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Abstract 

In this work, a non-equiatomic Alo.2C01.5CrFeNi1.5Ti high entropy alloy was produced through 
the vacuum induction melting process. The as-cast alloy was analyzed, then heat treated at 
1000 °C for 5h, and subsequent heat treatment at 750 °C for an additional 5h took place, in 
order to investigate the effect of heat treatment temperature and time on the phase composition, 
microstructure, and mechanical properties of the alloy in all states. A pseudo binary phase 
diagram ( C A L P H A D ) was performed to evaluate the possible phases present in the alloy. The 
alloy's microstructures were characterized and analyzed chemically by X-ray diffraction 
(XRD) , scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). 
Microhardness and nanoindentation testing was performed to evaluate the hardness of the 
material. 

Keywords 

high entropy alloy, characterization, heat treatment, microstructure, chemical composition, 
hardness 

Abstrakt 

V tejto práci je študovaná neekviatomická Alo.2C01.5CrFeNi1.5Ti vysoko entropická zliatina, 
ktorá bola vyrobená pomocou vákuového indukčného tavenia. Zliatina v odliatom stave bola 
analyzovaná a tepelne spracovaná pri teplote 1000 °C po dobu 5h, a následne podrobená 
tepelnému spracovaniu pri teplote 750 °C po dobu ďalších 5h, s cieľom skúmania vplyvu 
teploty a doby tepelného spracovania na fázové zloženie, mikroštruktúru a mechanické 
vlastnosti. N a vyhodnotenie možných fáz prítomných v zliatine bol použitý pseudobinárny 
fázový diagram ( C A L P H A D ) . Mikroštruktúra zliatin bola charakterizovaná a chemicky 
analyzovaná pomocou rôntgenovej difrakcie (XRD) , elektrónovej mikroskopie (SEM) 
a energeticky disperznej spektroskopie. Výsledné vyhodnotenie tvrdosti materiálu prebehlo 
pomocou skúšok mikrotvrdosti a nanoindentácie. 

Kľúčové slová 

zliatina s vysokou entropiou, charakterizácia, tepelné spracovanie, mikroštruktúra, chemické 
zloženie, tvrdosť 
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Rozšírený abstrakt 

Vysoko entropické zliatiny predstavujú nový koncept vývoja konštrukčných materiálov, ktorý 
je založený na zmiešaní piatich a viacerých prvkov v približne rovnakých atomárnych 
pomeroch. Z a posledných 17 rokov priťahujú čoraz väčšiu pozornosť, kvôli jedinečnému 
zloženiu a vysokému potenciálu. 

Prvá zmienka o vysoko entropických zliatinách, pochádza z konca 18. storočia, kedy nemecký 
chemik Franz Karl Achard pripravil sériu zliatin, ktoré sa skladali z piatich až siedmich 
hlavných prvkov s rovnakým atomárnym pomerom. Bohužiaľ, táto pozoruhodná štúdia 
z oblasti materiálov bola od metalurgov a vedcov z celého sveta väčšinou ignorovaná a 
zabudnutá. A to až do roku 1963, kedy si túto prácu všimol britský metalurg, Cyr i l Stanley 
Smith. 

Koncept zliatin s rovnakým atomárnym pomerom prvkov bol popísaný až v 90 rokoch 20 
storočia, kedy prof. Brian Cantor na Universty of Cambridge a prof. Jien-Wei Yeh na National 
Tsing Hua University začali skúmať ekviatomické zliatiny takmer v rovnakom čase a nezávisle 
na sebe. Navrhli nový koncept konštrukčných zliatin, ktoré obsahovali viacero hlavných prvkov 
a boli charakterizované vysokou konfiguračnou entropiu miešania. Domnievali sa, že ak 
je konfiguračná entropia miešania viacerých prvkov v rovnakom pomere dostatočne vysoká na 
to, aby prevládla nad entalpiou vzniku zlúčenín, tak by to viedlo k stabilizácií 
jednoduchý ch/dvojitý ch fáz tuhého roztoku. Preto sa táto nová trieda materiálov nazýva vysoko 
entropické zliatiny, aj keď v literatúre sa príležitostne používajú alternatívne názvy ako „multi-
principal element alloys" a „compositionally complex alloys". Nedávno sa však ukázalo, že 
táto myšlienka neplatí pre väčšinu vysoko entropických zliatin. Aj keď vysoko entropické 
zliatiny boli najprv definované ako zliatiny, ktoré sa skladajú z piatich alebo viacerých 
hlavných prvkov, pričom koncentrácia každého hlavného prvku je približne v rozmedzí od 5-
35 at. %, nedávno sa tento koncept rozšíril aj na zliatiny s tromi (stredne entropické zliatiny) 
alebo štyrmi hlavnými prvkami. 

Vysoko entropické zliatiny možno pripravovať pomocou niekoľkých metód, ktoré je možné 
rozdeliť na odlievanie z taveniny, mechanické legovanie a práškovú metalurgiu. Aby sa mohla 
zabezpečiť vyššia konfiguračnú energia zliatiny, tak každý prvok z ktorého sa zliatina skladá si 
musí zachovať vyššiu koncentráciu. Z tohto dôvodu, j e v procese prípravy vysoko entropických 
zliatin zásadnou otázkou, ako legovať rôzne kovové prvky s rôznymi vlastnosťami, štruktúrou 
a teplotami tavenia, aby sa vytvorili homogénne zliatiny a bola zachovaná vysoká konfiguračná 
entropia systému. Pri výbere vhodného výrobného postupu vysoko entropických zliatin je 
potrebné zohľadniť morfológiu a mikroštruktúru daného systému. 

V dôsledku rozdielneho chemického zloženia, vysoko entropické zliatiny vykazujú vynikajúce 
vlastnosti ako je pevnosť, ťažnosť a mimoriadna odolnosť voči opotrebeniu, korózii a oxidácii. 
Z vyššie uvedeného dôvodu sú vysoko entropické zliatiny zaradené medzi pokročilú triedu 
materiálov s aplikačným potenciálom v rôznych priemyselných odvetviach. Okrem toho bolo 
vydaných viacero štúdií, ktoré dokazujú že fázové zloženie, mikroštruktúra a výsledné 
vlastnosti môžu byť ovplyvnené tepelným spracovaním, tak ako v tradičných systémoch. 



Experimentálna časť bakalárskej práce, sa zoberá štúdiom fázového zloženia, mikroštruktúry 
a mechanických vlastností vysoko entropickej zliatiny v odliatom stave a v stave po tepelnom 
spracovaní. Vysoko entropická zliatina Alo.2C01.5CrFeNi1.5Ti, bola podrobená tepelnému 
spracovaniu pri teplote 1000 °C po dobu 5h, a následne pri teplote 750 °C po dobu ďalších 5h. 

Experimenty tepelného spracovania boli uskutočnené so zámerom zlepšenia mechanických 
vlastností, ktoré je možné dosiahnuť znížením obsahu intermetalických fáz prítomných 
v zliatine. N a vyhodnotenie možných fáz v zliatine bol použitý výpočet pseudobinárneho 
fázového diagramu metódou C A L P H A D s využitím programu ThermoCalc. Okrem toho sa 
experimentálna časť uskutočnila pomocou rôntgenovej difrakcie (XRD) , skenovacej 
elektrónovej mikroskopie (SEM) a analýz energetickej disperznej spektroskopie (EDS). Tieto 
experimentálne metódy boli použité pre odhalenie fáz, mikroštruktúr, chemického zloženia 
a krystalografických vlastností Alo.2C01.5CrFeNi1.5Ti H E A v stave odliatom a v stave po 
tepelnom spracovaní. Hodnotenie mechanických vlastností súvisiacich s rôznymi 
mikroštruktúrami zliatin, bolo charakterizované meraním tvrdosti materiálu pomocou 
mikroindentačních a nanoindentačních skúšok. 

Z vyššie uvedených experimentov, je možné vyvodiť nasledujúce závery: priemerné chemické 
zloženie pre Alo.2C01.5CrFeNi1.5Ti H E A v odliatom stave, určeného pomocou analýzy E D S , 
zodpovedá požadovanému teoretickému zloženiu, pre Alo.2C01.5CrFeNi1.5Ti H E A vyrobenú 
pomocou vákuového indukčného tavenia. 

Výsledky rôntgenovej difrakcie potvrdili rovnaké fázové zloženie u Alo.2C01.5CrFeNi1.5Ti  

H E A , ktorá bola tepelne spracovaná pri teplote 1000 °C po dobu 5h, a následne tepelne 
spracovaná pri teplote 750 °C po dobu ďalších 5h, ako bolo predpokladané ThermoCalc 
simuláciou. Naopak, Alo.2C01.5CrFeNi1.5Ti H E A , ktorá bola tepelne spracovaná pri teplote 
1000 °C po dobu 5h, sa mala skladať podľa ThermoCalc-u len z tuhých roztokov F C C a B C C , 
ale podľa rôntgenovej difrakcie obsahovala fázy F C C , B C C , Lavesovu fázu a tiež sigma fázu. 
V obidvoch prípadoch tepelne spracovaných zliatin bola potvrdená aj prítomnosť novej 
hexagonálnej fáze DO24, ktorá sa vylúčila počas ochladzovania. Hexagonálna fáza DO24 nebola 
zistená v odliatom stave. N a to, aby bolo možné potvrdiť prítomnosť fáz v zliatine, ktoré boli 
predpovedané simuláciou ThermoCalc, je potrebná optimalizácia teploty a času. 

