e p r o c e s s _ i n p u t ( i m g ) 
p reds = m o d e l . p r e d i c t ( x ) 
p r i n t ( " P r e d i c t e d : " , x c e p t i o n . d e c o d e _ p r e d i c t i o n s ( p r e d s , top=3) [0]) 
# P r e d i c t e d : [ ( ' n 0 2 3 4 2 8 8 5 ' , ' h a m s t e r ' , 0 .9340777 ) , 
# C n 0 3 7 9 4 0 5 6 ' , ' m o u s e t r a p ' , 0 .0025085167 ) , 
# C n 0 7 7 1 4 9 9 0 ' , ' b r o c c o l i ' , 0 .002150822) ] 

L i s t ing 4.8: Classifying an image of a hamster by using the Xcept ion [5] N N architecture 
along w i th weights pre-trained on the ImageNet 1 1 dataset 

Finetuning means taking weights of a trained neural network and using it as initialization for a new 
model being trained on data from the same domain. It is primarily used to speed up the training process 
and overcome small dataset size. 

n h t t p s : //www.image-net.org 
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Chapter 5 

Preparat ion of the experiments 

Now that N N s and Keras have been sufficiently introduced, i t 's t ime to move on to the 
pract ical part of the thesis. The objective of the experiments is to choose 3 different 
datasets, each suited for a different type of N N s (tabular for M L P s , image for C N N s , 
sequential for R N N s ) , create an NN(s ) of each type for each of the datasets, compare their 
performances, and experimentally find out how often can an N N , that 's not intuit ively 
suited for a given task at first glance, outperform the one that is. 

Since comparing N N s of different types is a bit like comparing apples to oranges, this 
chapter focuses on preparation of the experiments i n such a way, that the different N N s can 
actual ly uti l ize their signature abilit ies sensibly to their advantage. Th is heavily depends 
on the choice of the datasets i n section 5.1, preprocessing of the data i n section 5.2, which 
dictates how the data w i l l be interpreted by the ind iv idua l types of NNs , and finally, the 
N N s ' architectures i n section 5.3. 

5.1 Choos ing and analyz ing the datasets 

This section introduces the chosen datasets, along w i th the reasons for choosing them and 
some brief analysis of their compositions. 

5.1.1 Tabu l a r da ta - M i n i B o o N E part ic le identi f icat ion 

M i n i B o o N E (Booster Neutr ino Exper iment) is a Cherenkov detector experiment at Fer-
mi l ab 1 designed to observe neutrino oscillations. The M i n i B o o N E particle identif ication 
dataset had been obtained from the U C I Machine Learning Repository [10] and contains 
records of 130,064 events (instances), each consisting of 50 ind iv idua l particle measurements 
(real numbers), and a binary label that marks whether the instance was a signal event (1) 
or a background event (0). Since there are only 36,499 ( « 28 %) signal events, compared 
to the remaining 93,565 (~ 72 %) background events, one might ca l l this an imbalanced 
binary classification problem. 

Due to the nature of the experiment the dataset captures, the features (particle mea
surements) i n the scope of a single event are obviously not really independent of each other, 
so the R N N and I D - C N N might be able to make use of their unique abilities to identify 
some hidden patterns the M L P s are unable to see. 

xhttps: //www.fnal.gov/ 
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5.1.2 Image da ta - F a s h i o n - M N I S T 

Fash ion -MNIST [39] is a dataset consisting of 60,000 tra in ing and 10,000 test grayscale 
images of clothes, each belonging in one of the 10 distinct c lothing categories shown in 
figure 5.1. It was developed as a modern drop-in replacement for the original M N I S T 
dataset, from which it had inherited the same image resolution (28x28), number of target 
classes, and even the tota l number of samples and the d istr ibut ion of target classes. The 
data was extracted from Za lando 's 2 arcticle images and the entire dataset is bui l t into Keras 
in the exact same manner as the standard M N I S T . 
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Dress 

f I t 1 I I -
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Figure 5.1: Sample images from the Fah i on -MNIST dataset [19, Figure 8]. 

Searching for patterns among the different c lothing categories should be undoubtedly 
more challenging than among digits, so Fash ion -MNIST might as well be the better choice 
for benchmarking N N s bui l t using modern technologies. Wh i l e M N I S T is s t i l l often con
sidered to be the go-to introduct ion dataset for getting into image classification, it was 
first introduced back in 1998 when the average N N had drastical ly weaker capabilities than 
today. The d istr ibut ion of the target classes has a discrete uni form distr ibut ion, so each of 
the 10 classes makes up exactly 10 % of both the t ra in ing set and the test set. 

5.1.3 Sequent ia l da ta - I M D B mov ie review sentiment classif ication 

The I M D B movie review sentiment classification dataset 3 [22] is a set of 25,000 different 
reviews obtained from the Internet Movie Databased ( I M D b 1 ) , each binary labeled as either 
positive (1) or negative (0). It is a famous dataset very commonly used for natura l language 
processing or text analytics, that 's also bui l t into Keras. A sample review is shown in 
l ist ing 5.1. 

2https: //github.com/zalandoresearch/fashion-mnist 
h 
4https: //www. imdb.com/ 
3https: //ai. stanford.edu/-amaas/dat a/sentiment/ 
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lavish production values and s o l i d performances i n this straightforward 

adaption of jane [00V] s a t i r i c a l c l a s s i c about the marriage game within 

and between the classes in [00V] 18th century england northam and paltrow 

are a [00V] mixture as friends who must pass through [00V] and l i e s to 

discover that they love each other good humor i s a [00V] virtue which goes 

a long way towards explaining the [00V] of the aged source material which 

has been toned down a b i t i n i t s harsh [00V] i li k e d the look of the fi l m 

and how shots were set up and i thought i t didn't rely too much on [00V] 

of head shots l i k e most other films of the 80s and 90s do very good r e s u l t s . 

L is t ing 5.1: A sample positive review from the I M D B movie review sentiment classification 
dataset converted into words ( O O V is an out-of-vocabulary token representing an unknown 
word). 

There's a tota l of 50,000 reviews, out of which 25,000 are part of the t ra in set and the 
other half belongs i n the test set. The Keras implementat ion of this dataset also comes 
w i th options like only considering the X most common words, ignoring the Y most common 
words (e.g. the word 'the'), etc. Exac t l y half of the reviews are positive (applies to both 
train/test set) and each review is a sequence of anywhere from 7 to 2,494 (not necessarily 
distinct) words, w i th the average being « 234.76 words. Each sentence is a list of indexes 
(integers). The more often a word is found in the reviews overall, the lower its index in the 
words' dictionary. 

5.2 D a t a preprocessing 

Each dataset has to be preprocessed for each type of N N s in a way that w i l l s t i l l be sensible, 
while also demonstrating the network's unique abilit ies. This section describes this process 
for a l l 9 combinations of tasks and N N types. Most of these adjustments w i l l be done by 
the networks themselves v ia preprocessing layers (Reshape, Flatten, etc.). The first axis 
of the input shapes, which indicates the batch size, w i l l not be listed here and is impl ic i t l y 
set to None to obtain a variable batch size. 

5.2.1 Tabu l a r da ta - M i n i B o o N E part ic le identi f icat ion 

Each sample is a vector of 50 different numerical (floating point) features and has shape 
(50). 

