
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

REDUCINGSIZEOFNONDETERMINISTICAUTOMATA
WITH SAT SOLVERS
REDUKCE VELIKOSTI KONEČNÝCH AUTOMATŮ POMOCÍ SAT SOLVERU

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MICHAL ŠEDÝ
AUTOR PRÁCE

SUPERVISOR Mgr. LUKÁŠ HOLÍK, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021



Brno University of Technology
Faculty of Information Technology

 Department of Intelligent Systems (DITS) Academic year 2020/2021

 Bachelor's Thesis Specification

Student: Šedý Michal
Programme: Information Technology
Title: Reducing Size of Nondeterministic Automata with SAT Solvers
Category: Algorithms and Data Structures
Assignment:
In this work, we will attempt to develop new methods for reducing size of non-deterministic finite
automata that go beyond existing techniques based on merging simulation equivalent states.

1. Study the principles of simulation based size reduction of automata, familiarize yourself with
SAT/SMT solving.

2. Investigate new means of reducing size of automata. Start from optimizing simple "confluent"
parts of the automaton (sub-graphs with single source and single target state and several
states in the middle) based on optimization of the sum of products, preferably using
SAT/SMT solvers.

3. Based on your research, propose a new technique of automata size reduction.
4. Implement the proposed technique and evaluate its reduction capabilities respective to

known reduction techniques.
Recommended literature:

Lorenzo Clemente, Richard Mayr:Efficient reduction of nondeterministic automata with
application to language inclusion testing. Log. Methods Comput. Sci. 15(1) (2019)
Ilie L., Navarro G., Yu S. (2004) On NFA Reductions. In: Karhumäki J., Maurer H., Păun G.,
Rozenberg G. (eds) Theory Is Forever. Lecture Notes in Computer Science, vol 3113.
Springer, Berlin, Heidelberg

Requirements for the first semester:
Item 1 of the assignment,
part of the work on 2,
at least a small part of the text of the work.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Holík Lukáš, Mgr., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 12, 2021
Approval date: April 7, 2021

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/23436/2020/xsedym02 Page 1/1



Abstract
Nondeterministic finite automata (NFA) are widely used in computer science fields, such as
regular languages in formal language theory, high-speed network monitoring, image recog-
nition, hardware modeling, or even in bioinformatic for the detection of the sequence of
nucleotide acids in DNA. They are also used in regular mode checking, in string solving, in
verification of pointer manipulating programs, for construction of linear arithmetic equa-
tions and inequalities, for decision in WS1S and WS2S logic, and many others. Automata
minimization is a fundamental technique that helps to decrease resource claims (memory,
time, or a number of hardware components) of implemented automata and speed up au-
tomata operations. Commonly used minimization techniques, such as state merging, transi-
tion pruning, and saturation, can leave potentially minimizable automaton subgraphs with
duplicit language information. These fragments consist of a group of states, where the part
of language of one state is piecewise covered by the other states in this group. The thesis
describes a new minimization approach, which uses SAT solver, which provides informa-
tion for efficient minimization of these so far nonminimizable automaton parts. Moreover,
the newly investigated method, which only uses solver information and state merging, can
minimize the automaton similarly and on automata with low transition count faster than
a tool RABIT/Reduce, which uses state merging and transition pruning.

Abstrakt
Nedeterministické konečné automaty (NKA) jsou široce využívány v počítačové vědě, napřík-
lad v oblasti formálních jazyků pro reprezentaci regulárních jazyků, k monitorování vysoko-
rychlostních sítí, rozpoznávání obrazu, modelování hardware, nebo dokonce v bioinforma-
tice pro vyhledávání sekvencí nukleotidových kyselin v DNA. NKA jsou také používány
v abstraktním regulárním model checkingu, dále ve verifikaci programů manupulujících
s řetězci, ve verifikaci programů využívajících ukazatele, pro konstrukci lineárních rovnic
a nerovnic, v rozhodovacích procedurách WS1S a WS2S logiky a mnohých dalších. Minimal-
izace automatů je základní technikou, která pomáhá snižovat nároky na zdroje (paměť, čas
nebo množství hardwarových komponentů) a urychlovat operace prováděné na automatech.
Běžně používané minimalizační techniky, jakými jsou slučování stavů, odstraňování hran
přechodů nebo saturace, mohou v automatech zanechat potenciální minimalizovatelné pod-
grafy obsahující duplicitní jazykovou informaci. Tyto fragmenty sestávají ze skupiny stavů,
kde je již část jazyka jednoho stavu pokryta jazyky ostatních stavů z této skupiny. Tato
práce popisuje novou techniku využívající SAT solver, který poskytuje informaci umožňující
minimalizovat tyto doposud neminimalizovatelné části automatů. Nově vyvíjená metoda,
která využívá pouze informaci od SAT solveru a slučování stavů minimalizuje automaty
podobně efektivně, a v případě automatů s nízkým počtem přechodů dokonce rychleji než
nástroj RABIT/Reduce, který využívá slučování stavů a odstraňování hran.
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Rozšířený abstrakt
Nedeterministické konečné automaty (NKA) prezentoval Michael Rabin a Dana Scott v [28].
Ve srovnání s deterministickými konečnými automaty (DKA) se vyznačují schopností pře-
chodu do více následujících stavů na základě stejného přijatého znaku. Díky této vlastnosti
umožňují NKA reprezentovat jazyk za pomoci menšího množství stavů a přechodů než jeho
deterministická varianta. Nicméně každá mince má dvě strany. V důsledku nedeterminismu
je minimalizace NKA mnohem obtížnější. Tato práce popisuje novou minimalizační tech-
niku, která umožňuje redukovat velikost doposud neminimalizovatelných částí automatů.
Předmětem práce není hledání minimální formy NKA, ale pouze redukce jeho velikosti.
Pojmem minimalizace budeme v této práci rozumět pouze redukci velikosti automatů.

Nedeterministické automaty jsou používány k reprezentaci regulárních jazyků, v ap-
likacích pro validaci dat, internetových vyhledávačích, rozpoznávání řetězců, monitorování
síťového provozu, dokonce i v bioinformatice pro vyhledávání sekvencí nukleových kyselin
v DNA [3], a mnoha dalších. Příkladem využití NKA je detekce řetězců v síťovém provozu.
V důsledku stále se zvyšujícího objemu dat přenášených po síti a také rychlostí přenosu
je potřeba zvyšovat také rychlost jejich skenování. Standardní softwarová řešení pro vy-
hledávání řetězců, kterými mohou být jak zajímavé statistické údaje, tak škodlivý kód,
již nejsou při vysokých rychlostech přenosu použitelné. Pro rychlosti nad 100 Gbps je
potřeba vytvořit hardwarovou implementaci vyhledávání řetězců [32, 25]. Pomocí technik
[30] je možné reprezentovat NKA přímo na FPGA. Z důvodu ušetření místa, prostředků
a nízké ceny vyráběných komponentů je vhodné automat minimalizovat. Nedeterministické
konečné automaty jsou také používány pro verifikaci programů [19], v abstraktním reg-
ulárním model chackingu [9], dále ve verifikaci programů manupulujících s řetězci [2], při
verifikaci programů využívajících ukazatele [18], pro konstrukci lineárních rovnic a nerovnic
[33], v rozhodovacích procedurách WS1S [16, 15] a WS2S [15] logiky a mnohých dalších. Pro
zvýšení rychlosti operací prováděných nad automaty je vhodné redukovat jejich velikost.

V současnosti existuje mnoho efektivních minimalizačních technik. Nejznámější mini-
malizační metodou je slučování ekvivalentních stavů [6, 10, 24, 22], které slučuje dva
jazykově ekvivalentní stavy do jednoho. Dalšími úspěšnými postupy v oblasti minalizace
jsou odstraňování hran přechodů [10, 13] a jejich přidávání (saturace) [6, 13]. Hrana
přechodu může být odstraněna, když již existuje vhodnějsí hrana (existuje stav se sil-
nějším, nebo ekvivalentním jazykem). Ve srovnání s odstraňování přechodů, saturace pře-
chody do automatu přidává. Přidání nové hrany může umožnit další slučování stavů nebo
odstraňování hran. Přechod může být přidán pouze tehdy, existuje-li již silnější, nebo ste-
jný přechod. Bez ohledu na to, jak jsou stávající minimalizační techniky robustní, nejsou
všemocné. Stále zanechávají v automatech potenciálně minimalizovatelné podgrafy. Tyto
fragmenty sestávají ze skupiny stavů, kde je část jazyka jednoho z nich po pokryt jazyky
ostatních stavů. Tento stav představuje v automatu duplicitní informaci, ale nemusí být
detekován stávajícími metodami, protože mezi jazyky stavů nemusí existovat inkluze.

Tato práce vyvíjí metodu, která dokáže minimalizovat tyto doposud neminimalizo-
vatelné části automatu. Nový postup pracuje se skupinami stavů, které mají společného
předchůdce, nebo následníka. Všechny tyto stavy jsou nahrazeny novými stavy, které
obsahují maximálně jednu vstupní a maximálně jednu výstupní hranu přechodu. Nad
takovými stavy je za pomocí SAT solveru provedeno nejoptimálnější slučování stavů. Solver
aproximuje silně (v případě automatů s nízkým počtem přechodů také rychleji) výsledky



minimalizace provedené nástrojem RABIT/Reduce1, který využívá slučování a odstraňování
hran přechodu.

Obsah kapitol
Kapitola 2 je věnována základním teoretickým pojmům týkajících se nedeterministických
konečnách automatů. Nejprve je definován samotný NKA, poté související pojmy, jakými
jsou konfigurace, přechod, jazyky automatu a jazyky stavu. V kapitole 3 jsou definovány
existující minimalizační techniky využívané nástrojem RABIT/Reduce (slučování stavů,
odstraň-ování hran přechodů a saturace). Kapitola 4 obsahuje základní myšlenky práce
založené na chování slučování stavů. Kapitola 5 popisuje kódování problému minimalizace
automatu, které se skládá z definice proměnných, slučovací formule a pravidel. V kapitole 6
jsou uvedeny výsledky experimentů minimalizace s využitím SAT solveru a také porovnání
výsledků s existujícím nástrojem RABIT/Reduce.

1 nástroj RABIT/Reduce je dostupný na http://languageinclusion.org/doku.php?id=tools.
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Chapter 1

Introduction

Nondeterministic finite automata (NFA) were investigated by Michael Rabin and Dana
Scott [28]. In comparison with deterministic finite automata (DFA), NFA can choose from
more than one transition after receiving the letter. This feature allows NFA to represent the
language with fewer states and transitions than its deterministic variant. However, there
are two sides to every story. The NFA is much harder to minimize. This work investigates
a new approach for minimizing of so far nonminimizable parts of automata. A goal of the
investigated approach is not to find the minimal form of NFA, but only to reduce automata
size. In this thesis, we will use the term minimization just for the reduction of automata
size.

Nondeterministic finite automata are often used for a representation of regular lan-
guages, in data validation, web searching engines, pattern recognition, in network traffic
monitoring, even in genetic for matching of the sequence of nucleotide acids on DNA [3],
and many others. An example of NFA usage is a representation of the regular expression for
pattern matching in network traffic. Due to an increasing amount of data transmitted over
the network and so increasing speed, it is necessary to improve the data scanning speed.
Standard software solutions that can detect data fragments cannot be used in high-speed
networks. For the speed over 100 Gbps, it is required to implement a hardware analyzer
[32, 25]. The NFA can be implemented right on FPGA using the technique [30]. To save
space, resources, and cost of manufactured components, it is advisable to minimize the
original automaton. NFAs are also used in program verification [19], in abstract regular
model checking [9], in verification of programs using pointers [18], in string solving [2], for
construction of linear arithmetic equation and inequalities [33], for decision procedures in
WS1S [16, 15] and WS2S [15] logic, and many others. It is necessary to reduce the size of
automata to speed up the operations performed on them.

Nowadays, many efficient minimization techniques exist. The well-known method, state
merging [6, 10, 24, 22], merges two language equivalent states into one. Other success-
ful procedures in the field of minimization are transition pruning [10, 13] and transition
adding (saturation) [6, 13]. The transition can be pruned if the better transition already
exists (a state with stronger or equal language exists). On the contrary, saturation adds
new already existing transitions. This addition can help to continue in state merging or
transition pruning. Despite the high efficiency of these methods, they are not omnipotent.
They can still leave potentially minimizable automata subgraphs. These fragments consist
of a set of states, where part of the language of some state is piecewise covered by other
states. Each state can have a unique language, so language inclusion, which is necessary
for minimization, does not exist.
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The work investigates a method for minimizing this so far unsolvable automata sub-
graphs. The method works with sets of states with common successors or ancestors. All
states from a set are substituted by states with the maximal one incoming and outcom-
ing transition, then SAT solver is used for maximizing the number of merged states. In
comparison to an existing tool RABIT/Reduce1 which uses state merging and transition
pruning, the solver gives a strong, and on automata with small count of transitions faster,
approximation of RABIT minimization.

Plan of the thesis
Chapter 2 is dedicated to the theoretical background of nondeterministic finite automata.
First, the NFA will be defined and the related terms such as configuration, transition, and
languages of the automaton and of the state. The existing minimization techniques such
as state merge, transition pruning, and saturation, which the compared tool RABIT/Re-
duce uses, are listed in Chapter 3. After introducing minimization approaches, the basic
thoughts, based on the behavior of state merge, are presented in Chapter 4. Chapter 5 is
devoted to the coding of a minimization problem with SAT solver. The creation of solver
variables, merge formula, and rules is described here. The limitation of the investigated
SAT-solver-based minimization approach is shown at the end of the chapter. Chapter 6
displays a comparison of the experiments of automata minimization performed with a SAT-
solver-based approach and the tool RABIT/Reduce.

1 RABIT is available at http://languageinclusion.org/doku.php?id=tools.
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Chapter 2

Preliminaries

Basic concepts of nondeterministic finite automata (NFA) and its notations, which are
required for an easier understanding of the following thesis, are presented in this chapter.
The formal definition of NFA (taken from [31, p.53]) and related concepts, such as automata
configuration, transition, ancestors, successors, reachable or dead states are established in
Section 2.1. The definitions of automata configuration and transition are taken from [26].
An elementary property of an automaton is a language, which defines accepting strings.
These definitions are presented in Section 2.2. The language is not calculated only over the
machine. Section 2.3 brings definitions for the language of state, such as forward language,
backward language, and languages defined specially for this work. The last Section 2.4 of
this chapter is dedicated to simulation (the definition is taken from [1]). The simulation
is an approximation method widely used in a calculation of language relations, due to its
higher speed in comparison with accurate methods.