Nárast mikrotvrdosti na hodnotu 751±49 H V 0 . 2 , bol pozorovaný v tepelne spracovanej 
Alo.2C01.5CrFeNi1.5Ti H E A pri teplote 1000 °C po dobu 5h s následným tepelným spracovaním 
pri teplote 750 °C po dobu ďalších 5h v porovnaní s tepelne spracovanou Alo.2C01.5CrFeNi1.5Ti  

H E A pri teplote 1000 °C po dobu 5h, ktorá dosahovala hodnotu mikrotvrdosti 606±47 H V 0 . 2 . 
Tento nárast mikrotvrdosti je možné vysvetliť vyšším obsahom intermetalických fáz v 
Alo.2C01.5CrFeNi1.5Ti H E A , ktorá bola tepelne spracovaná pri teplote 1000 °C po dobu 5h 
s následným tepelným spracovaním pri teplote 750 °C po dobu ďalších 5h, ako bolo 
predpokladané ThermoCalc simuláciou. 

Hodnoty nanoindentácie Alo.2C01.5CrFeNi1.5Ti H E A v odliatom stave, pre dendritickú 
a interdendritickú oblasť dosahovali výrazne odlišné hodnoty. Pre dendritickú oblasť 
nanotvrdosť dosahovala hodnoty 7234±380 M P a a pre interdendritickú oblasť 
11760±1089 M P a . Vyššiu hodnotu nanotvrdosti v interdendritických regiónoch možno 
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vysvetliť zvýšenou prítomnosťou intermetalických sigma aLavesových fáz 
v Alo.2C01.5CrFeNi1.5Ti H E A . Výsledné hodnoty modulu pružnosti v ťahu, pre 
Alo.2C01.5CrFeNi1.5Ti H E A v odliatom stave vypočítaného pomocou metódy Oliver-Pharr, 
ktoré boli podobné v rámci svojej štandardnej odchýlky, dosahovali pre dendritickú oblasť 
približne 221±11 GPa a pre interdendritickú oblasť 223±50 GPa. 
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1 Introduction 

High entropy alloys (HEAs) as a new class of metallic materials, first proposed in 1995 by Yeh 
[1], are based on mixing at least five principal elements in equal or near-equal ratio, which the 
concentration of each element may be between 5-35 at. %. This concept is in contrast to the 
traditional approach based on one principal element. Common metallurgy knowledge based on 
binary/ternary phase diagrams suggests that the higher number of elements in multicomponent 
systems, the more likely it is that several types of phases and intermetallic compounds wi l l 
form. However, Yeh et al. [2], believed that i f the configurational entropy of mixing of several 
elements in the same ratio is high enough to predominate over the enthalpy of compound 
formation, thereby it could stabilize single/double phases of solid solution. 
Recently, though, this concept has been shown to not be true for most H E A s . Therefore, this 
new class of materials has been called high entropy alloys, although alternative names such as 
multi-principal element alloys and compositionally complex alloys are occasionally used in the 
literature [3]. 

Although, H E A s were first defined as alloys consisting of five or more major elements, the 
H E A s concept has recently been extended to include alloys with three (medium entropy alloys) 
or four principal elements as well [3-5]. Nowadays, most of the reported H E A s are usually 
prepared by vacuum induction melting technology. However, the shape and size of final 
products produced by vacuum induction melting are limited, and the cost of H E A s can be much 
higher than most common alloys, due to the inclusion of more expensive elements [6]. 

Due to the variation in elemental chemistry, H E A s exhibits excellent properties in a wide range 
of fields, such as hard strength and ductility [5, 7], exceptional wear [8], corrosion [9], and 
oxidation [10] resistance. Therefore, H E A s have been presented as a promising advanced class 
of materials with huge potential uses in various industries. In addition, there have been many 
studies, which have proved that the microstructure and properties of many H E A s can be 
changed by heat treatment [11]. N i u et al. [12] studied the annealing of Alo.sCoCrFeNi H E A at 
650 °C and found that the nano-sized B 2 phase appeared in the dendrite region, which enhanced 
the strength of the alloy. Similar results were also found in the study of X u et al. [13]. 

In order to investigate the effect of heat treatment temperature on the microstructure and 
mechanical properties of the Alo.2C01.5CrFeNi1.5Ti high entropy alloy, the H E A samples were 
heat-treated at 1000 °C for 5h with subsequent 750 °C for an additional 5h. The microstructure 
evolution and mechanical properties of as-cast and heat-treated samples were thoroughly 
discussed. 

1 
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2 High Entropy Alloys 

High entropy alloys, also known as complex concentrated alloys, emerged as a new class of 
material that consists of three to five elements in near equiatomic ratios. These alloys have 
captivated the attention of the scientific community in the last fifteen years due to their potential 
to be developed for real applications. In this light, the history, definition, main concepts, and 
most remarkable properties are introduced. 

2.1 History 

The first mention of multicomponent equimass alloys comes from the end of the 18th century. 
The first one who studied multi principal-element alloys with five or seven elements was a 
German scientist and metallurgist Kar l Franz Achard. In some way, he is a predecessor of both 
Jien Wie Yeh's and Brian Cantor's discoveries and researches on high entropy alloys. A l l his 
work was ignored until the year 1963 when professor C y r i l Stanley Smith brought it to light 
[14]. 

Two independent publications in 2004 by prof. Jien-Wei Yeh in Taiwan and prof. Brian Cantor 
in the United Kingdom led to start-up research on the barely touched high entropy alloy's world 
[2]. This nomenclature was not used previously, but the concept was similar to the ones 
presented already, at the end of the 18th century. In 1981, Brian Cantor with his student Ala in 
Vincet tried to create equiatomic alloys, these consisted of alloys comprising different elements 
in the same atomic ratio [15]. It was found by them that one specific alloy manufactured by 
induction melting with C r M n F e C o N i composition, known up to now as the famous Cantor 
Al loy forms a single cubic centered solid solution (FCC) . In 1998 the same alloy was produced 
using melt spinning technology, but a publication on these experiments was not published until 
2004 [16]. 

However, a decade later Otto, F . et al. [17] discovered that Cantor alloy dissolves into metallic 
(BCC-Cr) and intermetallic ( L l O - N i M n and B2-FeCo) phases after heat treatments above 
800°C. Some of these transformations appear very quickly when the alloy is in the 
nanocrystalline form but takes longer in large-grained materials. It is not known whether this 
diversity is due to the grain barrier allowing favorable nucleation location or/and rapid diffusion 
paths. After heat treatments above 800 °C, the metastable F C C , solid-solution state can be 
preserved at room temperature at normal cooling rates. These findings and others reported in 
the literature, contradict the first idea that high entropy alloys favor the formation of single 
phase solid solutions. This concept w i l l be discussed in detail in the definition section. The 
microstructure has been observed by the authors at various length scales using X R D , scanning 
electron microscopy, transmission electron microscopy (TEM) , electron backscatter 
diffraction, and atom probe tomography [18]. The alloy exhibited a single-phase, F C C , solid 
solution without visible grouping or arranging in short distances. If by chance local ordering 
was experimentally proven to exist, results from density functional theory calculations suggest 
that it would have a high impact on the stacking-fault energy and dislocation mobility, which 
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have a major effect on mechanical properties control [19]. A t low temperatures, below 50 K , 
the calculations result from experimental D F T exhibit transformation of unstable F C C structure 
into H C P structure [20]. However, it has never been proven directly by experiments [21]. 

Jien Wie-Yeh started his analysis of multicomponent alloys in 1995. His idea was that a high 
mixing entropy factor could reduce the content of phases and change valuable properties. With 
his student K . H . Huang, in 1996, they prepared around 40 equiatomic alloys with five to nine 
elements (Ti, V , Cr, Fe, Co, N i , Cu , M o , Zr, Pd, and A l ) by arc melting. The microstructure, 
corrosion resistance, and hardness were examined in an as-cast state and in a fully annealed 
state in these alloys. From the experimental results was evaluated that typical dendritic structure 
was visible in the as-cast state structure. A l l these observed alloys have a high hardness level 
in the range from 590 to 890 H V , depending on i f it is in an as-cast state or fully annealed 
state, among with excellent corrosion resistance in four acids solutions (HC1, H2SO4, HNO3, 
and HF) . In the year 2004, the first Jien's H E A concept paper was submitted and published in 
the Advanced Engineering Materials journal. The term H E A s was not used in any of these 
articles [14, 22]. 

Nowadays, the concept of H E A s represents a category of alloys, which provides us unique 
compositions, microstructures, and various properties. From recent articles, we know that not 
all H E A s form a solid solution, so research is also involved in the probability of the formation 
of a solid solution based on the difference in atomic sizes of used elements [23]. The biggest 
disadvantage is that there is currently no thermodynamic and kinetic evidence that represents 
the H E A s system [24]. 

On the other hand, future research of H E A s systems is expected to show promising chemical, 
mechanical and physical properties. This is in response to increasing requirements in material 
science, for the improvement of already existing materials [25]. 

2.2 Definition 

Definition based on the composition 

In recent years, there has been some controversy about the definitions of H E A s , that are 
accepted in the field of science. The first definition was proposed from initial research based 
on compositional requirements. The H E A s are defined as alloys that consist of five or more 
major elements in the same or similar atomic ratio, where the concentration of major elements 
can vary between 5-35 atomic percentages. Also , the alloy can be enriched with additive 
elements to improve its properties, where the atomic percentage usually does not exceed more 
than 5. 

This definition can be expressed by using the following equation: 

nmajor > 5, 5 at. % < ci < 35 at. % (1) 

nminor > 0, Cj < 5 at. % (2) 
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, where Ilmajor IS a number of primary elements, nminor IS a number of secondary elements, Ci is 
atomic percentages of primary elements and Cj is atomic percentages of secondary elements. 

A s defined above, an alloy system with assumed high entropy may be composed of an 
equimolar ratio, a plurality of non-equimolar elements, or a plurality of minor elements. The 
definition was believed to express the probability of solid solution formation being increased 
with entropy [26]. However, it describes H E As only in terms of their composition but does not 
explain the size of their entropy [27]. 

