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Shrnutí 

Firmy produkují stále více dat a hledají nové způsoby, jak je obchodně zhodnotit. S rostoucími 

objemy dat přichází požadavek na lepší a levnější uchovávání, které by zároveň umožňovalo 

tato data využívat. Pro tento účel se jako nejhodnější nástroj osvědčily datové sklady. Datové 

sklady ovšem představují značné personální a finanční náklady. Nabídka technologií pro 

implementování datových skladů je všestranná. Cílem tohoto projektu je komparativní 

implementace s použitím dvou technologií, konkrétně Microsoft SQL Server a Apache 

Hadoop. Tento projekt se věnuje různým fázím vytváření datového skladu; fáze určování 

požadavků; fáze návrhu a kompaktní porovnání entitně-vztahového modelování s 

dimenzionálním modelováním a proces budování dimenzionálního modelu na základě 

prostředků aplikačních dat; fáze extrahování-převádění-zavádění. Poté jsou obě technologie 

porovnány z hlediska kapacity dat, načítání dat, připojení a dotazování dat. Ze závěrů tohoto 

projektu vyplývá, že při výběru mezi systémy Microsoft SQL Server a Apache Hadoop je 

třeba vycházet z potřeb, prostředků a stávajícího ekosystému. Systém Hadoop je vhodný pro 

větší objemy dat, pro nestrukturované nebo nepravidelné formáty dat a pro případ, že rozpočet 

nepočítá s licenčními poplatky. Na druhou stranu systém Microsoft SQL Server je vhodnou 

volbou pro strukturovaná data, když jsou známy očekávané objemy dat a když je zbývající 

část ekosystému založena na produktech Microsoft. Další fáze tohoto projektu by měly být 

věnovány novým způsobům efektivnějšího využití systému Hadoop pro menší objemy dat, 

jako jsou Impala a Spark.. 
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Abstract 

Data is being produced by the firms in ever increasing rates and firms are finding new ways to 

make use of data to create business value. The generated volumes of data create the need for 

better and cheaper storage options that allows utilizing the data as well. Data warehouses have 

emerged as the most appropriate tool for this task. However, data warehouses come with 

significant costs both human and financial. The pool of technologies for implementing data 

warehouses is versatile. This project aims to provide a comparative implementation using two 

of the technologies, namely, Microsoft SQL Server and Apache Hadoop. The project covers 

the different phases of building a data warehouse; the requirements specification phase; the 

design phase and a compact comparison between the entity-relation and dimensional modeling 

design techniques and the process of building a dimensional model based on based on the 

application data sources; the extract-transform-load phase. The comparison is then made 

between the two technologies for data capacity, data loading, connectivity and querying data. 

The project concludes that the decision to choose between Microsoft SQL Server and Apache 

Hadoop isn’t a recommendation for one over the other but should be based on the needs, 

resources and the existing ecosystem. Hadoop would be the choice for bigger amounts of data, 

unstructured or irregular data formats, and when the licensing fees are an unaffordable cost. 

On the other hand, Microsoft SQL Server would make a better choice when the data is 

structured, the anticipated data volumes are suitable and when the rest of ecosystem is 

Microsoft based. Future development for this project should cover new ways to make Hadoop 

more efficient with smaller data volumes like Impala and Spark. 
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HDFS 
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1. Introduction  

1.1 Storing Data 

Humans have been collecting data in various forms since the dawn of history even before 

constituting formal writing rules. Samarians and Ancient Egyptians collected data about 

astronomy, agriculture and their life events in the form of drawings on the walls of their 

temples, tombs and temples and later papyrus. Then we moved to hand writing and then 

printing all the way to the computer age. The amount of data produced has naturally been 

positively correlated with the ease and speed of the data creation process. Writing a book used 

to be a several years task and later making copies of this book wasn’t a trivial task as well but 

as we move to a more digital world we generate data at unprecedented rates and in a very 

diverse variety of forms.  

 

For example, the amount of data on Youtube is estimated to hundreds of millions of 

hours (Youtube, 2015), Instagram contains billions of images; Google search engine holds 

records for an ever-growing number of web pages and their content. Even on an individual 

scale, we now tend to take more pictures with our phones and digital cameras, write more in 

forms of emails, blog posts or personal websites and store other sorts of professional 

manuscripts or architectural designs in digital formats. Another striking example is medical 

research where acquiring data is an expensive process and data comes in huge chunks so 

accurately storing data is at the core of the research endeavor. For example, data from a single 

genome sequence is about 200GB (Genomics England, 2014). Data has evolved as one of the 

most important assets for many businesses, research centers, governments and universities. 

Data is used to build models to evaluate performance, make plans for the future, develop new 

products, and decide where to build stores along with many other uses. 

1.2 Data warehouses 

Storing digital data has passed through various stages from mercury delayed storage moving 

to different kind of magnetic techniques. The noticeable development is in the capacity and 
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decrease in the cost of storage. Just 50 years ago IBM rented a computer that can store 2 

million digits for 850$/month (Spicer, et al., 1998). Now, for the same amount of money you 

can buy a computer that is millions of times faster and bigger in storage capacity while being 

smaller in size and more power efficient. Data warehouses are the de-facto technology for 

storing large magnitudes of data for enterprises or for research facilities.  

 

A data warehouse is in essence a relational database designed for more efficient 

querying and analysis of data rather than transactional integrity.  As the name suggests a data 

warehouse will aggregate all the data from different sources. This aggregation process would 

be referred to as ETL or Extract-Transfer-Load process; Extracting the data from the sources; 

Transforming the data to match the data warehouse design; Loading the data into the 

warehouse to be ready for further use.  

 

The process of designing and implementing a data warehouse is highly structured and 

of great importance. This is mainly due to the fact that data warehouses are naturally 

developed to allow for better decision making in the organization and decision are a usually 

taken at the highest level of the organization and in many cases would reflect considerable 

results, gains or losses. The interpretation of the term Data Warehouse itself varies widely 

across the literature. However, in this paper, we will follow the Ralph Kimball understanding 

of data warehouses, dimensional design and end-to-end role in business intelligence.  

 

In the literature review section, this understanding will be covered in enough depth and 

contrasted to the other philosophy from Bill Inmon (Inmon, 1992). The process of 

implementing a data warehouse goes through many phases to ensure correct and efficient 

implementation. The process starts by collecting the requirements or objectives from the data 

warehouse as a business intelligence facilitation tool then moves to dimensional modeling then 

physical design then the design of ETL processes and finally actual implementation on the 

selected infrastructure. The following diagram gives a better visualization of the process that 

will be implemented for this project 
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Figure 1: Data Warehouse Design Cycle [source: own] 

 

1.3 The difference between a data warehouse and a database 

It is a common mistake to confuse databases with data warehouses since they are both used to 

store data and since many don’t get the chance to deal with data warehouses in the course of 

their digital experience and others consider a data warehouse just a big database or 

consolidation of multiple databases or data sources. There many noticeable differences that 

relates to: 

 The different purposes of databases and data warehouses. 

  The scale of operation.  

 The design fundamentals.  

Business 
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1.3.1 The purpose 

 

Databases are the functional unit of almost all the modern digital products it is used to store 

transactional information regarding the use of the application, the content of the application or 

the business rules that applies on different cases. In contrary, a data warehouse serves a 

different purpose that follows from operation. Data warehouses store and consolidate the data 

across all sources to serve a unified analytical or operational purpose whether to provide 

decision support, customer segmentation, or performance analysis.  

1.3.2 The scale of operation 

 

In theory, a database is capable of performing all the tasks of a data warehouse but in 

practicality this becomes highly inefficient and computationally costly as the data grow larger 

because both reading and writing operations are much slower because of the relational nature 

of the database and the need to execute multiple tables joins.  Also, a database is usually 

dedicated to a single application but a data warehouse can consolidate several databases each 

of them serving a different application.  

1.3.3 The design fundamentals 

 

The most fundamental difference is that databases hold records of transactions or operations 

while data warehouses hold data about a subject. For example, for an ecommerce organization, 

the database will contain detailed records about the transactions done by the users while the 

data warehouse will focus on a subject like sales and hold records in fact tables with different 

granularity (eg. Sales per hour, Sales per age group, or sales store). Also, the data in a 

warehouse wouldn’t be stored in the third normal form for more efficient querying but in the 

database the 3
rd

 normal form would be used to guarantee data integrity. 
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1.4 Introducing the business 

The target company is Translatus s.r.o which is a Czech company based and operating in 

Prague with offices in Germany, Dubai and China. The company started in 2001 as a pioneer 

in the online freelancing facilitation with a focus on a niche business sector, translation. The 

company operates under two main web applications. 