2.1 The Formal Definition of
a Nondeterministic Finite Automaton

Nondeterministic finite automata are a generalization of deterministic automata. Both
contain states, transitions between them, and an alphabet of characters that the automaton
read. In comparison to deterministic automata, nondeterministic automata have a set of
initial and final states, not only one initial and one final state. Initial states represent the
entry points of the automaton. Reading of an evaluated string, consisting of the characters
of the machine alphabet, always starts in these states. Final states represent the place,
which marks the input string as accepted. The string is accepted only if the automaton is
in at least one of these final states, after reading the entire string. States are interconnected
by transitions with alphabet symbols. Together they form an oriented graph. Based on the
read symbol, a corresponding transition with the same symbol will be made. Compared to
deterministic automata, where exactly one transition can be made based on one character,
nondeterministic automata, as the name suggests, can choose from several transitions. If
the nondeterministic transition is reached, then the next evaluation is split and the string
is accepted if at least one of the splitted evaluations has ended in the final state.

To write the formal definition, we need to set up some additional notations. For a set
𝑄, we write 𝑃 (𝑄) to be the collection of all subsets of 𝑄. Here 𝑃 (𝑄) is called the power
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set of 𝑄. For any alphabet Σ, we write Σ𝜖 to be Σ ∪ {𝜖}. Now we can write the formal
description of the type of the transition function in an NFA 𝛿 : 𝑄× Σ𝜖 −→ 𝑃 (𝑄).

Definition 2.1 Nondeterministic Finite Automaton is a 5-tuple 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 )

1. 𝑄 is a finite set of states,

2. Σ is an alphabet,

3. 𝛿 : 𝑄× Σ𝜖 −→ 𝑃 (𝑄) is a transition function,

4. 𝐼 ⊆ 𝑄 is a finite set of initial states, and

5. 𝐹 ⊆ 𝑄 is a finite set of final states.

We will use 𝑝
𝑎−→ 𝑞 to denote the transition ((𝑝, 𝑎), 𝑞), where 𝑝, 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ. The

transition 𝑝
𝑎−→ 𝑞 says that after the reading of a character 𝑎 in the state 𝑝 the transition

from state 𝑝 to 𝑞 will be made.

Definition 2.2 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA, 𝑠 ∈ 𝑄, and 𝑎 ∈ Σ. Then the reverse
transition function 𝛿−1 is defined as 𝛿−1(𝑠, 𝑎) = {𝑞 | ∀ 𝑞 ∈ 𝑄 where 𝑠 ∈ 𝛿(𝑞, 𝑎)}.

Definition 2.3 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA and 𝑠 ∈ 𝑄. Then the ancestors of
a state 𝑠 is defined as 𝑎𝑛𝑐(𝑠) = {𝑞 | 𝑞 ∈ 𝑄, ∀ 𝑎 ∈ Σ, 𝑞 ∈ 𝛿−1(𝑠, 𝑎)}.

Definition 2.4 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA and 𝑠 ∈ 𝑄. Then the successors of
a state 𝑠 is defined as 𝑠𝑢𝑐𝑐(𝑠) = {𝑞 | 𝑞 ∈ 𝑄, ∀ 𝑎 ∈ Σ, 𝑞 ∈ 𝛿(𝑠, 𝑎)}.

Definition 2.5 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA. Then the configuration is string
𝜒 ∈ 𝑄Σ*.

The automaton configuration displays information about the current state (not all states
of the splitted evaluation, but only the focused one) and the remaining string at the input.
For example, if the automaton 𝑀 is in the state 𝑞 and the string 𝑎𝑏 remains at the input,
then the configuration takes the form 𝑞𝑎𝑏. The attentive reader will certainly notice that
the exact state of the automaton can be described as a set of configurations.

Definition 2.6 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA, and 𝑝𝑎𝑤, 𝑞𝑤 be two configurations of
𝑀 , where 𝑝, 𝑞 ∈ 𝑄, 𝑎 ∈ Σ𝜖, and 𝑤 ∈ Σ*. Let 𝑟 : 𝑝

𝑎−→ 𝑞 ∈ 𝛿. Then 𝑀 can make transition
from 𝑞𝑎𝑤 to 𝑞𝑤 using 𝑟, write as 𝑝𝑎𝑤 ⊢ 𝑞𝑤 [𝑟] or simply 𝑝𝑎𝑤 ⊢qw.

Let 𝜒 be configuration. 𝑀 makes zero transitions from 𝜒 to 𝜒. Write: 𝜒 ⊢0 𝜒 [𝜖] or
simply 𝜒 ⊢0 𝜒.

Let 𝜒0, 𝜒1 . . . 𝜒𝑛 be sequence of configurations for 𝑛 ≤ 1 and 𝜒𝑖−1 ⊢ 𝜒𝑖 [𝑟𝑖], where 𝑟𝑖 ∈ 𝛿
for all 𝑖 = 1 . . . 𝑛, what means: 𝜒0 ⊢ 𝜒1 [𝑟1] · · · ⊢ 𝜒𝑛 [𝑟𝑛]. Then 𝑀 makes 𝑛 transitions
from 𝜒0 to 𝜒𝑛. Write: 𝜒0 ⊢𝑛 𝜒𝑛 [𝑟1 . . . 𝑟𝑛] or simply 𝜒0 ⊢𝑛 𝜒𝑛.
If 𝜒0 ⊢𝑛 𝜒𝑛 [𝜌] for some 𝑛 ≥ 1, then we write 𝜒 ⊢+ 𝜒𝑛 [𝜌] or simply 𝜒 ⊢+ 𝜒𝑛.
If 𝜒0 ⊢𝑛 𝜒𝑛 [𝜌] for some 𝑛 ≥ 0, then we write 𝜒 ⊢* 𝜒𝑛 [𝜌] or simply 𝜒 ⊢* 𝜒𝑛.
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Already during the creation of the automaton, but rather during its modifications,
states, whose presence or absence does not affect the language of the automaton, can arise.
There are two types of useless states, these elementary types can be combined.

The first type is a state that can have successors, and even paths to final states can exist,
but no path leads to this state from the initial state. This state is called an unreachable
state. Unreachability may be caused by the lack of state ancestor or affiliation in the
unreachable subgraph.

Definition 2.7 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA, then the state 𝑞 ∈ 𝑄 is reachable if
exists 𝑤 ∈ Σ* for which 𝑞0𝑤 ⊢* 𝑞, where 𝑞0 ∈ 𝐼. Otherwise, it is unreachable.

𝑞0start

𝑞1

𝑞2

𝑞3

𝑞4

𝑝0start

𝑝1

𝑝2

𝑝3

𝑝4

𝑎

𝑏, 𝑐

𝑐

𝑏

𝑎

𝑏

𝑐

𝑑

Figure 2.8: Two automata with unreachable states. For the left automaton, it is state
𝑞2 and for the right automaton, it is state 𝑝2 and 𝑝3.

The second type of useless state is the so-called dead state. This is the case where no
path from a state to the final states exists, regardless of the possible paths from the initial
state. The dead nature of the state may be caused by the nonexistence of the successor,
or its closure in the nonterminating part of the automaton subgraph, for example, in an
isolated loop.

Definition 2.9 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA. Then state 𝑞 ∈ 𝑄 is undead if exists
𝑤 ∈ Σ* for which 𝑞𝑤 ⊢* 𝑓 , where 𝑓 ∈ 𝐹 . Otherwise, it is dead.

𝑞0start 𝑞2

𝑞1

𝑞3

𝑞4 𝑝0start 𝑝2

𝑝1

𝑝3

𝑝4

𝑎

𝑏

𝑐

𝑑

𝑒, 𝑓

𝑎 𝑏, 𝑐

𝑑 𝑒, 𝑓

Figure 2.10: Two automata with dead states. For the left automaton, it is state 𝑞3 and for
the right automaton, it is state 𝑝2 and 𝑝3.

Both types of useless states can be eliminated. They can be easily removed because
both unavailable and dead states do not belong to any part of the automaton that defines
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the language. Elimination of useless states is the most primitive way of minimization. All
states that belongs to the set {𝑄 ∖ (𝑢𝑛𝑑𝑒𝑎𝑑 ∩ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒)} are useless ant therefore can be
removed.

2.2 NFA Languages
As already mentioned, one of the main features of nondeterministic finite automata is their
language. A language is a set of accepting strings defined by the automaton topology. For
example, the language over the alphabet Σ = {0, 1} might define strings with a maximal
length of 4 and an even count of 0. The following definition of an acceptable string is taken
from [31, p. 54].

Definition 2.11 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be an NFA and 𝑤 a string over the alphabet Σ.
Then we say that w is accepting string in the form 𝑤 = 𝑦1𝑦2 . . . 𝑦𝑛, where 𝑦𝑖 ∈ Σ for
𝑖 = 1 . . . 𝑛 if exists such a sequence of states 𝑟0𝑟1 . . . 𝑟𝑛 ∈ 𝑄, with three conditions:

1. 𝑟0 ∈ 𝐼,

2. 𝑟𝑖+1 ∈ 𝛿(𝑟𝑖, 𝑦𝑖+1), for 𝑖 = 0 . . . 𝑛− 1, and

3. 𝑟𝑛 ∈ 𝐹

Condition 1 says that the reading starts out in the initial state. Condition 2 says that
state 𝑟𝑖+1 is one of the allowable next states when 𝑀 is in state 𝑟𝑖 after reading 𝑦𝑖+1.
Observe that 𝛿(𝑟𝑖, 𝑦𝑖+1) is the 𝑠𝑒𝑡 of allowable next states, and so we say that 𝑟𝑖+1 is
a member of that set. Finally, condition 3 says that the machine accepts its input if the
last state is a final state.

Definition 2.12 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be an NFA. Then accepting language is defined
as follows: 𝐿(𝑀) = {𝑤 |𝑤 ∈ Σ*, 𝑞0𝑤 ⊢* 𝑓, where 𝑞0 ∈ 𝐼 and 𝑓 ∈ 𝐹}.

The accepting language of NFA is the set of accepting strings. Where at least one final
state is reached after reading all its input characters.

Definition 2.13 Let 𝑀 = (𝑄𝑀 ,Σ𝑀 , 𝛿𝑀 , 𝐼𝑀 , 𝐹𝑀 ) and 𝑁 = (𝑄𝑁 ,Σ𝑁 , 𝛿𝑁 , 𝐼𝑁 , 𝐹𝑁 ) be two
NFAs. We say that automata 𝑀 and 𝑁 are equivalent only if 𝐿(𝑀) ≡ 𝐿(𝑁).

According to definition 2.14, two automata 𝑀 and 𝑁 are equivalent if for each string
𝑤𝑀 ∈ 𝐿(𝑀) exists such a sequence of transitions 𝑤𝑀𝑝0 ⊢* 𝑓𝑁 in 𝑁 , where 𝑝0 ∈ 𝐼𝑁 ,
𝑓𝑁 ∈ 𝐹𝑁 , and for each 𝑤𝑁 ∈ 𝐿(𝑁) exists such a sequence of transitions 𝑤𝑁𝑞0 ⊢* 𝑓𝑀 in 𝑀 ,
where 𝑞0 ∈ 𝐼𝑀 and 𝑓𝑀 ∈ 𝐹𝑀 .

The calculation of two NFA equivalences is demonstrated by an adaptation [17] of
Hopcroft and the Kraps algorithm for determining the equivalence of two DFAs [8]. A varia-
tion of the algorithm will be used later in Chapter 5 for the sub-approximation of a language
equivalence.

An empty set 𝑅 is initialized to ∅ at the beginning of the algorithm. 𝑅 will store the
already processed pairs and prevent the algorithm from an infinite loop. Thereafter, the
set 𝑡𝑜𝑑𝑜 will be initialized, and the pair (𝐼𝐴, 𝐼𝐵) is inserted. 𝐼𝐴 is a set of initial states of
the automaton 𝐴 and 𝐼𝐵 is the set of initial states of the second automaton 𝐵. The pair
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(𝑋, 𝑌 ) is selected, while 𝑡𝑜𝑑𝑜 is not empty. The pair (𝑋, 𝑌 ) is bad if one state of 𝑋 or 𝑌
is accepting whereas the other is not. If the pair is bad, then automata 𝐴 and 𝐵 are not
equivalent. Otherwise, the successors of 𝑋 and 𝑌 are generated into 𝑡𝑜𝑑𝑜. If the set 𝑡𝑜𝑑𝑜
is empty, the automata 𝐴 and 𝐵 are equivalent.

Algorithm 2.14 The naive algorithm for checking NFAs equivalence
Input: two NFAs 𝐴 = (𝑄𝐴,Σ𝐴, 𝛿𝐴, 𝐼𝐴, 𝐹𝐴) and 𝐵 = (𝑄𝐵,Σ𝐵, 𝛿𝐵, 𝐼𝐵, 𝐹𝐵)
Output: ”Yes“ if 𝐿(𝐴) ≡ 𝐿(𝐵), otherwise ”No“

1: 𝑅 ← ∅, 𝑡𝑜𝑑𝑜 ← {(𝐼𝐴, 𝐼𝐵)}
2: while 𝑡𝑜𝑑𝑜 ̸= ∅ do
3: Pick (𝑋, 𝑌 ) ∈ 𝑡𝑜𝑑𝑜 and remove it
4: if (𝑋, 𝑌 ) ∈ 𝑅 then
5: continue
6: end if
7: if (𝑋, 𝑌 ) is bad pair then
8: return ”No, 𝐿(𝐴) ̸= 𝐿(𝐵)“
9: end if

10: for 𝑎 ∈ Σ do
11: 𝑡𝑜𝑑𝑜 ← 𝑡𝑜𝑑𝑜 ∪ {(𝛿𝐴(𝑋, 𝑎), 𝛿𝐵(𝑌 , 𝑎))}
12: end for
13: 𝑅 ← 𝑅 ∪ {(𝑋, 𝑌 )}
14: end while
15: return ”Yes 𝐿(𝐴) ≡ 𝐿(𝐵)“

2.3 States Languages
To minimize the states of NFA, it is necessary to know the relations between their languages.
An equivalence relation is the most commonly used relation for automata minimization. It
can be an equivalence of forward, backward, or both of these languages. Equivalent states
inform about the duplication of machine subgraphs of which they are apart. The language
equivalent states can be merged. Another important relation is language inclusion. It
can also be an inclusion of forward languages, backward languages, etc. The language
inclusion informs about the similarity of two (or more) states, where one is strong and
the other weak. In this case, the weak state will be reduced and the strong will survive.
The special languages for the following work will be introduced. These languages are
interstate language, pure language, and maximal distance language. Interstate language is
defined by an oriented route between two states. The pure language can be any already
defined language, but the routes which define this language cannot lead through a specified
(forbidden) state. The last newly introduced language markup will be the maximal distance
language. This language is defined by a particular state and its ancestor or successor
(depends on the type of a language) to a maximal distance.