Definition based on the entropy 

The standard definition of H E A s , as revealed by many researchers contains at least five major 
or principal elements that have an atomic concentration between 5 and 35 percent. In 
particular, it indicates that the stability of the disordered solution was found to be very high 
with a respect to the perfectly ordered intermetallic compound when the alloys have a high 
mixing entropy (ASmix). According to the hypothesis of Boltzmann, it defines the entropy of 
alloys as a linear function of the logarithm which can be explained by the following equation: 

S = k. InW (3) 

, where S is the entropy of the system (J-K the value of k=1.38 x l O " 2 3 J / K is a constant 
know as Boltzmann constant (J-K _ 1 ) and W is the thermodynamic probability, which represents 
the total number of microscopic states contained in the macroscopic state. 

The most suitable way for calculating the entropy of alloys composed of two elements with an 
atomic fraction of x i and X2 is using Stirling's approximation as an expression: 

Smix = - k C X i l n X i + x1\nx2) (4) 

If the ideal entropy configuration of the alloys is equal to n we can modify it as: 

S m i x = - R 5 > i l n ( X i ) ( 5 ) 

, where 1 < i < n and R is a gas constant. 

Because they have the same atomic fraction (x; = 1/n), the above equation is reduced to: 

S m i x = Rln(n) (6) 

, where n is a concentration of mixing elements in an equimolar ratio. 

It is a valuable equation that works for liquid alloys, as well as for many solid high entropy 
alloys close to melting temperature. In equimolar H E A s , ASmix was firstly calculated to 
be 1.61R. For non-equiatomic H E A s , the value of ASmix can be very lower 1.5R. Conventional 
alloys have ASmix values arrange from 0.22 R for low alloy steel and lift up to 1.15R for stainless 
steel. Superalloys have entropy values range up to 1.37 R. L o w entropy is defined as ASmix < R, 
for medium entropy alloys R < ASmix< 1.5R and for high entropy, alloy ASmi x> R [23]. 
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Fig. 1 Classification of alloy based on the configurational entropy [48]. 

However, the above formula does not take into account vibrational entropy, magnetic 
entropy, and electronic randomness entropy due to the dominance of configurational entropy 
[28]. These are contributions that were recently proven to have a huge influence on the final 
properties and structures of these alloys, therefore a single value of entropy of mixing does not 
indicate i f the alloy w i l l stabilize solid solution phases or not, as it was previously believed. 
The topic is much complex and there are broad discussions in the literature pointing out the 
controversies [2, 16, 18, 29]. 

It should be noted that both definitions are only indicative. For example, alloys with a small 
deviation in composition from the above definitions could be considered as H E A s . It 
is generally accepted that it is not necessary to strictly follow the definitions of H E A s due to 
wider composition restrictions to the evolution of novel alloys [30]. 

2.3 Four „ 'core effects' " 

The four ,,'core effects'" were believed to govern the H E A s behavior. This fact has been shown 
to be controversial, however, some of them may play an important role on the properties of this 
material, so they w i l l be explained in the following sections. There are: the high entropy effect, 
the lattice distortion effect, sluggish diffusion, and the „ cocktail effect". Three of them are 
described as hypotheses and, the last one, known as the „'cocktail effect' " is a claim regarding 
H E A s , which was never proven. These hypotheses were initially evaluated according to the 
information available in the very earliest publications. In the following subchapters, these 
hypotheses are compared with the published data from the last 12 years [30, 31]. 

The high entropy effect 

The entropy for H E A mainly refers to configurational entropy in the literature [2]. For 
equimolar quinary random solid solutions and stoichiometric intermetallic compounds, their 
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value of configuration entropy was believed to be equal to 1.61R (R = 8.31 J /K mol). According 
to Gibbs free energy difference: 

AG mix = A H mix - TAS mix (7) 

, where A G m i x [J.mol"1] is Gibbs energy, A H m i x [J] is enthalpy, T [K] is temperature and 
A S m i x [J.K" 1] is the entropy of the system. In theory, the phases with higher entropy in alloys 
acquire lower Gibbs free energy. It follows that the high mixing entropy in H E A s was believed 
to support the formation of random solid-solution phases, rather than intermetallic phases. 
However, the high effect can not guarantee the formation of a simple solid solution phase in 
multicomponent alloys. In this case, we should take into account other important factors, such 
as other contributions of entropy, enthalpy mixing A H m i x , size difference (8 r), and some authors 
presented the concept of V E C [32, 33]. 

The mixing enthalpy A H m i x in some cases of H E A s can have quite negative values and thus the 
formation of intermetallic compounds cannot be completely avoided. Accordingly, we can 
determine that the mixing enthalpy is another important characteristic parameter affecting the 
phase selection in H E A s . The mixing enthalpy in a random solid solution is defined as: 

, where otjj = 4AH™gX, and 4 A H ] ^ X is the mixing enthalpy for the binary A B alloy and q ( c ) is 

the molar concentration of the ith(jth) atom. 

The geometric factor and the atomic radius of the alloying elements in terms of deformation 
energy may also significantly affect the stability of the solid solution and the phase stability. 
According to Hume-Rothery rules [34], the atomic size difference between solvent and solute 
should not pass 15 % in binary solid solutions. In H E A s no specific solvent and solute elements 
are defines. Thus, some authors is a dispersion of atomic sizes to describe the stability of a solid 
solution. The parameter 8 r, related to the atomic size difference is defined [35-37] as: 

, where r } is the atomic radius of the ith atom. 

In H E A s , many crystallographic systems can be presented, but the most reported ones are B C C 
and F C C , solid solutions structures. In conventional alloys with a base element, the choice of 
the structure is commonly considered from the effects of the supplementary elements (solute 
atoms) on the structure of the major element (solvent atom). There are several major elements 
in H E A s for which we can no longer directly apply traditional considerations about structure 
selection. Some studies have shown that valence electron concentration ( V E C ) is a dominant 
factor that controls the structure of F C C and B C C solid solutions in some groups of 

(8) 

(9) 
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H E A s , provided that only solid solutions would form and no intermetallic compounds are 
formed [36, 38]. The V E C in H E A s is defined as: 

, where (VEC), is the valence electron numbers for the ith atom. 

Based on limited experiments on H E A s obtained so far, both the mixing enthalpy and atomic 
size difference are significantly involved in the regulation of phase stability in H E A s . Although 
the parameters of A H m i x and 5 r are based on observation or experience and the physical 
significance of V E C is not well understood, especially for certain groups of H E A s , these 
experimental parameters provide useful conduction for phase selection in some H E A s [36]. 

According to Gibbs free energy (equation 7), the effect of high entropy on the stability of 
random phases of a solid solution decreases with decreasing temperature. It follows that random 
phases of solid solution can be converted into intermetallic phases i f the H E A s were annealed 
at a relatively low temperature [33, 39,40]. For example, refractory H E A HfNbTaTiZr has only 
one B C C phase after homogenization annealing. However, the H C P phase is improved with H f 
and Ta (approximately 25 at. % each) and was observed in the B C C matrix after annealing at 
600 or 800 °C [40]. It should be pointed out that in some cases intermetallic phase may 
sometimes improve the properties of H E A s , which follows that H E A research should not be 
limited to simple solid-solution phases [33]. 

The sluggish diffusion effect 

Diffusion may be expected to be sluggish in H E A s [31]. This statement is based on secondary 
observations, which include the formation of nanocrystals and amorphous phases upon 
solidification, and on qualitative analysis of microstructural stability upon cooling. To further 
support this stand, general observations relating to difficulty in substitutional diffusion and high 
activation energies are called into use [2, 33]. 

The occurrence of nanocrystals in as-cast A l x C o C r C u F e N i [41] and retention of nanocrystals 
in A l C r M o S i T i after annealing [30] were clarified to be a sign of slow diffusion. Furnace 
cooling of Alo.sCoCrCuFeNi keep away from formation of low-temperature phases, and 
A l M o N b S i T a T i V Z r is a better diffusion blockade than TaN/ T i N or Ru/TaN [42]. Both of these 
results have been used to explain the sluggish diffusion hypothesis. However, alternate analyses 
provide us equally satisfying explanations for all of these examinations. As a starting point for 
comparison are used conventional alloys, nanometer-sized precipitates remain in superalloys 
for tens or hundreds of hours at temperatures that come close to 85 % of the absolute melting 
temperature (T m ) . While the above indirect observations are consistent with slow kinetics, they 
do not indicate that diffusion is slower for H E A s compared to conventional alloys [43]. 
Also, the compositional complexity of H E A s makes it difficult to measure diffusion [29]. 

From the latest data, we can conclude that diffusion coefficients in CoCrFeMno.sNi are not 
significantly different from diffusion in elements and conventional alloys. This conclusion is 

n 
(10) 
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based on a comparison of the available results of measured diffusion coefficients for F C C 
metals and alloys at T m . It further supports the fact that all data measured in Ref. [42] all belong 
to a single order of magnitude, both before and after normalization by T m . 
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Fig. 2 Diffusion coefficients of N i ( D m ) in FCC elements, stainless steel, and CoCrFeMno.sNi as a 
function of (a) inverse absolute temperature, and (b) inverse absolute temperature normalized by the 

melting or solidus temperature of the host alloy, T m [29]. 

In conclusion, data that support the sluggish diffusion hypothesis are obtainable only for certain 
high entropy alloys, and a larger dataset is needed to better investigate the hypothesis that 
unusually slow diffusion can be possible in H E A s as a class of materials [44]. 

The lattice-distortion effect 

Severe lattice distortion is based on the different sizes of atoms that form crystal lattices of 
complex, concentrated phases, as shown in Fig . 3. The displacement at each location of the 
lattice depends on the atom occupying that location, and on the types of atoms in the local 
environment. It is claimed that these distortions tend to be more severe than in conventional 
alloys [14,31]. 

