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ABSTRACT
The goal of this thesis is the development of a dual-channel stepper motor controller.
Both the development of electronics and software is described. The electronics of the
controller is based on the STM32F405 microcontroller, and Trinamic manufactured step-
per motor controller ICs. For communication with higher-level systems, the controller
utilizes the CANOpen protocol, I2C, and USB buses. The whole electronics was designed
in the KiCAD EDA and utilizes a 4-layer PCB and contemporary manufacturing tech-
nologies. As for the software, both firmware and control software were developed. Both
of these pieces of software utilize the Rust programming language, which focuses on
memory safety, performance and provides useful zero-cost abstraction. The Secondary
goal of this thesis is to show how the language can be utilized for low-level embedded
software development. The firmware of the controller implements independent motion
control for each of the axes with both velocity and position control and provides failsafe
mechanisms for cases of communication failures. The controller is meant to be used by
the Robotics and AI research group and by students of the DCI, FEEC BUT.

KEYWORDS
stepper motor, electronics design, KiCAD, PCB, MCU, embedded software, Rust, mem-
ory safety, zero-cost abstractions, motion control, failsafe mechanism, CANOpen, I2C,
USB, robotics,

ABSTRAKT
Cílem této práce je vývoj dvoukanálového kontroléru krokových motorů. V rámci práce
je popsán jak vývoj elektroniky, tak vývoj příslušného software. Elektronika kontrolŕu
je založena na mikrokontroléru STM32F405 a driverů krokových motorů vyráběných
firmou Trinamic. Pro komunikaci s nadřazenými systémy je implementován protokol
CANOpen a sběrnice I2C a USB. Elektronika byla navržena v software KiCAD and využívá
čtyřvrstvého plošného spoje a moderních výrobních technologií. Co se týká software, byl
vyvinut jak firmware pro mikrokontrolér, tak software pro ovládání kontroléru. Obě části
software využívají programovacího jazyka Rust, který se zaměřuje na bezpečnost práce s
pamětí, rychlost a zero-cost abstrakce. Sekundárním cílem této práce je ukázat, jak lze
tento programovací jazyk s výhodou použít pro programování nízkoúrovňového embedded
software. Firmware kontroléru implementuje nezávislé řízení pohybu obou os kontroléru a
to jak v rychlostním, tak v pozičním režimu a zároveň implementuje bezpečnostní funkce
pro případy selhání komunikace. Výsledný kontrolér by měl být použit v rámcí výzkumné
skupiny Robotiky a Umělé Inteligence a studenty na Ústavu Automatizace FEKT VUT.
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EXTENDED ABSTRACT

Úvod
Tato práce pojednává o vývoji dvoukanálového kontroléru krokových motorů. V
rámci práce je popsán jak vývoj elektroniky, tak vývoj software. Uvědomujeme
si, že kontroléry krokových motorů jsou již mnohokráte vyřešený problém, který má
mnoho komerčně dostupných řešení. Navzdory tomuto faktu jsme se rozhodli takový
kontrolér vyvinout, a to ze dvou důvodů - výsledný kontrolér bude používán v rámcí
předmětu BPC-PRP, což má jisté nároky na jeho hardware i software, a proto, že
jsme se rozhodli naprogramovat firmware a řídicí software v programovacím jazyce
Rust. V současnosti, je většina embedded projektů programována v klasických jazy-
cích - C a C++, s jistými výjimkami v podobě jazyků Python a Ada. I když jazyky
C a C++ jsou vhodné pro embedded vývoj z důvodu snadného přístupu k periferiím,
tyto jazyky si s sebou nesou problémy v podobě nedostatečné ochrany před nevalid-
ním přístupem do paměti a velkým množstvím nedefinovaných chování, které jsou
mnohdy často závislé na implementaci kompilátoru. Podle studijí, které uvádíme v
originálním úvodu je špatný přístup do paměti zodpovědný až za 70 % vysoce zá-
važných problémů v prohlížeči Chrome. Problém s nedefinovaným chováním je sice
méně důležitý než špatná práce s pamětí, ale přesto způsobuje problémy zejména v
rámci vývoje, kdy prodlužuje jeho čas a tedy i finanční náročnost.

Tyto problémy nejsou ale jen doménou vysokoúrovňových systémů, ale ve velké
míře jsou doménou i samotných embedded systémů, kde mohou mít mnohem katas-
trofálnější následky než v případě oněch vysokoúrovňových systémů. Věříme, že tyto
problémy lze odstranit, nebo alespoň minimalizovat jejich dopady, právě použitím
programovacího jazyka Rust, který byl navržen tak, aby předcházel právě chybám při
práci pamětí a to i v případě vícevláknových systémů, minimalizoval nedefinovaná
chování a to vše aniž by to nějak ovlivnilo výkon programu nebo jeho paměťovou
náročnost.

Myslíme si, že pokrokové myšlenky a nástroje, které jazyk nabízí mohou do em-
bedded systémů přinést mnohem více bezpečnosti a spolehlivosti než je nyní možné
dosáhnout s konvenčními nástroji. To platí zejména v současnosti, kdy složitost
embedded systémů neustále roste a zvyšují se požadavky na rychlost vývoje.

Příbuzné projekty
V rámci příbuzných projektů popisujeme projekty, které souvisí ať už s vývojem
embedded systémů v jazyce Rust, tak se zabývají vývojem kontrolérů pr krokové



motory, nebo nám byly přímou inspirací.
Vzhledem k tomu, že výsledný kontrolér má být použit v předmětu BPC-PRP,

popisujeme kontrolér, který je v rámci tohoto kurzu již používán - tedy kontrolér
KM2, který je založený na mikrokontroléru ATMega8 a s nadřazeným systémem ko-
munikuje pomocí sběrnice I2C. Vzhledem k použití tohoto mikrokontroléru nelze ale
použít vyšší frekvenci I2C než 30 kHz, kvůli chybě ve funkcionalitě clock-stretching.

Dále popisujeme kontrolér KM3, který využívá modernější mikrokontrolér STM32F0,
ale zatím nebyl do výuky nasazen. Pro tento kontrolér jsme již dříve vyvinuly
firmware v programovacím jazyce Rust, čímž jsme otestovali schopnost jazyka a
jeho nástrojů fungovat na low-endovém procesoru s nedostatkem paměti FLASH.
Použitý procesor byl ale největší slabinou kontroléru, protože neumožňoval imple-
mentaci pokročilých funkcí.

Jako další projekt, ve kterém jsme vyvinuli firmware v jazyce Rust popisujeme
projekt DCMotor - měnič pro DC motory. V rámci vývoje jsme nahradili původní
firmware naprogramovaný v C++, čímž jsme dosáhli lepších vlastností a odstranění
zásadních problémů, jako je třeba extrémní hlučnost motoru. Měniče s firmware
naprogramovaným v programovacím jazyce Rust byly v sedmi kusech nasazeny na
roboty pro výstavu Robot 2020, kde zdárně plní svou funkcí.

V rámci projektů, které nám byly inspirací zmiňujeme projekt Mechaduino, který
integruje kontrolér pro krokový motor přímo na motor, přičemž je schopen zpětno-
vazebního řízení pomocí integrovaného enkodéru.

Dále zmiňujeme projekt Flott, který implementuje řízení pohybu krokových mo-
torů v programovacím jazyce Rust.

Metody
V rámci použitých metod popisujeme krokové motory a jejich řízení. Vzhledem k
tomu, že jsme se rozhodli použít integrované obvody pro řízení krokových motorů od
firmy Trinamic, popisujeme rovněž jejich proprietální technologie, které jsou důležité
pro správné nastavení integrovaných obvodů i jejich výběr. Kromě popisu krokových
motorů popisujeme také použité sběrnice, a to CAN bus s protokolem CANOpen,
I2C a USB. Následně popisujeme programovací jazyk Rust a jeho důležité koncepty
- proměnné a konstanty, princip vlastnictví a tzv. borrow checker, výčtové typy a
pattern matching, datové struktury, traits a generika, makra, standarní knihovnu,
testování a build systém Cargo. Na základě informací o programovacím jazyce se
přesouváme k popisu toho, jak lze v tomto jazyce vyvíjet pro embedded systémy.
Diskutujeme podporu pro různé rodiny a jádra mikrokontrolérů, organizace vyvíje-
jící nástroje a knihovny pro embedded Rust, přístup k periferiím, abstrakce pomocí
HAL, přístup ke globálnímu stavu (který v rámci bezpečnosti považuje Rust za



nebezpečný). Dále popisujeme asynchronní programování v Rustu, které by mohlo
zcela změnit způsob jakým je k embedded software přistupováno. Důležitou součástí
embedded Rustu jsou nástroje, které byli vyvinuty pro snazší práci s mikrokontroléry
- jsou jimi například generátor kódu pro přístup k periferiím, extrémně rychlé lo-
gování, nebo ochrana paměti před přetečením zásobníku. Jako nedílnou součást
moderního vývoje software popisujeme i automatizované testy a Continuous Inte-
gration pro embedded systémy.

Po nezbytném teoretickém úvodu se dostáváme k samotnému vývoji kontroléru.
Nejprve zadefinujeme požadavky na zařízení, které plynou se zadání, ale i z před-
chozích zkušeností a příbuzných projektů. Tyto požadavky jsou naprosto nezbytné
pro kontrolu plnění cílů projektu.

Poté se dostáváme k vývoji hardware kontroléru, kdy nejprve provedeme rozhod-
nutí týkající se výběru mikrokontroléru a dalších obvodů a následně vyvineme schéma
kontroléru, společně s deskou plošných spojů. Vývoj elektroniky byl proveden v
nástroji KiCAD.

Dále následuje popis vývoje firmware kontroléru, nejprve se věnujeme architek-
tuře firmware, na kterou navazujeme popisem kritických komponent kontroléru.
Velkou pozornost věnujeme popisu vytvořených abstrakcí, díky kterým je firmware
kontroléru do značné míry univerzální. Za zmínku jistě stojí abstrakce pro řízení
samotných motorů nebo pro enkodéry.

Na závěr je popsán vývoj řídicí aplikace pro náš kontrolér. Původní cíl byl
vytvořit řídící aplikaci s grafickým uživatelským rozhraním a možností konfigurace,
ale vzhledem k nedostatku času byla vytvořena pouze jednoduchá aplikace schopná
řídit obě osy kontroléru a to jak v rychlostním, tak v polohovém režimu.

Výsledky
Výsledkem práce je funkční kontrolér pro krokové motory, který je schopen tyto
motory řídit jak v rychlostním, tak v pozičním módu. Pro řízení je možné použít buď
sběrnici CAN, s protokolem CANOpen, nebo sběrnici I2C. Konfigurace kontroléru
je možná přes integrované USB rozhraní.

V rámci výsledků rovněž popisujeme finální stav projetku společně s přehledem
plnění požadavků na kontrolér. Nedílnou součástí výsledků je i popis programá-
torského rozhraní a datových modelů, pomocí kterých lze kontrolér řídit.

Jako další součást výsledků popisujeme dvě demonstace funkčnosti kontroléru -
jednoduchý lineární posuv řízený přes I2C a malého robota s diferenciálním pod-
vozkem řízeného po sběrnici CAN.



Závěr
V rámci této práce jsme navrhli, vyrobili a naprogramovali dvoukanálový kontrolér
krokových motorů. Byly vytvořeny dvě verze hardware, lišící se jak zapojením, tak
použitými integrovanými obvody pro řízení krokových motorů, tak designem desky
plošných spojů. Druhá verze hardware je sice mnohem pokročilejší než ta první,
i přesto jsme v rámci práce vymysleli další způsoby jak tuto verzi hardware dále
vylepšit.

Pro kontrolér jsme vyvinuli firmware v programovacím jazyce Rust. Momen-
tální verze firmware bohužel momentálně podporuje pouze první verzi hardware, ale
doprogramování podpory pro druhou verzi by nemělo být příliš náročné. V rámci
programování jsme využili všech možných nástrojů, které nám jazyk poskytuje - ze-
jména v rámci vývoje abstrakcí, kde jsme hojně využívali traits a generiku. Věříme,
že firmware byl naprogramován dostatečně abstraktně na to, aby jej bylo možné
jednoduše rozšiřovat a vylepšovat. Musíme podotknout, že embedded Rust je již
dostatečně vyspělý na to, aby v něm šly bezproblémově a efektivně programovat
větší či menší embedded projekty.

Pro jednoduchost testování jsme rovněž vytvořili jednoduchý řídicí software
schopný řídit kontrolér jak v rychlostním, tak v pozičním režimu.

Projekt kontroléru plánujeme dále vyvíjet a rozšiřovat, přičemž si uvědomujeme,
že i když je momentální výsledek použitelný, tak má k dokonalosti daleko. Plánu-
jeme napřiklad celý firmware kontrolér automatizovaně testovat, vyrobit třetí a snad
poslední verzi hardware, a mnohem více. Přes toto všechno si myslíme, že by kon-
trolér šel i v tomto stavu nasadit do výuky jako součást předmětu BPC-PRP.
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Introduction & Motivation
This thesis describes the design and development of a simple dual-channel stepper-
motor controller. We acknowledge that driving of stepper motors is nowadays a
solved problem with many solutions that are commercially available. Given this
fact, we needed to differentiate the project from others. The first difference is that
the target of this project is driving stepper motors in the DCI FEEC BUT’s (De-
partment of Control and Instrumentation, Faculty of Electrical Engineering and
Communications, Brno University of Technology) Robotics and AI group. The con-
trollers will be used for students’ projects and development of our robots, which
imposes some requirements on the PCB (Printed Circuit Board) size and used tech-
nologies. The second, albeit more important difference, is that in contrast with
classical embedded systems, this stepper motor controller’s firmware and service
software will be developed in the Rust programming language. We believe that this
difference is the core of the thesis and further distinguishes itself from other theses
and projects on embedded development.

In general, the majority of embedded systems nowadays are developed in the
C/C++ programming languages [3, 4, 5]. There are some exceptions - there are
systems developed in Ada, and currently, the embedded development in Python is
starting to take off in hobby projects [6]. While C and C++ are suitable for the
development of embedded systems because they allow for direct hardware access,
and the programs written in them can be extremely performant, they carry the
problem of memory unsafety and undefined behavior.

Memory unsafe code is the leading cause of many critical software problems,
be it security vulnerabilities or safety hazards. Recent Chrome browser analysis
and report show that around 70 % of high severity problems are memory safety
problems - meaning problems with pointers. A staggering half of these are use-
after-free problems [7]. Similar results show other statistics, namely from the cURL
project[8]. The notorious Heartbleed bug in the OpenSSL was also a problem of
the ability of the program to access memory used by other parts of the program,
allowing the attacker to steal confidential data from the memory [9].

The problem of undefined behaviors and the inability of the commonly used
tools to spot them can be as harmful as memory safety problems, but in general
causes problems mostly during development, making the development take longer
and therefore become more expensive. The symptom of undefined behaviors is when
the program behaves as was not intended, but with seemingly error-less code.

While the problem of memory safety and UBs (Undefined Behavior) seem to
generally be problems of higher-level systems and not embedded systems, we be-
lieve that these problems apply to embedded systems as well, as these problems
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can have as devastating (or even more devastating) effects as the above mentioned
security vulnerabilities. Imagine a robot uncontrollably spinning and destroying
its surroundings because some part of a program has overwritten its controls by
mistake.

We believe that the Rust programming language can solve both of these prob-
lems. While being a relatively novel language for systems development (development
started in 2006), the language is designed to be memory-safe, even delivering mem-
ory safety for state shared between threads. Its focus on type safety and strong
guarantees about the performance of systems programming allows the developers to
create powerful, yet in many cases zero-cost (memory or performance) abstractions.
These features is especially useful as the complexity of all systems is rising. We
believe that to deliver great systems, human programmers need to be aided by all
available tools. Even though the language primarily targets higher-level systems,
its design allows for it to be used with bare-metal embedded systems, bringing its
advantages to these low-level systems.

We also believe that the novel approaches brought by the language and its ecosys-
tem could bring improvements to the existing embedded development approaches,
and also, the strictness of the language could bring more safety and reliability to em-
bedded systems. Some of these approaches can be unit-testing and integration test-
ing, dependency management, and embedded-systems-dedicated open-source tool-
ing.

With this information in mind, we decided to develop the controller’s firmware
and control application in Rust, showcasing the language’s advantages and disadvan-
tages. This project follows the development of firmware for other motor controllers,
described in the Chapter 1, which were presented at the PAIR conference [10]. An-
other aim of this project was to push forward the development of electronic devices
at the Robotics and AI research group - using high-performance MCUs (Micro-
controller Unit), state-of-the-art stepper drivers, effective 4-layer PCB design, and
contemporary manufacturing capabilities.
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1 Related Work
This chapter describes the current state of the stepper motor controllers in the
Robotics & AI group and the efforts to improve it. Ongoing efforts to develop
embedded systems in the Rust programming language are also described, both in
the context of our research group and also in general. Finally, similar projects -
either software or hardware-wise are reported.

1.1 KM2
Nowadays, a second generation of the KM2 stepper motor controller is widely in use
in the Robotics and AI research group. It is used primarily by the students of the
BPC-PRP course for driving a simple differentially driven robot. A render of the
KM2 controller can be seen in the Figure 1.1. The controller utilizes an ATMega8
paired with two stepper motor controllers DRV8825, that are utilized in the form of
breakout boards generally used in the now obsolete 3D printer controlling RAMPS
boards. The motor controller is controlled using the I2C bus. There are two major
shortcomings of the driver - the used MCU’s I2C peripheral’s clock-stretching is not
compatible with Raspberry Pi’s, causing problems on clock speeds higher than 30
kHz. The second shortcoming are the used driver chips which are quite loud and
do not support contemporary advanced features. Overheating is also common with
them.