The basic group of state languages consists of forward and backward languages. Back-
ward language is defined by a set of strings over the automaton alphabet, for which exists
a sequence of transitions (route) from an initial state to an examined state. We will write
the backward language of state 𝑞 ∈ 𝑄 as ←−𝐿 (𝑞), or simply ←−𝑞 .
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Definition 2.15 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA. Then backward language of the
state 𝑞 ∈ 𝑄 is defined as ←−𝐿 (𝑞) = {𝑤𝑏 |𝑤𝑏 ∈ Σ*, 𝑞0𝑤𝑏 ⊢* 𝑞, where 𝑞0 ∈ 𝐼}.

On the contrary, the forward language of the state is the set of strings, for which exists
the route from the actual state to the final state. We will write the forward language of the
state 𝑞 ∈ 𝑄 as −→𝐿 (𝑞), or simply −→𝑞 .

Definition 2.16 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA. Then forward language of the
state 𝑞 ∈ 𝑄 is defined as −→𝐿 (𝑞) = {𝑤𝑓 |𝑤𝑓 ∈ Σ*, 𝑞𝑤𝑓 ⊢* 𝑓, where 𝑓 ∈ 𝐹}.

The interstate language is the first language that belongs to the special group of lan-
guages defined for this thesis. The language, as already has been said, is defined by the set
of strings over the alphabet of the automaton, for which exists a sequence of transitions
between the first and second state (boundary states). We will write the language between
states 𝑞 and 𝑝 as 𝐿(𝑞, 𝑝).

Definition 2.17 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA. Then interstate language between
two states 𝑝 and 𝑞 ∈ 𝑄 is defined as 𝐿(𝑝, 𝑞) = {𝑤𝑖 |𝑤𝑖 ∈ Σ*, 𝑝𝑤𝑖 ⊢* 𝑞}.

𝑟0start 𝑝

𝑟1

𝑟2

𝑞

𝑟3
𝑎, 𝑏

a

𝑒

c
b,c

𝑔
𝑓

c,d

𝑓

Figure 2.18: Interstate language 𝐿(𝑝, 𝑞) is defined by the bold transitions.

Another special language is pure language. This language is defined by the set of
strings over an automaton alphabet, for which there exists a sequence of transitions between
boundary states (initial and actual state for the backward language, examined state and
final states for the forward language, or between two states for the interstate language)
without the usage of the forbidden state. This condition does not apply to the boundary
states themselves. For example, the pure backward language of the state 𝑞, which does not
use the forbidden state 𝑟, is a set of strings, for which exists a route from an initial state
to state 𝑞 without using 𝑟.

Definition 2.19 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA. Then pure backward language
of the state 𝑞 ∈ 𝑄, denoted ←−𝐿 (𝑞, 𝑠), is defined as the set of all strings 𝑤 in the form
𝑤 = 𝑦1𝑦2 . . . 𝑦𝑛, where 𝑦𝑖 ∈ Σ for 𝑖 = 1 . . . 𝑛, for which exists such a sequence of states
𝑟0𝑟1 . . . 𝑟𝑛, where 𝑟0, 𝑟𝑛 ∈ 𝑄 ∖ {𝑠} and 𝑟𝑖 ∈ 𝑄 for 𝑖 = 1 . . . 𝑛− 1, with three conditions:

1. 𝑟0 ∈ 𝐼,

2. 𝑟𝑖+1 = 𝛿(𝑟𝑖, 𝑦𝑖+1) for 𝑖 = 0 . . . 𝑛− 1, and
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3. 𝑟𝑛 = 𝑞.

Definition 2.20 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA. Then pure forward language
of the state 𝑞 ∈ 𝑄, denoted −→𝐿 (𝑞, 𝑠), is defined as the set of all strings 𝑤 in the form
𝑤 = 𝑦1𝑦2 . . . 𝑦𝑛, where 𝑦𝑖 ∈ Σ for 𝑖 = 1 . . . 𝑛, for which exists such a sequence of states
𝑟0𝑟1 . . . 𝑟𝑛, where 𝑟0, 𝑟𝑛 ∈ 𝑄 ∖ {𝑠} and 𝑟𝑖 ∈ 𝑄 for 𝑖 = 1 . . . 𝑛− 1, with three conditions:

1. 𝑟0 = 𝑞,

2. 𝑟𝑖+1 = 𝛿(𝑟𝑖, 𝑦𝑖+1) for 𝑖 = 0 . . . 𝑛− 1, and

3. 𝑟𝑛 ∈ 𝐹 .

𝑟0start

𝑟1

𝑟2

𝑠

𝑞

𝑟3

𝑟4

𝑎, 𝑏

a

𝑐

c,d

𝑎

𝑎, 𝑏

𝑒, 𝑓 𝑒

Figure 2.21: Pure backward language ←−𝐿 (𝑞, 𝑠) is created by the bold transitions.

Definition 2.22 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA. Then pure language between
states 𝑞 and 𝑝 ∈ 𝑄, denoted 𝐿(𝑝, 𝑞, 𝑠), is defined as the set of all strings 𝑤 in the form
𝑤 = 𝑦1𝑦2 . . . 𝑦𝑛, where 𝑦𝑖 ∈ Σ for 𝑖 = 1 . . . 𝑛, for which exists such a sequence of states
𝑟0𝑟1 . . . 𝑟𝑛, where 𝑟0, 𝑟𝑛 ∈ 𝑄 ∖ {𝑠} and 𝑟𝑖 ∈ 𝑄 for 𝑖 = 1 . . . 𝑛− 1, with three conditions:

1. 𝑟0 = 𝑝,

2. 𝑟𝑖+1 = 𝛿(𝑟𝑖, 𝑦𝑖+1) for 𝑖 = 0 . . . 𝑛− 1, and

3. 𝑟𝑛 ∈ 𝑞.

The last special language is a language with a maximal distance. It is a standard lan-
guage enriched with the feature that the strings which define the language are defined only
by the state with maximal distance 𝑛 from the current state. A language with a maximal
distance will be widely used for the forward and backward language specification. Back-
ward language with maximal distance is defined as suffixes of all strings from the default
backward language. Conversely, prefixes of all strings from the old language define the
forward language with maximal distance.

Definition 2.23 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA and ←−𝐿 (𝑞) the backward language of
the state 𝑞 ∈ 𝑄. Then backward language with maximal distance 𝑛 ∈ N is defined as←−
𝐿𝑛(𝑞) = {𝑤′ | |𝑤′| ≤ 𝑛, ∃𝑥 ∈ Σ* for which 𝑥𝑤′ ∈

←−
𝐿 (𝑞)}
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Definition 2.24 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA and −→𝐿 (𝑞) the forward language of
the state 𝑞 ∈ 𝑄. Then forward language with maximal distance 𝑛 ∈ N is defined as−→
𝐿𝑛(𝑞) = {𝑤′ | |𝑤′| ≤ 𝑛, ∃𝑥 ∈ Σ* for which 𝑤′𝑥 ∈

−→
𝐿 (𝑞)}

All these language behaviors can be combined. We can ask for the pure backward
language with a maximal distance. Let show this engaging language by an example.

𝑟0start 𝑝 𝑟1

𝑠

𝑞 𝑟2𝑎

𝑑

b,c

𝑒

a,f 𝑔, ℎ

Figure 2.25: Pure backward language of a state 𝑞 without a state 𝑠 with maximal distance
2, ←−𝐿2(𝑞, 𝑠) = {𝑏𝑎, 𝑎𝑓, 𝑐𝑎, 𝑐𝑓}.

2.4 Simulation
Two methods for calculating a language inclusion, and ultimately equivalence, exist. The
first method is based on “subset construction”. Subset construction algorithm transforms
NFA into DFA, which is then an input of the equivalence checking algorithm. The state
explosion might occur during the NFA transformation. If 𝑄 is the set of states in the original
NFA, the power set 𝑃 (𝑄) is of size 2|𝑄|, so the DFA may contain up to 2|𝑄| states [27].
Moreover, methods based on the simulation are decidable in polynomial time [14]. They are
often more efficient than methods based on subset construction. Therefore, the simulation
is rather used in many cases. Unfortunately, the simulation is computationally incomplete
and has a stronger relationship with an automaton than the language inclusion. Thus, the
simulation implies language inclusion, but not vice versa. Some language inclusions might
not be detected by the simulation.

Definition 2.26 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA. Then simulation is a relation
⪯⊆ 𝑄×𝑄, such that 𝑝 ⪯ 𝑟 only if:

1. 𝑝 ∈ 𝐹 =⇒ 𝑟 ∈ 𝐹 and

2. for every transition 𝑝
𝑎−→ 𝑝′, there exists a transition 𝑟

𝑎−→ 𝑟′ such that 𝑝′ ⪯ 𝑟′

Algorithm 2.27 Naive simulation algorithm [20]
Input: NFA 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 )
Output: for each state 𝑞 ∈ 𝑄, the simulation 𝑠𝑖𝑚(𝑞)

1: for 𝑞 ∈ 𝑄 do
2: 𝑠𝑖𝑚(𝑞)← {𝑟 | 𝛿(𝑟, 𝑎) ⊆ 𝛿(𝑞, 𝑎) ∀ 𝑎 ∈ Σ}
3: end for
4: while there are three state 𝑞, 𝑟 and 𝑠 such that 𝑞 ∈ 𝑠𝑢𝑐𝑐(𝑟), 𝑠 ∈ 𝑠𝑖𝑚(𝑞),
5: and 𝑠𝑢𝑐𝑐(𝑤) ∩ 𝑠𝑖𝑚(𝑟) = ∅ do
6: 𝑠𝑖𝑚(𝑞)← 𝑠𝑖𝑚(𝑞) ∖ {𝑠}
7: end while
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Chapter 3

Existing Minimization Techniques

Automata and their parts, on which the work focuses, can also be minimizable by existing
techniques, but these techniques leave potentially minimizable subgraphs in the automata.
State merge [6, 10, 24, 22], transition pruning [10, 13], and transition adding (saturation) [6,
13] are so far the most effective minimization methods. Their mutual use merges equivalent
states and creates useless states, which allows their future elimination.

Despite their minimizing power, they are not omnipotent. There are types of automata,
or their parts, that can be easily minimized, sometimes on the first look. However, all exist-
ing approaches based on language equivalence or inclusion relations are helpless. Example
of a nonminimizable automaton is in the last Section of this chapter.

3.1 States Merging
The most well-known minimization method of nondeterministic finite automata is state
merging [6, 10, 24, 22]. The technique merges two states based on their language equiva-
lence. It might be forward, backward, or both sides equivalence. The merging can be done
even on the basis of bilateral language inclusion. Conditions for states merge are declared
by Theorem 3.2 [22]. The equivalence can be approximated by the simulation relation. If
two states 𝑝 and 𝑞 are equivalent, then they will be merged into a new state 𝑚. Within the
merge, all transitions which lead through the source states 𝑝 and 𝑝 are redirected to the
destination state 𝑚.

Definition 3.1 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA and 𝑝, 𝑞,𝑚 ∈ 𝑄. The automaton
with merged states 𝑝 and 𝑞 into 𝑚 is 𝑀 ′ = (𝑄′,Σ, 𝛿′, 𝐼 ′, 𝐹 ′), where

1. 𝑄′ = (𝑄 ∖ {𝑝, 𝑞}) ∪ {𝑚} is a finite set of states,

2. Σ is an alphabet,

3. 𝛿′(𝑠, 𝑎) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝛿(𝑝, 𝑎) ∪ 𝛿(𝑞, 𝑎) for 𝑠 = 𝑚,
(𝛿(𝑠, 𝑎) ∖ {𝑞}) ∪ {𝑚} for 𝑞 ∈ 𝛿(𝑠, 𝑎),
(𝛿(𝑠, 𝑎) ∖ {𝑝}) ∪ {𝑚} for 𝑝 ∈ 𝛿(𝑠, 𝑎),
𝛿(𝑠, 𝑎) otherwise.

4. 𝐼 ′ =

{︃
(𝐼 ∖ {𝑝, 𝑞}) ∪ {𝑚} if 𝑝 ∨ 𝑞 ∈ 𝐼,

𝐼 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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5. 𝐹 ′ =

{︃
(𝐹 ∖ {𝑝, 𝑞}) ∪ {𝑚} if 𝑝 ∨ 𝑞 ∈ 𝐹 ,

𝐹 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Theorem 3.2 [22] Two states 𝑝 and 𝑞 from the automaton 𝑀 can be merged if at least
one of the following conditions is met:

1. ←−𝐿 (𝑝) ⊆
←−
𝐿 (𝑞) ∧

←−
𝐿 (𝑝) ⊇

←−
𝐿 (𝑞),

2. −→𝐿 (𝑝) ⊆
−→
𝐿 (𝑞) ∧

−→
𝐿 (𝑝) ⊇

−→
𝐿 (𝑞), or

3. ←−𝐿 (𝑝) ⊆
←−
𝐿 (𝑞) ∧

−→
𝐿 (𝑝) ⊆

−→
𝐿 (𝑞).

𝑞0start 𝑝

𝑞 𝑓1

𝑓2 𝑞0start

𝑚 𝑓1

𝑓2

𝑎, 𝑏

𝑎, 𝑏

𝑐, 𝑒

𝑓

𝑑
𝑎, 𝑏

𝑐, 𝑒, 𝑑

𝑓

Figure 3.3: Automaton 𝑀3.3 (on the left) and its minimized version with states 𝑝 and 𝑞
merged into 𝑚.

3.2 Transition Pruning
The basic idea of transition pruning [10, 13] is the existence of a better transition (stronger
language), which can overtake the function of the deleting transition. Definitions and
theorems are simplification of [13].