 

The first application is a bidding system for translation services along with a project 

workflow system that allows the customers, translators to manage the project from start to 

finish. The business model is to get companies or individuals, welling to get translations for 

their documents, business advertising or any other type of content, to upload their files and 

then allow translators to offer their services in a competitive manner. Transactions for the 

purpose are on many sides: bidding, quotes, payment and as part of the design practice we will 

choose the subject of the data warehouse to be only payment or the final transaction on 

different dimensions like language pairs, months, translators and clients.  

 

The second application is a community application to write reviews on translators 

based on previous experiences, similar to Yelp but specific to translators. The translator’s is 

rated in general and according to four criterions: quality, price, timeliness and communication. 

Suspicious or malicious reviews are verified by contacting the reviewer and asking for more 

details about the work done with the translator to verify the review is real. Reviewers are free 

to detail experiences of working with a certain translator, as long as it is kept professional and 

about the work done without getting into personal rants. In certain cases, the translator would 

be contacted for more details about the work referenced in the review. The reason to do this is 

to guarantee the authenticity of these reviews and that they are reliable enough to be the base 

for future dealings with the translator. 
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2. Thesis Objective and methodology 

2.1 Objective 

 

The objective of this thesis is to provide a comparison between Apache Hadoop and Microsoft 

SQL in the perspective of building a data warehouse and evaluating the two solutions through 

the application of a set of metrics (Butler, et al., 2002). Although, the implementations will be 

based on a specific example, the metrics chosen are generic to allow for a general evaluation 

of the two technology infrastructures. More specifically, the metrics chosen are   

 Capacity: Data warehouse are intended to host all data and more. In transactional 

databases it is usually the case that we ignore the history of changes in the most tables 

to avoid adding more layers, relationships and joins. In the data warehouse we want to 

record everything for future purposes so the intention is to host large and ever growing 

amounts of data. Capacity, as in the limits for physical storage, is a preliminary 

measure because if the implementation wouldn’t be able to support real life capacity it 

would be automatically ruled out in practice 

 

 Loading and indexing performance: Loading data is the first step in application after 

the system design is complete and logical design of the data warehouse is implemented 

on Microsoft SQL Server or on Apache Hadoop. It is a key metric since it defines the 

usability of the whole implementation because it is unreasonable to use a system that is 

notably slow at this stage. Even though this an important metric for the system, if a 

system will be more efficient after this step it could still be favorable for other features 

since this step is usually done once in the lifetime of the system 

 

 Client/Server connectivity: This metric answers the question of future integrability 

into a complete business intelligence eco system. This is important because it defines 

the usability and flexibility of using the system. It is important to understand that 

building the data warehouse is not the purpose; it is just a step in the way of building a 
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complete data intelligence ecosystem that provides value to the business and as 

mentioned earlier, one of the main advantages of the data warehouse design is that it 

facilitates analysis. As such, it is important that the underlying infrastructure that holds 

the data be flexible enough to allow the use of a diversity of tools by default be it open 

source of proprietary for the same vendor or for other vendors. 

 

 

 Query processing performance: Now that we have measured the quality of the 

system in loading the data of the capacity that would be suitable for our needs and 

made sure that we will be able to use the data warehouse and connect to it from a 

variety of tools and analysis clients. This metric is what the end users will experience 

on a daily basis and this defines the efficiency of the system in analytical and reporting 

uses. For the breadth of the uses that satisfy the business needs, the data warehouse 

would be responsive enough. 

 

2.2 Methodology 

 

The study will also illustrate the different steps in the data warehouse design and 

implementation, staging, running and utilization for each of the two technologies. The study 

will begin by a literature review for the main subjects that were encountered in the planning, 

design and implementation of the data warehouse. Then, the study moves identifying the 

business requirements and formulating the end product as defined by the business. Next step is 

analyzing the data sources for the data intended for hosting in the data warehouse. After that, 

the study shows building the conceptual data model all the way to a physical data model for 

the data warehouse. Then the study will dedicate separate sections for the actual 

implementation of the data warehouse in each of the technologies to highlight the differences 

in implementation, ETL and utilization. The final step would be comparing the two data 

warehouses and offering recommendations based on the aforementioned metrics 
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3. Literature Review 
 

Database design is one of the oldest and most stable paradigms of computer science. Concepts 

like normalization and entity relations have been carved in stone. However,  the same cannot 

be said about data warehouses and Hadoop since they are, compared to database design, are 

new concepts with Hadoop Project being just 10 years old but it wasn't widely adopted until a 

couple of years later when Google announced that it would sponsor the project through the 

Apache foundation. This literature review will explore the current state of the art in the two 

subjects which will help plan and implement the data warehouse in the two technologies. 

3.1 Data Warehousing 

The literature on data warehousing is in slightly more abundance than it is the case for Hadoop 

and it is for an obvious reason. While being a byproduct of databases, data warehousing 

received more attention early. Some date the concept back to the sixties but the first real 

product to offer the data warehouse architecture was introduced by Devlin and Murphy at IBM 

in 1988 (Devlin, et al., 1988). This article provided the closes vision to a data warehouse as is 

perceived now. Those two paragraphs from the article echoes to a great extent the view that is 

adopted in this project 

“The transaction-processing environment in which companies maintain their 

operational databases was the original target for computerization and is now well 

understood. On the other hand, access to company information on a large scale by an 

end user for reporting and data analysis is relatively new. Within IBM, the 

computerization of informational systems is progressing, driven by business needs and 

by the availability of improved tools for accessing the company data.” 

This excerpt shows the motive for developing data warehouses. With transactional data 

piling up, the reporting and analysis functionalities were suffering from all the relational 

complexities put on by the normalization rules. Also, the need for consolidated data reporting 

was harder to achieve across multiple data sources as the authors specifically made a note of 

that being the case for IBM itself at the time 
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“It is now apparent that architecture is needed to draw together the various strands of 

informational system activity within the company. IBM Europe, Middle East, and 

Africa (E/ME/A) has adopted an architecture called the E/ME/A Business Information 

System (EBIS) architecture as the strategic direction for informational systems. EBIS 

proposes an integrated warehouse of company data based firmly in the relational 

database environment. End-user access to this warehouse is simplified by a consistent 

set of tools provided by an end-user interface and supported by a business data 

directory that describes the information available in user terms.”  

The definition of a data warehouse has been subject to minor disagreement between 

Bill Inmon and Ralph Kimball, two of the most prominent experts on the topic. The 

disagreement is not about the core functionality of the data warehouse but rather about the 

scope of its perimeter. In his famous book The Data Warehouse Lifecycle Toolkit (Kimball, et 

al., 2013), Ralph Kimball specifically define a data warehouse as follows: 

"The queryable source of data in the enterprise. The data warehouse is nothing more 

than the union of all the constituent data marts. A data warehouse is fed from the data 

staging area. The data warehouse manager is responsible both for the data warehouse 

and the data staging area." 

The second definition comes from Bill Inmon, Building the Data Warehouse, 1992 (Inmon, 

1992) 

"A data warehouse is a collection of data in support of management's decision-making 

process that is subject-oriented; integrated; time-variant; and nonvolatile" 

The difference between the two definitions is that Kimball believes that the data warehouse 

should contain all the business intelligence endeavors and his justification is that since data is 

the basis for all analysis then when designing the data system; it should be handled with a 

holistic approach. On the other hand, Inmon looks at the data warehouse in a very abstract 

way, as a data consolidation utility, without giving much thought and consideration about how 

the enterprise may decide to the data later on. There are merits to both opinions but the 
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comparison between the two schools of thought is out of the scope of the literature review, 

given that both of them agree on the design fundamentals.  

 

3.1.1 Entity-Relationship Modeling 

 

Entity-Relationship model is an application design technique that is used in transactional 

databases. The technique is based on the idea of not repeating data and keeping only one 

source of truth for every entity, a table or master table, and then references it using “foreign 

keys” in other master tables that need to reference it. It is beneficial in the sense that it 

enforces strict rules on inserting new records that ensures data integrity and that it is also a 

space efficient since the entities’ data are stored only once. However, the relational model 

itself has its own shortcomings. The biggest shortcoming of all is that the database could 

easily become very complex and deep with several entities all referencing each other.  