Fig. 1.1: KM2 motor controller render [11].
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1.2 KM3
The KM3 (or KM2-C) was supposed to be a successor to the previously described
KM2 controller, and its main goal was to solve the clock stretching problem by
utilizing an STM32F031 MCU. Another advantage of this revision was that the
breakout boards for motor driver chips were replaced with driver chips soldered
directly on the driver PCB. The controller can be seen in the Figure 1.2. Even
though the new STM32F031 MCU was an improvement over the ATMega8, it proved
to be the bottleneck for implementing new functionality for the motor controller
as the MCU has very limited memory, both FLASH and RAM and also limited
peripherals. An example of these limitations being that the lack of pins made it
impossible to directly generate pulses to control the STEP/DIR interface of the
motor driver IC; therefore the control had to be done manually in the software.
Another problem with this design is that the MCU utilizes a Cortex-M0 core, which
means that the support for atomic instructions is missing, making it hard to work
with guarantees about memory safety in cases of interrupt routine being called
during memory manipulation.

We developed the Rust firmware [12] for this board and concluded that the board
and its design might be suitable for the students’ robot projects, but it is way too
limited to be used in more serious and complex projects. We also concluded that
the hardware and the technology it has been designed upon, as well as its goals, are
obsolete, and that we should not pursue the development of this board further.

Fig. 1.2: The KM3 motor controller connected to a Raspberry Pi.
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1.3 DCMotor
The DCMotor is a DC (Direct Current) motor controller, developed in the Robotics
& AI research group. It was designed for feedback control of DC motors, primarily
DC motors manufactured by Maxon. The main design goal was to provide a cheaper
alternative to the Maxon EPOS motor controllers. The driver alongside a connected
Maxon DC motor can be seen in the Figure 1.3. Originally, the firmware for the
motors, developed by Ing. František Burian, Ph.D., implemented current control
and velocity control. However, the firmware exhibited unwanted behavior, such as
high motor temperature rises and unwanted high-pitch noise. After consulting the
problem with Ing. Lukáš Kopečný Ph.D., we decided to rewrite the firmware in
Rust and remove the current controller, with the reasoning that current control of
such low inductance motor makes not much sense, and instead, we replaced it with
current limiting and failsafe overcurrent motor disabling. The new firmware, and
some hardware modifications were successfully deployed to seven DCMotor drivers
as part of the exhibition robots for the Technical Museum in Brno, where they
worked better than with the original firmware.

This driver was the first embedded project that used the Rust programming
language to develop the firmware. We believe that using the language was the right
choice and made the firmware simpler to use and made it possible to develop it in
such short time. It can be said, that the work on the firmware for this board laid
the foundation for the work on this thesis.

Fig. 1.3: The DC Motor driver with a connected Maxon DC motor.
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1.4 Mechaduino
Mechaduino is a project that aims to create a feedback-controlled servo motor out of
a stepper motor. The creators achieve that by mounting a PCB on the back of the
motor that contains the power stage, a MCU, and a 14-bit magnetic encoder [13].
The mounting on the back of the stepper motor can be seen in the figure 1.4. The
big advantage that this project brings is the integration of the whole system de-
facto into the motor, removing any need for a separate controller board. On the
other hand, the controller doesn’t leverage any existing stepper motor controller
solution and instead implements the winding control manually. When compared to
our proposed solution, the Mechaduino has many advantages even though it is only
capable of controlling only one motor, it contains an encoder for feedback control
and implements servo control algorithms out of the box. On the other hand, our
proposed solution leverages a state-of-the-art stepper motor controller ICs (Inte-
grated Circuit), making it potentially less error-prone and better for future use and
development. If a semestral thesis and preliminary market research was preceding
this project, the Mechaduino would provide valuable information to improve the
design of our project.

Fig. 1.4: The Mechaduino controller boards mounted on the back of a stepper mo-
tors [13].
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1.5 Flott
Flott is a set of libraries suitable for developing motion controllers programmed in
the Rust programming language[14]. It is a relatively new project, and as of now,
it contains an abstraction layer for stepper motors and acceleration ramp genera-
tors. The project is taking a different approach to controlling the stepper motors
we are. It aims to utilize software pulse generation instead of timers and uses a
variable step period in ramp generation. Even though this is a good approach, we
chose not to follow this model and instead implement this asynchronously using the
MCU peripherals. On the other hand, the Flott project might be a great source of
inspiration for future development, and maybe sometimes the SM4 motor controller
might utilize it.

1.6 Takeaways from Related Work
The past stepper motor development efforts in the Robotics & AI research group
showed the current solutions weak spots and advantages, which resulted in the
following directions of the development of this project:

• The project shall use a powerful, modern, and capable MCU to fully support
various features of the controller even in the future.

• The project shall use the state-of-art motor controller ICs.
• The project shall use the Rust programming language for firmware and control

software development.
The DC Motor project showed us that writing a fully functional embedded

firmware is possible and viable option.
The Mechaduino project serves as a great inspiration for what can be achieved

in a servo motor based on a stepper motor.
Flott shows us that more people are trying to achieve building motion controllers

in Rust and that we can get inspired from them and share knowledge with them.
We’ve been in contact with the Flott creator and consulted some ideas with them.
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2 Methods
This chapter outlines the methods used while developing the SM4 stepper motor
controller.

First, an introduction is given about the problematics of stepper motors and
their control and about communication buses utilized by the project. Second, a
brief introduction to the Rust programming language is given, alongside a more
in-depth introduction to the current state of using Rust programming language for
embedded systems.

Furthermore, we declare the requirements for the resulting hardware and soft-
ware. These requirements consist of functional requirements, non-functional require-
ments, and constraints.

The development of two hardware revisions is described in the further sections.
The hardware design choices are described. These choices are based on the require-
ments and the Chapter 1 on related work. Electrical schematics of the vital parts
of the electronics are described.

Further, the development of the firmware itself is outlined, with some interesting
parts being described in detail. Finally, the development of a control software used
for controlling the stepper motor controller is gone over.
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2.1 Stepper motors
This section gives a brief introduction of stepper motors and their control. First,
stepper motors and their types are described. Then, a comparison of stepper driver
ICs is given, and some of the motion control technologies by Trinamic are described.

Stepper motors are a type of DC motor, which move in discrete steps[15, 16].
Such movement is achieved by their construction - they consist of a stator and a
rotor, where the stator is made of coils(two coils form a phase) wound on ridges,
whereas the rotor consists of a ferromagnetic structure - either a permanent magnet
or a variable reluctance iron core[16].

2.1.1 Working principle
The basic working principle of stepper motors can be seen in the Figure 2.1. In
the Figure, we can see a three-phase bipolar stepper motor. First, the coils of the
stator winding A are energized, which causes the ferromagnetic rotor to align with
the magnetic field induced by the phase winding. In the second step, the winding
B is energized, causing the rotor magnetic field to realign with the newly induced
magnetic field of the second winding. This causes the motor to move. In the next
step, the winding C is energized, which again causes a realignment of the rotor. In
the following steps, the coils are energized again but with different polarity making
the rotor make a full turn.

Fig. 2.1: Working principle of a stepper motor [16].

2.1.2 Rotor
Three different constructions of rotors exist [16]:

• Permanent magnet rotor - utilizes a permanent magnet in the place of
the rotor. An advantage of this type of rotor is good torque, and also detent
torque (the resistance of the motor shaft when no windings are energized) [16].

• Variable reluctance rotor - the rotor consists of a shaped iron core. The
torques are generally lower, and there is no detent torque [16].
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• Hybrid motor - is created by combining a permanent magnet rotor with a
variable reluctance rotor. There are two magnetic caps with teeth on top of
each other that have an angular shift between them. The rotor is magnetized
axially [16].

2.1.3 Stator
The construction of the stator depends on the number of phases the motor has.
Every phase consists of two windings, where the windings can be center-tapped or
not, which determines if the motor is bipolar or unipolar. With unipolar windings,
the center-tapped lead is connected to the input voltage, and the direction of the
magnetic field is controlled by connecting the ground to the other leads. Bipolar
motors do not have center tapped lead, and the coil itself is controlled using an
H-bridge.

2.1.4 Phase Winding Energizing Techniques
The way of energizing windings described in the Subsection 2.1.1 is only one of four
ways of controlling the windings. This technique, where only one of the phases is
energized at a time, is called the wave mode. This mode was described in detail
in the Subsection 2.1.1, and the sequence of energizing windings can be seen in the
Figure 2.2.

Fig. 2.2: Controlling stepper motor phase windings in wave mode [16].
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Another way of driving the motor is called the full-step mode. In this mode, two
phase windings are energized at the same time. Changing the current direction in
the winding causes the rotor to realign. The advantage of this mode is higher torque
as the magnetic field is stronger when the two of the phase windings are energized.
The working principle can be seen graphically in the Figure 2.3.

Fig. 2.3: Controlling stepper motor phase windings in full step mode [16].

Combining the wave mode, and the full step mode results in a half-step mode.
In contrast to the previous driving modes, the step size of this mode is half of the
previous mode - in the case of this virtual motor with permanent magnet motor
45°, instead of the original 90°. This mode alternates between energizing only one
phase winding and energizing both phase windings. The disadvantage of this mode
is that the output torque is not constant as the torque is different when both phase
windings are energized and when only one of them is. The working principle can be
seen in the Figure 2.4.

Fig. 2.4: Controlling stepper motor phase windings in half step mode [16].

The last technique for driving stepper motors is microstepping. The advantage
of this mode is that it reduces step size and has constant torque output [16]. The
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working principle for this mode is that the current flowing through the phase winding
is controlled in some ratio, finely positioning the rotor, as shown in the Figure 2.5.
Microstepping is nowadays the prevalent way of stepper motor control as it allows
for precision control and allows for constant torque.

Fig. 2.5: Controlling stepper motor phase windings in microstepping mode [16].

2.1.5 NEMA17 style stepper motor
In this Section, a typical NEMA17 style motor is described. NEMA17 is a standard
that describes the flange size, where the number denotes the flange size in tenths
of an inch[17], in this case, NEMA17 meaning 1.7". The NEMA17 style motors are
commonly used in 3D printers. The specific motor is a 17HS4401, it is a two-phase
bipolar stepper motor with a step angle of 1.8°. The motor’s length is 40 mm, its
rated current is 1.7 A, and it has a holding torque of 0.4 Nm[18]. An image of the
motor can be seen in the Figure 2.6.

Fig. 2.6: A typical look of a NEMA17 motor.
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2.1.6 Trinamic motion control technologies
As we described in the Section 2.7.2, we decided to utilize Trinamic made driver
ICs, and their stepper control technologies. It is vital to describe these technologies
as they have an immediate impact on the driver IC’s performance and properties.

MicroPlyer™

MicroPlyer™is a microstepping interpolator. The reason for the interpolator is
that the drivers feature 256 microsteps per step, and generating the stepping signal
would be impractical if not impossible for some systems. The driver is configured
with the number of microsteps that the driver will consider a full step, and the
MicroPlyer™interpolates the rest of the microsteps up to the 256 microsteps per
step[19].

Voltage Chopper Modes - SpreadCycle™, StealthChop™

To define chopper modes, we first need to define the current control modes for a
bipolar stepper motor. The current control modes are the ON-phase, fast decay,
and slow decay. These modes can be seen in the Figure 2.7.

Fig. 2.7: Stepper motor winding control modes [20].

The current in the winding is controlled using voltage choppers. First, a very
high voltage is applied to the winding, which causes a current rise in the winding.
When the current exceeds a specific limit, the voltage is chopped (turned off). When
the current drops below a specified limit, the very high voltage is turned back on.
Using this approach, it is possible to maintain a relatively constant current in the
winding[20].
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When using a Constant T_OFF Current Chopper, the basic chopper principle
is enhanced by first energizing the winding, then utilizing fast-decay, and then slow
decay. This is a commonly used chopper mode as it is quite simple, but it causes
motor vibration and high pitch noise. This problem is caused by the relationship
between the fast decay and slow decay phase, resulting in the average current being
lower than the desired target. This means that there are moments when the motor
has no torque, which in turn causes vibrations[20]. The graph showing the winding
current in time can be seen in the Figure 2.8.

Fig. 2.8: Constant T_OFF Chopper Mode [20].

The SpreadCycle™current chopper is an improvement over the Constant T_OFF
Current chopper. According to Trinamic, it automatically applies a proper relation
between slow decay and fast decay to create the optimal fast decay for that cycle[20].
This technique leads to the average current matching the target current, making the
current wave resembles a sine wave. This technology also remains effective at higher
RPMs, where the classic constant T_OFF Chopper shows current deformations[20].
The current in time can be seen in the Figure 2.9.
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Fig. 2.9: The SpreadCycle™Mode current graph [20].

StealthChop™is the most advanced voltage chopper technology Trinamic drivers
provide. The chopper completely silences stepper motors by eliminating the noise
caused by unsynchronized motor coil chopper operation, PWM jitter and regula-
tion noise at the sense resistors[20]. The chopper modulates the current using the
PWM duty cycle, which minimizes the current ripple[20]. Adjusting the PWM duty
cycle also results in a perfect current sine wave, and minimizing the current ripple
minimizes Eddy currents in the stator, which in turn leads to less power loss and
increase efficiency[20].

StallGuard™

The StallGuard™technology utilizes the back EMF (ElectroMotive Force) to analyze
the load of the motor. This provides the drivers with a sensorless load measurement.
This technology may be utilized for sensorless homing, self-calibration or distance
measurement. The StallGuard™technology also prevents step loss when the axis is
obstructed[21].

CoolStep™

CoolStep™is a technology that adjusts the motor current based on the feedback
provided by the StallGuard™technology. This technology always drives the motor
at the minimum required current sufficient for driving the actual load. That leads
to reduced current consumption and also reduces heat generation. The technology
also allows for temporary current boosts. An example of the dependency on the
motor current on the load torque can be seen in the Figure 2.10.
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Fig. 2.10: The Trinamic CoolStep™technology [21].

2.2 Communication Protocols
According to the thesis instruction and the requirements FR-04, NFR-02, C-03,
C-05, the stepper driver should feature CANOpen and I2C interfaces for control and
configuration. The USB interface shall be used only for configuration. This section
aims to give a brief overview of these communication interfaces and protocols utilized
with them.

2.2.1 CANOpen
CANOpen is a set of higher-level protocols based on the CAN bus physical and link
layer. The protocols are designed around the Master-Slave model, where there is
a specific device acting as the master which controls the CANOpen network (e.g.,
synchronization) and up to 127 slave devices-nodes. Every device in a CANOpen
network is assigned a unique ID. Within the CANOpen protocols, the CAN frame
sent to the device either targets a specific device or all of them. The frames that
target specific devices contain the identifier of the frame (e.g., PDO CAN ID) bit-or
with the device ID. The CANOpen protocols provide standardized communication
objects (COBs) with specific identifiers (IDs) for time critical processes, communi-
cation and network management[22]. The most critical parts CANOpen protocol is
the SYNC protocol, the PDO protocol, the SDO protocol, and the NMT protocol.
Other protocols are the EMCY protocol, TimeStamp protocol, and LSS protocol.
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2.2.2 Object Dictionary
In a CANOpen device, the Object Dictionary contains the global shared state of a
device. This means that the software responsible for communicating over CANOpen
protocols sends out the data available in the Object Dictionary and, in turn, writes
to it the received data. Apart from being a data storage for the communication
interface, the Object Dictionary serves as a data source for the algorithms and
systems running on the device itself. There are two numbers used to access the
values in the Object Dictionary - first, the Index - a 16-bit unsigned value, and the
SubIndex - an 8-bit unsigned value. Some of the Index ranges are reserved by the
CANOpen specification for predefined parameters such as communication settings,
while other Index ranges contain application-specific parameters[22].

SYNC protocol

The SYNC protocol is responsible for synchronizing the communication on the bus.
It initiates the transfer by sending a CAN frame with the identifier 0x80, after which
every device on the bus sends/receives synchronous data objects, such as PDOs
(Process Data Units). The CAN frame can also contain a single byte containing a
SYNC number that can be utilized to conditionally send synchronous data or for
more granular synchronization[22]. SYNC message is generally sent periodically.

PDO protocol

Process Data Objects (PDOs) are used for broadcasting high-priority status and
control information[22]. Each PDO consists of a single CAN bus frame and can
contain up to 8 bytes of data. The contents of the PDO can be set in some devices
according to the specific application needs using a technique called PDO mapping,
where PDO data are mapped to Object Dictionary fields. There are three mech-
anisms used to transmit PDOs - asynchronous PDOs can be sent upon an event
trigger in the device. Asynchronous PDOs can also be remotely requested using
the RTR bit in the CAN frame. Synchronous PDOs are broadcast as a reaction to
the SYNC protocol. There are two types of PDOs - RxPDOs and TxPDOs. The
RxPDOs are the PDOs that are received by the target device, while the TxPDOs
are the PDOs that are transmitted by the target device. There are four available
RxPDOs and four available TxPDOs each PDO has a CAN ID assigned, as can be
seen in the Table 2.1.
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PDO RxPDO CAN ID TxPDO CAN ID
PDO1 0x200 0x180
PDO2 0x300 0x280
PDO3 0x400 0x380
PDO4 0x500 0x480

Tab. 2.1: RxPDO and TxPDO CAN IDs[23]

SDO protocol

The SDO (Service Data Object) protocol is used to directly read or write entries of
the device’s object dictionary. This protocol utilizes the client-server model, where
the device with the target Object Dictionary is the server, and the other device is
the client. One SDO consists of two CAN frames with different IDs that represent
the transaction. Given there are two CAN frames, the protocol is confirmed[22].

There are three variants of the SDO protocol - expedited transfer, normal (seg-
mented) transfer, and block transfer. The expedited transfer can be utilized when
the target data has a length of 4 bytes or less. To transfer data with greater length
the segmented, or the block transfers may be used, where the block transfer shall
have a slightly lower protocol overhead[23].

NMT protocol

NMT (Network Management) protocol is a protocol implemented by all the slave de-
vices in the network. It consists of a finite state machine that describes the device’s
state with relation to the bus and the rest of the system. The states are Initial-
ization, Preoperational, Operational and Stopped. After the device starts, it
shall automatically enter the Initialization state. Using an NMT command CAN
frame, the device goes to the next state, in this case, Preoperational. The state
themselves have a certain meaning for the behavior of the device. For example motor
movement must be disabled until the device enters the Operational state.

While the master controls the slave devices by commanding them to go to a
certain state, the slave devices use the NMT Heartbeat protocol to periodically notify
the master (and other devices) of their current state. Devices can be configured to,
for example, stop movement if another slave device or master stops sending these
Heartbeat messages.
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CAN bus

The Controlled Area Network is a bus most commonly used in automotive for con-
necting ECUs (Electronic Control Units). The bus was developed by Bosch and
codified into the ISO11898-1 standard. CAN bus utilizes a single differential pair
making simplifying the wiring of a complex system consisting of many ECUs[24].