Lattice distortion affects the hardening of the solid solution and contributes to excessive 
configurational entropy. It is also involved in the difficulty of distinguishing between ordered 
and disordered phases using the standard X-ray diffraction technique. Crystal lattices in the 
H E A s are almost certainly affected by distortion, but there is no systematic evidence to directly 
confirm this. The 8 r parameter is commonly used to determines the variability in atom sizes, but 
in this case, the distortion in the structure can be less. For example, distortion is lower in 
structures where the 1st shell surrounding a smaller atom which is mainly populated by larger 
atoms, and where larger atoms are surrounded by smaller atoms. A n approach to measure and 
model lattice distortion is necessary [29]. 

A t present, there seems to be only one type of experimental method that can be used to measure 
lattice distortions [45]. Lattice fringes are detected on inverse fast-Fourier transform (FFT) 
images, which are taken from high-resolution transmission electron microscopy photographs. 
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Future work is focused on quantification of the magnitude of lattice distortion and isolating it's 
effect [29]. 

Pure metal Dilute alloy HEA w 

Fig. 3 Schematics of lattice distortion in body-centered cubic pure metals, conventional dilute alloys 
and high entropy alloys. A - E represents different element species [46]. 

The 'cocktaileffect' 

Unlike the other „ 'core effects'" , the „'cocktail effect'" is not a hypothesis and no evidence is 
required. The phrase was first used by prof. S. Ranganathan and his initial aim was simple, 
„a pleasant, enjoyable mixture'". Although, it later came out to represent a synergistic mixture 
where the final result is unpredictable and bigger than the sum of the parts [47]. This phrase 
was introduced to express three different alloy classes: bulk metallic glasses, super-elastic and 
super-plastic metals, and H E A s . Each of these alloy classes covers complex, concentrated alloy 
compositions. The „'cocktail effect'" is primarily focused on the outstanding properties of fully 
amorphous bulk metallic glasses and the structural and functional properties of super-plastic 
metals, such as ultra-high strength with good fracture, weaker resistance, and ductility. In each 
of these cases, resulting properties depend on material composition, microstructure, electronic 
structure, and other functions in complicated and delicate ways. The „'cocktail effect'" reminds 
us to stay open to non-linear, unpredicted results that can come from unusual combinations of 
elements and microstructures in the enormous composition space of H E A s [29]. 

2.4 Preparation and Processing 

According to the existing researches and application experience, the traditional preparation 
method of H E A s is basically the same as the preparation methods of conventional alloys. 
However, the existence of the difference is undoubted. H E A s have various forms such as bulk, 
films, belt, powders, and fibers. Based on this, H E A s are usually manufactured as four types in 
line with their dimension, as demonstrated in Fig . 4: bulk H E A s (three-dimensional HEAs) , 
high entropy films and coatings (two-dimensional H E A s ) , H E A fibers (one-dimensional 
H E A s ) , and H E A powders (zero-dimensional H E A s ) [48, 49]. 
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Fig. 4 Classification of HEAs according to preparation size [49]. 

Traditional preparation methods of three-dimensional H E A s mostly include vacuum arc 
melting, vacuum induction melting, mechanical alloying and subsequent sintering, and so on. 
Certain preparation methods lead to directional solidification, which can be used to obtain a 
certain orientation of the crystals [50]. It should be noted, that the experimental high entropy 
alloy Alo.2C01.5CrFeNi1.5Ti, applied in this study, was produced by vacuum induction melting. 
Therefore, we w i l l deal with this technique in more detail in the following section: preparation 
by vacuum induction melting. 

According to the newest publications, there are also several new methods for preparing bulk 
H E A s , such as high-gravity combustion synthesis and additive manufacturing. Chen et al. [51] 
investigated the implementation of additive manufacturing methods in the production of H E A s . 
Compared to casting counterparts, it has been found that H E A s prepared by additive 
manufacturing may have a superior yield strength and ductility due to the fine microstructure 
formed during the rapid solidification in the fabrication process. As a result, this is an effective 
method for improving their comprehensive properties. Various processing methods are closely 
connected to the performance. 

Annealing, as an efficient method, has been introduced to improve the microstructure and 
properties of alloys, where the different annealing temperatures and time are closely related to 
comprehensive properties. Zhuang et al. [52] examined the effect of annealing temperature on 
the microstructure, and mechanical properties and phase constituents of A l o . 5 C o C r F e M o x N i 
(x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5) H E A s at the specified annealing time (10 h). They found that 
the alloys annealed at 80 °C exhibited higher hardness and yield strength, due to the relatively 
fine precipitates and resulting microstructures. Sathiyamoorthi et al. [53] insert a high-pressure 
torsion-treated C o C r N i alloy with a grain size of -50 nm into different annealing conditions 
and investigated the optimal processing technology. The sample annealed at 700 °C for 15 min 
showed an impressive combination of the tensile strength (-1090 MPa) and strain to failure 
(-41 %). 
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The pressure is considered to be another essential and powerful parameter, introduced to the 
experimental study of H E A s . Many interesting reversible/irreversible phase transitions that 
were not previously expected or otherwise invisible were observed under high pressure. Zhang 
et al. [54] reviewed recent outcomes in various H E A s achieved by using in situ static high-
pressure synchrotron radiation X-ray methods and come up with new prospects for future 
investigation. 

Welding is an important area with a high potential effect on future research and technological 
developments in the field of H E A s . The selection of possible welding processes with optimized 
parameters is required to improve applications of H E A s . Guo et al. [55] examined recent works 
on welding of H E A s in detail with a focus on the research of H E A systems in the application 
of different welding methods. 

Preparation by vacuum induction melting 

Among the reported traditional preparation methods (Fig. 4) most bulk H E A s are produced by 
liquid state route, including vacuum induction melting. The metal is under vacuum exposed to 
deep degassing, resulting in a perfectly deoxidized metal along with a homogenized bath due 
to the bath mixing. As a result, alloy prepared by this technique contains a very low content of 
non-metallic inclusions. Additionally, with the help of vacuum induction furnaces, it is possible 
to melt alloys with any chemical composition within the temperature limitation range of the 
machine [56]. 

However, there are some attention problems using this type of technology for preparing 
H E A s , as emphasized in the following: the solidification process cannot be well controlled due 
to the nature of rapid solidification, leading to different microstructure characteristic from the 
surface to the center of alloy samples, e.g., inhomogeneous separation of the as-cast dendrites 
in morphology and size, line up from fine grains to columnar dendrites and thus an 
unmanageable macroscopic property. Also, a series of unavoidable as-cast defects, along with 
elemental segregation, suppression of equilibrium phases, microscopic and macroscopic 
residual stresses, cracks, and porosities, may have a negative effect on the mechanical properties 
of H E A s . Measures should be taken into account to reduce or eliminate these defects in the 
H E A s [57]. 

2.5 Microstructures of High Entropy Alloys 

H E A s produced by the casting route show typical cast microstructure consisting of dendritic 
(DR) and interdendritic (ID) regions. D R region is often found to exhibit microstructural 
features such as precipitates, nanostructured phases, and modulated structure arising from 
spinodal decomposition (SD), whereas the ID region was shown to exhibit a two-phase eutectic 
structure [1]. 

Singh et al. [58] studied the microstructure of the A l C o C r C u F e N i alloy. The phase formation 
sequence is shown, in detail in F ig . 5. 
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Fig. 5 Depiction of phase formation sequence during cooling of ALCoCrCuFeNi alloy system with 
different aluminum contents [14]. 

Tung et al. [59] discussed the microstructural properties of various H E A s , which contain 
different elements in non-equiatomic proportion. In alloys with lower copper content ID regions 
appeared, visible from the segregation tendency of the element. SD leading to modulated 
structures, which can be observed in alloys containing B C C phase (DR regions), while ID 
regions have heterogenous F C C and B C C structures. From these results, it can be deduced that 
although the configurational entropy for various alloys is the same, their microstructure differs 
are obvious in terms of phase fractions and compositions, further underlined by the fact that 
other thermodynamic factors also play a role in phase evolution in non-equiatomic H E A s . 

They observed the microstructure of D R (Fig. 6) in as-cast alloys (Label. A ) , resulting in a 
claim that the D R region consists of many secondary phases such as plate-like precipitates 
(Label. B) , rhombohedral and spherical precipitates (Label. C) , and weak superlattice 
reflections of L b phase. The D R region has also been shown to contain N i A l , CrFe, and C u -
rich plates as studied by 3D atom probe. On the other hand, splat-quenched A l C o C r C u F e N i 
alloy, shown a polycrystalline microstructure with clear grains and grain boundaries [59]. 
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Fig. 6 Bright-field T E M images showing (A) DR and ID regions; (B) DR showing plate-like 
precipitates and presence of ordered B2 structure; (C) presence of rhombohedral precipitates in DR 

and weak reflections of L I 2 phase; and (D) microstructure of ID region and weak superlattice 
reflections of L I 2 phase for as-cast AlCoCrCuFeNi alloy [14]. 

In contrast to the above observation on cast alloys, atom probe studies on mechanically alloyed 
( M A ) CoCrFeNi H E A s suggest an even distribution of alloying elements in the as-milled 
condition. However, segregation of specific elements after hot consolidation has been observed 
in some alloys prepared by M A . Elemental atom probe mapping tomography in A l C o C r C u N i Z n 
FfEA prepared by M A followed by hot compaction at 600 °C showed Cu segregation at grain 
boundaries. After consolidation, retention of nanocrystalline grains was also examined with a 
size of about lOnm [14]. 

Over the processing methods, the resulting microstructure of H E A s also depends on the alloying 
element. As a consequence the phase equilibrium among kinetics changes in the solidification 
stage. For example, the addition T i to A l C o C u F e N i , resulting in changes of morphology from 
D R to eutectic cell type (Wang et al., [60]) while the V addition exhibits D R region with 
ellipsoidal particles instead of modulated plate-like structure. These phenomena are more 
revealed in the general properties section. 