Definition 3.4 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA. Then automaton with pruned tran-
sition 𝑝

𝑏−→ 𝑟, where 𝑝, 𝑟 ∈ 𝑄 and 𝑏 ∈ Σ, is 𝑀 ′ = (𝑄,Σ, 𝛿′, 𝐼, 𝐹 ) write as 𝑃𝑟𝑢𝑛𝑒(𝑀,𝑝
𝑏−→𝑟)

where:

1. 𝑄 is a finite set of states,

2. Σ is an alphabet,

3. 𝛿′(𝑠, 𝑎) =

{︃
𝛿(𝑠, 𝑎) ∖ {𝑟} for 𝑠 = 𝑝 ∧ 𝑎 = 𝑏,

𝛿(𝑠, 𝑎) otherwise.

4. 𝐼 ⊆ 𝑄 is a finite set of initial states, and

5. 𝐹 ⊆ 𝑄 is a finite set of final states.
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The following theorems show the use cases where the transition pruning can be used.
The proofs of the theorems are shown on Büchi word automata (NBA), in [13, p.16–20].

Theorem 3.5 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA, 𝑝, 𝑞, 𝑟 ∈ 𝑄 and 𝑎 ∈ Σ. The transition
𝑟

𝑎−→ 𝑝 can be pruned if there exist 𝑟 𝑎−→ 𝑞 and −→𝐿 (𝑝) ⊆
−→
𝐿 (𝑞).

𝑟start

𝑞

𝑝

𝑓1

𝑓2

𝑟start

𝑞

𝑝

𝑓1

𝑓2

𝑎, 𝑥

𝑎, 𝑦

𝑐, 𝑑

𝑐

𝑎, 𝑥

𝑦

𝑐, 𝑑

𝑐

Figure 3.6: Automaton 𝑀3.6 (on the left) and automaton 𝑃𝑟𝑢𝑛𝑒(𝑀3.6, 𝑟
𝑎−→ 𝑝) (on the

right). Transition was pruned according to Theorem 3.5.

Theorem 3.7 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA, 𝑝, 𝑞, 𝑟 ∈ 𝑄 and 𝑎 ∈ Σ. The transition
𝑝

𝑎−→ 𝑟 can be pruned if there exist 𝑞 𝑎−→ 𝑟 and ←−𝐿 (𝑝) ⊆
←−
𝐿 (𝑞).

𝑞0start

𝑞

𝑝

𝑟 𝑞0start

𝑞

𝑝

𝑟

𝑎, 𝑏

𝑎

𝑐, 𝑑

𝑐

𝑎, 𝑏

𝑎

𝑐, 𝑑

Figure 3.8: Automaton 𝑀3.8 (on the left) and automaton 𝑃𝑟𝑢𝑛𝑒(𝑀3.8, 𝑝
𝑎−→ 𝑟) (on the

right). Transition was pruned according to the Theorem 3.7.

Theorem 3.9 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA, 𝑝, 𝑞, 𝑝′, 𝑞′ ∈ 𝑄 and 𝑎 ∈ Σ. The transi-
tion 𝑞′

𝑎−→ 𝑝′ can be pruned if there exist 𝑝 𝑎−→ 𝑞 and ←−𝐿 (𝑝′) ⊆
←−
𝐿 (𝑝) ∧

−→
𝐿 (𝑞′) ⊆

−→
𝐿 (𝑞).
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𝑞0start 𝑝′

𝑞′ 𝑞

𝑝 𝑞0start 𝑝

𝑞 𝑟

𝑝

𝑎, 𝑏

𝑎

𝑥

𝑐

𝑥, 𝑦

𝑎, 𝑏

𝑎

𝑥

𝑐

𝑦

Figure 3.10: Automaton 𝑀3.10 (on the left) and automaton 𝑃𝑟𝑢𝑛𝑒(𝑀3.10, 𝑞
𝑎−→ 𝑝′) (on the

right). Transition pruning was based on the Theorem 3.9.

3.3 Saturation
The saturation [6, 13] allows the addition of the new transition without changing the au-
tomaton language. Saturation is used as an extension of merge and transition pruning that
are applied during the standard minimization process. At some point, it is no longer pos-
sible to minimize the automaton only by using merge and transition pruning. Thanks to
saturation and addition of new transitions, the future minimization is possible. Saturation
is made only if a particular transition already exists. It is an analogy of transition pruning.
Definitions and theorems are simplification of [13].

Forward saturation is done only when there exist two states in backward language
inclusion. The saturated state is enriched with all forward transitions of the stronger state
to its successors. An example of forward saturation is in Figure 3.15.

Definition 3.11 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA and 𝑝, 𝑞 ∈ 𝑄. Then the forward
saturation of the state 𝑝 by state 𝑞, write −−→𝑆𝑎𝑡(𝑀, 𝑞, 𝑝), change the transition function 𝛿
as follows:

𝛿′(𝑠, 𝑎) =

{︃
𝛿(𝑝, 𝑎) ∪ 𝛿(𝑞, 𝑎) for 𝑠 = 𝑝,
𝛿(𝑠, 𝑎) otherwise.

Theorem 3.12 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA and 𝑝, 𝑞 ∈ 𝑄. The forward saturation
−−→
𝑆𝑎𝑡(𝑀, 𝑞, 𝑝) can be done if ←−𝐿 (𝑝) ⊆

←−
𝐿 (𝑞).

Backward saturation is done only when there exist two states in forward language
inclusion. The saturated state is enriched with all transitions incoming to a stronger state
from its ancestors.

Definition 3.13 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA and 𝑝, 𝑞 ∈ 𝑄. Then the backward
saturation of the state 𝑝 by state 𝑞, write ←−−𝑆𝑎𝑡(𝑀, 𝑞, 𝑝), change the transition function 𝛿
as follows:

𝛿′(𝑠, 𝑎) =

{︃
𝛿(𝑠, 𝑎) ∪ {𝑞} for 𝑝 ∈ 𝛿(𝑠, 𝑎),
𝛿(𝑠, 𝑎) otherwise.

Theorem 3.14 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA and 𝑝, 𝑞 ∈ 𝑄. The forward saturation
←−−
𝑆𝑎𝑡(𝑀, 𝑞, 𝑝) can be done if −→𝐿 (𝑝) ⊆

−→
𝐿 (𝑞).
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𝑞0start

𝑞

𝑝

𝑓2

𝑓1

𝑓3
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𝑞

𝑝
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𝑓3

𝑎, 𝑏

𝑎
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𝑒

𝑓
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𝑎

𝑐

𝑒

𝑓

𝑒 𝑐

Figure 3.15: Automaton 𝑀3.15 (on the left) and automaton −−→𝑆𝑎𝑡(𝑀3.15, 𝑞, 𝑝) (on the right).

3.4 Limitation of Existing Methods
Although the current methods are very robust, they are not almighty. There still exist
subgraphs of the automaton that they cannot solve (minimize). In some cases, it is a simply
minimization visible to the naked eye. However, the methods, such as state merging,
transition pruning, and saturation fail. The following paragraph demonstrates an example
of an automaton that cannot be minimized by current methods.

𝑞0start 𝑞3

𝑞2

𝑞1

𝑞4

𝑞5

𝑞6

𝑎, 𝑏

𝑎, 𝑤

𝑎, 𝑥

𝑏, 𝑦

𝑏, 𝑧

𝑐, 𝑑

𝑐, 𝑒

𝑑, 𝑒

𝑐, 𝑓

𝑑, 𝑓

Figure 3.16: Automaton 𝑀3.16 is not minimizable by existing minimization methods (merge,
saturation, neither transition pruning).

The oldest minimization method, state merging, cannot be applied on the automaton
in Figure 3.16, because the merging requires the existence of two equivalent states that
could be merged. However, there is not any equivalent state. At the same time, it is not
possible to saturate the automaton, because the saturation requires a relation of language
inclusion between a pair of states. There is no such pair. Transition pruning cannot be

17



applied, because it requires the existence of language inclusion too. We can see that any of
the current methods cannot be used for minimization of the automaton from Figure 3.16.

It is certainly obvious to the attentive reader, that the language over the state 𝑞1
is entirely covered by the language of the set of states {𝑞2, 𝑞3, 𝑞4, 𝑞5}. Therefore, it is
unnecessary for the language of the automaton. The state 𝑞1 can be eliminated. The
minimization was very trivial, but known methods were not able to do it.
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Chapter 4

Initial Observation

This work aims to develop a method for reducing the size of an automaton based on the
coverage of a part of the language of a state by a set of other states. The method will
focus only on local parts of the automaton with common successors or common ances-
tors. The minimized fragments cannot have any language inclusion, therefore the existing
minimization methods, such as state merging, transition pruning, and saturation cannot
reduce them. The ideas which can provide minimization of so far nonminimizable parts of
the automata, or based on which the standard minimization results can be optimized are
presented in this chapter.

4.1 Focused Fragments
The investigated minimization approach will focus only on sets of states, where a part of
a language of some states is represented yet by the others.

The basic case of such a set is a subgraph with a single ancestor (source) and single
successor (target). This is a subgraph 1:1. Another case is a subgraph with relation 1:N,
respectively, N:1. The automaton 𝑀4.1 shows a subgraph 1:N with only one common source
and more than one successor (target) of the set 𝑆. With an N:1 relationship, the situation is
the opposite. There is also a general relation N:N with many ancestors and many successors.
All cases are subjects of the research of the new minimization method in this thesis.

𝑞0start 𝑞2

𝑞1

𝑞3

𝑞4

𝑞5

𝑞6

𝑞7

𝑞8

𝑞9

𝑎, 𝑏

𝑎

𝑏

𝑑

𝑑, 𝑐

𝑐
𝑐

𝑐, 𝑑

𝑒, 𝑓

𝑒

𝑓

Figure 4.1: Automaton 𝑀4.1 with relation 1:N over the set of states {𝑞1, 𝑞2, 𝑞3}.
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4.2 Naive Approach
Each focused fragment can be easily reduced according to the number of letters of incoming
and outcoming transitions. Example of this minimization of the automaton from Figure 3.16
is shown below. Because the original outcoming transitions of the set 𝑆 = {𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5}
leads to the common successor with 4 different characters, the number of transitions (and
states of a set 𝑆) can be decreased to this number. After that, the transition edges going
from the common ancestor to the states of the set 𝑆 must be recalculated to keep the lan-
guage of the automaton unchanged. The number of states is reduced by one and transitions
are reduced by one too. However, from the previous Section, we know that there is a more
efficient result with only 16 transitions.

𝑞0start
𝑞2

𝑞3

𝑞4

𝑞1

𝑞5

𝑎, 𝑏, 𝑤, 𝑦, 𝑧

𝑎, 𝑏, 𝑤, 𝑧

𝑎, 𝑤, 𝑥

𝑏, 𝑦, 𝑧

𝑐

𝑑

𝑒

𝑓

Figure 4.2: Naive minimization of the automaton from Figure 3.16.

4.3 Remerging Approach
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Figure 4.3: Automaton 𝑀4.3 (on the top left), its simplified version (on the top right), and
reduced result (on the bottom).
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The example of an automaton where merge nor transition pruning cannot be used is shown
in Figure 4.3. Saturation can be used and can potentially add some transitions, that
can make merge or transition pruning usable. But let us show the reduction of such an
automaton without the saturation. The input automaton does not have any language
equivalent state nor states in bilateral language inclusion. The merge and transition pruning
cannot be used. If we increase the size of the automaton by adding states that will overtake
some parts of languages of the strongest states (𝑞1 and 𝑞3), it can be seen that many language
equivalences occur now. It is necessary to merge states in a correct order. Merging of states
𝑝0 and 𝑝2 based on the backward language equivalence, and then the states 𝑝1, 𝑝3, and 𝑝4
based on the backward language equivalence allows a future merge of state 𝑝0,2 (created by
merge of 𝑝0 and 𝑝2) and state 𝑝1,3,4. This merge order gives the most optimal result. On
the contrary, if we merge states 𝑝1 and 𝑝3 based on the backward language equivalence and
then states 𝑝2 and 𝑝4 based on the forward language equivalence, we get stuck. No more
merges can be performed on such the automaton. We get a sub-optimal solution with one
more state. Let us call the problem of the maximization of performed merge a the problem
of optimal merge defined in 5.22.

4.4 The Problem of Optimal Merge
The optimal order of state merging, based on an equivalence, does not exist [23]. Various
orders can have different results, with the same language.

During the merge, the state can be in a backward language equivalence relation with
a set of states and a forward language equivalence relation with another set of states. Lem-
mas say that it is safe to merge states only by one language equivalence. The newly created
stat will have the same language (backward for merge performed based on the backward
language equivalence and forward for merge based on the forward language equivalence).
And new merging does not need recalculation of the language relations.

Lemma 4.4 If ←−𝐿 (𝑝) ≡
←−
𝐿 (𝑞) and states 𝑝 and 𝑞 are merged into 𝑚, then ←−𝐿 (𝑚) ≡

←−
𝐿 (𝑝) ≡

←−
𝐿 (𝑞).

If the states 𝑝 and 𝑞 were merged into the state 𝑚 base on the backward language
equivalence, then the newly created state 𝑚 can be used in the next backward merging
based on the old calculations of language equivalence instead of states 𝑝 or 𝑞, but not in
the merging based on the forward language equivalence. The language can be changed.

Lemma 4.5 If −→𝐿 (𝑝) ≡
−→
𝐿 (𝑞) and states 𝑝 and 𝑞 are merged into 𝑚, then −→𝐿 (𝑚) ≡

−→
𝐿 (𝑝) ≡

−→
𝐿 (𝑞).

If the states 𝑝 and 𝑞 were merged into the state 𝑚 base on the forward language equiv-
alence, then the newly created state 𝑚 can be used in the next forward merging based on
the old calculations of language equivalence instead of states 𝑝 or 𝑞, but not in the merging
based on the backward language equivalence. The language can be changed.

The merge of states 𝑝 and 𝑞 based on the bilateral language inclusion alway block newly
created state 𝑚 from further merge (backward and forward), based on the old calculation
of language inclusions, because the language (backward and forward) of a state 𝑚 might
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not be equivalent to the language of the state 𝑝 nor 𝑞 as shown below. For this reason, the
investigated reduction approach does not use the bilateral language inclusion for merge.
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Figure 4.6: The NFA 𝑀4.6, the states 𝑞9 and 𝑞10 will be merged.

Automaton 𝑀4.6 shows that it is possible to arbitrarily merge either states 𝑞8 and 𝑞9 or
states 𝑞9 and 𝑞10. However, what may not be obvious at first glance is the impossibility of
merging states 𝑞9 and 𝑞10 first and then states 𝑞8 and 𝑞9.
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Figure 4.7: Automaton 𝑀 ′
4.6, after small adjustments and merging of 𝑞10 and 𝑞9 in Au-

tomaton 𝑀4.6.