On the physical layer, the bus has two states - recessive and dominant, where
recessive means that the differential voltage between the CANH and CANL signals
is less than a minimum threshold voltage. In contrast, the dominant state means
that the differential voltage is higher than the minimal threshold voltage[24]. The
dominant state is achieved by sending a logical 0 through the network, while the
recessive state is achieved by sending logical 1. CAN bus utilizes the CSMA/CD
media access control protocol, which allows for collision detection and potential
retransmission of CAN frames. For collision detection, it is vital that the dominant
state overrides a recessive one.

There are two types of frames transmitted on the bus - standard frames and
extended frames. These frames differ in the identifier length, where the extended
frame allows for 29-bit long identifier in contrast to the standard frame, which allows
for only 11-bits. Identifier length is selected on a per-frame basis using the IDE bit
in the frame. Each CAN frame may contain up to 8 bytes of data, and the data
length is controlled by the four DLC bits in the frame. The structure of a CAN
frame can be seen in the Figure 2.11.

Fig. 2.11: CAN bus frame with standard identifier [25].

An important bit for CANOpen is the RTR bit which stands for Remote Trans-
mission Request, when this bit is recessive, there are no data in the frame, and the
frame asks the remote device for data. As can be seen in the Figure, the identifier
and the RTR field are part of an Arbitration field, these bytes are used in the shared
medium collision detection and control, and thanks to this field, frames with lower
ID have a higher priority in the transmission.
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2.2.3 I2C
I2C (Inter-Integrated Circuit) bus is a bus, that allows connecting multiple periph-
eral (slave) ICs to a controller (master) IC (multi-master mode is also supported)[26].
Hardware-wise the bus utilizes two pins in open collector configuration, which means
that the high-level voltage needs to be provided externally using a pull-up resistor.
The resistance value of the pull-up resistor affects the bus performance and can be
fine-tuned to compensate for the parasitic capacity for the wiring. The open-collector
configuration also means that when idle, the bus is pulled up to the defined voltage
level, and when the device wants to transmit data, it can only pull the signal down.
The I2C bus consists of two signals - the data signal (SDA) and the clock signal
(SCL).

The I2C transaction begins when the controller sends a START condition on
the bus, the START condition is followed by the peripheral device address, and a
direction bit determining whether the controller wants to write or read from the
peripheral device[26]. Then based on the direction bit, the controller either receives
data or sends them. The peripheral has a mechanism of stopping the clock signal
in the event the peripheral is not fast enough to produce data, which is done by
pulling the clock signal low and then releasing it when the data are available. When
the data is transferred, the controller finalizes the transfer by sending the STOP
condition.

When interfacing with various peripherals, the read and write transactions are
combined[27]. The controller first sends the peripheral address (with direction bit
set to write) followed by the register it wants to access, the register is ACKed, and
now the controller either sends the data to be written or issues a Repeated START,
transmits peripheral address with direction bits set to read and awaits data from
the peripheral. Writing to a peripheral using this approach can be seen in the
Figure 2.12 and reading data can be seen in the Figure 2.13.

Fig. 2.12: Writing to a register of an I2C peripheral IC [27].
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Fig. 2.13: Reading a register of an I2C peripheral IC [27].

2.2.4 Universal Serial Bus
USB (Universal Serial Bus) utilizes a differential pair (or multiple) for data transfer.
Nowadays, USB devices are ubiquitous and perform a variety of different functions,
and according to these functions are separated into classes (Mass Storage, HID
(Human Interface Devices), etc.). Through time, there were four major revisions of
the USB standard as can be seen in the Table 2.2.

Version Max. Data Rate Code Name
1.0 1.5 Mbit/s Low Speed

12 Mbit/s Full Speed
2.0 480 Mbit/s HighSpeed
3.0 5 Gbit/s SuperSpeed

3.1 gen 2 10 Gbit/s SuperSpeed+
3.2 20 Gbit/s SuperSpeed+ USB dual-line
4.0 40 Gbit/s

Tab. 2.2: USB versions and data rates [28]

USB is nowadays everywhere, with different supported transfer data rates, dif-
ferent utilization of connectors, etc. With such diverse use cases and devices, the
whole USB ecosystem is increasingly more difficult to orient within. For our use
case, we’ll be utilizing the USB controller present on the MCU, which is a USB 2.0
OTG (On The Go) Full Speed device[29], but to support better compatibility and
mechanical properties, we’ll be using the USB-C receptacle with both differential
data lanes interconnected.
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2.3 Rust Programming Language
Rust is a multi-paradigm systems programming language initially developed by
Mozilla in an effort to create language suitable for the development of a safe and
performant multi-threaded CSS rendering engine for the Firefox browser[30]. In re-
cent months, the oversight of the language is done by the language’s own foundation
and is therefore independent of Mozilla[31].

The language itself is designed to be performant and memory-efficient - it doesn’t
feature a garbage collector. Memory is managed semi-manually with the leverage
of many smart pointer types. The semi-automatic memory management and its
type systems provide guarantees about memory and thread safety that can be eval-
uated at compile-time, promising that these kinds of potential bugs are found in
development rather than in production.

The language itself is a part, albeit an important part, of a larger ecosystem,
making the language and its tooling extremely usable, with tools almost for every-
thing - it features seamless package management and a build system, documentation
system, integrated testing, defined coding-style and more.

As we said before, the language is a multi-paradigm language, meaning that the
language features parts of the functional languages paradigm and object oriented-
paradigm.

In the following sections, some features of the language are described to provide
some introduction into the semantics and syntax of the language.

2.3.1 Variables and Mutability
In Rust, all variables are defined as immutable by default, promoting defensive pro-
gramming - meaning that no variable can be unintentionally changed. The variables
are declared using the keyword let and the variable’s mutability must be explicitly
declared using the mut keyword. The type of variable doesn’t need to be explicitly
specified in most cases as the language features type inference, which is possible
thanks to its powerful and strong type system. An example can be seen in the
following Listing 2.1.

1 let a = 10; // declares an immutable variable , whose type
is automatically inferred to i32

2 a = 11; // produces a compile -time error
3 let mut b: u8 = 0x12; // declares a mutable variable with

explicit u8 type
4 b = 0x24; // this is ok

Listing 2.1: An example of declaring variables and their mutability in Rust.
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Rust also supports compile-time constant evaluation using constants and con-
stant functions. This can be achieved by using the const keyword, but describing
this functionality is beyond the scope of this thesis.

2.3.2 Ownership and Borrow Checker
The language’s semi-automatic memory management system consists of the owner-
ship concept, move-by-default semantics, and the borrow checker.

The concept of ownership is described by the following rules[32]:
• Each value in Rust has a variable that’s called its owner.
• There can be only one owner at a time.
• When the owner goes out of scope, the value will be dropped.

For value passing, the Rust language uses move-by-default semantics as opposed
to copy-by-default present in C++. The reasoning for it is that while moving is
almost zero-cost, copy almost never is.

The borrow checker is a mechanism that ensures that references to variables are
always in correct state - pointing to an existing value. There are three rules to the
borrow checker:

• There can be only one mutable reference to a value.
• There can be unlimited immutable references to a value.
• The first two rules are mutually exclusive - Rust forbids having both immutable

and mutable reference to the same value.
The programming language also statically checks for reference lifetimes, making

sure that the reference doesn’t point to nonexistent memory, which is useful for
returning references from functions or storing references in structs.

2.3.3 Enums and Pattern Matching
In Rust, enums are much more powerful than in C/C++. There are two significant
differences - Rust enums allow adding methods and functions to them and also allow
for having associated values. Consider the following code snippet:

1 enum Value {
2 Integer (i64),
3 Float(f64)
4 }
5
6 let int_value = Value :: Integer (15);
7 let float_value = Value :: Float (3.14);
8
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9 impl Value {
10 fn parse(raw: &str) -> Value {}; // implementation

omitted
11 }
12 let raw_value = server. get_value ();
13 let value = Value :: parse( raw_value );

Listing 2.2: Definining an enum with associated values in Rust.

First, we declare the enum to have two possible values - Integer, with the
associated value of i64 and Float, with the associated value of f64. Then, we
add a function that parses a reference to a string into our enum Value, and then
we parse a received string into a value. The parsed Value will be one of the two
values with the real numeric value embedded. Associated values in enums are a
powerful concept, for example, for state machines and error handling. To access
the associated value, the match or if keywords may be used as can be seen in the
Listing 2.3.

1 match value {
2 Value :: Integer (raw) => println! ("Raw integer found:

{}", raw),
3 Value :: Float(raw) => println! ("Raw float found: {}",

raw),
4 }
5 if let Value :: Integer (raw) = value {
6 println! ("Raw integer found: {}", raw);
7 }

Listing 2.3: Matching an enum variants.
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2.3.4 Data Structures
The language leverages the concepts of structures to store data. These structures
allow storing data with different data types. Apart from storing data, structures
can have implementations associated with them which provides the ability for func-
tions, methods, and constructors. In a broader sense, these properties conform to
the object-oriented-programming paradigm where objects have properties (stored
values) and behaviors (associated methods). Let’s have a look at an example 2.4 of
a structure definition.

1 // Define a structure representing a state of a motor
axis.

2 struct AxisState {
3 pub target_velocity : f32 , // define fields that are

publicly accessible and with f32 type
4 pub actual_velocity : f32 ,
5 }
6
7 let mut state = AxisState {
8 target_velocity : 1.0,
9 actual_velocity : 0.0,

10 }; // create an mutable instance of the AxisState
structure with values assigned to the fields

11
12 state. target_velocity = -1.0; // assign value to a field

of the structure instance

Listing 2.4: Defining and instantiating a struct in Rust.

An impl block needs to be defined, to add methods to the structure. As can
be seen in the following example 2.5, where we add a constructor, getter and setter
methods.
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1 // crate a block for defining methods on the AxisState
structure

2 impl AxisState {
3 // define a constructor - a method that return the

AxisState structure
4 pub fn new( target_velocity : f32 , actual_velocity : f32

) -> Self {
5 Self {
6 target_velocity ,
7 actual_velocity ,
8 }
9 }

10 // create a setter for the target_velocity , note the
reference to mutable self which denotes that it is

a method and not a function
11 pub fn set_target (& mut self , target: f32) {
12 self. target_velocity = target;
13 }
14 // create a getter which takes an immutable reference

to the structure and returns the value of the
target velocity

15 pub fn target (& self) -> f32 {
16 self. target_velocity // no return is needed as

Rust is also an expression based language
17 }
18 }
19
20 let mut state = AxisState :: new (1.0 , 0.0); // use the new

function ( constructor ) to create an instance of the
AxisState state structure

21 state. set_target (5.1); // set the value of the
target_velocity field

22 println! ("target velocity : {}", state.target ()); // print
thevalue of the target_velocity field

Listing 2.5: Adding methods and constructor to a struct in Rust.
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2.3.5 Traits and Generics
Traits are a way to implement shared behavior (interface) for different types. Traits
are similar to Java’s interfaces or Swift’s protocols. Together with generic types,
these two features allow for creating algorithms whose inputs and outputs are generic
but conform to some defined properties defined in the traits.

Let’s have a look at how a motion controller can be defined and implemented
using generic values in the Listing 2.6.

1 trait Encoder {
2 fn get_speed (& self) -> f32;
3 }
4
5 trait Motor {
6 fn set_speed (& mut self , speed: f32);
7 }
8
9 struct MotionController <E: Encoder , M: Motor > {

10 encoder : E,
11 motor: M
12 }
13
14 impl <E: Encoder , M: Motor > MotionController <E, M> {
15 fn sample (& mut self , target_speed : f32) {
16 let e = target_speed - self. encoder . get_speed ();
17 // use controller to get target speed
18 let speed = psd. calculate (e);
19 self.motor. set_speed (speed);
20 }
21 }

Listing 2.6: Using traits and generics for shared behavior in Rust.

Such a motion controller can be used with whichever encoder and motor, that
implements the Encoder and Motor traits. Traits and generics are vital for im-
plementing HALs that are further described in the Section 2.4.
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2.3.6 Macros
Another language’s feature important for embedded Rust, are macros. There two
types of macros in Rust - declarative macros (similar to C macros) and procedural
macros, that can be used for code generation. The main distinction between C
and Rust macros is that Rust macros have support for a simple type system that
limits what can be passed as a function parameter - be it identifiers, expressions, etc.
Macros are useful for metaprogramming - declaring code which should be generated.
Many standard library features are implemented using macros. An example of a
macro use can be seen in the following Listing 2.7.

1 let vector = vec! [0.5 , 0.6, 0.7]; // instantiates a
vector with the defined values

2 println! ("Value of vector is {:?}", vector); // prints
values contained in the vector

Listing 2.7: Using macros in Rust to initialize a vector and print its values.

An important thing to note is that the macro processor is very capable. For
example, it can evaluate values passed to them in the case of the println macro,
which doesn’t allow passing incompatible types. In embedded Rust, macros are used
for generating code for different peripherals.
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2.3.7 Standard Library
The Rust programming language has a rich standard library that supports widely
used collections such as vectors, maps, sets, etc., communication primitives such
as sockets for UDP and TCP, threads and synchronization, and much more. This
makes the language ready to use out of the box, without the need to implement
these primitives ourselves, which would leave room for bugs and performance prob-
lems. The following example in the Listing 2.8 shows a simple UDP communication
loopback implemented using the standard library features.

1 use std :: net ::{ Ipv4Addr , SocketAddrV4 , UdpSocket };
2 fn main () {
3 let socket = UdpSocket :: bind( SocketAddrV4 :: new(

Ipv4Addr :: UNSPECIFIED , 1234))
4 .expect("Failed to bind the socket.");
5 let mut buffer = [0; 1500];
6 loop {
7 match socket. recv_from (& mut buffer) {
8 Ok((len , address )) => {
9 socket

10 . send_to (& buffer [.. len], address )
11 .expect("Failed to send data to the

sender.");
12 }
13 Err(_) => {
14 println! ("Failed to receive data from the

socket.");
15 }
16 }
17 }
18 }

Listing 2.8: Using Rust standard library to implement UDP loopback.
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2.3.8 Testing
The Rust programming language has support for testing built-in, meaning that no
external library is needed to start writing tests for your code. Tests can be written
as part of modules, which allows for testing of private members or out of the defining
modules, allowing for integration testing. A simple unit testing example as a part
of the defining module can be seen in the following example in the Listing 2.9.

1 fn adder(a: i32 , b: i32) -> i32 {
2 a + b
3 }
4 #[ cfg(test)]
5 mod tests {
6 use super ::*;
7 #[ test]
8 fn test_adding () {
9 let result = adder (1, 2);

10 assert_eq! (result , 3);
11 }
12 }

Listing 2.9: Writing in-module tests for Rust members.
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2.3.9 Cargo
Cargo is Rust’s build and dependency management system. It handles creating,
building, testing, and running projects using single command without the need to
call rustc and lld directly, as can be seen in the following snippet in the Listing 2.10.

1 $ cargo new sm4 --bin # creates a new Rust binary project
2 $ cargo new sm4 -shared --lib # creates a new Rust library

project
3 $ cargo build # builds the project in the working

directory
4 $ cargo test # runs all the tests included in the project

in the working directory
5 $ cargo run # runs the project in the working directory
6 $ cargo doc # generate documentation for the project in

the working directory

Listing 2.10: Using cargo for project development cycle.

Apart from managing the project’s development cycle, Cargo is also a depen-
dency manager that allows for including external libraries to the project simply by
specifying dependency name and version in a file called Cargo.toml which serves
as the main configuration file of the project. An example Cargo.toml file can be
seen in the following snippet in the Listing 2.11.

1 [ package ]
2 name = " playground "
3 version = "0.1.0"
4 authors = ["Matous Hybl <hyblmatous@gmail .com >"]
5 edition = "2018"
6
7 [ dependencies ]
8 parking_lot = "0.11.1"

Listing 2.11: An example Cargo.toml file containing project definition.

Cargo also supports other features of project management, such as enabling
conditional compilation using features, etc., but the description of these features is
beyond the scope of this thesis.
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2.4 Embedded Rust
Embedded Rust is enabled by two crate-level attributes - no_main and no_std.
The no_main attribute indicates that the compiler will not emit a main symbol
automatically but instead expects the crate to define it itself[33]. The no_std
attribute, on the other hand, indicates that the final program will not link against the
std crate (containing functions usable with operating systems and heap allocation)
but instead will link against the core crate, which contains only those parts of the
standard library that are platform agnostic. The core crate includes, for example,
language primitives, such as floats, slices, and support for atomic instructions. Rust
program with the no_std attribute and therefore linking to core library can be
used for bootstrapping code like bootloaders, firmware or kernels[34].

Using the no_main requires the programmer to write their own program entry
point and some other functions, such as the reset handler and panic handlers. An
example of such low-level project bring-up can be seen in [35]. Developing such low-
level program can be quite hard and is usually platform-dependent. Thankfully, for
the supported MCUs, this is already pre-implemented by processor low-level access
crates and their startup and runtime crates.

We’ve mentioned that developing no_std does not by default use heap alloca-
tion. Heap allocation can however be added to no_std programs by implementing
a custom allocator such as the alloc-cortex-m crate[36], that implements an allo-
cator for Cortex-M MCUs. Using heap allocation, it is possible to use structures
like Vec and Box<T>[37]. It also seems to be possible to run a subset of the Rust
std library directly on a MCU[38], but this approach is still in the early stages of
development.

2.4.1 Platform Support
To compile Rust programs for specific MCU core, it is required that target support
for it is first available in LLVM and second that a target for it exists within the
Rust ecosystem (existence of a target means, that the rust compiler and other tools
and can be built for the target). Rust targets are also split into tiers differentiating
different amounts of support from the Rust teams, where the majority of the embed-
ded targets are in Tier 2, meaning that the compilation of the tools must succeed for
every change in the compiler. Still, automated tests of the resulting builds are not
guaranteed to run. As of now, there is support for different ARM architectures, such
as aarch64, armv7, armv6, thumbv8, thumbv7, thumbv6 (both with hardware FPU
and without) etc[39]. Apart from ARM support, there is also support for RISC-V
targets, Tier 3 also contains support for AVR[39, 40] and MSP430. There also seems
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to be some effort into bringing the Xtensa architecture (ESP8266 and ESP32)[41]
into the Rust ecosystem as the work of supporting the architecture in LLVM seems
to be done.