• M L P , input_shape=(num_features) - Noth ing to be done, each sample w i l l have 
shape (50), to be interpreted as 50 separate numerical features. 

• I D C N N , input_shape=(timesteps, num_features) - Each sample w i l l be re
shaped to (50, 1), to be interpreted as 50 timesteps of a single feature, since in 
terpreting samples as a single timestep of 50 features would somewhat degrade the 
network to an M L P . 

• R N N , input_shape= (timesteps, num_features) - The exact same shape and ra
t ional izat ion behind it as in the I D C N N case. 
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5.2.2 Image da ta - F a s h i o n - M N I S T 

Each sample is a 2D tensor of shape (28, 28) containing integer values between 0 and 255. 
For a l l networks, the values w i l l be converted to f loat32 and normalized between 0 and 1. 

• M L P , input_shape=(num_features) - Each sample w i l l be reshaped to (784), so 
that the value of each pixel is interpreted as a separate feature. 

• 2D C N N , input_shape= (height, width, channels) - Each sample w i l l be re
shaped to (28, 28, 1), to be interpreted as a single-channel (grayscale) image. 

• R N N , input_shape=(timesteps, num_features) - Each sample w i l l be reshaped 
to (28, 28, 1), so that each row of pixels w i l l be interpreted as a separate feature, 
whose value changes over 28 timesteps. 

5.2.3 Sequent ia l da ta - I M D B mov ie review sentiment classif ication 

Each sample is a variable-sequence of integer indexes (words label encoded through the 
dict ionary) . For a l l N N types, only the 10,000 most commonly occurring words w i l l be 
considered. 

• M L P , input_shape=(num_f eatures) - Each sample w i l l be vectorized into a vector 
of length 10,000, that 's made of binary values indicat ing whether each word occurs 
in the given review or not. Th is leads to the MLP getting less information on input, 
but may also lead to a surprisingly good performance if there's a strong correlation 
between occurrences of certain words and the posit iv i ty/negativity of the review. The 
shape of each sample w i l l then be (10_000) . 

• I D C N N , input_shape= (timesteps, num_features) - The words w i l l be embed
ded, which means converting them to a fixed-length (in this case 32) vector of floating 
point values. The more similar two words are, the lower the euclidean distance be
tween their corresponding vectors. This gives the network much more context to work 
w i th than one-hot encoding the words (vectors of length 10,000 comprised of 0s and 
a single 1). The reviews w i l l be cut-off/padded to only the first 500 words, so the 
shape of each sample w i l l then be (500, 32). 

• R N N , input_shape= (timesteps, num_features) - The exact same shape and ra
t ional izat ion behind it as in the I D C N N case. Unl ike C N N s , R N N s have the abi l i ty 
to work w i th sequences of variable lengths, but for the sake of the experimental com
parison, they w i l l s t i l l be kept at 500 words. 

5.3 Choos ing the neura l network architectures 

The obvious problem is that there's no definitive way of label ing two or more N N s of 
different types as equally powerful, since they're so fundamentally different i n the ways 
they function. Iteratively bui ld ing N N s by directly measuring their performance and aiming 
for very similar results would somewhat devaluate the results of the experiments, so I've 
decided to settle on a different approach—aiming for (approximately) the same number of 
trainable parameters. Th is metric is sometimes used to measure an N N ' s " learning power", 
since it provides more flexibility in approximat ing the function that divides the feature 
space. There are st i l l many factors to consider, as these parameters could be " invested" 
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into parts of the network that have only minor impact on performance, so I've done quite 
a lot of testing and tweaks before deciding on the final architectures. 

There are 4 N N s per experiment—one of each type to compare their core differences, 
and one extra network best suited for the given task (e.g. C N N for image classification) to 
also compare different topologies of N N s of the same type. For each experiment, there is a 
reference number X of trainable parameters obtained by rounding the number of trainable 
parameters of one network that 's used as a reference point, and a l l the other networks 
must stay w i th in 10 % error, meaning the interval (X — J Q , X + ^ ) . The N N s were also 
regularized by including Dropout layers w i th rates tuned for reaching similar t ra in ing and 
val idation performance (loss and accuracy). 

The graphs of a l l 12 architectures can be found i n Append ix B . The naming scheme of 
the networks is the name of the given data type and the given N N type, separated by an 
underscore (e.g. Sequence _MLP ) . The addit ional network for each experiment is denoted 
by an extra x, which stands for extra (e.g. I m a g e _ C N N x ) . 

Below are some details about each chosen N N architecture, categorized by the corre
sponding experiment type. The input layer, and the output layer, which contains either a 
single neuron w i th sigmoid act ivat ion (binary classification - tabular, sequential) or num
ber of classes neuron w i th softmax (multiclass classification - Image), are impl ic i t (not 
mentioned i n the architecture details), just as the dropout layers. A l l models are compiled 
w i th BinaryCrossentropy or CategoricalCrossentropy (in which case the categorical 
labels are one-hot encoded first) loss, and Adam (tabular, image) or RMSprop (sequential) 
optimizer. 

5.3.1 Tabu l a r data 

This problem is a lot less difficult then the other two, so the N N architectures are rather 
simple. The reference number of trainable parameters (7,500) had been set just through 
some experimentation. 

• Tabular M L P - A single hidden (Dense) layer w i th 150 neurons and Relu act ivation 
(also used in a l l further mentioned Dense and Conv layers), so the network is expected 
to learn many simple patterns but struggle in drawing some more complex conclusions. 

• Tabular M L P x - The same as Tabular M L P , but has 3 hidden layers, each w i th 
50 neurons. These two networks were created dependently on each other for a wid th 
versus depth comparison of M L P s . 

• Tabular C N N - A single ConvlD layer w i th 32 filters, kernel size 3 (each convolu
t ion step is based on 3 subsequential timesteps), and stride of 1, also followed by a 
MaxPoolinglD layer w i th pool size of 2. These layers are followed by a Flatten layer 
and a Dense layer w i th 10 neurons, to further reinforce the classification based on the 
extracted features. 

• T a b u l a r _ R N N - A single LSTM layer w i th 42 units. L S T M had been chosen as the 
referential bui ld ing block for a l l recurrent architectures i n the thesis because of its 
commonness in the context of modern N N architectures. 
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5.3.2 Image data 

The reference number of trainable parameters (240,000) is inherited from the Image C N N 
and Image C N N x architectures, which have been taken from a Kaggle notebook'' shared 
by Gabr ie l Preda. 

• Image M L P - Two Dense layers w i th 224 neurons each, followed by a th i rd Dense 
layer containing 112 neurons. This architecture seems fairly balanced i n terms of 
wid th and depth of the hidden layers. 

• Image C N N - Three subsequent couples of a Conv2D and a MaxPooling2D layer 
w i th a 3x3 kernel size, 2x2 poo l size and an increasing number of filters (32, 64, 128), 
to extract features of an increasing complexity level, followed by a Flatten layer and 
a Dense layer w i th 128 neurons, to strongly reinforce the classification, which is based 
on the high-level features. 

• Image C N N x - Exac t l y the same as Image C N N , but not regularized at a l l (no 
Dropout layers). Th is network was added to demonstrate the need for regularization 
by direct comparison to the regularized network. 

• Image R N N - A LSTM layer consisting of 180 units, followed by another one w i th 
90 units and Dense layer w i th 90 neurons. The stacked LSTM layers (with the first one 
set to return_sequences=True) allow the network to learn more complex (deeper) 
recurrent patterns. 

