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Abstract 
Nondeterministic finite automata (NFA) are widely used in computer science fields, such as 
regular languages in formal language theory, high-speed network monitoring, image recog
nition, hardware modeling, or even in bioinformatic for the detection of the sequence of 
nucleotide acids in D N A . They are also used in regular mode checking, in string solving, in 
verification of pointer manipulating programs, for construction of linear arithmetic equa
tions and inequalities, for decision in WS1S and WS2S logic, and many others. Automata 
minimization is a fundamental technique that helps to decrease resource claims (memory, 
time, or a number of hardware components) of implemented automata and speed up au
tomata operations. Commonly used minimization techniques, such as state merging, transi
tion pruning, and saturation, can leave potentially minimizable automaton subgraphs with 
duplicit language information. These fragments consist of a group of states, where the part 
of language of one state is piecewise covered by the other states in this group. The thesis 
describes a new minimization approach, which uses SAT solver, which provides informa
tion for efficient minimization of these so far nonminimizable automaton parts. Moreover, 
the newly investigated method, which only uses solver information and state merging, can 
minimize the automaton similarly and on automata with low transition count faster than 
a tool RABIT/Reduce, which uses state merging and transition pruning. 

Abstrakt 
Nedeterministické konečné automaty (NKA) jsou široce využívány v počítačové vědě, napřík
lad v oblasti formálních jazyků pro reprezentaci regulárních jazyků, k monitorování vysoko
rychlostních sítí, rozpoznávání obrazu, modelování hardware, nebo dokonce v bioinforma-
tice pro vyhledávání sekvencí nukleotidových kyselin v D N A . N K A jsou také používány 
v abstraktním regulárním model checkingu, dále ve verifikaci programů manupulujících 
s řetězci, ve verifikaci programů využívajících ukazatele, pro konstrukci lineárních rovnic 
a nerovnic, v rozhodovacích procedurách WS1S a WS2S logiky a mnohých dalších. Minimal
izace automatů je základní technikou, která pomáhá snižovat nároky na zdroje (paměť, čas 
nebo množství hardwarových komponentů) a urychlovat operace prováděné na automatech. 
Běžně používané minimalizační techniky, jakými jsou slučování stavů, odstraňování hran 
přechodů nebo saturace, mohou v automatech zanechat potenciální minimalizovatelné pod-
grafy obsahující duplicitní jazykovou informaci. Tyto fragmenty sestávají ze skupiny stavů, 
kde je již část jazyka jednoho stavu pokryta jazyky ostatních stavů z této skupiny. Tato 
práce popisuje novou techniku využívající SAT solver, který poskytuje informaci umožňující 
minimalizovat tyto doposud neminimalizovatelné části automatů. Nově vyvíjená metoda, 
která využívá pouze informaci od SAT solveru a slučování stavů minimalizuje automaty 
podobně efektivně, a v případě automatů s nízkým počtem přechodů dokonce rychleji než 
nástroj RABIT/Reduce, který využívá slučování stavů a odstraňování hran. 
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Rozšířený abstrakt 
Nedeterministické konečné automaty ( N K A ) prezentoval Michael Rabin a Dana Scott v [28]. 
Ve srovnání s deterministickými konečnými automaty (DKA) se vyznačují schopností pře
chodu do více následujících stavů na základě stejného přijatého znaku. Díky této vlastnosti 
umožňují N K A reprezentovat jazyk za pomoci menšího množství stavů a přechodů než jeho 
deterministická varianta. Nicméně každá mince má dvě strany. V důsledku nedeterminismu 
je minimalizace N K A mnohem obtížnější. Tato práce popisuje novou minimalizační tech
niku, která umožňuje redukovat velikost doposud neminimalizovatelných částí automatů. 
Předmětem práce není hledání minimální formy N K A , ale pouze redukce jeho velikosti. 
Pojmem minimalizace budeme v této práci rozumět pouze redukci velikosti automatů. 

Nedeterministické automaty jsou používány k reprezentaci regulárních jazyků, v ap
likacích pro validaci dat, internetových vyhledávačích, rozpoznávání řetězců, monitorování 
síťového provozu, dokonce i v bioinformatice pro vyhledávání sekvencí nukleových kyselin 
v D N A [3], a mnoha dalších. Příkladem využití N K A je detekce řetězců v síťovém provozu. 
V důsledku stále se zvyšujícího objemu dat přenášených po síti a také rychlostí přenosu 
je potřeba zvyšovat také rychlost jejich skenování. Standardní softwarová řešení pro vy
hledávání řetězců, kterými mohou být jak zajímavé statistické údaje, tak škodlivý kód, 
již nejsou při vysokých rychlostech přenosu použitelné. Pro rychlosti nad 100 Gbps je 
potřeba vytvořit hardwarovou implementaci vyhledávání řetězců [32, 25]. Pomocí technik 
[30] je možné reprezentovat N K A přímo na F P G A . Z důvodu ušetření místa, prostředků 
a nízké ceny vyráběných komponentů je vhodné automat minimalizovat. Nedeterministické 
konečné automaty jsou také používány pro verifikaci programů [19], v abstraktním reg
ulárním model chackingu [9], dále ve verifikaci programů manupulujících s řetězci [2], při 
verifikaci programů využívajících ukazatele [18], pro konstrukci lineárních rovnic a nerovnic 
[33], v rozhodovacích procedurách WS1S [16, 15] a WS2S [15] logiky a mnohých dalších. Pro 
zvýšení rychlosti operací prováděných nad automaty je vhodné redukovat jejich velikost. 

V současnosti existuje mnoho efektivních minimalizačních technik. Nejznámější mini
malizační metodou je slučování ekvivalentních stavů [6, 10, 24, 22], které slučuje dva 
jazykově ekvivalentní stavy do jednoho. Dalšími úspěšnými postupy v oblasti minalizace 
jsou odstraňování hran přechodů [10, 13] a jejich přidávání (saturace) [6, 13]. Hrana 
přechodu může být odstraněna, když již existuje vhodnější hrana (existuje stav se sil
nějším, nebo ekvivalentním jazykem). Ve srovnání s odstraňování přechodů, saturace pře
chody do automatu přidává. Přidání nové hrany může umožnit další slučování stavů nebo 
odstraňování hran. Přechod může být přidán pouze tehdy, existuje-li již silnější, nebo ste
jný přechod. Bez ohledu na to, jak jsou stávající minimalizační techniky robustní, nejsou 
všemocné. Stále zanechávají v automatech potenciálně minimalizovatelné podgrafy. Tyto 
fragmenty sestávají ze skupiny stavů, kde je část jazyka jednoho z nich po pokryt jazyky 
ostatních stavů. Tento stav představuje v automatu duplicitní informaci, ale nemusí být 
detekován stávajícími metodami, protože mezi jazyky stavů nemusí existovat inkluze. 

Tato práce vyvíjí metodu, která dokáže minimalizovat tyto doposud neminimalizo-
vatelné části automatu. Nový postup pracuje se skupinami stavů, které mají společného 
předchůdce, nebo následníka. Všechny tyto stavy jsou nahrazeny novými stavy, které 
obsahují maximálně jednu vstupní a maximálně jednu výstupní hranu přechodu. Nad 
takovými stavy je za pomocí SAT solveru provedeno nej optimálnější slučování stavů. Solver 
aproximuje silně (v případě automatů s nízkým počtem přechodů také rychleji) výsledky 



minimalizace provedené nástrojem RABIT/Reduce 1 , který využívá slučování a odstraňování 
hran přechodu. 