2.4.2 Embedded Working Group
Embedded Rust is one of the official goals of the Rust Language project, and the
development of Rust for embedded devices is governed by the Embedded Devices
Working Group[42]. Apart from target maintenance, the working group is directly
responsible for creating and maintaining documentation - such as the Embedded
Rust book[34], the Discovery book[43] and the Embedonomicon book[44] and is
also responsible for developing several of the critical tools and libraries - such as
svd2rust, embedded-hal or embedded-dma.

The working group also governs the work on low level MCU core access crates
and minimal runtimes for these cores such as the cortex-m and cortex-m-rt or
risc-v and riscv-rt.

2.4.3 Register Access
Peripheral and core register access is one of the most vital operations on embedded
systems. Generally, in C/C++, this is done either by operating on a pointer to an
integer value or by modifying a struct that contains the configuration. In embedded
Rust, there are two approaches to this problem.

The first approach is the svd2rust[45] tool. This tool uses the manufacturer-
provided SVD files that describe registers and their bits and converts them into
a Rust API. There are several advantages to this approach - no code needs to
be written manually, the resulting register access is compile-time safe, allows for
named bit settings instead of non-descriptive setting to logical one or zero, and
when there is ambiguity, for example, in integer size, it enforces adding the unsafe
keyword, marking that the code should be thoroughly reviewed. An example of
setting register values using this approach can be seen in the following Listing 2.12,
where we are configuring channel of an advanced control timer. The disadvantage of
this approach is that given the size of the SVD files, and the number of MCUs, the
compilation is quite long, and given the resulting API complexity, the contemporary
IDEs have problems resolving it for automatic code completion. This approach is
prevalent with the majority of the PACs (Peripheral Access Crates), for example
with the stm32-rs crate[46].
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1 timer. ccmr2_output ().modify (|_, w| {
2 w.cc4s ()
3 .output () // channel 4 as output
4 .oc4fe ()
5 . set_bit () // enable fast output
6 .oc4pe ()
7 . set_bit () // enable preloading
8 .oc4m ()
9 .toggle () // set mode (3 bit wide register part)

10 });

Listing 2.12: Using svd2rust generated API for register access.

Another and more lightweight approach is utilization of RAL (Register Access
Layer) crates, for example the stm32ral[1]. This approach also parsed the SVD
files, but generates simpler structures, and API. An example of using this approach
can be seen in the Listing 2.13.

1 modify_reg! (rcc , rcc , AHB1ENR , GPIOAEN : Enabled );
2 modify_reg! (gpio , gpioa , MODER , MODER1: Input , MODER2:

Output , MODER3: Input);

Listing 2.13: Using RAL API for register access[1].

2.4.4 embedded–hal
The embedded-hal project[47] is one of the projects developed by the Embedded
Devices Working Group. Its aim is to provide a HAL (Hardware Abstraction Layer)
abstract enough that device drivers using it may be shared not only between different
MCUs but also different platforms (MCU and Embedded Linux). This is achieved
by utilizing traits described earlier in the Section 2.3.5. An example of such device
driver developed using the traits available in the embedded-hal can be seen in
the Listing 2.14[47]. As can be seen in the Listing, the driver will work with any
type that implements the WriteRead trait. Currently, the embedded-hal defines
traits for common embedded functionality (such as GPIO, ADC) and buses (I2C,
SPI), but only their blocking variants.
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1 use embedded_hal :: blocking :: i2c ::{ TenBitAddress ,
WriteRead };

2 const ADDR: u16 = 0x158;
3 const TEMP_REGISTER : u8 = 0x1;
4 pub struct TemperatureSensorDriver <I2C > {
5 i2c: I2C ,
6 }
7 impl <I2C , E> TemperatureSensorDriver <I2C >
8 where
9 I2C: WriteRead <TenBitAddress , Error = E>,

10 {
11 pub fn read_temperature (& mut self) -> Result <u8 , E> {
12 let mut temp = [0];
13 self.i2c. write_read (
14 ADDR ,
15 &[ TEMP_REGISTER ],
16 &mut temp
17 )
18 .and(Ok(temp [0]))
19 }
20 }

Listing 2.14: Example of an device driver utilizing embedded–hal traits.

The traits from the embedded-hal are implemented by device HALs, such as
the stm32f4xx-hal[48], which implements the provided traits for the peripherals
of the STM32F4xx MCUs.

A crate similar to the embedded-hal is the embedded-dma defining traits for
unified DMA access, so that development of unified device drivers utilizing DMA
is possible. DMA itself is not that easy problem when aiming for Rust’s memory
safety[49], but a lot of work has been done on its support and perfecting it for safety.

2.4.5 Mutable Shared State
The Rust programming considers mutable static variables unsafe as they may cause
data races in concurrency[50]. This approach is valid but causes ergonomics prob-
lems with embedded programs where storing data in static variables is used for
interchanging data between interrupts and blocking code. In order to write correct,
data race free code, the shared state needs to be at least wrapped in a mutex that
will synchronize access to the shared resource. This, however is not enough as the
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borrow checker will object with invalid access to a shared resource. Also, when
using mutex on embedded systems, the block holding the lock need to be wrapped
in a critical section. Otherwise, the lock could never be freed. The situation gets
more complicated with different interrupt priorities. An overview of ways of solving
this problem can be found in an excellent blog post by one of the members of the
Embedded Devices Working group here[51].

We decided to use the RTIC (Real-Time Interrupt Driven Concurrency) frame-
work[52] as a solution to this problem as according to us, the approach is very well
thought out. The framework aims to solve the problem by providing a DSL (Domain
Specific Language) based on Rust’s procedural macros for concurrency on embedded
systems. In short, the RTIC framework lets the user define shared resources and
allows different tasks (either software tasks or interrupt triggered ones) to access
those resources in a safe way, removing boilerplate code needed for shared resource
handling. Imagine that there are two interrupt triggered tasks with different prior-
ities wanting to access a shared resource. The high-priority task can easily access
the resource without the need for any explicit locking as it has the privilege to do
so, given its priority. On the other hand, the lower priority task needs to perform
locking in order to access the shared resource to avoid the resource being accessed
temporarily by the higher resource task, which could lead to a data race. This
behavior is compile-time enforced and checked, bringing another level of safety and
security to embedded systems. Apart from providing safe access to shared resources,
this framework also contains a simple scheduler for timed tasks. Thanks to these
features, this framework is nowadays the base of many embedded systems developed
in Rust.

2.4.6 async/await
Async/await is a concurrency model utilizing cooperative tasks. Cooperative tasks
are tasks that yield control back to the scheduler at determined points[53], and these
points are when task switching occurs. Tasks can yield, for example, to wait for a
blocking operation.

This concurrency model may prove extremely useful for embedded systems as it
allows for concurrent code to be written in an imperative way, which increases code
readability. Imagine a device driver task that resumes its operation when new data
is received and doesn’t use any blocking waits. The code can be read as a sequence
of operations instead of, for example, a state machine.

Async/await in the Rust programming language builds upon the Future trait.
A future can be polled, and polling results in reporting whether the Future can
resume executing or not. An executor takes care of periodically (or as a reaction to
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an event) polling Futures and resumes their execution if needed. Given the design
of async/await, this can be easily used in a no_std environment, even on low
computing power devices, such as the Atmel AVR[54]. As of now, there are several
async runtimes for embedded systems, the most advanced one being embassy, the
downside being that it currently requires nightly Rust to build.

An example of utilizing async/await for timed tasks, and embassy can be seen
in the Listing 2.15

1 #[ embassy :: task]
2 async fn run1 () {
3 loop {
4 info!("BIG INFREQUENT TICK");
5 Timer :: after( Duration :: from_ticks (64000) ).await;
6 }
7 }
8 #[ embassy :: task]
9 async fn run2 () {

10 loop {
11 info!("tick");
12 Timer :: after( Duration :: from_ticks (13000) ).await;
13 }
14 }
15 #[ embassy :: main]
16 async fn main( spawner : Spawner ) {
17 unwrap! ( spawner .spawn(run1 ()));
18 unwrap! ( spawner .spawn(run2 ()));
19 }

Listing 2.15: Timed tasks using async/await and embassy[2].

2.4.7 Ecosystem
The Embedded Rust ecosystem is nowadays very vast. Apart from the Embedded
Devices Working Group, there are many smaller organizations governing develop-
ment for specific platforms or projects. There are organizations and groups devel-
oping crates for MCU support (STM32, RISC-V, AVR, RP2040, iMXrt, SAMD,
etc.), universal device drivers (using the embedded-hal described earlier), and much
more. The ecosystem also consists of tooling and documentation, which is also un-
der active development, with some tools surpassing traditional tools for embedded
development. More importantly, given Rust’s focus on performance and security,
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eliminating most common bugs, the developers are able to work on the "harder"
problems in embedded - for example, drivers for USB[55] or Ethernet[56].

2.4.8 C/C++ Interoperability
Thanks to Rust’s FFI (Foreign Function Interface), it is possible to combine code
written in C and Rust, even both ways[57]. For example, it is possible to utilize
Rust’s serialization and deserialization crates in an existing Zephyr project[58]. This
is especially useful for bringing Rust into the existing embedded codebase, but also
for integrating existing the C/C++ codebase into new Rust project.

2.4.9 Tooling
We’ve already discussed some of the Rust Embedded Tooling, such as the svd2rust
in previous sections, but there are more tools at hand helping with the development
cycle. In general, in C/C++ embedded projects, the firmware is flashed via a
combination of OpenOCD and GDB. That used to be the case with Embedded
Rust too before the probe-rs project was developed. The project aims to provide
"A debugging toolset and library for debugging embedded ARM and RISC-V targets
on a separate host"[59], this is achieved by developing a library for various probes
(ST-Link, J-Link) handling the low-level communication with the target MCUs and
then building tools upon that library, that allow for flashing and debugging the
target MCUs. Those tools are called cargo-flash[60], enabling just flashing, and the
cargo-embed[61], enabling flashing, debugging and logging. The probe-rs project
is the project that implements Segger RTT (Real-Time Transfer) for seamless and
fast data transport between the host and the target MCU that can be utilized for
fast logging.

Thanks to probe-rs architecture, other tools can utilize its algorithms for ac-
cessing probes and the target mcus. That is what happened with the Knurling
project - an initiative to provide modern tooling for embedded development. At the
moment, there are four crucial tools developed by the Knurling project - probe-run,
defmt, defmt-test and flip-link.

defmt

defmt stands for deferred formatting[62], which means that the data coming from
the MCU is formatted when it is received by the host. This is utilized for logging
data from the MCU. The tool strips all strings from the firmware binary and
replaces them with their identifier. Instead of transferring the whole strings, only
their identifiers and optional arguments (such as values of variables) are transferred,
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saving time and resources, making the logging extremely efficient. This logging
technique relies on the fast RTT transfer from probe-rs described earlier. The end
result is a logging interface that is fast and efficient enough to debug extremely fast
and timing-sensitive interfaces, such as USB.

probe–run

probe-run is a runner for Rust programs[63], that automatically flashes the firmware
binary when cargo run is run and opens a terminal which prints defmt encoded
messages transferred over RTT. Another feature is that it can print stack backtraces
when the firmware encounters an exception or on a breakpoint.

As of now, the runner doesn’t support debugging via GDB, but there have been
some developments recently about simultaneous defmt logging and debugging with
GDB that stated that GDB support should be possible in the near future[64].

defmt–test

defmt-test is a component of the defmt tool, that can be used for running inte-
gration and unit tests directly on the target MCU. We believe that this brings new
possibilities for reliability in embedded systems and software/hardware-in-the-loop
testing. An example of such test can be seen in the Listing 2.16[62].
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1 struct State {
2 scd30: Scd30 <Twim <TWIM0 >>,
3 }
4 #[ defmt_test :: tests]
5 mod tests {
6 use super :: State;
7 #[ init]
8 fn setup () -> State {
9 // initialize the hardware ( ommited )

10
11 let scd30 = scd30 :: Scd30 :: init(i2c);
12 State { scd30 }
13 }
14 #[ test]
15 fn confirm_firmware_id (state: &mut State) {
16 const EXPECTED : [u8; 2] = [3, 66];
17 let firmware_id = state.scd30.

get_firmware_version ().unwrap ();
18 assert_eq! (EXPECTED , firmware_id );
19 }
20 }

Listing 2.16: Integration test written using defmt–test.

flip–link

The last Knurling tool is flip-link, which is a linker that adds zero-cost stack over-
flow protection[65]. The stack overflow protection works by smartly changing the
order of .stack and .bss+.data segments of RAM in a way that when the stack
overflows, it doesn’t interfere with static variables but instead triggers a hardware
exception and doesn’t produce corrupted memory. The change in the memory layout
can be seen in the Figures 2.14 and 2.15.
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Fig. 2.14: Memory arrangement
which causes memory corruption on
stack overflow[65].

Fig. 2.15: Memory arrangement
which causes hardware exception
instead of corrupted memory[65].

2.4.10 Testing and CI
While we already talked about testing in the Sections 2.3.8 and 2.4.9, we believe that
there is more information about testing embedded Rust software and CI (Continuous
Integration).

There are two different types of tests that can be run for embedded software
- tests that can be run without the hardware and tests that must be run on the
target hardware as the code is dependent on it. The tests that are independent of
the target hardware can be tested using the standard Rust testing harness via, for
example, cargo test, on the other hand, to run these tests, a target that supports
std is required, which might require some project structure changes. As for the tests
that must run on the target hardware, the defmt-test test harness can be utilized.
Approaches for testing these parts of the embedded firmware can be found here[66,
67]. Hardware in the loop-testing is also possible[68].

Nowadays, it is also possible to run the tests as part of the project’s CI workflow.
Apart from running tests, it is also possible to easily build the firmware itself as the
only thing required is the Rust compiler with proper toolchain installed[69]. It is
also possible to release the firmware, generate documentation and perform additional
code checks on the codebase[70].
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2.5 Embedded Rust Advantages and Disadvantages
Many of the reasons why we believe that Embedded Rust is the right choice for
embedded development have already been described in the previous sections, but
let us sum up what we believe are the most important points.

• The Rust language promotes and ensures code that is not prone to memory
safety problems and data races.

• The Rust language ecosystem is large, and integration of libraries is seamless
and promotes code reuse.

• There are advanced and modern features in the language, making it easier to
write safer and more expressive code.

• A lot of the abstractions provided by the programming language are zero-cost,
meaning that they consume no additional resources.

• The embedded Rust ecosystem is vast, and contains well-thought-out solutions
to difficult problems in embedded - see Section 2.4.5 on RTIC.

• The embedded Rust teams seek to utilize the modern programming features,
such as async/await and generics - see Section 2.4.6 on async/await.

• Some of the harder parts embedded are already developed and ready to use -
such as USB and Ethernet drivers, with the community aiming to solve these
hard problems having a language that helps mitigate common programming
mistakes.

• The embedded tooling is gradually improving, and in some ways it has already
surpassed tooling in classical embedded languages - see the Section 2.4.9 on
the tooling.

• Testing embedded systems with the Rust language is developed, and testing
the firmware is easy, even in the CI.

On the other hand, there are some disadvantages of using embedded Rust:
• The resulting binaries can be quite large (10s of kB), making it harder to run

on lower-end MCUs.
• The support for debugging using GDB exists but is not very ergonomic.
• The support for embedded in commonly used IDEs is low, and sometimes, for

example, the automatic code completion of registers can fail.
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2.6 Requirements
In the book Better Embedded System Software[71], the author specifies written re-
quirements as one of the most important parts of documentation for any embedded
system. The author describes requirements as rules specifying everything the sys-
tem must do, everything the system must not do, and constraints the system must
meet. According to the book, there are three types of requirements - functional
requirements, non-functional requirements, and constraints. An essential property
of requirements is that they must be easily verifiable and, if possible, directly mea-
surable. Also, for future reference, every requirement must have a unique number.

2.6.1 Functional Requirements
Functional requirements describe properties that must be provided by the target
system. These are implemented either by the firmware or the hardware.

The requirements for the stepper-motor controller are specified as follows:
• FR-01 When no command specifying motor speed is received for a period of

time (configurable, e.g., 1 s), the controller shall stop both motors.
• FR-02 When multiple communication interfaces are connected, the system

shall prioritize CAN bus, then I2C. USB has the lowest priority.
• FR-03 The controller shall set motor current based on the ramping state.

When the motor is still, low current shall be set; when the motor is accel-
erating, high current shall be set; when the motor is moving with constant
speed, the current shall be set to some medium values. These values shall be
configurable.

• FR-04 All relevant values (currents, timings, limits, etc.) shall be configurable
via USB or CANOpen SDO protocol.

• FR-05 The controller shall be able to ramp the speeds using at least trape-
zoidal ramps, and their parameters shall be configurable.

• FR-06 The controller shall support control in speed mode as well as position
mode.

• FR-07 The controller shall provide basic electrical safety features - such as
fuses and reverse voltage protection.

• FR-08 The controller shall have an interface allowing to connect external
encoders (absolute or incremental) during future development.

2.6.2 Non-functional Requirements
Non-functional requirements are properties that the system must have but are not
directly features or functions but rather properties of the system as a whole.
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• NFR-01 The controller shall provide developer-friendly protocol and data
formats.

• NFR-02 The controller shall be programmable without programmer, ideally
using DFU (Device Firmware Update).

• NFR-03 The controller shall be configurable using a program for personal
computers.

• NFR-04 The firmware shall be easily extensible.
• NFR-05 The firmware shall employ unit testing for QA (Quality Assurance).
• NFR-06 The firmware should utilize software in the loop integration testing

for QA.
• NFR-07 The firmware shall be properly documented.
• NFR-08 The functionality of the controller shall be demonstrated using two

distinctive applications.

2.6.3 Constraints
Constraints specify limitations on how the system must be built. They specify, for
example, hardware limitations, technologies, protocols, conformance to standards,
etc.

