

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE

Faculty of Economics and Management

Informatics

Department of Information Engineering

Diploma Thesis

Data Warehouses: Comparison between Apache Hadoop and

Microsoft implementations on a real life example

Author: Hussein Mohamed Negm

Supervisor: doc. Ing. Vojtěch Merunka, Ph.D.

© 2016 CULS Prague

Declaration

I declare that I have worked on my diploma thesis titled "Data Warehouses:

Comparison between Apache Hadoop and Microsoft implementations on a real life example"

by myself and I have used only the sources mentioned at the end of the thesis. As the author of

the diploma thesis, I declare that the thesis does not break copyrights of any their person.

In Prague on ___________________________

Hussein Negm

Acknowledgement

I would like to thank my supervisor doc. Ing. Vojtěch Merunka for his help and

guidance during this project. I would also like to thank all my teachers and professors at every

educational level for knowledge is accumilative. Special thanks for my family and my wife

Esraa for all the support during the time I spent in Czech Republic. Finally, I would like to

thank the Czech ministry of foreign affairs for making it all possible through the scholarship

Shrnutí

Firmy produkují stále více dat a hledají nové způsoby, jak je obchodně zhodnotit. S rostoucími

objemy dat přichází požadavek na lepší a levnější uchovávání, které by zároveň umožňovalo

tato data využívat. Pro tento účel se jako nejhodnější nástroj osvědčily datové sklady. Datové

sklady ovšem představují značné personální a finanční náklady. Nabídka technologií pro

implementování datových skladů je všestranná. Cílem tohoto projektu je komparativní

implementace s použitím dvou technologií, konkrétně Microsoft SQL Server a Apache

Hadoop. Tento projekt se věnuje různým fázím vytváření datového skladu; fáze určování

požadavků; fáze návrhu a kompaktní porovnání entitně-vztahového modelování s

dimenzionálním modelováním a proces budování dimenzionálního modelu na základě

prostředků aplikačních dat; fáze extrahování-převádění-zavádění. Poté jsou obě technologie

porovnány z hlediska kapacity dat, načítání dat, připojení a dotazování dat. Ze závěrů tohoto

projektu vyplývá, že při výběru mezi systémy Microsoft SQL Server a Apache Hadoop je

třeba vycházet z potřeb, prostředků a stávajícího ekosystému. Systém Hadoop je vhodný pro

větší objemy dat, pro nestrukturované nebo nepravidelné formáty dat a pro případ, že rozpočet

nepočítá s licenčními poplatky. Na druhou stranu systém Microsoft SQL Server je vhodnou

volbou pro strukturovaná data, když jsou známy očekávané objemy dat a když je zbývající

část ekosystému založena na produktech Microsoft. Další fáze tohoto projektu by měly být

věnovány novým způsobům efektivnějšího využití systému Hadoop pro menší objemy dat,

jako jsou Impala a Spark..

Klíčová slova

Data Warehouse, Microsoft SQL Server, Apache Hadoop, Hive, Dimensional Modeling,

HDFS

Abstract

Data is being produced by the firms in ever increasing rates and firms are finding new ways to

make use of data to create business value. The generated volumes of data create the need for

better and cheaper storage options that allows utilizing the data as well. Data warehouses have

emerged as the most appropriate tool for this task. However, data warehouses come with

significant costs both human and financial. The pool of technologies for implementing data

warehouses is versatile. This project aims to provide a comparative implementation using two

of the technologies, namely, Microsoft SQL Server and Apache Hadoop. The project covers

the different phases of building a data warehouse; the requirements specification phase; the

design phase and a compact comparison between the entity-relation and dimensional modeling

design techniques and the process of building a dimensional model based on based on the

application data sources; the extract-transform-load phase. The comparison is then made

between the two technologies for data capacity, data loading, connectivity and querying data.

The project concludes that the decision to choose between Microsoft SQL Server and Apache

Hadoop isn’t a recommendation for one over the other but should be based on the needs,

resources and the existing ecosystem. Hadoop would be the choice for bigger amounts of data,

unstructured or irregular data formats, and when the licensing fees are an unaffordable cost.

On the other hand, Microsoft SQL Server would make a better choice when the data is

structured, the anticipated data volumes are suitable and when the rest of ecosystem is

Microsoft based. Future development for this project should cover new ways to make Hadoop

more efficient with smaller data volumes like Impala and Spark.

Key words

Data Warehouse, Microsoft SQL Server, Apache Hadoop, Hive, Dimensional Modeling,

HDFS

Table of Contents

1. Introduction ...1

1.1 Storing Data ..1

1.2 Data warehouses ...1

1.3 The difference between a data warehouse and a database ..3

1.3.1 The purpose ..4

1.3.2 The scale of operation ..4

1.3.3 The design fundamentals ..4

1.4 Introducing the business ..5

2. Thesis Objective and methodology ...6

2.1 Objective ...6

2.2 Methodology ...7

3. Literature Review ..8

3.1 Data Warehousing ...8

3.1.1 Entity-Relationship Modeling ... 10

3.1.2 Dimensional Modeling .. 12

3.2 Apache Hadoop .. 17

3.2.1 YARN ... 19

3.2.2 Hadoop Distributed File System ... 21

3.2.3 Hive ... 23

3.2.4 Why Hadoop?.. 24

4. Project Implementation .. 27

4.1 Business Requirements .. 27

4.1.1 Information Requirements .. 27

4.1.2 Analytical Requirements ... 28

4.1.3 Technical Requirements .. 29

4.2 Analyzing Data Sources ... 30

4.2.1 TDApro ... 30

4.2.2 TranslatorAdvisor ... 32

4.3 Dimensional Modeling ... 33

4.3.1 Naming Terminology .. 33

4.3.2 Dimensions .. 33

4.3.3 Facts .. 40

4.4 ETL (Extract, Transform, Load) .. 43

4.4.1 Etraction .. 43

4.4.2 Transformation .. 47

4.4.3 Loading ... 49

4.5 Implementation Remarks ... 58

5. Conclusion ... 60

5.1 Apache Hadoop .. 60

5.2 Microsoft SQL Server .. 61

References .. 62

List of Figures

FIGURE 1: DATA WAREHOUSE DESIGN CYCLE [SOURCE: OWN] 3

FIGURE 2 TYPE 1- TRANSFORMATION [SOURCE: OWN] 11

FIGURE 3 DIMENSION MODEL EXAMPLE [SOURCE: OWN] 12

FIGURE 4HADOOP UNDERLYING SYSTEM ARCHITECTURE [SOURCE: (APACHE SOFTWARE

FOUNDATION, 2016)] 18

FIGURE 5: SIMPLIFIED TDAPRO APPLICATION DATABASE [SOURCE: OWN] 31

FIGURE 6: GEOGRAPHY DIMENSION [SOURCE: OWN] 34

FIGURE 7: CUSTOMER DIMENSION[SOURCE: OWN] 35

FIGURE 8: DATE DIMENSION[SOURCE: OWN] 37

FIGURE 9 LANGUAGE DIMENSION [SOURCE: OWN] 38

FIGURE 10 TRANSLATOR DIMENSION [SOURCE: OWN] 39

FIGURE 11 SALES FACT [SOURCE: OWN] 41

FIGURE 12 DIMENSION MODEL [SOURCE: OWN] 42

FIGURE 13: SSMS MENU [SOURCE: OWN] 44

FIGURE 14: COPY DATABASE FIRST STEP [SOURCE: OWN] 45

FIGURE 15 COPY DESTINATION [SOURCE: OWN] 46

FIGURE 16 DATABASE ONLINE DURING COPY [SOURCE: OWN] 47

FIGURE 17 TRANSFORMATION USING SSIS [SOURCE: OWN] 48

FIGURE 18 IMPORT DATA [SOURCE: OWN] 50

FIGURE 19 LOADING DATAINTO SQL SERVER [SOURCE: OWN] 51

FIGURE 20 INPUT FILE AND COLUMN MAPPINGS [SOURCE: OWN] 52

FIGURE 21 HUE LOGIN SCREEN [SOURCE: OWN] 53

FIGURE 22 HUE FILE BROWSER [SOURCE: OWN] 54

FIGURE 23 HUE NEW DIRECTORY [SOURCE: OWN] 54

FIGURE 24 HUE UPLOAD FILES [SOURCE: OWN] 54

FIGURE 25 HUE: FILES ADDED INTO HDFS [SOURCE: OWN] 55

FIGURE 26 HUE: CREATING A TABLE [SOURCE: OWN] 55

FIGURE 27 HUE: SAMPLE CUSTOMER DATA [SOURCE: OWN] 56

List of tables

TABLE 1 TYPE-TWO DIMENSION CHANGE [SOURCE: OWN] ... 14

TABLE 2 TYPE-THREE DIMENSION CHANGE [SOURCE: OWN] .. 14

TABLE 3 COSTS OF ORACLE DATA WAREHOUSE [SOURCE: OWN] ... 25

TABLE 4 COSTS OF HADOOP DATA WAREHOUSE [SOURCE: OWN] ... 25

TABLE 5 FINAL ASSESSMENT [SOURCE: OWN] .. 58

1

1. Introduction

1.1 Storing Data

Humans have been collecting data in various forms since the dawn of history even before

constituting formal writing rules. Samarians and Ancient Egyptians collected data about

astronomy, agriculture and their life events in the form of drawings on the walls of their

temples, tombs and temples and later papyrus. Then we moved to hand writing and then

printing all the way to the computer age. The amount of data produced has naturally been

positively correlated with the ease and speed of the data creation process. Writing a book used

to be a several years task and later making copies of this book wasn’t a trivial task as well but

as we move to a more digital world we generate data at unprecedented rates and in a very

diverse variety of forms.

