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Abstrakt 

Tato bakalářská práce "Optimalizace energetických parametrů asynchronních strojů malého 
výkonu" popisuje testovací metody, potřebné ke stanovení ztrát a účinnosti elektrických strojů, 
se zaměřením na asynchronní stroje. Určuje výpočetní postupy pro vyhodnocení daných měření. 
Definice uvedených zkoušek jsou sepsány se zřetelem na současné normy. Z informací 
obsažených v částech s výše uvedeným obsahem vychází prakticky zpracovaný nástroj pro 
samočinné vyhotovení protokolu z měření. Jedná se o formulář v elektronické podobě. Vstupem 
formuláře jsou zadané naměřené hodnoty. Výstupem formuláře je protokol o měření, uvádějící 
výsledky výpočtů a grafy charakteristik. Pro účely této bakalářské práce byl formulář 
předvyplněn naměřenými hodnotami ze zkoušek konkrétního asynchronního stroje. Související 
výpočty k určení parametrů stroje jsou uvedeny. 

Abstract 

This thesis "Optimalization Power Parameter of Small Induction Motors "describes the test 
methods needed to determine losses and efficiency of electric machines, with a focus on 
induction machines. The author discusses the losses in iron circuits, additional losses, 
mechanical losses measurement of short-circuit, open circuit, electric machines. Definitions of 
those tests are written with respect to current standards. The measurement information contained 
in the above sections follow to practical tool for automatic processing of the original report. It is 
an electronical form. Entry data of the form are measured values. The output is a report of 
measurement, indicating results of calculations and graphs of characteristics. For purposes of this 
work the form was pre-filled with measured results of the specific induction machine. Related 
calculations determining the machine parameters are given. 
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ABBREVIATIONS AND SYMBOLS 

A C alternating current 
A M asynchronous machine 
A i - A 2 and B i - B 2 magnetic flux density, vector [V s/m2], [T] 
B r flux density [T] 
B Sat saturation flux density [T] 
B temperature class 130° C 
B i - B 2 commutating pole winding of a DC 
b width [m] 
boc conductor width [m] 
be conductor width [m] 
be tooth width [m] 
bdr rotor tooth width [m] 
b d s 

stator tooth width [m] 
b r rotor slot width [m] 
b s 

stator slot width [m] 
b v 

width of ventilation duct [m] 
bo slot opening [m] 
C capacitance [F] 
C temperature class > 180° C 
C i - C 2 compensating winding of a DC machine 
Cf friction coefficient 
c specific heat capacity [J/kg.K] 
cth heat capacity 
CTI Comparative Tracking Index 
Cv specific volumetric heat [kJ/Km3] 
D electric flux density [C/m2] 
DC direct current mature winding 
Pin input power [W] 
P A M pole amplitude modulation 
P M S M permanent magnet synchronous machine 
P W M pulse width modulation 
PI, Pad, P additional loss [W] 
Pr Prandtl number 
Pp friction loss [W] 
P number of pole pairs 
PAI aluminum content 
pd partial discharge 
R resistance [fi] 
Rbar bar resistance [fi] 
R M reluctance machine 
RMS root mean square 
Rm reluctance [A/V s = 1/H] 
Rth thermal resistance [K/W] 
U voltage [V], RMS 
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U depiction of a phase 
u m magnetic voltage [A] 

peak value of the impulse voltage [V] 
U v coil voltage [V] 
u . terminal of the head of the U 
u 2 terminal of the head of the U 
u voltage, instantaneous value u(t) [V] 
ubi blocking voltage of the oxide layer [V] 
Uc 

commutation voltage [V] 
um mean fluid velocity in tube [m/s] 
V volume [m3] 
V m scalar magnetic potential [A] 
WR energy returning to the voltage source 
W l terminal of the head of the W 
W<D magnetic energy [J] 
X reactance [fi] 
xm relative value of reactance 
y<p coil span of full-pitch winding 

coil span in slot pitches 
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1 INTRODUCTION 

Induction machines are used most often as engines. Electric motors are the most ever and are 
used mainly because they are the simplest of all electric, cheapest, are also operating reliable and 
require little maintenance. They are used for drives devices such as pumps, fans, compressors, 
conveyors, cranes, elevators, machine tools. 

The level of prosperity of a community is related to its capability to produce goods and services. 
But producing goods and services is strongly related to the use of energy in an intelligent way. 
Motion and temperature (heat) control are paramount in energy usage. Energy comes into use in a 
few forms such as thermal, mechanical and electrical. 

Electrical energy, measured in kWh, represents more than 30% of all used energy and it is on the 
rise. Part of electrical energy is used directly to produce heat or light (in electrolysis, 
metallurgical furnaces, industrial space heating, lighting, etc.). 

The larger part of electrical energy is converted into mechanical energy in electric motors. 
Among electric motors, induction motors are most used both for home appliances and in various 
industries. This is so because they have been traditionally fed directly from the three phase a.c. 
electric power grid through electromagnetic power switches with adequate protection. It is so 
convenient. 

Small power induction motors, in most home appliances, are fed from the local single phase a.c. 
power grids. Induction motors are rugged and have moderate costs, explaining their popularity. 

In developed countries today there are more than 3 kW of electric motors per person, today and 
most of it is from induction motors. While most induction motors are still fed from three-phase or 
single-phase power grids, some are supplied through frequency changers (or power electronics 
converters) to provide variable speed. In developed countries, 10% of all induction motor power 
is converted in variable speed drives applications. The annual growth rate of variable speed 
drives has been 9% in the last decade while the electric motor markets showed an average annual 
growth rate of 4% in the same time. 

Variable speed drives with induction motors are used in transportation, pumps, compressors, 
ventilators, machine tools, robotics, hybrid or electric vehicles, washing machines, etc. 

The forecast is that, in the next decade, up to 50% of all electric motors will be fed through power 
electronics with induction motors covering 60 to 70% of these new markets. 

1.1 Structural organization of shape 

The basic difference between an induction motor and a synchronous A C motor with a permanent 
magnet rotor is that in the latter the rotating magnetic field of the stator will impose an 
electromagnetic torque on the magnetic field of the rotor causing it to move (about a shaft) and a 
steady rotation of the rotor is produced. 
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It is called synchronous because at steady state the speed of the rotor is the same as the speed of 
the rotating magnetic field in the stator. 