If complexity on and of itself, wouldn’t be considered a drawback, consider the effect 

of this complexity on performance for large queries. Joins are considered to be the most 

complicated and computationally demanding part of the relational data queries (Mishra, et al., 

1992). The second major disadvantage is the design inherent inability to record the history of 

changes in the entities’ information. For example, if we have a master table “Customer” that 

has an attribute “Address” if later the customer address changed the old address isn’t saved 

historically. The only solution would be to add another relationship layer and separate address 

as another entity and thus making the design ever more complex. The following figure 

illustrates this needed transformation 
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Figure 2 Type 1- transformation [source: own] 

 

After this transformation it would be possible to retrieve previous addresses from the 

address table using CustomerKey and the AddressDetails of the current address through 

CurrentCustomerAddressKey 

Another problem of Entity-Relationship is that the design of the database becomes unreadable 

and hard to understand or explain which later makes the process of designing complex queries 

hard and error prone. 

Another major disadvantage of using Entity-Relationship is that it is closer to the 

programming world but rather far from the business itself (Kimball, et al., 2013). It models the 

relationships between the data elements but not the context of these relations in the business 

model. 

 Lastly, the entity relationship model is difficult to modify since you need to break the 

integrity rules and reassemble new rules and relationships or add a new relationship layer and 

make it more complicated.  For example, the previous transformation for the address would 

require first to create the Address table with the foreign key to Customer table. Second, store 

the address details from Customer table to Address table. Third, remove CustomerAddress 

field from Customer table. Fourth, create a new column in Customer, 

CurrentCustomerAddressKey. Lastly, fill CurrentCustomerAddressKey with the current 

addresses from table Address using CustomerKey.  
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3.1.2 Dimensional Modeling 

 

Dimensional modeling is the common terminology for the data warehouse logical design 

technique. The term was coined by the Metaphor group (Kimball, et al., 2013), as opposed to 

the Entity-Relationship modeling technique. This paradigm aims to eliminate the drawbacks of 

the entity-relationship modeling to provide more efficient, readable and flexible alternative. 

The key idea is simple, to keep the design flat. The dimensional model consists of a fact table 

that has foreign keys to multiple dimension tables.  

 

Figure 3 Dimension Model example [source: own] 
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3.1.2.1 Fact Table 

 

Fact tables are the main heroes of the data warehouse and choosing them is usually the first 

step in creating the dimension model; they contain the data that we are actually interested in 

for analysis; sales, working hours, stock levels. In essence, we only need the fact table to 

describe and analyze our data with minimal or no need for dimensional tables (Devlin, 1996). 

Fact tables typically consist of two or more foreign keys to dimension tables and one or more 

facts.  

A good practice is that the facts will be additive or can be aggregated. For example, 

Sales per Day as a fact described by foreign keys to product table or time tables. At the time of 

choosing the facts that the design will revolve around, based on business needs of course, an 

important decision regarding fact tables is to define the granularity of the fact table. In this 

context, granularity is the aggregation measuring unit of the fact item in the table. For 

example, are we interested in saving the sales per hour, per minute, or per day? Making this 

decision is crucial for the next step in dimensional modeling, choosing the dimensions.  

3.1.2.2 Dimension Table 

 

A dimension table is used to describe one aspect about the data in the fact table. After 

choosing the fact tables and their granularity, comes the time for designing the dimensions that 

will describe the fact tables. While the dimension tables could be ignored for the analysis 

stage, they are crucial for reporting and understanding the data in the final presentation. 

Dimension tables are descriptive by nature and discreet and by acting as a single source of 

truth for the dimension, the dimension tables should be complete and accurate to avoid errors 

in the analysis stages and simplify querying.  

Every row in a dimension table must describe only item. There exist 3 types of 

dimension tables based on how the design handles change in the data aspect represented by the 

dimension table (Devlin, 1996). Type-One dimension table is when the design decision for 

this dimension is to ignore the history of change and only maintain the latest information 
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about the dimension. Type-Two dimension is when the design decision is to maintain history 

for the items in the dimension by adding a new row that contains the new information and 

specify in the appropriate columns the expiry of the old data and the activation of the new data 

for this item. The following table (Table 1 Type-Two Dimension Change [source: own])  

illustrates an example of a type-two change 

Table 1 Type-Two Dimension Change [source: own] 

RowKey RowUid RowInformation ActiveDate InactiveDate 

1 1 Old Info 1/1/2001 20/2/2016 

2 1 New Info 20/2/2016 31/12/9999 

 

Important things to note from this example are that first the RowUID identifies the item and 

RowKey Identifies the data row itself in order not to disturb old analysis when we add a new 

record and second the ActiveDate & InactiveDate which are called the activation columns.  

By default the end of the old row validity is equal, or in some systems, one time unit 

less the new information active date. Last type of dimension tables is Type-Three, in this type 

when the changes affect the whole table and the design decision is to add a new column to 

preserve the history and reduce the redundant data. The following table ( Table 2 Type-Three 

Dimension Change [source: own]) reflects the previous example in the case of type-three change 

Table 2 Type-Three Dimension Change [source: own] 

RowKey RowUid RowInfo NewInfo ActiveDate InactiveDate 

1 1 Info New Info 1/1/2001 31/12/9999 

 

Choosing and designing the dimensions follows from the decisions taken regarding the fact 

tables, especially granularity. 
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3.1.2.3 Why Dimensional Modeling? 

 

There are many reasons to confirm that choosing the dimensional model over the entity 

relationship model for the data warehouse design is the correct choice. The dimensional model 

excels in the areas where that the entity- relationship model fell short. First, the dimensional 

model is a comprehensible, standard framework. Writing reports, using query tools, and 

designing user interfaces can all become based on strong assumptions about the dimensional 

model to reflect the business interest, and to provide efficient processing. For example, since 

the dimension tables are defined based on the business preferences it becomes very easy to 

browse through these dimensions or read them out from the reports without the need for 

double or triple joins to get to the correct sub-dimension or sub-sub-dimension. 

Not only that, this sense of predictability offers great gains in processing.  

 

It is common for business intelligence analysts to use query optimizers which are 

usually based on query costs and rather ignores the semantic meaning of the underlying tables.  

With dimensional modeling, on the other hand, the database engine would fixate the 

dimension table and match the values using a Cartesian product operation based on the keys 

(Join Processing in Relational Databases, 1992). This makes it possible to integrate all the 

dimension table data in a single pass which offers a huge performance boost to the end user 

and decreases the need for more computational resources. In short this predictable nature 

benefits both the server and the analysts and that leads to a better presentation and 

performance. 

 

A second advantage for the dimensional model is that the star join schema offers more 

ease at dealing with requirements change. The conformed dimensions stay the same and could 

be reused in new facts if required. The dimensional model is that it is naturally extensible and 

able to accommodate unexpected new data requirements and changes in design decisions. This 

is basically possible because the dimensions are not a subject to change so if the need arises to 

change the perspective of the fact table then based on that change it either go down to a basic 

ALTER TABLE SQL command in place to add a column or remove another, an UPDATE 



16 
 

statement to change the granularity or by adding a new fact table with different aggregation or 

granularity. It is important to note that depending on the change a data reload might be 

required. For example, if the current granularity of a fact table with regards to a time 

dimension is monthly and the decision is to switch back to a weekly or daily granularity. 

However, in all cases, if the dimension model was correct from to begin with, it shouldn’t be 

required to change the structure of the tables or break the foreign keys as it is the case with 

entity-relationship model. Also, the underlying applications or reports wouldn’t be affected by 

the change. Here are some common changes that occur during the data warehouse 

development process: 

 

 Adding new unanticipated facts to an existing fact table of the same granularity 

which translate into an ALTER TABLE statement to add the new fact as column 

and then create the ETL procedures required to fill it. 

 

 Adding a new dimension, sometimes a new dimension emerges from observing 

repetitions in fact tables and it is a good choice to consolidate it into a separate 

dimension to increase data integrity and speed up reporting 

 

 Adding new attributes to existing dimensions.  