For example, the amount of data on Youtube is estimated to hundreds of millions of

hours (Youtube, 2015), Instagram contains billions of images; Google search engine holds

records for an ever-growing number of web pages and their content. Even on an individual

scale, we now tend to take more pictures with our phones and digital cameras, write more in

forms of emails, blog posts or personal websites and store other sorts of professional

manuscripts or architectural designs in digital formats. Another striking example is medical

research where acquiring data is an expensive process and data comes in huge chunks so

accurately storing data is at the core of the research endeavor. For example, data from a single

genome sequence is about 200GB (Genomics England, 2014). Data has evolved as one of the

most important assets for many businesses, research centers, governments and universities.

Data is used to build models to evaluate performance, make plans for the future, develop new

products, and decide where to build stores along with many other uses.

1.2 Data warehouses

Storing digital data has passed through various stages from mercury delayed storage moving

to different kind of magnetic techniques. The noticeable development is in the capacity and

2

decrease in the cost of storage. Just 50 years ago IBM rented a computer that can store 2

million digits for 850$/month (Spicer, et al., 1998). Now, for the same amount of money you

can buy a computer that is millions of times faster and bigger in storage capacity while being

smaller in size and more power efficient. Data warehouses are the de-facto technology for

storing large magnitudes of data for enterprises or for research facilities.

A data warehouse is in essence a relational database designed for more efficient

querying and analysis of data rather than transactional integrity. As the name suggests a data

warehouse will aggregate all the data from different sources. This aggregation process would

be referred to as ETL or Extract-Transfer-Load process; Extracting the data from the sources;

Transforming the data to match the data warehouse design; Loading the data into the

warehouse to be ready for further use.

The process of designing and implementing a data warehouse is highly structured and

of great importance. This is mainly due to the fact that data warehouses are naturally

developed to allow for better decision making in the organization and decision are a usually

taken at the highest level of the organization and in many cases would reflect considerable

results, gains or losses. The interpretation of the term Data Warehouse itself varies widely

across the literature. However, in this paper, we will follow the Ralph Kimball understanding

of data warehouses, dimensional design and end-to-end role in business intelligence.

In the literature review section, this understanding will be covered in enough depth and

contrasted to the other philosophy from Bill Inmon (Inmon, 1992). The process of

implementing a data warehouse goes through many phases to ensure correct and efficient

implementation. The process starts by collecting the requirements or objectives from the data

warehouse as a business intelligence facilitation tool then moves to dimensional modeling then

physical design then the design of ETL processes and finally actual implementation on the

selected infrastructure. The following diagram gives a better visualization of the process that

will be implemented for this project

3

Figure 1: Data Warehouse Design Cycle [source: own]

1.3 The difference between a data warehouse and a database

It is a common mistake to confuse databases with data warehouses since they are both used to

store data and since many don’t get the chance to deal with data warehouses in the course of

their digital experience and others consider a data warehouse just a big database or

consolidation of multiple databases or data sources. There many noticeable differences that

relates to:

 The different purposes of databases and data warehouses.

 The scale of operation.

 The design fundamentals.

Business
Requirements

gathering

Extracting
technical

requirements

Analyzing the
data sources

Diemensional
modeling

Physical design

Design of ETL
processes

implementation

Deployment

Collecting
feedback

4

1.3.1 The purpose

Databases are the functional unit of almost all the modern digital products it is used to store

transactional information regarding the use of the application, the content of the application or

the business rules that applies on different cases. In contrary, a data warehouse serves a

different purpose that follows from operation. Data warehouses store and consolidate the data

across all sources to serve a unified analytical or operational purpose whether to provide

decision support, customer segmentation, or performance analysis.

1.3.2 The scale of operation

In theory, a database is capable of performing all the tasks of a data warehouse but in

practicality this becomes highly inefficient and computationally costly as the data grow larger

because both reading and writing operations are much slower because of the relational nature

of the database and the need to execute multiple tables joins. Also, a database is usually

dedicated to a single application but a data warehouse can consolidate several databases each

of them serving a different application.

1.3.3 The design fundamentals

The most fundamental difference is that databases hold records of transactions or operations

while data warehouses hold data about a subject. For example, for an ecommerce organization,

the database will contain detailed records about the transactions done by the users while the

data warehouse will focus on a subject like sales and hold records in fact tables with different

granularity (eg. Sales per hour, Sales per age group, or sales store). Also, the data in a

warehouse wouldn’t be stored in the third normal form for more efficient querying but in the

database the 3
rd

 normal form would be used to guarantee data integrity.

5

1.4 Introducing the business

The target company is Translatus s.r.o which is a Czech company based and operating in

Prague with offices in Germany, Dubai and China. The company started in 2001 as a pioneer

in the online freelancing facilitation with a focus on a niche business sector, translation. The

company operates under two main web applications.

The first application is a bidding system for translation services along with a project

workflow system that allows the customers, translators to manage the project from start to

finish. The business model is to get companies or individuals, welling to get translations for

their documents, business advertising or any other type of content, to upload their files and

then allow translators to offer their services in a competitive manner. Transactions for the

purpose are on many sides: bidding, quotes, payment and as part of the design practice we will

choose the subject of the data warehouse to be only payment or the final transaction on

different dimensions like language pairs, months, translators and clients.

The second application is a community application to write reviews on translators

based on previous experiences, similar to Yelp but specific to translators. The translator’s is

rated in general and according to four criterions: quality, price, timeliness and communication.

Suspicious or malicious reviews are verified by contacting the reviewer and asking for more

details about the work done with the translator to verify the review is real. Reviewers are free

to detail experiences of working with a certain translator, as long as it is kept professional and

about the work done without getting into personal rants. In certain cases, the translator would

be contacted for more details about the work referenced in the review. The reason to do this is

to guarantee the authenticity of these reviews and that they are reliable enough to be the base

for future dealings with the translator.

6

2. Thesis Objective and methodology

2.1 Objective

The objective of this thesis is to provide a comparison between Apache Hadoop and Microsoft

SQL in the perspective of building a data warehouse and evaluating the two solutions through

the application of a set of metrics (Butler, et al., 2002). Although, the implementations will be

based on a specific example, the metrics chosen are generic to allow for a general evaluation

of the two technology infrastructures. More specifically, the metrics chosen are

 Capacity: Data warehouse are intended to host all data and more. In transactional

databases it is usually the case that we ignore the history of changes in the most tables

to avoid adding more layers, relationships and joins. In the data warehouse we want to

record everything for future purposes so the intention is to host large and ever growing

amounts of data. Capacity, as in the limits for physical storage, is a preliminary

measure because if the implementation wouldn’t be able to support real life capacity it

would be automatically ruled out in practice

 Loading and indexing performance: Loading data is the first step in application after

the system design is complete and logical design of the data warehouse is implemented

on Microsoft SQL Server or on Apache Hadoop. It is a key metric since it defines the

usability of the whole implementation because it is unreasonable to use a system that is

notably slow at this stage. Even though this an important metric for the system, if a

system will be more efficient after this step it could still be favorable for other features

since this step is usually done once in the lifetime of the system

 Client/Server connectivity: This metric answers the question of future integrability

into a complete business intelligence eco system. This is important because it defines

the usability and flexibility of using the system. It is important to understand that

building the data warehouse is not the purpose; it is just a step in the way of building a

7

complete data intelligence ecosystem that provides value to the business and as

mentioned earlier, one of the main advantages of the data warehouse design is that it

facilitates analysis. As such, it is important that the underlying infrastructure that holds

the data be flexible enough to allow the use of a diversity of tools by default be it open

source of proprietary for the same vendor or for other vendors.

 Query processing performance: Now that we have measured the quality of the

system in loading the data of the capacity that would be suitable for our needs and

made sure that we will be able to use the data warehouse and connect to it from a

variety of tools and analysis clients. This metric is what the end users will experience

on a daily basis and this defines the efficiency of the system in analytical and reporting

uses. For the breadth of the uses that satisfy the business needs, the data warehouse

would be responsive enough.

2.2 Methodology

The study will also illustrate the different steps in the data warehouse design and

implementation, staging, running and utilization for each of the two technologies. The study

will begin by a literature review for the main subjects that were encountered in the planning,

design and implementation of the data warehouse. Then, the study moves identifying the

business requirements and formulating the end product as defined by the business. Next step is

analyzing the data sources for the data intended for hosting in the data warehouse. After that,

the study shows building the conceptual data model all the way to a physical data model for

the data warehouse. Then the study will dedicate separate sections for the actual

implementation of the data warehouse in each of the technologies to highlight the differences

in implementation, ETL and utilization. The final step would be comparing the two data

warehouses and offering recommendations based on the aforementioned metrics

8

3. Literature Review

Database design is one of the oldest and most stable paradigms of computer science. Concepts

like normalization and entity relations have been carved in stone. However, the same cannot

be said about data warehouses and Hadoop since they are, compared to database design, are

new concepts with Hadoop Project being just 10 years old but it wasn't widely adopted until a

couple of years later when Google announced that it would sponsor the project through the

Apache foundation. This literature review will explore the current state of the art in the two

subjects which will help plan and implement the data warehouse in the two technologies.

