CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management
Informatics

Department of Information Engineering

UNIVERSITY . .
OF LIFE SCIENCES PRAGUE

Diploma Thesis

Data Warehouses: Comparison between Apache Hadoop and
Microsoft implementations on a real life example

Author: Hussein Mohamed Negm
Supervisor: doc. Ing. Vojtéch Merunka, Ph.D.

© 2016 CULS Prague

DIPLOMA THESIS ASSIGNMENT

Hussein Mohamed Abdelhag Ragab Negm

Informatics

Thesis title

Datawarehouse

Objectives of thesis

Design and implement a datawarehouse of a concrete multinational company that operates call centers
supporting services for other subjects in area of telecommunications.

Methodology

1. Prefer open-source technology and perform a comparison between open-source and Microsoft plat-
form.

2. Follow approach of CRM (Customer-Relationship-Management)

Official decument * Czech University of Life Sclences Prague * Kamycka 129, 165 21 Praha & - Suchdaol

The proposed extent of the thesis
60-80 pages

Keywords
My5QL, M5 50L, ETL Processes, CRM, Bl

Recommended information sources

Barry Devlin, Data Warehouse: From Architecture to Implementation, 1596

Krish Krishnan, Data Warehousing in the Age of Big Data, 2013

Lakshman Bulusu, Open Source Data Warehousing and Business Intelligence, 2012

Ralph Kimball, The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 2013

Expected date of thesis defence
2015/16 55 = FEM

The Diploma Thesis Supervisor
doc. Ing. Vojtéch Merunka, Ph.D.

Supervising department
Department of Information Engineering

Electronic approval: 20. 2. 2016 Electronic approval: 20. 2. 2016
Ing. Martin Pelikédn, Ph.D. Ing. Martin Pelikdn, Ph.D.
Head of department Dean

Prague on 16. 03. 2016

Official decument * Czech University of Life Sclences Prague * Kamyckd 129, 165 21 Praha 6 - Suchdol

Declaration

| declare that 1 have worked on my diploma thesis titled "Data Warehouses:
Comparison between Apache Hadoop and Microsoft implementations on a real life example"
by myself and | have used only the sources mentioned at the end of the thesis. As the author of
the diploma thesis, | declare that the thesis does not break copyrights of any their person.

In Prague on

Hussein Negm

Acknowledgement

I would like to thank my supervisor doc. Ing. Vojtéch Merunka for his help and
guidance during this project. I would also like to thank all my teachers and professors at every
educational level for knowledge is accumilative. Special thanks for my family and my wife
Esraa for all the support during the time | spent in Czech Republic. Finally, 1 would like to
thank the Czech ministry of foreign affairs for making it all possible through the scholarship

Shrnuti

Firmy produkuji stale vice dat a hledaji nové zpusoby, jak je obchodné zhodnotit. S rostoucimi
objemy dat ptichazi pozadavek na lepsi a levnéj$i uchovévani, které¢ by zaroven umoznovalo
tato data vyuzivat. Pro tento ticel se jako nejhodnéjsi néstroj osvédcily datové sklady. Datové
sklady ovSem piedstavuji znac¢né personalni a finan¢ni naklady. Nabidka technologii pro
implementovani datovych skladii je vSestrannd. Cilem tohoto projektu je komparativni
implementace s pouzitim dvou technologii, konkrétné¢ Microsoft SQL Server a Apache
Hadoop. Tento projekt se vénuje riznym fazim vytvaieni datového skladu; faze uréovani
pozadavkl;, faze navrhu a kompaktni porovnani entitné-vztahového modelovani s
dimenzionalnim modelovanim a proces budovani dimenzionalniho modelu na zakladé
prostiedkii aplikacnich dat; faze extrahovani-pievadéni-zavadéni. Poté jsou obé technologie
porovnéany z hlediska kapacity dat, nacitani dat, pfipojeni a dotazovani dat. Ze zavért tohoto
projektu vyplyva, ze pii vybéru mezi systémy Microsoft SQL Server a Apache Hadoop je
tteba vychazet z potieb, prostfedkl a stavajiciho ekosystému. Systém Hadoop je vhodny pro
vEtsi objemy dat, pro nestrukturované nebo nepravidelné forméaty dat a pro ptipad, ze rozpocet
nepocita s licen¢nimi poplatky. Na druhou stranu systém Microsoft SQL Server je vhodnou
volbou pro strukturovand data, kdyZ jsou znamy ocekdvané objemy dat a kdyZ je zbyvajici
¢ast ekosystému zaloZena na produktech Microsoft. Dalsi faze tohoto projektu by mély byt
vénovany novym zpusobum efektivnéjSiho vyuziti systému Hadoop pro mensi objemy dat,

jako jsou Impala a Spark..
Klicova slova

Data Warehouse, Microsoft SQL Server, Apache Hadoop, Hive, Dimensional Modeling,
HDFS

Abstract

Data is being produced by the firms in ever increasing rates and firms are finding new ways to
make use of data to create business value. The generated volumes of data create the need for
better and cheaper storage options that allows utilizing the data as well. Data warehouses have
emerged as the most appropriate tool for this task. However, data warehouses come with
significant costs both human and financial. The pool of technologies for implementing data
warehouses is versatile. This project aims to provide a comparative implementation using two
of the technologies, namely, Microsoft SQL Server and Apache Hadoop. The project covers
the different phases of building a data warehouse; the requirements specification phase; the
design phase and a compact comparison between the entity-relation and dimensional modeling
design techniques and the process of building a dimensional model based on based on the
application data sources; the extract-transform-load phase. The comparison is then made
between the two technologies for data capacity, data loading, connectivity and querying data.
The project concludes that the decision to choose between Microsoft SQL Server and Apache
Hadoop isn’t a recommendation for one over the other but should be based on the needs,
resources and the existing ecosystem. Hadoop would be the choice for bigger amounts of data,
unstructured or irregular data formats, and when the licensing fees are an unaffordable cost.
On the other hand, Microsoft SQL Server would make a better choice when the data is
structured, the anticipated data volumes are suitable and when the rest of ecosystem is
Microsoft based. Future development for this project should cover new ways to make Hadoop

more efficient with smaller data volumes like Impala and Spark.
Key words

Data Warehouse, Microsoft SQL Server, Apache Hadoop, Hive, Dimensional Modeling,
HDFS

Table of Contents

L. INEFOTUCTION ..ttt bbbttt b et bbbt b e b e be bt nneneas 1
Y (o] g Ta o T - RS RR 1
1.2 Data WAIBNOUSEScuvviuriiteiiteiieteitst ettt ettt ettt s bt b ettt b et b et bt et b ettt b et et n e ne 1
1.3 The difference between a data warehouse and a databasecccoeeeiviiniiinccnccncce, 3

1.3.0 THE PUIPOSE ...ttt ettt sttt ettt ettt b e s bbbt s bt s bt st et et et e e e e ebeeseebeneens 4
1.3.2 The SCale OF OPEIALIONeviieieiieiieieeterte ettt sttt be e 4
1.3.3 The design fuNdamentalS..........c.ooeieeiiiieeeieeeeee ettt eanas 4
1.4 INtroduCiNg the DUSINESS........ciuieieeiecteeeee ettt sttt et a e s teebe et e sbeesaenbeereenes 5

2. Thesis Objective and MethOUOIOQYcccueiieiiiieieeceees ettt et e st sreeaesbeeaesreeseens 6
2.1 ODJECLIVE ...ttt sttt ettt a bbbttt e a st bbb et et neebe bt ae b e 6
2.2 METNOUOIOGY ...ttt sttt b e bbb et ettt b e bt e b e 7

3. LITEIALUIE REVIBW.. ettt ettt sttt b bbbt b et et et et e st eneebenae b e 8
3.1 Data WarEhOUSING.....ccueeeetieeeeitecteetes ettt ettt te s teeae s teete et e sbe e s e beeasestesbeenbesteesaebessnensesseeneas 8

3.1.1 Entity-Relationship MOGeliNgc.ccvoieiiieeceeeceeeeee et 10
3.1.2 DImMeNnsional MOGEIINGoiiiuieieeieeee ettt ere et s be e eeas 12
T AN o= Tod 1= = Vo (o To o TSRS 17
B2 L YARN Lttt h et b ettt s h et h e e bbbt et nbe e e ees 19
3.2.2 Hadoop Distributed File SYSIEMccveoiiiieieceeeeeeeee et 21
BL2.B HIVE .ttt b et h et e bt n e 23
3. 2.4 WHY HAOOOP?.....ccctieieeieiteeeecte ettt ettt sttt et et e s re e besteesaesbesssesbesbeeasesteessanbesssentesseenseses 24

4. Project IMPIEMENTALIONcccveiieeeeceeese ettt a e s te e besseestesseensesreeseensens 27

4.1 BUSINESS REQUITEMENTS ...eevviveeeierieeeetesteete st et este st ete s e sseessesseeseessesssessesseessessesssessesssessessesnsenses 27
4.1.1 Information REQUITEMENTSccviiuieieriseeciese ettt sttt e re e b e s re e e e sessaensesreenneneas 27
4.1.2 Analytical REQUITEMENTSc.ciiiiieieieieeeee ettt ettt ettt e s s et e sneeeeseas 28
4.1.3 TeChniCal REQUITEMENTS.eeieiiieeeierie ettt ettt ettt e te et e tesae et e eesneeneesneeeeseas 29

4.2 ANAIYZING DALA SOUICESc.eirteeierteeieeieeteete st et este st etesteestestesseeseesseensessesseensesseentesesneensesneensenees 30
A R D 7 Y o] {0 PSSR 30

4.2.2 TTANSIALOTAGVISOT ..vveeiiirieeeeerieeeeett et eeeat et e eete et e ssateesseaaeessassaseesssseessasssessassseesasssaeesasssaeens 32

4.3 DIMensional MOGEIING.......cc.oouieieiicecece ettt a et e te s reeaeseas 33

4.3.1 Naming TerMINOIOQYccvevvieierieitieiesteseeste sttt e st ae e e e te e e b e s tesraebesreessesseessensesreenseneas 33
4.3.2 DIMENSIONS.cveuiieiiteiinteitet ettt ettt ettt ettt b et bbb e bbbt sa st bt st et e b e b e s b e 33
N o (0! 1 SR O RSOOSR PRSP 40
4.4 ETL (Extract, Transform, LOA)cocveierierieieriireeie sttt ettt st eeesneeneeees 43
A4 T EITACTION ..ottt ettt ettt b bbb ettt b bbbt a b n et et ne e 43
4.4.2 TranSTOMALIONc.eitiiitiiit ettt 47
B I o= To [o RO 49
4.5 Implementation REMAIKSooiiiii e st 58
5. CONCIUSTON ..ttt ettt b e bbbttt e et e e st e bt e bt e b nb e b et e e et eneeneeneeee 60
5.1 APACNE HAAOOPecuitiiiiteteet ettt sttt ettt b e sae b st s et e e eneene s 60
5.2 MICIOSOTt SQL SEIVET ...ttt ettt ettt e e et ete e beeeteesteeeteseaesenseenteesteesaeesareenns 61