Automaton 𝑀 ′
4.6 demonstrates the inequivalence of a language of states 𝑞9 or 𝑞10 and

the merge result 𝑞9,10. The new state 𝑞9,10 can not be used in the next merge without
recalculation of a language relations. If we try to merge 𝑞8 and 𝑞9 (𝑞9 is 𝑞9,10 after merge)
on Automaton 𝑀 ′

3.10, the language will be changed.
Because some states can be in forward and backward language equivalence with other

states, it is hard to predict the most optimal order of state merging to get a maximal
merged states. The main question is: “According to which equivalence merge states that
are in backward and forward language equivalence, to get the most optimal result?” The
technology that will answer this question is SAT solver, which will be used to determine
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the most appropriate merging procedure. The solver information will be the cornerstone
for SAT-solver-based automata minimization algorithm, which is described in the following
chapter.
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Chapter 5

SAT Solver in Minimization

This Chapter presents the main methods used in the minimization of nondeterministic finite
automata using SAT solver. The SAT-solver-based approach minimizes the automaton by
parts (subgraphs), which consists of a group of states with a common ancestors or common
successors. The set of these states is called a family. The definition and family lookup
algorithm are described in Section 5.1. To get the automaton from its local minimum and
allow a more minimal solution, it is necessary to replace this family with a new set of
states which has the same language, but each state has maximal one incoming and one
outcoming transition. This multiplication process is presented in Section 5.2. After the
multiplication, the language relations of a new multiplied state of a family are coded for
SAT solver. The special approximation of a language equivalence is used in SAT-solver-
based automata minimization. The approximation algorithm is defined in Section 5.3. The
solver gives information on how to merge states of the family so that the final number of
merged states is maximal. The coding principles and an example are shown in Section 5.4.
The minimization algorithm using approaches such as family selection, state multiplying,
and solver task coding, is defined in Section 5.5.

5.1 Family of States
The algorithm using the SAT solver reduces the automaton by parts which consists of a set
of states (family) with a common successors or common ancestors and with a same transition
letter. Only two basic groups of states (proto-families) and then their combinations will be
minimized.

The first group is defined by a common ancestor which marks as a proto-family the states
into which leads similarly notated transitions. These transitions create nondeterminism.
That means that there is a state in which a backward language (or a piece of a backward
language) is already covered by another state of this proto-family. This condition does
not apply to the ancestor itself. Common ancestor of the family cannot be its member.
States of the family cannot have any direct transitions between each other. The state of
the proto-family from or to which leads a transition from another state of this proto-family
must be eliminated from the proto-family. The proto-family with a common ancestor is
called a forward proto-family, or simply 1:N.
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Definition 5.1 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA, state 𝑠 ∈ 𝑄, and letter 𝑎 𝑖𝑛 Σ. The
forward proto-family (1:N) of the state 𝑠 and the letter 𝑎 is a set 𝑃 ⊆ 𝑄 such that:

• 𝑞 ∈ 𝑃 =⇒ 𝑠
𝑎−→ 𝑞 ∈ 𝛿,

• 𝑝, 𝑞 ∈ 𝑃 =⇒ @ 𝑏 ∈ Σ such that 𝑝 𝑏−→ 𝑞 ∈ 𝛿,

• 𝑃 is a maximal set satisfying 1 and 2.

The complement of the 1:N proto-family is a proto-family with a common successor. All
states from which lead a transition into the common successor with the same assignment
belong to the same proto-family. The backward nondeterminism indicates that the forward
language of some state of the proto-family might be already represented by another state
of this proto-family. As in the previous definition, this condition does not apply to the
successor itself. Common successors of the proto-family cannot be its member. States of
the proto-family cannot have any direct transition between each other. This proto-family
is called a backward proto-family, or simply N:1.

Definition 5.2 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA, state 𝑠 ∈ 𝑄, and letter 𝑎 𝑖𝑛 Σ. The
backward proto-family (N:1) of the state 𝑠 and the letter 𝑎 is a set 𝑃 ⊆ 𝑄 such that:

• 𝑞 ∈ 𝑃 =⇒ 𝑞
𝑎−→ 𝑠 ∈ 𝛿,

• 𝑝, 𝑞 ∈ 𝑃 =⇒ @ 𝑏 ∈ Σ such that 𝑝 𝑏−→ 𝑞 ∈ 𝛿,

• 𝑃 is a maximal set satisfying 1 and 2.

Definition 5.3 The pre-family is 1) family, 2) union of proto-families which have inter-
section, 3) nothing else.

Definition 5.4 The family is a maximal subset of pre-family, such that none of the family
states has a transition between them.

In the special cases where the family has only one ancestor or successor, the number
of states needed for a replacement of an existing family can be predicted as a minimum of
theorems 5.5 or 5.7.

Theorem 5.5 The family 𝐹 ⊆ 𝑄 1:N, with only one ancestor, can be minimized to 𝑛

states by a redistribution of transitions. Where 𝑛 = |
←−
𝐿 1(𝐹, 𝐹 )| is the cardinality of a pure

backward language with maximal distance 1 of the family 𝐹 withou using the states of 𝐹 .

Based on the theorem 5.5, if the family 𝐹 ⊆ 𝑄, consists of 4 states, has only one successor
𝑠 ∈ 𝑄 and the transitions going from the successor to states of the family are assigned by
the letters 𝑎, 𝑏, 𝑐 ∈ Σ (the size of pure backward language with maximal distance 1 of the
family is 3), then the family could be minimized to 3 states. Each new state will handle
one incoming letter. Outcoming transitions of states of the family must be recombined to
cover the original language. This example of recombination is shown in Figure 5.6. If the
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family satisfies both theorems (the family has only one ancestor and only one successor),
then the family can be minimized to the minimum count of states from both theorems.
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Figure 5.6: Automaton on the left has a family consisting of states 𝐹 = {𝑞0, 𝑞1, 𝑞2, 𝑞3}.
|
←−
𝐿 1(𝐹, 𝐹 )| = 3. That means that the family can be minimized to 3 states.

Theorem 5.7 The family 𝐹 ⊆ 𝑄 N:1, with only one successor, can be minimized to 𝑛

states by a redistribution of transitions. Where 𝑛 = |
−→
𝐿 1(𝐹, 𝐹 )| is the cardinality of the pure

forward language with maximal distance 1 of the family 𝐹 without using the states of 𝐹 .

Some states can be assigned to more than one family. Take an example from Figure 5.6.
The states 𝑞0 and 𝑞3 are in the forward family, created by an ancestor 𝑠 and a transition
letter 𝑎. The second forward family consists of states 𝑞0, 𝑞1, and 𝑞2, created by an ancestor
𝑠 and a transition letter 𝑏. It is necessary to join the families with a common state, to get
the correct and the most useful information about languages of states in a family. Here, the
state 𝑞0 is in both families. Therefore, these two families will be joined into one. Sometimes,
the state can be in more forward (1:N) and backward (N:1) families.

The problem of joining sets (families) with a common element (state) can be easily
solved in graph theory as a problem of finding connected components. Algorithm1 5.8
describes an approach for joining sets with a common element. This algorithm will be used
not only for merging a set of families with a common element, but for merging a set of
equivalent pairs of states with a common state.

The algorithm creates equivalence classes of transitive and reflexive closure of the neigh-
bour relation on states, where states are neighbors if they appear together in some of the
input sets. The algorithm creates interconnections between elements (vertices) of each set
(proto-family). After the initialization of a graph, the walk from each vertex is made. Walks
detect isolated graph components. The isolated graph component stands for a joined set
(family). The result is a set of graph components (set of joined families).

1 algorithm is taken from https://www.geeksforgeeks.org/python-merge-list-with-common-
elements-in-a-list-of-lists/
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Algorithm 5.8 The algorithm for joining sets with a common element
Input: a 𝑆 of sets to join.
Output: a set with joined sets.

1: 𝑗𝑜𝑖𝑛𝑒𝑑𝑆𝑒𝑡𝑠← ∅
2: 𝐺← (𝑉,𝐸) ◁ unoriented graph
3: 𝑉 =

⋃︀
𝑆

4: 𝐸 = {{𝑣1, 𝑣2} | ∀𝑇 ∈ 𝑆 : (𝑣1, 𝑣2) ∈ 𝑇 × 𝑇}
5: for 𝑣𝑒𝑟𝑡𝑒𝑥 ∈ 𝑉 do ◁ make walks in the graph
6: 𝑔𝑟𝑎𝑝ℎ𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡← ∅
7: if 𝑣𝑒𝑟𝑡𝑒𝑥 /∈ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 then
8: 𝑜𝑝𝑒𝑛𝑉 ← {𝑣𝑒𝑟𝑡𝑒𝑥}
9: while 𝑜𝑝𝑒𝑛𝑉 ̸= ∅ do

10: 𝑡𝑚𝑝𝑉𝑒𝑟𝑡𝑒𝑥← 𝑜𝑝𝑒𝑛𝑉.𝑝𝑜𝑝()
11: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {𝑡𝑚𝑝𝑉𝑒𝑟𝑡𝑒𝑥}
12: 𝑜𝑝𝑒𝑛𝑉 ← 𝑜𝑝𝑒𝑛𝑉 ∪ {𝑣2 | {𝑣𝑒𝑟𝑡𝑒𝑥, 𝑣2} ∈ 𝐻} ∖ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑
13: 𝑔𝑟𝑎𝑝ℎ𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡← 𝑔𝑟𝑎𝑝ℎ𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ∪ {𝑡𝑚𝑝𝑉𝑒𝑟𝑡𝑒𝑥}
14: end while
15: 𝑗𝑜𝑖𝑛𝑒𝑑𝑆𝑒𝑡𝑠.𝑎𝑑𝑑(𝑔𝑟𝑎𝑝ℎ𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡)
16: end if
17: end for
18: return 𝑗𝑜𝑖𝑛𝑒𝑑𝑆𝑒𝑡𝑠
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Figure 5.9: Two forward proto-families by a letter 𝑎 (𝑞0, 𝑞1) and by a letter 𝑏 (𝑞0, 𝑞3) and
one backward proto-family by a letter 𝑥 (𝑞2, 𝑞3) are in the given automaton. The graph on
the right represents a neighbor relation between states (the edge notation is additional).
The graph contains only one isolated component (family). All families will be joined in one
(𝑞0, 𝑞1, 𝑞2, 𝑞3).

After joining the classical proto-families 1:N or N:1, new generalized types of families
can occur. The most general type of the family is a family with more common ancestors
and successors signed as N:N. A special type of a family is a family with only one ancestor
and one successor, this is the family 1:1. All these types are shown in Figure 5.10.
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Figure 5.10: (From left to right and top to bottom). The top left automaton 𝑀𝑝 repre-
sents a forward family 1:N (states 𝑝1, 𝑝2, and 𝑝3). The top right automaton 𝑀𝑞 displays
an opposite family, the backward family N:1 (of states 𝑞2, 𝑞3, and 𝑞4). The bottom left
automaton 𝑀𝑟, shows a combination of forward and backward families, the family N:N (of
state 𝑟2, 𝑟3, 𝑟4). The simplest case of a combination of a forward and backward families is
the family 1:1 viewed by an automaton 𝑀𝑠 in the bottom right.

The family finding algorithm creates for each state the forward and backward proto-
family according to the definitions. The forward proto-family of state 𝑠 is created for each
letter from forward transitions. The state 𝑠 itself is not included in proto-family. The state
𝑞 is removed from the proto-family if from this state leads a transition to the other state
of the proto-family. The backward proto-families of a state 𝑠 are created similarly. All
families with only one state are discarded. After that. Families with a common state are
joined by Algorithm 5.11. At the end, the set of families contains the biggest 1:N, N:1, 1:1,
and N:N families.
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Algorithm 5.11 The algorithm for finding families of states
Input: NFA 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ).
Output: a set of families.

1: 𝑓𝑎𝑚𝑖𝑙𝑖𝑒𝑠← ∅
2: for 𝑠 ∈ 𝑄 do
3: for 𝑎 ∈ Σ do
4: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠← ∅
5: 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠← ∅
6: for 𝑠𝑢𝑐𝑐 ∈ 𝛿(𝑠, 𝑎) ∖ {𝑠} do ◁ for all successors of a state 𝑠 by a letter 𝑎
7: if 𝑞 /∈ 𝛿(𝑠𝑢𝑐𝑐, 𝑦)∪𝛿−1(𝑠𝑢𝑐𝑐, 𝑦) where 𝑦 ∈ Σ and 𝑠𝑢𝑐𝑐 ∈ 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠∖{𝑞} then
8: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠← 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 ∪ {𝑠𝑢𝑐𝑐}
9: end if

10: end for
11: for 𝑎𝑛𝑐 ∈ 𝛿−1(𝑠, 𝑎) ∖ {𝑠} do ◁ for all ancestors of a state 𝑠 by a letter 𝑎
12: if 𝑞 /∈ 𝛿(𝑎𝑛𝑐, 𝑦) ∪ 𝛿−1(𝑎𝑛𝑐, 𝑦) where 𝑦 ∈ Σ and 𝑎𝑛𝑐 ∈ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠 ∖ {𝑞} then
13: 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠← 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠 ∪ {𝑎𝑛𝑐}
14: end if
15: end for
16: if |𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠| > 1 then
17: 𝑓𝑎𝑚𝑖𝑙𝑖𝑒𝑠.𝑎𝑑𝑑(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠) ◁ add 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 as a family to a set of families
18: end if
19: if |𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠| > 1 then
20: 𝑓𝑎𝑚𝑖𝑙𝑖𝑒𝑠.𝑎𝑑𝑑(𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠) ◁ add 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠 as a family to a set of families
21: end if
22: end for
23: end for
24: 𝑓𝑎𝑚𝑖𝑙𝑖𝑒𝑠← 𝑗𝑜𝑖𝑛𝑆𝑒𝑡𝑠𝑊𝑖𝑡ℎ𝐶𝑜𝑚𝑚𝑜𝑛𝐸𝑙𝑒𝑚(𝑓𝑎𝑚𝑖𝑙𝑖𝑒𝑠)
25: return 𝑓𝑎𝑚𝑖𝑙𝑖𝑒𝑠

To decrease the solver running time, it is suitable to split a family into smaller groups
according to the language equivalence pairs. States of each group will have a language
equivalence relations (backward or forward) only with other states of the same group. This
will minimize the problem of optimal merge. The pair of equivalent states will be assigned
to the group by sets joining Algorithm 5.8, which takes a union of forward and backward
equivalent pairs. For example, a family {𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5}, where the backward language
equivalent state pairs are {{𝑞0, 𝑞1}, {𝑞3, 𝑞4}} and a forward language equivalent pairs are
{{𝑞0, 𝑞2}, {𝑞3, 𝑞5}} will be splitted to two subfamilies {𝑞0, 𝑞1, 𝑞2} and {𝑞3, 𝑞4, 𝑞5}. Smaller
(sub)families make coding easier and solver decisions faster.