3.1 Data Warehousing

The literature on data warehousing is in slightly more abundance than it is the case for Hadoop

and it is for an obvious reason. While being a byproduct of databases, data warehousing

received more attention early. Some date the concept back to the sixties but the first real

product to offer the data warehouse architecture was introduced by Devlin and Murphy at IBM

in 1988 (Devlin, et al., 1988). This article provided the closes vision to a data warehouse as is

perceived now. Those two paragraphs from the article echoes to a great extent the view that is

adopted in this project

“The transaction-processing environment in which companies maintain their

operational databases was the original target for computerization and is now well

understood. On the other hand, access to company information on a large scale by an

end user for reporting and data analysis is relatively new. Within IBM, the

computerization of informational systems is progressing, driven by business needs and

by the availability of improved tools for accessing the company data.”

This excerpt shows the motive for developing data warehouses. With transactional data

piling up, the reporting and analysis functionalities were suffering from all the relational

complexities put on by the normalization rules. Also, the need for consolidated data reporting

was harder to achieve across multiple data sources as the authors specifically made a note of

that being the case for IBM itself at the time

9

“It is now apparent that architecture is needed to draw together the various strands of

informational system activity within the company. IBM Europe, Middle East, and

Africa (E/ME/A) has adopted an architecture called the E/ME/A Business Information

System (EBIS) architecture as the strategic direction for informational systems. EBIS

proposes an integrated warehouse of company data based firmly in the relational

database environment. End-user access to this warehouse is simplified by a consistent

set of tools provided by an end-user interface and supported by a business data

directory that describes the information available in user terms.”

The definition of a data warehouse has been subject to minor disagreement between

Bill Inmon and Ralph Kimball, two of the most prominent experts on the topic. The

disagreement is not about the core functionality of the data warehouse but rather about the

scope of its perimeter. In his famous book The Data Warehouse Lifecycle Toolkit (Kimball, et

al., 2013), Ralph Kimball specifically define a data warehouse as follows:

"The queryable source of data in the enterprise. The data warehouse is nothing more

than the union of all the constituent data marts. A data warehouse is fed from the data

staging area. The data warehouse manager is responsible both for the data warehouse

and the data staging area."

The second definition comes from Bill Inmon, Building the Data Warehouse, 1992 (Inmon,

1992)

"A data warehouse is a collection of data in support of management's decision-making

process that is subject-oriented; integrated; time-variant; and nonvolatile"

The difference between the two definitions is that Kimball believes that the data warehouse

should contain all the business intelligence endeavors and his justification is that since data is

the basis for all analysis then when designing the data system; it should be handled with a

holistic approach. On the other hand, Inmon looks at the data warehouse in a very abstract

way, as a data consolidation utility, without giving much thought and consideration about how

the enterprise may decide to the data later on. There are merits to both opinions but the

10

comparison between the two schools of thought is out of the scope of the literature review,

given that both of them agree on the design fundamentals.

3.1.1 Entity-Relationship Modeling

Entity-Relationship model is an application design technique that is used in transactional

databases. The technique is based on the idea of not repeating data and keeping only one

source of truth for every entity, a table or master table, and then references it using “foreign

keys” in other master tables that need to reference it. It is beneficial in the sense that it

enforces strict rules on inserting new records that ensures data integrity and that it is also a

space efficient since the entities’ data are stored only once. However, the relational model

itself has its own shortcomings. The biggest shortcoming of all is that the database could

easily become very complex and deep with several entities all referencing each other.

If complexity on and of itself, wouldn’t be considered a drawback, consider the effect

of this complexity on performance for large queries. Joins are considered to be the most

complicated and computationally demanding part of the relational data queries (Mishra, et al.,

1992). The second major disadvantage is the design inherent inability to record the history of

changes in the entities’ information. For example, if we have a master table “Customer” that

has an attribute “Address” if later the customer address changed the old address isn’t saved

historically. The only solution would be to add another relationship layer and separate address

as another entity and thus making the design ever more complex. The following figure

illustrates this needed transformation

11

Figure 2 Type 1- transformation [source: own]

After this transformation it would be possible to retrieve previous addresses from the

address table using CustomerKey and the AddressDetails of the current address through

CurrentCustomerAddressKey

Another problem of Entity-Relationship is that the design of the database becomes unreadable

and hard to understand or explain which later makes the process of designing complex queries

hard and error prone.

Another major disadvantage of using Entity-Relationship is that it is closer to the

programming world but rather far from the business itself (Kimball, et al., 2013). It models the

relationships between the data elements but not the context of these relations in the business

model.

 Lastly, the entity relationship model is difficult to modify since you need to break the

integrity rules and reassemble new rules and relationships or add a new relationship layer and

make it more complicated. For example, the previous transformation for the address would

require first to create the Address table with the foreign key to Customer table. Second, store

the address details from Customer table to Address table. Third, remove CustomerAddress

field from Customer table. Fourth, create a new column in Customer,

CurrentCustomerAddressKey. Lastly, fill CurrentCustomerAddressKey with the current

addresses from table Address using CustomerKey.

12

3.1.2 Dimensional Modeling

Dimensional modeling is the common terminology for the data warehouse logical design

technique. The term was coined by the Metaphor group (Kimball, et al., 2013), as opposed to

the Entity-Relationship modeling technique. This paradigm aims to eliminate the drawbacks of

the entity-relationship modeling to provide more efficient, readable and flexible alternative.

The key idea is simple, to keep the design flat. The dimensional model consists of a fact table

that has foreign keys to multiple dimension tables.

Figure 3 Dimension Model example [source: own]

13

3.1.2.1 Fact Table

Fact tables are the main heroes of the data warehouse and choosing them is usually the first

step in creating the dimension model; they contain the data that we are actually interested in

for analysis; sales, working hours, stock levels. In essence, we only need the fact table to

describe and analyze our data with minimal or no need for dimensional tables (Devlin, 1996).

Fact tables typically consist of two or more foreign keys to dimension tables and one or more

facts.

A good practice is that the facts will be additive or can be aggregated. For example,

Sales per Day as a fact described by foreign keys to product table or time tables. At the time of

choosing the facts that the design will revolve around, based on business needs of course, an

important decision regarding fact tables is to define the granularity of the fact table. In this

context, granularity is the aggregation measuring unit of the fact item in the table. For

example, are we interested in saving the sales per hour, per minute, or per day? Making this

decision is crucial for the next step in dimensional modeling, choosing the dimensions.

3.1.2.2 Dimension Table

A dimension table is used to describe one aspect about the data in the fact table. After

choosing the fact tables and their granularity, comes the time for designing the dimensions that

will describe the fact tables. While the dimension tables could be ignored for the analysis

stage, they are crucial for reporting and understanding the data in the final presentation.

Dimension tables are descriptive by nature and discreet and by acting as a single source of

truth for the dimension, the dimension tables should be complete and accurate to avoid errors

in the analysis stages and simplify querying.

Every row in a dimension table must describe only item. There exist 3 types of

dimension tables based on how the design handles change in the data aspect represented by the

dimension table (Devlin, 1996). Type-One dimension table is when the design decision for

this dimension is to ignore the history of change and only maintain the latest information

14

about the dimension. Type-Two dimension is when the design decision is to maintain history

for the items in the dimension by adding a new row that contains the new information and

specify in the appropriate columns the expiry of the old data and the activation of the new data

for this item. The following table (Table 1 Type-Two Dimension Change [source: own])

illustrates an example of a type-two change

Table 1 Type-Two Dimension Change [source: own]

RowKey RowUid RowInformation ActiveDate InactiveDate

1 1 Old Info 1/1/2001 20/2/2016

2 1 New Info 20/2/2016 31/12/9999

Important things to note from this example are that first the RowUID identifies the item and

RowKey Identifies the data row itself in order not to disturb old analysis when we add a new

record and second the ActiveDate & InactiveDate which are called the activation columns.

By default the end of the old row validity is equal, or in some systems, one time unit

less the new information active date. Last type of dimension tables is Type-Three, in this type

when the changes affect the whole table and the design decision is to add a new column to

preserve the history and reduce the redundant data. The following table (Table 2 Type-Three

Dimension Change [source: own]) reflects the previous example in the case of type-three change

Table 2 Type-Three Dimension Change [source: own]

RowKey RowUid RowInfo NewInfo ActiveDate InactiveDate

1 1 Info New Info 1/1/2001 31/12/9999

Choosing and designing the dimensions follows from the decisions taken regarding the fact

tables, especially granularity.

15

3.1.2.3 Why Dimensional Modeling?

There are many reasons to confirm that choosing the dimensional model over the entity

relationship model for the data warehouse design is the correct choice. The dimensional model

excels in the areas where that the entity- relationship model fell short. First, the dimensional

model is a comprehensible, standard framework. Writing reports, using query tools, and

designing user interfaces can all become based on strong assumptions about the dimensional

model to reflect the business interest, and to provide efficient processing. For example, since

the dimension tables are defined based on the business preferences it becomes very easy to

browse through these dimensions or read them out from the reports without the need for

double or triple joins to get to the correct sub-dimension or sub-sub-dimension.