• C-01 The controller shall utilize stepper drivers with silent operation, such as
Trinamic StealthChop™.

• C-02 The controller shall be able to drive motors with phase current of up to
2 A RMS.

• C-03 The controller shall feature CAN bus, I2C bus and USB.
• C-04 The controller shall utilize two stepper motor drivers.
• C-05 The controller shall adhere to the CANOpen protocol.
• C-06 The controller hardware shall be small, ideally smaller than the Rasp-

berry Pi SBC.
• C-07 The firmware for the controller shall be developed using the Rust pro-

gramming language.
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2.7 Electronics Design
This section describes the electronics of the SM4 stepper motor controller. First,
the critical components are selected, and preliminary design is done based on the
requirements stated in the Section 2.6. Second, the design of the electronics is
described. There were two electronics revisions, where different stepper motor driver
IC was used in each of them. In the description, the second revision is prioritized
except for the design of the circuit of the stepper motor controller IC where both of
the revisions are described.

In the Figure 2.16, we can see the block diagram of the controller. The central
part is the MCU, which is connected to the two stepper motor drivers and encoders
(hardware encoders are only available in the second electronics revision). Further,
there are also peripheral chips and components used to utilize the CAN, I2C and
USB buses. The whole controller is powered by the power system providing correct
voltages and electrical protection.

Fig. 2.16: The block diagram of the SM4 stepper motor controller.
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2.7.1 Hardware Design Choices
In this section, we describe the choices made at the beginning of the design process,
ones that are vital to the functionality of the whole system. The design choices are
based on the requirements stated in the Section 2.6, the related work described in
the Chapter 1 and our prior experience.

MCU

The most critical component of the stepper controller is the MCU. The MCU needs
to accommodate for the outer communication interfaces as well as the internal ones.
That means that as for the outer communication interfaces, it needs to have periph-
erals for CAN bus, I2C and USB, as stated in the requirement C-03. The internal
communication interfaces are revision dependent, however, the stepper controllers
generally require GPIOs, PWM outputs, serial interfaces, and for the future en-
coder support, it should require incremental encoder interfaces and SPIs for SSI
bit-banging (as stated in requirement FR-08). As was described in the Chapter on
Related work 1, we decided to move from Cortex-M0 and Cortex-M0+ based ARM
MCUs to more powerful Cortex-M4 MCUs. The biggest advantage of these cores is
that they fully support atomic instructions, improving memory safety in ISRs, and
also that they have FPU (Floating Point Unit).

Given the past experience with the STM32 family of ARM microcontrollers, we
decided to select the STM32F4 product line, more specifically with the STM32F405RGT6,
which features one megabyte of flash and 192 kilobytes of RAM and can be run with
the 168 MHz clock[72]. The block diagram of the MCU with the core features and
peripherals can be seen in the Figure 2.17.
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Fig. 2.17: The block diagram of the STM32F405RG MCU [73].

This MCU conforms to all the requirements and has enough peripherals to sup-
port future development.

2.7.2 Stepper motor driver IC
We performed a simplified comparison of stepper motor driver ICs in order to select
a proper one for the SM4 stepper motor controller. Since the beginning, we were
aiming at using the Trinamic made stepper motor driver ICs since there are very
good references from the 3D printing community[74, 75, 76] for them, and we wanted
to secure the silent function of the motor controller. With the prior experience with
DRV8825 and the A4988 modules described in the Chapter on Related work 1, we
decided to select two drivers from Trinamic - the first hardware revision utilizes
the TMC2100-TA as we aimed for the as simple IC as possible and also maximum
voltage of about 43 V, while the second hardware revision utilizes the TMC2226-SA,
which is a more modern, and a fully-featured stepper motor driver IC, which also has
higher peak current. By selecting these two stepper driver ICs, we are conforming
to the requirements C-01 and C-02. The comparison can be seen in the following
table:
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SM4 power design

The power design of the SM4 stepper motor controller is fairly simple. According
to the requirements, the only requirement for it is to provide basic electrical safety
features, such as fuses and reverse voltage protection FR-07. The controller features
two power rails - one for the power electronics that can utilize quite high voltages
and one 5 V for the MCU and the peripheral circuits. With the first revision, we
were considering using a single power rail with all voltages derived from the power
electronics one. This was, however, dismissed as a buck converter from quite a high
voltage would be required, and designing a buck converter is out of the scope of this
project and also the motor controller was never meant to be used as a standalone
device, meaning that another device could provide the power for the 5 V rail. The
buck converter would also pose EMI (ElectroMagnetic Interference) problems and
would increase the price of the motor controller. In the end, the 5 V power rail is
properly fused, filtered, and given that the voltage may come from different sources,
also merged using diodes. The power electronics rail, on the other hand, is only
filtered. A block diagram depicting the power system can be seen in the Figure 2.18.

Fig. 2.18: The block diagram of the power system.
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PCB

In order for this project to serve as a testbed for new manufacturing technologies,
the PCB (Printed Circuit Board) was designed as a 4-layer one. The ability to
design the board as a 4-layer one was enabled by the 4-layer PCB manufacturing
price decrease by China-based PCB manufacturing companies. Big advantage of
designing the PCB as 4-layer one was speedup of hardware development - the 4-
layer stack up can be utilized so that there is no need to route power to the ICs. In
our case, we chose the inner layers to be filled with copper planes - one connected
to GND and the other one connected to +3.3 V. This way, whenever a connection
to +3.3V or GND was required, simply connecting the pad to new via close-by was
sufficient. Apart from being used for power distribution, the large copper planes
allow for better PCB cooling and some minor signal connections in cases routing
using the outer layers would prove difficult. The used stack up can be seen in the
Figure 2.19.

Fig. 2.19: The 4-layer PCB stackup.

Another way to test manufacturing capabilities was utilizing the automated as-
sembly service provided by the China-based PCB manufacturers. This not only
saved a lot of time with manual assembly but also enabled us to use smaller com-
ponents than before - the imperial size 0402.

As for testing out EDA (Electronic Design Aid) software, the KiCAD EDA was
used instead of the well-known Eagle. The KiCAD EDA has improved dramatically
in the past years (version 5 and soon to be released version 6), making it a great
alternative to conventional EDA suites. The big advantage of KiCAD is a large
footprint and symbol library, which often contains even the 3D models, and KiCAD
itself is able to seamlessly integrate them and render a 3D view of the designed PCB.
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2.7.3 The MCU and its Auxiliary Circuits
Designing the MCU and its auxiliary circuits is based on the STM32F405 datasheet[83]
and on an example design by Philip Salmony described in a YouTube video[84].
Apart from different stepper motor driver IC connections, there are only minor
differences between the hardware revisions.

The design follows the video closely, as its development approach seems sound.
First, the preliminary design is done using the STM32CubeMX tool. The tool allows
users to select the target MCU and graphically assign alternate functions to pins
(each GPIO pin on an STM32 features multiple alternate functions, connecting for
example SPI bus to the pin). Given that some internal MCU peripherals can be
connected to multiple GPIOs and alternate functions, it is also possible to optimize
the design and wiring based on the preliminary layout of the PCB by changing
alternate function assignments. The assigned alternate functions to the MCU for the
second revision of the hardware can be seen in the Figure 2.20. The STM32CubeMX
is also capable of setting up the peripherals and can generate initialization code for
the peripherals and the whole C/C++ project with everything set up.
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Fig. 2.20: Designing the MCU connections using STM32CubeMX.

After the pin and alternate functions assignment was done, we used the informa-
tion from the datasheet to design the MCU circuitry itself. The electronic schematic
can be seen in the Figure 2.21, there are not that many components in this part of
the schematic. There are only two VCAP capacitors with values taken from the
datasheet [83]. Furthermore, there are net labels connected to other parts of the
schematic.
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Fig. 2.21: The MCU schematic.

More interesting parts of the MCU schematic are the auxiliary circuits shown in
the Figures 2.22 and 2.23. The Figure 2.22 depicts the power supply filtering circuits.
As per the datasheet[83], for each VDD there should be a 100 nF capacitor, and
there should be a single 4.7 uF capacitor on the rail.

As for the analog filtering circuit, a simple low-pass filter utilizing a ferrite bead
was employed, as can be seen in the Figure 2.22, the circuit was taken from the
example project[84].
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Fig. 2.22: The MCU power supply filtering schematic.

The Figure 2.23 shows other MCU auxiliary circuits - boot mode selection, reset
and external crystal oscillator. The boot mode selection consists of an SPDT (Single
Pole Double Throw) switch that connects the BOOT0 GPIO to either 3.3 V or GND
through a 10 kWresistor. Pulling the BOOT0 down to GND enables normal boot,
where the MCU starts the controller’s firmware, on the other hand pulling the pin
up to the 3.3 V makes the MCU boot its bootloader, and it can be programmed
using the DFU protocol via USB.

The reset pin on the schematic is connected to a jumper with a small filtering
capacitor of 10 nF for debouncing. A pull-up resistor required for the reset to work
is already included in the MCU therefore, an external one is not required.

The external crystal clock is required for USB to work. In our case, we utilized
the oscillator circuit used in the example project, where we kept the value of the
load capacitor of 12 pF, ignoring the stray capacity of the PCB, for improved per-
formance of the oscillator, the following equation may be utilized to compute the
load capacitance.

𝐶𝑙𝑜𝑎𝑑 = 2 * (𝐶𝑙𝑜𝑎𝑑−𝑑𝑎𝑡𝑎𝑠ℎ𝑒𝑒𝑡 − 𝐶𝑠𝑡𝑟𝑎𝑦) (2.1)

In the equation, the 𝐶𝑙𝑜𝑎𝑑−𝑑𝑎𝑡𝑎𝑠ℎ𝑒𝑒𝑡 is the load capacitance specified by the datasheet,
and the 𝐶𝑠𝑡𝑟𝑎𝑦 is the stray capacitance of the PCB. The feed resistor value was also
used as it was in the example project, but the specific value calculation can be found
in the Application Note AN2867[85].
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Fig. 2.23: Auxiliary circuits for the MCU - boot mode, reset and oscillator.

2.7.4 Power System
As was discussed in the Section 2.7.2, the power system consists of two rails - the
power electronics rail and the 5 V rail for the MCU and supplementary circuits. In
both cases, the rail should be filtered and should employ some safety features.

As for the power electronics rail, only input voltage filtering using capacitors was
utilized. The main reasoning is that this should be fused on the power source side
and that reverse-voltage protection would require quite large components.

The situation is different with the 5 V power rail for peripherals and the MCU.
This power rail utilizes 500 mA PTC fuse, reverse-voltage protection implemented
using P-channel MOSFET, and a low-pass filter comprising of a ferrite bead and a
capacitor. This power rail is connected to the connectors with CAN bus and I2C.
The output of the filtered power rail is merged with a 5 V power coming from the
USB-C connector (which is also fused using a 500 mA PTC fuse) using Schottky
diodes. For powering the MCU with 3.3 V, the 5 V is regulated with an LDO
(Low-Dropout) regulator. The whole power rail can be seen in the schematic in the
Figure 2.24.

In the future revisions, the input protection circuits may be replaced by an
eFuse[86, 87], an IC integrating the input power protection circuits such as overvolt-
age protection, undervoltage protection, overcurrent protection and reverse-voltage
protection.

72



Fig. 2.24: The 5 V power rail for powering the MCU and peripherals.

2.7.5 CAN Bus Circuitry
In order to transmit CAN frames over the CAN differential pair, a transceiver that
converts digital signal from the MCU to the differential signal needs to be utilized.
We utilized the MCP2562 transceiver because we needed it to support 3.3 V logic
levels for the MCU and 5 V levels for the differential pair, and we also had previous
experience with the transceiver. In the future revisions, this transceiver will most
likely be replaced by the newer MCP2562-FD transceiver as the currently used one
is "Not Recommended for New Designs"[88].

The schematics of the transceiver circuits can be seen in the Figure 2.25. On the
left, we can see a resistor network that can be utilized to support other transceivers
as they are commonly pin-to-pin compatible except for the Vio and STBY pins
that usually have a different function. On the right, we can see the bus termination
resistor with a jumper and two connectors to connect the SM4 controller with other
circuits. The capacitors on the bottom are used for power rail filtering.
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Fig. 2.25: The schematic of the CAN bus transceiver circuitry.

2.7.6 USB Circuitry
For configuration and flashing purposes, a USB connection was added. The schematic
for it can be found in the Figure 2.26 and was inspired by the example project
video[84]. As can be seen in the schematic, there are not many external components
required for the USB to work. This is caused by the fact that the correct passive
components are contained directly in the MCU. According to the AN4879[29], the
USB peripheral already includes the D+ pull-up resistor, so it is not required to
be realized by an external component. On the left, we can see an ESD (Electro-
Static Discharge) protection circuit, protecting the MCU from electrostatic discharge
caused by human contact on the connector. It protects both the data lines and the
VBUS.

On the right, we can see a USB-C™receptacle. Both data lines of the differ-
ential pairs are connected together to support USB-C™reversibility. A pull-down
resistor with the value of 5.1 kWwas connected to both of the CC lines of the USB-
C™connector. These resistors are used for device discovery, configuration, and
connection management over a USB-C™cable and also for communication in case
the device has the power USB Power Delivery[89], which our device doesn’t support.
As an additional protection measure, a PTC fuse is added to the VBUS power rail.
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Fig. 2.26: The schematic of the USB circuit.

2.7.7 Stepper Driver Circuitry
There are two hardware revisions with two types of stepper motor driver ICs. Both of
the circuits were adapted from the IC datasheet[79, 82]. The datasheet recommends
motor voltage filtering using quite large electrolytic capacitors (100 µF). In order to
save vertical space, these capacitors were replaced using 10 µF capacitors with the
maximal voltage of 50 V.

Revision 1

The schematic for the circuit of the first revision can be seen in the Figure 2.27.
This revision utilized the TMC2100-TA driver IC. This driver is configured using
GPIO, and it is configured in the following way:

• use internal sense resistor with AIN as a current reference for internal sense
resistors or use external sense resistors with AIN for scaling,

• use either SpreadCycle™or StealthChop™with interpolation and 16 microsteps,
• shortest slow decay phase,
• recommended chopper hysteresis - low hysteresis with 4% of full-scale current,
• shortest chopper blank time,

These values were chosen by following the recommended values from the datasheet.
In the schematic, which was adapted from the recommended schematic in the
datasheet[79], we can see the motor power rail filtering capacitor composed of five
10 µF capacitors. Then there are some more filtering capacitors and capacitors for
the integrated charge pump. In the center of the schematic, there is the driver IC
itself. The driver IC is controlled using the REF, EN, STEP, DIR and MODE
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signals, to indicate for an error, the ERR signal is consumed by the MCU. The
current sensing resistor values are set to 0.22 W, allowing for driving motors with
0.96 A RMS phase current.

Fig. 2.27: The schematic of the stepper motor driver IC in the first revision.

Revision 2

In the Figure 2.28, we can see the schematic of the second hardware revision with
the TMC2226-SA stepper motor driver IC. On the top, we can see the motor power
rail filtering capacitors and also some auxiliary capacitors required by the datasheet.
In the center, there is the driver IC itself. There are again some filtering capacitors
and connections to the motor and to the MCU. The driver’s address need to be
set using the MS1_AD0 and MS2_AD1 pins to support multiple drivers on
the same UART configuration interface. There are also some other configuration
pins, but these have not been connected as their function can be replaced by the
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configuration interface. For controlling the driver IC, the STEP and DIR pins are
utilized. Finally, in the bottom right corner, there are the current sensing resistors
for the motor phases current. Their value was chosen by the datasheet to support
the maximal RMS phase current of 1.92 A - 0.1 W. It is important to select resistors
with the proper power rating, in this case 𝑃 = 𝑅 * 𝐼2 = 0.1Ω * (1.92𝐴)2 = 0.4𝑊 ,
therefore we need resistors rated for at 0.5 W of power dissipation.

Fig. 2.28: The schematic of the stepper motor driver IC in the second revision.

2.7.8 Auxiliary Circuitry and Connectors
We added some auxiliary circuits (shown in the Figure 2.29) and future-proofing
connectors (shown in the Figure 2.30) to improve the user experience, debugging,
and making the controller future-proof a bit.

In the Figure 2.29, we can see that there are four LEDs for debugging and
indicating the driver’s state. Two of them indicate power on the 3.3 V rail and on
the motor power rail (VCC). The other two LEDs are connected to the MCU and can
be utilized to show the status and error states of the SM4 driver. Further, there is
the voltage divider used for sensing the motor power rail voltage. Apart from the two
resistors, there is also a small filtering capacitor. The resistor values were calculated
for the first revision which aimed to support up to 43 V, given this voltage, the output
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voltage on the divider would be 𝑈𝑜𝑢𝑡 = 𝑈𝑖𝑛 * 𝑅19
𝑅18+𝑅19 = 43𝑉 * 4.7𝑘Ω

104.7𝑘Ω = 1.93𝑉 , which
is small enough for the internal ADC of the MCU.

We also added I2C pull-up resistors, that can be connected to the bus using
solderable NO (Normally Open) jumpers. The values for these pull-up resistors
were chosen to be 2.2 kW. This is because we want to connect the driver using wires
with unknown parasitic capacitance, which can be compensated by lower resistance
of the resistors. Another reason is that the student boards have Zener diodes limiting
the voltage on the I2C bus lines, and these diodes require quite a high current to
function properly.

Fig. 2.29: Auxiliary circuits schematic - LEDs, I2C, motor voltage measurement.

We wanted to future-proof the SM4 driver, and therefore, we added three con-
nectors that will enable expanding the controller in the future. The connectors’
schematic is depicted in the Figure 2.30. The first connector on the left is a con-
nector designed to add two incremental encoders to the stepper driver. It supports
quadrature encoders with index pulse. The second connector in the middle is the
GPIO connector, which can be used to expand the driver’s capabilities using five
logic signals. Finally, on the right, there is a connector with two SPI buses broken
out, which should allow for connecting SSI absolute encoders by bit-banging the SSI
bus.
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Fig. 2.30: Schematic of connectors that allow for connecting incremental and abso-
lute encoders and extending the driver with logic signals.