Mechanically alloyed powders of non-equiatomic H E A s compared to equiatomic H E A s show 
similar microstructure characteristics features, such as hard agglomerates, smooth fine 
particles, and uniform morphology. Chen et al. [61] prepared AlCoCrCuo.sFeMoNiTi alloy by 
M A . According to the mechanisms of M A , the 2 h-milled powders exhibited lamellar structures 
which transform into the uniform amorphous microstructure after 36 h of milling. In a similar 
study by Sriharitha et al. [62] alloy A b C o C r C u F e N i prepared by M A , the microstructure 
exhibited an average particle size of about 0.5 microns with a crystallite size less than 50 nm. 
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Besides, the development of advanced techniques such as high-resolution transmission electron 
microscopy, atom probe tomography, electron backscattered diffraction (EBSD) , etc. shown to 
be very useful in detecting the fine microstructural details of H E As [14]. Thus we can conclude 
that very different microstructural features can be obtained except for single phase solid 
solutions. These can bring improved properties to the alloys. 

2.6 General Properties 

Mechanical behavior is one of the most extensively studied researches in the field of H E A s . 
The main research is focused on three types of alloys: 1, 3D transitional-group-element H E A s ; 
2, 3D transitional-group-element H E A s with A l or T i added; 3, refractory high entropy alloys 
with excellent high-temperature properties. Furthermore, other trace alloying elements, such as 
M o , Nb, Zr, etc., were put into use in order to study their effect on the microstructures and 
properties of the alloys. [50]. 

H E A s metals based on 3D transition such as C r C o N i and C r M n F e C o N i alloys, exhibit 
prominent mechanical properties like strength and fracture resistance, as emphasized in Asby 's 
map of construction materials (Fig. 7). F ig . 8 represents the influence of temperature on tensile 
properties and fracture toughness of the C o C r F e M n N i . The alloys exhibit a very good 
combination of ductility and fracture, which increases with decreasing temperature. This 
combination of properties makes Cantor's alloy unique because most materials become more 
brittle as the temperature is decreased. In this case, the values of crack-initiation toughness 
exceed (Kic) more than 200 MPa .m" 1 / 2 independent of the temperature [18]. 

Yield strength. o y (MPal 

Fig. 7 Ashby plot of strength versus fracture toughness of CrCoNi-based, medium-entropy, and high 
entropy alloys [18]. 
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Fig. 8 Crack resistance curves of the Cantor alloy CrMnFeCoNi [18]. 

Additional elements such as Nb significantly support the reduction of nano-phases and thus 
increase the strength of the alloy [63, 64]. The addition of M o to the CoCrFeNi alloys 
effectively helps to increase the corrosion resistance [65]. The effect of adding Zr to the 
C o C r F e N i M n alloy was investigated by Zhang et al. [66]. The alloys were prepared from ZrEh 
powders using a mechanical alloying technique. The results indicate, that multiphase 
microstructures were formed in the alloys, which can be attributed to the large lattice strain and 
negative enthalpy of mixing, caused by the addition of Zr. Sun et al. [67] also used a mechanical 
alloying technique to prepare a C o C r N i C u Z n alloy. The addition of Pd promoted local and 
long-range lattice distortions in CoCrFeNi alloy, which affects the phase stability and phase 
transformation. The addition of elements such as A l and T i in 3D transition CoCrFeNi H E A s 
exhibits a strong impact on microstructure and phase composition. Al loying elements such as 
A l and T i in 3D transitional CoCrFeNi H E A s show a strong influence on microstructure and 
phase composition, as well as the ability to reduce the density. 

Due to its excellent mechanical properties, high entropy films processed by magnetron 
sputtering technology attracted attention with their exciting potential for the production of 
small-structure devices and precision instruments with sizes ranging from nanometers to 
micrometers. Zhang et al. [68] fabricated (Alo.5CrFeNiTio.25) high entropy films. It has been 
exhibited that the phase structure varies from the amorphous to the F C C structure with 
increasing nitrogen content, which is closely related to the atomic size difference in the alloy 
system. 

It can be found that nano-precipitation phases extensively appear in H E A s , which play an 
essential role in improving their mechanical properties such as strength and plasticity. 
Wang et al. [69] described the precipitation behavior and precipitation strengthening in H E A 
detailedly, including the morphological development of second-phase particles and the 
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mechanisms of precipitation strengthening. They argue that the challenge for the future is to 
design a stable and coherent microstructure in different matrices of solid solutions. 

Besides mechanical properties at room temperature, H E A s tend to exhibit excellent properties 
at higher temperatures due to the high-entropy stabilization effect. The Hf-Nb-Ta-Ti-Zr 
refractory H E A shows remarkable properties at high-temperature as well as at room 
temperature. Zýka et al. [70] presented a study of the tensile mechanical properties at 
room temperature of selected three-and four-element medium entropie alloys derived from the 
Hf-Nb-Ta-Ti-Zr system and found that it is a five-element H E A alloy that shows the best 
combination of strength and elongation. Tseng et al. [71] focused on revealing the effects of 
M o , Nb, Ta, and T i on the mechanical properties of equiatomic alloys Hf-Mo-Nb-Ta-Ti-Zr . 

Wear resistance and tribological behavior also play an important role in materials development. 
Wear properties have been investigated since the early stages of H E A development, although 
the data set is still limited. For example, Chuang et al. [72] reported outstanding adhesion to 
wear resistance of Alo.2C01.5CrFeNi1.5Tiy H E A , with a hardness of 717 H V and a resistance 3.6 
times that of SUJ2 with similar hardness. Furthermore, the H E A exhibits twice as high wear 
resistance as high-speed tool steel SKH51 with a hardness of 870 H V . They showed that this 
excellent performance is due to its remarkable oxidation resistance and hot hardness compared 
to comparable steels, as the contact temperature at the pin-disk interface can reach values of up 
to 80 °C [14]. 

In addition to mechanical properties, research s also focused on the physical and chemical 
properties of H E A s such as magnetic properties, radiation resistance, electrical properties, and 
corrosion resistance [50]. 
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3 Aim of the work 

The Alo.2C01.5CrFeNi1.5Ti high entropy alloy and its variants have stood out as potential real 
alternatives for applications in which high wear resistance is required, due to their excellent 
wear resistance combined with high strength. Despite the very interesting properties, these 
alloys possess low ductility due to their complex microstructure. 

In this work, the mechanical characteristics and microstructural evolution of 
Alo.2C01.5CrFeNi1.5Ti H E A produced by vacuum induction melting, followed by casting and 
subsequent annealing at various temperatures (750 °C and 1000 °C), were studied. The heat 
treatment experiments were performed with the intention of improving the mechanical 
properties of the H E A , such as better ductility. This could be done by reducing the content of 
intermetallic phases present in the alloy. A calculation of the pseudo binary phase diagram 
( C A L P H A D ) was performed to evaluate the possible phases present on the alloy. 
Additionally, the experimental part was done by X-ray diffraction ( X R D ) , scanning electron 
microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses of the H E A in all 
states. These were performed to reveal the phase, microstructures, chemical composition, and 
crystallographic properties. The mechanical properties evaluation related to different 
microstructures of the alloy were characterized using micro-Vickers hardness and 
nanoindentation testing by analyzing the hardness of the produced material. 

17 

http://Alo.2C01.5CrFeNi1.5Ti
http://Alo.2C01.5CrFeNi1.5Ti


4 Experimental material and methods 

4.1 Experimental material preparation 

The Alo.2C01.5CrFeNi1.5Ti H E A was prepared by vacuum induction melting from elemental 
components with purity higher than 99 ,5 wt. %. In order to ensure the surface cleanliness of the 
melting batch, dry blasting was performed. The ceramic crucible (Fig. 9b) was made of pressed 
zircon material Z C 9 3 i and formed into an inductor of an induction medium frequency vacuum 
furnace. A permanent mold was prepared for melting, where the inner part was covered with a 
spray of yttrium oxide. This was followed by controlled heating on an electric resistance furnace 
according to the manufacturer's recommendations with a delay of at least 500 °C and a gradual 
decrease to a final temperature suitable for casting, approx. 200 °C, which has been formed into 
a casting module. Therefore, the smelting process was carried out in an induction medium 
frequency vacuum furnace (ISVP), shown in Fig . 9a, on a basic charge of pure iron, with 
gradual alloying in a vacuum according to the affinity series of individual elements of the batch 
for oxygen. After achieving optimal melting of the total batch at a pressure of 4 Pa in the I S V P 
caisson, the alloy was cast into a casting module located in an argon atmosphere. The melt was 
left in a closed caisson to minimize the cooling rate of the ingot. In compliance with the above 
technological and metallurgical procedures, the surface of the ingot was without any defects 
and the crystallization zones in the ingot were satisfactory. 

Fig. 9 Heraeus vacuum induction equipment in V U T FSI for melting, processing, and casting in 
vacuum or an inert atmosphere (max. Approx 20k) (a) vacuum induction furnace IS2/1 HERAEUS; 

(b) zirconia ZC93i crucible for metal handling and melting. 
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4.2 Characterization methods 

The cut-off machine Brillant 220 (Metalco Testing s.r.o) was used to cut the base material into 
3 samples with approximate dimensions of 20 mm length, 6 mm width, and 6 mm depth. 
Afterward, the preparation of bulk samples for microstructural investigations was mostly 
carried out by hot mounting using black epoxy resin DuroFast with mineral filler. Once the 
samples were hot mounted in resin, they were mechanically ground with S iC abrasive papers 
of different particle sizes #220-2400 grit. Subsequently, the samples were polished using 
diamond paste with a particle size of 3 um and 1 um. The last step of sample preparation was 
mechanical-chemical polishing with OP-S F. The following metallographic technique was 
applied to the first sample immediately, and for the other two samples after heat treatment 
experiments. 