Not only that, this sense of predictability offers great gains in processing.

It is common for business intelligence analysts to use query optimizers which are

usually based on query costs and rather ignores the semantic meaning of the underlying tables.

With dimensional modeling, on the other hand, the database engine would fixate the

dimension table and match the values using a Cartesian product operation based on the keys

(Join Processing in Relational Databases, 1992). This makes it possible to integrate all the

dimension table data in a single pass which offers a huge performance boost to the end user

and decreases the need for more computational resources. In short this predictable nature

benefits both the server and the analysts and that leads to a better presentation and

performance.

A second advantage for the dimensional model is that the star join schema offers more

ease at dealing with requirements change. The conformed dimensions stay the same and could

be reused in new facts if required. The dimensional model is that it is naturally extensible and

able to accommodate unexpected new data requirements and changes in design decisions. This

is basically possible because the dimensions are not a subject to change so if the need arises to

change the perspective of the fact table then based on that change it either go down to a basic

ALTER TABLE SQL command in place to add a column or remove another, an UPDATE

16

statement to change the granularity or by adding a new fact table with different aggregation or

granularity. It is important to note that depending on the change a data reload might be

required. For example, if the current granularity of a fact table with regards to a time

dimension is monthly and the decision is to switch back to a weekly or daily granularity.

However, in all cases, if the dimension model was correct from to begin with, it shouldn’t be

required to change the structure of the tables or break the foreign keys as it is the case with

entity-relationship model. Also, the underlying applications or reports wouldn’t be affected by

the change. Here are some common changes that occur during the data warehouse

development process:

 Adding new unanticipated facts to an existing fact table of the same granularity

which translate into an ALTER TABLE statement to add the new fact as column

and then create the ETL procedures required to fill it.

 Adding a new dimension, sometimes a new dimension emerges from observing

repetitions in fact tables and it is a good choice to consolidate it into a separate

dimension to increase data integrity and speed up reporting

 Adding new attributes to existing dimensions.

A third advantage for the dimensional model is that it uses the same language as

business analysts to represent the business data which results in better communication

regarding the implementation and the challenges along the way. Dimensional modeling also

borrows the same solutions to some of the common modeling problems like slowly changing

dimensions, heterogeneous product dimension, or many other business modeling challenges.

17

3.2 Apache Hadoop

Apache Hadoop is an open source project sponsored and maintained by the Apache

organization. The project is a framework for distributed processing of large data sets using

clusters of computers while providing a simple programming models and managing interface

(White, 2015). The design of the library has been tailored for high-availability in mind in

order to reduce the need for hardware redundancy. The library detects and handles failure at

the application layer allowing delivering a highly-available service using a cluster of machines

each of which is prone to failure. The framework is designed in a modular way to minimize

the overhead of unnecessary functionality or seamless addition of needed functionality later

on. The modules are tied together using another module, Hadoop Common. Hadoop Common

provides the common utilities that support other modules. It acts as the core of the framework

managing the interaction with the underlying operating system and file system as well as the

starting and shutting down operations.

The second module is Hadoop Distributed File System or HDFS. HDFS is the master

piece in the framework making it possible to process files in a distributed manner in the map

and reduce operations. The HDFS looks at the cluster as a whole rather than per cluster; data is

divided into smaller pieces called blocks and blocks are mapped throughout the cluster making

it possible to process smaller subsets of data on each cluster and thus utilizing the full power

of the cluster (White, 2015).

The third module is Hadoop YARN, short for Yet Another Resource Negotiator, a job

scheduling, application management and cluster resource management framework. YARN

itself is split into two main components, Resource Manager, Node Manager and Application

Master. The Resource Manager is the main authority over all the resources of the Hadoop

cluster and it controls the interaction with the clients. Node Managers are similar to the

Resource Manager but are limited in their scope of authority to a single node and they don't

interact with clients and rather report the required metrics and resources usage to the Resource

Manager. Application Masters are resource negotiators for individual applications to handle

scheduling, monitoring and progress of these applications. The following figure illustrates the

inner architecture of YARN

18

Figure 4Hadoop underlying system architecture [source: (Apache Software Foundation, 2016)]

So far Hadoop has not been used in practice as a data warehouse infrastructure. However, it

has become an industry wide advice to use Hadoop to stage the data before feeding it to the

data warehouse. One reason for this is that Hadoop is cheaper and was built for efficiency in

raw data transformation through the MapReduce processes.

19

3.2.1 YARN

YARN as a resource negotiator borrows some ideas from the common architecture of a

Server-Client. A global ResourceManager instance in this case acts as the server element and

makes decisions about dividing available resources on the requesting applications(Grover, et

al., 2015). To do this, the ResourceManager must track the nodes in the cluster and request

information about the available resources and whether the node is still available or not.

After obtaining the information about the resources the ResourceManager bears the

responsibility of making the allocation or scheduling decisions. The decision making process

is not trivial because of the multiple factors that are considered with each decision like priority

for the requesting application, maintaining data locality within the cluster if possible, access

levels and probably other user defined factors.

The second part of YARN is the NodeManager, which is very similar to the

ResouceManager but with a scope limited to a single node in the cluster. The NodeManager is

also responsible for reporting the status of the node to ResourceManger including resources

and a periodic pulse to confirm that the node is still available. The NodeManager creates

resource containers to manage and contain the information and processes utilized by every

application like CPU usage, memory usage and disk and network IO. The number of these

resource containers is dynamic and can be changed from the configuration but the resources of

the node should be considered when setting the number to avoid having the NodeManager

queuing many resource containers that each of them shares a very limited amount of CPU or

memory resources.

For every application request submitted to the ResourceManager, a smaller process is

created ApplicationMaster. This ApplicationMaster process is responsible for managing the

execution of this request and offer many utilities for the user like automatic restart of failed

requests and monitoring. The ApplicationMaster and its process are contained in a resource

container in the NodeManager. The ApplicationMaster can run any type of task inside the

20

resource container and even custome ApplicationMaster could be created following the

Apache specification. This is particularly useful because it makes YARN extensible for any

application as long as it implements an ApplicationMaster that follows the specification. This

is usually helpful with new data formats where utilizing the data itself doesn’t follow the

normal IO process like an application that would contrast X-Ray images. The

ResourceManager is responsible for determining which ApplicationMaster would be

initialized for every application request similar to how any operating system decides which

application to open a certain filetype. The specification for the ApplicationMaster is also

simple and concise (Holmes, 2014). It must send a resource request to the ResourceManager

in this request the following should be specified:

 Amount of resource like memory, disk in megabytes and CPU.

 The preferred node to maintain data locality if possible and reduce network traffic

or ‘*’ if there is no specific preference

 Priority for this request in light of other requests for the same application

The resource manager replies to this request by a container that satisfies the request

details, specified by ID and node name, and then the ApplicationMaster will ask the

NodeManager on this node to use this container to start the execution. The monitoring is

provided by the ApplicationMaster, however, the NodeManager can kill the container if it

exceeded the requested application.

 The short description of the three components of YARN is that they are abstractly the

same and act as resource managers but with different scope; ResourceManager has the full

scope of the cluster; NodeManager has the scope of a single node; ApplicationMaster has the

scope of a single application request.

21

3.2.2 Hadoop Distributed File System

Hadoop Distributed File System (HDFS) is the core of the Hadoop environment and is the

core that enables Hadoop to be efficient, reliable, flexible and cheap. In a Hadoop cluster, the

data is divided into small blocks and then these blocks are distributed across the cluster. When

the time comes for processing the data, Hadoop, specifically the MapReduce processes, are

able to process each of these blocks simultaneously and easily scaling computing across the

cluster. HDFS was built to automatically handle fault in the cluster. For example, if we have a

cluster of 100 servers and each server has 4 internal drives

HDFS will distribute the data so that the small blocks are replicated across the cluster

while automatically keep track of replicas and the status of each server through the Unit

Managers and Resource Managers. The level of redundancy can be modified on all levels; file,

server, cluster. However, the default behavior of Hadoop is that it would replicate each of the

blocks on two other servers for failure handling (Grover, et al., 2015). However, HDFS

handles replication in an extremely smart manner that makes it different from all other file

systems.

HDFS is rack and network aware and uses this information to handle data replication

such that it would cause minimal network usage or disturbance and with consideration to the

receiving node operations at the time of replication. The term block has been used to describe

the division of files in HDFS so it is important to put some emphasis on this division process.

One of the core goals for Hadoop is to host extremely large files and provide the means to use

these files and extract information from them. In doing this, HDFS divide each file to blocks,

of configurable size. The default size of a block is 64 megabytes (White, 2015).

Once the user initiates the process of creating or adding a new file on, HDFS

accumulates data from the source until it receives enough to fill a block, a block is created and

the block identifier is passed to the name node. The same process continues till all the data has

been received and assigned to blocks. The name node then takes each block writes them to

disk and decides where the replica would be placed and initiates the replication process. HDFS

also manages many other tasks that in other systems would be handled manually and would

22

require written procedures and a lot of effort. Data rebalancing is the first of these tasks.