Obsah kapitol 
Kapitola 2 je věnována základním teoretickým pojmům týkajících se nedeterministických 
konečnách automatů. Nejprve je definován samotný N K A , poté související pojmy, jakými 
jsou konfigurace, přechod, jazyky automatu a jazyky stavu. V kapitole 3 jsou definovány 
existující minimalizační techniky využívané nástrojem RABIT/Reduce (slučování stavů, 
odstraň-ování hran přechodů a saturace). Kapitola 4 obsahuje základní myšlenky práce 
založené na chování slučování stavů. Kapitola 5 popisuje kódování problému minimalizace 
automatu, které se skládá z definice proměnných, slučovací formule a pravidel. V kapitole 6 
jsou uvedeny výsledky experimentů minimalizace s využitím SAT solveru a také porovnání 
výsledků s existujícím nástrojem RABIT/Reduce. 

nástroj R A B I T / R e d u c e je dostupný na h t tp :// languageinc lus ion.org/doku.php?id=tools . 

http://languageinclusion.org/doku.php?id=tools
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Chapter 1 

Introduction 

Nondeterministic finite automata (NFA) were investigated by Michael Rabin and Dana 
Scott [28]. In comparison with deterministic finite automata (DFA), N F A can choose from 
more than one transition after receiving the letter. This feature allows N F A to represent the 
language with fewer states and transitions than its deterministic variant. However, there 
are two sides to every story. The N F A is much harder to minimize. This work investigates 
a new approach for minimizing of so far nonminimizable parts of automata. A goal of the 
investigated approach is not to find the minimal form of N F A , but only to reduce automata 
size. In this thesis, we will use the term minimization just for the reduction of automata 
size. 

Nondeterministic finite automata are often used for a representation of regular lan
guages, in data validation, web searching engines, pattern recognition, in network traffic 
monitoring, even in genetic for matching of the sequence of nucleotide acids on D N A [3], 
and many others. A n example of N F A usage is a representation of the regular expression for 
pattern matching in network traffic. Due to an increasing amount of data transmitted over 
the network and so increasing speed, it is necessary to improve the data scanning speed. 
Standard software solutions that can detect data fragments cannot be used in high-speed 
networks. For the speed over 100 Gbps, it is required to implement a hardware analyzer 
[32, 25]. The N F A can be implemented right on F P G A using the technique [30]. To save 
space, resources, and cost of manufactured components, it is advisable to minimize the 
original automaton. NFAs are also used in program verification [19], in abstract regular 
model checking [9], in verification of programs using pointers [18], in string solving [2], for 
construction of linear arithmetic equation and inequalities [33], for decision procedures in 
WS1S [16, 15] and WS2S [15] logic, and many others. It is necessary to reduce the size of 
automata to speed up the operations performed on them. 

Nowadays, many efficient minimization techniques exist. The well-known method, state 
merging [6, 10, 24, 22], merges two language equivalent states into one. Other success
ful procedures in the field of minimization are transition pruning [10, 13] and transition 
adding (saturation) [6, 13]. The transition can be pruned if the better transition already 
exists (a state with stronger or equal language exists). On the contrary, saturation adds 
new already existing transitions. This addition can help to continue in state merging or 
transition pruning. Despite the high efficiency of these methods, they are not omnipotent. 
They can still leave potentially minimizable automata subgraphs. These fragments consist 
of a set of states, where part of the language of some state is piecewise covered by other 
states. Each state can have a unique language, so language inclusion, which is necessary 
for minimization, does not exist. 
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The work investigates a method for minimizing this so far unsolvable automata sub
graphs. The method works with sets of states with common successors or ancestors. A l l 
states from a set are substituted by states with the maximal one incoming and outcom-
ing transition, then SAT solver is used for maximizing the number of merged states. In 
comparison to an existing tool RABIT/Reduce 1 which uses state merging and transition 
pruning, the solver gives a strong, and on automata with small count of transitions faster, 
approximation of R A B I T minimization. 

Plan of the thesis 
Chapter 2 is dedicated to the theoretical background of nondeterministic finite automata. 
First, the N F A will be defined and the related terms such as configuration, transition, and 
languages of the automaton and of the state. The existing minimization techniques such 
as state merge, transition pruning, and saturation, which the compared tool R A B I T / R e 
duce uses, are listed in Chapter 3. After introducing minimization approaches, the basic 
thoughts, based on the behavior of state merge, are presented in Chapter 4. Chapter 5 is 
devoted to the coding of a minimization problem with SAT solver. The creation of solver 
variables, merge formula, and rules is described here. The limitation of the investigated 
SAT-solver-based minimization approach is shown at the end of the chapter. Chapter 6 
displays a comparison of the experiments of automata minimization performed with a SAT-
solver-based approach and the tool RABIT/Reduce. 

R A B I T is available at ht tp:// languageinc lus ion.org/doku.php?id=tools . 
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Chapter 2 

Preliminaries 

Basic concepts of nondeterministic finite automata (NFA) and its notations, which are 
required for an easier understanding of the following thesis, are presented in this chapter. 
The formal definition of N F A (taken from [31, p.53]) and related concepts, such as automata 
configuration, transition, ancestors, successors, reachable or dead states are established in 
Section 2.1. The definitions of automata configuration and transition are taken from [26]. 
A n elementary property of an automaton is a language, which defines accepting strings. 
These definitions are presented in Section 2.2. The language is not calculated only over the 
machine. Section 2.3 brings definitions for the language of state, such as forward language, 
backward language, and languages defined specially for this work. The last Section 2.4 of 
this chapter is dedicated to simulation (the definition is taken from [1]). The simulation 
is an approximation method widely used in a calculation of language relations, due to its 
higher speed in comparison with accurate methods. 

2.1 The Formal Definition of 
a Nondeterministic Finite Automaton 

Nondeterministic finite automata are a generalization of deterministic automata. Both 
contain states, transitions between them, and an alphabet of characters that the automaton 
read. In comparison to deterministic automata, nondeterministic automata have a set of 
initial and final states, not only one initial and one final state. Initial states represent the 
entry points of the automaton. Reading of an evaluated string, consisting of the characters 
of the machine alphabet, always starts in these states. Final states represent the place, 
which marks the input string as accepted. The string is accepted only if the automaton is 
in at least one of these final states, after reading the entire string. States are interconnected 
by transitions with alphabet symbols. Together they form an oriented graph. Based on the 
read symbol, a corresponding transition with the same symbol will be made. Compared to 
deterministic automata, where exactly one transition can be made based on one character, 
nondeterministic automata, as the name suggests, can choose from several transitions. If 
the nondeterministic transition is reached, then the next evaluation is split and the string 
is accepted if at least one of the splitted evaluations has ended in the final state. 

To write the formal definition, we need to set up some additional notations. For a set 
Q, we write P(Q) to be the collection of all subsets of Q. Here P(Q) is called the power 
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set of Q. For any alphabet E , we write E e to be E U {e}. Now we can write the formal 
description of the type of the transition function in an N F A 5 : Q x E e —> P{Q). 