5.2 States Multiplication
The SAT solver minimization approach gives information on how to optimally merge states.
The states could be merged only if they have equivalent languages. To increase potentially
mergeable states (states with equivalent languages), it is necessary to multiply these states.

The multiplication replaces one state with a new set of states. The new states cover the
same language as the original state, but have maximal one incoming and one outcoming
transition, self-loops do not count. Let the state 𝑠 has 𝑛 incoming and 𝑛 outcoming tran-
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sitions. Then the state 𝑠 will be multiplied to 𝑛2 new states. If two states (𝑠0 and 𝑠1) in
a row (𝑠1 is the successor of 𝑠0) are multiplied, then the number of new states will be 𝑛3.
In general, if 𝑚 is a number of multiplied states in a row, where each has 𝑛 incoming and
𝑛 outcoming transitions, then the number of new states will be 𝑚𝑛+1. It is very hard, even
impossible, to multiply all states in an automaton to satisfy the condition of maximal one
incoming and maximal one outcoming transition.

It is suitable to focus on small automaton parts (best with a quadratic complexity),
because multiplying all states of an automaton is expensive. The main idea is that the
equivalent (or similar) language of states or even an automaton (subgraph) is caused by
a connon successor or common ancestor and transitions with the same letter which leads
to or from this common state. And that is the main existential condition of the family.
Therefore, only families of states are selected for multiplying. The family on which applies
the condition of maximal one incoming and maximal one outcoming transition is called the
multiplied family.

Definition 5.12 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA and 𝑆 ⊆ 𝑄 a family. The family 𝑆
is a multiplied family if the following condition applies.

∀𝑠 ∈ 𝑆

(︂∑︁
𝑎∈Σ
|𝛿(𝑠, 𝑎) ∖ {𝑠}| ≤ 1 ∧

∑︁
𝑎∈Σ
|𝛿−1(𝑠, 𝑎) ∖ {𝑠}| ≤ 1

)︂
(5.13)

In some cases, the multiplication cannot be done so straightforwardly as only a combi-
nation of incoming and outcoming transitions. The first case is a self-loop. Each self-loop
represents an infinite set of words, so it cannot be transferred to a limited count of states
(without a loop), without changing an automaton language. Therefore, self-loops cannot
be multiplied. If the state 𝑠 is multiplied and has a self-loop, then the multiplication is done
only for incoming and outcoming transitions without the self-loop. The entire self-loop is
duplicated to each newly created state. The next case is the final or initial state. The
solution is much easier here. If the original state is final or initial, then each new state
created by a multiplication of the original state will be final or initial too.

Let us show why the states with a transition to another state from a family are discarded
by a family finding algorithm. If two states 𝑟 and 𝑠 of a family are interconnected (no meter
the direction), then it is not possible to satisfy the condition of maximal one incoming and
maximal one outcoming transition. The multiplying of the states 𝑟 and 𝑠 will only increase
the count of interconnected pairs.
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Figure 5.14: The family of states 𝑞0 and 𝑞1 was multiplied. The automaton on the right is
the left autaton after family multiplication.

It is not necessary to detect if the states of the family belong to an automaton cycle
(long loop). Long loops do not have any effect on state multiplication as shown in Figure
5.15. The state ancestor and successor in a long loop behave only as standard ancestors or
successors.
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Figure 5.15: The family of states 𝑞0 and 𝑞1 of the left automaton was multiplied. The state
𝑞0 is in the long loop. The automaton on the right shows the situation after multiplication.

31



Algorithm 5.16 Family of states multiplying algorithm
Input: NFA 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ), and 𝑓𝑎𝑚𝑖𝑙𝑦 (set) of states.
Output: New family of states created by a multiplication.

1: 𝑛𝑒𝑤𝐹𝑎𝑚𝑖𝑙𝑦 ← ∅
2: for 𝑠𝑡𝑎𝑡𝑒 ∈ 𝑓𝑎𝑚𝑖𝑙𝑦 do
3: 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐴𝑛𝑐← 𝑎𝑛𝑐(𝑠𝑡𝑎𝑡𝑒)
4: if 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐴𝑛𝑐 = ∅ then
5: 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐴𝑛𝑐← {∅}
6: end if
7: for 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 ∈ 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐴𝑛𝑐 do
8: 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑆𝑢𝑐𝑐← 𝑠𝑢𝑐𝑐(𝑠𝑡𝑎𝑡𝑒)
9: if 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑆𝑢𝑐𝑐 = ∅ then

10: 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑆𝑢𝑐𝑐← {∅}
11: end if
12: for 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 ∈ 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑆𝑢𝑐𝑐 do
13: for 𝑏𝑤𝐿𝑒𝑡𝑡𝑒𝑟 ∈ 𝐿1(𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟, 𝑠𝑡𝑎𝑡𝑒, 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟) do
14: for 𝑓𝑤𝐿𝑒𝑡𝑡𝑒𝑟 ∈ 𝐿1(𝑠𝑡𝑎𝑡𝑒, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟, 𝑠𝑡𝑎𝑡𝑒) do
15: 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒← a fresh state /∈ 𝑄
16: 𝑛𝑒𝑤𝐹𝑎𝑚𝑖𝑙𝑦 ← 𝑛𝑒𝑤𝐹𝑎𝑚𝑖𝑙𝑦 ∪ {𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒}
17: if 𝑠𝑡𝑎𝑡𝑒 ∈ 𝐹 then
18: 𝐹 ← 𝐹 ∪ {𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒}
19: end if
20: if 𝑠𝑡𝑎𝑡𝑒 ∈ 𝐼 then
21: 𝐼 ← 𝐼 ∪ {𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒}
22: end if
23: if 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 ̸= ∅ then
24: 𝛿(𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟, 𝑏𝑤𝐿𝑒𝑡𝑡𝑒𝑟)← 𝛿(𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟, 𝑏𝑤𝐿𝑒𝑡𝑡𝑒𝑟) ∪ {𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒}
25: end if
26: if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑡𝑟 ̸= ∅ then
27: 𝛿(𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒, 𝑓𝑤𝐿𝑒𝑡𝑡𝑒𝑟)← 𝛿(𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒, 𝑓𝑤𝐿𝑒𝑡𝑡𝑒𝑟) ∪ {𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟}
28: end if
29: for 𝑙𝑜𝑜𝑝𝐿𝑒𝑡𝑡𝑒𝑟 ∈ 𝐿1(𝑠𝑡𝑎𝑡𝑒, 𝑠𝑡𝑎𝑡𝑒, 𝑠𝑡𝑎𝑡𝑒) do
30: 𝛿(𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒, 𝑙𝑜𝑜𝑝𝐿𝑒𝑡𝑡𝑒𝑟)← 𝛿(𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒, 𝑙𝑜𝑜𝑝𝐿𝑒𝑡𝑡𝑒𝑟)∪ {𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒}
31: end for
32: end for
33: end for
34: end for
35: end for
36: remove 𝑠𝑡𝑎𝑡𝑒 and its transitions form 𝑀
37: end for
38: return 𝑛𝑒𝑤𝐹𝑎𝑚𝑖𝑙𝑦

Algorithm 5.16 multiplies states in a given family and returns a multiplied family. Each
state of the original family is multiplied to 𝑛 states, specified by a combination of pure
incoming and pure outcoming transitions. If a state has a self-loop, then the whole self-
loop is assigned to each new state. The original state is substituted by a set of new states,
even if the state already applies to the condition of maximal one incoming and outcoming
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transition. The original state is removed after the multiplication. The returned family
consists only of newly created states.

5.3 Approximation of Language Equivalence
The language equivalence calculation in a SAT-solver-based minimization is very hard be-
cause the reduction algorithm multiplies a family to many states (even hundreds of states).
The calculation of the simulation relation is slow too. The multiplication is done many times
in a minimization process and families are getting bigger and bigger. It is necessary to calcu-
late only an under-approximation of language equivalence. The state equivalence checking
algorithm with defined distance is an adaptation of an automata equivalence checking Al-
gorithm 2.14. The approximation approach has a specified distance, on which the language
equivalence of two states must be confirmed, otherwise, the states are not equivalent.

Algorithm 5.17 The approximation algorithm for forward language equivalence checking
Input: NFA 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ), two state 𝑞, 𝑟 ∈ 𝑄, and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑎𝑥 ∈ N
Output: “Yes” if −→𝐿 (𝑞) ≡

−→
𝐿 (𝑟), otherwise “No”

1: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑← ∅ ◁ contains allowable next states after reaching 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑎𝑥
2: 𝑐𝑙𝑜𝑠𝑒𝑑← ∅
3: 𝑡𝑜𝑑𝑜← {(𝑞, 𝑟)}
4: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒← 0
5: while 𝑡𝑜𝑑𝑜 ̸= ∅ do
6: Pick (𝑋,𝑌 ) ∈ 𝑡𝑜𝑑𝑜 and remove it
7: if (𝑋, 𝑌 ) /∈ 𝑐𝑙𝑜𝑠𝑒𝑑 then
8: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪𝑋 ∪ 𝑌
9: if 𝑋 = 𝑌 then

10: continue
11: end if
12: if (𝑋, 𝑌 ) is bad pair then
13: return “No, −→𝐿 (𝑞) ̸=

−→
𝐿 (𝑟)”

14: end if
15: for 𝑎 ∈ Σ do
16: if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑎𝑥 then
17: if 𝛿(𝑋, 𝑎) ∖ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ̸= ∅ ∨ 𝛿(𝑌, 𝑎) ∖ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ̸= ∅ then
18: return “No, −→𝐿 (𝑞) ̸=

−→
𝐿 (𝑟)”

19: end if
20: end if
21: 𝑡𝑜𝑑𝑜← 𝑡𝑜𝑑𝑜 ∪ {(𝛿(𝑋, 𝑎), 𝛿(𝑌, 𝑎))}
22: end for
23: 𝑐𝑙𝑜𝑠𝑒𝑑← 𝑐𝑙𝑜𝑠𝑒𝑑 ∪ {(𝑋,𝑌 )}
24: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 1
25: end if
26: end while
27: return “Yes −→𝐿 (𝑞) ≡

−→
𝐿 (𝑟)”

An empty set 𝑐𝑙𝑜𝑠𝑒𝑑 is initialized at the beginning of the algorithm. The 𝑐𝑙𝑜𝑠𝑒𝑑 set
will store the already processed pairs and prevents the algorithm from an infinite loop.
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Thereafter, the set 𝑡𝑜𝑑𝑜 will be initialized, and the pair ({𝑝}, {𝑞}) is inserted. The pair
of a set of states (𝑋,𝑌 ) is equivalent if 𝑋 and 𝑌 are identical. The pair (𝑋,𝑌 ) is bad if
one of the sets is empty, but the other is not, or if a state of 𝑋 or 𝑌 is final whereas the
other is not. Otherwise, successors for 𝑋 and 𝑌 are generated into 𝑡𝑜𝑑𝑜. If the set 𝑡𝑜𝑑𝑜 is
empty, then the languages of states are equivalent. After reaching a maximal destination,
the calculation can continue, but only with states in 𝑣𝑖𝑠𝑖𝑡𝑒𝑑. Any other state means that
the language equivalence cannot be determined at the given distance. The algorithm for
backward language equivalence checking uses a backward transition function 𝛿−1 instead
of 𝛿.
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Figure 5.18: States 𝑞1 and 𝑞2 are backward equivalent at distance 1, but states 𝑞3 and 𝑞4
are not. Nevertheless, the states 𝑞3 and 𝑞4 are equivalent on a distance 2.

5.4 SAT Solver Coding
As has been already mentioned, the SAT solver gives information on how to perform the
most optimal merging of states of the family. The main information for the solver coding
is language equivalence. Only states with forward or backward language equivalence can
be merged. The problem of optimal state merging is that some states can be in more than
one language equivalence. For example, state 𝑞1 is in backward language equivalence with
a state 𝑞2 and in forward language equivalence with state 𝑞0. This example is shown in
Figure 5.19.
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Figure 5.19: A suboptimal merge of an automaton on the left. States 𝑞1 and 𝑞2 were merged
based on a backward language equivalence. This backward merge blocks a merge of states
𝑞0, 𝑞1 and 𝑞2, 𝑞3. based on the forward language equivalence.

The minimization cannot be optimal if the merge is not performed based on the SAT
solver information. For example, if a state 𝑞1 is merged with a state 𝑞2 based on a backward
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language equivalence, then the state 𝑞0 cannot be merged with a state 𝑞1 based on a forward
language equivalence. Every state can be merged based on constant language equivalence
information (the information is not recalculated after merge) only with backward language
equivalent states or only with forward language equivalent states, not with states from both
groups. The main question is: Which states merge to get the most optimal solution? Let
the SAT solver decide.

For the specification of SAT solver problem, it is necessary to define a set of pairs of
states that can be merged based on the backward language equivalence and the set of pairs
of states that can be merged based on the forward language equivalence.

Definition 5.20 Let ←−𝐸𝑞 be a set of pairs of states with equivalent backward language. The
set of backward equivalent pairs of states is ≡𝑏= {{𝑞, 𝑟} | (𝑞, 𝑟) ∈

←−
𝐸𝑞, 𝑞 ̸= 𝑟}

Definition 5.21 Let −→𝐸𝑞 be a set of pairs of states with equivalent forward language. The
set of forward equivalent pairs of states is ≡𝑓= {{𝑞, 𝑟} | (𝑞, 𝑟) ∈

−→
𝐸𝑞, 𝑞 ̸= 𝑟}

The SAT solver calculates the most effective solution, which provides the maximum
merged pairs of states, where each state must belong only to the backward equivalent pairs
or to the forward equivalent pairs.

Definition 5.22 The problem of optimal merge is a problem of maximizing the subsets
𝑃 ⊆≡𝑓 and 𝑅 ⊆≡𝑏, such that

⋃︀
𝑃 ∩

⋃︀
𝑅 = ∅.