By way of contrast, the induction motor does not have any permanent magnets on the rotor; 
instead, a current is induced in the rotor. To achieve this, stator windings are arranged around the 
rotor so that when energized with a poly phase supply they create a rotating magnetic field 
pattern which sweeps past the rotor. This changing magnetic field pattern induces current in the 
rotor conductors. These currents interact with the rotating magnetic field created by the stator and 
in effect cause a rotational motion on the rotor. 

However, for these currents to be induced the speed of the physical rotor must be less than the 
speed of the rotating magnetic field in the stator (the synchronous frequency ns) or else the 
magnetic field will not be moving relative to the rotor conductors and no currents will be 
induced. If by some chance this happens, the rotor typically slows slightly until a current is re-
induced and then the rotor continues as before. This difference between the speed of the rotor and 
speed of the rotating magnetic field in the stator is called slip. It is unit less and is the ratio 
between the relative speed of the magnetic field as seen by the rotor (the slip speed) to the speed 
of the rotating stator field. Due to this, an induction motor is sometimes referred to as an 
asynchronous machine. 

1.2 Induction motor 

The largest motor: three-phase asynchronous motor 750W (25W second largest, followed 
synchronous motors from a CD player, and DC motor from a child's toy). Induction motor is a 
rotating electric machine (motor), operating on alternating current. It is the most widely used in 
electrical power at all. 

Energy flow between the main components (stator and rotor) is implemented solely by 
electromagnetic induction, so the engine is often referred to as an induction motor. 

The advantage of asynchronous motor is a high reliability, simple design and alternating current 
grid supply. Supply voltage can be single-phase or three phase. Three-phase one is significantly 
more used. Induction motor was invented by Nikola Tesla. 

1.3 Constrution 

«9 LC 

U L ĽVL 

•J -j 

r r I 
Figure 1: Terminal of an induction motor connected in star and delta( www.cs.wikipedia.org 

http://www.cs.wikipedia.org


Figure 2: The squirrel-cage rotor of an induction motor(www. cs.wikipedia.org) 

The induction machine is basically an a.c. polyphase machine connected to an a.c. power 
grid, either in the stator or in the rotor. The a.c. power source is, in general, three phase but it may 
also be single phase. In both cases the winding arrangement on the part of the machine-the 
primary-connected to the grid (the stator in general) should produce a traveling field in the 
machine airgap. This traveling field will induce voltages in conductors on the part of the machine 
not connected to the grid (the rotor, or the mover in general), - the secondary. If the windings on 
the secondary (rotor) are closed, a.c. currents occur in the rotor. 

The interaction between the primary field and secondary currents produces torque from 
zero rotor speed onward. The rotor speed at which the rotor currents are zero is called the ideal 
no-load (or synchronous) speed. The rotor winding may be multiphase (wound rotors) or made of 
bars short circuited by end rings (cage rotors). 

A l l primary and secondary windings are placed in uniform slots stamped into thin silicon 
steel sheets called laminations. 

The induction machine has a rather uniform airgap of 0.2 to 3 mm. The largest values correspond 
to large power, 1 M W or more. The secondary windings may be short-circuited or connected to 
an external impedance or to a power source of variable voltage and frequency. In the latter case 
however the IM works as a synchronous machine as it is doubly fed and both stator and 
rotor-slip frequencies are imposed. 

Though historically double stator and double rotor machines have also been proposed to 
produce variable speed more conveniently, they did not make it to the markets. Today's power 
electronics seem to move such solutions even further into oblivion. 

In this chapter we discuss construction aspects and operation principles of induction 
machines. A classification is implicit. The main parts of any IM are 

• The stator slotted magnetic core 

• The stator electric winding 

• The rotor slotted magnetic core 

http://cs.wikipedia.org
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• The rotor electric winding 

• The rotor shaft 

• The stator frame with bearings 

• The cooling system 

• The terminal box 

1.4 Starting of induction motors 

Figure 3: Rotating field formed by the stator is greater than the speed of the rotor (Ion Boldeia, 
2002,pagel0) 

Figure 4: Induction motor with integrated electromagnetic brake Ion (Boldeia, 2002,page 20) 

The cornerstone of an asynchronous motor is a rotating magnetic field created by passing 
an alternating three-phase stator windings. This magnetic field induces the rotor voltage and 
current resulting in a force rotating rotor. Speed n s rotating field are given frequency voltage 
collected from the network and the number of poles three-phase motor. 

6 0 / . 
ns — [nun J, 

where f is frequency and p is the current number of stator pole pairs. 

The rotor can never turn the same speed as the stator magnetic field. If so, then the rotor and the 
magnetic field to himself and did not move. 
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This would not induce stress and avoid the rotating force. The rate difference between field and 
rotor speed is called slip, expressed in percentage and defined as: 

— n 100 [%], 

where nl is the speed of stator magnetic field, n is the rotor speed. According to the slip value 
can be easily split the labor induction machines: 

lARunning 

; E ( oo, 0) _ g e n e r a t o r 

s G (0,1)_ motor 
S E (1, OO)_ breaking 

Figure 5 .-Types of anchors with a double cage(www. cs.wikipedia.org) 

When starting an induction motor starting current up to 7 times higher than the nominal current. 
This creates a network large current surges in the relatively small starting torque. Therefore, 
direct start only allowed for motors of about 3kW. squirrel-cage motors..Reduce the high starting 
current for these types can be achieved only by reducing the motor starting voltage. 

The most commonly used methods are: Stator starter - into a series of winding involving limiting 
resistors, which are gradually discarded during startup. To reduce heat loss in the resistance of the 
circuit are classified into the ballast coil, which, however, deteriorating factor in the network. 
This method is suitable for gentle traction engine that is loaded during start-up a little. 

Starting Transformers - The trigger circuit connected transformers reduce the voltage acceleration 
and thus the starting current. For economic reasons, the most commonly used auto. At startup, the 
autotransformer can be overstressed, since immediately after the launching of the engine is 
disconnected from the network. This method of starting is used mainly for high power engines. 

Switch star - triangle - Stator motor terminals are commonly connected in a triangle, if the start 
switch terminals to the star, the winding voltage decreases times the current consumption drops to 
third and performance. The method can be used only at low engine load. Solid state voltage 
regulator - is a modern procedure that can be achieved in a smooth engine start, power factor 
improvement and still save energy. 

Anchors dual cages - one car is called the centrifugal and the other, located closer to the center, is 
called the runtime. Resistance cage - the cage made of material with higher resistivity. 
Whirlpool anchor. Special winding grooves and bars are located around the perimeter of the rotor 
each of these wires has the same resistance, but different 

http://cs.wikipedia.org
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> Stray inductances. 

> Slip-ring motors. 