 

A third advantage for the dimensional model is that it uses the same language as 

business analysts to represent the business data which results in better communication 

regarding the implementation and the challenges along the way. Dimensional modeling also 

borrows the same solutions to some of the common modeling problems like slowly changing 

dimensions, heterogeneous product dimension, or many other business modeling challenges. 
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3.2 Apache Hadoop 

 

Apache Hadoop is an open source project sponsored and maintained by the Apache 

organization. The project is a framework for distributed processing of large data sets using 

clusters of computers while providing a simple programming models and managing interface 

(White, 2015). The design of the library has been tailored for high-availability in mind in 

order to reduce the need for hardware redundancy. The library detects and handles failure at 

the application layer allowing delivering a highly-available service using a cluster of machines 

each of which is prone to failure. The framework is designed in a modular way to minimize 

the overhead of unnecessary functionality or seamless addition of needed functionality later 

on. The modules are tied together using another module, Hadoop Common. Hadoop Common 

provides the common utilities that support other modules. It acts as the core of the framework 

managing the interaction with the underlying operating system and file system as well as the 

starting and shutting down operations.  

The second module is Hadoop Distributed File System or HDFS. HDFS is the master 

piece in the framework making it possible to process files in a distributed manner in the map 

and reduce operations. The HDFS looks at the cluster as a whole rather than per cluster; data is 

divided into smaller pieces called blocks and blocks are mapped throughout the cluster making 

it possible to process smaller subsets of data on each cluster and thus utilizing the full power 

of the cluster (White, 2015).  

The third module is Hadoop YARN, short for Yet Another Resource Negotiator, a job 

scheduling, application management and cluster resource management framework. YARN 

itself is split into two main components, Resource Manager, Node Manager and Application 

Master. The Resource Manager is the main authority over all the resources of the Hadoop 

cluster and it controls the interaction with the clients. Node Managers are similar to the 

Resource Manager but are limited in their scope of authority to a single node and they don't 

interact with clients and rather report the required metrics and resources usage to the Resource 

Manager. Application Masters are resource negotiators for individual applications to handle 

scheduling, monitoring and progress of these applications. The following figure illustrates the 

inner architecture of YARN 
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Figure 4Hadoop underlying system architecture [source: (Apache Software Foundation, 2016)] 

 

So far Hadoop has not been used in practice as a data warehouse infrastructure. However, it 

has become an industry wide advice to use Hadoop to stage the data before feeding it to the 

data warehouse. One reason for this is that Hadoop is cheaper and was built for efficiency in 

raw data transformation through the MapReduce processes. 

 

 

 

 

 

 

 



19 
 

3.2.1 YARN 

 

YARN as a resource negotiator borrows some ideas from the common architecture of a 

Server-Client. A global ResourceManager instance in this case acts as the server element and 

makes decisions about dividing available resources on the requesting applications(Grover, et 

al., 2015). To do this, the ResourceManager must track the nodes in the cluster and request 

information about the available resources and whether the node is still available or not.  

 

After obtaining the information about the resources the ResourceManager bears the 

responsibility of making the allocation or scheduling decisions. The decision making process 

is not trivial because of the multiple factors that are considered with each decision like priority 

for the requesting application, maintaining data locality within the cluster if possible, access 

levels and probably other user defined factors.  

 

The second part of YARN is the NodeManager, which is very similar to the 

ResouceManager but with a scope limited to a single node in the cluster. The NodeManager is 

also responsible for reporting the status of the node to ResourceManger including resources 

and a periodic pulse to confirm that the node is still available. The NodeManager creates 

resource containers to manage and contain the information and processes utilized by every 

application like CPU usage, memory usage and disk and network IO. The number of these 

resource containers is dynamic and can be changed from the configuration but the resources of 

the node should be considered when setting the number to avoid having the NodeManager 

queuing many resource containers that each of them shares a very limited amount of CPU or 

memory resources. 

 

For every application request submitted to the ResourceManager, a smaller process is 

created ApplicationMaster. This ApplicationMaster process is responsible for managing the 

execution of this request and offer many utilities for the user like automatic restart of failed 

requests and monitoring. The ApplicationMaster and its process are contained in a resource 

container in the NodeManager. The ApplicationMaster can run any type of task inside the 
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resource container and even custome ApplicationMaster could be created following the 

Apache specification. This is particularly useful because it makes YARN extensible for any 

application as long as it implements an ApplicationMaster that follows the specification. This 

is usually helpful with new data formats where utilizing the data itself doesn’t follow the 

normal IO process like an application that would contrast X-Ray images. The 

ResourceManager is responsible for determining which ApplicationMaster would be 

initialized for every application request similar to how any operating system decides which 

application to open a certain filetype. The specification for the ApplicationMaster is also 

simple and concise (Holmes, 2014). It must send a resource request to the ResourceManager 

in this request the following should be specified: 

 Amount of resource like memory, disk in megabytes and CPU. 

 The preferred node to maintain data locality if possible and reduce network traffic 

or ‘*’ if there is no specific preference 

 Priority for this request in light of other requests for the same application 

 

The resource manager replies to this request by a container that satisfies the request 

details, specified by ID and node name, and then the ApplicationMaster will ask the 

NodeManager on this node to use this container to start the execution. The monitoring is 

provided by the ApplicationMaster, however, the NodeManager can kill the container if it 

exceeded the requested application.  

 

 The short description of the three components of YARN is that they are abstractly the 

same and act as resource managers but with different scope; ResourceManager has the full 

scope of the cluster; NodeManager has the scope of a single node; ApplicationMaster has the 

scope of a single application request. 
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3.2.2 Hadoop Distributed File System 

 

Hadoop Distributed File System (HDFS) is the core of the Hadoop environment and is the 

core that enables Hadoop to be efficient, reliable, flexible and cheap. In a Hadoop cluster, the 

data is divided into small blocks and then these blocks are distributed across the cluster. When 

the time comes for processing the data, Hadoop, specifically the MapReduce processes, are 

able to process each of these blocks simultaneously and easily scaling computing across the 

cluster. HDFS was built to automatically handle fault in the cluster. For example, if we have a 

cluster of 100 servers and each server has 4 internal drives  

HDFS will distribute the data so that the small blocks are replicated across the cluster 

while automatically keep track of replicas and the status of each server through the Unit 

Managers and Resource Managers. The level of redundancy can be modified on all levels; file, 

server, cluster. However, the default behavior of Hadoop is that it would replicate each of the 

blocks on two other servers for failure handling (Grover, et al., 2015).  However, HDFS 

handles replication in an extremely smart manner that makes it different from all other file 

systems.  

HDFS is rack and network aware and uses this information to handle data replication 

such that it would cause minimal network usage or disturbance and with consideration to the 

receiving node operations at the time of replication. The term block has been used to describe 

the division of files in HDFS so it is important to put some emphasis on this division process. 

One of the core goals for Hadoop is to host extremely large files and provide the means to use 

these files and extract information from them. In doing this, HDFS divide each file to blocks, 

of configurable size. The default size of a block is 64 megabytes (White, 2015).  

Once the user initiates the process of creating or adding a new file on, HDFS 

accumulates data from the source until it receives enough to fill a block, a block is created and 

the block identifier is passed to the name node. The same process continues till all the data has 

been received and assigned to blocks. The name node then takes each block writes them to 

disk and decides where the replica would be placed and initiates the replication process. HDFS 

also manages many other tasks that in other systems would be handled manually and would 
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require written procedures and a lot of effort. Data rebalancing is the first of these tasks. 

Through the life time of the cluster it is highly probable that some sort of imbalance would 

happen leaving some nodes with more data than others because of how the replication process 

was handled or simply because the node has been upgraded with extra memory. 

 Data integrity maintenance is a key feature for any storage system and again HDFS 

manages this part of the system. During the block creation process HDFS would create 

checksums for each block and store these checksums. Later the name node would use these 

checksums to verify the integrity of the blocks and would automatically replace the defected 

blocks using their replicas or report them to the ResourceManager. 
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3.2.3 Hive 

 

 

Figure 5:  HCatalog in Hadoop [source: (Leverenz, 2016) ] 

Another important part of the Hadoop environment is Hive. Hive is the meta-data manager for 

Hadoop; it adds another layer between HDFS and the querying tools to define the data. The 

equivalent to Hive in the normal Microsoft SQL based systems is the schema layer. However, 

unlike Microsoft SQL, Hive schema, which is managed by a micro layer called hCatalog, is 

not actually bound to the data. So at any point of time the whole catalog could be removed or 

edited without any need to change the data (White, 2015). Also, most of the time, in the 

Hadoop environment, creating the catalog is done after adding the data. Defining the metadata 

and table-like information is a considerable amount of work but there are many benefits that 

come with it. By creating a middle layer, the interaction with the data becomes much easier 

and standardized which means the ability to use more querying tools like Pig and 

MapReduce(Leverenz, 2016). hCatalog provides a log for what other users have created and 

enable sharing the work and the results as well which is important for big teams. Finally, 

hCatalog provides a REST API which means that it could be integrated within other enterprise 

systems already in place and benefit from the role based access level …etc.  
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After defining this meta-data definition layer, Hive makes it possible to query the data 

using SQL-Syntax. Hive then takes the SQL and converts it to a series of auto-generated 

MapReduce programs to optimize the performance to run on the Hadoop cluster 

 

3.2.4 Why Hadoop? 

 

So why are we bother studying Hadoop as an alternative when there are so many stable 

alternatives from technology giants like Microsoft, Oracle and IBM for building data 

warehouse. They are even offered with the hardware or cloud hosting if it suits the user. The 

answer to this question is really simple; Hadoop is cheaper, more distributable, and more 

flexible. 