5.3.3 Sequent ia l da ta 

The reference number of trainable parameters (370,000), inherited from the Sequen
tial R N N architecture, is the largest out of the three experiments, although a huge part 
of the "parameter budget" is " invested" either into word embedding v ia the Embedding 
layer ( C N N , R N N s ) , or having the vectorized sequences at input ( M L P ) . 

• Sequential M L P - On ly two succeeding Dense layers w i th 36 neurons each. Th is 
might seem like very l i t t le for such a large "parameter budget", but let's not forget 
that the input layer is 10,000 neurons wide, so the number of connections adds up 
quickly. 

• Sequential C N N - The Embedding layer is followed by a ConvlD layer w i th 64 
filters and kernel size of 3, followed by a GlobalMaxPoolinglD layer and a Dense 
layer w i th 256 neurons. 

• Sequential R N N - The Embedding layer is followed by a single LSTM layer w i th 
100 units. 

• Sequential R N N x - The Embedding layer is followed by two LSTM layers w i th 80 
and 40 units respectively (the first one is also set to return_sequences=True), and 
a 40-neuron Dense layer. Th is network was created mainly for a depth versus w id th 
comparison of R N N s . 

5https: //www.kaggle.com/code/gpreda/cnn-with-tensorf low-keras-f or-f ashion-mnist 
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Chapter 6 

The experimental appl icat ion 

The main role of the appl icat ion is to provide a very easy-to-understand (graphical) interface 
for tra ining and testing the chosen N N s on the corresponding datasets, while s t i l l providing 
enough modular i ty to enable sl ightly more experienced users to change the N N architectures 
and possibly even the datasets, wihout having to dissect the entire source code. 

Section 6.1 specifies the functionality that the appl icat ion should provide, the important 
implementation details are then noted i n section 6.2. 

6.1 Concept and requirements 

This section is div ided into the functional requirements, stat ing what functionality the 
appl icat ion should provide, and a wireframe, the concept of how the graphical user interface 
should look like (mainly the overall layout). 

Func t i ona l requirements 

• A main (text) screen that shows important information/logs about the train/test 
progress and feedback for the user interaction. 

• Select the active dataset. Th is also determines the current experiment context. 

• Select which of the 4 models are active at the moment. On ly the currently selected 
models are considered for any k ind of interaction at the given time. 

• Tra in the selected models for a selected number of epochs w i th a selected batch size, 
test the selected models w i th a selected batch size. 

• Select the metrics that should be used for tra ining and testing, while al lowing each 
metric to be also used for val idation. 

• P lo t the progress of the (validation) loss and selected (validation) metrics during 
training, plot the confusion matrices after testing. 

• Save the current weights and load saved weights of the currently selected models, in 
the context of the currently selected experiment. 

• Ut i l i t ies for smoothing the user experience, like the abi l i ty to clear the (text) screen 
or to save its current state as a text file (log). 

• Provide enough modular i ty for easy N N architecture and dataset changes. 
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Figure 6.1: Wireframe of the application's G U I . The wireframe was created i n F i g m a . 

6.2 Implementat ion 

This section first describes some implementat ional details of the appl icat ion logic, and then 
notes some details about the application's graphical user interface. 

A p p l i c a t i o n logic 

Each t ime the user selects an experiment, a new instance of the Experiment class is created. 
Among its attributes is an array of the 4 corresponding models, the data type, and the 
dataset, which is further represented by an instance of the Dataset class, that encapsulates 
the data split into t ra in and test sets, and holds addi t ional information, like the number 
of classes and the shape of a sample. Th is class can be easily modified to exchange one of 
the datasets for a different one, although some more complex ones, like the I M D B movie 
review sentiment classification, have to also store addi t ional information (e.g. both the 
embedded and the one-hot encoded version of the data). The app/datasets folder can 
be used to store external datasets, although by default, it only contains the M i n i B o o N E 
particle identif ication dataset, since the other two are loaded directly from Keras. 

xhttps: //www.figma.com/ 
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The N N architectures can be changed by modifying the create_network function, just 
remember that reshaping is left to the models themselves by including reshaping layers. 
There are custom callbacks for tra in ing and testing, inheri t ing from the Keras ' Callback 
class, whose purpose is to present selected progress information to the user i n a more 
minimal ist ic way. P lo ts of loss and metrics are handled by M a t p l o t l i b 2 , while Keras handles 
al l the machine learning backend and its other uti l it ies are also used heavily throughout 
the entire appl icat ion. 

G r a p h i c a l user interface 

The application's graphical user interface (GUI) is bui l t using the Tk in t e r 3 framework. The 
entire appl icat ion is then encapsulated in an instance of the View class, whose attributes 
include even the current Experiment instance. A l l user interaction is handled v ia callbacks 
of the GUI ' s interactive elements and the standard output is redirected to the text screen. 

Smoothness of the user experience had been taken very seriously. For example, even 
though the selected models are created each t ime a dataset is chosen, along w i th showing 
their architecture summaries, when the user selects addit ional models before beginning 
tra in ing or testing, these models are addit ional ly silently created (no summary shown). 
Each act ion w i th the potential to discard unsaved progress, whether it be saving/loading 
stored weights or clearing the text screen is guarded by a prompt that informs the user 
about the possible consequences and gives h i m the option to cancel the action. 

The finished G U I is shown in figure 6.2. The Models but ton at the top opens a 
drop-down menu for saving and loading stored weights, and the Screen but ton opens a 
drop-down menu for clearing the screen or saving its current state to a text file. 
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S t a r t i n g t r a i n i n g o f I m a g e _ M L P . . . 

B e g i n n i n g epoch 1 o f t r a i n i n g I m a g e _ M L P . . . 
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a c c u r a c y : 0 .7376999855041504 v a l _ a c c u r a c y : 0 .8403000235557556 
p r e c i s s i o n : 0 .8392674326896667 v a l _ p r e c i s s i o n : 6 .8865932822227478 

B e g i n n i n g epoch 2 o f t r a i n i n g I m a g e _ M L P . . . 
E p o c h ; 2/10 
l o s s : 0 .47785109281539917 v a l _ l o s s : 0 .41305050253868103 
a c c u r a c y : 0 .8329833149909973 v a l a c c u r a c y : 0 .8546000123023987 
p r e c i s s i o n : 0 .8777746558189392 v a l _ p r e c i s s i o n : 0 .8912161588668823 

B e g i n n i n g epoch 3 o f t r a i n i n g I m a g e _ M L P . . . 

Figure 6.2: The experimental application's G U I created using Tkinter . 

https://matplotlib.org/ 
3https: //docs.python.org/3/library/tkinter.html 
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Chapter 7 

Course and evaluation of the 
experiments 

The description of each experiment's course starts w i th a reasoned choice of the batch size, 
the number of epochs, and the selected metrics. The results are then presented, main ly in 
the form of generated graphs, and some conclusions are made based on the visible trends 
and patterns. Each dataset had been only split into t ra in and test subsets, w i th the test 
set also being used as the val idation set, and val idation happening every tra in ing epoch, so 
testing a model at any given t ime is expected to yield results very s imi lar to the val idation 
phase of its most recent t ra in ing epoch. 