Definition 2.1 Nondeterministic Finite Automaton is a 5-tuple M = (Q,T,,S,I,F) 

1. Q is a finite set of states, 

2. E is an alphabet, 

3. 5 : Q x E e —> P(Q) is a transition function, 

4- I ^ Q is a finite set of initial states, and 

5. F C Q is a finite set of final states. 

We will use p —t q to denote the transition ((p, a),q), where p,q G Q and a G E . The 
transition p —t q says that after the reading of a character a in the state p the transition 
from state p to q will be made. 

Definition 2.2 Let M = (Q, E , 5,1, F) be the NFA, s eQ, and a G E . Then the reverse 
transition function <5_1 is defined as 5~1(s, a) = {q | Vq G Q where s G 5(q, a)}. 

Definition 2.3 Let M = (Q,T,,5,I,F) be the NFA and s G Q. Then the ancestors of 
a state s is defined as anc(s) = {q \ q G Q, Vo G E , q G 5~1(s,a)}. 

Definition 2.4 Let M = (Q,T,,S,I,F) be the NFA and s G Q. Then the successors of 
a state s is defined as succ(s) = {q \ q G Q, Vo G E , q G 8(s,a)}. 

Definition 2.5 Let M = (Q,T,,5,I,F) be the NFA. Then the configuration is string 
X G QE*. 

The automaton configuration displays information about the current state (not all states 
of the splitted evaluation, but only the focused one) and the remaining string at the input. 
For example, if the automaton M is in the state q and the string ab remains at the input, 
then the configuration takes the form qab. The attentive reader will certainly notice that 
the exact state of the automaton can be described as a set of configurations. 

Definition 2.6 Let M = (Q, E , 5,1, F) be the NFA, and paw, qw be two configurations of 
M, where p,q G Q, a G E e ; and w G E*. Let r : p —t q G S. Then M can make transition 
from qaw to qw using r, write as paw h qw [r] or simply paw \~qw. 

Let x be configuration. M makes zero transitions from x to x- Write: x H° % [e] or 
simply x ^° X-

Let xoi Xi • • • Xn be sequence of configurations for n < 1 and Xi-i l~~ X% [r«]> where r% G 5 
for all i = 1... n , what means: %o l~ Xi [ri] """ I - Xn bn]- Then M makes n transitions 
from xo to Xn- Write: xo ^n Xn [n • • • rn] or simply xo ^n Xn-
If Xo l~™ Xn [p] for some n > 1, then we write x l ~ + X« [p] o r simply x^~+ Xn-
If xo l~™ Xn [p] for some n > 0, then we write x I-* Xn [p] or simply x I-* Xn-

G 



Already during the creation of the automaton, but rather during its modifications, 
states, whose presence or absence does not affect the language of the automaton, can arise. 
There are two types of useless states, these elementary types can be combined. 

The first type is a state that can have successors, and even paths to final states can exist, 
but no path leads to this state from the initial state. This state is called an unreachable 
state. Unreachability may be caused by the lack of state ancestor or affiliation in the 
unreachable subgraph. 

Definition 2.7 Let M = (Q,T,,S,I,F) be the NFA, then the state q G Q is reachable if 
exists w G £ * for which qow h* q, where qo <E I. Otherwise, it is unreachable. 

start 

a 

Figure 2.8: Two automata with unreachable states. For the left automaton, it is state 
q2 and for the right automaton, it is state P2 and p^. 

The second type of useless state is the so-called dead state. This is the case where no 
path from a state to the final states exists, regardless of the possible paths from the initial 
state. The dead nature of the state may be caused by the nonexistence of the successor, 
or its closure in the nonterminating part of the automaton subgraph, for example, in an 
isolated loop. 

Definition 2.9 Let M = (Q, S , S, I, F) be the NFA. Then state q G Q is undead if exists 
w G £ * for which qw h* / , where f G F. Otherwise, it is dead. 

start 

Figure 2.10: Two automata with dead states. For the left automaton, it is state g3 and for 
the right automaton, it is state p2 and p^. 

Both types of useless states can be eliminated. They can be easily removed because 
both unavailable and dead states do not belong to any part of the automaton that defines 
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the language. Elimination of useless states is the most primitive way of minimization. A l l 
states that belongs to the set {Q \ (undead n reachable)} are useless ant therefore can be 
removed. 

2.2 N F A Languages 

As already mentioned, one of the main features of nondeterministic finite automata is their 
language. A language is a set of accepting strings defined by the automaton topology. For 
example, the language over the alphabet E = { 0 , 1 } might define strings with a maximal 
length of 4 and an even count of 0. The following definition of an acceptable string is taken 
from [31, p. 54]. 

Definition 2.11 Let M = (Q,Y,,5,I,F) be an NFA and w a string over the alphabet E . 
Then we say that w is accepting string in the form w = yiV2 • • -Un, where yi G E for 
i = 1 . . . n if exists such a sequence of states r on . . .rn € Q, with three conditions: 

1- r0 G I, 

2. r i + i G S(ri, yi+i), for i = 0 . . . n - 1, and 

3. rneF 

Condition 1 says that the reading starts out in the initial state. Condition 2 says that 
state r j + i is one of the allowable next states when M is in state ri after reading yj+i. 
Observe that 5(rj,yj+i) is the set of allowable next states, and so we say that rj+i is 
a member of that set. Finally, condition 3 says that the machine accepts its input if the 
last state is a final state. 

Definition 2.12 Let M = (Q, E , S, I, F) be an NFA. Then accepting language is defined 
as follows: L ( M ) = {w \ w G E * , q^w h* / , where qo £ I and f G F}. 

The accepting language of N F A is the set of accepting strings. Where at least one final 
state is reached after reading all its input characters. 

Definition 2.13 Let M = (Qm, ^m, 5m, Im, Fm) and N = (Qn, EJV, $n,In, Fn) be two 
NFAs. We say that automata M and N are equivalent only if L(M) = L(N). 

According to definition 2.14, two automata M and N are equivalent if for each string 
wm G L ( M ) exists such a sequence of transitions wmPo \~* /iv hi N, where po G In, 
/ A T G Fn, and for each wn G L(N) exists such a sequence of transitions wjyqo l ~ * fu hi M , 
where qo G Im and fu G Fm-

The calculation of two N F A equivalences is demonstrated by an adaptation [17] of 
Hopcroft and the Kraps algorithm for determining the equivalence of two DFAs [8]. A varia
tion of the algorithm will be used later in Chapter 5 for the sub-approximation of a language 
equivalence. 

A n empty set R is initialized to 0 at the beginning of the algorithm. R will store the 
already processed pairs and prevent the algorithm from an infinite loop. Thereafter, the 
set todo will be initialized, and the pair {IA, IB) is inserted. I A is a set of initial states of 
the automaton A and IB is the set of initial states of the second automaton B. The pair 
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(A , Y) is selected, while todo is not empty. The pair ( A , Y) is bad if one state of X or Y 
is accepting whereas the other is not. If the pair is bad, then automata A and B are not 
equivalent. Otherwise, the successors of X and Y are generated into todo. If the set todo 
is empty, the automata A and B are equivalent. 