RETEIEINCES ..ottt et e e et e e et e e e e e ee e s e e ateesaasaeeesaaeeeesaeneeeesaaseeesaaseeesaasaeeesaaareeessaanees 62

List of Figures

FIGURE 1: DATA WAREHOUSE DESIGN CYCLE [SOURCE: OWN] 3
FIGURE 2 TYPE 1- TRANSFORMATION [SOURCE: OWN] 11
FIGURE 3 DIMENSION MODEL EXAMPLE [SOURCE: OWN] 12
FIGURE 4HADOOP UNDERLYING SYSTEM ARCHITECTURE [SOURCE: (APACHE SOFTWARE
FOUNDATION, 2016)] 18
FIGURE 5: SIMPLIFIED TDAPRO APPLICATION DATABASE [SOURCE: OWN] 31
FIGURE 6: GEOGRAPHY DIMENSION [SOURCE: OWN] 34
FIGURE 7: CUSTOMER DIMENSION[SOURCE: OWN] 35
FIGURE 8: DATE DIMENSION[SOURCE: OWN] 37
FIGURE 9 LANGUAGE DIMENSION [SOURCE: OWN] 38
FIGURE 10 TRANSLATOR DIMENSION [SOURCE: OWN] 39
FIGURE 11 SALES FACT [SOURCE: OWN] 41
FIGURE 12 DIMENSION MODEL [SOURCE: OWN] 42
FIGURE 13: SSMS MENU [SOURCE: OWN] 44
FIGURE 14: COPY DATABASE FIRST STEP [SOURCE: OWN] 45
FIGURE 15 COPY DESTINATION [SOURCE: OWN] 46
FIGURE 16 DATABASE ONLINE DURING COPY [SOURCE: OWN] 47
FIGURE 17 TRANSFORMATION USING SSIS [SOURCE: OWN] 48
FIGURE 18 IMPORT DATA [SOURCE: OWN] 50
FIGURE 19 LOADING DATAINTO SQL SERVER [SOURCE: OWN] 51
FIGURE 20 INPUT FILE AND COLUMN MAPPINGS [SOURCE: OWN] 52
FIGURE 21 HUE LOGIN SCREEN [SOURCE: OWN] 53
FIGURE 22 HUE FILE BROWSER [SOURCE: OWN] 54
FIGURE 23 HUE NEW DIRECTORY [SOURCE: OWN] 54
FIGURE 24 HUE UPLOAD FILES [SOURCE: OWN] 54
FIGURE 25 HUE: FILES ADDED INTO HDFS [SOURCE: OWN] 55
FIGURE 26 HUE: CREATING A TABLE [SOURCE: OWN] 55
FIGURE 27 HUE: SAMPLE CUSTOMER DATA [SOURCE: OWN] 56

List of tables

TABLE 1 TYPE-TWO DIMENSION CHANGE [SOURCE: OWN]ooiiiiierieiieniceseee et 14
TABLE 2 TYPE-THREE DIMENSION CHANGE [SOURCE: OWN].....ccoiiiiiiieneiseneesiesee e 14
TABLE 3 COSTS OF ORACLE DATA WAREHOUSE [SOURCE: OWN]ccoviiiiirinneeeereeneree s 25
TABLE 4 COSTS OF HADOOP DATA WAREHOUSE [SOURCE: OWN]J.....coccoiiiiienieineneesie e 25

TABLE 5 FINAL ASSESSMENT [SOURCE: OWNT]ouiiiiiiieiiieniee ettt s 58

1. Introduction

1.1 Storing Data

Humans have been collecting data in various forms since the dawn of history even before
constituting formal writing rules. Samarians and Ancient Egyptians collected data about
astronomy, agriculture and their life events in the form of drawings on the walls of their
temples, tombs and temples and later papyrus. Then we moved to hand writing and then
printing all the way to the computer age. The amount of data produced has naturally been
positively correlated with the ease and speed of the data creation process. Writing a book used
to be a several years task and later making copies of this book wasn’t a trivial task as well but
as we move to a more digital world we generate data at unprecedented rates and in a very

diverse variety of forms.

For example, the amount of data on Youtube is estimated to hundreds of millions of
hours (Youtube, 2015), Instagram contains billions of images; Google search engine holds
records for an ever-growing number of web pages and their content. Even on an individual
scale, we now tend to take more pictures with our phones and digital cameras, write more in
forms of emails, blog posts or personal websites and store other sorts of professional
manuscripts or architectural designs in digital formats. Another striking example is medical
research where acquiring data is an expensive process and data comes in huge chunks so
accurately storing data is at the core of the research endeavor. For example, data from a single
genome sequence is about 200GB (Genomics England, 2014). Data has evolved as one of the
most important assets for many businesses, research centers, governments and universities.
Data is used to build models to evaluate performance, make plans for the future, develop new

products, and decide where to build stores along with many other uses.

1.2 Data warehouses

Storing digital data has passed through various stages from mercury delayed storage moving

to different kind of magnetic techniques. The noticeable development is in the capacity and

decrease in the cost of storage. Just 50 years ago IBM rented a computer that can store 2
million digits for 850%/month (Spicer, et al., 1998). Now, for the same amount of money you
can buy a computer that is millions of times faster and bigger in storage capacity while being
smaller in size and more power efficient. Data warehouses are the de-facto technology for

storing large magnitudes of data for enterprises or for research facilities.

A data warehouse is in essence a relational database designed for more efficient
querying and analysis of data rather than transactional integrity. As the name suggests a data
warehouse will aggregate all the data from different sources. This aggregation process would
be referred to as ETL or Extract-Transfer-Load process; Extracting the data from the sources;
Transforming the data to match the data warehouse design; Loading the data into the

warehouse to be ready for further use.

The process of designing and implementing a data warehouse is highly structured and
of great importance. This is mainly due to the fact that data warehouses are naturally
developed to allow for better decision making in the organization and decision are a usually
taken at the highest level of the organization and in many cases would reflect considerable
results, gains or losses. The interpretation of the term Data Warehouse itself varies widely
across the literature. However, in this paper, we will follow the Ralph Kimball understanding

of data warehouses, dimensional design and end-to-end role in business intelligence.

In the literature review section, this understanding will be covered in enough depth and
contrasted to the other philosophy from Bill Inmon (Inmon, 1992). The process of
implementing a data warehouse goes through many phases to ensure correct and efficient
implementation. The process starts by collecting the requirements or objectives from the data
warehouse as a business intelligence facilitation tool then moves to dimensional modeling then
physical design then the design of ETL processes and finally actual implementation on the
selected infrastructure. The following diagram gives a better visualization of the process that

will be implemented for this project

Business
Requirements
gathering

Extracting
technical
requirements

Analyzing the
data sources

Design of ETL
processes

Physical design

Diemensional
modeling

implementation

Deployment

Collecting
feedback

Figure 1: Data Warehouse Design Cycle [source: own]

1.3 The difference between a data warehouse and a database

It is a common mistake to confuse databases with data warehouses since they are both used to
store data and since many don’t get the chance to deal with data warehouses in the course of
their digital experience and others consider a data warehouse just a big database or
consolidation of multiple databases or data sources. There many noticeable differences that
relates to:

e The different purposes of databases and data warehouses.

e The scale of operation.

e The design fundamentals.

1.3.1 The purpose

Databases are the functional unit of almost all the modern digital products it is used to store
transactional information regarding the use of the application, the content of the application or
the business rules that applies on different cases. In contrary, a data warehouse serves a
different purpose that follows from operation. Data warehouses store and consolidate the data
across all sources to serve a unified analytical or operational purpose whether to provide

decision support, customer segmentation, or performance analysis.

1.3.2 The scale of operation

In theory, a database is capable of performing all the tasks of a data warehouse but in
practicality this becomes highly inefficient and computationally costly as the data grow larger
because both reading and writing operations are much slower because of the relational nature
of the database and the need to execute multiple tables joins. Also, a database is usually
dedicated to a single application but a data warehouse can consolidate several databases each

of them serving a different application.

1.3.3 The design fundamentals

The most fundamental difference is that databases hold records of transactions or operations
while data warehouses hold data about a subject. For example, for an ecommerce organization,
the database will contain detailed records about the transactions done by the users while the
data warehouse will focus on a subject like sales and hold records in fact tables with different
granularity (eg. Sales per hour, Sales per age group, or sales store). Also, the data in a
warehouse wouldn’t be stored in the third normal form for more efficient querying but in the

database the 3" normal form would be used to guarantee data integrity.

1.4 Introducing the business

The target company is Translatus s.r.o which is a Czech company based and operating in
Prague with offices in Germany, Dubai and China. The company started in 2001 as a pioneer
in the online freelancing facilitation with a focus on a niche business sector, translation. The
company operates under two main web applications.

The first application is a bidding system for translation services along with a project
workflow system that allows the customers, translators to manage the project from start to
finish. The business model is to get companies or individuals, welling to get translations for
their documents, business advertising or any other type of content, to upload their files and
then allow translators to offer their services in a competitive manner. Transactions for the
purpose are on many sides: bidding, quotes, payment and as part of the design practice we will
choose the subject of the data warehouse to be only payment or the final transaction on

different dimensions like language pairs, months, translators and clients.

The second application is a community application to write reviews on translators
based on previous experiences, similar to Yelp but specific to translators. The translator’s is
rated in general and according to four criterions: quality, price, timeliness and communication.
Suspicious or malicious reviews are verified by contacting the reviewer and asking for more
details about the work done with the translator to verify the review is real. Reviewers are free
to detail experiences of working with a certain translator, as long as it is kept professional and
about the work done without getting into personal rants. In certain cases, the translator would
be contacted for more details about the work referenced in the review. The reason to do this is
to guarantee the authenticity of these reviews and that they are reliable enough to be the base
for future dealings with the translator.

2. Thesis Objective and methodology

2.1 Objective

The objective of this thesis is to provide a comparison between Apache Hadoop and Microsoft

SQL in the perspective of building a data warehouse and evaluating the two solutions through

the application of a set of metrics (Butler, et al., 2002). Although, the implementations will be

based on a specific example, the metrics chosen are generic to allow for a general evaluation

of the two technology infrastructures. More specifically, the metrics chosen are

Capacity: Data warehouse are intended to host all data and more. In transactional
databases it is usually the case that we ignore the history of changes in the most tables
to avoid adding more layers, relationships and joins. In the data warehouse we want to
record everything for future purposes so the intention is to host large and ever growing
amounts of data. Capacity, as in the limits for physical storage, is a preliminary
measure because if the implementation wouldn’t be able to support real life capacity it

would be automatically ruled out in practice

Loading and indexing performance: Loading data is the first step in application after
the system design is complete and logical design of the data warehouse is implemented
on Microsoft SQL Server or on Apache Hadoop. It is a key metric since it defines the
usability of the whole implementation because it is unreasonable to use a system that is
notably slow at this stage. Even though this an important metric for the system, if a
system will be more efficient after this step it could still be favorable for other features
since this step is usually done once in the lifetime of the system

Client/Server connectivity: This metric answers the question of future integrability
into a complete business intelligence eco system. This is important because it defines
the usability and flexibility of using the system. It is important to understand that

building the data warehouse is not the purpose; it is just a step in the way of building a

complete data intelligence ecosystem that provides value to the business and as
mentioned earlier, one of the main advantages of the data warehouse design is that it
facilitates analysis. As such, it is important that the underlying infrastructure that holds
the data be flexible enough to allow the use of a diversity of tools by default be it open

source of proprietary for the same vendor or for other vendors.

e Query processing performance: Now that we have measured the quality of the
system in loading the data of the capacity that would be suitable for our needs and
made sure that we will be able to use the data warehouse and connect to it from a
variety of tools and analysis clients. This metric is what the end users will experience
on a daily basis and this defines the efficiency of the system in analytical and reporting
uses. For the breadth of the uses that satisfy the business needs, the data warehouse

would be responsive enough.