Despite the brush collector rings are connected to the rotor rotor starter consists of three equal 
resistors, which are gradually phased out. At the end of the start winding is short circuited. The 
advantage is that engines can be loaded at start. 

1.5 Speed control 

Rotor speed: 

Starting refers to speed, current, and torque variations in an induction motor when fed directly or 
indirectly from a rather constant voltage and frequency local power grid. 

A "stiff local power grid would mean rather constant voltage even with large starting 
currents in the induction motors with direct full-voltage starting (5.5 to 5.6 times rated current is 
expected at zero speed at steady state). Full-starting torque is produced in this case and starting 
over notable loads is possible. 

A large design K V A in the local power grid, which means a large K V A power transformer, is 
required in this case. For starting under heavy loads, such a large design K V A power grid is 
mandatory. 

On the other hand, for low load starting, less stiff local power grids are acceptable. Voltage 
decreases due to large starting currents will lead to a starting torque, which decreases with 
voltage squared. As many local power grids are less stiff, for low starting loads, it means to 
reduce the starting currents, although in most situations even larger starting torque reduction is 
inherent for cage rotor induction machines. 

For wound-rotor induction machines, additional hardware connected to the rotor brushes may 
provide even larger starting torque while starting currents are reduced. In what follows, various 
starting methods and their characteristics are presented. Speed control means speed variation with 
given constant or variable load torque. Speed control can be performed by either open loop (feed 
Forward) or close loop (feedback). In this chapter, we will introduce the main methods for speed 
control and the corresponding steady state characteristics. 

Transients related to starting and speed control are treated. Close loop speed control methods are 
beyond the scope of this book as they are fully covered by literature presented. 
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1.6 Braking 

In plain disconnected from the network is in the engine (and possibly in other motor-
driven devices (eg mobile)) accumulated a large kinetic energy, which has a long stop motors. 

Braking torque needed to accelerate the engine to stop, you can create both mechanically 
and electronically. 

Braking counter - changing the meaning of the stator rotating magnetic field creates 
a braking torque acting against the rotation of the rotor. Upon reaching zero speed, the engine 
must be disconnected, did not start to rotate in the opposite direction. A l l the kinetic energy is 
converted to heat, this method is very wasteful. 

This method applicable only for very small capacity, meaning abrupt switching of the 
motor slip is created twice the size of the nominal motor frequency and thus there is huge 
congestion and increase engine power. This method is not really acceptable because all the heat 
generated remains in the engine braking, which is the heats. 

Regenerative Braking - (see Electrodynamic brake occurs when the engine work as 
a generator, ie when n> n 1 can be used to stop the engine only if it is possible to change the 
frequency of rotating magnetic field drive. If it is possible to return the energy produced back to 
the network, it the most economical way of braking induction motor (the recovery). This method 
is used such modern locomotives, trams and trolleybuses. If the drive does not return generated 
electricity back into the network, they must be somewhere to burn, most frequent in the resistor. 
The second method uses the older locomotives , trams and trolleybuses. Both of these methods is 
advantageous that the energy produced is entrained out of the engine, which is unnecessary 
because it does not overheat. With this method we can to stop the motor to zero speed, 
maintained a constant braking torque, and the like. 

Dynamic braking - (DC brake) stator winding is disconnected from the network and 
connects to the DC voltage source. The magnetic field of the stator is stationary and moving the 
rotor itself creates a braking torque. The size of the braking torque can be controlled by the size 
of the direct current only in a limited range. This method is very effective at higher speeds. And 
at speeds close to zero, the engine dobrzdit mechanically. (For the current four-pole induction 
motor is probably the most effective brake on the SS from 1Hz to 10Hz) This method of braking 
is very effective, potoze all the heat generated remains in the engine braking, which is the heats. 

1.7 Component 

Stator - is composed of stator windings and double sheets. The main winding is 2/3 slots and 
auxiliary winding in the remaining 1/3. Rotor - always cage design. 
A pure traveling stator mmf, with an open rotor winding and a constant airgap (slot opening 
effects are neglected), when the stator and iron core permeability is infinite, will produce a no-
load ideal flux density in theair'gap as according to Biot - Savart law. This flux density will self-
induce sinusoidal emfs in the stator windings. 



Figure 6: Ferrari's induction motor (Ion Boldeia, 2002,page 14) 

Figure 7:Tesla's induction motor (Ion Boldeia, 2002,page 14) 

Energy efficient, totally enclosed squirrel cage three phase motor 
Type M2BA 280 SMB. 90 kW, IP 55. IC 411, 1484 r/min, weight 630 kg 

Figure 8:. A state-of-the-art three-phase induction motor (Ion Boldeia, 2002,page 14) 
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1.8 Principle of operation 

To create the rotor torque, the magnetic field of the stator and the rotor to move. The single-phase 
power must be current in the main and auxiliary winding phase shift to create a rotating magnetic 
field. This is achieved by connecting a capacitor, active resistance or inductance increased 
auxiliary winding. The phase shift between the currents is 90 degrees. Effect of auxiliary winding 
is a single-engine must be running, so the start disconnect. The most common method of 
disconnecting the auxiliary winding is a centrifugal switch. It was found that if the auxiliary 
winding with a capacitor connected after starting the engine, increase torque by about 10% and 
improve the power factor. 

1.9.Induction machines in applications 

It is used to power small electric motors, some up to 2 kW, as in public networks is not 
appropriate or too technically permissible load phase. This type of motor is used primarily where 
it is necessary to regulate motor speed during operation as the drive compressors in refrigerators. 

Speed n s control using frequency inverters are not only increasingly expensive operation, but is 
also a source of unwanted electromagnetic interference. In normal domestic washing machines, 
lawn, fans, electric hand tools, food processors, vacuum cleaners, hair dryer for this very reason, 
is still far more prevalent classical commutator motors. 

For devices with higher performance is necessary to use a combined three-phase voltage and the 
classic three-phase asynchronous motor. 