3.2.4.1 Cheaper 

 

The main components of any information system are software and hardware and it is not any 

different for building a data warehouse. Hadoop is open source which means that the user 

would not have to pay huge licensing fee and it runs on Linux which is also open source. Also, 

Hadoop is hardware agnostic which means the user wouldn’t have to invest in new hardware 

to start deploying Hadoop. Hadoop handles cluster failures at Application level and thus 

eliminates the need for high availability and redundancy hardware. A more subtle point is that 

Hadoop applies a concept known as Data Locality which implies that the data will be 

processed on the same machine where it is stored, when possible, and thus decreasing the total 

network overload significantly and eliminating, or even discouraging, the idea of using 

network attached storage (NAS), or storage area network (SAN). The following is sample cost 

comparison for 3 years for an Oracle Data Warehouse and a Hadoop Cluster that would host 

300 terabytes of user data. (Oracle, 2016) 
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Table 3 Costs of Oracle Data Warehouse [source: own] 

 Year 1 Year 2 Year 3 3-year total 

Hardware $ 525,000    

Annual Support Cost $ 63,000 $ 63,000 $ 63,000  

On Site installation 

Costs 

$ 14,000    

Total $ 602,000 $ 63,000 $ 63,000 $ 728,000 

 

Table 4 Costs of Hadoop Data Warehouse [source: own] 

 Year 1 Year 2 Year 3 3-year total 

Hardware & 

Networking 

$ 397,000    

Annual Support Cost $ 55,000 $ 55,000 $ 55,000  

On Site installation 

Costs 

$ 15,000    

Total $ 467,000 $ 55,000 $ 55,000 $ 577,000 

 

The two tables illustrate that the cost of Hadoop is 20% less than an Oracle. However, 

these numbers doesn’t illustrate the fact that the cost of adding extra storage capacity to both 

data warehouses, Hadoop would be 50 times cheaper for the cost of adding 1 Terabyte.  

3.2.4.2 Distributable 

 

Hadoop can scale from a single machine to thousands and when adding new servers to the 

clusters there is no need to change the original setup or reload the data. Hadoop will 
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automatically reallocate the resources making every unit an independent computing and 

storage unit of its own. If the need arises to enhance the cluster by adding one or more new 

servers, the new server is added to the cluster then Hadoop will start by allocating blocks of 

data and then declaring readiness for processing to the master Resource Manager 

3.2.4.3 Flexible 

 

Hadoop doesn’t care about the nature of the data or file formats. Data files of all forms could 

be stored and later used for analytics provided the user creates the proper MapReduce 

procedures for these formats.  Hadoop was originally designed just to store data in clusters. In 

many cases, the need to store the data in its original format is crucial to the business need. For 

example, medical data, X-rays, doctor’s notes, data gathered from sensors or other IoT device 

are usually better being saved unaltered. And then using MapReduce we can develop the 

queries that extract the pieces of information that are needed when they are needed without 

any loss of information or needing a secondary storage to store the raw data and later 

reloading the raw data with the new extraction and transformation rules.  

Not only that, Hadoop doesn’t care about the underlying hardware or operating system, 

which would allow the user to have as many operating systems, hardware architectures in the 

cluster without any extra effort for configuration. Hadoop creates an abstraction layer that only 

cares about the connectivity between the nodes and all the management would be then done 

using the NodeManagers and ResourceManagers 
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4. Project Implementation 

4.1 Business Requirements 

 

As with any project, business requirements not just guide the implementation but in essence 

create the need for the project as a whole. Gathering the requirements passed through many 

phases to reach a proper level of specificity that guarantees accurate implementation and 

meeting the actual business needs. First, general objectives were gathered from the 

management to identify what are the key areas they expect enhancement as a result of 

investing in the data warehouse.  The main purpose behind developing the warehouse from the 

business management point of view is to remove the limitations on reporting and enhance 

planning through predictive reporting. As with all the first tiers the requirements were broad 

and included a full vision for the whole project but not specific enough to put in motion a first 

stage of implementation. As more and more refinement rounds and interviews were carried on 

the following requirements were reached.  

The process enabled the division of the requirements to Information requirements, analytical 

requirements and technical requirements. 

4.1.1 Information Requirements 

 

Information requirements will guide the implementation on what data the date warehouse 

needs to store to satisfy the business intelligence objectives. Also, collecting the information 

requirements will be the basis at the later step of analyzing the current data sources and be 

able to skim through to extract the most useful table and relations from these data sources.  

 Client information 

Client line of work, documents domain, recurrence, seasonality, documents 

formats submitted and volume. 

 

 Translator information 

Language support, responsiveness, rating, availability, pricing and reliability  
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 Sales information 

3 years of sales history, profitability (quote compared to translation fees, 

languages and document formats delivered 

 

 

4.1.2 Analytical Requirements 

 

Analytical requirements define the business intelligence needs and while being out of our 

main interest but it can provide useful directions regarding the design decisions and choosing 

fact tables and granularity. The sales division and management expect the warehouse to 

provide better reporting capabilities that would help them understand the existing customers’ 

requirements and have a way to predict and plan the work requested. They also want a better 

and more pragmatic method to choose translators based on previous work delivered or in some 

cases not delivered. A better and more concise formulation for these requirements is 

summarized in the following analytical questions.  

 

1. How much revenue have we generated with a specific customer or group of 

customers over the last 6 months? 

 

2. How much revenue have we generated for a specific language or group of 

languages over the last 6 months? 

 

 

3. How much revenue have we generated for a specific domain or a group of 

domains over the last 6 months? 

4. How much revenue have we generated by a translator or a group of translators 

over the last 6 months? 
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5. How much profit have we made from a translator or a group of translators over 

the last 6 months? 

 

 

6. Do we need more translators for a certain language based on the number of 

sales done for this language? 

 

 

4.1.3 Technical Requirements 

 

Technical requirements are the business directions for the implementation specifics in case the 

company has some restrictions on hardware or software choices. The company’s current 

infrastructure is Microsoft oriented with business licenses to Windows7, Windows Server 

2012, SQL Server 2008 and Visual Studio 2013. However, it is important to note that for the 

purpose of this study we will note that the company is neutral for the new data warehouse 

project as long as the implementation satisfies the technical and analytical needs. The volume 

of data for the aforementioned application databases is estimated to be 700 gigabytes. The 

hardware resources that would be dedicated to the data warehouse project in the first stage are: 

 2 x 2.6 GHz Xeon E5-2650 v2 processor (1 chip, 8 cores) with 20 MB L3 

cache  

 8 x  8GB (1 x 8GB) Single Rank x8 PC3L-12800R (DDR3-1600) Registered 

CAS-11 Low Voltage Memory Kit 

 4 x 4TB 6Gb SAS 7.2K LFF hot-plug SmartDrive SC Midline disk drive 

(3.5")  

 1 x ProLiant DL380p Gen8 Rackmount, 8 SFF CTO Model (2U) with no 

processor, 24 DIMM, open bay (diskless) with 8 SFF drive cage, Smart Array 

P420i controller with Zero Memory, 3 x PCIe 3.0 slots, 1 FlexibleLOM 

connector, 4 x redundant fans, Integrated HP iLO Management Engine 

 1 x HP 1GbE 4-port 331FLR Adapter 

 460W Common Slot Gold Hot Plug Power Supply 
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4.2 Analyzing Data Sources 

 

After defining the technical requirements in their final form, the next task, naturally, is to 

define to analyze the current data sources. This step will be the foundation for dimensional 

modeling and designing the ETL processes. The aforementioned company currently owns to 

applications TDApro.com & TranslatorAdvisor.com. TDApro.com is a translation service 

facilitation website that aims to act as middleman between translators and customers seeking 

translations for various materials. From the interviews, it is clear that a great deal of offline 

communications and operations still happens and is unaccounted for in any of the databases 

but that wouldn’t affect the realization of the data warehouse objectives.  