Through the life time of the cluster it is highly probable that some sort of imbalance would

happen leaving some nodes with more data than others because of how the replication process

was handled or simply because the node has been upgraded with extra memory.

 Data integrity maintenance is a key feature for any storage system and again HDFS

manages this part of the system. During the block creation process HDFS would create

checksums for each block and store these checksums. Later the name node would use these

checksums to verify the integrity of the blocks and would automatically replace the defected

blocks using their replicas or report them to the ResourceManager.

23

3.2.3 Hive

Figure 5: HCatalog in Hadoop [source: (Leverenz, 2016)]

Another important part of the Hadoop environment is Hive. Hive is the meta-data manager for

Hadoop; it adds another layer between HDFS and the querying tools to define the data. The

equivalent to Hive in the normal Microsoft SQL based systems is the schema layer. However,

unlike Microsoft SQL, Hive schema, which is managed by a micro layer called hCatalog, is

not actually bound to the data. So at any point of time the whole catalog could be removed or

edited without any need to change the data (White, 2015). Also, most of the time, in the

Hadoop environment, creating the catalog is done after adding the data. Defining the metadata

and table-like information is a considerable amount of work but there are many benefits that

come with it. By creating a middle layer, the interaction with the data becomes much easier

and standardized which means the ability to use more querying tools like Pig and

MapReduce(Leverenz, 2016). hCatalog provides a log for what other users have created and

enable sharing the work and the results as well which is important for big teams. Finally,

hCatalog provides a REST API which means that it could be integrated within other enterprise

systems already in place and benefit from the role based access level …etc.

24

After defining this meta-data definition layer, Hive makes it possible to query the data

using SQL-Syntax. Hive then takes the SQL and converts it to a series of auto-generated

MapReduce programs to optimize the performance to run on the Hadoop cluster

3.2.4 Why Hadoop?

So why are we bother studying Hadoop as an alternative when there are so many stable

alternatives from technology giants like Microsoft, Oracle and IBM for building data

warehouse. They are even offered with the hardware or cloud hosting if it suits the user. The

answer to this question is really simple; Hadoop is cheaper, more distributable, and more

flexible.

3.2.4.1 Cheaper

The main components of any information system are software and hardware and it is not any

different for building a data warehouse. Hadoop is open source which means that the user

would not have to pay huge licensing fee and it runs on Linux which is also open source. Also,

Hadoop is hardware agnostic which means the user wouldn’t have to invest in new hardware

to start deploying Hadoop. Hadoop handles cluster failures at Application level and thus

eliminates the need for high availability and redundancy hardware. A more subtle point is that

Hadoop applies a concept known as Data Locality which implies that the data will be

processed on the same machine where it is stored, when possible, and thus decreasing the total

network overload significantly and eliminating, or even discouraging, the idea of using

network attached storage (NAS), or storage area network (SAN). The following is sample cost

comparison for 3 years for an Oracle Data Warehouse and a Hadoop Cluster that would host

300 terabytes of user data. (Oracle, 2016)

25

Table 3 Costs of Oracle Data Warehouse [source: own]

 Year 1 Year 2 Year 3 3-year total

Hardware $ 525,000

Annual Support Cost $ 63,000 $ 63,000 $ 63,000

On Site installation

Costs

$ 14,000

Total $ 602,000 $ 63,000 $ 63,000 $ 728,000

Table 4 Costs of Hadoop Data Warehouse [source: own]

 Year 1 Year 2 Year 3 3-year total

Hardware &

Networking

$ 397,000

Annual Support Cost $ 55,000 $ 55,000 $ 55,000

On Site installation

Costs

$ 15,000

Total $ 467,000 $ 55,000 $ 55,000 $ 577,000

The two tables illustrate that the cost of Hadoop is 20% less than an Oracle. However,

these numbers doesn’t illustrate the fact that the cost of adding extra storage capacity to both

data warehouses, Hadoop would be 50 times cheaper for the cost of adding 1 Terabyte.

3.2.4.2 Distributable

Hadoop can scale from a single machine to thousands and when adding new servers to the

clusters there is no need to change the original setup or reload the data. Hadoop will

26

automatically reallocate the resources making every unit an independent computing and

storage unit of its own. If the need arises to enhance the cluster by adding one or more new

servers, the new server is added to the cluster then Hadoop will start by allocating blocks of

data and then declaring readiness for processing to the master Resource Manager

3.2.4.3 Flexible

Hadoop doesn’t care about the nature of the data or file formats. Data files of all forms could

be stored and later used for analytics provided the user creates the proper MapReduce

procedures for these formats. Hadoop was originally designed just to store data in clusters. In

many cases, the need to store the data in its original format is crucial to the business need. For

example, medical data, X-rays, doctor’s notes, data gathered from sensors or other IoT device

are usually better being saved unaltered. And then using MapReduce we can develop the

queries that extract the pieces of information that are needed when they are needed without

any loss of information or needing a secondary storage to store the raw data and later

reloading the raw data with the new extraction and transformation rules.

Not only that, Hadoop doesn’t care about the underlying hardware or operating system,

which would allow the user to have as many operating systems, hardware architectures in the

cluster without any extra effort for configuration. Hadoop creates an abstraction layer that only

cares about the connectivity between the nodes and all the management would be then done

using the NodeManagers and ResourceManagers

27

4. Project Implementation

4.1 Business Requirements

As with any project, business requirements not just guide the implementation but in essence

create the need for the project as a whole. Gathering the requirements passed through many

phases to reach a proper level of specificity that guarantees accurate implementation and

meeting the actual business needs. First, general objectives were gathered from the

management to identify what are the key areas they expect enhancement as a result of

investing in the data warehouse. The main purpose behind developing the warehouse from the

business management point of view is to remove the limitations on reporting and enhance

planning through predictive reporting. As with all the first tiers the requirements were broad

and included a full vision for the whole project but not specific enough to put in motion a first

stage of implementation. As more and more refinement rounds and interviews were carried on

the following requirements were reached.

The process enabled the division of the requirements to Information requirements, analytical

requirements and technical requirements.

4.1.1 Information Requirements

Information requirements will guide the implementation on what data the date warehouse

needs to store to satisfy the business intelligence objectives. Also, collecting the information

requirements will be the basis at the later step of analyzing the current data sources and be

able to skim through to extract the most useful table and relations from these data sources.

 Client information

Client line of work, documents domain, recurrence, seasonality, documents

formats submitted and volume.

 Translator information

Language support, responsiveness, rating, availability, pricing and reliability

28

 Sales information

3 years of sales history, profitability (quote compared to translation fees,

languages and document formats delivered

4.1.2 Analytical Requirements

Analytical requirements define the business intelligence needs and while being out of our

main interest but it can provide useful directions regarding the design decisions and choosing

fact tables and granularity. The sales division and management expect the warehouse to

provide better reporting capabilities that would help them understand the existing customers’

requirements and have a way to predict and plan the work requested. They also want a better

and more pragmatic method to choose translators based on previous work delivered or in some

cases not delivered. A better and more concise formulation for these requirements is

summarized in the following analytical questions.

1. How much revenue have we generated with a specific customer or group of

customers over the last 6 months?

2. How much revenue have we generated for a specific language or group of

languages over the last 6 months?

3. How much revenue have we generated for a specific domain or a group of

domains over the last 6 months?

4. How much revenue have we generated by a translator or a group of translators

over the last 6 months?

29

5. How much profit have we made from a translator or a group of translators over

the last 6 months?

6. Do we need more translators for a certain language based on the number of

sales done for this language?

4.1.3 Technical Requirements

Technical requirements are the business directions for the implementation specifics in case the

company has some restrictions on hardware or software choices. The company’s current

infrastructure is Microsoft oriented with business licenses to Windows7, Windows Server

2012, SQL Server 2008 and Visual Studio 2013. However, it is important to note that for the

purpose of this study we will note that the company is neutral for the new data warehouse

project as long as the implementation satisfies the technical and analytical needs. The volume

of data for the aforementioned application databases is estimated to be 700 gigabytes. The

hardware resources that would be dedicated to the data warehouse project in the first stage are:

 2 x 2.6 GHz Xeon E5-2650 v2 processor (1 chip, 8 cores) with 20 MB L3

cache

 8 x 8GB (1 x 8GB) Single Rank x8 PC3L-12800R (DDR3-1600) Registered

CAS-11 Low Voltage Memory Kit

 4 x 4TB 6Gb SAS 7.2K LFF hot-plug SmartDrive SC Midline disk drive

(3.5")

 1 x ProLiant DL380p Gen8 Rackmount, 8 SFF CTO Model (2U) with no

processor, 24 DIMM, open bay (diskless) with 8 SFF drive cage, Smart Array

P420i controller with Zero Memory, 3 x PCIe 3.0 slots, 1 FlexibleLOM

connector, 4 x redundant fans, Integrated HP iLO Management Engine

 1 x HP 1GbE 4-port 331FLR Adapter

 460W Common Slot Gold Hot Plug Power Supply

30

4.2 Analyzing Data Sources

After defining the technical requirements in their final form, the next task, naturally, is to

define to analyze the current data sources. This step will be the foundation for dimensional

modeling and designing the ETL processes. The aforementioned company currently owns to

applications TDApro.com & TranslatorAdvisor.com. TDApro.com is a translation service

facilitation website that aims to act as middleman between translators and customers seeking

translations for various materials. From the interviews, it is clear that a great deal of offline

communications and operations still happens and is unaccounted for in any of the databases

but that wouldn’t affect the realization of the data warehouse objectives.