2.2 Methodology

The study will also illustrate the different steps in the data warehouse design and
implementation, staging, running and utilization for each of the two technologies. The study
will begin by a literature review for the main subjects that were encountered in the planning,
design and implementation of the data warehouse. Then, the study moves identifying the
business requirements and formulating the end product as defined by the business. Next step is
analyzing the data sources for the data intended for hosting in the data warehouse. After that,
the study shows building the conceptual data model all the way to a physical data model for
the data warehouse. Then the study will dedicate separate sections for the actual
implementation of the data warehouse in each of the technologies to highlight the differences
in implementation, ETL and utilization. The final step would be comparing the two data

warehouses and offering recommendations based on the aforementioned metrics

3. Literature Review

Database design is one of the oldest and most stable paradigms of computer science. Concepts
like normalization and entity relations have been carved in stone. However, the same cannot
be said about data warehouses and Hadoop since they are, compared to database design, are
new concepts with Hadoop Project being just 10 years old but it wasn't widely adopted until a
couple of years later when Google announced that it would sponsor the project through the
Apache foundation. This literature review will explore the current state of the art in the two

subjects which will help plan and implement the data warehouse in the two technologies.

3.1 Data Warehousing

The literature on data warehousing is in slightly more abundance than it is the case for Hadoop
and it is for an obvious reason. While being a byproduct of databases, data warehousing
received more attention early. Some date the concept back to the sixties but the first real
product to offer the data warehouse architecture was introduced by Devlin and Murphy at IBM
in 1988 (Devlin, et al., 1988). This article provided the closes vision to a data warehouse as is
perceived now. Those two paragraphs from the article echoes to a great extent the view that is

adopted in this project

“The transaction-processing environment in which companies maintain their
operational databases was the original target for computerization and is now well
understood. On the other hand, access to company information on a large scale by an
end user for reporting and data analysis is relatively new. Within IBM, the
computerization of informational systems is progressing, driven by business needs and

by the availability of improved tools for accessing the company data.”

This excerpt shows the motive for developing data warehouses. With transactional data
piling up, the reporting and analysis functionalities were suffering from all the relational
complexities put on by the normalization rules. Also, the need for consolidated data reporting
was harder to achieve across multiple data sources as the authors specifically made a note of

that being the case for IBM itself at the time

“It is now apparent that architecture is needed to draw together the various strands of
informational system activity within the company. IBM Europe, Middle East, and
Africa (E/ME/A) has adopted an architecture called the E/ME/A Business Information
System (EBIS) architecture as the strategic direction for informational systems. EBIS
proposes an integrated warehouse of company data based firmly in the relational
database environment. End-user access to this warehouse is simplified by a consistent
set of tools provided by an end-user interface and supported by a business data

directory that describes the information available in user terms.”

The definition of a data warehouse has been subject to minor disagreement between
Bill Inmon and Ralph Kimball, two of the most prominent experts on the topic. The
disagreement is not about the core functionality of the data warehouse but rather about the
scope of its perimeter. In his famous book The Data Warehouse Lifecycle Toolkit (Kimball, et

al., 2013), Ralph Kimball specifically define a data warehouse as follows:

"The queryable source of data in the enterprise. The data warehouse is nothing more
than the union of all the constituent data marts. A data warehouse is fed from the data
staging area. The data warehouse manager is responsible both for the data warehouse
and the data staging area."”

The second definition comes from Bill Inmon, Building the Data Warehouse, 1992 (Inmon,
1992)

"A data warehouse is a collection of data in support of management's decision-making

process that is subject-oriented; integrated; time-variant; and nonvolatile"

The difference between the two definitions is that Kimball believes that the data warehouse
should contain all the business intelligence endeavors and his justification is that since data is
the basis for all analysis then when designing the data system; it should be handled with a
holistic approach. On the other hand, Inmon looks at the data warehouse in a very abstract
way, as a data consolidation utility, without giving much thought and consideration about how

the enterprise may decide to the data later on. There are merits to both opinions but the

comparison between the two schools of thought is out of the scope of the literature review,
given that both of them agree on the design fundamentals.

3.1.1 Entity-Relationship Modeling

Entity-Relationship model is an application design technique that is used in transactional
databases. The technique is based on the idea of not repeating data and keeping only one
source of truth for every entity, a table or master table, and then references it using “foreign
keys” in other master tables that need to reference it. It is beneficial in the sense that it
enforces strict rules on inserting new records that ensures data integrity and that it is also a
space efficient since the entities’ data are stored only once. However, the relational model
itself has its own shortcomings. The biggest shortcoming of all is that the database could

easily become very complex and deep with several entities all referencing each other.

If complexity on and of itself, wouldn’t be considered a drawback, consider the effect
of this complexity on performance for large queries. Joins are considered to be the most
complicated and computationally demanding part of the relational data queries (Mishra, et al.,
1992). The second major disadvantage is the design inherent inability to record the history of
changes in the entities’ information. For example, if we have a master table “Customer” that
has an attribute “Address” if later the customer address changed the old address isn’t saved
historically. The only solution would be to add another relationship layer and separate address
as another entity and thus making the design ever more complex. The following figure

illustrates this needed transformation

10

Customer
ﬂ —— Customer *
ustomer R
! J Customerkey Adress *

J CustomerMame J Customet
ustomerName Addreseke

J CustomerAdress J E———— ﬂ resskey
urrentCustomer Address

J CustomerEmail : . i J Customerkey

J CustomerEmai J AdressDetails

Figure 2 Type 1- transformation [source: own]

After this transformation it would be possible to retrieve previous addresses from the
address table using CustomerKey and the AddressDetails of the current address through

CurrentCustomerAddressKey

Another problem of Entity-Relationship is that the design of the database becomes unreadable
and hard to understand or explain which later makes the process of designing complex queries

hard and error prone.

Another major disadvantage of using Entity-Relationship is that it is closer to the
programming world but rather far from the business itself (Kimball, et al., 2013). It models the
relationships between the data elements but not the context of these relations in the business

model.

Lastly, the entity relationship model is difficult to modify since you need to break the
integrity rules and reassemble new rules and relationships or add a new relationship layer and
make it more complicated. For example, the previous transformation for the address would
require first to create the Address table with the foreign key to Customer table. Second, store
the address details from Customer table to Address table. Third, remove CustomerAddress
field from Customer table. Fourth, create a new column in Customer,
CurrentCustomerAddressKey. Lastly, fill CurrentCustomerAddressKey with the current

addresses from table Address using CustomerKey.

11

3.1.2 Dimensional Modeling

Dimensional modeling is the common terminology for the data warehouse logical design
technique. The term was coined by the Metaphor group (Kimball, et al., 2013), as opposed to
the Entity-Relationship modeling technique. This paradigm aims to eliminate the drawbacks of
the entity-relationship modeling to provide more efficient, readable and flexible alternative.
The key idea is simple, to keep the design flat. The dimensional model consists of a fact table

that has foreign keys to multiple dimension tables.

dimension2

7| el

dimension3

78| eyl

dimensionl

9 eyl

Figure 3 Dimension Model example [source: own]

12

3.1.2.1 Fact Table

Fact tables are the main heroes of the data warehouse and choosing them is usually the first
step in creating the dimension model; they contain the data that we are actually interested in
for analysis; sales, working hours, stock levels. In essence, we only need the fact table to
describe and analyze our data with minimal or no need for dimensional tables (Devlin, 1996).
Fact tables typically consist of two or more foreign keys to dimension tables and one or more

facts.

A good practice is that the facts will be additive or can be aggregated. For example,
Sales per Day as a fact described by foreign keys to product table or time tables. At the time of
choosing the facts that the design will revolve around, based on business needs of course, an
important decision regarding fact tables is to define the granularity of the fact table. In this
context, granularity is the aggregation measuring unit of the fact item in the table. For
example, are we interested in saving the sales per hour, per minute, or per day? Making this

decision is crucial for the next step in dimensional modeling, choosing the dimensions.

3.1.2.2 Dimension Table

A dimension table is used to describe one aspect about the data in the fact table. After
choosing the fact tables and their granularity, comes the time for designing the dimensions that
will describe the fact tables. While the dimension tables could be ignored for the analysis
stage, they are crucial for reporting and understanding the data in the final presentation.
Dimension tables are descriptive by nature and discreet and by acting as a single source of
truth for the dimension, the dimension tables should be complete and accurate to avoid errors

in the analysis stages and simplify querying.

Every row in a dimension table must describe only item. There exist 3 types of
dimension tables based on how the design handles change in the data aspect represented by the
dimension table (Devlin, 1996). Type-One dimension table is when the design decision for

this dimension is to ignore the history of change and only maintain the latest information

13

about the dimension. Type-Two dimension is when the design decision is to maintain history
for the items in the dimension by adding a new row that contains the new information and
specify in the appropriate columns the expiry of the old data and the activation of the new data
for this item. The following table (Table 1 Type-Two Dimension Change [source: own])

illustrates an example of a type-two change

Table 1 Type-Two Dimension Change [source: own]

RowKey RowUid RowlInformation | ActiveDate InactiveDate
1 1 Old Info 1/1/2001 20/2/2016
2 1 New Info 20/2/2016 31/12/9999

Important things to note from this example are that first the RowUID identifies the item and
RowKey ldentifies the data row itself in order not to disturb old analysis when we add a new

record and second the ActiveDate & InactiveDate which are called the activation columns.

By default the end of the old row validity is equal, or in some systems, one time unit
less the new information active date. Last type of dimension tables is Type-Three, in this type
when the changes affect the whole table and the design decision is to add a new column to
preserve the history and reduce the redundant data. The following table (Table 2 Type-Three

Dimension Change [source: own]) reflects the previous example in the case of type-three change

Table 2 Type-Three Dimension Change [source: own]

RowKey RowUid RowInfo NewlInfo ActiveDate | InactiveDate

1 1 Info New Info 1/1/2001 31/12/9999

Choosing and designing the dimensions follows from the decisions taken regarding the fact

tables, especially granularity.

14

3.1.2.3 Why Dimensional Modeling?

There are many reasons to confirm that choosing the dimensional model over the entity
relationship model for the data warehouse design is the correct choice. The dimensional model
excels in the areas where that the entity- relationship model fell short. First, the dimensional
model is a comprehensible, standard framework. Writing reports, using query tools, and
designing user interfaces can all become based on strong assumptions about the dimensional
model to reflect the business interest, and to provide efficient processing. For example, since
the dimension tables are defined based on the business preferences it becomes very easy to
browse through these dimensions or read them out from the reports without the need for
double or triple joins to get to the correct sub-dimension or sub-sub-dimension.