TranslatorAdvisor.com is rating and feedback service for translators, similar to 

Yelp.com. Based on the business and technical requirements, some aspects of both databases 

will be consolidated in the data warehouse. The consolidation required is in the areas related to 

the translator ranking based on previous experiences. 

4.2.1 TDApro 

 

The TDApro database is built for project management and workflow, bidding and sales 

transactions as well as capturing communications between buyers, translators and project 

managers. Based on our information and analytical requirements, it becomes clear that the 

focus is on the final sales transactions and the translator evaluations and we can safely ignore 

the segments of the database that relates to project management and bidding and only focus on 

the sales part which also includes the information about the clients and translators involved in 

each transaction. In the figures below is an overview of the database in general highlighting 

the segments that would be used to realize the objectives of the data warehouse.  The 

following figure illustrates the parts of the TDApro application database that we will 

incorporate in the data warehouse.  
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Figure 5: Simplified TDApro application database [source: own] 

 

The key things to look for while analyzing the data source are 

 The deep relationships that  would need to be flattened for the dimensional modeling 

process 
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 The aggregation conditions, from business and technical perspective, that should be 

maintained 

 The elimination cases that would be used to eliminate irrelevant and redundant data  

Following these three points the first issue was with the LanguagePairs table which in the 

entity relationship model extends itself to another table for a Many-to-Many relationship with 

the translator table and the table itself is a Many-to-Many relationship with Languages table. 

To flatten this part of the model the language table will be kept in place but the LanguagePairs 

and TranslatorLanguagePairs would be eliminated and replaced by six columns in the 

translator dimension, two for each language pair.  

The second decision will be to eliminate all the records that are generated during the 

negotiation process. For example, for a single successful transaction there could be more than 

five records in the bids table  

4.2.2 TranslatorAdvisor 

 

TranslatorAdvisor is a customer feedback website. Anyone who had a previous experience 

with any of the translators is able to give feedback regarding this encounter and rate the 

translator in various sections such as price, quality, communication and timeliness in delivery. 

The main difference between TranslatorAdvisor and the feedback feature on TDApro is that 

TranslatorAdvisor is not restricted to translators who are registered and agreed to work with 

the company and the feedback is not related to a certain project and not limited to customers 

who got translations through TDApro; it is open for all customers and all translators. For our 

data warehouse, this means that a decision will have to be made about whether to include all 

the translators in the warehouse or limit it to those registered on TDApro. The following figure 

shows the parts of the TranslatorAdvisor application database that will be consolidated into 

the warehouse. 
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4.3 Dimensional Modeling 

 

Based on the business requirements we have confirmed and the analysis of the data sources, 

the first phase of the data warehouse will focus on sales transactions and translators 

evaluations. The dimensional modeling process itself would be divided into three main steps: 

 Designing dimensions 

 Designing fact tables 

4.3.1 Naming Terminology 

 

Choosing a naming terminology is a standard and a useful practice. It makes it even easier to 

understand the dimensional model and quickens the query writing process in the future. For 

our data warehouse we chose a simple yet powerful naming scheme. All table names will be 

Camel Case without spaces or underscores. Dimension tables will start with the prefix Dim 

and fact tables will start with the prefix Fact.  For example, DimCustomer will be the table 

name for the customer dimension while FactSales will be the fact table for sales.  

 

4.3.2 Dimensions 

 

Dimensions are the pillars for understanding the model and after designing them, 

designing the fact tables becomes much easier and less confusing. Many of the design 

decisions are taken while designing the dimensions so in this section, the design process and 

the decisions taken will be illustrated. 
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4.3.2.1 DimGeography 

 

The Geographical distribution of the customers have great business significance for the 

company because it also defines some aspects about the nature of payment for the translators 

and the customers and some other legal aspect and also, as it comes to translation, it gives 

useful information about the local dialect required and the time zone for delivery deadlines 

from the perspectives of customer, the translator and the project manager. The dimension has 

the following attributes: 

 GeographyKey: The primary key for the dimension 

 City: The name of the city 

 CountryCode: The iso code for the country 

 CountryName: The full country name. 

 PostalCode: the postal code for this geography dimension row 

   

Figure 6:  Geography Dimension [source: own] 

 

4.3.2.2 DimCustomer  

 

From the name, this is the dimension table for customers’ information and it will contain the 

following information: 

 CustomerKey: the primary key for the dimension 
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 GeographyKey: A foreign key to the customer geography dimension that stores 

information that complements other attributes for contact information 

 Name: The name used for customer contact during operation 

 EmailAddress: The email used for customer contact during operation 

 Enterprise: a Boolean indicator for whether the customer is an enterprise or an 

individual account 

 YearlyIncome: The last recorder annual revenue for the customer, for Enterprise 

customers 

 CustomerDomain: The main domain of interest for the customer gives useful 

information for the translator and for the analysts 

 AddressLine1 & AddressLine2: The address used for recorded billings and offline 

communication 

 Phone: the phone number used for communication 

 DateFirstPurchase: The date of the first successful operation  

 

 

Figure 7: Customer Dimension [source: own] 
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4.3.2.3 DimDate 

 

The date dimension is one of the key parts of the dimension model because it will be 

interacting with many other parts of the model and definitely with the fact tables as well. The 

date dimension in our case will also define the granularity of the fact table. The following 

attributes compose the dimension: 

 DateKey: the primary key for the dimension table. For this table we will not use the normal or 

default primary key convention of having a consequence of numbers. Instead, we will compose 

the value of the primary key to reflect the date itself. In this way we guarantee that we will not 

have duplicate rows for the same date. Also, if the need to add older dates that already 

contained in the dimension, there would be no need to do any changes to the indexes because 

the new dates would automatically be in the correct order. For example the primary key for 

31/12/2001 would be 31122001.  

 FullDate: The date represented by the row (31-12-2001) 

 DayOfTheWeekName:  The English name of the day (Sunday – Monday …etc) 

 DayNumberOfTheWeek: The order of the day in the week from one to seven 

 DayNumberOfTheMonth: The order of the day in the month or the first component of 

the date 

 DayNumberOfTheYear: The order of the day in the year from 1 – 365 

 MonthName: The English name of the month (January, February ..etc) 

 MonthOrder: The order of the month in the year from 1 – 12 or the second component 

of the date 

 Quarter: The quarter that this day lies on from 1 – 4 

 Year: The year part of the date (2005 – 2006 ..ie) 

It could be a bit confusing to many to see attributes like DayNumberOfTheMonth, 

DayNumberOfTheYear, Quarter Or Year because they violate the normalization rules to 

not include repetitive attributes and separate them in a different table..etc. However, these 

attributes are required for the analysis and reporting purposes and these information must 

be included so although they are a bit redundant and repetitive and some of them are 
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computable, it is a better idea to maintain the flat nature of the dimension model to keep 

the performance gains of this approach. 

 

    

Figure 8: Date Dimension[source: own] 

 

4.3.2.4 DimLanguage 

 

The language dimension is another multi-purpose dimension that is part of other dimensions 

and the main fact table. It will be part of the translator dimension later and the sales fact table. 

It is key in the analytical needs because it helps set many directions for the management and 

sales people. This dimension and its incorporation in other dimensions and fact tables will be 

critical to satisfying many of the analytical needs identified earlier. The dimension will be 

composed of the following attributes: 

 LanguageKey: The primary key for the dimension table 

 LanguageCode: The iso code of the language (en, cs, fr … etc) 
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 LanguageName: Full language English name (French, Czech, English …etc) 

 

Figure 9 Language Dimension [source: own] 

  

4.3.2.5 DimTranslator 

 

The second most important actor in the sales transaction and sales fact table as well. This 

dimension would answer many of the analytical requirements and identify the business need 

for recruiting more translators in a more intelligent way.  

This dimension was especially tricky in design because it belongs to both data sources in a 

different representation and because it had many levels of join and some decisions had to be 

made to flatten these data and make the dimension follow out dimensional modeling approach. 