Algorithm 2.14 The naive algorithm for checking NFAs equivalence 
Input: two NFAs A = (QA, T,A, SA, I A , FA) and B = (QB, £ B , 5B, IB, FB) 
Output: „Yes" if L(A) = L(B), otherwise „No" 

l: R <- 0, todo < - { ( 7 4 , IB)} 
2: while todo / 0 do 
3: Pick (X, Y) G todo and remove it 
4: if ( A , y ) € R then 
5: continue 
6: end if 
7: if ( A , Y") is bad pair then 
8: return „No, L(A) / L{Bf 
9: end if 

10: for a € E do 
11: todo «- todo U {(SA(X, a), 5B(Y, a))} 
12: end for 
13: R<- RU { (A , y)} 
14: end while 
15: return „Yes L(A) = L(B)" 

2.3 States Languages 

To minimize the states of N F A , it is necessary to know the relations between their languages. 
A n equivalence relation is the most commonly used relation for automata minimization. It 
can be an equivalence of forward, backward, or both of these languages. Equivalent states 
inform about the duplication of machine subgraphs of which they are apart. The language 
equivalent states can be merged. Another important relation is language inclusion. It 
can also be an inclusion of forward languages, backward languages, etc. The language 
inclusion informs about the similarity of two (or more) states, where one is strong and 
the other weak. In this case, the weak state will be reduced and the strong will survive. 
The special languages for the following work will be introduced. These languages are 
interstate language, pure language, and maximal distance language. Interstate language is 
defined by an oriented route between two states. The pure language can be any already 
defined language, but the routes which define this language cannot lead through a specified 
(forbidden) state. The last newly introduced language markup will be the maximal distance 
language. This language is defined by a particular state and its ancestor or successor 
(depends on the type of a language) to a maximal distance. 

The basic group of state languages consists of forward and backward languages. Back
ward language is defined by a set of strings over the automaton alphabet, for which exists 
a sequence of transitions (route) from an initial state to an examined state. We will write 
the backward language of state q G Q as L (q), or simply V-
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Definition 2.15 Let M = (Q,T,,S,I,F) be the NFA. Then backward language of the 
state q G Q is defined as L (q) = {wb | iu& G £* , qoWb H* q, where qo G / } . 

On the contrary, the forward language of the state is the set of strings, for which exists 
the route from the actual state to the final state. We will write the forward language of the 
state q G Q as L (q), or simply ij*. 

Definition 2.16 Let M = (Q,T,,5,1, F) be the NFA. Then forward language of the 
state q G Q is defined as L (q) = {wf \ wf G £* , qwf \~* f, where f G F}. 

The interstate language is the first language that belongs to the special group of lan
guages defined for this thesis. The language, as already has been said, is defined by the set 
of strings over the alphabet of the automaton, for which exists a sequence of transitions 
between the first and second state (boundary states). We will write the language between 
states q and p as L(q, p). 

Definition 2.17 Let M = (Q, S , 5,1, F) be the NFA. Then interstate language between 
two states p and q G Q is defined as L(p, q) = {wi \wi G £* , pwi h* q}. 

a 

start 

Figure 2.18: Interstate language L(p,q) is defined by the bold transitions. 

Another special language is pure language. This language is defined by the set of 
strings over an automaton alphabet, for which there exists a sequence of transitions between 
boundary states (initial and actual state for the backward language, examined state and 
final states for the forward language, or between two states for the interstate language) 
without the usage of the forbidden state. This condition does not apply to the boundary 
states themselves. For example, the pure backward language of the state q, which does not 
use the forbidden state r , is a set of strings, for which exists a route from an initial state 
to state q without using r . 

Definition 2.19 Let M = (Q,T,,5,I,F) be the NFA. Then pure backward language 
of the state q G Q, denoted L(q,s), is defined as the set of all strings w in the form 
w = yiV2 • • • Un, where yi G £ for i = 1.. . n, for which exists such a sequence of states 
rori... rn, where ro, rn G Q\ {s} and r% G Q for i = 1.. . n — 1, with three conditions: 

1- r0 G I, 

2. ri+i = S(ri, yi+i) for i = 0 . . . n - 1, and 
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3. rn = q. 

Definition 2.20 Let M = (Q,T,,S,I,F) be the NFA. Then pure forward language 
of the state q G Q, denoted L(q,s), is defined as the set of all strings w in the form 
w = yiV2 • • • Un, where yi G E for i = 1... n, for which exists such a sequence of states 
rori... rn, where ro, rn G Q\ {s} and r% G Q for i = 1.. . n — 1, with three conditions: 

1- r0 = q, 

2. ri+i = S(ri, yi+i) for i = 0 . . . n - 1, and 

3. rn G F. 

start 

Figure 2.21: Pure backward language L (q, s) is created by the bold transitions. 

Definition 2.22 Let M = (Q,T,,S,I,F) be the NFA. Then pure language between 
states q and p G Q, denoted L(p,q,s), is defined as the set of all strings w in the form 
w = y\yi • • • yn, where yi G E for i = 1.. . n, for which exists such a sequence of states 
rori... rn, where ro, rn G Q\ {s} and r% G Q for i = 1.. . n — 1, with three conditions: 

1. r 0 =p, 

2. ri+i = S(ri, yi+i) for i = 0 . . . n - 1, and 

3. rn G q. 

The last special language is a language with a maximal distance. It is a standard lan
guage enriched with the feature that the strings which define the language are defined only 
by the state with maximal distance n from the current state. A language with a maximal 
distance will be widely used for the forward and backward language specification. Back
ward language with maximal distance is defined as suffixes of all strings from the default 
backward language. Conversely, prefixes of all strings from the old language define the 
forward language with maximal distance. 

Definition 2.23 Let M = (Q,T,,S,I,F) be the NFA and L{q) the backward language of 
the state q G Q. Then backward language with maximal distance n G N is defined as 
L~n(q) = iw' I l ^ ' l < n ) 3 x G E* for which xw' G L(q)} 
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Definition 2.24 Let M = (Q,H,5,I,F) be the NFA and L{q) the forward language of 
the state q G Q. Then forward language with maximal distance n G N is defined as 
Ln(q) = {w' | \w'\ < n, 3x G £* for which w'x G L(q)} 

A l l these language behaviors can be combined. We can ask for the pure backward 
language with a maximal distance. Let show this engaging language by an example. 

start 

Figure 2.25: Pure backward language of a state q without a state s with maximal distance 
2, t~2(q, s) = {6a, of, ca, cf}. 

2.4 Simulation 

Two methods for calculating a language inclusion, and ultimately equivalence, exist. The 
first method is based on "subset construction". Subset construction algorithm transforms 
N F A into D F A , which is then an input of the equivalence checking algorithm. The state 
explosion might occur during the N F A transformation. If Q is the set of states in the original 
NFA, the power set P{Q) is of size 2^1, so the D F A may contain up to 2^1 states [27]. 
Moreover, methods based on the simulation are decidable in polynomial time [14]. They are 
often more efficient than methods based on subset construction. Therefore, the simulation 
is rather used in many cases. Unfortunately, the simulation is computationally incomplete 
and has a stronger relationship with an automaton than the language inclusion. Thus, the 
simulation implies language inclusion, but not vice versa. Some language inclusions might 
not be detected by the simulation. 