Not only that, this sense of predictability offers great gains in processing.

It is common for business intelligence analysts to use query optimizers which are
usually based on query costs and rather ignores the semantic meaning of the underlying tables.
With dimensional modeling, on the other hand, the database engine would fixate the
dimension table and match the values using a Cartesian product operation based on the keys
(Join Processing in Relational Databases, 1992). This makes it possible to integrate all the
dimension table data in a single pass which offers a huge performance boost to the end user
and decreases the need for more computational resources. In short this predictable nature
benefits both the server and the analysts and that leads to a better presentation and

performance.

A second advantage for the dimensional model is that the star join schema offers more
ease at dealing with requirements change. The conformed dimensions stay the same and could
be reused in new facts if required. The dimensional model is that it is naturally extensible and
able to accommodate unexpected new data requirements and changes in design decisions. This
is basically possible because the dimensions are not a subject to change so if the need arises to
change the perspective of the fact table then based on that change it either go down to a basic
ALTER TABLE SQL command in place to add a column or remove another, an UPDATE

15

statement to change the granularity or by adding a new fact table with different aggregation or
granularity. It is important to note that depending on the change a data reload might be
required. For example, if the current granularity of a fact table with regards to a time
dimension is monthly and the decision is to switch back to a weekly or daily granularity.
However, in all cases, if the dimension model was correct from to begin with, it shouldn’t be
required to change the structure of the tables or break the foreign keys as it is the case with
entity-relationship model. Also, the underlying applications or reports wouldn’t be affected by
the change. Here are some common changes that occur during the data warehouse

development process:

e Adding new unanticipated facts to an existing fact table of the same granularity
which translate into an ALTER TABLE statement to add the new fact as column

and then create the ETL procedures required to fill it.

e Adding a new dimension, sometimes a new dimension emerges from observing
repetitions in fact tables and it is a good choice to consolidate it into a separate

dimension to increase data integrity and speed up reporting

e Adding new attributes to existing dimensions.

A third advantage for the dimensional model is that it uses the same language as
business analysts to represent the business data which results in better communication
regarding the implementation and the challenges along the way. Dimensional modeling also
borrows the same solutions to some of the common modeling problems like slowly changing

dimensions, heterogeneous product dimension, or many other business modeling challenges.

16

3.2 Apache Hadoop

Apache Hadoop is an open source project sponsored and maintained by the Apache
organization. The project is a framework for distributed processing of large data sets using
clusters of computers while providing a simple programming models and managing interface
(White, 2015). The design of the library has been tailored for high-availability in mind in
order to reduce the need for hardware redundancy. The library detects and handles failure at
the application layer allowing delivering a highly-available service using a cluster of machines
each of which is prone to failure. The framework is designed in a modular way to minimize
the overhead of unnecessary functionality or seamless addition of needed functionality later
on. The modules are tied together using another module, Hadoop Common. Hadoop Common
provides the common utilities that support other modules. It acts as the core of the framework
managing the interaction with the underlying operating system and file system as well as the
starting and shutting down operations.

The second module is Hadoop Distributed File System or HDFS. HDFS is the master
piece in the framework making it possible to process files in a distributed manner in the map
and reduce operations. The HDFS looks at the cluster as a whole rather than per cluster; data is
divided into smaller pieces called blocks and blocks are mapped throughout the cluster making
it possible to process smaller subsets of data on each cluster and thus utilizing the full power
of the cluster (White, 2015).

The third module is Hadoop YARN, short for Yet Another Resource Negotiator, a job
scheduling, application management and cluster resource management framework. YARN
itself is split into two main components, Resource Manager, Node Manager and Application
Master. The Resource Manager is the main authority over all the resources of the Hadoop
cluster and it controls the interaction with the clients. Node Managers are similar to the
Resource Manager but are limited in their scope of authority to a single node and they don't
interact with clients and rather report the required metrics and resources usage to the Resource
Manager. Application Masters are resource negotiators for individual applications to handle
scheduling, monitoring and progress of these applications. The following figure illustrates the

inner architecture of YARN

17

MapReduce Status ————
Job Submission == <=~~ >

Node Status ————
Resource Request ------.---

Figure 4Hadoop underlying system architecture [source: (Apache Software Foundation, 2016)]

So far Hadoop has not been used in practice as a data warehouse infrastructure. However, it
has become an industry wide advice to use Hadoop to stage the data before feeding it to the
data warehouse. One reason for this is that Hadoop is cheaper and was built for efficiency in

raw data transformation through the MapReduce processes.

18

3.2.1 YARN

YARN as a resource negotiator borrows some ideas from the common architecture of a
Server-Client. A global ResourceManager instance in this case acts as the server element and
makes decisions about dividing available resources on the requesting applications(Grover, et
al., 2015). To do this, the ResourceManager must track the nodes in the cluster and request

information about the available resources and whether the node is still available or not.

After obtaining the information about the resources the ResourceManager bears the
responsibility of making the allocation or scheduling decisions. The decision making process
is not trivial because of the multiple factors that are considered with each decision like priority
for the requesting application, maintaining data locality within the cluster if possible, access
levels and probably other user defined factors.

The second part of YARN is the NodeManager, which is very similar to the
ResouceManager but with a scope limited to a single node in the cluster. The NodeManager is
also responsible for reporting the status of the node to ResourceManger including resources
and a periodic pulse to confirm that the node is still available. The NodeManager creates
resource containers to manage and contain the information and processes utilized by every
application like CPU usage, memory usage and disk and network 10. The number of these
resource containers is dynamic and can be changed from the configuration but the resources of
the node should be considered when setting the number to avoid having the NodeManager
queuing many resource containers that each of them shares a very limited amount of CPU or

memaory resources.

For every application request submitted to the ResourceManager, a smaller process is
created ApplicationMaster. This ApplicationMaster process is responsible for managing the
execution of this request and offer many utilities for the user like automatic restart of failed
requests and monitoring. The ApplicationMaster and its process are contained in a resource

container in the NodeManager. The ApplicationMaster can run any type of task inside the

19

resource container and even custome ApplicationMaster could be created following the
Apache specification. This is particularly useful because it makes YARN extensible for any
application as long as it implements an ApplicationMaster that follows the specification. This
is usually helpful with new data formats where utilizing the data itself doesn’t follow the
normal 10 process like an application that would contrast X-Ray images. The
ResourceManager is responsible for determining which ApplicationMaster would be
initialized for every application request similar to how any operating system decides which
application to open a certain filetype. The specification for the ApplicationMaster is also
simple and concise (Holmes, 2014). It must send a resource request to the ResourceManager
in this request the following should be specified:

e Amount of resource like memory, disk in megabytes and CPU.

e The preferred node to maintain data locality if possible and reduce network traffic

or “*” if there is no specific preference

e Priority for this request in light of other requests for the same application

The resource manager replies to this request by a container that satisfies the request
details, specified by ID and node name, and then the ApplicationMaster will ask the
NodeManager on this node to use this container to start the execution. The monitoring is
provided by the ApplicationMaster, however, the NodeManager can Kill the container if it

exceeded the requested application.

The short description of the three components of YARN is that they are abstractly the
same and act as resource managers but with different scope; ResourceManager has the full
scope of the cluster; NodeManager has the scope of a single node; ApplicationMaster has the

scope of a single application request.

20

3.2.2 Hadoop Distributed File System

Hadoop Distributed File System (HDFS) is the core of the Hadoop environment and is the
core that enables Hadoop to be efficient, reliable, flexible and cheap. In a Hadoop cluster, the
data is divided into small blocks and then these blocks are distributed across the cluster. When
the time comes for processing the data, Hadoop, specifically the MapReduce processes, are
able to process each of these blocks simultaneously and easily scaling computing across the
cluster. HDFS was built to automatically handle fault in the cluster. For example, if we have a

cluster of 100 servers and each server has 4 internal drives

HDFS will distribute the data so that the small blocks are replicated across the cluster
while automatically keep track of replicas and the status of each server through the Unit
Managers and Resource Managers. The level of redundancy can be modified on all levels; file,
server, cluster. However, the default behavior of Hadoop is that it would replicate each of the
blocks on two other servers for failure handling (Grover, et al., 2015). However, HDFS
handles replication in an extremely smart manner that makes it different from all other file

systems.

HDFS is rack and network aware and uses this information to handle data replication
such that it would cause minimal network usage or disturbance and with consideration to the
receiving node operations at the time of replication. The term block has been used to describe
the division of files in HDFS so it is important to put some emphasis on this division process.
One of the core goals for Hadoop is to host extremely large files and provide the means to use
these files and extract information from them. In doing this, HDFS divide each file to blocks,
of configurable size. The default size of a block is 64 megabytes (White, 2015).

Once the user initiates the process of creating or adding a new file on, HDFS
accumulates data from the source until it receives enough to fill a block, a block is created and
the block identifier is passed to the name node. The same process continues till all the data has
been received and assigned to blocks. The name node then takes each block writes them to
disk and decides where the replica would be placed and initiates the replication process. HDFS

also manages many other tasks that in other systems would be handled manually and would

21

require written procedures and a lot of effort. Data rebalancing is the first of these tasks.
Through the life time of the cluster it is highly probable that some sort of imbalance would
happen leaving some nodes with more data than others because of how the replication process

was handled or simply because the node has been upgraded with extra memory.

Data integrity maintenance is a key feature for any storage system and again HDFS
manages this part of the system. During the block creation process HDFS would create
checksums for each block and store these checksums. Later the name node would use these
checksums to verify the integrity of the blocks and would automatically replace the defected

blocks using their replicas or report them to the ResourceManager.

22

3.2.3 Hive

{ Pig J[Rtalii’ljce]{ Hive] Streaming

3 ~

HCatalog
ORC ACFi Text Sequence Custom
File e File File Format

Figure 5: HCatalog in Hadoop [source: (Leverenz, 2016)]

Another important part of the Hadoop environment is Hive. Hive is the meta-data manager for
Hadoop; it adds another layer between HDFS and the querying tools to define the data. The
equivalent to Hive in the normal Microsoft SQL based systems is the schema layer. However,
unlike Microsoft SQL, Hive schema, which is managed by a micro layer called hCatalog, is
not actually bound to the data. So at any point of time the whole catalog could be removed or
edited without any need to change the data (White, 2015). Also, most of the time, in the
Hadoop environment, creating the catalog is done after adding the data. Defining the metadata
and table-like information is a considerable amount of work but there are many benefits that
come with it. By creating a middle layer, the interaction with the data becomes much easier
and standardized which means the ability to use more querying tools like Pig and
MapReduce(Leverenz, 2016). hCatalog provides a log for what other users have created and
enable sharing the work and the results as well which is important for big teams. Finally,
hCatalog provides a REST API which means that it could be integrated within other enterprise

systems already in place and benefit from the role based access level ...etc.