With definition of the solver problem and the definition of forward and backward equiv-
alent pairs, the SAT solver coding of this problem can be described. Not only the variables
and formulas will be defined in the following sections, but also their count. The size (count
of formulas) of the solver problem is the main key for SAT solver running time. The next
goal in the future will be to decrease these numbers and speed up SAT solver decision.

5.4.1 Variables

Maximal two boolean variables will be used for each state of the subfamily in a solver
coding. The family is splitted by Algorithm 5.8. There is no language equivalence relation
between two states from different subfamilies. Splitting will speed up solver calculation.
A prefix B is used for the states in ≡𝑏 and a prefix F is used for the states in ≡𝑓 . The
value of the variable signifies if a state is merged based on forward or backward language
equivalence.

Definition 5.23 Let ≡𝑏 be a set of backward equivalent pairs of states and ≡𝑓 be a set
of forward equivalent pairs of states. Then the solver variables are defined as 𝑉𝑎𝑟𝑠 =
{𝐵𝑞 | 𝑞 ∈

⋃︀
≡𝑏} ∪ {𝐹𝑞 | 𝑞 ∈

⋃︀
≡𝑓}.

Let a subfamily has a set of backward language equivalent pairs of states ≡𝑏= {(𝑞0, 𝑞1),
(𝑞2, 𝑞3)} and forward language equivalent pairs ≡𝑓= {(𝑞0, 𝑞3), (𝑞4, 𝑞5), (𝑞2, 𝑞5)}. Then the
variables are 𝐹𝑞0, 𝐹𝑞1, 𝐹𝑞2, 𝐹𝑞3, 𝐵𝑞0, 𝐵𝑞2, 𝐵𝑞3, 𝐵𝑞4 and 𝐵𝑞5.
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One state can be merged only based on the backward language equivalence or based on
the forward language equivalence. Therefore, the maximal number of variables used in the
SAT solver coding will be twice the number of states.

Lemma 5.24 Let the family has 𝑛 members. The number of solver variables is maximal:

𝑉 𝑎𝑟𝑠𝑐𝑛𝑡(𝑛) = 2𝑛 (5.25)

5.4.2 Merge Formula

The language equivalence (backward or forward) and thus the merge of two states based on
the language equivalence (backward or forward) is coded by logical conjunction. Two states
can be merged only if both these states allow the merge. The states 𝑝 and 𝑞 with backward
language equivalence can be merged only if the state 𝑝 and 𝑞 are merged with some other
state based on the backward language equivalence. That means that the formula 𝐵𝑝 ∧ 𝐵𝑞
must be truly evaluated. On the other hand, only some pairs of states in backward and
some pairs of states in forward language equivalent pairs of states will be merged. Not all
logical conjunctions that symbolize state merge will be evaluated by true. The SAT solver
task is to maximize the count of truly evaluated conjunctions. For this reason, the logical
conjunctions are connected with logical disjunction.

Definition 5.26 Let ≡𝑏 be a set of backward equivalent pairs of states and ≡𝑓 be a set of
forward equivalent pairs of states. Then the merge formula is defined as:⋁︁

𝜑𝑀𝑒𝑟𝑔𝑒 (5.27)

where 𝜑𝑀𝑒𝑟𝑔𝑒 = {𝐵𝑞 ∧𝐵𝑟 | (𝑞, 𝑟) ∈≡𝑏} ∪ {𝐹𝑞 ∧ 𝐹𝑟 | (𝑞, 𝑟) ∈≡𝑓}.

Let the set of backward language equivalent paris be ≡𝑏= {(𝑞0, 𝑞1), (𝑞2, 𝑞3)} and the set
of forward language equivalent paris be ≡𝑓= {(𝑞0, 𝑞3), (𝑞4, 𝑞5), (𝑞2, 𝑞5)}. Then the merge
formula is (𝐵𝑞0 ∧𝐵𝑞1) ∨ (𝐵𝑞2 ∧𝐵𝑞3) ∨ (𝐹𝑞0 ∧ 𝐹𝑞3) ∨ (𝐹𝑞4 ∧ 𝐹𝑞5) ∨ (𝐹𝑞2 ∧ 𝐹𝑞5).

Because in the worst case, all states can be backward and forward language equivalent,
the maximal count of logical conjunctions (that code merge of two states) will be the
combination of backward and forward language equivalent pairs of states.

Lemma 5.28 Let the family has 𝑛 members. The maximal count of a logical conjunction
in the merge formula is:

𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑐𝑛𝑡(𝑛) = 2 ·
(︂
𝑛

2

)︂
= 2 · 𝑛!

(𝑛− 2)! · 2!
= 𝑛 · (𝑛− 1) (5.29)

5.4.3 Merge Rules

The most important part of the information in SAT solver coding are the rules, which block
the merge of the state based on a forward language equivalence after performing the merge
based on a backward equivalence, and vice versa. The rule must be created for states that
are in both forward and backward language equivalence.
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Definition 5.30 Let ≡𝑏 be a set of backward equivalent pairs of states and ≡𝑓 be a set of
forward equivalent pairs of states. Then the merge rules formula is defined as:⋀︁

𝜑𝑅𝑢𝑙𝑒𝑠 (5.31)

where 𝜑𝑅𝑢𝑙𝑒𝑠 = {𝐵𝑞 =⇒ ¬𝐹𝑞 | {𝑞, 𝑟} ∈≡𝑏 ∧{𝑞, 𝑠} ∈≡𝑓 , where 𝑞, 𝑟, 𝑠 ∈ 𝑄}.

Let the set of backward language equivalent paris be ≡𝑏= {(𝑞0, 𝑞1), (𝑞2, 𝑞3)} and the set
of a forward language equivalent paris be ≡𝑓= {(𝑞0, 𝑞3), (𝑞4, 𝑞5), (𝑞2, 𝑞5)}. Then the merge
rule formula is (𝐵𝑞0 =⇒ ¬𝐹𝑞0) ∧ (𝐵𝑞2 =⇒ ¬𝐹𝑞2) ∧ (𝐵𝑞3 =⇒ ¬𝐹𝑞3).

In the worst case, all states will be used in the forward and backward language equivalent
pairs of states. That means that the rule will be created for every state.

Lemma 5.32 Let the family has 𝑛 members. The maximal count of implications in a merge
rule formula is:

𝐼𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑐𝑛𝑡(𝑛) = 𝑛 (5.33)

5.4.4 Coding

With the information, such as solver variables, merge formulas, and rules, the merge prob-
lem can be coded.

Definition 5.34 The minimization formula is defined as a logical confunction of merge
formula and merge rules formula:

𝑀𝑒𝑟𝑔𝑒𝐹𝑜𝑟𝑚𝑢𝑙𝑎 ∧ 𝑀𝑒𝑟𝑔𝑒𝑅𝑢𝑙𝑒𝑠𝐹𝑜𝑟𝑚𝑢𝑙𝑎. (5.35)

Let the set of backward language equivalent paris be ≡𝑏= {(𝑞0, 𝑞1), (𝑞2, 𝑞3)} and the set
of forward language equivalent paris be ≡𝑓= {(𝑞0, 𝑞3), (𝑞4, 𝑞5), (𝑞2, 𝑞5)}. The the minimiza-
tion formula is:(︀

(𝐵𝑞0 ∧𝐵𝑞1) ∨ (𝐵𝑞2 ∧𝐵𝑞3) ∨ (𝐹𝑞0 ∧ 𝐹𝑞3) ∨ (𝐹𝑞4 ∧ 𝐹𝑞5) ∨ (𝐹𝑞2 ∧ 𝐹𝑞5)
)︀
∧(︀

(𝐵𝑞0 =⇒ ¬𝐹𝑞0) ∧ (𝐵𝑞2 =⇒ ¬𝐹𝑞2) ∧ (𝐵𝑞3 =⇒ ¬𝐹𝑞3)
)︀ (5.36)

We use SAT solver Z32 for solving the problem of optimal merge in this thesis. The problem
of optimal merge is written in the Z3 solver syntax (lower case prefixes 𝑏 and 𝑓 are used
due to Z3 syntax rules) as:

; variables
(declare-const bq_0 Bool)
(declare-const bq_1 Bool)
(declare-const bq_2 Bool)
(declare-const bq_3 Bool)
(declare-const fq_0 Bool)
(declare-const fq_2 Bool)
(declare-const fq_3 Bool)
(declare-const fq_4 Bool)

2 Z3 solver is available at https://github.com/Z3Prover/z3

37

https://github.com/Z3Prover/z3


(declare-const fq_5 Bool)
; rules
(assert (=> bq_0 (not fq_0)))
(assert (=> bq_2 (not fq_2)))
(assert (=> bq_3 (not fq_3)))
; merge formulas
(assert-soft (and bq_0 bq_1) :weight 1)
(assert-soft (and bq_2 bq_3) :weight 1)
(assert-soft (and fq_0 fq_3) :weight 1)
(assert-soft (and fq_2 fq_5) :weight 1)
; run the solver and get the result
(check-sat)
(get-model)

The solver is forced to maximize a truly evaluated conjunctions in the merge formula
[7]. Z3 solver returns all variables and its evaluation. Only pairs of states where both states
were assigned to true, will be merged together. In our example, the solver evaluates by
true variables 𝐵𝑞0, 𝐵𝑞1, 𝐹𝑞2, and 𝐹𝑞5. With the information about language equivalent
pairs, it can be seen that only pairs (𝑞0, 𝑞1) based on a backward language equivalence and
(𝑞2, 𝑞5) based on a forward language equivalence will be merged.

5.5 SAT-solver-based Minimization
This section describes an automaton minimization process with the usage of the techniques
described in this chapter, such as finding families, multiplying, and solver problem coding.

Equivalent initial or final states cannot be sometimes minimized, because the algorithm
minimizes only families. And the family consists of states with a common ancestor or
successor. Initial states do not have any ancestor. For the same reason, the two final
states without forward transition that are forward equivalent cannot be in the family. It is
necessary to modify an automaton to an automaton with only one initial and maximal two
final states (one can be final and initial).

5.5.1 One Initial State

If the automaton has more than one initial state, then this initial behavior can be replaced
by a creation of a new initial state. All transitions going from the old initial states will be
duplicated and assigned to the new initial state.

Definition 5.37 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be the NFA. The automaton with one initial
state is 𝑀𝐼 = (𝑄𝐼 ,Σ, 𝛿𝐼 , 𝑞0, 𝐹 ) where:

1. 𝑄𝐼 = 𝑄 ∪ {𝑞0} is a finite set of states,

2. Σ is an alphabet,

3. 𝛿𝐼(𝑠, 𝑎) =

{︃⋃︀
𝑝∈𝐼 𝛿(𝑝, 𝑎), for 𝑠 = 𝑞0,

𝛿(𝑠, 𝑎), otherwise.

4. 𝐼 = {𝑞0} is a set containing one initial state, and
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5. F ⊆ Q is a set of final states.
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Figure 5.38: The automaton 𝑀 on the top with two initial states (𝑝0 and 𝑝1) and the
equivalent automaton 𝑀𝐼 with one initial state (𝑞0) at the bottom.

5.5.2 Central Final State

If an automaton has more than one final state, then the final behavior of these states can
be replaced by a creation of the new final state. And all transitions going to the old final
states will be duplicated and assigned to the new final state. All old states that are not
initial will lose their final behavior. All states that are final and initial remain final because
it is not always easy to create the automaton containing only one initial and one final state.

Definition 5.39 Let 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) be NFA. The automaton with one final state
is 𝑀𝐹 = (𝑄𝐹 ,Σ, 𝛿𝐹 , 𝐼, 𝐹𝐹 ) where:

1. 𝑄𝐹 = 𝑄 ∪ {𝑓0} is a finite set of states,

2. Σ is an alphabet,

3. 𝛿𝐹 (𝑠, 𝑎) =

{︃⋃︀
𝑝∈𝐹 𝛿(𝑝, 𝑎) for 𝑠 = 𝑓0,

𝛿(𝑠, 𝑎) otherwise.

39



4. 𝐼 ⊆ 𝑄 is a initial state, and

5. 𝐹𝐹 = (𝐼 ∩ 𝐹 ) ∪ {𝑓0} is a set of final states.
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Figure 5.40: The automaton 𝑀 on the top with two final states (𝑝3 and 𝑝5) and at the
bottom equivalent automaton 𝑀𝐹 with one final state (𝑓0).