Definition 2.26 Let M = (Q,T,,S,I,F) be the NFA. Then simulation is a relation 
Q x Q, such that p •< r only if: 

1. p G F r G F and 

2. for every transition p —t p', there exists a transition r —t r' such that p' -< r' 

Algorithm 2.27 Naive simulation algorithm [20] 
Input: N F A M = (Q, S, 6,1, F) 
Output: for each state q G Q, the simulation sim(q) 

1: for q G Q do 
2: sim(q) <— {r \ S(r, a) C 5(q, a) Vo G £ } 
3: end for 
4: while there are three state q, r and s such that q G succ(r), s G sim(q), 
5: and succ{w) D sim{r) = 0 do 
6: sim(q) <— sim(q) \ {s} 
7: end while 
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Chapter 3 

Existing Minimization Techniques 

Automata and their parts, on which the work focuses, can also be minimizable by existing 
techniques, but these techniques leave potentially minimizable subgraphs in the automata. 
State merge [6, 10, 24, 22], transition pruning [10, 13], and transition adding (saturation) [6, 
13] are so far the most effective minimization methods. Their mutual use merges equivalent 
states and creates useless states, which allows their future elimination. 

Despite their minimizing power, they are not omnipotent. There are types of automata, 
or their parts, that can be easily minimized, sometimes on the first look. However, all exist
ing approaches based on language equivalence or inclusion relations are helpless. Example 
of a nonminimizable automaton is in the last Section of this chapter. 

The most well-known minimization method of nondeterministic finite automata is state 
merging [6, 10, 24, 22]. The technique merges two states based on their language equiva
lence. It might be forward, backward, or both sides equivalence. The merging can be done 
even on the basis of bilateral language inclusion. Conditions for states merge are declared 
by Theorem 3.2 [22]. The equivalence can be approximated by the simulation relation. If 
two states p and q are equivalent, then they will be merged into a new state m. Within the 
merge, all transitions which lead through the source states p and p are redirected to the 
destination state m. 

Definition 3.1 Let M = (Q,T,,S,I,F) be the NFA and p,q,m £ Q. The automaton 
with merged states p and q into m is M' = (Q', E , 5', I', F'), where 

1. Q' = (Q\ {p, q}) U {m} is a finite set of states, 

2. E is an alphabet, 

3.1 States Merging 

5(p, a) Li 6(q, a) for s = m, 
for q € S(s,a), 
for p G 5(s, a), 

3. 5'(s,a) ( (5(s,a)\{q})L){m} 
' {5{s,a)\{p})U{m} 

5(s, a) otherwise. 

otherwise. 
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5. F' 
(F\{p,q})U{m} ifpVqGF, 
F otherwise. 

Theorem 3.2 [22] Two states p and q from the automaton M can be merged if at least 
one of the following conditions is met: 

1. t(p) C t(q)/\t(p) D t(q), 

2. ~t(p) C ~£{q) A ~£{p) D ~t(q), or 

3. t(p) C t(q)/\t(p) C l(q). 

start start 

Figure 3.3: Automaton M 3 . 3 (on the left) and its minimized version with states p and 
merged into m. 

3.2 Transition Pruning 

The basic idea of transition pruning [10, 13] is the existence of a better transition (stronger 
language), which can overtake the function of the deleting transition. Definitions and 
theorems are simplification of [13]. 

Definition 3.4 Let M = (Q, S, 5,1, F) be the NFA. Then automaton with pruned tran-
sitionp r, wherep,r G Q andb G S ; is M' = (Q,T,, 5', I, F) write as Prune(M,p - H T ) 
where: 

1. Q is a finite set of states, 

2. £ is an alphabet, 

3. d'(s,a) 
5(s, a) \ {r} for s = p A a = b, 
8(s, a) otherwise. 

4. I C Q is a finite set of initial states, and 

5. F C Q is a finite set of final states. 
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The following theorems show the use cases where the transition pruning can be used. 
The proofs of the theorems are shown on Buchi word automata (NBA), in [13, p.16-20]. 

Theorem 3.5 Let M = (Q, E , 5,1, F) be the NFA, p,q,r G Q and a € E . The transition 
r p can be pruned if there exist r —} q and L(p) C L (q). 

start 

Figure 3.6: Automaton M 3 . 6 (on the left) and automaton Prune(M3£,r —t p) (on the 
right). Transition was pruned according to Theorem 3.5. 

Theorem 3.7 Let M = (Q, S, 5,1, F) be the NFA, p,q,r G Q and a G S . The transition 
p r can be pruned if there exist q —t r and L (p) C L (q). 

start 

Figure 3.8: Automaton M 3 . 8 (on the left) and automaton Prune(Ms.s,P —> r) (on the 
right). Transition was pruned according to the Theorem 3.7. 

Theorem 3.9 Let M = (Q, E , 5,1, F) be the NFA, p, q,p', q' G Q and a G E . The transi
tion q' p' can be pruned if there exist p q and L (p1) C L(p) A L (q1) C ~i(q). 
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right). Transition pruning was based on the Theorem 3.9. 

3.3 Saturation 

The saturation [6, 13] allows the addition of the new transition without changing the au
tomaton language. Saturation is used as an extension of merge and transition pruning that 
are applied during the standard minimization process. At some point, it is no longer pos
sible to minimize the automaton only by using merge and transition pruning. Thanks to 
saturation and addition of new transitions, the future minimization is possible. Saturation 
is made only if a particular transition already exists. It is an analogy of transition pruning. 
Definitions and theorems are simplification of [13]. 

Forward saturation is done only when there exist two states in backward language 
inclusion. The saturated state is enriched with all forward transitions of the stronger state 
to its successors. A n example of forward saturation is in Figure 3.15. 

Definition 3.11 Let M = (Q,T,,6,I,F) be the NFA and p,q G Q. Then the forward 
saturation of the state p by state q, write Sat(M,q,p), change the transition function 5 
as follows: 

5(p, a) U 5(q, a) for s = p, 
8(s, a) otherwise. 

8'(s,a) 

Theorem 3.12 Let M = (Q, E , 5,1, F) be the NFA and p,q G Q. The forward saturation 
Sat(M,q,p) can be done if L(p) C L(q). 

Backward saturation is done only when there exist two states in forward language 
inclusion. The saturated state is enriched with all transitions incoming to a stronger state 
from its ancestors. 

Definition 3.13 Let M = (Q,T,,6,I,F) be the NFA andp,q G Q. Then the backward 
saturation of the state p by state q, write JSat(M, q,p), change the transition function 5 
as follows: 

J5(s,a)U{q} forpe5(s,a), 
1 5(s, a) otherwise. 

8'(s,a) 

Theorem 3.14 Let M = (Q, S , 5,1, F) be the NFA and p,q G Q. The forward saturation 
bat(M, q,p) can be done if L(p) C L(q). 
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Figure 3.15: Automaton M 3 . 1 5 (on the left) and automaton Sai(Ms.i5, Q,p) (on the right). 

3.4 Limitat ion of Exist ing Methods 

Although the current methods are very robust, they are not almighty. There still exist 
subgraphs of the automaton that they cannot solve (minimize). In some cases, it is a simply 
minimization visible to the naked eye. However, the methods, such as state merging, 
transition pruning, and saturation fail. The following paragraph demonstrates an example 
of an automaton that cannot be minimized by current methods. 

start 

Figure 3.16: Automaton M 3 . 1 6 is not minimizable by existing minimization methods (merge, 
saturation, neither transition pruning). 