23

After defining this meta-data definition layer, Hive makes it possible to query the data
using SQL-Syntax. Hive then takes the SQL and converts it to a series of auto-generated

MapReduce programs to optimize the performance to run on the Hadoop cluster

3.2.4 Why Hadoop?

So why are we bother studying Hadoop as an alternative when there are so many stable
alternatives from technology giants like Microsoft, Oracle and IBM for building data
warehouse. They are even offered with the hardware or cloud hosting if it suits the user. The
answer to this question is really simple; Hadoop is cheaper, more distributable, and more
flexible.

3.2.4.1 Cheaper

The main components of any information system are software and hardware and it is not any
different for building a data warehouse. Hadoop is open source which means that the user
would not have to pay huge licensing fee and it runs on Linux which is also open source. Also,
Hadoop is hardware agnostic which means the user wouldn’t have to invest in new hardware
to start deploying Hadoop. Hadoop handles cluster failures at Application level and thus
eliminates the need for high availability and redundancy hardware. A more subtle point is that
Hadoop applies a concept known as Data Locality which implies that the data will be
processed on the same machine where it is stored, when possible, and thus decreasing the total
network overload significantly and eliminating, or even discouraging, the idea of using
network attached storage (NAS), or storage area network (SAN). The following is sample cost
comparison for 3 years for an Oracle Data Warehouse and a Hadoop Cluster that would host
300 terabytes of user data. (Oracle, 2016)

24

Table 3 Costs of Oracle Data Warehouse [source: own]

I N
Annual Support Cost $ 63,000 $ 63,000 $ 63,000

. ----

$602,000 $63,000 $ 63,000 $ 728,000

Table 4 Costs of Hadoop Data Warehouse [source: own]

Hardware &
Networking
Annual Support Cost $ 55,000 $ 55,000 $ 55,000

On Site installation
Costs

$467,000 $55,000 $ 55,000 $ 577,000

The two tables illustrate that the cost of Hadoop is 20% less than an Oracle. However,

Costs

these numbers doesn’t illustrate the fact that the cost of adding extra storage capacity to both
data warehouses, Hadoop would be 50 times cheaper for the cost of adding 1 Terabyte.

3.2.4.2 Distributable

Hadoop can scale from a single machine to thousands and when adding new servers to the
clusters there is no need to change the original setup or reload the data. Hadoop will

25

automatically reallocate the resources making every unit an independent computing and
storage unit of its own. If the need arises to enhance the cluster by adding one or more new
servers, the new server is added to the cluster then Hadoop will start by allocating blocks of

data and then declaring readiness for processing to the master Resource Manager

3.2.4.3 Flexible

Hadoop doesn’t care about the nature of the data or file formats. Data files of all forms could
be stored and later used for analytics provided the user creates the proper MapReduce
procedures for these formats. Hadoop was originally designed just to store data in clusters. In
many cases, the need to store the data in its original format is crucial to the business need. For
example, medical data, X-rays, doctor’s notes, data gathered from sensors or other IoT device
are usually better being saved unaltered. And then using MapReduce we can develop the
queries that extract the pieces of information that are needed when they are needed without
any loss of information or needing a secondary storage to store the raw data and later

reloading the raw data with the new extraction and transformation rules.

Not only that, Hadoop doesn’t care about the underlying hardware or operating system,
which would allow the user to have as many operating systems, hardware architectures in the
cluster without any extra effort for configuration. Hadoop creates an abstraction layer that only
cares about the connectivity between the nodes and all the management would be then done
using the NodeManagers and ResourceManagers

26

4. Project Implementation

4.1 Business Requirements

As with any project, business requirements not just guide the implementation but in essence
create the need for the project as a whole. Gathering the requirements passed through many
phases to reach a proper level of specificity that guarantees accurate implementation and
meeting the actual business needs. First, general objectives were gathered from the
management to identify what are the key areas they expect enhancement as a result of
investing in the data warehouse. The main purpose behind developing the warehouse from the
business management point of view is to remove the limitations on reporting and enhance
planning through predictive reporting. As with all the first tiers the requirements were broad
and included a full vision for the whole project but not specific enough to put in motion a first
stage of implementation. As more and more refinement rounds and interviews were carried on

the following requirements were reached.

The process enabled the division of the requirements to Information requirements, analytical

requirements and technical requirements.

4.1.1 Information Requirements

Information requirements will guide the implementation on what data the date warehouse
needs to store to satisfy the business intelligence objectives. Also, collecting the information
requirements will be the basis at the later step of analyzing the current data sources and be

able to skim through to extract the most useful table and relations from these data sources.

e Client information
Client line of work, documents domain, recurrence, seasonality, documents

formats submitted and volume.

e Translator information

Language support, responsiveness, rating, availability, pricing and reliability

27

e Sales information
3 years of sales history, profitability (quote compared to translation fees,
languages and document formats delivered

4.1.2 Analytical Requirements

Analytical requirements define the business intelligence needs and while being out of our
main interest but it can provide useful directions regarding the design decisions and choosing
fact tables and granularity. The sales division and management expect the warehouse to
provide better reporting capabilities that would help them understand the existing customers’
requirements and have a way to predict and plan the work requested. They also want a better
and more pragmatic method to choose translators based on previous work delivered or in some
cases not delivered. A better and more concise formulation for these requirements is

summarized in the following analytical questions.

1. How much revenue have we generated with a specific customer or group of

customers over the last 6 months?

2. How much revenue have we generated for a specific language or group of
languages over the last 6 months?

3. How much revenue have we generated for a specific domain or a group of
domains over the last 6 months?
4. How much revenue have we generated by a translator or a group of translators

over the last 6 months?

28

How much profit have we made from a translator or a group of translators over
the last 6 months?

Do we need more translators for a certain language based on the number of

sales done for this language?

4.1.3 Technical Requirements

Technical requirements are the business directions for the implementation specifics in case the

company has some restrictions on hardware or software choices. The company’s current

infrastructure is Microsoft oriented with business licenses to Windows7, Windows Server
2012, SQL Server 2008 and Visual Studio 2013. However, it is important to note that for the

purpose of this study we will note that the company is neutral for the new data warehouse

project as long as the implementation satisfies the technical and analytical needs. The volume

of data for the aforementioned application databases is estimated to be 700 gigabytes. The

hardware resources that would be dedicated to the data warehouse project in the first stage are:

2 X 2.6 GHz Xeon E5-2650 v2 processor (1 chip, 8 cores) with 20 MB L3
cache

8 x 8GB (1 x 8GB) Single Rank x8 PC3L-12800R (DDR3-1600) Registered
CAS-11 Low Voltage Memory Kit

4 x 4TB 6Gb SAS 7.2K LFF hot-plug SmartDrive SC Midline disk drive
(3.5"

1 x ProLiant DL380p Gen8 Rackmount, 8 SFF CTO Model (2U) with no
processor, 24 DIMM, open bay (diskless) with 8 SFF drive cage, Smart Array
P420i controller with Zero Memory, 3 x PCle 3.0 slots, 1 FlexibleLOM
connector, 4 x redundant fans, Integrated HP iLO Management Engine

1 x HP 1GbE 4-port 331FLR Adapter

460W Common Slot Gold Hot Plug Power Supply

29

4.2 Analyzing Data Sources

After defining the technical requirements in their final form, the next task, naturally, is to
define to analyze the current data sources. This step will be the foundation for dimensional
modeling and designing the ETL processes. The aforementioned company currently owns to
applications TDApro.com & TranslatorAdvisor.com. TDApro.com is a translation service
facilitation website that aims to act as middleman between translators and customers seeking
translations for various materials. From the interviews, it is clear that a great deal of offline
communications and operations still happens and is unaccounted for in any of the databases

but that wouldn’t affect the realization of the data warehouse objectives.

TranslatorAdvisor.com is rating and feedback service for translators, similar to
Yelp.com. Based on the business and technical requirements, some aspects of both databases
will be consolidated in the data warehouse. The consolidation required is in the areas related to
the translator ranking based on previous experiences.

4.2.1 TDApro

The TDApro database is built for project management and workflow, bidding and sales
transactions as well as capturing communications between buyers, translators and project
managers. Based on our information and analytical requirements, it becomes clear that the
focus is on the final sales transactions and the translator evaluations and we can safely ignore
the segments of the database that relates to project management and bidding and only focus on
the sales part which also includes the information about the clients and translators involved in
each transaction. In the figures below is an overview of the database in general highlighting
the segments that would be used to realize the objectives of the data warehouse. The
following figure illustrates the parts of the TDApro application database that we will

incorporate in the data warehouse.

30

tda_Languages
ﬂ LanguagelD

tda_TranslatorReviews

j RevienlD A
- ReviewStatusiD

- TranslatorlD

- ContactlD —
a5

- MainRate

| FriceRate

] QualtyRate

CommRate =

tda_TranslatorRating

tda_Translators

§| TranglatorlD
W TerritoryD
W IsCompany
0 Accountilame
B ShowAddress
W LanguagelD
W Background
: RatePerWord

>

7 RatinglD
B RatingTypelD
m TranslztorlD
N CustomerID
m ContactlD
N BidD

Comment
: ModifiedDate

tda_BidStatuses

5] biem

J Name
L

J ModifiedDate

Figure 5: Simplified TDApro application database [source: own]

tda_TranslatorsLanguagePair tda_Projects
] P 2 |tda_PaymentOrders | projctn A
_ TranslatorlD _? OrderD = = ProjectTypelD
| FromLng - CustomerD CustomerlD
| Tolng | | ContactD I ContactiD
_ ModifiedDate | Projectll LanguagelD
| RateEnabled | BidID ProjectStatuslD
_ MinRate o PaymentProviderD Name
_ | RatePertiour | SubTotal = W Subject B
_ RatePerWord = % | DueDate
Notes
tda_Bids | ot
_? BidlD = %)
| TranglatorD W Shared
] TaskD] 5P =
- BidstatuslD
] ModifiedDate b
- kg
] TMReadOut
| OriginaFormat tda_Customers
- CustomFormat 8| CustomerD 2
- UseCAT B Accounthame
] BidApprovedDeadine CustomerType
TerritoryID
] ModifiedDate
TranslatorViewTypelD
BilingOptionTypelD
BilingInfo
PQTemplate
|0 =
FeedBackFiter
HasCustomServiceRate

The key things to look for while analyzing the data source are

A

The deep relationships that would need to be flattened for the dimensional modeling

process

31

e The aggregation conditions, from business and technical perspective, that should be
maintained

e The elimination cases that would be used to eliminate irrelevant and redundant data

Following these three points the first issue was with the LanguagePairs table which in the
entity relationship model extends itself to another table for a Many-to-Many relationship with
the translator table and the table itself is a Many-to-Many relationship with Languages table.
To flatten this part of the model the language table will be kept in place but the LanguagePairs
and TranslatorLanguagePairs would be eliminated and replaced by six columns in the

translator dimension, two for each language pair.