2.7.9 PCB Design
When the schematic design was done, we went on to route the PCB. As for the layer
stack up, we utilized the four-layer one, with internal layers used for GND and 3.3 V
routing and the outside layers for signals. The stack up was previously described
in the Section 2.7.1. With trace widths and via sizes, we aimed for compatibility
with the technologies provided by the JLCPCB manufacturing house, but adding
some margin to be safe there are no problems with manufacturing, which meant
0.2 mm minimal trace width and 0.8 mm wide vias, with 0.4 mm via drill size.
Given limitations with the assembly service, all of the components are placed on the
top side of the PCB. The PCB was designed to fit the area on the Raspberry Pi
behind the ethernet and USB ports and is therefore 65x56 mm. When designing,
we also aimed to have the power and communication connectors along a single side
of the PCB and connectors for the motors on another one. The final PCB design
for both of the revisions can be seen in the Figures 2.31 and 2.32.

Fig. 2.31: Rendered first revision
PCB.

Fig. 2.32: Rendered second revision
PCB.
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2.8 Development of the Bare-Metal Firmware
This Section describes the development of the bare-metal firmware. First, we go
over the firmware architecture, describing the technology stack and the architecture
itself. Second, we go over some components of the firmware that are either crucial
to the firmware, or their implementation stands out in any way.

2.8.1 Firmware Architecture
Firmware architecture can be described in many ways. We decided to show three
ways to describe this firmware. First, we describe the technology stack, describing
what crates and libraries upon which we built the hardware. These libraries have
mostly been described in the Section 2.4. The technology stack can be seen in the
Figure 2.33. When we go from the bottom, to the top, we can see that we access the
hardware MCU via two crates - the stm32-rs used to access peripheral circuits of
the MCU and the cortex-m crate used to access the ARM core of the MCU. The
stm32f4xx-hal builds upon the stm32-rs crate and provides Hardware Abstrac-
tion Layer over the STM32F4 family and implements the embedded-hal traits.
The cortex-m crate is then used by the RTIC scheduler (described in the Sec-
tion 2.4.5). As can be seen in the Figure, the firmware itself then builds upon all of
these technologies - it accesses the HAL as some peripherals have their abstractions
developed, for some special configurations, the direct peripheral register access via
stm32-rs is used, the RTIC scheduler is used for orchestrating the firmware and for
some low-level assembly instructions the cortex-m crate for low-level ARM core
access is used.

Fig. 2.33: Bare–metal firmware technology stack.

While the technology stack gives us vital information about the architecture,
the architecture itself is much more complex and, in theory, could and should be
independent of the used technologies[90]. The architecture overview diagram can
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be seen in the Figure 2.34. The central part of the architecture is the Object
Dictionary (described in Section 2.2.2 and 2.8.2 (implementation-wise)). The object
dictionary contains the state of the stepper motor controller alongside configuration.
Part of the object dictionary is also persistent storage where its values are retained
between reboots. In the center of the firmware, there is also a general state that
stores variables outside the scope of the Object Dictionary and software failsafe
mechanisms that can manipulate bot the state and object dictionary. When we
look lower in the diagram, we can see that there are communication interfaces that
receive data from and send them to the outer world, usually to some high-level
system. On the other hand, when we look higher in the diagram, that’s where the
motion control systems operate. They get their data from the object dictionary
(control values) and encoders and use them to control the stepper motor driver ICs.
The encoders and motor drivers are again connected to the outer world - meaning
that they interact with it via the connected motors.

Fig. 2.34: Bare–metal firmware architecture.

There is one more final point of view on the architecture, connected with the
project structure. Given there are two projects - the bare-metal firmware and the
further-described control application, there is a need to share code between those
two projects, e.g., share communication models. An vital distinction being that
the bare-metal firmware is also cross-compiled in a no_std environment. Code
sharing was solved by creating another project, that is no_std and is called shared,
both of the application projects statically link against it. This can be seen in a
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diagram presented in the Figure 2.35. We adopted the project structure from[66],
which proposes a project structure that promotes code sharing and testability of all
components.

Fig. 2.35: Component sharing between the bare–metal firmware and the Control
Application.

2.8.2 Object Dictionary
The importance and role of the Object Dictionary was described in the Sections 2.2.2
and 2.8.1. When designing the Object Dictionary, we wanted to design it to be
universally used and implemented in multiple ways (e.g., with persistent storage or
without one). The abstraction was done using traits. The most important trait
is the ObjectDictionary trait displayed in the Listing 2.17. This trait describes
the Object Dictionary as a type that contains information about battery voltage,
temperature, and an arbitrary number of axes. The axis is also represented as a trait
with accessor methods for specific axis settings (controller settings, current settings,
etc.).
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1 /// Trait for Object Dictionary abstraction
2 pub trait ObjectDictionary <const RESOLUTION : u32 > {
3 /// Returns battery voltage stored in the Object

Dictionary .
4 fn battery_voltage (& self) -> f32;
5 /// Returns temperature stored in the Object

Dictionary .
6 fn temperature (& self) -> f32;
7 /// Sets the battery voltage value in the Object

Dictionary .
8 fn set_battery_voltage (& mut self , battery_voltage :

f32);
9 /// Sets the temperature value in the Object

Dictionary .
10 fn set_temperature (& mut self , temperature : f32);
11 /// Returns the configuration of a specific axis.
12 fn axis (&self , axis: Axis) -> &dyn AxisDictionary <

RESOLUTION >;
13 /// Returns a mutable reference the configuration of

a specific axis.
14 /// This is the only way an axis configuration can be

changed
15 fn axis_mut (& mut self , axis: Axis) -> &mut dyn

AxisDictionary <RESOLUTION >;
16 }

Listing 2.17: Trait for abstracting away the Object Dictionary.

To implement a simple Object Dictionary, implementing these traits would be
enough. Still, since we wanted to create an Object Dictionary whose values can
be saved in arbitrary storage, we needed to create another abstraction for storage.
Such abstraction can be found in the Listing 2.18. As can be seen in the Listing,
the trait defines loading and saving values of 32-bit floats and boolean values for an
arbitrary type of key that implements the ObjectDictionaryKey.
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1 pub trait ObjectDictionaryStorage {
2 fn save_f32 <KEY: ObjectDictionaryKey >(& mut self ,
3 key: KEY , value: f32);
4 fn save_bool <KEY: ObjectDictionaryKey >(& mut self ,
5 key: KEY , value: bool);
6 fn load_f32 <KEY: ObjectDictionaryKey >(& self ,
7 key: KEY) -> Option <f32 >;
8 fn load_bool <KEY: ObjectDictionaryKey >(& self ,
9 key: KEY) -> Option <bool >;

10 }

Listing 2.18: Trait for abstracting away the Object Dictionary storage.

Using all the aforementioned traits, we then developed an Object Dictionary
implementation called the PersistentStoreObjectDictionary, which is generic over
the ObjectDictionaryStorage, meaning that an arbitrary storage type can be used
with it. Similar to the Object Dictionary traits, we also needed to develop a Per-
sistent Store Object Dictionary for axis data, which is also generic over the Object
Dictionary Storage and can be seen in the Listing 2.19.

An important note is that now when any part of the code needs to access the
Object Dictionary, it is done by hiding the real implementation behind dynamic
dispatch based on the ObjectDictionary trait.

Since we are expecting that the only way a value can be written into the Object
Dictionary is using the accessor methods, we employ buffering to make storage
reads more scarce, therefore more making the ObjectDictionary more effective. This
basically means that at the firmware startup, all the values are loaded to RAM, and
the storage is not accessed when reading.
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1 #[ derive (Copy , Clone)]
2 pub struct PersistentStoreAxisDictionary <
3 STORAGE : ’static + ObjectDictionaryStorage ,
4 const RESOLUTION : u32 ,
5 > {
6 axis: Axis ,
7 mode: AxisMode ,
8 enabled : bool ,
9 target_velocity : Velocity ,

10 actual_velocity : Velocity ,
11 target_position : Position <RESOLUTION >,
12 actual_position : Position <RESOLUTION >,
13 current : CurrentSettings ,
14 velocity_controller_settings : ControllerSettings ,
15 position_controller_settings : ControllerSettings ,
16 velocity_feedback_control_enabled : bool ,
17 acceleration : f32 ,
18 storage : &’static Mutex <RefCell <STORAGE >>,
19 }
20 impl < STORAGE : ’static + ObjectDictionaryStorage , const

RESOLUTION : u32 >
21 AxisDictionary <{ RESOLUTION }> for

PersistentStoreAxisDictionary <STORAGE , RESOLUTION >
22 {
23 fn set_accelerating_current (& mut self , current : f32)

{
24 self. current . set_accelerating_current ( current );
25 self. storage .lock (). borrow_mut (). save_f32 (
26 Key :: key_for_axis ( AxisKey ::

AcceleratingCurrent , self.axis),
27 current ,
28 );
29 }
30 ...
31 }

Listing 2.19: Object Dictionary for persistently storing axis data.
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2.8.3 Persistent Storage Using EEPROM Emulation
In the previous Section, we discussed the development of storage-agnostic persis-
tent Object Dictionary, and in this section, the way we implemented the persistent
storage is described. Persistent storage on MCUs is generally solved by using non-
volatile memory that can be either part of the MCU or an external component.
Different memory technologies may be used for both types of storage. In general,
FRAM (Ferroelectric Random Access Memory), EEPROM (Electrically Erasable
Programmable Read-Only Memory), or flash memories are used.

To save space on the PCB, save cost, and better utilize the MCU resources,
we decided to use the internal flash memory to store the user data apart from the
driver firmware. Even though flash memory may seem straightforward to use since
they are ubiquitous, its low-level use is not that simple. Flash memory is generally
divided into sectors that can be several kilobytes or megabytes large. These sectors
can be electrically erased - which means that every bit in the sector is set to 1.
Depending on the memory, a word of a specific size can be programmed, but it is
only possible to flip the bits in the word to zero [91, 92]. The sector needs to be first
erased and then programmed to write a higher number to the word in the sector.
This is problematic for two reasons:

1. sectors generally have the size of several kilobytes, meaning that when you’d
want to update the value in the desired word, the whole sector would have to
be read to some other memory, erased, and then programmed again with the
new, updated value,

2. there is a limited number of the whole sector erases, caused by the limitation
of the hardware.

Fortunately, this problem can be solved by emulating the EEPROM memory as
described in ST Application Note AN3969 [93]. The application note leverages two
FLASH sectors of the same size, where one of them is marked as the active one
and the second one is used when the first sector is full. The working principle is
described in the following paragraphs and can be seen in the Figure 2.36.

In the beginning, both of the sectors are erased, and one of them is marked
as active. Data are then written to the first sector into simulated cells. The cells
contain a header (which can be understood as a key or a virtual address) and the
data. When a new write is requested, the data are appended behind the already
stored data. When data is read using the virtual address, or a key, the sector is
traversed from its end, searching for the first occurrence of the key or address. The
first occurrence is the most recent value of the cell marked by the key. This way,
we are able to store the value with a specific identifier (key, virtual address) in the
flash multiple times.
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When no more cells can be written to the active sector, the second sector is
marked active. The data are transmitted to the second sector, taking only the latest
value of an identifier into account. After the transfer, the first sector is erased.

Fig. 2.36: EEPROM emulation working principle [93].

Even though the working principle of the EEPROM emulation is simple, there
are some technical obstacles in the implementation. The first obstacle is that the
flash memory on the STM32 MCU is split into differently sized sectors, and it is
required that the sectors have the same size. Referring to the Reference Manual [72]
there are some 16 kilobyte sectors that could be used for the emulation, as can be
seen in the Figure 2.37. Using the 128 kilobyte sectors would also be possible, but
given their size, copying values from one sector to another would take too much
time, and also, read access times would be higher.
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Fig. 2.37: FLASH layout of the STM32F405 MCU [72].

There is, however a problem with using the sectors in the beginning of the flash
memory as that is where the firmware is usually stored. The solution to this problem
is by leaving the first sector (Sector 0) for the vector table and instructing the linker
to place the .text section of the program further in the memory. According to the
documentation of the cortex-m Rust crate [94], this can be achieved by adding the
line _stext = ORIGIN(FLASH) + OFFSET to the linker script, where the
OFFSET shall be replaced with the offset of the target sector where we want our
program to be stored, in our case 0x0000C000, which indicates the start of the
Sector 3.

As for the actual implementation of the emulation for the STM32F405, we de-
cided to develop our own, as no suitable Rust crate was available for it. The devel-
opment was inspired by a crate that implemented the emulation for STM32F103 [95]
and by following the implementation in the Application Note. The functions from
flash memory access were adopted from an as of the time of writing unmerged Pull
Request into the STM32F4 HAL [96]. An example of accessing the emulated per-
sistent storage can be seen in the following Listing 2.20.
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1 let mut store = Storage :: new(device.FLASH);
2 store
3 .init ()
4 .expect("Failed to initialize emulated storage .");
5 store. write_f32 (0 xbeef , 3.14);
6 let read = store. read_f32 (0 xbeef).unwrap ();
7 assert_eq! (read , 3.14);

Listing 2.20: An example use of the emulated persistent storage.

As can be seen in the Listing 2.20, first we create the object with a parameter
of the flash peripheral, then we initialize the emulated storage - this prepares the
sectors that are supposed to be used, and then we perform a simple write and read
operations on the storage.

2.8.4 CANOpen Implementation
The CAN bus on STM32 is implemented in hardware in the bxCAN peripheral. This
peripheral is the same for all of the STM32F MCUs, only with slight differences in
filter banks and message mailbox sizes. Given this fact, it was possible to develop
a crate that supports all of the STM32 MCUs, the crate is called bxcan and is
developed the stm32-rs organization.

In the past projects described in Chapter 1, we utilized our own implementation
of a driver for the bxCAN peripheral, but since the bxcan crate is well maintained,
documented, and tested, we decided to discontinue the development of the driver
and migrate to bxcan.

In order to implement the CANOpen protocols described in the Section 2.2.1, we
developed a simple wrapper over the bxcan crate. The wrapper is basically a simple
proxy that transforms CANOpen protocol data to CAN frames and sends them and
parses received CAN frames into CANOpen protocol data. Upon initialization, the
wrapper first configures the bxCAN peripheral, enables interrupts, and enables the
peripheral itself.

The bxCAN initialization in the wrapper can be seen in the Listing 2.21.
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1 let mut bus = Can :: new(bus);
2 bus. configure (| config| {
3 config. set_bit_timing (0 x001a000b );
4 });
5 bus. enable_interrupts (
6 Interrupts :: FIFO0_MESSAGE_PENDING | Interrupts ::

FIFO1_MESSAGE_PENDING ,
7 );
8 bus. modify_filters ()
9 .clear ()

10 . enable_bank (0, Mask32 :: accept_all ());
11 bus. set_automatic_wakeup (true);
12 nb:: block!(bus.enable ()).unwrap ();

Listing 2.21: Initializing the bxCAN peripheral in the CANOpen wrapper.

When an interrupt handler is invoked, the function process_incoming_frame
is called, and it returns the type of the CANOpen protocol message alongside with
received frame. If the frame contains a valid CANOpen message, the CAN frame is
further parsed, for example, to decode the contents of the PDO as can be seen in the
Listing 2.22 In the Listing, we can also see accessing the generic ObjectDictionary
via the structure DriverState.
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1 pub fn rx_pdo2 <OD , const R: u32 >( frame: &Frame , state: &
mut DriverState <OD , R>)

2 where
3 OD: ObjectDictionary <R>,
4 {
5 if frame.data (). is_none () {
6 defmt :: warn!(" Invalid RxPDO2 received .");
7 return;
8 }
9 if let Ok(pdo) = RxPDO2 :: try_from (frame.data ().unwrap

().as_ref ()) {
10 state
11 . object_dictionary ()
12 . axis_mut (Axis :: Axis1)
13 . set_target_velocity ( Velocity :: new(pdo.

axis1_velocity ));
14 state
15 . object_dictionary ()
16 . axis_mut (Axis :: Axis2)
17 . set_target_velocity ( Velocity :: new(pdo.

axis2_velocity ));
18
19 state.

invalidate_last_received_speed_command_counter
();

20 } else {
21 defmt :: warn!(" Malformed RxPDO2 received .");
22 }
23 }

Listing 2.22: Accessing the Object Dictionary when a RxPDO2 is received.

2.8.5 I2C Slave Implementation
Implementing I2C slave on a MCU is a cumbersome problem, as there is not enough
documentation or example code. Timing of the bus, requiring the slave to react
within relatively short time, makes development and debugging harder. On the
other hand with the help of defmt and RTT this is not a problem anymore. We
had already developed one implementation of the I2C Slave handling for STM32F0
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MCU as a part of the KM3 firmware described in the Section 1.2. Unfortunately, the
STM32F4 family has a different version of the I2C peripheral than the STM32F0,
resulting with significant changes to the peripheral handling code, even though the
external API remained the same. The I2C2 peripheral is utilized, and it is configured
to use the 7-bit addressing mode, with enabled clock stretching to give the MCU
more time to prepare the data for transfer. Finally, all the interrupt sources are
enabled. The peripheral has two interrupt vectors - one for data-related interrupts
I2C2_EV and one for error-related interrupts I2C2_ER. When the error-related
interrupt handler is invoked, the error flags are cleared, and the transfer is reset.
In the data-related interrupt handler, the state machine implementing the I2C slave
register-based protocol (described in the Section 2.2.3) is implemented. The result
of calling the data interrupt handling function is a state which denotes what is
expected by the higher-level system - the data can be either requested or received.
The upper-level system then handles transferring the data between the I2C slave
implementation’s buffers and the Object Dictionary.

2.8.6 USB
The integrated USB on the SM4 stepper motor controller has two functions - it
enables the possibility to upgrade the firmware via DFU (handled by the internal
MCU bootloader) and provides an interface for configuration (developed by us in
the firmware). For the configuration, the USB utilizes the CDC-ACM device class,
which means that to the host device, the SM4 controller turns up as a serial port.
Thankfully, given the ubiquity of USB devices, crates for implementing USB devices
on the STM32 are already developed. There is the crate usb-device providing the
USB stack and abstractions for hardware[97], the stm32-usbd[55] implementing
the hardware abstraction and usbd-serial[98] implementing the CDC-ACM device
class for the usb-device stack.