Figure 9: Aluminum frame induction motor ((Ion Boldeia, 2002,page 25) 
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Table 1: EU efficiency classes 
Output 

[W] 
2-pole 

Boradline 
EFF2/EFF3 EFF1/EFF2 

4-pole 
Boarline 

EFF2/EFF3 EFF1/EFF2 
1.1 76.2 82.8 76.2 83.8 
1.5 78.5 84.1 78.5 85.0 
2.2 81.0 85.6 81.0 86.0 
3 82.6 86.7 82.6 87.4 
4 84.2 87.6 84.2 88.3 

5.5 85.7 88.6 85.7 89.2 
7.5 87.0 89.5 87.0 90.1 
11 88.4 90.5 88.4 91.0 
15 89.4 91.3 89.4 91.8 

18.5 90.0 91.8 90.0 92.2 
22 91.4 92.9 90.5 92.6 
30 92.0 93.3 91.4 93.2 
37 92.5 93.7 92.0 93.6 
45 93.0 94.0 92.5 93.9 
55 93.6 94.0 93.0 94.2 
75 93.6 94.6 93.6 94.7 
90 93.9 95.0 93.9 95.0 

2 . PERFORM ANALYSIS OF ONE PARTICULAR TYPE OF MACHINE 

Table 2: Parameters of the motor 

Motor values and 340-460 V / 50Hz 
frequency 400-520 V/ 60Hz 

Output 600/720 W 
Input 830/ ( 980) W +10% 
Speed 2820(3400) 1/min -3% 

Current 1,45 (1,50) A +10% 
Protection IP56 ( CSN E N 60034-5) 

Refrigeration IC411(CSNEN 60034-6) 
Duty cycle min 20 000 h, 12 years 

Isolation class F 
Weight cca 9,8 Kg 



ÚSTAV VÝKONOVÉ E L E K T R O T E C H N I K Y A E L E K T R O N I K Y 
Fakulta elektrotechniky a komunikačních technologií 

Parameters in the idling 

3*400 V, 50 Hz 3 * 460 V, 60 Hz 
Speed: min. 2980 1/min 3580 1/min 
Input: max 200 W 200 W 

Current: max. 1,0 A 0,9 A 

Figure 10:Schematic structure of three-phase asynchronous motor 



Figure ll:The induction motor used in analysis 

Figure 12:Induction motor connected in star and delta. 
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2.1 Measuring load 

Load test is a test in which the machine operates as a motor shaft does no useful mechanical 
power, or in which the machine operates as a generator to find the open clamp.Measuring load 
both magnetic properties measured circuit machines, which expresses the characteristic 
magnetization (in practice is called the characteristic load), both no-load losses, depending on the 
voltage. 

Load measurement is performed on an unloaded machine, either the electric machine is running 
as a generator or engine. In the former case, the zero electrical, mechanical performance in the 
second test machine. For machines that have their own field circuit, is usually measured load 
when running as a generator. In generator operation is difficult to determine the losses calibrated 
engine, electric dynamometer, etc., but it is not necessary network variable voltage and does not 
consider losses and losses in the windings due to current load as for the machine during the 
engine running. Measured at constant speed. 

To test drive the machine in generator operation with sufficient engine power loss equal to the 
load voltage increased with the advance of 20 to 30% power to accelerate the machine at rated 
speed. Small medium sized machines can be advantageously used to drive an electric 
dynamometer, which measured both losses. Well suited Leonard DC motor drive circuit in the 
machine, for easy speed control. For low-speed alternator with a driver for oversized quick alarm 
can use to drive and own driver 

Regulate If at a certain voltage, such as nominal, generating a synchronous motor so that power 
consumed by the smallest, so that the power factor equals one, so it will not set the value of field 
current practice differ from that which corresponds to this voltage according to load 
characteristics , measured in generator status. This circumstance allows to measure the 
characteristics of the motor load condition. This is necessary to have alternative current with 
voltage regulation in a wide range. 

Division of mechanical load losses from the losses in iron 

60 120 180 240 

U [V] 

300 360 420 

Y P y PFp+m V I 
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2.2 Measurement of short 

Test cage (synchronous machine) test in which the machine operates as a generator terminals 
connected short-cage measurements, we find dispersion relations machine and measure the 
characteristic short, the size of losses short and A C motor and the size of breakaway torque. The 
values determined by measuring the short circuit determining characteristic values for the other 
machines in the normal operation or fault. Thus the transformer can be determined from 
measurements of short-and impedance voltage drop under load transformers, asynchronous 

motors with squirrel-cage and synchronous motors the size of breakaway torque point short for 
the construction of a circular diagram, with some reactance of synchronous machines, the size of 
steady short circuit current (short circuit current) etc. 

Measurements carried out for short, separately excited machines in machine operation and 
constant-speed and short-circuit armature windings (in DC machines) or the stator (for 
synchronous machines). For machines that do not own field circuit, is measured briefly stalled the 
machine, or at very low speeds, the engine is measured, as well as the measurement of 
transformer short-circuit, the secondary winding short circuited. The synchronous motors of self-
start is measured as the short-stalled machine, the machine is running at rated speed. The 
excitation current or voltage test equipment should be managed so that current machines 
remained the order of the nominal value of the current In. Measurement is performed briefly in a 
warm machine, particularly preferably after warming the test. It should be distinguished from the 
measurement of short-short-circuit test machines, which usually takes place at a alternator and 
transformers for the operation with full voltage sudden connection to the circuit so that the short 
circuit current reaches a multiple of rated current machine. 

The purpose of the short circuit test is checking the mechanical strength of winding frames, shaft 
and base of the machine.The sudden short circuit test IEC 60034-3 standard specifies that the 
machine must be designed so that during operation with rated load and 1.05 times rated voltage 
stayed at their terminals without any kind of short circuit faults, provided that the maximum 
phase current is limited external means to a value exceeding the maximum phase current progress 
in the three-phase short circuit. Short circuit must be maintained for at least 3 seconds "without 
fault" means that the machine may be damaged so that it caused his removal from service, even 
though there may be some deformation of the stator windings. 

2.3 Characteristics of short 

Characteristic short on machines with a separate excitation circuit (AC and synchronous 
machine) the dependence of short circuit current Ik, the excitation current: Ik = f (lb). For 
machines without a separate excitation circuit (induction machines and transformers) is a short-
circuit current dependence on supply voltage Ik: Ik = f (Uk). The course features short is a 
straight line if the circuit impedance measured standing still. For synchronous machines, while 
yielding the characteristic short, depending on the excitation current, but not here does not apply 
due to the curvature of the characteristics of short linear features in vain, because the 
measurement of short-machine works with a small magnetic flux. In addition, quantification of 
the value of the characteristic short give, for the unsaturated state. Circuit impedance remains 
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constant only at lower current machines. For larger currents are set in the shape of their heads and 
teeth saturation scattering paths. It manifests itself on machines with more carbonated 
polozavfenymi and closed grooves, especially on induction motors with squirrel cage. Then 
saturation is reduced and the circuit impedance characteristics is rising against the linear the 
steeper. In short, you can specify the characteristics of some important values, which vary 
depending on the type of machine. 