The second decision will be to eliminate all the records that are generated during the
negotiation process. For example, for a single successful transaction there could be more than

five records in the bids table

4.2.2 TranslatorAdvisor

TranslatorAdvisor is a customer feedback website. Anyone who had a previous experience
with any of the translators is able to give feedback regarding this encounter and rate the
translator in various sections such as price, quality, communication and timeliness in delivery.
The main difference between TranslatorAdvisor and the feedback feature on TDApro is that
TranslatorAdvisor is not restricted to translators who are registered and agreed to work with
the company and the feedback is not related to a certain project and not limited to customers
who got translations through TDApro; it is open for all customers and all translators. For our
data warehouse, this means that a decision will have to be made about whether to include all
the translators in the warehouse or limit it to those registered on TDApro. The following figure
shows the parts of the TranslatorAdvisor application database that will be consolidated into

the warehouse.

32

4.3 Dimensional Modeling

Based on the business requirements we have confirmed and the analysis of the data sources,
the first phase of the data warehouse will focus on sales transactions and translators

evaluations. The dimensional modeling process itself would be divided into three main steps:

e Designing dimensions

e Designing fact tables

4.3.1 Naming Terminology

Choosing a naming terminology is a standard and a useful practice. It makes it even easier to
understand the dimensional model and quickens the query writing process in the future. For
our data warehouse we chose a simple yet powerful naming scheme. All table names will be
Camel Case without spaces or underscores. Dimension tables will start with the prefix Dim
and fact tables will start with the prefix Fact. For example, DimCustomer will be the table
name for the customer dimension while FactSales will be the fact table for sales.

4.3.2 Dimensions

Dimensions are the pillars for understanding the model and after designing them,
designing the fact tables becomes much easier and less confusing. Many of the design
decisions are taken while designing the dimensions so in this section, the design process and

the decisions taken will be illustrated.

33

4.3.2.1 DimGeography

The Geographical distribution of the customers have great business significance for the
company because it also defines some aspects about the nature of payment for the translators
and the customers and some other legal aspect and also, as it comes to translation, it gives
useful information about the local dialect required and the time zone for delivery deadlines
from the perspectives of customer, the translator and the project manager. The dimension has

the following attributes:

e GeographyKey: The primary key for the dimension
e City: The name of the city

e CountryCode: The iso code for the country

e CountryName: The full country name.

e PostalCode: the postal code for this geography dimension row

DimGeography

% Geographykey

City
CountryCode
CountryMame
PostalCode

Figure 6: Geography Dimension [source: own]

4.3.2.2 DimCustomer

From the name, this is the dimension table for customers’ information and it will contain the

following information:

e CustomerKey: the primary key for the dimension

34

e GeographyKey: A foreign key to the customer geography dimension that stores
information that complements other attributes for contact information

e Name: The name used for customer contact during operation

e EmailAddress: The email used for customer contact during operation

e Enterprise: a Boolean indicator for whether the customer is an enterprise or an
individual account

e Yearlylncome: The last recorder annual revenue for the customer, for Enterprise
customers

e CustomerDomain: The main domain of interest for the customer gives useful
information for the translator and for the analysts

e AddressLinel & AddressLine2: The address used for recorded billings and offline
communication

e Phone: the phone number used for communication

e DateFirstPurchase: The date of the first successful operation

% Customerkey
Geographykey
CustomerAlternateKey
Mame
Enterprise
EmailAddress

YearlyIncome

CustomerDomain
AddressLine1
AddressLine2
Phone
DateFirstPurchasze

Figure 7: Customer Dimension [source: own]

35

4.3.2.3 DimDate

The date dimension is one of the key parts of the dimension model because it will be
interacting with many other parts of the model and definitely with the fact tables as well. The
date dimension in our case will also define the granularity of the fact table. The following

attributes compose the dimension:

e DateKey: the primary key for the dimension table. For this table we will not use the normal or
default primary key convention of having a consequence of numbers. Instead, we will compose
the value of the primary key to reflect the date itself. In this way we guarantee that we will not
have duplicate rows for the same date. Also, if the need to add older dates that already
contained in the dimension, there would be no need to do any changes to the indexes because
the new dates would automatically be in the correct order. For example the primary key for
31/12/2001 would be 31122001.

e FullDate: The date represented by the row (31-12-2001)

e DayOfTheWeekName: The English name of the day (Sunday — Monday ...etc)

e DayNumberOfTheWeek: The order of the day in the week from one to seven

e DayNumberOfTheMonth: The order of the day in the month or the first component of
the date

e DayNumberOfTheYear: The order of the day in the year from 1 — 365

e MonthName: The English name of the month (January, February ..etc)

e MonthOrder: The order of the month in the year from 1 — 12 or the second component
of the date

e Quarter: The quarter that this day lies on from1 -4

e Year: The year part of the date (2005 — 2006 ..ie)

t could be a bit confusing to many to see attributes like DayNumberOfTheMonth,
DayNumberOfTheYear, Quarter Or Year because they violate the normalization rules to
not include repetitive attributes and separate them in a different table..etc. However, these
attributes are required for the analysis and reporting purposes and these information must
be included so although they are a bit redundant and repetitive and some of them are

36

computable, it is a better idea to maintain the flat nature of the dimension model to keep

the performance gains of this approach.

DimDate
% Datekey
FulDate
DayMumberCfiesk
EnglishDayMameOfWeek
DayMumberQfiMonth

DayMumberOfear
WeekMNumberOffear
EnglishMonthMName
MonthMumberOfyear
CalendarQuarter

Calendaryear

Figure 8: Date Dimension[source: own]

4.3.2.4 DimLanguage

The language dimension is another multi-purpose dimension that is part of other dimensions
and the main fact table. It will be part of the translator dimension later and the sales fact table.
It is key in the analytical needs because it helps set many directions for the management and
sales people. This dimension and its incorporation in other dimensions and fact tables will be
critical to satisfying many of the analytical needs identified earlier. The dimension will be
composed of the following attributes:

e LanguageKey: The primary key for the dimension table
e LanguageCode: The iso code of the language (en, cs, fr ... etc)

37

e LanguageName: Full language English name (French, Czech, English ...etc)

DimLanguage
% Languagekey

LanguageCode

LanguageMame

Figure 9 Language Dimension [source: own]

4.3.2.5 DimTranslator

The second most important actor in the sales transaction and sales fact table as well. This
dimension would answer many of the analytical requirements and identify the business need

for recruiting more translators in a more intelligent way.

This dimension was especially tricky in design because it belongs to both data sources in a
different representation and because it had many levels of join and some decisions had to be
made to flatten these data and make the dimension follow out dimensional modeling approach.
The following is how the dimension is composed:

e TranslatorKey: The primary key for the dimension

e GeographyKey: A foreign key to the geography dimension

e NativeLanguageKey: A foreign key to the language dimension table to represent the
translator’s native language

e FirstLanguagePairFrom: A foreign key to the language dimension table to represent
the “from” part of the first language pair for this translator (ie. English -> Czech)

e FirstLanguagePairTo: A foreign key to the language dimension table to represent the
“to” part of the first language pair for this translator (ie. English -> Czech)

e SecondLanguagePairFrom: A foreign key to the language dimension table to represent

the “from” part of the second language pair for this translator

38

e SecondLanguagePairTo: A foreign key to the language dimension table to represent
the “to” part of the second language pair for this translator

e ThirdLanguagePairFrom: A foreign key to the language dimension table to represent
the “from” part of the third language pair for this translator

e ThirdLanguagePairTo: A foreign key to the language dimension table to represent the
“to” part of the third language pair for this translator

e AggregateRateTimliness:An integer value to represent the average rating for the
translator with respect to the timeliness of delivery

e AggregateRateQuality: An integer value to represent the average rating for the
translator with respect to the quality of delivery

e AggregateRatePricing: An integer value to represent the average rating for the
translator with respect to the pricing of delivery

e AggregateRateCommuincation: An integer value to represent the average rating for the
translator with respect to the communication during the process

e Active: a Boolean indicating whether this translator is still active or not.

DimTranslator
? Translatorkey

Geographykey
MativeLanguagekey
FirstLanguagePairFrom
FirstLanguagePairTo
SecondLanguagePairFrom
SecondLanguagePairTo

ThirdLanguagePairFram

ThirdLanguageFairTo

AggregateRateTimeliness
AggregateRateQuality
AgaregateRatePricing
AgaregateRateCommunication
Active

Figure 10 Translator Dimension [source: own]

39

It is important to note here that while few translators have listed more than three language
pairs, the decision has been to limit the data warehouse columns to represent only three pairs.
It also helped to take that decision that we had related questions in the interviews with the

operations personnel and the analysis of the current data sources

4.3.3 Facts

Facts tables are the main containers of the variable data which are the main target of analysis by
default.

4.3.3.1 FactSales

The sales fact table is the center of our data warehouse, at least at this stage. It records the
most important business event. It is the pillar for analysis and answering most of the analytical
questions that were required must come across this table. The following attributes enable the

table to satisfy the expected requirements:

e SalesKey: The primary key for the fact table.

e CustomerKey: A foreign key to the customer dimension to refer to the buyer

e TranslatorKey: A foreign key to the translator dimension

e OrderDateKey: A foreign key to the date dimension to represent the date the order
started

e DeliveryDateKey: A foreign key to the date dimension to represent the date the order
was delivered

e AmountReceived: float value to represent the total amount of money received from the
customer

e AmountPaid: float value to represent the total amount of money paid to the translator

e LanguageFromKey: A foreign key to the language table to represent the original

language of the document

40

e LanguageToKey: A foreign key to the language table to represent the target language
for the document translation
e DocumentURL: The address of the document(s) subject to translation

e DeliveryURL: The address of the delivered document(s) after translation

Saleskey
Customerkey
Translatorkey
OrderDatekey
DeliveryDatekey
AmountReceived
AmountPaid

LanguageFromkey

LanguageTokey
DocumentURL
DeliverylJRL

Figure 11 Sales Fact [source: own]

Combining all the parts together to have the dimension model in Figure 12, it becomes really
clear how more understandable this model is compared to the original data sources. The
dimension model takes a star shaped schema where all the dimensions relate to the fact table.

41

DimCustomer

F Customerkey
GeographyKey
Customer AlternateKey
MName
Enterprise
EmailAddress
‘YearlyIncome
CustomerDomain
AddressLine1
AddressLine2
Phone
DateFirstPurchase

DimGeography

DimLanguage

% Languagekey
LanguageCode

LanguageName

7 GeographyKey
City
CountryCode
CountryMame
PostalCode

DimDate

% Datekey
FullDate
DayMumberOfiveek
EnglishDayMameOfiveek
DayMumberOfianth
DayMumberQfear
WeekMumberOftear
EnglishMonthMName
MonthNumberOfYear
CalendarQuarter

Calendaryear

Figure 12 Dimension Model [source: own]

Customerkey
Translatorkey
OrderDatekey
DeliveryDatekey

AmountReceived
AmountPaid
LanguageFromkey
LanguageToKey
DocumentURL
DeliveryURL

DimTranslator

% Translatorkey
GeographyKey
MativeLanguagekey
FirstLanguagePairFrom
FirstLanguagePairTo
SecondLanguagePairFrom
SecondlanguaagePairTo
ThirdLanguagePairFrom
ThirdLanguagePairTo
AggregateRateTimeliness
AggregateRateQuality
AggregateRatePricng
AggregateRateCommunication
Active

42

4.4 ETL (Extract, Transform, Load)

After having the dimensional model in place, the next step is to move the data to the data
warehouse. Needless to say this is a very important phase in the project, for what good is any
other step if the data didn’t move to the data warehouse. Also, this step is very prone to error

and errors at this stage would cost so much time and computational resources.