This chapter is split into sections 7.1, 7.2 and 7.3, corresponding to the ind iv idua l 
experiments. A l l measured values are rounded to four (training) or eight (testing) decimal 
places for the sake of the readability. 

7.1 Tabular data classif ication 

This experiment could be considered an anomaly detection problem, since we're more fo
cused on detecting a rare event (less commonly occurring positive class) and less concerned 
about the nagative cases. For this reason, most of the available metrics (see figure 6.2) 
had been measured, as they're mostly based on precision and recall, bo th of which are very 
relevant for this k ind of problem. The only metric to be left out is area under the R O C 
curve, as R O C curves can sometimes be misleadingly opt imist ic in imbalanced problems, 
while misclassifying most of the minor i ty class cases. 

A rule of thumb for choosing the number of epochs for t ra in ing on data w i th extracted 
features is to start w i th the number of features mult ip l ied by 3 ( in this case 50 * 3 = 150). 
After some experimentation w i th larger numbers of epochs, I decided to settle on this value 
as the visible trends d idn ' t really change and the improvement progress stagnated heavily 
after that point. The batch size had been set to 256, which should be large enough to 
average out random fluctuations given the size of the dataset. 
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7.1.1 Resu l t s 

Firs t , the graphs of the tra ining metrics ' progress are shown and described, then the testing 
phase is presented v ia the confusion matrices and a table of the measured metrics. 

Training phase 

Figure 7.1: Tra in ing loss progress. Figure 7.2: Va l idat ion loss progress. 

Since the graph of tra in ing loss (figure 7.1) is very "zoomed out" , most of the following 
information was derived from the t ra in ing logs. The most prominent progress happened 
in the first four epochs, where a l l models reached tra in ing loss of about 0.4. Tabular_CNN 
ended up being the worst w i th 0.2535 loss after the entire tra ining, while the best performing 
was surprisingly Tabular_RNN w i th loss of 0.1635, closely followed by Tabular_MLP (0.1774). 
Somewhere in the middle ended up Tabular_MLPx w i th 0.2093 loss. 

A l l models seem to generalize very well, as quite unexpectedly, most models' val idation 
loss (figure 7.2) was about 0.4 to 0.8 lower than its t ra in ing loss. Tabular_RNN took this 
trend even further w i th an impressive 0.2096 val idat ion loss. The relative performance of 
the models is consistent i n terms of tra ining and val idation loss. 
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Figure 7.3: Tra in ing accuracy progress. Figure 7.4: Va l idat ion accuracy progress. 

A l l models reached at least 0.875 tra in ing (figure 7.3) and 0.9 val idation (figure 7.4) 
accuracy in the first 20 epochs, and drastical ly slowed down their improvement after that 
point. Even though Tabular_MLP performed the best in the beginning, it was, again, closely 
outperformed by Tabular_RNN, which ended up w i th 0.935 tra in ing and 0.9369 val idation 
accuracy. The worst performing was again Tabular_CNN w i th 0.892 tra in ing and 0.9137 
val idation accuracy. Just as was the case w i th loss, a l l models showed better val idation 
performance than tra in ing performance and the models' relative performance is basically 
the same. 
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Figure 7.5: Tra in ing precision progress. Figure 7.6: Va l idat ion precision progress. 

In both cases, precision split the models into two pairs. In the case of tra in ing precision 
(figure 7.5), the better pair consists of Tabular_RNN and Tabular_MLP, which reached 
0.8755 precision, while the worse pair converged to a value about 0.035 lower, Tabular_MLPx 
reaching the worst t ra in ing precision of only 0.8426. 

Interestingly enough, in val idat ion precision (figure 7.6, whose graph seems to be quite 
noisy because of many spikes), Tabular_MLPx was, along w i th Tabular_MLP, part of the 
better performing pair, and the only model to end up w i th above 0.9 precision, w i th a value 
of 0.9102. It also proved itself as the most consistent model, as its spikes d idn ' t d ip as low 
as the ones of a l l the other models. 
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Tabular recall 
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Figure 7.7: Tra in ing recall progress. 

Tabular val recall 

0 20 40 60 80 100 120 140 
epochs 

Figure 7.8: Va l idat ion recall progress. 

B o t h tra in ing (figure 7.7) and val idation (figure 7.8) recall were v is ibly dominated by 
Tabular_RNN, reaching values of 0.8979 and 0.8908 respectively, although the val idation 
recall d ipped in the last epoch and peaked at 0.9546 dur ing the 30th epoch. Not too 
far behind were the M L P s , both reaching about 0.87 ± 0.005 tra in ing recall. Horr ible 
performance can be seen from Tabular_CNN, which started stagnating at a value of about 
0.75, although it t ight ly outperformed Tabular_MLPx i n val idation, where it also peaked 
during the 75th epoch at a more "respectable" value of 0.8479. 
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Figure 7.9: Tra in ing A U C P R progress. Figure 7.10: Va l idat ion A U C P R progress. 

The A U C P R (Area unded the precision-recall curve) graphs look very similar to the 
accuracy graphs. Th i s applies to the A U C P R graph (figure 7.9) compared to figure 7.3, 
as well as the val idat ion A U C P R graph (figure 7.10) compared to figure 7.4. The best 
performer, Tabular_RNN, reached 0.9442 tra in ing and 0.9482 val idation A U C P R in the 
last epoch, while the worst one, Tabular_CNN, only reached values of 0.8855 and 0.9171 
respectively. 
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Figure 7.12: Va l idat ion Fi score progress. 

Measures of the F\ score are, again, very similar to both accuracy and A U C P R . The 
most visible difference is the tra in ing F\ score (figure 7.11) of Tabular_CNN, as F\ score 
strongly punishes the trade-off between precision and recall, i n which Tabular_CNN strug
gled a lot (see figure 7.7). Overal l , the highest t ra in ing F i score (0.8859) i n the last epoch 
was, again, obtained by Tabular_RNN, while Tabular_CNN only reached a value of 0.7973. 

Results of the val idation F l score (figure 7.12) seem more balanced, as i n the last 
epoch, Tabular_RNN measured 0.8876 and Tabular_CNN measured 0.8426, which is not too 
far behind given the difference of their t ra in ing F\ scores. 

Testing phase 

Please note that this is the only experiment where the test set was resampled from the 
dataset between tra in ing and testing, so it doesn't directly correspond to the val idation set. 

confusion matrix Tabular MLP confusion matrix Tabular MLPx 

Figure 7.13: Confusion matr ix of 
Tabular MLP. 

Figure 7.14: Confusion matr ix of 
Tabular MLPx. 

The confusion matrices of the two M L P s (figures 7.13 and 7.14) reveal that Tabular_MLP, 
wi th it 's lesser depth and wider layers, was more prone to predict ing the less occurring pos
itive label than its deeper counterpart, especially when the actual label was positive. Its 
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positive predictions make up 27.6679 %, while Tabular_MLPx's make up only 24.3106 % of 
al l predicted labels (the actual occurrence of the positive class i n the test set was 27.837 %). 

As its confusion matr ix (figure 7.15) shows, Tabular_RNN improved on Tabular_MLP's 
amount of T P s by 104, for the cost of only 38 more F P s . Its positive predictions make up 
28.3957 %, making it the only overly opt imist ic model, as well as the best performing. 