The implementation of this functionality in the firmware is done via the US-
BProtocol struct, which is basically a wrapper over the raw USB Serial port func-
tionality. This wrapper is interrupt-driven, quite similarly to the I2C Slave driver,
meaning that the received data is parsed when an interrupt handler is invoked, and
the data is then exchanged between the wrapper and the Object Dictionary.

An example of configuring the USB device can be found in the Listing 2.23.
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1 let usb_dev = unsafe {
2 UsbDeviceBuilder :: new( USB_BUS .as_ref ().unwrap (),

UsbVidPid (0 x16c0 , 0x05e1))
3 . manufacturer ("MH Robotics ")
4 . product ("SM4")
5 . serial_number (" sm4202101 ")
6 . device_class ( usbd_serial :: USB_CLASS_CDC )
7 .build ()
8 };

Listing 2.23: Initializing the USB device with the CDC-ACM class.

The used device VID and PID were adopted from the VUSB project[99], that
provides them for free with some rules about their use.

2.8.7 Stepper control
Movement of stepper motors, controlled using the stepper motor driver ICs is gen-
erally controlled using the STEP/DIR interface. This interface consists of two
signals, the first of them named STEP is a square wave signal with variable fre-
quency, where the edges (rising, falling, or both) instruct the driver to move the
motor by a microstep. On the other hand, the second signal named DIR is gener-
ally a logic signal whose logic level denotes the direction of the shaft movement.

Apart from these two digital signals, there is usually an analog signal that is
used to set the motor phase current. In more modern stepper drivers, this analog
signal is replaced by a serial digital interface, allowing for a finer current setting.

The STEP signal can be generated either in software (by changing the output
logic level of a GPIO pin) or in hardware by utilizing a pwm signal with the duty
cycle of 50 %. Both of these approaches have their limitations and advantages.
Generating the signal in software has the advantage of being able to easily count
the number of microsteps the motor was commanded to do. On the other hand the
upper limit of the maximal frequency is much lower than with hardware generation,
and this technique uses more computational resources as the signal is generally
generated using an interrupt on timer overflow, where the signal logic level needs to
be toggled (which requires branching) and the pulse counter needs to be accessed.
Using a timer with pwm allows for much higher maximal frequencies. On the other
hand counting the pulses can prove to be quite hard. This issue will be described
in more detail in the Section 2.8.8.

We decided to utilize the STEP signal generation done by the hardware as we
wanted to offload the work from the MCU core.
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To abstract the real implementation, we created a trait (see Section 2.3.5) for
setting the microstepping frequency, as can be seen in the Listing 2.24. Using this
trait, the software controlling the stepper driver IC can use either hardware or
software STEP signal generator.

1 /// This trait is an abstraction over hardware / software
that is capable of generating square wave signal of
specific frequency .

2 /// It is generally implemented by timers.
3 pub trait StepGenerator {
4 /// Sets output frequency of the generator .
5 ///
6 /// # Arguments
7 /// * ‘frequency ‘ - frequency of the output square

wave signal
8 fn set_step_frequency (& mut self , frequency : Hertz);
9 }

Listing 2.24: Trait for abstracting STEP generation.

In our case, the trait is implemented by the abstractions over the MCU’s ad-
vanced control timers 1 and 8. The abstractions over the timers are based on the
timer implementations found in the stm32f4xx-hal, but are preconfigured to gen-
erate output pwm signals and also to act as a master timer generating the clock
signal for other timers on compare.

Using this trait, we were able to define a struct that describes the TMC2100
driver, as can be seen in the Listing 2.25.

1 pub struct TMC2100 <G, STEP , DIR , DAC > {
2 generator : G,
3 _step_pin : STEP ,
4 dir_pin : DIR ,
5 current_dac : DAC ,
6 sense_r : f32 ,
7 microsteps_per_revolution : f32 ,
8 }

Listing 2.25: TMC2100 driver.

In the Listing, we can see that the driver contains a generic generator, has ownership
of the STEP pin (so that no other peripheral can access it), has ownership of the
DIR pin, DAC current reference and knows the value of the sense resistor for current
setting and microsteps per revolution for STEP output frequency setting.
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For a more seamless integration with the motion controller described in the Sec-
tion 2.8.10 the trait StepperDriver was declared as can be seen in the Listing 2.26.

1 /// This trait is an abstraction over stepper drivers .
2 /// Generally the drivers have two functions - generate

steps and set output current .
3 pub trait StepperDriver {
4 /// Sets output frequency of the driver.
5 /// this shall be the angular frequency of the output

shaft in revolutions per second.
6 ///
7 /// # Arguments
8 /// * ‘frequency ‘ - frequency of the output motor

shaft in revolutions per second
9 fn set_output_frequency (& mut self , frequency : f32);

10
11 /// Sets the target current the driver shall drive

the stepper motor with.
12 ///
13 /// # Arguments
14 /// * ‘current ‘ - the desired current in Amps
15 fn set_current (& mut self , current : f32);
16 }

Listing 2.26: Trait for abstracting the stepper motor driver IC.

This trait was then implemented for the TMC2100 structure, implementing the
stepper control itself, as is shown in the Listing 2.27.
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1 impl <G, STEP , DIR , DAC > StepperDriver for TMC2100 <G, STEP
, DIR , DAC >

2 where
3 G: StepGenerator ,
4 DIR: embedded_hal :: digital ::v2:: OutputPin ,
5 DAC: DACChannel ,
6 {
7 fn set_output_frequency (& mut self , frequency : f32) {
8 if frequency < 0.0 {
9 self. dir_pin . set_high ().ok();

10 } else {
11 self. dir_pin . set_low ().ok();
12 };
13 self. generator . set_step_frequency (Hertz :: new(
14 ( frequency .abs () * self.

microsteps_per_revolution ) as u32 ,
15 ))
16 }
17 fn set_current (& mut self , current : f32) {
18 let voltage = ( current .abs () * MAX_V_REF as f32 /

V_FS * (self. sense_r + R_OFFSET ) / 0.707) as
u16;

19 self. current_dac . set_output_voltage ( voltage .min(
MAX_V_REF ));

20 }
21 }

Listing 2.27: Implementing the StepperDriver trait for TMC2100.

2.8.8 Simulated encoders
The SM4 stepper motor controller is meant to be used without a hardware encoder
in its default hardware configuration. This requirement was caused by the reasoning
that the motor controller is also targeted for the BPC-PRP course, where students
use the distance driven by the wheels to calculate the robot’s position in the world’s
reference frame. Thankfully, with a stepper motor, it is quite easy to simulate
encoders by counting the number of microsteps the motor was supposed to move by.
The simulated encoders do not provide real feedback from the system On the other
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hand, when some conditions are met (no step skipping - no motor overloading), the
measurement from them can be quite reliable.

As we already discussed in the Section 2.8.7, we decided not to use counting the
microsteps in software but in hardware instead. This is done by chaining timers in
the MCU. We already mentioned that the timers used to generate STEP signal are
configured to be the clock source for other timers, and by counting the clock cycles,
we are able to count the number of microsteps the motor was commanded to turn
by.

The working principle is really simple and also saves computational power of the
MCU, but has one disadvantage - the amount of microsteps per sampling period is
too low to be used for velocity control, as the difference between the consecutive
position reads is usually zero and only sometimes 1. This poses a big problem for
motor control systems of any kind.

Let’s have a look at the implementation. Similar to what we did with the STEP
signal generators, we also declared a trait to abstract away the thing that counts
the pulses so that on the outside, it doesn’t matter how the counting works. The
trait can be seen in the Listing 2.28.

1 /// Trait used to abstract STEP pulse and other counters .
2 pub trait Counter {
3 /// Return the current internal value of the counter .
4 fn get_value (& self) -> u32;
5 /// Resets the internal value of the counter .
6 fn reset_value (& mut self);
7 }

Listing 2.28: Counter trait for counting STEP pulses.

The trait was implemented for timers 2 and 5 of the MCU.
Apart from this trait, an abstraction over the whole encoded was developed. The

abstraction utilizes const generics to define encoder resolution and can be seen in
the Listing 2.29.
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1 /// A trait abstracting common encoder functionality .
2 /// It is suitable for both incremental and absolute

encoders .
3 /// It is designed so its [‘Self :: sample () ‘] shall be

periodically called with known fixed period ,
4 /// which allows for velocity calculations .
5 pub trait Encoder <const RESOLUTION : u32 > {
6 /// Returns the velocity measured by the encoder .
7 /// This value is generally calculated from

consecutive position readings .
8 fn get_velocity (& self) -> Velocity ;
9 /// Returns the current position of the shaft.

10 fn get_position (& self) -> Position <RESOLUTION >;
11 /// Sets the sampled position to zero.
12 /// This is applicable only with incremental encoders

.
13 /// Absolute encoders might offset the zero by

software .
14 fn reset_position (& mut self) -> Position <RESOLUTION >;
15 /// This function shall be periodically called to

sample the encoder .
16 /// Sampled values are used for position and velocity

readings .
17 fn sample (& mut self);
18 /// This method shall be called with non - directional

encoders whenever there is a change of rotation
direction .

19 /// # Arguments
20 /// * ‘direction ‘ - indicates whether the shaft is

now turning in the clockwise or counterclockwise
direction .

21 fn notify_direction_changed (& mut self , direction :
Direction );

22 }

Listing 2.29: Encoder trait for abstracting encoders.

Based on this trait and the Counter trait, a simulated encoder was developed.
The big advantage is that the simulated encoder can be easily replaced by another
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hardware or software realized encoders. This Encoder trait is further used in the
motion controller.

For representing the position, we utilized the model used in servo controllers by
TGDrives - a signed integer denoting the number of revolutions and an unsigned
integer indicating the angle. For example, assume that we have a two-bit encoder,
and a position of 1 revolution, and the angle with the value of 2, meaning that the
position is equal to 1.5 revolutions. Now, assume that the number of revolutions is
-1, and the angle is again 2, which means that the resulting position represented by
these two numbers is -0.5. More on this implementation, alongside with tests, can
be found in the shared library in the module defining the structure Position.

2.8.9 Device Monitoring
In order to provide status and health information, simple device monitoring is em-
ployed. The monitoring system periodically reads internal MCU temperature and
the motor voltage. This functionality is implemented by accessing the internal MCU
ADC. The internal ADC utilizes the Successive approximation principle and sup-
ports up-to 19 channels[83]. The ADC is configured to read the two channels and to
use DMA to transfer the values from the peripheral to the program’s memory. Both
ADC configuration and DMA transfer are already implemented in the stm32f4xx-
hal crate, meaning that no low-level peripheral access code was required. The mon-
itoring data are periodically transferred to the Object Dictionary by the higher-level
code.

First, we configure the ADC as can be seen in the Listing 2.30. We set the
DMA transfer mode to Continuous (which reissues a DMA request on every start
of conversion) and enable scan mode, which scans all the channels in the sequence.
Further, both of the channels are configured, with the assignment to pin or special
channel, the order in the conversion sequence, and sample time, which denotes for
how many clock cycles the sample-and-hold circuits samples. Finally, the temper-
ature and VRef channel measurement is enabled as it is not enabled by default by
the hardware.
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1 let mut adc = Adc :: adc1(raw_adc , true , adc_config );
2 let adc_config = AdcConfig :: default ()
3 .dma(Dma :: Continuous )
4 .scan(Scan :: Enabled );
5 adc. configure_channel (& Temperature , Sequence ::One ,

SampleTime :: Cycles_480 );
6 adc. configure_channel (& battery_voltage , Sequence ::Two ,

SampleTime :: Cycles_480 );
7 adc. enable_temperature_and_vref ();

Listing 2.30: Configuring ADC for temperature and voltage monitoring.

Next, we configure the DMA transfer, as can be seen in the Listing 2.31. We
configure the DMA controller to issue an interrupt when the transfer is complete,
to increment addresses only in memory and not in the peripheral, and we disable
double buffering.

1 let first_buffer = singleton! (: [u16; 2] = [0; 2]).unwrap
();

2 let config = DmaConfig :: default ()
3 . transfer_complete_interrupt (true)
4 . memory_increment (true)
5 . double_buffer (false);
6 let transfer = Transfer :: init(dma , adc , first_buffer ,

None , config);

Listing 2.31: Configuration of the DMA controller for ADC transfers.

The monitoring system is then periodically asked to poll data from the ADC by
starting the transfer as can be seen in the following Listing 2.32.

1 self. transfer .start (| adc| {
2 adc. start_conversion ();
3 });

Listing 2.32: Polling the ADC.

When the DMA transfer complete interrupt routine is called, the subsequent trans-
fer is prepared, and the measured data is processed using factory calibration and
formulae that can be found in the reference manual[83]. The final two coefficients
in the battery_voltage calculation represent the voltage divider described in the
Section 2.7.8. The preparation and calculation is shown in the Listing 2.33.
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1 let (buffer , _) = self
2 . transfer
3 . next_transfer (self.buffer.take ().unwrap ())
4 .unwrap ();
5 let raw_temp = buffer [0];
6 let raw_volt = buffer [1];
7 self.buffer = Some(buffer);
8 let cal30 = VtempCal30 :: get ().read () as f32;
9 let cal110 = VtempCal110 :: get ().read () as f32;

10 self. temperature = (110.0 - 30.0) * (( raw_temp as f32) -
cal30) / (cal110 - cal30) + 30.0;

11 self. battery_voltage = ( raw_volt as f32) / ((2 _i32.pow
(12) - 1) as f32) * 3.3 / 4.7 * 104.7;

Listing 2.33: Processing the data measured by the ADC.
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2.8.10 Motion Control
Motion control is a crucial component of the firmware. Based on the values stored in
the Object Dictionary, it calculates the output control signal values for the stepper
motor driver ICs. In our case, the core of the motion control component are two
nested PSD controllers. The controllers are implemented with anti-windup realized
by summator and output value clamping The algorithm used for the PSD controller
can be seen in the Listing 2.34. For ease of use, all the constants are stored in a
structure ControllerSettings.

1 let error = desired - actual;
2 self.sum += error * self. sampling_period ;
3 self.sum = self.sum.clamp(
4 -settings . max_output_amplitude ,
5 settings . max_output_amplitude ,
6 );
7 let action = error * settings . proportional
8 + settings . derivative * (error - self. previous ) /

self. sampling_period
9 + settings . integral * self.sum;

10 self. previous = error;
11 action.clamp(
12 -settings . max_output_amplitude ,
13 settings . max_output_amplitude ,
14 )

Listing 2.34: Implementation of the PSD controller with integrator.

One of these controllers (the inner one) is used for controlling output speed
based on the target speed, and the second one (the outer one) is used to control the
position. The structure of the motion controller can be seen in the Figure 2.38.
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Fig. 2.38: Motion control schematic.

In the first half of the Figure, there is the velocity controller, which is used
both when the SM4 stepper motor controller’s axis is running in the velocity or
position mode. Given that the stepper motor controllers are often driven in the
open-loop, there is an option to bypass the velocity PSD controller, meaning that
the target speed is directly passed to the ramp generator. The ramp generator is
capable of generating trapezoidal ramps with defined acceleration. An important
note being that the ramp generator is sampled at a higher frequency than the rest
of the motion controller. The algorithm for calculating trapezoidal ramps can be
seen in the Listing 2.35.

1 pub fn generate (& mut self , target_speed : f32 ,
target_acceleration : f32) -> f32 {

2 let step = target_acceleration / self.
generation_frequency ;

3 let diff = target_speed - self. current_speed ;
4 if diff.abs () < step {
5 self. current_speed = target_speed ;
6 } else {
7 self. current_speed += diff.signum () * step;
8 }
9 self. current_speed

10 }

Listing 2.35: Calculating trapezoidal ramps.
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Velocity calculated by the ramp generator is then passed to the stepper motor
driver IC via an abstraction. In the case of the closed-loop control, the bypass is not
active, and the velocity controller regulates the velocity based on the value speed
measured by the encoder. It is important to note that to successfully control in
closed-loop mode the difference between encoder samples must be higher than 0,
ideally several orders of magnitude higher.

When the SM4 stepper motor controller’s axis is running in the position control
mode, the second controller shown in the second half of the Figure is utilized. In
this case, the feedback from the encoder is utilized and this controller is a proper
closed-loop controller.

The actual motion controller implementation utilizes the StepperDriver and
Encoder traits described in the Sections 2.8.7 and 2.8.8. It is declared as follows
in the Listing 2.36.

1 /// Motion controller of an arbitrary axis.
2 /// This motion controller expects that the target driver

is controlled either in velocity or position mode.
3 /// Trapezoidal ramp generator is utilized .
4 pub struct AxisMotionController <D: StepperDriver , E:

Encoder <RESOLUTION >, const RESOLUTION : u32 > {
5 /// The target stepper motor driver , that will be

controlled by this motion controller .
6 driver: D,
7 /// The encoder , that will be used to provide

feedback for closed loop control
8 encoder : E,
9 velocity_controller : PSDController ,

10 position_controller : PSDController ,
11 ramp_generator : TrapRampGen ,
12 /// Variable used to store the calculated velocity

action for ramp generator .
13 axis_velocity_action : f32 ,
14 }

Listing 2.36: Implementation of the PSD controller with integrator.

Given there are two sampling frequencies - one for control and one for ramping
(the higher one), there are two methods used to actually control the axis. The
control method calculated the output velocity based on the requirements imposed
by the object dictionary and stores it into a member variable. The ramping method
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then utilizes this value to change the output velocity. Headers of these functions
can be seen in the Listing 2.37.

1 pub fn ramp (& mut self , global_disable : bool , dictionary :
&mut dyn AxisDictionary <RESOLUTION >) { ... }

2 pub fn control (& mut self , global_disable : bool ,
dictionary : &mut dyn AxisDictionary <RESOLUTION >) { ...

}

Listing 2.37: Headers of the ramp and control functions.

As can be seen in the Listing, the motion controller operates over the generic Ax-
isDictionary trait and also features a global_disable option to disable motion in
the case a failsafe mechanism triggers.
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2.9 Development of the Control Application
Control software was developed to ease testing of the stepper motor controller func-
tionality. The control software was also developed in the Rust programming lan-
guage, utilizing a crate for TUI (Terminal User Interface) and the shared components
library from the bare-metal firmware. Initially, we aimed to develop a fully-featured
GUI (Graphical User Interface) based on the GTK framework, but this work hasn’t
left the prototyping stage as the learning curve for integrating GTK is quite steep.
In the Figure 2.39 we can see the control application, and in the Figure 2.40, there
is a screenshot of the proposed GUI developed with the GTK framework.