X-ray diffraction (XRD) 

X-ray diffraction analysis of the materials phase composition was done using Philips X'Pert Pro 
diffractometer operated at 40 k V voltage with 30 m A current. A continuous scanning was done 
with 29 between 30° and 100° using a speed of 0 . 0 2 ° m i n - l and a step size of 0.0167°. The 
radiation used was C u - K a . 

Scanning electron microscopy (SEM) 

Scanning electron microscopy (SEM) characterization of the bulk materials in as-cast state and 
after heat treatments was performed using ZEISS Ultra Plus F E D microscope in secondary (SE) 
and backscattered electron (BSE) modes. Energy-dispersive X-ray microanalysis studies (EDS) 
were performed to evaluate the chemical composition of the material. 

Calculation of Phase Diagrams (CALPHAD) 

Calculation of phase diagram ( C A L P H A D ) was performed using ThermoCalc software version 
2020b ( T C H E A 4 database version 4.1). 

Micro Vickers hardness 

Vickers hardness measurements were carried out according to ISO 6507-1 standard using a 
Qness Q10A microhardness tester with an applied load of 0.2 kg. The reported values for the 
materials in a cast state and after heat treatment experiments are on average of at least 15 
measurements and the error is the standard deviation. 

Nanoindentation hardness 

Nanoindentation experiments were performed in order to determine the elastic modulus of the 
as-cast material in line with the Oliver-Pharr method [73]. C S M Instruments nanoindenter tester 
with a pyramidal Berkovich diamond indenter was used at an acquisition rate of 10 Hz , the 
maximum force of 100 m N , with load/unload rates of 200 mN.min" 1 and hold period of 10 s. 
For each sample the averages of at least 25 indents are presented, where the error is the standard 
deviation of the measurements. 
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Heat treatment experiments 

Heat treatment effect on experimental material Alo.2C01.5CrFeNi1.5Ti H E A presented in this 
study was performed in an annealing furnace E L S K L O type M F 5 , in order to investigate the 
influence of the temperature and time of annealing on the evolution of the microstructure. The 
as-cast samples were heat-treated in a furnace using air atmosphere at 1000 °C for 5h, labeled 
as C01, and at 1000 °C for 5h with subsequent 750 °C for an additional 5h, labeled as C02. 
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5 Results and discussion 

5.1 Calculation of phase diagrams - CALPHAD 

The Alo.2C01.5CrFeNi1.5Ti high entropy alloy pseudo binary phase diagram was calculated with 
the help of ThermoCalc [74] software using the T C H E A 4 database [75, 76], where the 
theoretical composition of the H E A is shown in Table 1 below. A calculated pseudo binary 
phase diagram of the AlxC01.5CrFeNi1.5Ti H E A for different mole percent A l is shown in 
Fig. 10. The alloy proposed in this study possesses 3.2 at. % A l , highlighted by a red arrow. 
Fig. 11 represents a scheme of property diagram as mole fraction versus temperature. It can be 
seen that the phase constitution in the high entropy alloys changes continuously with the alloy 
compositions and the temperatures. It should be noted that the phase diagram was calculated 
previously by Moravcikova-Gouvea et al. [77], however, the present phase diagram shown in 
this study is a more updated version with the new T C H E A 4 database, instead of T C H E A 3 . 

Table 1 Theoretical composition of the as-cast Alo.2C01.5CrFeNi1.5Ti high entropy alloy. 

Composition of the alloy (mole fraction) 
Name of alloy Al Co Cr F e Ni Ti 

Alo.2C01.5CrFeNi1.5Ti 0.0323 0.2419 0.1613 0.1613 0.2419 0.1613 
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Fig. 10 C A L P H A D calculation of the phase diagram for Alo.2C01.5CrFeNi1.5Ti high entropy alloy: 
AlxC01.5CrFeNi1 .5Ti calculated phase diagram, where x range from 2 mole percent up to 4. 
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Fig. 11 C A L P H A D calculation of the property diagram for Alo.2C01.5CrFeNi1.5Ti high entropy alloy as 
mole fraction of all phases versus temperature. 

During solidification, the simulation predicts the formation of BCC_B2#2 structure as the first 
solid phase from liquid, while all the liquid phase is transformed into BCC_B2#2 and F C C _ L 1 2 
structures at around. 1120 °C. The first FCC_L12#2 structure starts to precipitate out from 
BCC_B2#2+FCC_L12 structure at around 1080 °C, while the sigma phase begins to precipitate 
out around 880 °C. Since the sigma phase has a very brittle character, its content could be 
reduced by proper thermal treatments [67]. The annealing temperature should be higher than its 
lowest dissolving temperature 880 °C and therefore is set to be 750 °C. Meanwhile, the 
C A L P H A D simulations show the subsequent formation of C15_Laves with a gradual decrease 
in temperature below 810 °C. 

5.2 XRD analysis 

The X R D patterns of the as-cast and annealed Alo.2C01.5CrFeNi1.5Ti H E A are shown in Fig . 
12, where the background changes are a result of the influence of amorphous parts. It should be 
noted, that the detected phases were pointed out in the C01 sample as a reference. However, all 
phases are found in all alloys, except for Hexagonal DO24 which was present only in C01 and 
C02. In this light, the C01 was chosen as the reference, as it contains all phases. 
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Fig. 12 X R D patterns for the as-cast and annealed (C01 and C02) Alo.2C01.5CrFeNi1.5Ti high entropy 
alloys. 

X R D analysis of the as-cast showed the presence of a major F C C phase, whereas the presence 
of the B C C phase was observed in the smallest amount. Table 2 shows the phases detected by 
the X R D method, including the wt. % and their respective crystal structures. 

Table 2 Phases present in the as-cast sample of Alo.2C01.5CrFeNi1.5Ti high entropy alloy. 

As-cast 

Crystal structure Wt. % 

N i (FCC) 47.8 

Fe (BCC) 10.1 

CrFe (Sigma) 11.5 
Hexagonal C14-Fe2Ti (Laves) 30.6 

X R D analysis of C01 alloy showed a decrease in the relative amount of Laves phase in 
comparison to the as-cast alloy, after heat treatment at 1000 °C for 5h. The phases found on this 
alloy are shown in Table 3. After heat treatment at 1000 °C for 5h, followed by 750 °C for an 
additional 5h, the C02 alloy exhibits a different microstructure, with phases shown in Table 4. 

23 

http://Alo.2C01.5CrFeNi1.5Ti
http://Alo.2C01.5CrFeNi1.5Ti


Table 3 Phases present in the annealed sample of Alo.2C01.5CrFeNi1.5Ti H E A at 1000 °C for 5h (C01). 

As-cast + Heat treated 1000 °C for 5h (C01) 

Crystal structure Wt. % 
N i (FCC) 67.1 
Fe (BCC) 17.0 

CrFe (Sigma) 2.8 
Hexagonal C14-Fe2Ti (Laves) 10.5 

Hexagonal D 0 2 4 - N i 3 T i 2.6 

Table 4 Phases present in the annealed sample of Alo.2C01.5CrFeNi1.5Ti H E A at 1000 °C for 5h and 
subsequent treatment at 750 °C for additional 5h (C02). 

As-cast + Heat treated 1000 °Cfor 5h + 750 °Cfor 5h (C02) 

Crystal structure Wt. % 

N i (FCC) 48.2 
F e ( B C C ) 18.1 

CrFe (Sigma) 5.9 
Hexagonal C14-Fe 2 Ti (Laves) 25.4 

Hexagonal D 0 2 4 - N i 3 T i 2.4 

X R D analysis of the C01 and C02 showed the presence of the same phases in different 
amounts, with Hexagonal DO24 in a very small amount, which probably precipitated during 
cooling. However, the amount of Laves phase was found to be significantly higher in 
comparison with C O L In short, X R D results reported increased stability of the F C C phase and 
decreased amount of the sigma phase as a ThermoCalc simulation predicted. 

5.3 Microstructure evaluation 

As-cast alloy 

A scanning electron microscope was utilized to carry out the microstructural characterization 
of the as-cast sample and annealed samples (C01, C02). The micrographs comparison of as-
cast and annealed Alo.2C01.5CrFeNi1.5Ti H E A s are demonstrated in F ig . 13, F ig . 14, and Fig . 15. 
Metallographic maps of high entropy alloys exhibit the distribution of dendritic structures in 
the as-cast alloy. After annealing, the alloys still show the presence of remaining dendrites in 
certain areas, indicating that the heat treatment would need to be performed for longer times in 
order to fully dissolve the dendritic microstructure. Typical cast-dendrite morphology appears 
as dendritic structures separated by interdendritic areas, as shown in Fig . 13b. The arrows on 
the figure denote D R for dendritic regions and ID for interdendritic regions. 
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Fig. 13 Scanning electron microscopic images of the morphology and microstructures of the as-cast 
sample of Alo.2C01.5CrFeNi1.5Ti high entropy alloy a) using secondary electrons (SE) detector; b) using 
backscattered electrons (BSE); c) amplified view of the microstructure using SE detector; d) amplified 

view of the microstructure using BSE detector. 

The dark grey dendrite and light grey interdendritic regions visible on the backscattered (BSE) 
image are in contrast, which could be a reflection of different elementary segregation. The 
chemical composition of these areas for as-cast and annealed alloys was analyzed by E D S with 
the detailed discussion in the E D S analysis subchapter. The dendrite region was found to be 
rich in N i , Co , and A l , while the interdendritic found to exhibit elemental enrichment of C r and 
Fe [78]. 