The following is how the dimension is composed: 

 TranslatorKey: The primary key for the dimension 

 GeographyKey: A foreign key to the geography dimension 

 NativeLanguageKey: A foreign key to the language dimension table to represent the 

translator’s native language 

 FirstLanguagePairFrom: A foreign key to the language dimension table to represent 

the “from” part of the first language pair for this translator (ie. English -> Czech) 

 FirstLanguagePairTo: A foreign key to the language dimension table to represent the 

“to” part of the first language pair for this translator (ie. English -> Czech) 

 SecondLanguagePairFrom: A foreign key to the language dimension table to represent 

the “from” part of the second language pair for this translator  
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 SecondLanguagePairTo: A foreign key to the language dimension table to represent 

the “to” part of the second language pair for this translator  

 ThirdLanguagePairFrom: A foreign key to the language dimension table to represent 

the “from” part of the third language pair for this translator  

 ThirdLanguagePairTo: A foreign key to the language dimension table to represent the 

“to” part of the third language pair for this translator  

 AggregateRateTimliness:An integer value to represent the average rating for the 

translator with respect to the timeliness of delivery 

 AggregateRateQuality: An integer value to represent the average rating for the 

translator with respect to the quality of delivery 

 AggregateRatePricing: An integer value to represent the average rating for the 

translator with respect to the pricing of delivery 

 AggregateRateCommuincation: An integer value to represent the average rating for the 

translator with respect to the communication during the process 

 Active: a Boolean indicating whether this translator is still active or not. 

 

Figure 10 Translator Dimension [source: own] 
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It is important to note here that while few translators have listed more than three language 

pairs, the decision has been to limit the data warehouse columns to represent only three pairs. 

It also helped to take that decision that we had related questions in the interviews with the 

operations personnel and the analysis of the current data sources 

 

4.3.3 Facts 

 

Facts tables are the main containers of the variable data which are the main target of analysis by 

default. 

4.3.3.1 FactSales 

 

The sales fact table is the center of our data warehouse, at least at this stage. It records the 

most important business event. It is the pillar for analysis and answering most of the analytical 

questions that were required must come across this table. The following attributes enable the 

table to satisfy the expected requirements: 

 SalesKey: The primary key for the fact table.  

 CustomerKey: A foreign key to the customer dimension to refer to the buyer 

 TranslatorKey: A foreign key to the translator dimension  

 OrderDateKey: A foreign key to the date dimension to represent the date the order 

started 

 DeliveryDateKey: A foreign key to the date dimension to represent the date the order 

was delivered 

 AmountReceived: float value to represent the total amount of money received from the 

customer 

 AmountPaid: float value to represent the total amount of money paid to the translator 

 LanguageFromKey: A foreign key to the language table to represent the original 

language of the document 
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 LanguageToKey: A foreign key to the language table to represent the target language 

for the document translation 

 DocumentURL: The address of the document(s) subject to translation 

 DeliveryURL: The address of the delivered document(s) after translation 

 

Figure 11 Sales Fact [source: own] 

 

Combining all the parts together to have the dimension model in Figure 12, it becomes really 

clear how more understandable this model is compared to the original data sources. The 

dimension model takes a star shaped schema where all the dimensions relate to the fact table. 
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Figure 12 Dimension Model [source: own] 
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4.4 ETL (Extract, Transform, Load) 

 

After having the dimensional model in place, the next step is to move the data to the data 

warehouse. Needless to say this is a very important phase in the project, for what good is any 

other step if the data didn’t move to the data warehouse. Also, this step is very prone to error 

and errors at this stage would cost so much time and computational resources.  

4.4.1 Etraction 

 

The first step is extracting the data from the original data sources to temporary storage. 

Naturally, this would be scheduled to be executed in a time where the data sources aren’t 

under heavy use, in order not to disrupt the operations. Also, keeping the data in a temporary 

storage means that in case some mistake happened in the process, there would be no need to 

repeat the extraction process and that we can carry on different experimentation without 

disrupting the original data sources again.  

There are many ways to move the data sources to the temporary storage but the easiest 

on Microsoft SQL SERVER 2008 R2 is by directly copying the database from the current 

server to the new server, for each database individually, using SQL Server Management 

Studio SSMS (Microsoft, 2009).  

1. First connect to the source server containing the databases  
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2. Right click on the first database and choose Tasks-> Copy Database, 

 

Figure 13: SSMS menu [source: own] 
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3. After clicking Copy Database  a wizard window appears to choose the source 

server again and provide the login details as in Figure 14 

 

Figure 14: Copy Database First Step [source: own] 
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4. Then choose destination server tmp_ETL  and provide login details

 

Figure 15 Copy destination [source: own] 
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5. The next step contains an important option to keep the data source online while the 

copying process is done in order not to disrupt the web applications 

 

Figure 16 Database Online during copy [source: own] 

6. After clicking finish the process will start copying the database. 

The same steps would be repeated again for the TranslatorAdvisor database and then the 

temporary storage is ready for the transformation phase 

 

4.4.2 Transformation 

 

Transformation phase is designing the process that would convert the current data sources to 

match the dimensional model, to flatten the nested relationships, to aggregate the facts and 

attributes, to ignore the unnecessary data…etc. The end product of this phase should be 

Comma-Separated-Values (CSV) files, each of them representing a table. Microsoft SQL 

Server Integration Service is the tool to be used for this task. The way it works is that the 

process is divided into parts each part is called a Data Flow Task and all the tasks are 
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contained in Package or Control Flow. The package could run as a whole or for each data 

flow task individually. Also, if one data flow task failed, the other tasks aren’t affected and it 

could be decided what to do in case of failure; continue, stop the package or run another task 

flow. SSIS gives us the option to load the transformed data directly into the Microsoft based 

data warehouse but for the sake of comparing the loading performance, all data will be first 

converted to CSV files 

Similar to how we designed the dimensional model we wills again start with the 

dimensions and this case it is important to note that we will use the keys from the data source 

as the keys for the dimensions in order to facilitate the transformation process for the fact table 

and make it easier as well to generate reports later. 

 

Figure 17 Transformation using SSIS [source: own] 

  

 In Figure 17 is the view of the package after the execution has ended. The green tick 

signs indicate that the data flow task executed successfully. The green lines connecting the 

data flow tasks indicates the action after the tasks was successful while the red lines indicate 
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the route after failure. In this case all the failure routes lead to an email task that would report 

the error and the failure log. 

 

4.4.3 Loading 

 

Now that the data are exported into CSV files in the same structure as the dimensional model, 

the next step is loading the data into the warehouse and make sure it is ready for use. Loading 

the data into MS SQL Server is different from laoding the data into Hadoop. Also, since The 

dimensional model was only implemented on MS SQL Server so far, there would be an extra 

step after loading the data on Hadoop to add the Hive meta-data, which the equivalent of the 

DDL, data definition layer, on MS SQL Server. 

4.4.3.1 Loading on Microsoft 

 

There are many ways to upload the data into the data warehouse using SSIS (the same tool we 

used to export the data) or as usual, Microsoft provides an easy graphical interface for 

importing the data into the data warehouse in easy steps  

1- Right click on the data warehouse in the SSMS  and choosing Import Data 
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Figure 18 Import Data [source: own] 

 

2- Since the files are in CSV format, the data source is a Flat File Source 
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Figure 19 Loading datainto SQL Server [source: own] 

  

  

3- Choose the file then check the column mappings are correct 
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Figure 20 Input file and column mappings [source: own] 

  

4- The continues with default options and loads the data in the corresponding table 

The four steps above will be repeated for the dimension tables and fact table in the same 

order they are specified in the design to prevent foreign key errors 

 



53 
 

4.4.3.2 Loading Data On Hadoop 

 

Loading the data into Hadoop is much simpler than on Microsoft SQL Server since 

Hadoop will take the files directly. However, since, the data model isn’t yet defined; Meta data 

would be defined for the tables after adding the files to HDFS, in order to make them 

independent from the files. Cloudera, a company developing open source solutions that are 

Hadoop based, developed a tool similar to SQL Server Management Studio (SSMS) that is 

also open source and free for use. Hue allows us to manage the whole cluster and also has a 

user management utility. Hue is browser based tool and through Hue graphical user interface 

uploading the data files is simply done as follows: 

1- After logging in with the appropriate credentials 

 

 

Figure 21 Hue Login Screen [source: own] 
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2- To upload the files and for HDFS management in general we click   

 

Figure 22 Hue file browser [source: own] 

3- Just like on any file system, on HDFS the files would be placed in a newly created 

directory and give it a name “warehouse”  

 

Figure 23 Hue New directory [source: own] 

4- Hive tables can only be attached to directories not files so we will create a separate 

directory for each table. This also allows adding more data easily later on by just 

adding the new records in separate files without the need for merging  

 

5- The next step is to upload the files  

 

Figure 24 Hue Upload Files [source: own] 

After the files are chosen  
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Figure 25 Hue: files added into HDFS [source: own] 

 

Now that the files are in HDFS, the next step is to define the tables in Hive and make 

them point to their files respectively. The in Hive is very similar to the syntax of MySQL, both 

for DDL and for querying. The dimensions could be added in any order with no restriction 

regarding foreign keys as was the case with Microsoft SQL Server. In Figure 26 is the syntax 

for creating the customer dimension table that refers to DimCustomer.csv file. 