4.4.1 Etraction

The first step is extracting the data from the original data sources to temporary storage.
Naturally, this would be scheduled to be executed in a time where the data sources aren’t
under heavy use, in order not to disrupt the operations. Also, keeping the data in a temporary
storage means that in case some mistake happened in the process, there would be no need to
repeat the extraction process and that we can carry on different experimentation without

disrupting the original data sources again.

There are many ways to move the data sources to the temporary storage but the easiest
on Microsoft SQL SERVER 2008 R2 is by directly copying the database from the current
server to the new server, for each database individually, using SQL Server Management
Studio SSMS (Microsoft, 2009).

1. First connect to the source server containing the databases

43

2. Right click on
Mew Database. ..
Mew Query
Script Database as

the

first

database and choose

Tasks-> Copy Database,

Tasks

Policies

Facets
Start PowerShell
Reports

Renarme

Delete

Refresh

Properties

Figure 13: SSMS menu [source: own]

Detach...

Take Offline

Online

[T]

Shririk

Back Up...
Restore

Ship Transaction Logs...

Generate Scripts...
Extract Data-tier Application...

Reqgister as Data-tier Application. ..

Import Data...
Export Data...

Copy Database...

Manage Database Encryption...

44

3. After clicking Copy Database a wizard window appears to choose the source
server again and provide the login details as in Figure 14

5 g Copy Database Wizard

Select a Source Server
Which server do you want to move or copy the databases from?

Figure 14: Copy Database First Step [source: own]

45

4. Then choose destination server tmp ETL and provide login details

8 g Copy Database Wizard

Select a Destination Server
Which server do you want to move or copy the databases to?

Figure 15 Copy destination [source: own]

46

5. The next step contains an important option to keep the data source online while the
copying process is done in order not to disrupt the web applications

4% Copy Database Wizard olE] R

Select the Transfer Method
How would you like to transfer the data?

" Use the detach and attach method

This method is faster, but requires the source database to go offiine. 1t is best for upgrading databases or moving very large databases. No user connections to the source
database are allowed when using this option

@ Usethe SQL Management Object method

This method ie slower but the source database can remain online.

Hep <Back || MNet> || Fnshos |[Cancel

Figure 16 Database Online during copy [source: own]

6. After clicking finish the process will start copying the database.

The same steps would be repeated again for the TranslatorAdvisor database and then the

temporary storage is ready for the transformation phase

4.4.2 Transformation

Transformation phase is designing the process that would convert the current data sources to
match the dimensional model, to flatten the nested relationships, to aggregate the facts and
attributes, to ignore the unnecessary data...etc. The end product of this phase should be
Comma-Separated-Values (CSV) files, each of them representing a table. Microsoft SQL
Server Integration Service is the tool to be used for this task. The way it works is that the

process is divided into parts each part is called a Data Flow Task and all the tasks are

47

contained in Package or Control Flow. The package could run as a whole or for each data
flow task individually. Also, if one data flow task failed, the other tasks aren’t affected and it
could be decided what to do in case of failure; continue, stop the package or run another task
flow. SSIS gives us the option to load the transformed data directly into the Microsoft based
data warehouse but for the sake of comparing the loading performance, all data will be first

converted to CSV files

Similar to how we designed the dimensional model we wills again start with the
dimensions and this case it is important to note that we will use the keys from the data source
as the keys for the dimensions in order to facilitate the transformation process for the fact table

and make it easier as well to generate reports later.

> Transform and export Languags
e

_)
i i Transform & Export Date

L

Failure

Failure
3 7 Failura
i i Transform & Export Geography []
Mail Task

|

_)
i i Transform & Export Customer

Failure

[Failure

3
i i Transform & Export Translator

I F Failure

Y
i i Transform & Export Sales

Figure 17 Transformation using SSIS [source: own]

In Figure 17 is the view of the package after the execution has ended. The green tick
signs indicate that the data flow task executed successfully. The green lines connecting the

data flow tasks indicates the action after the tasks was successful while the red lines indicate

48

the route after failure. In this case all the failure routes lead to an email task that would report
the error and the failure log.

4.4.3 Loading

Now that the data are exported into CSV files in the same structure as the dimensional model,
the next step is loading the data into the warehouse and make sure it is ready for use. Loading
the data into MS SQL Server is different from laoding the data into Hadoop. Also, since The
dimensional model was only implemented on MS SQL Server so far, there would be an extra
step after loading the data on Hadoop to add the Hive meta-data, which the equivalent of the
DDL, data definition layer, on MS SQL Server.

4.4.3.1 Loading on Microsoft
There are many ways to upload the data into the data warehouse using SSIS (the same tool we

used to export the data) or as usual, Microsoft provides an easy graphical interface for

importing the data into the data warehouse in easy steps

1- Right click on the data warehouse in the SSMS and choosing Import Data

49

Mew Database. ..
Mew Query
Script Database as

Tasks

Policies

Facets

Detach. ..

Start PowerShell

Take Offline

Bring Online

Reports

Shrink

Rename

Delete

Back Up...
Restore

Refresh
Properties

Ship Transaction Logs...

Figure 18 Import Data [source: own]

2- Since the files are in CSV format, the data source is a Flat File Source

Generate Scripts...

Extract Data-tier Application...
Register as Data-tier Application. ..

Import Data. ..

Export Data. ..

Copy Database. ..

Manage Database Encryption...

50

lSQLﬁerverImportand Export Wizard _|I:I|£|

' Choose a Data Source
Select the source from which to copy data.

Data source: é Flat File Source j

Select 5 file an@ Met Framewaork Data Provider for Odbe o

=] Columns ﬂ Met Framework Data Prowvider for Oracle
==| Advanced . ﬂ .Met Framework Data Provider for SglServer
] File name: .
=1 Preview E™* Flat File Source
Locale: % Microsoft Access
Code page: %% Microsoft Excel
& Microsoft OLE DB Provider for Analysis Services 10.0

Format: ﬁ Micresoft OLE DB Provider For Data Mining Services -
Text guzlifier: Znones

|
Header row delimiter; ICRHLFY
|

k{ L

Header rows to skip:

[™| Column names in the first data row

i"'. A valid file name must be selected.

Help | <Back [[Mea> | Finishs Cancel |

4

Figure 19 Loading datainto SQL Server [source: own]

3- Choose the file then check the column mappings are correct

51

: '_ SQL Server Import and Export Wizard

i Choose a Data Source
Select the source from which to copy data.

P =[P4}

Data source:

- General

5 Flat File Source

Configure the properties of each column.

==| Columns
ES I U Customerkiey Mizc
=1 Preview Eengmphyﬂe*_.r Name CustomerKey
E?rtne-lfprise [EolumnDeIimiter Comma {.}
EmailAddress ColumnType Delimited
I Yearylncome InputColumnitfidth) 0
CustomerDormain DiataPracision 0
AddressLinel DataScale -
Addressline? e -
' o DataType string [DT_STR]
DateFirstPurchase CutputColumnitid 50
TextQualified True
i
i MName
Mew | ¥| Delete | Suggest Types... |

Help |

< Back || Next> | Finish =

Figure 20 Input file and column mappings [source: own]

4- The continues with default options and loads the data in the corresponding table

The four steps above will be repeated for the dimension tables and fact table in the same

order they are specified in the design to prevent foreign key errors

52

4.4.3.2 Loading Data On Hadoop

Loading the data into Hadoop is much simpler than on Microsoft SQL Server since
Hadoop will take the files directly. However, since, the data model isn’t yet defined; Meta data
would be defined for the tables after adding the files to HDFS, in order to make them
independent from the files. Cloudera, a company developing open source solutions that are
Hadoop based, developed a tool similar to SQL Server Management Studio (SSMS) that is
also open source and free for use. Hue allows us to manage the whole cluster and also has a
user management utility. Hue is browser based tool and through Hue graphical user interface

uploading the data files is simply done as follows:

1- After logging in with the appropriate credentials

Sign in to continue to Hue

& cloudera

=1 sasasEee

Figure 21 Hue Login Screen [source: own]

53

2- To upload the files and for HDFS management in general we click

I File Browser

Figure 22 Hue file browser [source: own]

3- Just like on any file system, on HDFS the files would be placed in a newly created
directory and give it a name “warehouse”
®Upload v © New v

[File
y B Directory

Figure 23 Hue New directory [source: own]
4- Hive tables can only be attached to directories not files so we will create a separate
directory for each table. This also allows adding more data easily later on by just

adding the new records in separate files without the need for merging

5- The next step is to upload the files

® Upload v © New v

[Files
i* Zip/Tgz/Bz2 file

Figure 24 Hue Upload Files [source: own]

After the files are chosen

54

A MName

Customer
Date
Geography
Language

Sales

Translator

Figure 25 Hue: files added into HDFS [source: own]

Now that the files are in HDFS, the next step is to define the tables in Hive and make
them point to their files respectively. The in Hive is very similar to the syntax of MySQL, both
for DDL and for querying. The dimensions could be added in any order with no restriction
regarding foreign keys as was the case with Microsoft SQL Server. In Figure 26 is the syntax
for creating the customer dimension table that refers to DimCustomer.csv file.

create external table DimCustomer (CustomerKey int, GeographyKey int,

CustomerAlternateKey stfing, Name string,

Enterprise boolean, EmailAddress string,

CustomerDomain string, AddressLinel string,

AddressLine2 string, Phone string, DateFirstPurchase DATE)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY °

location '/user/cloudera/datawarehouse/Customer’
tblproperties ("skip.header.line.count"="1"});

Figure 26 Hue: Creating a table [source: own]

There are few things to note about the syntax for creating the table:

1- The keyword external means that Hive will not copy this data file into its own folders

and will just maintain an separate layer for meta-data

55

2- The ROW FORMAT part and the FIELD TERMINATED BY parts are optional and
are usually used with text data format, as is the case now. Also, they provide the
flexibility to read different text formats like TSV, TAB, logs or other formats. Also,
Hive provides a way to define shortcuts for format specifications to eliminate
repetition and centralize changes later on.

3- The last line defines the number of rows to skip to 1 because in our files the first line
contains the column headers which is already defined in the table creation query along
with their data types. This is necessary because the table names would also violate the

data types of the columns.

To confirm that the step was executed correctly first we should check that the file still exist

in the same directory and then make sure that Hive can query the data from that file.