Even though Tabular_CNN (figure 7.16) counts less F N s than Tabular_MLPx, the count 
is s t i l l unimpressive as well as its F P count, making it the worst overall performing model 
in terms of rounded predictions, w i th a 26.6786% positive predict ion rate. 

Metric Tabular_MLP Tabular_CNN Tabular_RNN Tabular_MLPx 
Loss 0.16712075 0.20510150 0.14320368 0.19452372 

Accuracy 0.93885189 0.92765248 0.93251324 0.92957455 
Precis ion 0.89255279 0.87909085 0.88230193 0.88848990 

Reca l l 0.88712943 0.85812926 0.87417912 0.85421652 
A U C P R 0.94987130 0.93610001 0.94286144 0.93956620 
F l score 0.88983280 0.86848354 0.87822169 0.87101614 

Table 7.1: Loss and metrics values measured dur ing the testing phase of the tabular data 
experiment. 

Table 7.1 shows a l l values measured in testing. Not that surprisingly, Tabular_MLP beat 
Tabular_MLPx by every metric (and loss). What ' s interesting is that while Tabular_RNN 
measured lower loss than Tabular_MLP, it got sl ightly outperformed by every single metric. 
The overall worst performing model seems to be Tabular_CNN, mainly due to its low preci
sion and recall (low A U C P R and F\ score are direct consequences of that ) . Even though 
Tabular_MLPx measured very slightly lower recall, it "redeemed" itself by the measured 
precision. 

7.1.2 C o n c l u s i o n 

The comparison of M L P s w i th more w id th (number of neurons i n a layer), represented 
by Tabular_MLP, and those w i th more depth (more layers), represented by Tabular_MLPx, 
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is pretty straightforward i n this case, as Tabular_MLP outperformed the latter by almost 
every measure, although usually not by a too large margin. It can be concluded that at 
least on this scale and in this k ind of problem, an increase in w id th should precede stacking 
more layers, that also leads to slower t ra in ing and unnecessary complexity. 

As for the other N N types, Tabular_RNN proved itself as a very competent alternative 
to M L P s for when the features measure the same k ind of phenomena, happening just at 
different t ime or space points. Not only were its results very impressive, but also consistent, 
and the model seemed to learn very quickly. The I D convolutional network, Tabular_CNN, 
performed poorly compared to the other models, but a very possible explanation might be 
that its bottleneck was the smal l convolutional kernel size (3), l imi t ing its abi l i ty to recognize 
global patterns, as opposed to the M L P s , working only globally, and Tabular_RNN, which 
was able to store much more context in its recurrent memory. It is very much possible that 
increasing the kernel size would've had a strong positive impact on the model's performance, 
as I D convolutional networks are very commonly used for handl ing problems of similar 
nature. 

7.2 Image data classif ication 

The only metric to be measured in this balanced multi-class image classification experiment 
is accuracy, as the other available metrics (see figure 6.2) would have to be measured w i th 
respect to a specific class, but i n this case, a l l classes share an equal importance (any 
important characteristics of the trained models w i l l s t i l l be visible in the confusion matrices). 

The number of epochs had been set to 200, which is quite a lot, but some interesting 
changes in the graphs were happening around the 150th epoch. The batch size had been 
kept at 32, as smal l mini-batches are very common for computer vision problems. 

7.2.1 Resu l t s 

Again , first the tra in ing results and then the testing results are presented. 
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Figure 7.17: Tra in ing loss progress. 

Image val loss 

lmage_MLP 
Imaae CNN 
Ima 
Ima 

ge_RNN 
ge_CNN < If 

0 25 50 75 100 125 150 175 200 
epochs 

Figure 7.18: Va l idat ion loss progress. 

F i rs t th ing to notice in the tra in ing (figure 7.17) and val idation (figure 7.18) loss graphs 
is how quickly Image_CNNx, the only unregularized model, reached tra in ing loss of only 
about 0.025 (0.021 i n the final epoch). Th is is obviously a case of strong overfitting, as 
its val idat ion loss was steadily increasing, peaking at 3.246 i n the 196th epoch, and would 
probably keep increasing even more i f the t ra in ing continued. In the contrary, the tra ining 
loss of Image_CNN, which shares the same architecture but heavily regularized, basically 
converged to values of about 0.215. Th is pa id off well, as its val idation loss reached values 
as smal l as 0.2326 (49th epoch) very quickly, outperforming the other models effortlessly. 

The battle between Image _RNN and Image _MLP ended up in favor of the former, as in 
the final epoch, Image_RNN reached tra in ing loss about twice as low (0.0961 vs 0.198) for 
the cost of only about 10 % higher val idation loss (0.4636 vs 0.4295). 

Image accuracy lmage_val_accuracy 
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epochs epochs 

Figure 7.19: Tra in ing accuracy progress. Figure 7.20: Va l idat ion accuracy progress. 

The unregularized Image_CNNx seems to had reached tra in ing accuracy (figure 7.19) of 
around 0.99 (peaking at 0.9968 dur ing the 147th epoch) extremely quickly. Just as was the 
case w i th loss, the second most accurate model was Image_RNN, w i th a tra in ing accuracy of 
0.9643 in the last epoch. The main C N N representative, Image_CNN, plateaud very quicky 
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when reaching values of around 0.92, and it even got outperformed by Image_MLP at about 
the 150th epoch and onwards. 

W h e n it comes to val idat ion accuracy (figure 7.20), Image_CNN proved itself as the 
best, although its performance doesn't seem great enough to excuse the poor tra ining 
performance, given that it may had been intuit ive ly expected to perform the best. It ended 
up at 0.9152 (last epoch), but Image_CNNx was really close behind w i th a value of 0.9077. 
Th is was really unexpected, as one would assume the accuracy would decrease much quicker, 
complementing the loss increase due to overfitting, but it seemed to be almost unaffected. 
A t about the 45th epoch, Image_RNN started showing obvious signs of overfitting, as its 
val idation accuracy went from around 0.905 down to around 0.89, more or less matching 
Image _MLP, which was the worst performing model i n terms of accuracy. 

Testing phase 

To help interpret the following confusion matrices (figures 7.21 and 7.22), remember 
that a perfectly accurate model would have 1,000s on the diagonal and 0s everywhere else, 
as there are precisely 1,000 samples of each class in the test set. 

Even at first glance, it can be seen that both models seem to have problems w i th clas
sifying shirts. Not only are they (mainly Image_CNN) l ikely to classify a shirt as something 
similar, like a T-shirt/top or a coat, but they (mainly the more overfitted Image_CNNx) also 
often tend to classify those shirt. 

18 



Similar pattern can be seen i n the confusion matrices of the worse performing models 
(figures 7.23 and 7.24). Even more prominent than in the previous case is the problem w i th 
classifying shirts and coats. Image_MLP classified only 645 shirts correctly, predict ing 162 
of them to be a T-shirt/top, and Image_RNN managed to classify 143 coats as a pullover. 
W h e n it comes to clothes for the lower body, and accessories, the two models performed 
almost as well as the convolutional models (and were slightly better at classifying ankle 
boots for some reason). 

Metric Image_MLP Image_CNN Image_RNN Image_CNNx 
Loss 0.42950425 0.24873139 0.46358573 2.96167660 

Accuracy 0.89109999 0.90315002 0.89950001 0.90154999 

Table 7.2: Loss and metrics values measured dur ing the testing phase of the image data 
experiment. 