 

Figure 26 Hue: Creating a table [source: own] 

There are few things to note about the syntax for creating the table: 

1- The keyword external means that Hive will not copy this data file into its own folders 

and will just maintain an separate layer for meta-data 
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2- The ROW FORMAT part and the FIELD TERMINATED BY parts are optional and 

are usually used with text data format, as is the case now. Also, they provide the 

flexibility to read different text formats like TSV, TAB, logs or other formats. Also, 

Hive provides a way to define shortcuts for format specifications to eliminate 

repetition and centralize changes later on. 

3- The last line defines the number of rows to skip to 1 because in our files the first line 

contains the column headers which is already defined in the table creation query along 

with their data types. This is necessary because the table names would also violate the 

data types of the columns. 

To confirm that the step was executed correctly first we should check that the file still exist 

in the same directory and then make sure that Hive can query the data from that file. 

To query the table for a sample of 100 rows, we use a SQL-like syntax in Hive:  

 

 

The result of this query is shown in Figure 27 

 

Figure 27 Hue: Sample customer data [source: own] 

 

SELECT * FROM dimcustomer LIMIT 100 
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Similarly, meta-data will be defined for the other tables until we have the whole 

dimensional model defined similar to how it is on Microsoft. After this is done, we will try a 

query that answers a one of the analytical questions. For example, this is a query to answer the 

question: Which customers are from Australia 

 

 

 

 

The query above joins two tables and uses a filter on one of them to return a specific set that 

matches the conditions specified by the question. Hive also provides details on the 

implementation plan that lead to the result. This plan could be a powerful tool for debugging 

more complex queries. 

Another way to process and analyze data on Hadoop is Pig which has syntax similar to 

Scala but it doesn’t benefit from the meta-data for the files so the script deals with the file on 

its own. This method is more suitable when the data is not structured and there is no way to 

define a table-like structure for the data.  

 

 

 

 

 

 

 

 

SELECT * from DimCustomer c, DimGeography g  

 

WHERE c.geographykey = g.gegraphykey 

and g.countryname = 'Australia' 
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4.5 Implementation Remarks 

 

The implementation of the data warehouse in both technologies has been an exciting and 

challenging journey. Starting from the dimensional design, it became clear how in general the 

data warehouse can benefit the firm and enhance the reporting capabilities. Moving to 

implementation on both technologies the differences became clear in some of the comparison 

points. Based on the criterion that was specified in the methodology the following table offers 

the comparison between the two technologies. 

 

Table 5 Final Assessment [source: own] 

Criteria Microsoft SQL Server Apache Hadoop 

Capacity  

Ideal for Small, medium and 

moderately large amounts of data. Not 

suitable for big data. Also can only 

handle structured data 

 

Ideal for Big Data usually more 

than 10 billion data points. Great 

for unstructured and unusual data 

formats. However, for small data 

amounts, the over head outweighs 

the concurrency benefits  

 

Loading 

Performance 

 

Loading data on SQL server is a 

demanding process and requires 

loading the table in specific order to 

maintain foreign key constraints 

 

Loading data on Apache Hadoop is 

as simple as copying data files from 

one disk to another, doesn’t require 

any order for copying the data and 

is only limited by the IO speed of 

the underlying hardware  
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Client/Server 

connectivity: 

 

It is possible to access the data 

warehouse from almost every major 

tool. However, each connection takes 

up resources which could lead to 

connection termination if the number 

of connections is too large, even if the 

connection is not actually making any 

data calls 

 

 

Connection can be established 

through a REST API which 

decreases the amount of resources 

needed for each open connection 

and makes connecting to the data 

warehouse available even from a 

command prompt 

 

Query 

Performance 

 

For the capacity range suitable for 

Microsoft SQL Server, it offers 

powerful performance on queries and 

makes use of indexing, caching and 

other tools. However, for Big Data the 

performance drops. 

 

 

Offers powerful querying 

performance for huge amounts of 

data by using concurrency and data 

locality. However, for small 

amounts of data the over head for 

starting MapReduce jobs outweighs 

the performance gains by a lot. 

 

 

 

 

 

 

 

 

 

 



60 
 

5. Conclusion 
 

Data warehouses offer businesses great analytical abilities when the business is generating 

more and more data but it also comes with a considerable investment of money, time and 

human resources. So, the decision to start a data warehouse or not should first be evaluated 

from a business point of view. This project had a main goal to provide a comparison between 

Microsoft SQL Server and Apache Hadoop for creating data warehouses. The comparison 

didn’t aim to eliminate one of the two options in favor of the other but rather uncover the 

decision process when it is necessary to make that decision. To satisfy this purpose, the whole 

process of creating a data warehouse was executed for the two technologies, following state of 

the art design techniques and explaining the choices made for the design and implementation. 

The comparison is based on:  

 Capacity: the amount of data that could be loaded without affecting functionality, 

  Loading the data: the ease and performance of the process 

 Connectivity: the ease and versatility of connecting to the data warehouse 

 Querying: the ease and performance of querying the data in the data warehouse 

5.1 Apache Hadoop 

 

Apache Hadoop as with most of the major open source projects offers an opportunity to break 

free of the licensing fees, the exclusiveness within the environment to a certain company’s 

chain of products. However, as with most of the open source projects as well, is still in need of 

development and support to become a full replacement.  Apache Hadoop is an exception of 

this case because it received a lot of support from the very beginning both technical and 

financial from many of the sector leaders; with companies like Google, Oracle, IBM and 

Cloudera investing more and more into building a full scale environment and enhancing the 

overall use of the technology.  

Hadoop is extremely flexible with the data formats being added because it all goes 

down as storing a file on a file system, HDFS in this case. Also, loading the data into HDFS is 
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really fast and is only limited by the read/write speed of the hard disks. Hadoop is also cheaper 

and easily extensible and can handle virtually any amount of data. Querying is slower on 

Hadoop when dealing with small amounts of data so the decision to use Hadoop isn’t always 

the correct decision. Hadoop is cheap and many of companies started offering Hadoop on the 

cloud and thus eliminating the need of a bulk investment in hardware in the beginning and the 

hassle of server management. 

5.2 Microsoft SQL Server 

 

Microsoft SQL Server is a reliable and widely used database management system. Even 

though it is not cheap in terms of acquisition and licensing, it is suitable for medium and big 

enterprise with manageable amounts of data. Also, Microsoft provides a complete 

development ecosystem and a variety of interconnected solutions like SQL Server Integration 

Services SSIS, SQL Server Reporting Services SSRS and SQL Server Analytics Service 

SSAS and all of these services are integrable with each other and with the other Microsoft 

technologies like ASP.NET and fits really well with all of it with special components 

developed by Microsoft and other third parties to make everything work together nicely 

Microsoft SQL Server is suitable for structured data up to very large amounts but the 

limit is much less than Hadoop. Loading the data into SQL Server is easy thanks to the 

graphical wizards provided by Microsoft but again would normally be slower than HDFS 

because of the foreign key checks and other insertion overhead. SQL Server is easily 

connectable with almost all the major technologies and tools either using built in features or 

using adapters. Querying on SQL server is done using SQL queries or stored procedures and is 

highly efficient thanks to features like indices and caching.  

The decision to use Apache Hadoop or Microsoft SQL Server depends on many factors 

that relate to the business and the nature of data. Answering questions like:  How much data is 

there? Is it structured, semi-structured or unstructured data? What is the current technology 

stack in use for the rest of the organization? What are the resources allocated for the data 

warehouse? Answering each of these questions would be a step towards the right decision 
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