Annealing at 1000 °Cfor 5h 

The as-cast Alo.2C01.5CrFeNi1.5Ti H E A was heat-treated at 1000 °C for 5h, labeled as C01, 
where the phase composition was characterized by X R D in F ig . 12. Similar to the as-cast alloy, 
the C01 sample exhibit still a few areas of dendritic structure, shown in Fig . 14b, despite the 
heat treatment. After annealing, a complex microstructure is revealed probably due to the 
diffusion of certain elements, and very small precipitates appear, which can be identified 
complementary by the X R D results. These precipitates were probably too small in size to be 
identified by the S E M micrographs on the as-cast state. 
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Fig. 14 Scanning electron microscopic images of the morphology and microstructures of the annealed 
sample of Alo.2C01.5CrFeNi1.5Ti H E A at 1000 °C for 5h (C01) a) using secondary electrons (SE) 

detector; b) using backscattered electrons (BSE); c) amplified view of the microstructure using SE 
detector; d) amplified view of the microstructure using BSE detector. 

The final comparison of the S E M and X R D results obtained during the present study with the 
calculated pseudo binary phase diagram by C A L P H A D showed some differences. C01 should 
consist only of B C C and F C C phases as per the calculated phase diagram by C A L P H A D . 
Although, X R D analysis confirmed the presence of F C C , B C C , Laves, sigma, and Hexagonal 
DO24 phases after the first heat treatment. It could be argued that 5 hours was not enough to 
dissolve each present phase, therefore not creating a microstructure composed of F C C and B C C 
only. However, it should be noted that ThermoCalc works with an ideal state of equilibrium. In 
this case, ideal conditions were not reached. In addition, for a better microstructural 
investigation, temperature optimization and deeper research are necessary. 

Annealing at 1000 °Cfor 5h with subsequent 750 °Cfor additional 5h 

The Alo.2C01.5CrFeNi1.5Ti H E A was heat-treated at 1000 °C for 5h with a subsequent treatment 
at 750 °C for an additional 5h, labeled as C02. In the C02 sample also the dendritic structure is 
preserved in a few spots, as shown in F ig . 15b. However, the C02 sample also exhibits a very 
complex microstructure in terms of phase present, these could be identified by the different 
scales of grey color in the B S E image. Additionally, complementing the results with X R D is 
necessary in order to identify the additional phases. 
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Fig. 15 Scanning electron microscopic images of the morphology and microstructures of the annealed 
sample of Alo.2C01.5CrFeNi1.5Ti H E A at 1000 °C for 5h and subsequent treatment at 750 °C for 
additional 5h (C02) a) using secondary electrons (SE) detector; b) using backscattered electrons 

(BSE); c) amplified view of the microstructure using SE detector; d) amplified view of the 
microstructure using BSE detector. 

In this case, a comparison of results from S E M and X R D with the calculated phase diagram 
was in good agreement. X R D analysis confirmed the presence of all phases predicted by 
ThermoCalc simulation, except Hexagonal DO24 that precipitates during cooling, as mentioned 
in the X R D analysis section. However, the Hexagonal DO24 is exposed in very small amounts 
and is difficult to define using S E M , in order to confirm and examine its occurrence, 
transmission electron microscopy (TEM) is required. Furthermore, the S E M results confirmed 
the presence of a small amount of oxides on this sample, marked with a white arrow in Fig . 15c. 
In contrast, the oxides were not detected in the X R D analysis since they are obtained only in a 
very small amount and their content might be below the detection threshold of the X R D method. 
The formation of oxides is a result of the long annealing rate in a furnace with an air atmosphere, 
approx. lOh. To prevent the formation of oxides a furnace with an inert atmosphere is necessary. 

Another interesting aspect of the microstructure, both as-cast and annealed, is the morphology 
of the phases. The structure has not undergone recrystallization, since the original 
microstructure was not severely plastically deformed before heat treatments, but only cast. In 
conclusion, the microstructure seems to be thermally stable under experimental conditions in 
the range of annealing temperatures from 750 °C to 1000 °C for 5 hours, with subsequent 
treatment for additional 5 hours for the C02 sample. 
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5.4 EDS analysis 

As-cast alloy 

In order to examine the chemical composition of the as-cast and annealed samples of 
Alo.2C01.5CrFeNi1.5Ti H E A , the energy dispersion spectroscopy (EDS) was performed. The 
average chemical composition of the as-cast Alo.2C01.5CrFeNi1.5Ti H E A was calculated by E D S 
area analysis, which is shown in Table 5. These data were chosen as representative due to the 
analysis of the E D S , which was taken on large areas of the as-cast sample. In conclusion, the 
composition is in agreement with the theoretical composition, listed in Table 1. 

Table 5 Average chemical composition of the as-cast sample of Alo.2C01.5CrFeNi1.5Ti high entropy alloy, 
obtained from Map Data 1. 

Composition of the as-•cast alloy (atomic percent) 
Name of alloy Al Co Cr Fe Ni Ti 

Alo.2C01.5CrFeNi1.5Ti 2.90 24.70 14.80 16.20 26.60 14.80 

The microstructure of the alloy prior to the annealing treatment is shown in Fig . 16. E D S 
analysis of the total composition confirms the non-equiatomic proportion of the metals in the 
alloy, as listed in Table 5. The presented high entropy alloy in this study was characterized as 
an Al-poor alloy with a higher amount of N i . In contrast to the fewer number of phases generally 
believed to be detected in H E A s , the as-cast alloy presented in this study was found to contain 
4 different phases using X R D analysis. It should be noted that the phase identification has been 
performed by contrast and compositional differences. 

Fig. 16 vividly shows large bright areas marked as region 1. It should be noted, that the 
composition for each region has been reported in atomic percent (at. %) throughout this study, 
where the additional mass fraction for the as-cast alloy is listed in Table 6, and for 
annealed alloys in Table 8 and Table 10. The E D S shows that region 1 is rich in similar amounts 
in N i (25.5 %), Co (24.6 %). Fe (19.76 %), C r (18.75 %) along with trace elements T i (9.1 %) 
and A l (2.29 %). Region 2, exhibits elements with a similar amount of atomic percent in 
structure as region 1, where T i (16.79 %), Fe (16.65 %), and C r (16.8 %) is exposed in the 
equiatomic amount. This phenomenon could be due to the higher presence of the Laves and 
sigma phase in region 2, as confirmed by X R D results. The dark area, marked as region 3, is 
enriched with N i (27.66 %), Co (24.94 %), and A l (6.35 %), indicates the presence of a dendritic 
region. 
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Fig. 16 Microstructure and elements mapping by EDS of the as-cast sample of Alo.2C01.5CrFeNi1.5Ti 

high entropy alloy. 

Table 6 Chemical composition for presented regions of the as-cast sample of Alo.2C01.5CrFeNi1.5Ti high 
entropy alloy. 

Region 1 Region 2 Region 3 
Element Wt. % Atomic % Wt. % Atomic % Wt. % Atomic % 

A l 1.12 2.29 0.48 0.98 3.19 6.35 
T i 7.89 9.10 14.62 16.79 15.98 17.87 
Cr 17.65 18.75 15.87 16.80 10.21 10.55 
Fe 19.98 19.76 16.90 16.65 13.12 12.63 
Co 26.25 24.60 26.00 24.28 27.34 24.94 
N i 27.11 25.50 26.13 24.50 30.16 27.66 

Annealing at 1000 °Cfor 5h 

Fig. 17 shows annealed microstructure at 1000 °C for 5 hours along with the E D S analysis 
indicating the locations of various elements and their approximate compositions, listed in 
Table 8. First, the non-equiatomic composition of the alloy has been verified by E D S as well, 
shown in Table 7. 
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Table 7 Average chemical composition of the annealed sample of Alo.2C01.5CrFeNi1.5Ti H E A at 1000 °C 
for 5h (C01), obtained from Map Data 2. 

Composition of the C01 alloy (atomic percent) 
Name of alloy Al Co Cr Fe Ni Ti Zr Si W 

Alo.2C01.5CrFeNi1.5Ti 2.90 24.30 15.10 16.40 26.20 14.60 0.20 0.20 0.10 

N i is mostly present in region 4 and it contains 41.08 % N i . It contains, approximately, 23.88 % 
and 18.85 % of Co and T i (respectively) while other elements are present in minor amounts. 
The clouded area, marked as region 5 is Co (25.08 %), N i (23,63 %), rich where an increased 
amount of T i (14.34 %) and Fe (15.54 %) was detected, which might indicate, the occurrence 
of Laves phase [79]. It should be noted since the phases are very small in this particular area, 
there could be the influence of the elemental composition of neighboring regions. The E D S 
point analysis on this area was performed at higher magnifications in order to avoid the 
influence of the other considered elements, therefore the location of point 5 in Fig . 17 is 
representative. Region 6 is essentially N i (24.87 %), Co (24.46 %), Fe (22.85 %), and Cr 
(18.13 %), rich, due to the possible presence of the sigma phase, as previously reported [80]. 

Map Data 2 
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50 u m 50 u m 

Fig. 17 Microstructure and elements mapping by EDS of the annealed sample of 
Alo.2C01.5CrFeNi1.5Ti H E A at 1000 °C for 5h (C01). 
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Table 8 Chemical composition for presented regions of the annealed sample of Alo.2C01.5CrFeNi1.5Ti 

H E A at 1000 °C for 5h (C01). 