To query the table for a sample of 100 rows, we use a SQL-like syntax in Hive:

SELECT * FROM dimcustomer LIMIT 100

The result of this query is shown in Figure 27

- dimcustomer.customerkey dimcustomer.geographykey dimcustomer.c | key dimcustomer.name dimcustomer.enterprise dimcustomer.emailaddress d
0 11000 26 AW00011000 Jon False jon24@adventure-works.com

1 11001 37 AW00011001 Eugene False eugenel0@adventure-works.com 600C
2 11002 31 AWO00011002 Ruben False ruben35@adventure-works.com 6000
3 11003 1 AW00011003 Christy False christy12@adventure-works.com 700(
4 11004 19 AWO00011004 Elizabeth False elizabeth5@adventure-works.com 800(
5 11005 22 AWO00011005 Julio False juliol @adventure-works.com 7000
6 11006 8 AW00011006 Janet False janetd@adventure-works.com 7000
7 11007 40 AWO00011007 Marco False marcold@adventure-works.com 6000
8 11008 32 AW00011008 Rob False robd@adventure-works.com 6000
9 11009 25 AWO00011009 Shannon False shannon38@adventure-works.com 7000
10 11010 22 AW00011010 Jacquelyn False jacquelyn20@adventure-works.com 700(
11 11011 22 AW00011011 Curtis False curtis9@adventure-works.com 600(

Figure 27 Hue: Sample customer data [source: own]

56

Similarly, meta-data will be defined for the other tables until we have the whole
dimensional model defined similar to how it is on Microsoft. After this is done, we will try a
query that answers a one of the analytical questions. For example, this is a query to answer the
question: Which customers are from Australia

SELECT * from DimCustomer c, DimGeography g

WHERE c.geographykey = g.gegraphykey
and g.countryname = 'Australia'

The query above joins two tables and uses a filter on one of them to return a specific set that
matches the conditions specified by the question. Hive also provides details on the
implementation plan that lead to the result. This plan could be a powerful tool for debugging

more complex queries.

Another way to process and analyze data on Hadoop is Pig which has syntax similar to
Scala but it doesn’t benefit from the meta-data for the files so the script deals with the file on
its own. This method is more suitable when the data is not structured and there is no way to
define a table-like structure for the data.

57

4.5 Implementation Remarks

The implementation of the data warehouse in both technologies has been an exciting and

challenging journey. Starting from the dimensional design, it became clear how in general the

data warehouse can benefit the firm and enhance the reporting capabilities. Moving to

implementation on both technologies the differences became clear in some of the comparison

points. Based on the criterion that was specified in the methodology the following table offers

the comparison between the two technologies.

Table 5 Final Assessment [source: own]

Criteria Microsoft SQL Server

Capacity

Ideal for Small, medium and
moderately large amounts of data. Not
suitable for big data. Also can only

handle structured data

Apache Hadoop

Ideal for Big Data usually more
than 10 billion data points. Great
for unstructured and unusual data
formats. However, for small data
amounts, the over head outweighs
the concurrency benefits

Loading Loading data on SQL server is a
Performance . .

demanding process and requires
loading the table in specific order to

maintain foreign key constraints

Loading data on Apache Hadoop is
as simple as copying data files from
one disk to another, doesn’t require
any order for copying the data and
is only limited by the 10 speed of

the underlying hardware

58

Client/Server
connectivity:

Query
Performance

It is possible to access the data
warehouse from almost every major
tool. However, each connection takes
up resources which could lead to
connection termination if the number
of connections is too large, even if the
connection is not actually making any
data calls

Connection be established
a REST API

decreases the amount of resources

can
through which
needed for each open connection
and makes connecting to the data
warehouse available even from a

command prompt

For the capacity range suitable for
Microsoft SQL Server,

powerful performance on queries and

it offers

makes use of indexing, caching and
other tools. However, for Big Data the

performance drops.

Offers querying
performance for huge amounts of

powerful

data by using concurrency and data

locality. However, for small
amounts of data the over head for
starting MapReduce jobs outweighs

the performance gains by a lot.

59

5. Conclusion

Data warehouses offer businesses great analytical abilities when the business is generating
more and more data but it also comes with a considerable investment of money, time and
human resources. So, the decision to start a data warehouse or not should first be evaluated
from a business point of view. This project had a main goal to provide a comparison between
Microsoft SQL Server and Apache Hadoop for creating data warehouses. The comparison
didn’t aim to eliminate one of the two options in favor of the other but rather uncover the
decision process when it is necessary to make that decision. To satisfy this purpose, the whole
process of creating a data warehouse was executed for the two technologies, following state of
the art design techniques and explaining the choices made for the design and implementation.

The comparison is based on:

Capacity: the amount of data that could be loaded without affecting functionality,

Loading the data: the ease and performance of the process

Connectivity: the ease and versatility of connecting to the data warehouse

Querying: the ease and performance of querying the data in the data warehouse

5.1 Apache Hadoop

Apache Hadoop as with most of the major open source projects offers an opportunity to break
free of the licensing fees, the exclusiveness within the environment to a certain company’s
chain of products. However, as with most of the open source projects as well, is still in need of
development and support to become a full replacement. Apache Hadoop is an exception of
this case because it received a lot of support from the very beginning both technical and
financial from many of the sector leaders; with companies like Google, Oracle, IBM and
Cloudera investing more and more into building a full scale environment and enhancing the

overall use of the technology.

Hadoop is extremely flexible with the data formats being added because it all goes

down as storing a file on a file system, HDFS in this case. Also, loading the data into HDFS is

60

really fast and is only limited by the read/write speed of the hard disks. Hadoop is also cheaper
and easily extensible and can handle virtually any amount of data. Querying is slower on
Hadoop when dealing with small amounts of data so the decision to use Hadoop isn’t always
the correct decision. Hadoop is cheap and many of companies started offering Hadoop on the
cloud and thus eliminating the need of a bulk investment in hardware in the beginning and the

hassle of server management.

5.2 Microsoft SQL Server

Microsoft SQL Server is a reliable and widely used database management system. Even
though it is not cheap in terms of acquisition and licensing, it is suitable for medium and big
enterprise with manageable amounts of data. Also, Microsoft provides a complete
development ecosystem and a variety of interconnected solutions like SQL Server Integration
Services SSIS, SQL Server Reporting Services SSRS and SQL Server Analytics Service
SSAS and all of these services are integrable with each other and with the other Microsoft
technologies like ASP.NET and fits really well with all of it with special components
developed by Microsoft and other third parties to make everything work together nicely

Microsoft SQL Server is suitable for structured data up to very large amounts but the
limit is much less than Hadoop. Loading the data into SQL Server is easy thanks to the
graphical wizards provided by Microsoft but again would normally be slower than HDFS
because of the foreign key checks and other insertion overhead. SQL Server is easily
connectable with almost all the major technologies and tools either using built in features or
using adapters. Querying on SQL server is done using SQL queries or stored procedures and is

highly efficient thanks to features like indices and caching.

The decision to use Apache Hadoop or Microsoft SQL Server depends on many factors
that relate to the business and the nature of data. Answering questions like: How much data is
there? Is it structured, semi-structured or unstructured data? What is the current technology
stack in use for the rest of the organization? What are the resources allocated for the data

warehouse? Answering each of these questions would be a step towards the right decision

61

References

1. DEVLIN, B. A. and MURPHY, P. T. 1988. An architecture for a business and
information system. New York : IBM, 1988, IBM Systems Journal, Vol. 27, pp. 60-
80. ISSN: 0018-8670.

2. Apache Software Foundation. 2016. Apache Hadoop YARN. Apache Hadoop.
[Online] January 16, 2016. [Cited: Febrauary 02, 2016.] . Available at:
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/Y ARN.html.

3. BULUSU, Lakshman . 2012. Open Source Data Warehousing and Business
Intelligence. Boca Raton : CRC Press, 2012. ISBN 9781439816400.

4. BUTLER, Andrew and STRANGE, Kevin. 2002. A Data Warehouse Evaluation
Model. Stamford, USA : Gartner, 2002. pp. 1 - 4. G00109604.

5. CORR, Lawrence and STAGNITTO, Jim. 2011. Agile Data Warehouse Design:
Collaborative Dimensional Modeling, from Whiteboard to Star Schema. 1st. Leeds :
DecisionOne Press, 2011. ISBN: 0956817203.

6. DEVLIN, Barry. 1996. Data Warehouse: From Architecture to Implementation.
Dublin : Addison-Wesley Professional, 1996. ISBN: 0201964257.

7. DHCKS, Jean-Pierre. 2014. Updated: Price Comparison for Big Data Appliance and
Hadoop. The Warehouse insider. [Online] April 03, 2014. . Available at:
https://blogs.oracle.com/datawarehousing/entry/updated _price_comparison_for_big.

8. Genomics England. 2014. The 100,000 Genomes Project. Genomics England. [Online]
UK Department of Health, July 21, 2014. [Cited: October 10, 2015.] . Available at:
http://www.genomicsengland.co.uk/the-100000-genomes-project/.

9. GROVER, Mark, et al. 2015. Hadoop Application Architectures. Sebastopol : O'Reilly
Media, 2015. ISBN: 1491900083.

10. HOLMES, Alex. 2014. Hadoop in Practice. 2nd. New York : Manning Publications,
2014. ISBN: 1617292222.

11. INMON, William H. 1992. Building the Data Warehouse. New York : John Wiley &
Sons, Inc., 1992.

12. MISHRA, Priti and Eich, Margaret H. 1992. Join Processing in Relational Databases.
Dallas : ACM Computing Surveys, 1992, Vol. 24.

62

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

KIMBALL, Ralph and Ross, Margy. 2013. The Data Warehouse Lifecycle Toolkit.
Indianapolis : John Wiley & Sons, Inc., 2013. ISBN: 1118530802.

KIMBALL, Ralph, Mundy, Joy and Thornthwaite, Warren. 2011. The Microsoft Data
Warehouse Toolkit. Indianapolis : Wiley Publishing, Inc., 2011. ISBN:978-1-118-
06795-6.

KRISHNAN, Krish. 2013. Data Warehousing in the Age of Big Data. Waltham :
Morgan Kaufmann, 2013. ISBN: 9780124058910.

LAM, Chuck. 2011. Hadoop in action. 1st. Greenwich : Manning Publications, 2011.
ISBN:1935182196.

LEVERENZ, Lefty. 2016. HCatalog: Using HCatalog. Apache Software Foundation.
[Online] January 24, 2016. . Available at:
https://cwiki.apache.org/confluence/display/Hive/HCatalog+UsingHCat.

MICROSOFT. 2009. Create a Full Database Backup (SQL Server). Microsoft
technical network. [Online] Microsoft, January 12, 2009. [Cited: November 12, 2015.]
. Available at: https://msdn.microsoft.com/en-us/library/ms187510(v=sqgl.105).aspx.

ORACLE. 2016. Oracle Technology Global Price List. Oracle: Software Investment
Guide. [Online] January 21, 2016. . Available at:
http://www.oracle.com/us/corporate/pricing/technology-price-list-070617.pdf.

SPICER, Drag, et al. 1998. Timeline of Computer History. Computer History
Meuzeum. [Online] Computer History Museum, December 2, 1998. [Cited: November
16, 2015.] . Available at: http://www.computerhistory.org/timeline/memory-storage/.

WHITE, Tom. 2015. Hadoop: The Definitive Guide. s.l. : O'Reilly Media, 2015.

YOUTUBE. 2015. Statistics. Youtube. [Online] 2015. [Cited: November 1, 2015.].
Available at: https://www.youtube.com/yt/press/statistics.html.

63