TranslatorAdvisor.com is rating and feedback service for translators, similar to

Yelp.com. Based on the business and technical requirements, some aspects of both databases

will be consolidated in the data warehouse. The consolidation required is in the areas related to

the translator ranking based on previous experiences.

4.2.1 TDApro

The TDApro database is built for project management and workflow, bidding and sales

transactions as well as capturing communications between buyers, translators and project

managers. Based on our information and analytical requirements, it becomes clear that the

focus is on the final sales transactions and the translator evaluations and we can safely ignore

the segments of the database that relates to project management and bidding and only focus on

the sales part which also includes the information about the clients and translators involved in

each transaction. In the figures below is an overview of the database in general highlighting

the segments that would be used to realize the objectives of the data warehouse. The

following figure illustrates the parts of the TDApro application database that we will

incorporate in the data warehouse.

31

Figure 5: Simplified TDApro application database [source: own]

The key things to look for while analyzing the data source are

 The deep relationships that would need to be flattened for the dimensional modeling

process

32

 The aggregation conditions, from business and technical perspective, that should be

maintained

 The elimination cases that would be used to eliminate irrelevant and redundant data

Following these three points the first issue was with the LanguagePairs table which in the

entity relationship model extends itself to another table for a Many-to-Many relationship with

the translator table and the table itself is a Many-to-Many relationship with Languages table.

To flatten this part of the model the language table will be kept in place but the LanguagePairs

and TranslatorLanguagePairs would be eliminated and replaced by six columns in the

translator dimension, two for each language pair.

The second decision will be to eliminate all the records that are generated during the

negotiation process. For example, for a single successful transaction there could be more than

five records in the bids table

4.2.2 TranslatorAdvisor

TranslatorAdvisor is a customer feedback website. Anyone who had a previous experience

with any of the translators is able to give feedback regarding this encounter and rate the

translator in various sections such as price, quality, communication and timeliness in delivery.

The main difference between TranslatorAdvisor and the feedback feature on TDApro is that

TranslatorAdvisor is not restricted to translators who are registered and agreed to work with

the company and the feedback is not related to a certain project and not limited to customers

who got translations through TDApro; it is open for all customers and all translators. For our

data warehouse, this means that a decision will have to be made about whether to include all

the translators in the warehouse or limit it to those registered on TDApro. The following figure

shows the parts of the TranslatorAdvisor application database that will be consolidated into

the warehouse.

33

4.3 Dimensional Modeling

Based on the business requirements we have confirmed and the analysis of the data sources,

the first phase of the data warehouse will focus on sales transactions and translators

evaluations. The dimensional modeling process itself would be divided into three main steps:

 Designing dimensions

 Designing fact tables

4.3.1 Naming Terminology

Choosing a naming terminology is a standard and a useful practice. It makes it even easier to

understand the dimensional model and quickens the query writing process in the future. For

our data warehouse we chose a simple yet powerful naming scheme. All table names will be

Camel Case without spaces or underscores. Dimension tables will start with the prefix Dim

and fact tables will start with the prefix Fact. For example, DimCustomer will be the table

name for the customer dimension while FactSales will be the fact table for sales.

4.3.2 Dimensions

Dimensions are the pillars for understanding the model and after designing them,

designing the fact tables becomes much easier and less confusing. Many of the design

decisions are taken while designing the dimensions so in this section, the design process and

the decisions taken will be illustrated.

34

4.3.2.1 DimGeography

The Geographical distribution of the customers have great business significance for the

company because it also defines some aspects about the nature of payment for the translators

and the customers and some other legal aspect and also, as it comes to translation, it gives

useful information about the local dialect required and the time zone for delivery deadlines

from the perspectives of customer, the translator and the project manager. The dimension has

the following attributes:

 GeographyKey: The primary key for the dimension

 City: The name of the city

 CountryCode: The iso code for the country

 CountryName: The full country name.

 PostalCode: the postal code for this geography dimension row

Figure 6: Geography Dimension [source: own]

4.3.2.2 DimCustomer

From the name, this is the dimension table for customers’ information and it will contain the

following information:

 CustomerKey: the primary key for the dimension

35

 GeographyKey: A foreign key to the customer geography dimension that stores

information that complements other attributes for contact information

 Name: The name used for customer contact during operation

 EmailAddress: The email used for customer contact during operation

 Enterprise: a Boolean indicator for whether the customer is an enterprise or an

individual account

 YearlyIncome: The last recorder annual revenue for the customer, for Enterprise

customers

 CustomerDomain: The main domain of interest for the customer gives useful

information for the translator and for the analysts

 AddressLine1 & AddressLine2: The address used for recorded billings and offline

communication

 Phone: the phone number used for communication

 DateFirstPurchase: The date of the first successful operation

Figure 7: Customer Dimension [source: own]

36

4.3.2.3 DimDate

The date dimension is one of the key parts of the dimension model because it will be

interacting with many other parts of the model and definitely with the fact tables as well. The

date dimension in our case will also define the granularity of the fact table. The following

attributes compose the dimension:

 DateKey: the primary key for the dimension table. For this table we will not use the normal or

default primary key convention of having a consequence of numbers. Instead, we will compose

the value of the primary key to reflect the date itself. In this way we guarantee that we will not

have duplicate rows for the same date. Also, if the need to add older dates that already

contained in the dimension, there would be no need to do any changes to the indexes because

the new dates would automatically be in the correct order. For example the primary key for

31/12/2001 would be 31122001.

 FullDate: The date represented by the row (31-12-2001)

 DayOfTheWeekName: The English name of the day (Sunday – Monday …etc)

 DayNumberOfTheWeek: The order of the day in the week from one to seven

 DayNumberOfTheMonth: The order of the day in the month or the first component of

the date

 DayNumberOfTheYear: The order of the day in the year from 1 – 365

 MonthName: The English name of the month (January, February ..etc)

 MonthOrder: The order of the month in the year from 1 – 12 or the second component

of the date

 Quarter: The quarter that this day lies on from 1 – 4

 Year: The year part of the date (2005 – 2006 ..ie)

It could be a bit confusing to many to see attributes like DayNumberOfTheMonth,

DayNumberOfTheYear, Quarter Or Year because they violate the normalization rules to

not include repetitive attributes and separate them in a different table..etc. However, these

attributes are required for the analysis and reporting purposes and these information must

be included so although they are a bit redundant and repetitive and some of them are

37

computable, it is a better idea to maintain the flat nature of the dimension model to keep

the performance gains of this approach.

Figure 8: Date Dimension[source: own]

4.3.2.4 DimLanguage

The language dimension is another multi-purpose dimension that is part of other dimensions

and the main fact table. It will be part of the translator dimension later and the sales fact table.

It is key in the analytical needs because it helps set many directions for the management and

sales people. This dimension and its incorporation in other dimensions and fact tables will be

critical to satisfying many of the analytical needs identified earlier. The dimension will be

composed of the following attributes:

 LanguageKey: The primary key for the dimension table

 LanguageCode: The iso code of the language (en, cs, fr … etc)

38

 LanguageName: Full language English name (French, Czech, English …etc)

Figure 9 Language Dimension [source: own]

4.3.2.5 DimTranslator

The second most important actor in the sales transaction and sales fact table as well. This

dimension would answer many of the analytical requirements and identify the business need

for recruiting more translators in a more intelligent way.

This dimension was especially tricky in design because it belongs to both data sources in a

different representation and because it had many levels of join and some decisions had to be

made to flatten these data and make the dimension follow out dimensional modeling approach.

The following is how the dimension is composed:

 TranslatorKey: The primary key for the dimension

 GeographyKey: A foreign key to the geography dimension

 NativeLanguageKey: A foreign key to the language dimension table to represent the

translator’s native language

 FirstLanguagePairFrom: A foreign key to the language dimension table to represent

the “from” part of the first language pair for this translator (ie. English -> Czech)

 FirstLanguagePairTo: A foreign key to the language dimension table to represent the

“to” part of the first language pair for this translator (ie. English -> Czech)

 SecondLanguagePairFrom: A foreign key to the language dimension table to represent

the “from” part of the second language pair for this translator

39

 SecondLanguagePairTo: A foreign key to the language dimension table to represent

the “to” part of the second language pair for this translator

 ThirdLanguagePairFrom: A foreign key to the language dimension table to represent

the “from” part of the third language pair for this translator

 ThirdLanguagePairTo: A foreign key to the language dimension table to represent the

“to” part of the third language pair for this translator

 AggregateRateTimliness:An integer value to represent the average rating for the

translator with respect to the timeliness of delivery

 AggregateRateQuality: An integer value to represent the average rating for the

translator with respect to the quality of delivery

 AggregateRatePricing: An integer value to represent the average rating for the

translator with respect to the pricing of delivery

 AggregateRateCommuincation: An integer value to represent the average rating for the

translator with respect to the communication during the process

 Active: a Boolean indicating whether this translator is still active or not.

Figure 10 Translator Dimension [source: own]

40

It is important to note here that while few translators have listed more than three language

pairs, the decision has been to limit the data warehouse columns to represent only three pairs.