The oldest minimization method, state merging, cannot be applied on the automaton 
in Figure 3.16, because the merging requires the existence of two equivalent states that 
could be merged. However, there is not any equivalent state. At the same time, it is not 
possible to saturate the automaton, because the saturation requires a relation of language 
inclusion between a pair of states. There is no such pair. Transition pruning cannot be 
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applied, because it requires the existence of language inclusion too. We can see that any of 
the current methods cannot be used for minimization of the automaton from Figure 3.16. 

It is certainly obvious to the attentive reader, that the language over the state q\ 
is entirely covered by the language of the set of states {(72, <?3,<?4, Qb}- Therefore, it is 
unnecessary for the language of the automaton. The state q± can be eliminated. The 
minimization was very trivial, but known methods were not able to do it. 
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Chapter 4 

Initial Observation 

This work aims to develop a method for reducing the size of an automaton based on the 
coverage of a part of the language of a state by a set of other states. The method will 
focus only on local parts of the automaton with common successors or common ances
tors. The minimized fragments cannot have any language inclusion, therefore the existing 
minimization methods, such as state merging, transition pruning, and saturation cannot 
reduce them. The ideas which can provide minimization of so far nonminimizable parts of 
the automata, or based on which the standard minimization results can be optimized are 
presented in this chapter. 

4.1 Focused Fragments 

The investigated minimization approach will focus only on sets of states, where a part of 
a language of some states is represented yet by the others. 

The basic case of such a set is a subgraph with a single ancestor (source) and single 
successor (target). This is a subgraph 1:1. Another case is a subgraph with relation 1:N, 
respectively, N : l . The automaton M 4 . 1 shows a subgraph 1:N with only one common source 
and more than one successor (target) of the set S. Wi th an N : l relationship, the situation is 
the opposite. There is also a general relation N : N with many ancestors and many successors. 
A l l cases are subjects of the research of the new minimization method in this thesis. 

start 

Figure 4 .1: Automaton M 4 . 1 with relation 1:N over the set of states {<7i,<72><73}-
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4.2 Naive Approach 

Each focused fragment can be easily reduced according to the number of letters of incoming 
and outcoming transitions. Example of this minimization of the automaton from Figure 3.16 
is shown below. Because the original outcoming transitions of the set S = {q\, q2, <?3, #4, #5} 
leads to the common successor with 4 different characters, the number of transitions (and 
states of a set S) can be decreased to this number. After that, the transition edges going 
from the common ancestor to the states of the set S must be recalculated to keep the lan
guage of the automaton unchanged. The number of states is reduced by one and transitions 
are reduced by one too. However, from the previous Section, we know that there is a more 
efficient result with only 16 transitions. 

start 

Figure 4.2: Naive minimization of the automaton from Figure 3.16. 

4.3 Remerging Approach 

start 

Figure 4.3: Automaton M 4 . 3 (on the top left), its simplified version (on the top right), and 
reduced result (on the bottom). 
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The example of an automaton where merge nor transition pruning cannot be used is shown 
in Figure 4 .3 . Saturation can be used and can potentially add some transitions, that 
can make merge or transition pruning usable. But let us show the reduction of such an 
automaton without the saturation. The input automaton does not have any language 
equivalent state nor states in bilateral language inclusion. The merge and transition pruning 
cannot be used. If we increase the size of the automaton by adding states that will overtake 
some parts of languages of the strongest states (q\ and #3) , it can be seen that many language 
equivalences occur now. It is necessary to merge states in a correct order. Merging of states 
Po and pi based on the backward language equivalence, and then the states pi, P3, and p^ 
based on the backward language equivalence allows a future merge of state po,2 (created by 
merge of po and pi) and state pi,3,4- This merge order gives the most optimal result. On 
the contrary, if we merge states p\ and P3 based on the backward language equivalence and 
then states P2 and p^ based on the forward language equivalence, we get stuck. No more 
merges can be performed on such the automaton. We get a sub-optimal solution with one 
more state. Let us call the problem of the maximization of performed merge a the problem 
of optimal merge defined in 5.22. 

4.4 The Problem of Optimal Merge 

The optimal order of state merging, based on an equivalence, does not exist [23]. Various 
orders can have different results, with the same language. 

During the merge, the state can be in a backward language equivalence relation with 
a set of states and a forward language equivalence relation with another set of states. Lem
mas say that it is safe to merge states only by one language equivalence. The newly created 
stat will have the same language (backward for merge performed based on the backward 
language equivalence and forward for merge based on the forward language equivalence). 
And new merging does not need recalculation of the language relations. 

Lemma 4.4 / / L{p) = L (q) and states p and q are merged into m, then L (m) = L{p) = 
t(q). 

If the states p and q were merged into the state m base on the backward language 
equivalence, then the newly created state m can be used in the next backward merging 
based on the old calculations of language equivalence instead of states p or q, but not in 
the merging based on the forward language equivalence. The language can be changed. 

Lemma 4.5 If^t{p) = L (q) and states p and q are merged into m, then L (m) = L{p) = 
t(q). 

If the states p and q were merged into the state m base on the forward language equiv
alence, then the newly created state m can be used in the next forward merging based on 
the old calculations of language equivalence instead of states p or q, but not in the merging 
based on the backward language equivalence. The language can be changed. 

The merge of states p and q based on the bilateral language inclusion alway block newly 
created state m from further merge (backward and forward), based on the old calculation 
of language inclusions, because the language (backward and forward) of a state m might 
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not be equivalent to the language of the state p nor q as shown below. For this reason, the 
investigated reduction approach does not use the bilateral language inclusion for merge. 

start 

Figure 4.6: The N F A M 4 . 6 , the states qg and gio will be merged. 

Automaton M 4 . 6 shows that it is possible to arbitrarily merge either states qs and qg or 
states qg and gio- However, what may not be obvious at first glance is the impossibility of 
merging states qg and gio first and then states qs and gg. 

start 

Figure 4.7: Automaton M'i6, after small adjustments and merging of gio and gg in Au
tomaton M 4 . 6 . 

Automaton M'i6 demonstrates the inequivalence of a language of states gg or gio and 
the merge result gg,io- The new state gg^o can not be used in the next merge without 
recalculation of a language relations. If we try to merge qs and gg (gg is gg^o after merge) 
on Automaton M 3 1 0 , the language will be changed. 

Because some states can be in forward and backward language equivalence with other 
states, it is hard to predict the most optimal order of state merging to get a maximal 
merged states. The main question is: "According to which equivalence merge states that 
are in backward and forward language equivalence, to get the most optimal result?,, The 
technology that will answer this question is SAT solver, which will be used to determine 

22 



the most appropriate merging procedure. The solver information will be the cornerstone 
for SAT-solver-based automata minimization algorithm, which is described in the following 
chapter. 
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Chapter 5 

SAT Solver in Minimization 

This Chapter presents the main methods used in the minimization of nondeterministic finite 
automata using SAT solver. The SAT-solver-based approach minimizes the automaton by 
parts (subgraphs), which consists of a group of states with a common ancestors or common 
successors. The set of these states is called a family. The definition and family lookup 
algorithm are described in Section 5.1. To get the automaton from its local minimum and 
allow a more minimal solution, it is necessary to replace this family with a new set of 
states which has the same language, but each state has maximal one incoming and one 
outcoming transition. This multiplication process is presented in Section 5.2. After the 
multiplication, the language relations of a new multiplied state of a family are coded for 
SAT solver. The special approximation of a language equivalence is used in SAT-solver-
based automata minimization. The approximation algorithm is defined in Section 5.3. The 
solver gives information on how to merge states of the family so that the final number of 
merged states is maximal. The coding principles and an example are shown in Section 5.4. 
The minimization algorithm using approaches such as family selection, state multiplying, 
and solver task coding, is defined in Section 5.5. 