Fig. 2.39: The TUI control application.
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Fig. 2.40: The proposed GUI control application.

For communication with the stepper motor controller, the control application
utilizes CANOpen protocol. It periodically transmits SYNC frames and displays
the contents of the received PDOs. On various keypresses, it changes the values
of the control variables (such as axis target velocity and target position) and sends
them to the controller. This way, it can be easily tested whether the controller works
as expected.

In the future, apart from developing a proper GUI for the control application, we
want to add support for all the remaining communication interfaces and configuring
all the parameters of the stepper motor controller.
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3 Results
This chapter discusses the implemented functionality, features and the final state of
the project in general. Apart from the final project state, two demonstrations are
showcased - one of them being a small mobile robot for indoor mapping, and the
second one being a stepper motor driven linear rail useful, for example, for camera
movement.

3.1 Final Project State
This section describes the final state of the SM4 stepper motor controller project. In
the Figures below, we can see both of the manufactured PCB revisions. There were
two pieces of each of the PCB revisions manufactured. Furthermore, the API!s for
all of the buses are described.

Fig. 3.1: The manufactured revision 1
PCB.

Fig. 3.2: The manufactured revision 2
PCB.

In general, two revisions of the hardware have been developed, but only the first
one has been used for firmware development due to time constraints. The majority
of the requirements have been fulfilled. The stepper motor controller is capable
of independently driving two stepper motors in either velocity or position mode.
Thanks to the Trinamic driver ICs, the motor operation is silent. The driver now
utilizes simulated encoders to measure output shaft position. Given the controller’s
design, it can be controlled using the CANOpen protocol or via I2C and can be
configured using the USB interface.
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3.1.1 Requirements Fulfilment
At the beginning of the development, we specified requirements in the Section 2.6.
The majority of the requirements have been fulfilled, but we will describe the un-
fulfilled requirements alongside their current fulfilment status in the Table 3.1.

ID Requirement Fulfilment status
FR-02 When multiple communication

interfaces are connected, the sys-
tem shall prioritize CAN bus,
then I2C. USB has the lowest pri-
ority.

We haven’t been able to find a
mechanism for prioritizing, we be-
lieve that this requirement might
be changed as it should be the in-
tegrator’s responsibility to choose
only one of the communication in-
terfaces.

FR-04 All relevant values (currents, tim-
ings, limits, etc.) shall be con-
figurable via USB or CANOpen
SDO protocol.

Now, only a subset of the values
is configurable. More values (such
as the configuration of communi-
cation) will be implemented in fu-
ture revisions.

NFR-03 The controller shall be config-
urable using a program for per-
sonal computers.

The software for personal com-
puters was developed, but the
configuration part is missing as of
now.

NFR-6 The firmware should utilize soft-
ware in the loop integration test-
ing for QA

Some software in the loop test-
ing has been drafted with the En-
coder abstraction, but more of the
software in the loop testing will
be done in the future.

NFR-7 The firmware shall be properly
documented.

Some parts of the firmware are al-
ready documented via the inline
documentation, but the majority
of the other code is not, but it will
be done in the future revision.

Tab. 3.1: Unfulfilled requirements

3.1.2 CANOpen API
As we described in the Sections on firmware development (2.8) and the one on
CANOpen ( 2.2.1), the firmware utilizes the Object Dictionary as the central con-
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figuration storage. From the higher level systems, this Object Dictionary can be
accessed via the SDO protocol using indexes and subindexes which are specified in
the Table D.1 in the Appendix D.

Apart from accessing the Object Dictionary using SDOs, some important con-
trol and configuration values have been made accessible via the PDO protocol. The
structure of the PDOs can be seen in the Tables D.3, D.4, D.5, D.6 in the Ap-
pendix D. For completeness, the description of the PDOs can be found in the Ta-
ble 3.2.

Name Contents
TxPDO1 Contains device status - battery voltage and tempera-

ture
TxPDO2 Contains actual velocities of both axes
TxPDO3 Contains actual position of axis 1
TxPDO4 Contains actual position of axis 2
RxPDO1 Sets axis mode and enables axes
RxPDO2 Sets target velocities for both axes
RxPDO3 Sets target position for axis 1
RxPDO4 Sets target position for axis 2

Tab. 3.2: Simplified PDO contents

Alongside the SDO and PDO protocols, also the SYNC and NMT protocols have
been implemented. Note that the device must reach the NMT State Operational in
order to enable motion control.

3.1.3 I2C API
For the controller to be usable with the BPC-PRP course, we developed a simplified
API for the I2C bus. Using this API, it is only possible to set the axes mode, enable
or disable them and then to set control variables and read them. In the course, the
students utilize control in the velocity mode and then acquire the positions of both
axes for odometry calculation. In the previous Sections, we described that in order
for motion control to work, the driver needs to reach NMT State Operational. With
the I2C API, this transition is performed automatically when the axes are enabled.

The API can be found in the Table 3.3 and is based on the I2C protocol described
in the Figures 2.13 and 2.12.
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Address R/W Length [B] Description
0x10 R/W 2 axis mode and axis enable
0x2X R/W 4 set or read axis velocity, where X

denotes the axis (1, 2)
0x3X R/W 8 set or read axis position, where X

denotes the axis (1, 2)
0x40 W 8 set velocity for both axes
0x50 R 16 read position from both axes

Tab. 3.3: I2C API

3.1.4 USB API
The implemented USB API was designed to only allow for configuring the device as
per the requirements. The protocol is fairly simple. There are two types of messages
- a request and a transfer message, that can be seen in the Figures 3.3 and 3.4.

When the higher-level device wants to write a value to the Object Dictionary, it
simply sends the data transfer message, where the OD KEY contains the index and
the subindex. On the other hand, when the higher-level device wants to read a value
from the Object Dictionary, it sends the data request message, and the controller
responds with the data transfer message containing the requested value.

Fig. 3.3: A data request in the USB API.

Fig. 3.4: A data transfer in the USB API.
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3.1.5 Communication Failure Failsafe
A simple failsafe for the cases when the communication stops was employed. The
failsafe triggers when no control message is received for a specific amount of time.
Therefore it is vital to send the control data periodically. This is true for both the
CANOpen and I2C APIs.

3.1.6 Control Application
A simple control application utilizing the TUI and CANOpen protocol was devel-
oped. Controlling the stepper motor controller both in velocity and position mode
is implemented, but it is not possible to change controller parameters, such as con-
troller constants. In the future, a fully-featured control application with proper
GUI, support for all the buses and configuration will be developed in order to allow
for seamless configuration. Adding support for flashing via USB DFU is planned
too.

3.1.7 Takeaways for Future Revisions
In this section, we describe what changes we’d made in a possible future revision.
The changes are:

• Use the angular XT-30 connector for motor power.
• Use different connectors for motors.
• Use standardized 10-pin JTAG connector for SWD (Serial Wire Debug).
• Use eFuse for electronics protection.
• Add more status LEDs.
• Improve encoder connector placement, select appropriate connectors.
• Remove compatibility resistors around the CAN transceiver.
• Attempt to utilize async Rust for easier development.
• Rework the schematic to include more information, such as maximal capacitor

voltages, add reasoning about component values.
• Improve current sensing circuitry to support motors with different phase cur-

rents and use sensing resistors with proper power rating. The current should
be easily configurable.

• Use 4 byte key for object dictionary values.
• Properly configure bxCAN filters for CANOpen operation.
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3.2 Demonstration #1 - Linear Rail Actuator for Cam-
era Movement

The first demonstration for the SM4 motor controller is controlling a single-axis
linear rail actuator. This actuator was provided by the thesis supervisor and is
equipped with a NEMA17 style stepper motor that drives a belt with an attached
table. Originally, this rail was meant to be used for camera movement when record-
ing a musician.

This demonstration is controlled using a Raspberry Pi 4B, and the SM4 motor
controller is controlled using the I2C bus and the corresponding API. This showcase
aims to demonstrate the controller’s ability to control in position mode and, there-
fore, to position the table on the rail according to the commands of the higher-level
system, and also the usability of I2C bus and API. In the future, this demonstration
will be equipped with a second axis allowing for tilting the mounted camera. The
finished demonstrator can be seen in the Figure 3.5.

Fig. 3.5: Linear rail for camera movement - the first demonstration of the SM4
stepper motor controller.
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3.3 Demonstration #2 - Small Mobile Robot for In-
door Mapping

Any exploration program which
"just happens" to include a new
launch vehicle is, de facto, a launch
vehicle program.

(alternate formulation) The three
keys to keeping a new human space
program affordable and on
schedule:
1) No new launch vehicles.
2) No new launch vehicles.
3) Whatever you do, don’t develop
any new launch vehicles.

Akin’s Laws of Spacecraft
Design[100]

The second demonstration, where we showcase the SM4 stepper motor controller,
is a small differentially driven robot aimed for indoor mapping and self-localization.
The chassis is differential with a motor on two sides of the robot, which showcases
the driver’s ability to control both of the motors and calculate odometry. Apart from
the driver itself, the robot features a Raspberry Pi 4B SBC, 4-cell Li-Ion battery,
step-down converter, and a simple planar LIDAR for the mapping task. A block
diagram of this demonstration can be seen in the Figure 3.6
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Fig. 3.6: The block diagram of the robot used for the second demonstration.

It is projected that the robot will be utilized for algorithm demonstration as part
of the MPC-MAP - Advanced Mapping and Self-Localization for Robotics course.
The finalized robot can be seen in the Figure 3.7.

Fig. 3.7: The MAP-bot robot - the second demonstration of the SM4 stepper motor
controller.
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Conclusion, Discussion and Future work
In this thesis, we described the development of a dual-channel stepper motor con-
troller we named SM4. We developed both the hardware and software. As for
the hardware development, we utilized the STM32F405 MCU and Trinamic step-
per motor driver ICs as the basis of the design. As for PCB design, we utilized
a 4-layer PCB to decrease the development time, and we utilized the JLCPCB’s
manufacturing service alongside the PCB assembly service. Two revisions of the
PCB were designed and manufactured, two of each revision PCBs were assembled.
Even though the second revision of the PCB is more advanced than the first one,
there is still plenty of room for improvements, which we came across during the
development. The schematic and PCBs were designed in the KiCAD EDA suite,
which proved useful, given the fact that KiCAD has a large footprint and symbol
library.

As for the development of the software, we utilized the Rust programming lan-
guage for both the bare-metal firmware and the control application. Unfortunately,
the firmware, as of now, supports only the first revision of the hardware. Develop-
ing the firmware in Rust proved useful, as there is great support for developing on
bare-metal, given there is a large community for developing device drivers, HALs,
and tooling. During the development, we utilized many of the language’s features,
especially when developing abstractions over the hardware where we utilized traits
and generics. We believe that given the developed abstractions the firmware can be
easily extended and improved.

We believe that the tooling that currently exists surpasses the tooling available
for other languages and ecosystems. The language’s features provide memory and
data race safety for embedded systems while not impeding the code size or perfor-
mance. Given our experience with developing embedded firmware for this project
and several other ones described earlier, we firmly believe that the Rust program-
ming language is the right way forward as it brings features never deemed possible
for embedded systems development.

Apart from the firmware, we also developed a simple control application for
personal computers that is now capable of only controlling the stepper motor con-
troller but not of configuring it. The control application is now able to control the
controller’s axis in both velocity and position modes.

Even though there is still a lot of work to be done, we believe that the controller
is currently usable and be deployed, for example, to be part of the BPC-PRP course.
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3.4 Future work
We are hoping to continue working on the stepper motor controller in the future.
We would like to greatly extend and improve both the hardware and software (and
both the firmware and the control application). Some of the requirements were not
completely fulfilled, and we are aiming to revisit them. A big part of the future
development will be finishing the documentation and automated testing. Extending
the firmware with support for the second hardware revision will be a priority since
the new stepper motor controller IC is much more powerful than the one in the
first revision. We are also planning to try integrating real hardware encoders to
try out the suitability of the abstractions and the ability to control the motors
with proper feedback. We will also aim for full conformance with the CANOpen
standard to allow for seamless integration with other systems. We are also looking
into continuing the development using Rust programming language for embedded
systems, either by developing more projects using it or contributing to the existing
ecosystem by developing the tooling and libraries.
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Symbols and abbreviations
ADC Analog to Digital Converter

AI Artificial Intelligence

API Application Programming Interface

ARM Acorn RISC Machine

CAN Controlled Area Network

CI Continuous Integration

DC Direct Current

DAC Digital to Analog Converter

DMA Direct Memory Access

DSL Domain Specific Language

DFU Device Firmware Update

EEPROM Electrically Erasable Programmable Read-Only Memory

EMI ElectroMagnetic Interference

ESD ElectroStatic Discharge

FFI Foreign Function Interface

FRAM Ferroelectric Random Access Memory

GND Ground

GPIO General Purpose Input Output

GUI Graphical User Interface

HAL Hardware Abstraction Layer

IC Integrated Circuit

I2C Inter-Integrated Circuit

IDE Integrated Development Environment

LDO Low DropOut
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LED Light Emitting Diode

LIDAR Light Detection and Ranging

MCU Microcontroller Unit

NO Normally Open

PAC Peripheral Access Crate

PCB Printed Circuit Board

PTC Positive Temperature Coefficient

pwm PWMPulse Width Modulation

QA Quality Assurance

RAM Random Access Memory

RAL Register Access Layer

RISC Reduced Instruction Set Computer

RMS Root-Mean Square

RPS Revolutions per Second

RTIC Real-Time Interrupt Driven Concurrency

RTT Real-Time Transfer

SBC Single Board Computer

SPI Serial Peripheral Interface

SPDT Single Pole Double Throw

SVD System View Description

TUI Terminal User Interface

UB Undefined Behavior

USB Universal Serial Bus

128



List of appendices

A Contents of the Enclosed Electronic Medium 130

B Schematic of the Second Electronics Revision 131

C PCB of the Second Electronics Revision 133

D CANOpen PDOs and Object Dictionary 140

129



A Contents of the Enclosed Electronic Medium
/ ........................................................................... Root

.github........................................CI workflows and auxiliary files
Hardware............................Hardware resources for both HW revisions

Cube..............................STM32CubeMX project for pin assigment
Docs.............................................Datasheets of components
Libs..............................KiCAD component and footprint libraries
rev1....................................KiCAD project for the first revision
rev2.................................KiCAD project for the second revision

Poster...........................................Source file for a future poster
poster_template.pptx

Software....................................Software projects and source code
controller...........................................The control software
embedded......................Workspace containing cross-compiled projects

firmware................................The motor controller’s firmware
testsuite ...................... Tests for the motor controller’s firmware

shared ............ Project with code shared between firmware and controller
Cargo.toml .............................................. Cargo project file
Cargo.lock..........................................Cargo project file lock
LICENSE-MIT..............................................Software License
README.md............................................Read me for software

Thesis..............................................Source code for this thesis
README.md....................................Readme for this master’s project

130



B Schematic of the Second Electronics Re-
vision

131





C PCB of the Second Electronics Revision

133















D CANOpen PDOs and Object Dictionary

Index Subindex Type Length [B] Description
2000 1 f32 4 Battery Voltage in Volts
2000 2 f32 4 MCU Temperature in °C
2[1,2]00 1 AxisMode 1 mode of the axis - 0 for veloc-

ity, 1 for position
2[1,2]00 2 bool 1 axis enabled
2[1,2]00 3 f32 4 target axis velocity in RPS
2[1,2]00 4 f32 4 actual axis velocity in RPS
2[1,2]00 5 i32 4 target axis position - revolu-

tions
2[1,2]00 6 u32 4 target axis position - angle
2[1,2]00 7 i32 4 actual axis position - revolu-

tions
2[1,2]00 8 u32 4 actual axis position - angle
2[1,2]00 9 f32 4 target ramp acceleration in

RPS per second
2[1,2]00 10 bool 1 velocity controller bypass en-

abled
2[1,2]00 11 f32 4 current applied to motor wind-

ing during acceleration in Am-
peres

2[1,2]00 12 f32 4 current applied to motor wind-
ing when idle in Amperes

2[1,2]00 13 f32 4 current applied to motor wind-
ing when moving with constant
speed in Amperes

2[1,2]00 14 f32 4 velocity controller propor-
tional gain

2[1,2]00 15 f32 4 velocity controller summation
gain

2[1,2]00 16 f32 4 velocity controller differential
gain

2[1,2]00 17 f32 4 velocity controller maximal ac-
tion value

Tab. D.1: The Object Dictionary
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Index Subindex Type Length [B] Description
2[1,2]00 18 f32 4 position controller propor-

tional gain
2[1,2]00 19 f32 4 position controller summation

gain
2[1,2]00 20 f32 4 position controller differential

gain
2[1,2]00 21 f32 4 position controller maximal ac-

tion value

Tab. D.2: The Object Dictionary (Continued)

Value Length [B] Description
axis mode 1 LSB contains axis 1 mode - 0 means velocity

mode, 1 means position mode, first bit of the
second nimble contains axis 2 mode

axis enabled 1 LSB sets axis 1 enabled - 0 means disabled,
1 means enabled, second lowest bit sets axis
2 enabled

Tab. D.3: RxPDO1 mapping

Value Length [B] Description
battery voltage 2 battery voltage in millivolts
temperature 2 temperature in tenths of °C

Tab. D.4: TxPDO1 mapping

RxPDO2, TxPDO2

Value Length [B] Description
axis 1 velocity 4 32-bit float indicating axis 1 velocity in rev-

olutions per second
axis 2 velocity 4 32-bit float indicating axis 2 velocity in rev-

olutions per second

Tab. D.5: Mapping of PDOs containing velocity information - RxPDO2 and Tx-
PDO2
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Value Length [B] Description
axis revolutions 4 signed 32-bit integer denoting the number of

axis shaft revolutions
axis angle 4 unsigned 32-bit indicating axis shaft angle

Tab. D.6: Mapping of PDOs containing position information - RxPDO3, RxPDO4,
TxPDO3 and TxPDO4
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