2.4 Load losses 

Load losses, which are also called shock loss, measured on machines with a separate excitation 
circuit based on current machines, the machines without a separate excitation circuit (inductive 
and transformer), depending on supply voltage. Output short circuit in the form of winding losses 

(Joule losses) and any additional loss. For machines on which it is measured during operation 
(DC and synchronous), they also come into the mechanical losses. Losses in the iron saturation 
due to the small machines are small and yet commonly ignored. Losses have a short course 
depending on the current approximately parabolic. For machines that are trying in the short run, 
based on characteristics of the time on the vertical axis, whose remoteness from the beginning is 
equal to a constant mechanical losses. 

The losses may be short for transformers and synchronous machines to calculate the additional 
losses by its own losses, subtract losses short in the winding, for calculating the size of the 
Machine and the winding resistance at a temperature corresponding to the winding temperature 
measurement. These losses translated to operating temperature with respect to the winding losses 
increase with temperature, while the additional losses with decreasing temperature. In measuring 
the values of the measurements must have a short account of the winding temperature rise during 
tests, which can grow very quickly, because the current machines are quite substantial and when 
measured on the machine at rest is a small cooling machine. Time constant warming coil in a 
modern, well-cooled alternators and dry transformers are short (10-20 minutes). Changing the 
resistance windings warming may slightly affect the characteristic short; much more is 
characteristic losses short and mainly the size of breakaway torque. 

As a short measure of self-generating machines without usually at reduced voltages, the measured 
value converted to the nominal voltage Un. This conversion is simple, rode the course feature 
a short straight line, because then converted currents in voltage ratio and the ratio of moments 

dvojmoci tension. However, if the course features a short straight line, is converting those 
variables more difficult. 

2.5 Characteristic load 
Characteristics of load (magnetization curve) determines the dependence of the internal induced 
voltage (the value of the internal induced voltage is equal to the negative value of electromotive 
force) on the excitation current Internal induced voltage at constant machine speed or constant 
network frequency proportional to the magnetic flux or magnetic induction machine. 
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The excitation current is proportional to the excitation maagnet power, or intensity of magnetic 
field. It will therefore be idle characteristics UO = f (lb) to the same scale as the dependence B = f 
(h) of the magnetizing circuit and its progress will depend on the properties used magnetic 
material. 

When measuring the characteristics of the load on the machine running the machine as a 
generator of the Gentiles an auxiliary electric motor or a calibrated dynamometer, we also 
measured the loss. We maintain a constant speed and changing the excitation current and the size 
of the induced voltage of the machine from top to bottom, ie from the voltage. 

When measuring the characteristics of the load on the machine running as a motor, is fed to the 
machine terminal voltages of variable size from UO = 1.25 to 0.25 Un Un and maintain a constant 
speed again. The A C machine is taken standing voltage variable frequency, such as induction of 
the regulator or alternator. Current is measured in all three phases and the arithmetic mean of the 
measured values is taken. The voltage measured at the terminals of all types of electric motors is 
greater than the internal induced voltage of the losses caused by the shock load resistance and 
leakage reactance powered winding. Therefore, directly yields the terminal voltage dependence 
of the magnetization UO (excitation) current Iq. 

PFe, iron losses; Pcus, resistive losses of the stator; Pad, additional losses; P&, air-gap power; PCm, 
resistive losses of the rotor; Pp, friction losses. The losses (700W in total) have to be removed 
from the machine at an acceptable temperature difference to the ambient. 
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3 DESIGN OPTIONS I N C R E A S E E F F I C I E N C Y , P R O V I D E E V I D E N C E O F B A S I C 
C A L C U L A T I O N S 

Active power is: 

f 
P5 = Mo)1 = M X 2n- = M X 2 X n X nx = Pln - Pln - ( APn + APFe) = [W] 

p 

Mechanical power is: 

Electrical power is: 

Where P e i is electric power, which consumes all the active resistance of the rotor. In the event 
that the rotor ring motor starter is engaged, is included in the value of P e i and resistance of the 
triggers. 

Pel co± — b) 
— = M + —— = s [—] 
Ps Mo)1

 1 J 

Pel =P**S W\ 

Electric power P ei is called slip. As we shall see later, you can change it slip performance speed 
control of induction motor. The machines get the shaft mechanical power P m e c h, the engine 
produces, but the power P2, less mechanical losses on their own machines and A P m e c h additional 
loss of AP d 

P2=Pmsch-APmsch==APd [W] 

Size performance P m e c h determine relatively easily from the circuit model and is equal to the 
active power consumed by the resistor 

•f = ( i - o 

Pm,ch = % * I2

2 ' (1 " S ) [W] 

Where mi is the number of machine phases. The mechanical torque is: 

MmĚch = [N.m] 
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Angular rotor speed is equal to the difference in angular velocity of rotating stator field (coO and 
rotor (a>2). 
a) = (OJ1 — w2) = co^l — s) [rad/s] 

= 2n * — 
V 

The current value is 
A] 

Substituting the relation we obtain an equation for the mechanical torque: 

Ul * m1 * p — 
Mmech = -= • [N. m] 

This equation expresses the dependence M = f (s), which plotted graphically represents the torque 
characteristics of induction machine (Fig. 14). 

MOTOR _ 6 E H E RATO-fl̂  

—*- +n —*- +n 

1 !\ 
1 '\ 
k i 

—*- +n n.O I 

1 !\ 
1 '\ 
k i 

—*- +n .... — * • - s 

I \ / -M 

Figure 14:Torque characteristics of induction machine 

At the rated engine load generates mechanical torque on slip n M n and its corresponding time 
nn.V speed motor connection to a network is n = 1 = 0 and develops motor starting torque Mz, 
which determine the relationship by substituting for s = 1. 