Region 4 Region 5 Region 6 
Element Wt. % Atomic % Wt. % Atomic % Wt. % Atomic % 

A l 0.48 1.00 2.53 5.07 0.73 1.50 
T i 16.19 18.85 15.22 17.14 7.06 8.19 
Cr 5.28 5.66 13.05 13.54 16.98 18.13 
Fe 9.55 9.54 16.09 15.54 22.98 22.85 
Co 25.24 23.88 27.40 25.08 25.95 24.46 
N i 43.25 41.08 25.71 23.63 26.29 24.87 

Annealing at 1000 °Cfor 5h with subsequent 750 °Cfor additional 5h 

The microstructure of the Alo.2C01.5CrFeNi1.5Ti H E A developed during annealing at 1000 °C 
for 5h with subsequent 750 C for an additional 5h is shown in Fig . 18. The average chemical 
composition for the C02 sample is listed in Table 9, whereas the chemical composition for the 
presented regions is listed in Table 10. 
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Fig. 18 Microstructure and elements mapping by EDS of the annealed sample of Alo.2C01.5CrFeNi1.5Ti 

H E A at 1000 °C for 5h and subsequent treatment at 750 °C for additional 5h (C02). 
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Table 9 Average chemical composition of the annealed sample of Alo.2C01.5CrFeNi1.5Ti H E A at 1000 °C 
for 5h with subsequent 750 °C for additional 5h (C02), obtained from Map Data 3. 

Composition of the C02 alloy (atomic percent) 
Name of alloy Al Co Cr Fe Ni Ti Zr Si 

Alo.2C01.5CrFeNi1.5Ti 3.90 24.70 13.90 15.30 27.20 14.70 0.20 0.20 

The E D S point analysis shows that region 7 is rich with elements such as N i , Co , Fe, and T i are 
all within a range of 18.21 % to 25.63 %. This could indicate the presence of the sigma phase 
in the interdendritic region [81]. Another, cloudy area, marked as region 8, is N i (27.67 %) and 
Cr (26.56 %) rich along with T i (19.07 %) and trace elements Cr (7.09 %) and (9.9 %). Region 
9 is O (46.14 %) and Z r (27.09 %) rich, which is explained by the possible presence of oxides 
as a result of a long annealing time in a furnace with an air atmosphere. From the chemical 
composition of region 9, listed in Table 10, it can be determined that the oxide Zr-rich. The 
presence of trace elements of Si and H f may be explained due to potential contamination of the 
furnace with the air atmosphere. 

Table 10 Chemical composition for presented regions of the annealed sample of Alo.2C01.5CrFeNi1.5Ti 

H E A at 1000 °C for 5h and subsequent treatment at 750 °C for additional 5h (C02). 

Region 7 Region 8 Region 9 
Element Wt. % Atomic % Wt. % Atomic % Wt. % Atomic % 

A l 0.59 1.22 5.06 9.90 0.25 0.43 
T i 7.12 8.27 17.31 19.07 8.41 8.23 
Cr 17.03 18.21 6.99 7.09 3.75 3.38 
Fe 23.83 23.71 10.12 9.56 4.05 3.41 
Co 27.18 25.63 29.67 26.56 6.12 4.88 
N i 24.25 22.96 30.78 27.67 7.60 6.07 
Zr - - - - 52.67 27.09 
O - - - - 15.73 46.14 
Si - - 0.07 0.14 - -
H f - - - - 1.41 0.37 

5.5 Microhardness and nanoindentation hardness evaluation 

To evaluate the effect of heat treatment on the mechanical properties of the studied system, micro 
Vickers hardness testing for as-cast and annealed samples (C01, C02) of Alo.2C01.5CrFeNi1.5Ti 

H E A were carried out. Variation of microhardness of the as-cast and annealed (C01, C02) 
samples are shown in Fig. 19, where the average microhardness values in the Vickers scale are 
listed in Table 11. The average microhardness of the as-cast sample is 665±78 HV0.2 , whereas 
the average microhardness of the heat-treated C01 and C02 samples is found to be 
606±47 HV0.2 , and 751±49 HV0.2 . 
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Table 11 Evaluation of microindentation test results for the as-cast and annealed samples (C01, C02) 
of Alo.2C01.5CrFeNi1.5Ti high entropy alloy. 

Average hardness value Standard deviation 
Indentation area [HV0.2] [HV0.2] 

As-cast 665 78 
C01 606 47 
C02 751 49 

900 

800 -

700 

600 -

J As-cast 

£ C01 (Cast+1000) 

} C02 (Cast+1000+750) 

500 -I 1 1 , 1 
As-cast 250 500 750 1000 

Heat treatment temperature (°C) 

Fig. 19 Microhardness of the Alo.2C01.5CrFeNi1.5Ti high entropy alloy in as-cast or annealed states 
(C01, C02). 

The experimental results suggest that annealing at 1000 °C for 5h resulted in a probable slight 
decrease in hardness from the as-cast condition, 665±78 H V 0 . 2 to 606±47 HV0 .2 , respectively. 
It could be explained by the fact that increasing the annealing temperature causes an increase 
in the volume fraction of the ductile F C C phase, which is responsible for the decrease in 
hardness [82]. In addition, grain growth at elevated temperatures may also contribute towards 
the decrease in hardness and directly impacts their performance [83]. On the other hand, the 
microhardness increased after annealing at 1000 0 for 5h followed by treatment at 750 °C for 
an additional 5h, indicating that a small amount of phases precipitated after this annealing, as 
shown by the X R D results. In addition, the presence of the sigma phase in a higher fraction than 
compared to the previous state has contributed to increasing the microhardness of the alloys 
more than the B C C phase, since the sigma phase is much harder [84]. With the increasing 
volume fraction of the sigma phase and Laves phase, the alloys become harder. Therefore, the 

33 

http://Alo.2C01.5CrFeNi1.5Ti
http://Alo.2C01.5CrFeNi1.5Ti


microhardness of the C02 sample reaches 751±49 HV0.2 , respectively, which is harder than 
(A102TU0) alloy (approx. 717 H V ) in Ref. [72]. 

In addition, by analyzing the nanoindentation hardness and elastic modulus E of the as-cast 
sample, according to the Oliver-Pharr method, the nanoindentation tests were performed. 
Fig. 20 represents the morphology image of the studied alloy with assigned tip place for the 
dendritic region (Fig. 20a) and for the interdendritic region (Fig. 20b). The obtained values of 
nanohardness for light grey dendritic and dark grey interdendritic regions are listed in Table 12. 
The Young's modulus for dendritic and interdendritic regions are EDendritic=222±l 1 GPa and 
Einterdendritic= 223±50 GPa, respectively. Both the study regions are distinctly different in nano 
hardness values, 7234±380 M P a for D R region and, 11760±1089 M P a for ID region, 
respectively, while the obtained values of Young's modulus are similar within their standard 
deviation. The increased value of the hardness in the ID region is due to the presence of a sigma 
and Laves phase, as was reported in Ref. [77]. The Young's modulus is comparable to the other 
high entropy alloys reported in the literature, like Alo.sCoCrFeNi, approx. 220 GPa [85]. 

Table 12 Evaluation of nanoindentation results for the as-cast sample of Alo.2C01.5CrFeNi1.5Ti high 
entropy alloy. 

Indentation hardness Average hardness Elastic modulus 
Indentation area [MPa] value [HV] [GPa] 

D R 7234±380 669±35 222±11 
ID 1 1 7 6 0 Ü 0 8 9 1089±47 223±50 

Fig. 20 Scanning electron microscopic images of the morphology of the as-cast sample of 
Alo.2C01.5CrFeNi1.5Ti high entropy alloy using secondary electrons (SE) detector, with assigned tip 

place for the a) dendritic region; b) interdendritic region. 
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6 Conclusions 

In this study, the non-equiatomic Alo.2C01.5CrFeNi1.5Ti H E A produced by vacuum induction 
melting was characterized. The effect of heat treatments on microstructure, chemical 
composition, and mechanical properties of Alo.2C01.5CrFeNi1.5Ti H E A was investigated. The 
following was concluded: 

1. The average chemical composition of Alo.2C01.5CrFeNi1.5Ti H E A was in good 
agreement with theoretical chemical composition, thus showing a successful production 
of the alloy by vacuum induction melting. 

2. New Hexagonal DO24 phase was observed in the annealed states of Alo.2C01.5CrFeNi1.5Ti 

H E A , due to the possible precipitation during cooling. This phase was not detected in 
the as-cast state. 

3. Temperature and time optimization of heat treatments and deeper research are necessary 
to confirm the phase composition predicted by ThermoCalc simulation. 

4. Elemental segregation was detected both as-cast and annealed Alo.2C01.5CrFeNi1.5Ti 

H E A s , despite the applied heat treatments. 
5. A n increased microhardness value, 751±49 H V 0 . 2 was observed in the annealed C02 

sample in comparison with annealed C01 sample, which showed a hardness of 
606±47 HV0.2 . This may be explained by the higher amount of intermetallic phases on 
the former, which is in agreement with the ThermoCalc prediction. 

6. The values of nanohardness for the dendritic and interdendritic regions for as-cast 
Alo.2C01.5CrFeNi1.5Ti H E A were distinctly different, 7234±380 M P a for the D R region 
and, 11760±1089 M P a for the ID region, respectively. 

7. The obtained values of Young's modulus were similar within their standard deviation 
for the dendritic, 222±11 GPa, and interdendritic, 223±50 GPa, regions of the as-cast 
Alo.2C01.5CrFeNi1.5Ti H E A . 
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List of abbreviations 

B C C Body Centered Cubic 

B S E Backscattered Electrons 

C A L P H A D Calculation of Phase Diagrams 

D F T Density-Functional Theory 

D R Dendritic Region 

E B S D Electron Backscatter Diffraction 

E D S Energy-Dispersive X-ray Spectroscopy 

F C C Face Centered Cubic 

F F T Fast-Fourier Transform 

H C P Hexagonal Close Packed 

H E A High Entropy Al loy 

ID Interdendritic Region 

I S V P Medium Frequency Vacuum Furnace 

M A Mechanical Al loying 

OP-S Standart furmed silica suspension for final polishing 

SD Spinodal Decomposition 

SE Secondary Electrons 

S E M Secondary Electron Microscope 

T E M Transmission Electron Microscope 

V E C Valence Electron Concetration 

X R D X-ray Diffraction 
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