Table 7.2 shows almost nothing new. A l l models seem to perform just about the same 
in terms of accuracy, except for Tabular_MLP, that scored about 0.01 lower than the rest. 

7.2.2 C o n c l u s i o n 

The steadily increasing loss of Image_CNNx was very much expected, but its great test accu
racy was very surprising. This demonstrates that when the data is split uniformly between 
classes i n the t ra in set and smal l enough batches are used (smaller batches introduce noise 
that has a regularizing effect [23]), the negative impacts of overfitting reduce drastically. 

I would advise against using M L P s for image classification outside of educational pur
poses, due to their inabi l i ty to recognize local patterns. Even though the worst performing 
model, Image_MLP, d idn ' t perform that much more poorly than the rest, keep in m ind that 
the images were very smal l , grayscale, quite simple, and standardized. 

A l though not as magnificently as i n the tabular experiment (section 7.2), R N N s some
what proved themselves again as a possible viable alternative, this t ime to C N N s . Bu t 
one can wonder how well this scales to more complex problems, as my understanding 
of Image_RNN's mechanism somewhat reminded me of a barcode scanner, scanning the 
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grayscale image from left to right i n paral lel w i th respect to the rows of pixels (but please 
take this statement w i th a grain of salt). One also has to decide between interpreting 
rows of pixels as features and columns as timesteps, or the other way around—this is also 
dependent on the given problem and should be expected to impact the model's performance. 

7.3 Sequential data classif ication 

Again , the only metric to be measured i n this experiment is accuracy, as for the other 
available metrics (see figure 6.2), the positive class would have to be the main point of 
interest (or the class labels could get flipped to relate the metrics to the negative class), but 
I figured it might be a better idea to consider positive and negative movie reviews equally 
(both the train/test sets are also perfectly balanced i n terms of class distr ibution) . 

Given that t ra in ing these models (especially the R N N s ) was more t ime demanding than 
the previous experiments, the tra ining was done over 100 epochs, which should yield results 
scaled s imi lar ly to the previous experiments. The batch size had been set to 64—an opt imal 
batch size for tra in ing L S T M - b a s e d models i n most cases [12]. 

7.3.1 Resu l t s 

Once again, first the tra in ing results and then the testing results are presented. 

Training phase 

Sequential loss Sequential_val_loss 

epochs epoch: 

Figure 7.25: Tra in ing loss progress. Figure 7.26: Va l idat ion loss progress. 

It is clearly visible from both tra in ing loss (figure 7.25) and val idation loss (figure 7.26) 
graphs, that the more complicated Sequential_RNNx performed objectively worse than 
Sequential_RNN. Not only d id its loss decrease slow down quite early, but there also seems 
to be more prominent and unstable overfitting (based on the val idation loss). 

Image_CNN's performance seems to be just as good as Sequential_RNN's i n both cases. 
It measured 0.0834 loss i n the last epoch, a bit lower than Sequential_RNN's 0.0877, but its 
val idation loss was hovering around slightly higher values dur ing the last few epochs. Very 
surprising was the tra in ing performance of Sequential_MLP, as it performed s imi lar ly to 
Sequential_RNNx in terms of loss, and much better that a l l the other models in terms of 
val idation loss (0.35 dur ing the last epoch, other models measured between 0.45 and 0.49). 
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This is very impressive, since it only had l imi ted tra in ing information available (vectorized 
words) compared to the other models (embedded words). 
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Figure 7.27: Tra in ing accuracy progress. Figure 7.28: Va l idat ion accuracy progress. 

In terms of t ra in ing accuracy (figure 7.27), the best performing (0.9716, 100th epoch) 
was Sequential_RNN, but Sequential_CNN kept staying extremely close (0.9706) and based 
on the curves, it seems that it maybe could have outran Sequential_CNN if the tra ining 
continued. The worst t ra in ing accuracy was measured by Sequential_MLP (0.9446, 100th 
epoch), but it was st i l l quite good. 

A l l models performed quite s imi lar ly i n terms of val idat ion accuracy (figure 7.28), a l 
though Sequential_RNN's and Sequential_MLP's graphs are more consistent (less spikes). 
Dur ing the last epoch, a l l models measured between 0.875 (Sequential_CNN) and 0.8839 
(Sequential_MLP) val idat ion accuracy. 

Testing phase 

L1334 

Figure 7.29: Confusion matr ix of Figure 7.30: Confusion mat r i x of 
Sequential_RNN. Sequential_RNNx. 

Judging from the confusion matrices, it seems that the recurrent models have developed 
opposite biases. Wh i l e Sequential_RNN (figure 7.29), having only one L S T M - b a s e d layer, 
is more prone to misclassifying a negative review as positive, the deeper (stacked) 
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Sequential_RNNx (7.30) seems to have an even stronger bias, but this t ime towards false 
negatives. 

Figure 7.31: Confusion matr ix of Figure 7.32: Confusion mat r i x of 
Sequential_MLP. Sequential_CNN. 

Since the only information available for Sequential_MLP (figure 7.31) is the occurrence 
(0/1) of each word, I really expected it to strongly associate certain words w i th a certain 
class and bui ld up a strong bias. The opposite is actual ly true, as it is surprisingly the least 
biased model. 

O n the contrary, Sequential_CNN (figure 7.32) is more than three times as l ikely to 
predict a false negative than to predict a false positive, making it the most biased model of 
the experiment. 

Metric Sequential_MLP Sequential_CNN Sequential_RNN Sequential_RNNx 

Loss 0.34997347 0.47943094 0.45871839 0.48976046 
Accuracy 0.88388002 0.87944001 0.87922668 0.88009000 

Table 7.3: Loss and metrics values measured dur ing the testing phase of the sequential data 
experiment. 

Table 7.3 confirms that the performance of Sequential_RNN and Sequential_CNN is 
roughly the same. Sequential_RNNx has worse test performance than Sequential_MLP, 
even though it 's t ra in ing performance was not marginal ly better, which is quite bad for a 
recurrent model considering the nature of the experiment (natural language processing). 

7.3.2 C o n c l u s i o n 

The convolutional model, Sequential_CNN, managed to reach the same levels of perfor
mance as the better one of the recurrent models (Sequential_RNN), while only having 
convolutional kernels of size 3. It should also be mentioned that none of the recurrent 
models had recurrent dropout (setting some of the "remembered" context to zero, instead 
of the input) , as that massively slowed down their t ra in ing when I experimented w i th i t , 
so I decided to only use standard dropouts w i th very high rates, that could have possibly 
negatively impacted the performance of both models. 

Compar ing the two recurrent models, there was really no criteria by which the stacked 
Sequential_RNNx would beat the "s impler " model, so I assume that unless the problem is 
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quite complex, adding addi t ional layers may have a negative impact, while s imply adding 
more recurrent cells usual ly shouldn't cause much harm and should be preferred. 

Wha t attracts the most attention is the performance of Sequential_MLP. It demon
strated that using less information might be even beneficial i n cases where the ocurrence 
of certain tokens (words) strongly characterizes the classes. Word embedding could have 
been used for tra in ing this model as well, i n which case each word-vector would be simply 
interpreted as 32 ind iv idua l features, but the input layer would be massively wide and I 
also wanted to t ry something different, which, I suppose, actual ly paid off. 