5.5.3 SAT-solver-based Minimization Algorithm

At the beginning of the SAT-solver-based minimization algorithm, the 𝑐𝑙𝑜𝑠𝑒𝑑 set is ini-
tialized to ∅. This set will contain already minimized families. The input automaton is
modified to have only one initial and one central final state. The families are found by
Algorithm 5.11. The automaton is reduced while there exist such 𝑓𝑎𝑚𝑖𝑙𝑖𝑒𝑠 that are not
yet in the 𝑐𝑙𝑜𝑠𝑒𝑑 set. Each 𝑓𝑎𝑚𝑖𝑙𝑦 is backuped. The 𝑏𝑎𝑐𝑘𝑢𝑝 contains states, their initial or
final behavior, and transitions of states. The 𝑏𝑎𝑐𝑘𝑢𝑝 will be used if the SAT solver returns
the bigger family than the family was. The family is multiplied by Algorithm 5.16. The
multiplication is done only once before merge. While it is possible to merge some states in
the family, the SAT solver returns the most optimal merge suggestion. The family is then
merged according to this suggestion. After the SAT solver reduction, the family is added to
the 𝑐𝑙𝑜𝑠𝑒 set. If all families are already in 𝑐𝑙𝑜𝑠𝑒 set, then the result automaton is returned.
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Algorithm 5.41 SAT-solver-base minimization algorithm of NFA
Input: NFA 𝑀 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 )

1: 𝑐𝑙𝑜𝑠𝑒𝑑← ∅
2: 𝑀 ←𝑀.𝑚𝑎𝑘𝑒𝑂𝑛𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑡𝑒()
3: 𝑀 ←𝑀.𝑚𝑎𝑘𝑒𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝐹 𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑡𝑒()
4: while True do
5: 𝑓𝑎𝑚𝑖𝑙𝑖𝑒𝑠←𝑀.𝑓𝑖𝑛𝑑𝐹𝑎𝑚𝑖𝑙𝑖𝑒𝑠()
6: 𝑓𝑎𝑚𝑖𝑙𝑖𝑒𝑠← 𝑓𝑎𝑚𝑖𝑙𝑖𝑒𝑠 ∖ 𝑐𝑙𝑜𝑠𝑒𝑑
7: if 𝑓𝑎𝑚𝑖𝑙𝑖𝑒𝑠 = ∅ then
8: break
9: end if

10: for 𝑓𝑎𝑚𝑖𝑙𝑦 ∈ 𝑓𝑎𝑚𝑖𝑙𝑖𝑒𝑠 do
11: 𝑏𝑎𝑐𝑘𝑢𝑝← create 𝑏𝑎𝑐𝑘𝑢𝑝 of the states and transitions of the 𝑓𝑎𝑚𝑖𝑙𝑦
12: 𝑓𝑎𝑚𝑖𝑙𝑦 ← 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑆𝑡𝑎𝑡𝑒𝑠(𝑓𝑎𝑚𝑖𝑙𝑦)
13: while True do
14: 𝑚𝑒𝑟𝑔𝑒𝑆𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛← 𝑆𝐴𝑇𝑠𝑜𝑙𝑣𝑒𝑟𝑀𝑒𝑟𝑔𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑓𝑎𝑚𝑖𝑙𝑦)
15: if 𝑚𝑒𝑟𝑔𝑒𝑆𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛 = ∅ then
16: break
17: end if
18: for 𝑔𝑟𝑜𝑢𝑝𝑂𝑓𝑆𝑡𝑎𝑡𝑒𝑠 ∈ 𝑗𝑜𝑖𝑛𝑆𝑒𝑡𝑠𝑊𝑖𝑡ℎ𝐶𝑜𝑚𝑚𝑜𝑛𝐸𝑙𝑒𝑚(𝑚𝑒𝑟𝑔𝑒𝑆𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛) do
19: 𝑓𝑎𝑚𝑖𝑙𝑦 ← 𝑓𝑎𝑚𝑖𝑙𝑦 ∪𝑚𝑒𝑟𝑔𝑒𝑆𝑡𝑎𝑡𝑒𝑠(𝑔𝑟𝑜𝑢𝑝𝑂𝑓𝑆𝑡𝑎𝑡𝑒𝑠)
20: 𝑓𝑎𝑚𝑖𝑙𝑦 ← 𝑓𝑎𝑚𝑖𝑙𝑦 ∖ 𝑔𝑟𝑜𝑢𝑝𝑂𝑓𝑆𝑡𝑎𝑡𝑒𝑠
21: end for
22: end while
23: if 𝑓𝑎𝑚𝑖𝑙𝑦 > 𝑏𝑎𝑐𝑘𝑢𝑝 then
24: for 𝑠𝑡𝑎𝑡𝑒 ∈ 𝑓𝑎𝑚𝑖𝑙𝑦 do
25: remove 𝑠𝑡𝑎𝑡𝑒 and its transitions from 𝑀
26: end for
27: for 𝑠𝑡𝑎𝑡𝑒 ∈ 𝑏𝑎𝑐𝑘𝑢𝑝 do
28: restore states and transitions from 𝑏𝑎𝑐𝑘𝑢𝑝
29: end for
30: 𝑓𝑎𝑚𝑖𝑙𝑦 ← get states from 𝑏𝑎𝑐𝑘𝑢𝑝
31: end if
32: 𝑐𝑙𝑜𝑠𝑒𝑑← 𝑐𝑙𝑜𝑠𝑒𝑑 ∪ {𝑓𝑎𝑚𝑖𝑙𝑦}
33: end for
34: end while
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Chapter 6

Experiments

We test the efficiency of SAT-solver-based reduction algorithm using Z3 solver on two sets of
automata and compare it with the existing tool RABIT/Reduce (version 2.5) [12] running
on Java 11.0.11. The fist set was created from regular expressions, particular from databases
of network intrusion detection systems Bro [5] and Snort [4], the academic papers [11, 34],
the RegExLib database [29], and industrial regexes [21] used for security purpose. The
second set containing bigger (with more transitions) automata was constructed from Nested
antichains for WS1S [16]. The SAT-solver-based reduction algorithm was implemented with
Python 3.8.5. The experiments were performed on one thread of AMD Ryzen 7 3800XT
8-Core and 32 GB of memory.

The chapter also provides a comparison of SAT solver running time in dependence on
the size of the automaton alphabet and a size of a family of states, on the most difficult
type of family (1:1).

6.1 Reduction of Regexes
The efficiency of the investigated approach is compared with a tool RABIT/Reduce on 3730
automata, with a total of 63538 states and 84093 transitions. Automata were modified to
have one initial and maximal two final states (one can be final as well as initial). The size
of automata is between 10 and 400 states. The average count of transitions per state is 1.57
(from each state leads approximately 1.57 transitions). The bigger the transition density is,
the slower the solver minimization is. First, the solver is compared with RABIT/Reduce,
which uses state merging and transition pruning. Then the solver is used as a supplement
of RABIT/Reduce after running a merge, transition pruning, and saturation, which is the
best-known combination. RABIT/Reduce uses lookahead simulation for an approximation
of language relations. Lookahead was set to 1 for all experiments. Bigger lookahead did
not give better minimization results, only slower down the RABIT/Reduce.

6.1.1 SAT Solver vs RABIT

The new minimization approach using SAT solver information for better state merging and
maximal distance 10 in the algorithm for checking of the language equivalence 5.17 mini-
mizes the input automata to a total of 59421 states. The tool RABIT/Reduce using state
merging and transition pruning minimizes the input automata to a total of 58734 states.
This means that the minimization using the SAT solver approximated the RABIT/Reduce
result with an accuracy of 98.84%.

42



0 50 100 150 200 250 300 350
RABIT - output automaton states count

0

50

100

150

200

250

300

350

SA
T 

so
lv

er
 - 

ou
tp

ut
 a

ut
om

at
on

 st
at

es
 c

ou
nt

Figure 6.1: Comparison of the count of states of the results of SAT-solver-based reduction
algorithm with maximal distance 10 and RABIT/Reduce with lookahead 1, which uses state
merging and transition pruning. SAT-solver-based reduction approximates RABIT/Reduce
result at 98.84%.

In this set of states, the maximal distance 1 has the minimal effect on the time of the
calculation of language equivalence (42.340 sec with maximal distance 10 and 40.700 sec
with maximal distance 1), but gives much worse results (59421 states with maximal distance
10 and 60313 with maximal distance 1).
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Figure 6.2: Comparison of the count of states of the results of SAT-solver-based reduction
algorithm with maximal distance 1 and RABIT/Reduce with lookahead 1, which uses state
merging and transition pruning.
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The SAT-solver-based algorithm maximized states reduction, not transition reduction.
SAT-solver-based minimization reduced the input automata to a total of 77945 transitions.
Nevertheless, RABIT/Reduce returns automata with 75316 transitions. The comparison is
in Figure 6.3
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Figure 6.3: Comparison of the count of transitions of the results of SAT-solver-based re-
duction algorithm with maximal distance 10 and RABIT/Reduce with lookahead 1, which
uses state merging and transition pruning.
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Figure 6.4: Comparison of the reduction time of the SAT-solver-based reduction algorithm
with maximal distance 10 and RABIT/Reduce with lookahead 1, which uses state merging
and transition pruning. The SAT-solver-based algorithm reduces automata 7.5 times faster
than the tool RABIT/Reduce.
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Another engaging part of the comparison is the minimization duration. The RABIT/Re-
duce, using state merging and transition pruning, minimizes 3730 automata in 317.830 s.
On the contrary, the solver did approximately the same minimization in only 42.340 s.
That is 13.32% of the time consumed by RABIT/Reduce. The comparison is in Figure 6.4.
However, the solver minimization is slower on automata with high transition density.

6.1.2 SAT Solver as RABIT’s Supplement

The solver with merge can be used alone or as a supplement of a RABIT/Reduce. The
solver with merge is processed over a RABIT/Reduce best minimization. The new reduced
automaton is a little more minimal than the RABIT/Reduce result. The difference between
the minimized states (the difference between a number of states of the input and output
automaton) of RABIT/Reduce itself and its version enriched by the solver is the main
measurement. The total input number of minimized states is the same as in the previous
example (63538). RABIT/Reduce itself minimizes the automata by 5322 states. The
extended version of the algorithm using RABIT and solver minimizes the automata by 5356
states. That is, about 0.63% minimized states more than only by using RABIT/Reduce,
which uses the strongest minimization algorithms.

6.2 Reduction of WS1S
The second group contains 1132 automata with a total of 35389 states and 518342 tran-
sitions (14.6 transitions per state). Only the SAT-solver-based reduction algorithm with
maximal distance 1 and RABIT/Reduce with lookahead 1 using state merging and transi-
tion pruning were compared, because these automata do not contain any fragments than
RABIT/Reduce itself can reduce. This time, the SAT-solver-based reduction gives a better
reduction of states and transitions. However, the reduction time was higher than RA-
BIT/Reduce due to the big size of minimized families (caused by many transitions) as
shown in the figure 6.8

6.2.1 SAT Solver vs RABIT

The SAT-solver-based reduction approach minimized the input automata to a total of
20340 states and 119103 transitions. The tool RABIT/Reduce using state merging and
transition pruning minimizes the input automata to a total of 21236 states and 126237
transitions. That means that the solver reduced automata about 896 (6.33%) states and
7134 (1.82%) transitions more than RABIT/Reduce. The comparison is in Figure 6.5 and
6.6. Unfortunately, the RABIT/Reduce was on average 5.5 times faster than SAT-solver-
based algorithm. High computation time of SAT-solver-based reduction was caused due to
the big size of families, which slow down the solver calculations, as shown in Figure 6.8.
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Figure 6.5: Comparison of the number of states of the results of SAT-solver-based reduction
algorithm with maximal distance 1 and RABIT/Reduce with lookahead 1, which uses state
merging and transition pruning. SAT-solver-based algorithm reduced about 896 (6.33%)
states more.
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Figure 6.6: Comparison of the number of transitions of the results of SAT-solver-based
reduction algorithm with maximal distance 1 and RABIT/Reduce with lookahead 1, which
uses state merging and transition pruning. SAT-solver-based algorithm reduced about 7134
(1.82%) transitions more.
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Figure 6.7: Comparison of the reduction time of the SAT-solver-based algorithm with
maximal distance 1 and RABIT/Reduce with lookahead 1, which uses state merging and
transition pruning.

SAT-solver-based algorithm reduced automata slower than RABIT in this example.
SAT-solver-based algorithm with maximal distance 1 minimized 1132 automata in 1335.461
sec, but RABIT with lookahead 1 minimized automata in 241.727 sec. The time difference
was caused by a high size of minimized families as shown in Figure 6.9
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Figure 6.8: Dependancy of input automaton size and maximal size of minimized family
during the reduction.
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Figure 6.9: Experimental values of SAT solver Z3 running time in dependence on a maximal
minimized family size.

6.3 Reduction Time Based on the Family Size
This section displays the impact of family size to the time consumed by a SAT solver Z3.
The solver running time increases with the number of language equivalent states in the
family. The graphs below show the worst reduction scenario on family 1:1.
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Figure 6.10: Comparison of the SAT solver Z3 running time in dependence on the size of
the multiplied family and the size of alphabet. Each point is the average of 100 random
families 1:1. SAT solver was finished after reaching 10 seconds.
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The tests were performed on automata consisting of only one random family 1:1 be-
tween 20 and 200 states. All family states have only one incoming and one outcoming
transition, with no self-loops. The size of the alphabet is between 2 and 20 characters.
This setup represents the worst reduction scenario because each state can be a backward
and forward language equivalent to any other. Small alphabet size allows the existence of
many equivalent states and thus extremely slows down the SAT solver Z3 decision.

The SAT solver running time depends on the number of conjunctions in the merge
formula (language equivalent pairs of states). If the letters of the alphabet are uniformly
assigned to the family transitions and 𝑛 is a count of the family states, then the number of
conjunctions in the merged formula 5.26 is:

𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑐𝑛𝑡(𝑛, |Σ|) =
2

|Σ|
·
(︂
𝑛

2

)︂
=

2

|Σ|
· 𝑛!

(𝑛− 2)! · 2!
=

𝑛 · (𝑛− 1)

|Σ|
(6.11)
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Figure 6.12: Dependance between the size of multiplied family 1:1, alphabet and conjunc-
tions in the merge formula 5.26. Each point is the average of 100 random families 1:1.

It could be seen that the SAT-solver-based reduction algorithm works faster for the
families with small count of language equivalent states. Based on that and the previous
experiments, we can say that the SAT-solver-based reduction algorithm works best for the
automata containing maximal three times more transitions than states.

The explosion of the count of conjunction in the merge formula can be solved using sets
in the future. For the family of 200 states and alphabet of size 2 we do not need 19900
conjunctions, but only a set of backward language equivalent states using letter 𝑎, the set of
backward language equivalent states using letter 𝑏, and two same sets for forward equivalent
states. That is only 4 sets containing 200 states together.
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Chapter 7

Conclusion

Nondeterministic finite automata can choose from more than one transition after receiv-
ing the letter. This feature allows NFA to represent the language with fewer states and
transitions than its deterministic variant but makes the reduction difficult.

Nowadays, many efficient reduction algorithms exist, such as state merging, transition
pruning, and saturation. All these techniques are implemented in the reduction tool RA-
BIT/Reduce to which we compared our investigated SAT-solver-based reduction algorithm.

The SAT-solver-based method focuses on the local reduction of the sets of states with
common ancestors or common successors, where part of the language of some state can be
already covered by the languages of the other states. These groups cannot be sometimes
reduced by the existing algorithms. SAT-solver-based algorithm simplifies (by adding states
and transitions) these groups of states so that every state of the group has maximal one
incoming and one outcoming transition, without changing the automaton language. This
group is then merged. The SAT solver is used to maximize the number of merged pairs of
states.

The investigated reduction algorithm strongly approximates (at 98.84%) the reduction
results of the tool RABIT/Reduce which uses state merge and transition pruning. The
SAT-solver-based algorithm gives 7.5 times faster results on automata with 1.3 transitions
per state. This algorithm is suitable to use for automata which have maximal 3 times more
transitions than states. For denser automata, the result still strongly approximates the
RABIT/Reduce solution, but slower.

In the future, we would improve the coding of the problem of optimal merge for faster
SAT solver calculation. As has been already mentioned, the minimization using a solver
works slower for dense automata which have more than 3 transitions per state. The method
could be improved to work better for automata with dense transitions. Due to a high and
fast approximation of RABIT/Reduce merge and transition pruning results, the solver min-
imization could replace the merging and transition pruning phase in standard minimization
algorithms.
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