5.1 Family of States 

The algorithm using the SAT solver reduces the automaton by parts which consists of a set 
of states (family) with a common successors or common ancestors and with a same transition 
letter. Only two basic groups of states (proto-families) and then their combinations will be 
minimized. 

The first group is defined by a common ancestor which marks as a proto-family the states 
into which leads similarly notated transitions. These transitions create nondeterminism. 
That means that there is a state in which a backward language (or a piece of a backward 
language) is already covered by another state of this proto-family. This condition does 
not apply to the ancestor itself. Common ancestor of the family cannot be its member. 
States of the family cannot have any direct transitions between each other. The state of 
the proto-family from or to which leads a transition from another state of this proto-family 
must be eliminated from the proto-family. The proto-family with a common ancestor is 
called a forward proto-family, or simply 1:N. 
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Definition 5.1 Let M = (Q,T,,S,I,F) be the NFA, state s G Q, and letter a in E . The 
forward proto-family (1 :N) of the state s and the letter a is a set P C Q such that: 

• q G P => s q G S, 

• P>Q £ P ^ 6 G E suc/i i/iai p g 6 (5, 

• P is a maximal set satisfying 1 and 2. 

The complement of the 1:N proto-family is a proto-family with a common successor. A l l 
states from which lead a transition into the common successor with the same assignment 
belong to the same proto-family. The backward nondeterminism indicates that the forward 
language of some state of the proto-family might be already represented by another state 
of this proto-family. As in the previous definition, this condition does not apply to the 
successor itself. Common successors of the proto-family cannot be its member. States of 
the proto-family cannot have any direct transition between each other. This proto-family 
is called a backward proto-family, or simply N : l . 

Definition 5.2 Let M = (Q,Y,,5,I,F) be the NFA, state s G Q, and letter a in E . The 
backward proto-family (N:l) of the state s and the letter a is a set P C Q such that: 

. q e P q ^ s e d , 

• PiQ. ^ P = ^ ^ 6 G E such that p —} q G 5, 

• P is a maximal set satisfying 1 and 2. 

Definition 5.3 The pre-family is 1) family, 2) union of proto-families which have inter
section, 3) nothing else. 

Definition 5.4 The family is a maximal subset of pre-family, such that none of the family 
states has a transition between them. 

In the special cases where the family has only one ancestor or successor, the number 
of states needed for a replacement of an existing family can be predicted as a minimum of 
theorems 5.5 or 5.7. 

Theorem 5.5 The family F C Q 1:N, with only one ancestor, can be minimized to n 
states by a redistribution of transitions. Where n = \ Li(F, F)\ is the cardinality of a pure 
backward language with maximal distance 1 of the family F withou using the states of F. 

Based on the theorem 5.5, if the family F C. Q, consists of 4 states, has only one successor 
s G Q and the transitions going from the successor to states of the family are assigned by 
the letters a, 6, c G E (the size of pure backward language with maximal distance 1 of the 
family is 3), then the family could be minimized to 3 states. Each new state will handle 
one incoming letter. Outcoming transitions of states of the family must be recombined to 
cover the original language. This example of recombination is shown in Figure 5.6. If the 
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family satisfies both theorems (the family has only one ancestor and only one successor), 
then the family can be minimized to the minimum count of states from both theorems. 

start 

Figure 5.6: Automaton on the left has a family consisting of states F = {qo,qi,q2,Q3}-
| Li(F, F)\ =3 . That means that the family can be minimized to 3 states. 

Theorem 5.7 The family F C Q N:l, with only one successor, can be minimized to n 
states by a redistribution of transitions. Where n = \ Li(F,F)\ is the cardinality of the pure 
forward language with maximal distance 1 of the family F without using the states of F. 

Some states can be assigned to more than one family. Take an example from Figure 5.6. 
The states go a n d q3 are in the forward family, created by an ancestor s and a transition 
letter a. The second forward family consists of states qo, qi, and qi, created by an ancestor 
s and a transition letter b. It is necessary to join the families with a common state, to get 
the correct and the most useful information about languages of states in a family. Here, the 
state qo is in both families. Therefore, these two families will be joined into one. Sometimes, 
the state can be in more forward (1:N) and backward (N:l) families. 

The problem of joining sets (families) with a common element (state) can be easily 
solved in graph theory as a problem of finding connected components. Algorithm 1 5.8 
describes an approach for joining sets with a common element. This algorithm will be used 
not only for merging a set of families with a common element, but for merging a set of 
equivalent pairs of states with a common state. 

The algorithm creates equivalence classes of transitive and reflexive closure of the neigh
bour relation on states, where states are neighbors if they appear together in some of the 
input sets. The algorithm creates interconnections between elements (vertices) of each set 
(proto-family). After the initialization of a graph, the walk from each vertex is made. Walks 
detect isolated graph components. The isolated graph component stands for a joined set 
(family). The result is a set of graph components (set of joined families). 

algorithm is taken from https://www.geeksforgeeks.org/python-merge-l ist-with-common-
e l e m e n t s - i n - a - l i s t - o f - l i s t s / 
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Algorithm 5.8 The algorithm for joining sets with a common element 
Input: a S of sets to join. 
Output: a set with joined sets. 

1: joinedSets <— 0 

2: G <— (V, E) > unoriented graph 
3: F = U-S 
4: £ = {{ui, ua} I V T G S : (ui, v 2) G T x T} 
5: for vertex G V do > make walks in the graph 
6: graphComponent <— 0 
7: if vertex £ visited then 
8: openV <— {vertex} 
9: while openV ^ 0 do 

10: tmpVertex <— openV.popQ 
11: visited <— visited U {tmpVertex} 
12: openF openF U {w2 | {vertex, w2} G î } \ visited 
13: graphComponent <— graphComponent U {tmpVertex} 
14: end while 
15: joinedSets.add(graphComponent) 
16: end if 
17: end for 
18: return joinedSets 

start 

Figure 5.9: Two forward proto-families by a letter a (go, <7i) and by a letter 6 (<7o><73) and 
one backward proto-family by a letter x (^2,^3) are in the given automaton. The graph on 
the right represents a neighbor relation between states (the edge notation is additional). 
The graph contains only one isolated component (family). A l l families will be joined in one 
(90,51 ,52,53)-

After joining the classical proto-families 1:N or N : l , new generalized types of families 
can occur. The most general type of the family is a family with more common ancestors 
and successors signed as N : N . A special type of a family is a family with only one ancestor 
and one successor, this is the family 1:1. A l l these types are shown in Figure 5.10. 
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Figure 5.10: (From left to right and top to bottom). The top left automaton Mp repre
sents a forward family 1:N (states pi, P2, and p%). The top right automaton Mq displays 
an opposite family, the backward family N : l (of states q2, <?3, and q^). The bottom left 
automaton Mr, shows a combination of forward and backward families, the family N : N (of 
state V2, r*3, r±). The simplest case of a combination of a forward and backward families is 
the family 1:1 viewed by an automaton Ms in the bottom right. 