7.4 Summary 

It is crucia l to realize that comparing the models based solely on performance shouldn't 
be the only focus, as there are just too many factors that can influence the results. The 
models were regularized heavily to generalize well, but for example, once model A shows 
better t ra in ing performance, but worse validation/test performance than model B, it can 
imply that model B was just regularized a bit more. One should also focus on the visible 
characteristics of the models shown throughout the experiments. 

Wha t the experiments demonstrated very well is that when presented w i th a problem, 
one should not s imply choose the "canonica l " N N type suited for the problem, but also 
consider the alternatives based on analyzing the problem first. The best examples seem to 
be Tabular_RNN from the first experiment and Sequential_CNN from the th i rd experiment. 
The th i rd experiment also demonstrated (through Sequential_MLP's performance), that 
sometimes, it might be worth to consider a simpli f ication of the data's interpretation, as it 
might be even beneficial for dealing w i th some shortcomings (the class bias i n this case). 

In summary, usual ly a l l models performed fairly well regardless of the type of the prob
lem (I would consider Tabular_CNN i n the first problem as the worst exception), but keep 
in m ind that the problems were rather simple, so this trend is not guaranteed to transfer to 
marginal ly larger scales of most modern pract ical problems, that are often solved by models 
w i th complex architectures and bil l ions of trainable parameters. 
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Chapter 8 

Conclusion 

The first goal of the thesis was to introduce classification and art i f ic ial neural networks, 
preferably to a reader w i th no prior knowledge of the problematics. The important classi
fication terminology and metrics, understanding of which is crucia l for understanding the 
rest of the work, were explained clearly, and also some other common classification algo
r ithms were briefly introduced. Ar t i f i c ia l neural networks were explained very gradually, 
start ing from a single neuron, a l l the way to the three main A N N types. Modern architec
tura l advancements (e.g. transformers) were either left out completely or just very briefly 
mentioned, to really focus on the understanding of the fundamentals. 

The second goal was to introduce Keras in the context of classification w i th A N N s . 
The given section was very pract ical ly focused, and ordered in the same way a user would 
approach when bui ld ing a classification model. The code snippets often purposely demon
strated different ways of performing a certain action, and while some parts of the text 
might seem overfilled w i th Keras ' diverse options (loss, metrics, etc.), those options were 
introduced practically, to guide the reader's choices when bui ld ing his own models. 

The th i rd and last goal was to perform experiments showing the differences between the 
three main A N N types. Since the orig inal ideas for the experiments were lacking in many 
aspects, there was a need for a way to compare a l l three A N N types on a problem, that 
unbiasedly favors none of them. Th is was solved by performing an ind iv idua l experiment 
for each of the corresponding data types, and the requirement for comparing different 
A N N topologies was met by always introducing an addit ional A N N of the given type. The 
preparation of the experiments was crucial i n this case, and a l l choices, inc luding selecting 
the number of trainable parameters as the performance-similarity benchmark, were backed 
up by an explanation. The experimental appl icat ion is rather simple and focused mainly 
on its ma in purpose, but also provides many uti l it ies for a smooth pract ical usage. 

Even though a straight performance comparison of different A N N types is almost im
possible, since there are s imply too many factors having possibly detr imental effects on the 
results to consider, the experiments demonstrated the usefulness of the ind iv idua l A N N 
types on problems where they may have not been considered normally. Some interesting, 
unexpected findings emerged throughout the course of the experiments too. 

A very appropriate way of extending this work might be a continuation focusing on 
modern A N N architectures and even on specific models, possibly w i th an emphasis on 
generative models, which have been rapidly gaining popular i ty by the t ime of finishing 
this thesis. Th is could also incorporate inventing some creative ways of comparing such 
models. Some other possibilities include comparing different classification algorithms (not 
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only A N N s ) or extending the work to a different problem domain (e.g. regression), but 
today's circumstances create many great opportunities favoring the first approach. 
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Append i x A 

Contents of the included storage 
media 

• /app/ - The experimental appl icat ion (source code, datasets, working directories, 
instructions). 

• /experiments_results/ - Results of the experiments generated by the experimental 
application. 

• /model_plots/ - Mode l plots of the neural network architectures used in the exper
iments. 

• /text/ - DTEXsource codes of this thesis. 

• xpysikOO-thesis.pdf - Th is thesis i n PDF format. 

59 



Append i x B 

M o d e l plots of the used neural 
network architectures 

B . l Tabular data - M i n i B o o N E part ic le identi f icat ion 

flatten input input: [{None, 50)] 
Input Layer output: [{None, 50)] 

flatten inpu t: {None, 50) 
Flatten outpi t: {None, 50) 

dense inj >ut: {None, 50) 
Dense | relu oul put: (None, 150) 

dropout inpu : {None, 150) 
Dropout outpr t: {None, 150) 

dense 1 in put: {None, 150) 
Dense | linear ou tput: {None, 1) 

activation input: (None, 1) 
Activation | sigmoid output: (None, 1) 

Figure B . l : T a b u l a r _ M L P 

flatten input input: [(None, 50)] 
Input Layer output: [{None, 50)] 

flatten input: (None, 50) 
Flatten output: (None, 50) 

dense input: (None, 50) 
Dense relu output: (None, 50) 

dropout input: (None, 50) 
Dropout output: {None, 50) 

dense 1 input: (None, 50) 
Dense relu output: (None, 50) 

\ 
dropout 1 input: (None, 50) 
Dropout output: (None, 50) 

dense 2 input: (None, 50) 
Dense relu output: (None, 50) 

dropout 2 input: (None, 50) 
Dropout output: (None, 50) 

dense_3 i lput: (None, 50) 
Dense | linear 01 itput: (None, 1) 

activation input: (None, 1) 
Activation | sigmoid output: (None, 1) 

Figure B.2 : T a b u l a r _ M L P x 
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reshape input input: [(None, 50)] 

Input Layer output: [{None, 50)] 

reshape input: (None, 50) 

Reshape output: {None, 50, 1) 

c o n v l d input: (None, 50, 1) 

C o n v l D l inear output: (None, 48, 32) 

r 
max_pool ingl d input: (None, 48, 32) 

MaxPoo l ing lD output: {None, 24, 32) 

reshape input input: [(None, 50)] 

Input Layer output: [(None, 50)] 

1 r 
reshape input: (None, 50) 

Reshape output: {None, 50, 1) 

dropout input: {None, 24, 32) 

Dropout output: (None, 24, 32) 

flatten input: (None, 24, 32) 

F lat ten output: (None, 768) 

i 
dense input: (None, 768) 

Dense re lu output: (None, 10) 

l s t m input: {None, 50, 1) 

L S T M tanh output: {None, 42) 

dropout input: {None, 42) 

Dropout output: {None, 42) 

dense input: (None, 42) 

Dense l inear output: (None, 1) 

d r o p o u t l input: (None, 10) 

Dropout output: (None, 10) 
act ivat ion input: (None, 1) 

Act ivat ion s igmoid output: {None, 1) 

d e n s e l input: (None, 10) 

Dense l inear output: (None, 1) 

Figure B.4: T a b u l a r _ R N N 

t 
activation input: (None, 1) 

Act ivat ion sigmoid output: (None, 1) 

Figure B .3 : T a b u l a r _ C N N 
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2 Image data - F a s h i o n - M N I S T 

flatteninput input: [{None, 28, 28)] 

InputLayer output: [{None, 28, 28)] 