Ms = —* [N. m] 
2n*f1*[(_R1 + ^? + (_Xrl+Xr20¥] 

The engine develops a maximum speed at some point, which we determine by calculating the 
maximum torque characteristics, slippage also identify with the 'corresponding to the maximum 
moment Mmax. 
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R2 

MM F L* = 1 [N. m] 

where, 

V I = Stator Terminal Voltage 
II = Stator Current 
R l = Stator Effective Resistance 
X I = Stator Leakage Reactance 
Z l = Stator Impedance (Rl + j X l ) 
IX = Exciting Current (this is comprised of the core loss component = Ig, and a magnetizing 

current = lb) 
E2 = Counter E M F (generated by the air gap flux) 
R=2.4 [Q] 
P400=80.4[W] 
PCU=5.382653[W] 
Pmech=14 [W] 
Pfe=61.0173 [W] 

Table 4: Measurement of no load 
ME URMS,1 
RE 
NI 

IRMS,1 LAMBDAfl PA 0,1 S,l URMS,2 IRMS,2 

^ | 229.800 0.849 0.107 20.960 194.010 195.140 231.670 0.854 

^ | 219.820 0.763 0.109 18.280 166.790 167.790 221.930 0.758 

^ | 209.740 0.686 0.122 17.590 142.680 143.760 211.460 0.686 

^ | 199.750 0.619 0.139 17.210 122.420 123.620 201.010 0.630 

^ | 189.680 0.571 0.145 15.660 107.120 108.260 191.830 0.579 

^ | 179.910 0.522 0.144 13.510 92.840 93.820 181.210 0.530 

^ | 169.600 0.477 0.153 12.390 79.850 80.810 170.750 0.487 

^ | 161.680 0.446 0.158 11.390 71.270 72.170 162.540 0.456 

^ | 150.700 0.410 0.163 10.070 60.880 61.710 151.600 0.409 

10 140.680 0.374 0.183 9.630 51.710 52.600 141.630 0.379 

11 130.540 0.341 0.202 8.990 43.570 44.490 131.560 0.348 

12 118.900 0.308 0.225 8.230 35.730 36.660 119.020 0.309 

13 109.380 0.286 0.292 9.150 29.950 31.320 109.970 0.288 

14 109.450 0.287 0.290 9.110 30.080 31.430 109.900 0.288 

15 99.910 0.260 0.296 7.690 24.840 26.000 99.860 0.259 

16 91.180 0.242 0.334 7.360 20.760 22.020 90.880 0.236 

17 80.000 0.215 0.401 6.880 15.750 17.190 80.000 0.217 

18 71.950 0.202 0.454 6.610 12.970 14.560 71.730 0.200 

61.110 0.182 0.541 6.010 9.350 11.120 61.540 0.187 

50.360 0.173 0.651 5.680 6.630 8.730 50.680 0.178 

21 40.570 0.187 0.749 5.680 5.030 7.590 40.170 0.179 

31.190 0.211 0.807 5.310 3.890 6.580 31.330 0.211 

23 20.007 0.336 0.689 4.630 4.875 6.724 20.425 0.335 
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LAMBDA,2 P,2 0,2 S,2 URMS,3 IRMS,3 LAMBD A,3 P,3 

0.159 31.500 195.270 197.800 233.960 0.891 0.134 27.910 

0.162 27.280 165.910 168.140 224.180 0.796 0.141 25.220 
O.J 60 23.260 143.090 144.970 213.120 0.708 0.141 21.320 

24.140 124.260 126.590 202.970 0.653 0.156 20.720 

0.186 20.640 109.210 111.150 193.140 0.595 0.153 17.520 

0.190 18.280 94.290 96.050 182.580 0.548 0.158 15.780 
0.192 15.990 81.640 83.190 171.520 0.500 0.159 13.670 

0.198 14.620 72.590 74.050 163.320 0.469 0.167 12.770 

12.730 60.690 62.010 152.600 0.426 0.185 12.040 

0.218 11.690 52.400 53.690 142.150 0.390 0.192 10.630 

0.233 10.640 44.460 45.720 131.940 0.355 0.205 9.590 

9.070 35.620 36.760 119.440 0.316 0.239 9.040 
8.970 30.420 31.720 109.480 0.286 0.283 8.870 
8.780 30.390 31.630 109.500 0.285 0.284 8.840 

0.307 7.930 24.570 25.820 100.080 0.264 0.311 8.210 

7.030 20.300 21.480 90.860 0.239 0.351 7.610 

6.680 16.040 17.370 79.950 0.213 0.390 6.650 

0.427 6.110 12.970 14.340 71.600 0.196 0.454 6.380 
0.522 5.990 9.800 11.480 61.310 0.181 0.516 5.730 

5.570 7.130 9.040 50.330 0.169 0.619 5.280 
5.000 5.170 7.190 39.470 0.172 0.753 5.120 

0.779 5.140 4.140 6.600 31.030 0.204 0.797 5.040 
0.649 4.435 5.201 6.835 19.756 0.317 0.674 4.227 

Q,3 S,3 P.SIGMA Q,SIGMA S.SIGMA rpm 

206.560 208.440 80.370 595.840 601.370 2997.000 

176.750 178.540 70.780 509.460 514.470 2996.000 
149.370 150.890 62.170 435.150 439.620 2996.000 

130.870 132.500 62.070 377.550 382.710 2996.000 
113.550 114.900 53.830 329.890 334.310 2995.000 
98.830 100.080 47.570 285.960 289.950 2994.000 

84.700 85.800 42.050 246.190 249.790 2994.000 

75.550 76.620 38.780 219.410 222.840 2993.000 

63.940 65.060 34.850 185.500 188.780 2994.000 

54.380 55.410 31.950 158.500 161.710 2992.000 

45.820 46.820 29.220 133.860 137.020 2991.000 

36.700 37.790 26.340 108.050 111.220 2989.000 
30.020 31.300 27.000 90.390 94.340 2987.000 

29.920 31.200 26.740 90.390 94.260 2987.000 

25.080 26.390 23.830 74.480 78.200 2984.000 

20.320 21.700 22.000 61.380 65.210 2981.000 

15.680 17.040 20.210 47.470 51.590 2978.000 

12.520 14.050 19.100 38.450 42.940 2972.000 

9.510 11.100 17.730 28.660 33.700 2962.000 

6.690 8.520 16.530 20.450 26.300 2945.000 

4.470 6.800 15.810 14.670 21.580 2910.000 
3.820 6.330 15.490 11.850 19.510 2833.000 

6.270 13.292 14.707 19.829 2198.000 
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Table 5: Processing of measured values 
u (V) 1 (A) 

í 
S 

P (W) 
401.507 695.430 231.810 2.594 0.865 80.370 
384.475 665.930 221.977 2.317 0.772 70.780 
366.225 634.320 211.440 2.079 0.693 62.170 
348.564 603.730 201.243 1.901 0.634 62.070 
331.774 574.650 191.550 1.745 0.582 53.820 
313.905 543.700 181.233 1.600 0.533 47.570 
295.528 511.870 170.623 1.464 0.488 42.050 
281.481 487.540 162.513 1.371 0.457 38.780 
262.637 454.900 151.633 1.245 0.415 34.840 
245.062 424.460 141.487 1.143 0.381 31.950 