It also helped to take that decision that we had related questions in the interviews with the

operations personnel and the analysis of the current data sources

4.3.3 Facts

Facts tables are the main containers of the variable data which are the main target of analysis by

default.

4.3.3.1 FactSales

The sales fact table is the center of our data warehouse, at least at this stage. It records the

most important business event. It is the pillar for analysis and answering most of the analytical

questions that were required must come across this table. The following attributes enable the

table to satisfy the expected requirements:

 SalesKey: The primary key for the fact table.

 CustomerKey: A foreign key to the customer dimension to refer to the buyer

 TranslatorKey: A foreign key to the translator dimension

 OrderDateKey: A foreign key to the date dimension to represent the date the order

started

 DeliveryDateKey: A foreign key to the date dimension to represent the date the order

was delivered

 AmountReceived: float value to represent the total amount of money received from the

customer

 AmountPaid: float value to represent the total amount of money paid to the translator

 LanguageFromKey: A foreign key to the language table to represent the original

language of the document

41

 LanguageToKey: A foreign key to the language table to represent the target language

for the document translation

 DocumentURL: The address of the document(s) subject to translation

 DeliveryURL: The address of the delivered document(s) after translation

Figure 11 Sales Fact [source: own]

Combining all the parts together to have the dimension model in Figure 12, it becomes really

clear how more understandable this model is compared to the original data sources. The

dimension model takes a star shaped schema where all the dimensions relate to the fact table.

42

Figure 12 Dimension Model [source: own]

43

4.4 ETL (Extract, Transform, Load)

After having the dimensional model in place, the next step is to move the data to the data

warehouse. Needless to say this is a very important phase in the project, for what good is any

other step if the data didn’t move to the data warehouse. Also, this step is very prone to error

and errors at this stage would cost so much time and computational resources.

4.4.1 Etraction

The first step is extracting the data from the original data sources to temporary storage.

Naturally, this would be scheduled to be executed in a time where the data sources aren’t

under heavy use, in order not to disrupt the operations. Also, keeping the data in a temporary

storage means that in case some mistake happened in the process, there would be no need to

repeat the extraction process and that we can carry on different experimentation without

disrupting the original data sources again.

There are many ways to move the data sources to the temporary storage but the easiest

on Microsoft SQL SERVER 2008 R2 is by directly copying the database from the current

server to the new server, for each database individually, using SQL Server Management

Studio SSMS (Microsoft, 2009).

1. First connect to the source server containing the databases

44

2. Right click on the first database and choose Tasks-> Copy Database,

Figure 13: SSMS menu [source: own]

45

3. After clicking Copy Database a wizard window appears to choose the source

server again and provide the login details as in Figure 14

Figure 14: Copy Database First Step [source: own]

46

4. Then choose destination server tmp_ETL and provide login details

Figure 15 Copy destination [source: own]

47

5. The next step contains an important option to keep the data source online while the

copying process is done in order not to disrupt the web applications

Figure 16 Database Online during copy [source: own]

6. After clicking finish the process will start copying the database.

The same steps would be repeated again for the TranslatorAdvisor database and then the

temporary storage is ready for the transformation phase

4.4.2 Transformation

Transformation phase is designing the process that would convert the current data sources to

match the dimensional model, to flatten the nested relationships, to aggregate the facts and

attributes, to ignore the unnecessary data…etc. The end product of this phase should be

Comma-Separated-Values (CSV) files, each of them representing a table. Microsoft SQL

Server Integration Service is the tool to be used for this task. The way it works is that the

process is divided into parts each part is called a Data Flow Task and all the tasks are

48

contained in Package or Control Flow. The package could run as a whole or for each data

flow task individually. Also, if one data flow task failed, the other tasks aren’t affected and it

could be decided what to do in case of failure; continue, stop the package or run another task

flow. SSIS gives us the option to load the transformed data directly into the Microsoft based

data warehouse but for the sake of comparing the loading performance, all data will be first

converted to CSV files

Similar to how we designed the dimensional model we wills again start with the

dimensions and this case it is important to note that we will use the keys from the data source

as the keys for the dimensions in order to facilitate the transformation process for the fact table

and make it easier as well to generate reports later.

Figure 17 Transformation using SSIS [source: own]

 In Figure 17 is the view of the package after the execution has ended. The green tick

signs indicate that the data flow task executed successfully. The green lines connecting the

data flow tasks indicates the action after the tasks was successful while the red lines indicate

49

the route after failure. In this case all the failure routes lead to an email task that would report

the error and the failure log.

4.4.3 Loading

Now that the data are exported into CSV files in the same structure as the dimensional model,

the next step is loading the data into the warehouse and make sure it is ready for use. Loading

the data into MS SQL Server is different from laoding the data into Hadoop. Also, since The

dimensional model was only implemented on MS SQL Server so far, there would be an extra

step after loading the data on Hadoop to add the Hive meta-data, which the equivalent of the

DDL, data definition layer, on MS SQL Server.

4.4.3.1 Loading on Microsoft

There are many ways to upload the data into the data warehouse using SSIS (the same tool we

used to export the data) or as usual, Microsoft provides an easy graphical interface for

importing the data into the data warehouse in easy steps

1- Right click on the data warehouse in the SSMS and choosing Import Data

50

Figure 18 Import Data [source: own]

2- Since the files are in CSV format, the data source is a Flat File Source

51

Figure 19 Loading datainto SQL Server [source: own]

3- Choose the file then check the column mappings are correct

52

Figure 20 Input file and column mappings [source: own]

4- The continues with default options and loads the data in the corresponding table

The four steps above will be repeated for the dimension tables and fact table in the same

order they are specified in the design to prevent foreign key errors

53

4.4.3.2 Loading Data On Hadoop

Loading the data into Hadoop is much simpler than on Microsoft SQL Server since

Hadoop will take the files directly. However, since, the data model isn’t yet defined; Meta data

would be defined for the tables after adding the files to HDFS, in order to make them

independent from the files. Cloudera, a company developing open source solutions that are

Hadoop based, developed a tool similar to SQL Server Management Studio (SSMS) that is

also open source and free for use. Hue allows us to manage the whole cluster and also has a

user management utility. Hue is browser based tool and through Hue graphical user interface

uploading the data files is simply done as follows:

1- After logging in with the appropriate credentials

Figure 21 Hue Login Screen [source: own]

54

2- To upload the files and for HDFS management in general we click

Figure 22 Hue file browser [source: own]

3- Just like on any file system, on HDFS the files would be placed in a newly created

directory and give it a name “warehouse”

Figure 23 Hue New directory [source: own]

4- Hive tables can only be attached to directories not files so we will create a separate

directory for each table. This also allows adding more data easily later on by just

adding the new records in separate files without the need for merging

5- The next step is to upload the files

Figure 24 Hue Upload Files [source: own]

After the files are chosen

55

Figure 25 Hue: files added into HDFS [source: own]

Now that the files are in HDFS, the next step is to define the tables in Hive and make

them point to their files respectively. The in Hive is very similar to the syntax of MySQL, both

for DDL and for querying. The dimensions could be added in any order with no restriction

regarding foreign keys as was the case with Microsoft SQL Server. In Figure 26 is the syntax

for creating the customer dimension table that refers to DimCustomer.csv file.

Figure 26 Hue: Creating a table [source: own]

There are few things to note about the syntax for creating the table:

1- The keyword external means that Hive will not copy this data file into its own folders

and will just maintain an separate layer for meta-data

56

2- The ROW FORMAT part and the FIELD TERMINATED BY parts are optional and

are usually used with text data format, as is the case now. Also, they provide the

flexibility to read different text formats like TSV, TAB, logs or other formats. Also,

Hive provides a way to define shortcuts for format specifications to eliminate

repetition and centralize changes later on.

3- The last line defines the number of rows to skip to 1 because in our files the first line

contains the column headers which is already defined in the table creation query along

with their data types. This is necessary because the table names would also violate the

data types of the columns.

To confirm that the step was executed correctly first we should check that the file still exist

in the same directory and then make sure that Hive can query the data from that file.

To query the table for a sample of 100 rows, we use a SQL-like syntax in Hive:

The result of this query is shown in Figure 27

Figure 27 Hue: Sample customer data [source: own]

SELECT * FROM dimcustomer LIMIT 100

57

Similarly, meta-data will be defined for the other tables until we have the whole

dimensional model defined similar to how it is on Microsoft. After this is done, we will try a

query that answers a one of the analytical questions. For example, this is a query to answer the

question: Which customers are from Australia

The query above joins two tables and uses a filter on one of them to return a specific set that

matches the conditions specified by the question. Hive also provides details on the

implementation plan that lead to the result. This plan could be a powerful tool for debugging

more complex queries.

Another way to process and analyze data on Hadoop is Pig which has syntax similar to

Scala but it doesn’t benefit from the meta-data for the files so the script deals with the file on

its own. This method is more suitable when the data is not structured and there is no way to

define a table-like structure for the data.

SELECT * from DimCustomer c, DimGeography g

WHERE c.geographykey = g.gegraphykey

and g.countryname = 'Australia'

58

4.5 Implementation Remarks

The implementation of the data warehouse in both technologies has been an exciting and

challenging journey. Starting from the dimensional design, it became clear how in general the

data warehouse can benefit the firm and enhance the reporting capabilities. Moving to

implementation on both technologies the differences became clear in some of the comparison

points. Based on the criterion that was specified in the methodology the following table offers

the comparison between the two technologies.