< 

f latten input: {None, 28, 28) 

F la t t en output: {None, 784) 

dense input: {None, 784) 

Dense r e lu output: {None, 224) 

dropout input: {None, 224) 

Dropout output: {None, 224) 

< 

dense 1 input: {None, 224) 

Dense re lu output: {None, 224) 

d r o p o u t l input : {None, 224) 

Dropout output: {None, 224) 

dense 2 input: {None, 224) 

Dense re lu output: {None, 112) 

dropout 2 input: {None, 112) 

Dropout output: {None, 112) 

dense_3 input: {None, 112) 

Dense l inear output: {None, 10) 

act ivat ion input: {None, 10) 

Ac t i va t i on softmax output: {None, 10) 

Figure B.5: I m a g e _ M L P 

reshape input input: [(None, 28, 28)] 
InputLayer output: [(None, 28, 28)] 

reshape input: (None, 28, 28) 
Reshape output: (None, 28, 28, 1) 

conv2d input: {None, 28, 28, 1) 
Conv2D relu output: (None, 26, 26, 32) 

maxj)ooling2d input: (None, 26, 26, 32) 
MaxPooling2D output: (None, 13, 13, 32) 

1 
dropout input: (None, 13, 13, 32) 
Dropout output: (None, 13, 13, 32) 

conv2d_l input: {None, 13, 13, 32) 
Conv2D J relu output: {None, 11, 11, 64) 

maxj)ooling2d 1 input: {None, 11, 11, 64) 
MaxPooling2D output: {None, 5, 5, 64) 

dropout 1 input: {None, 5, 5, 64) 
Dropout output: {None, 5, 5, 64) 

conv2d_2 input: {None, 5, 5, 64) 
Conv2D J relu output: {None, 3, 3, 128) 

dropout 2 input: {None, 3, 3, 128) 
Dropout output: {None, 3, 3, 128) 

flatten input: {None, 3, 3, 128) 
Flatten output: {None, 1152) 

dense input: {None, 1152) 
Dense relu output: {None, 128) 

dropout_3 input: {None, 128) 
Dropout output: {None, 128) 

d e n s e l input: {None, 128) 
Dense linear output: {None, 10) 

1 

activation input: {None, 10) 
Activation | softmax output: {None, 10) 

Figure B.6: I m a g e _ M L P x 
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reshape input input: [(None, 28, 28)] 
InputLayer output: [(None, 28, 28)] 

1 

reshape input: (None, 28, 28) 
Reshape output: (None, 28, 28, 1) 

1 

conv2 d input: (None, 28, 28, 1) 
Conv2D relu output: (None, 26, 26, 32) 

1 
max_pooling2 cl input: (None, 26, 26, 32) 
MaxPooling2D output: (None, 13, 13, 32) 

conv2d_l input: (None, 13, 13, 32) 
Conv2D relu output: (None, 11, 11, 64) 

max_pooling2d 1 input: (None, 11, 11, 64) 
MaxPooling2D output: (None, 5, 5, 64) 

conv2d 2 input: (None, 5, 5, 64) 
Conv2D relu output: (None, 3, 3, 128) 

1 
flatten input: (None, 3, 3, 128) 
Flatten output: (None, 1152) 

dense input: (None, 1152) 
Dense relu output: (None, 128) 

dense 1 input: (None, 128) 
Dense linear output: (None, 10) 

activation input: {None, 10) 
Activation soft max output: {None, 10) 

l s t m i n p u t input: [(None, 28, 28)] 

InputLayer output: [{None, 28, 28)] 

l s tm input: {None, 28, 28) 

L S T M tanh output: (None, 28, 180) 

1 
l s t m l input: (None, 28, 180) 

L S T M tanh output: (None, 90) 

dropout input: (None, 90) 

Dropout output: (None, 90) 

dense input: (None, 90) 

Dense relu output: (None, 90) 

d r o p o u t l input: (None, 90) 
Dropout output: (None, 90) 

d e n s e l input: (None, 90) 

Dense l inear output: (None, 10) 

1 r 

activation input: (None, 10) 

Activation soft max output: (None, 10) 

Figure B.8: I m a g e _ R N N 

Figure B.7: I m a g e _ C N N 
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B.3 Sequential data - I M D B movie review sentiment classi
fication 

flatten input input: [(None, 10000)] 

Input Layer output: [(None, 10000)] 

1 r 
flatten input: (None, 10000) 

F la t t en output: (None, 10000) 

1 f 
dropout input: {None, 10000) 

Dropout output: {None, 10000) 

dense input: {None, 10000) 

Dense re lu output: {None, 36) 

I 
d r o p o u t l input: {None, 36) 

Dropout output: {None, 36) 

e mbe ddinginput input: [(None, 500)] 
InputLayer output: [(None, 500)] 

embedding input: (None, 500) 
Embedding output: (None, 500, 32) 

dropout input: (None, 500, 32) 
Dropout output: (None, 500, 32) 

convld input: (None, 500, 32) 
ConvlD relu output: (None, 500, 64) 

global maxjpoolingl d input: (None, 500, 64) 
GlobalMaxPoolingl D output: {None, 64) 

d e n s e l input: (None, 36) 

Dense re lu output: (None, 36) 

1 f 
dropout 2 input: (None, 36) 

Dropout output: (None, 36) 

dense_2 input: (None, 36) 

Dense l inear output: (None, 1) 

1 f 
activat ion input: {None, 1) 

Act ivat ion s igmoid output: {None, 1) 

dense input: {None, 64) 
Dense relu output: (None, 256) 

dropoutl input: (None, 256) 
Dropout output: (None, 256) 

dense 1 input: (None, 256) 
Dense Linear output: (None, 1) 

activation input: (None, 1) 
Activation sigmoid output: (None, 1) 

Figure B.10: S e q u e n t i a l _ C N N 

Figure B.9 : Sequent ia lJV ILP 
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e mb e d d i n g i n p u t input: [(None, 500)] 

Input Layer output: [(None, 500)] 

e mb e d d i n g i n p u t input: [(None, 500)] 

InputLayer output: [(None, 500)] 

1 r 
embedding input: (None, 500) 

Embedding output: (None, 500, 32) 

1 r 
l s tm input: (None, 500, 32) 

L S T M tanh output: (None, 100) 

dropout input: (None, 100) 

Dropout output: (None, 100) 

1 r 
dense input: (None, 100) 

Dense l inear output: (None, 1) 

1 r 
activation input: {None, 1) 

Act ivat ion sigmoid output: {None, 1) 

embedding input: (None, 500) 

Embedd ing output: (None, 500, 32) 

1 f 
l s tm input: (None, 500, 32) 

L S T M tanh output: (None, 500, 80) 

1 
l s tm 1 input: (None, 500, SO) 

L S T M tanh output: (None, 40) 

dropout input: {None, 40) 

Dropout output: {None, 40) 

1 
dense input: (None, 40) 

Dense relu output: (None, 40) 

1 r 
d r o p o u t l input: (None, 40) 

Dropout output: (None, 40) 

Figure B . l l : S e q u e n t i a l _ R N N 

d e n s e l input: {None, 40) 

Dense l inear output: (None, 1) 

activation input: {None, 1) 

Act ivat ion s igmoid output: {None, 1) 

Figure B.12: S e q u e n t i a l _ R N N x 
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