227.499 394.040 131.347 1.043 0.348 29.220 
206.322 357.360 119.120 0.934 0.311 26.340 
189.850 328.830 109.610 0.861 0.287 26.990 
189.862 328.850 109.617 0.860 0.287 26.730 
173.118 299.850 99.950 0.782 0.261 23.830 
157.570 272.920 90.973 0.717 0.239 22.000 
138.535 239.950 79.983 0.645 0.215 20.210 
124.292 215.280 71.760 0.598 0.199 19.100 
106.209 183.960 61.320 0.550 0.183 17.730 
87.394 151.370 50.457 0.521 0.174 16.530 
69.403 120.210 40.070 0.538 0.179 15.800 
54.011 93.550 31.183 0.626 0.209 15.490 
34.750 60.188 20.063 0.988 0.329 13.292 

To determine the mean value of voltage, current and power according the 
measurment: 

To determine the mean value of voltage: 

U = V t ( U r m s i + U R M S 2 +

 URMS 3) = TTf (229.8+231.67+233.96 )=401.50 [V] 

To determine the mean value of current: 

I=0RMSI+IRMS2 + IRMS 3)=0.849+0.854+0.891=2.594 [A] 

To determine true power engine idling: 

P=(Pi+P2 + P 3 ) = (20.96+31.5+27.91) = 80.37 [W] 
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Losses in the windings 

Pj=3*IA2*R 

Losses in iron: 
Pfe=P-Pj 

Factor in the idling: 

Cosqp=PiN/(V3 U * I ) 

Slippage: 

S[%]=(ns-nN)*100/ns 

Table 6:Extrapoled values, summary of characterists 
U[V] l[A] P[W] R[C1] Pj=3*lA2*R Pfe=P-Pj Cosqp=PlN/(V3 U * 1 ) ns n„ S[%]=(ns-

nn)*100/ns 
401.507 0.865 80.370 2.4 5.382653768 74.987 0.13366219 3000 2997.000 0.1 

384.475 0.772 70.780 2.4 4.295903432 66.484 0.137600804 3000 2996.000 0.133333333 

366.225 0.693 62.170 2.4 3.458125448 58.712 0.141422444 3000 2996.000 0.133333333 

348.564 0.634 62.070 2.4 2.892257568 59.178 0.16221341 3000 2996.000 0.133333333 

331.774 0.582 53.820 2.4 2.436299208 51.384 0.161005688 3000 2995.000 0.166666667 

313.905 0.533 47.570 2.4 2.047488032 45.523 0.164070077 3000 2994.000 0.2 

295.528 0.488 42.050 2.4 1.714402568 40.336 0.168351181 3000 2994.000 0.2 

281.481 0.457 38.780 2.4 1.503932168 37.276 0.174040241 3000 2993.000 0.233333333 

262.637 0.415 34.840 2.4 1.239820808 33.600 0.184564851 3000 2994.000 0.2 

245.062 0.381 31.950 2.4 1.044793472 30.905 0.19759917 3000 2992.000 0.266666667 

227.499 0.348 29.220 2.4 0.870446088 28.350 0.213272672 3000 2991.000 0.3 

206.322 0.311 26.340 2.4 0.697436552 25.643 0.236822918 3000 2989.000 0.366666667 

189.850 0.287 26.990 2.4 0.592505888 26.397 0.286122074 3000 2987.000 0.433333333 

189.862 0.287 26.730 2.4 0.591542408 26.138 0.28357923 3000 2987.000 0.433333333 

173.118 0.261 23.830 2.4 0.489719808 23.340 0.304728029 3000 2984.000 0.533333333 

157.570 0.239 22.000 2.4 0.411156488 21.589 0.337326137 3000 2981.000 0.633333333 

138.535 0.215 20.210 2.4 0.33282 19.877 0.391748281 3000 2978.000 0.733333333 

124.292 0.199 19.100 2.4 0.286466048 18.814 0.444794443 3000 2972.000 0.933333333 

106.209 0.183 17.730 2.4 0.241648128 17.488 0.52608978 3000 2962.000 1.266666667 

87.394 0.174 16.530 2.4 0.217319552 16.313 0.628564559 3000 2945.000 1.833333333 

69.403 0.179 15.800 2.4 0.231813512 15.568 0.732509674 3000 2910.000 3 

54.011 0.209 15.490 2.4 0.3130002 15.177 0.79414822 3000 2833.000 5.566666667 

34.750 0.329 13.292 2.4 0.781073288 12.511 0.670503078 3000 2198.000 26.73333333 
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1.4. Extrapoled values, summary of characterists, load measurement result 
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Table 7: Measuring load 
MERENI URMS,1 IRMS,1 LAMBDA,l P,l dl S,l URMS,2 IRMS,2 LAMBDA,2 P,2 0,2 S,2 

1 228.800 2.206 0.889 448.500 231.600 504.700 231.390 2.213 0.886 453.300 237.900 512.000 

2 228.330 2.065 0.883 416.400 221.000 471.400 231.240 2.078 0.882 423.600 226.600 480.400 

3 228.760 1.937 0.876 388.200 213.500 443.100 231.340 1.954 0.875 395.400 218.900 451.900 

4 228.260 1.811 0.866 358.100 206.600 413.400 231.210 1.828 0.868 367.000 209.700 422.700 

5 228.540 1.684 0.853 328.300 200.900 384.800 231.300 1.703 0.856 337.300 203.400 393.900 

6 228.590 1.569 0.837 300.300 196.000 358.600 231.430 1.590 0.844 310.400 197.600 368.000 

7 228.290 1.459 0.821 273.330 190.300 333.050 231.160 1.487 0.828 284.710 192.680 343.780 

8 228.740 1.359 0.799 248.410 186.820 310.820 231.480 1.395 0.808 260.770 190.410 322.890 

9 229.010 1.268 0.768 223.110 185.870 290.390 231.430 1.295 0.780 233.700 187.770 299.790 

10 229.070 1.189 0.731 198.960 185.840 272.250 231.760 1.208 0.750 209.900 185.190 279.920 

11 229.310 1.112 0.684 174.450 186.030 255.030 232.230 1.124 0.709 184.960 184.200 261.030 

12 229.440 1.033 0.634 150.330 183.210 236.990 232.350 1.062 0.664 163.830 184.430 246.680 

13 229.240 0.975 0.565 126.360 184.360 223.510 232.300 0.993 0.608 140.270 183.020 230.590 