Table 5 Final Assessment [source: own]

Criteria Microsoft SQL Server Apache Hadoop

Capacity

Ideal for Small, medium and

moderately large amounts of data. Not

suitable for big data. Also can only

handle structured data

Ideal for Big Data usually more

than 10 billion data points. Great

for unstructured and unusual data

formats. However, for small data

amounts, the over head outweighs

the concurrency benefits

Loading

Performance

Loading data on SQL server is a

demanding process and requires

loading the table in specific order to

maintain foreign key constraints

Loading data on Apache Hadoop is

as simple as copying data files from

one disk to another, doesn’t require

any order for copying the data and

is only limited by the IO speed of

the underlying hardware

59

Client/Server

connectivity:

It is possible to access the data

warehouse from almost every major

tool. However, each connection takes

up resources which could lead to

connection termination if the number

of connections is too large, even if the

connection is not actually making any

data calls

Connection can be established

through a REST API which

decreases the amount of resources

needed for each open connection

and makes connecting to the data

warehouse available even from a

command prompt

Query

Performance

For the capacity range suitable for

Microsoft SQL Server, it offers

powerful performance on queries and

makes use of indexing, caching and

other tools. However, for Big Data the

performance drops.

Offers powerful querying

performance for huge amounts of

data by using concurrency and data

locality. However, for small

amounts of data the over head for

starting MapReduce jobs outweighs

the performance gains by a lot.

60

5. Conclusion

Data warehouses offer businesses great analytical abilities when the business is generating

more and more data but it also comes with a considerable investment of money, time and

human resources. So, the decision to start a data warehouse or not should first be evaluated

from a business point of view. This project had a main goal to provide a comparison between

Microsoft SQL Server and Apache Hadoop for creating data warehouses. The comparison

didn’t aim to eliminate one of the two options in favor of the other but rather uncover the

decision process when it is necessary to make that decision. To satisfy this purpose, the whole

process of creating a data warehouse was executed for the two technologies, following state of

the art design techniques and explaining the choices made for the design and implementation.

The comparison is based on:

 Capacity: the amount of data that could be loaded without affecting functionality,

 Loading the data: the ease and performance of the process

 Connectivity: the ease and versatility of connecting to the data warehouse

 Querying: the ease and performance of querying the data in the data warehouse

5.1 Apache Hadoop

Apache Hadoop as with most of the major open source projects offers an opportunity to break

free of the licensing fees, the exclusiveness within the environment to a certain company’s

chain of products. However, as with most of the open source projects as well, is still in need of

development and support to become a full replacement. Apache Hadoop is an exception of

this case because it received a lot of support from the very beginning both technical and

financial from many of the sector leaders; with companies like Google, Oracle, IBM and

Cloudera investing more and more into building a full scale environment and enhancing the

overall use of the technology.

Hadoop is extremely flexible with the data formats being added because it all goes

down as storing a file on a file system, HDFS in this case. Also, loading the data into HDFS is

61

really fast and is only limited by the read/write speed of the hard disks. Hadoop is also cheaper

and easily extensible and can handle virtually any amount of data. Querying is slower on

Hadoop when dealing with small amounts of data so the decision to use Hadoop isn’t always

the correct decision. Hadoop is cheap and many of companies started offering Hadoop on the

cloud and thus eliminating the need of a bulk investment in hardware in the beginning and the

hassle of server management.

5.2 Microsoft SQL Server

Microsoft SQL Server is a reliable and widely used database management system. Even

though it is not cheap in terms of acquisition and licensing, it is suitable for medium and big

enterprise with manageable amounts of data. Also, Microsoft provides a complete

development ecosystem and a variety of interconnected solutions like SQL Server Integration

Services SSIS, SQL Server Reporting Services SSRS and SQL Server Analytics Service

SSAS and all of these services are integrable with each other and with the other Microsoft

technologies like ASP.NET and fits really well with all of it with special components

developed by Microsoft and other third parties to make everything work together nicely

Microsoft SQL Server is suitable for structured data up to very large amounts but the

limit is much less than Hadoop. Loading the data into SQL Server is easy thanks to the

graphical wizards provided by Microsoft but again would normally be slower than HDFS

because of the foreign key checks and other insertion overhead. SQL Server is easily

connectable with almost all the major technologies and tools either using built in features or

using adapters. Querying on SQL server is done using SQL queries or stored procedures and is

highly efficient thanks to features like indices and caching.

The decision to use Apache Hadoop or Microsoft SQL Server depends on many factors

that relate to the business and the nature of data. Answering questions like: How much data is

there? Is it structured, semi-structured or unstructured data? What is the current technology

stack in use for the rest of the organization? What are the resources allocated for the data

warehouse? Answering each of these questions would be a step towards the right decision

62

References

1. DEVLIN, B. A. and MURPHY, P. T. 1988. An architecture for a business and

information system. New York : IBM, 1988, IBM Systems Journal, Vol. 27, pp. 60-

80. ISSN: 0018-8670.

2. Apache Software Foundation. 2016. Apache Hadoop YARN. Apache Hadoop.

[Online] January 16, 2016. [Cited: Febrauary 02, 2016.] . Available at:

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html.

3. BULUSU, Lakshman . 2012. Open Source Data Warehousing and Business

Intelligence. Boca Raton : CRC Press, 2012. ISBN 9781439816400.

4. BUTLER, Andrew and STRANGE, Kevin. 2002. A Data Warehouse Evaluation

Model. Stamford, USA : Gartner, 2002. pp. 1 - 4. G00109604.

5. CORR, Lawrence and STAGNITTO, Jim. 2011. Agile Data Warehouse Design:

Collaborative Dimensional Modeling, from Whiteboard to Star Schema. 1st. Leeds :

DecisionOne Press, 2011. ISBN: 0956817203.

6. DEVLIN, Barry. 1996. Data Warehouse: From Architecture to Implementation.

Dublin : Addison-Wesley Professional, 1996. ISBN: 0201964257.

7. DIJCKS, Jean-Pierre. 2014. Updated: Price Comparison for Big Data Appliance and

Hadoop. The Warehouse insider. [Online] April 03, 2014. . Available at:

https://blogs.oracle.com/datawarehousing/entry/updated_price_comparison_for_big.

8. Genomics England. 2014. The 100,000 Genomes Project. Genomics England. [Online]

UK Department of Health, July 21, 2014. [Cited: October 10, 2015.] . Available at:

http://www.genomicsengland.co.uk/the-100000-genomes-project/.

9. GROVER, Mark, et al. 2015. Hadoop Application Architectures. Sebastopol : O'Reilly

Media, 2015. ISBN: 1491900083.

10. HOLMES, Alex. 2014. Hadoop in Practice. 2nd. New York : Manning Publications,

2014. ISBN: 1617292222.

11. INMON, William H. 1992. Building the Data Warehouse. New York : John Wiley &

Sons, Inc., 1992.

12. MISHRA, Priti and Eich, Margaret H. 1992. Join Processing in Relational Databases.

Dallas : ACM Computing Surveys, 1992, Vol. 24.

63

13. KIMBALL, Ralph and Ross, Margy. 2013. The Data Warehouse Lifecycle Toolkit.

Indianapolis : John Wiley & Sons, Inc., 2013. ISBN: 1118530802.

14. KIMBALL, Ralph, Mundy, Joy and Thornthwaite, Warren. 2011. The Microsoft Data

Warehouse Toolkit. Indianapolis : Wiley Publishing, Inc., 2011. ISBN:978-1-118-

06795-6.

15. KRISHNAN, Krish. 2013. Data Warehousing in the Age of Big Data. Waltham :

Morgan Kaufmann, 2013. ISBN: 9780124058910.

16. LAM, Chuck. 2011. Hadoop in action. 1st. Greenwich : Manning Publications, 2011.

ISBN:1935182196.

17. LEVERENZ, Lefty. 2016. HCatalog: Using HCatalog. Apache Software Foundation.

[Online] January 24, 2016. . Available at:

https://cwiki.apache.org/confluence/display/Hive/HCatalog+UsingHCat.

18. MICROSOFT. 2009. Create a Full Database Backup (SQL Server). Microsoft

technical network. [Online] Microsoft, January 12, 2009. [Cited: November 12, 2015.]

. Available at: https://msdn.microsoft.com/en-us/library/ms187510(v=sql.105).aspx.

19. ORACLE. 2016. Oracle Technology Global Price List. Oracle: Software Investment

Guide. [Online] January 21, 2016. . Available at:

http://www.oracle.com/us/corporate/pricing/technology-price-list-070617.pdf.

20. SPICER, Drag, et al. 1998. Timeline of Computer History. Computer History

Meuzeum. [Online] Computer History Museum, December 2, 1998. [Cited: November

16, 2015.] . Available at: http://www.computerhistory.org/timeline/memory-storage/.

21. WHITE, Tom. 2015. Hadoop: The Definitive Guide. s.l. : O'Reilly Media, 2015.

22. YOUTUBE. 2015. Statistics. Youtube. [Online] 2015. [Cited: November 1, 2015.].

Available at: https://www.youtube.com/yt/press/statistics.html.