14 229.360 0.926 0.489 103.880 185.120 212.280 232.490 0.942 0.540 118.250 184.190 218.880 

15 228.980 0.888 0.403 81.990 186.030 203.290 232.200 0.893 0.461 95.530 184.060 207.370 

16 229.410 0.863 0.303 59.920 188.600 197.890 232.640 0.865 0.366 73.580 187.330 201.260 

17 228.980 0.846 0.206 39.950 189.460 193.630 232.310 0.843 0.270 52.890 188.650 195.920 

18 229.890 0.843 0.100 19.370 192.800 193.780 232.840 0.845 0.162 31.860 194.110 196.710 

URMS,3 IRMS,3 LAMBDA,3 P,3 0,3 S,3 P,SIGMA QSIGMA S,SIGMA M[N.m] rpm 

234.990 2.197 0.886 457.600 238.900 516.200 1359.400 708.400 1532.900 3.400 2670.000 

234.810 2.066 0.880 427.100 230.100 485.100 1267.100 677.700 1436.900 3.200 2704.000 

234.770 1.942 0.873 398.100 222.100 455.800 1181.600 654.500 1350.800 3.000 221.000 

234.820 1.826 0.864 370.300 216.200 428.800 1095.500 632.500 1265.000 2.800 2745.000 

234.880 1.703 0.850 340.200 210.500 400.000 1005.800 614.700 1178.800 2.600 2769.000 

234.990 1.595 0.835 313.000 206.300 374.900 923.700 600.000 1101.500 2.400 2792.000 

234.250 1.493 0.817 285.580 201.900 349.740 843.620 584.880 1026.570 2.200 2814.000 

234.260 1.398 0.793 259.600 199.510 327.410 768.780 576.740 961.120 2.000 2835.000 

234.520 1.301 0.765 233.540 196.520 305.220 690.360 570.160 895.410 1.800 2854.000 

235.000 1.227 0.732 211.180 196.360 288.360 620.040 567.390 840.530 1.600 2872.000 

235.330 1.150 0.690 186.690 195.940 270.640 546.100 566.170 786.710 1.400 2892.000 

234.820 1.085 0.635 161.790 196.770 254.740 475.950 564.400 738.420 1.200 2908.000 

235.210 1.029 0.577 139.640 197.770 242.100 406.270 565.150 696.200 1.000 2924.000 

235.270 0.981 0.505 116.660 199.240 230.890 338.790 568.550 662.040 0.800 2941.000 

235.090 0.938 0.429 94.550 199.270 220.560 272.070 569.350 631.230 0.600 2956.000 

235.420 0.913 0.333 71.620 202.550 214.840 205.120 578.480 613.990 0.400 2970.000 

235.090 0.891 0.240 50.320 203.340 209.470 143.160 581.450 599.020 0.200 2983.000 

235.230 0.889 0.132 27.630 207.380 209.210 78.860 594.290 599.690 0.000 2998.000 
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Table 8: Short measurement 
MERENI URMS,1 IRMS.l LAMBDA,! P,l 0,1 S,l URMS,2 IRMS,2 LAMBDA.2 P,2 Q,2 S,2 

1 20.285 0.460 0.522 4.866 7.954 9.325 20.146 0.456 0.474 4.356 8.095 9.193 

2 30.621 0.777 0.577 13.723 19.448 23.802 30.344 0.763 0.533 12.321 19.583 23.137 

3 40.842 1.103 0.603 27.170 35.920 45.040 40.997 1.089 0.570 25.420 36.691 44.637 

4 52.187 1.464 0.627 47.910 59.530 76.410 52.444 1.446 0.591 44.800 61.200 75.850 

5 61.713 1.780 0.642 70.520 84.220 109.850 62.035 1.752 0.609 66.160 86.250 108.700 

6 70.900 2.081 0.657 97.000 111.220 147.580 71.680 2.064 0.623 92.220 115.700 147.960 

7 79.960 2.383 0.671 127.780 141.360 190.560 80.670 2.356 0.642 122.070 145.670 190.050 

8 90.290 2.724 0.690 169.670 178.090 245.970 91.610 2.707 0.660 163.680 186.300 247.990 

9 101.640 3.093 0.708 222.740 221.900 314.400 102.270 3.055 0.676 211.270 230.110 312.390 

URMS.3 IRMS.3 LAMBDA,3 P,3 Q,3 S,3 P,SIGMA QfSIGMA S,SIGMA 

19.937 0.450 0.518 4.646 7.667 8.965 13.867 23.716 27.482 

29.673 0.737 0.568 12.428 17.989 21.865 38.473 57.020 68.803 

40.774 1.064 0.597 25.911 34.789 43.378 78.500 107.400 133.050 

51.781 1.404 0.619 45.010 57.100 72.710 137.720 177.830 224.970 

61.657 1.708 0.633 66.720 81.510 105.340 203.400 251.980 323.880 

70.740 1.997 0.648 91.550 107.570 141.260 280.780 334.490 436.790 

80.680 2.296 0.664 123.050 138.510 185.280 372.900 425.550 565.890 

91.020 2.626 0.681 162.700 175.050 238.980 496.050 539.440 732.950 

101.660 2.965 0.699 210.840 215.450 301.450 644.850 667.460 928.250 
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4 C O N C L U S I O N : 

Losses in induction machines occur in windings, magnetic cores, besides mechanical friction and 
wind age losses. They determine the efficiency of energy conversion in the machine and the 
cooling system that is required to keep the temperatures under control. 

In the design stages, it is natural to try to calculate the various types of losses as precisely as 
possible. After the machine is manufactured, the losses have to be determined by tests. Loss 
segregation has become a standard method to determine the various components of losses, 
because such an approach does not require shaft-loading the machine. Consequently, the labor 
and energy costs for tastings are low. 

On the other hand, when prototyping or for more demanding applications, it is required to 
validate the design calculations and the loss segregation method. 

The input-output method has become standard for the scope. It is argued that, for high efficiency 
machines, measuring of the input and output Pin, Pout to determine losses Ep on load. 

Copper is a good material for induction motor rotors, reducing size and weight. Higher 
conductivity = higher efficiency, now that rotor manufacturing issues have been solved. 
Induction motors are a good solution for traction applications, with high efficiency and no serious 
issues with faults. 
According to our measurement of three-phase motor, arrived at the conclusion that in order to 
improve the performance of motor referring them, it would be necessary, application of new 
plates in the engine, apply better best material in that. In case of engine size would require 
subsided its weight and its own structure, this contest would be more costs to the manufacturer in 
redesigning a new structure. 
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