The family finding algorithm creates for each state the forward and backward proto-
family according to the definitions. The forward proto-family of state s is created for each 
letter from forward transitions. The state s itself is not included in proto-family. The state 
q is removed from the proto-family if from this state leads a transition to the other state 
of the proto-family. The backward proto-families of a state s are created similarly. A l l 
families with only one state are discarded. After that. Families with a common state are 
joined by Algorithm 5.11. At the end, the set of families contains the biggest 1:N, N : l , 1:1, 
and N : N families. 
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Algorithm 5.11 The algorithm for finding families of states 
Input: N F A M = (Q,E,S,I,F). 
Output: a set of families. 

1: families <— 0 

2: for s G Q do 
3: for a G X do 
4: successors <— 0 
5: ancestors <— 0 
6: for succ G 5(s, a) \ {s} do > for all successors of a state s by a letter a 
7: if q ^ 6(succ,y)U6~1(succ,y) where y G £ and succ G successors\{q} then 
8: successors <— successors U {succ} 
9: end if 

10: end for 
11: for anc G <5_1(s, a) \ {s} do o for all ancestors of a state s by a letter a 
12: if q ^ 5(anc, y) U <5_1(anc, y) where y G £ and anc G ancestors \ {q} then 
13: ancestors <— ancestors U {anc} 
14: end if 
15: end for 
16: if | successors| > 1 then 
17: families, add (successors) o add successors as a family to a set of families 
18: end if 
19: if {ancestors| > 1 then 
20: families.add(ancestors) o add ancestors as a family to a set of families 
21: end if 
22: end for 
23: end for 
24: families <— joinSetsWithCommonElem(families) 
25: return families 

To decrease the solver running time, it is suitable to split a family into smaller groups 
according to the language equivalence pairs. States of each group will have a language 
equivalence relations (backward or forward) only with other states of the same group. This 
will minimize the problem of optimal merge. The pair of equivalent states will be assigned 
to the group by sets joining Algorithm 5.8, which takes a union of forward and backward 
equivalent pairs. For example, a family {qo, qi, q2, <?3, <?4, q$}, where the backward language 
equivalent state pairs are {{qo, Qi}i {l3i Qi}} and a forward language equivalent pairs are 
{{<7o, Q2}, {q3, Q5}} will be splitted to two subfamilies {qo, 51,^2} and {93 ,^4,95} . Smaller 
(sub)families make coding easier and solver decisions faster. 

5.2 States Mult ipl icat ion 

The SAT solver minimization approach gives information on how to optimally merge states. 
The states could be merged only if they have equivalent languages. To increase potentially 
mergeable states (states with equivalent languages), it is necessary to multiply these states. 

The multiplication replaces one state with a new set of states. The new states cover the 
same language as the original state, but have maximal one incoming and one outcoming 
transition, self-loops do not count. Let the state s has n incoming and n outcoming tran-
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sitions. Then the state s will be multiplied to n 2 new states. If two states (so and si) in 
a row (si is the successor of SQ) are multiplied, then the number of new states will be n 3 . 
In general, if m is a number of multiplied states in a row, where each has n incoming and 
n outcoming transitions, then the number of new states will be mn+1. It is very hard, even 
impossible, to multiply all states in an automaton to satisfy the condition of maximal one 
incoming and maximal one outcoming transition. 

It is suitable to focus on small automaton parts (best with a quadratic complexity), 
because multiplying all states of an automaton is expensive. The main idea is that the 
equivalent (or similar) language of states or even an automaton (subgraph) is caused by 
a connon successor or common ancestor and transitions with the same letter which leads 
to or from this common state. And that is the main existential condition of the family. 
Therefore, only families of states are selected for multiplying. The family on which applies 
the condition of maximal one incoming and maximal one outcoming transition is called the 
multiplied family. 

Definition 5.12 Let M = (Q, S , 6,1, F) be the NFA and S C Q a family. The family S 
is a multiplied family if the following condition applies. 

In some cases, the multiplication cannot be done so straightforwardly as only a combi
nation of incoming and outcoming transitions. The first case is a self-loop. Each self-loop 
represents an infinite set of words, so it cannot be transferred to a limited count of states 
(without a loop), without changing an automaton language. Therefore, self-loops cannot 
be multiplied. If the state s is multiplied and has a self-loop, then the multiplication is done 
only for incoming and outcoming transitions without the self-loop. The entire self-loop is 
duplicated to each newly created state. The next case is the final or initial state. The 
solution is much easier here. If the original state is final or initial, then each new state 
created by a multiplication of the original state will be final or initial too. 

Let us show why the states with a transition to another state from a family are discarded 
by a family finding algorithm. If two states r and s of a family are interconnected (no meter 
the direction), then it is not possible to satisfy the condition of maximal one incoming and 
maximal one outcoming transition. The multiplying of the states r and s will only increase 
the count of interconnected pairs. 
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Figure 5.14: The family of states qo and qi was multiplied. The automaton on the right is 
the left autaton after family multiplication. 

It is not necessary to detect if the states of the family belong to an automaton cycle 
(long loop). Long loops do not have any effect on state multiplication as shown in Figure 
5.15. The state ancestor and successor in a long loop behave only as standard ancestors or 
successors. 
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Figure 5.15: The family of states go and q\ of the left automaton was multiplied. The state 
qo is in the long loop. The automaton on the right shows the situation after multiplication. 
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Algorithm 5.16 Family of states multiplying algorithm 
Input: N F A M = (Q, £ , 5,1, F), and family (set) of states. 
Output: New family of states created by a multiplication. 
newFamily <— 0 
for state G family do 

possibleAnc <— anc(state) 
if possibleAnc = 0 then 

possibleAnc <— {0} 
end if 
for ancestor G possibleAnc do 

possibleSucc <— succ(state) 
if possibleSucc = 0 then 

possibleSucc <— { 0 } 
end if 
for successor G possibleSucc do 

for bwLetter G L\{ancestor, state, ancestor) do 
for fwLetter G L\{state, successor, state) do 

newState <— a fresh state ^ Q 
newFamily <— newFamily U {neu>Sta£e} 
if state G .F then 

F < - F U {newState} 
end if 
if state G / then 

I <— I Li {newState} 
end if 
if ancestor ^ 0 then 

5(ancestor, bwLetter) <— 5(ancestor, bwLetter) L) {newState} 
end if 
if successotr ^ 0 then 

5(newState, fwLetter) <— 5(newState, fwLetter) U {successor} 
end if 
for loopLetter G L\(state, state, state) do 

5(newState, loopLetter) <— 5(newState, loopLetter) U {neuiState} 
end for 

end for 
end for 

end for 
end for 
remove state and its transitions form M 

end for 
return newFamily 

Algorithm 5.16 multiplies states in a given family and returns a multiplied family. Each 
state of the original family is multiplied to n states, specified by a combination of pure 
incoming and pure outcoming transitions. If a state has a self-loop, then the whole self-
loop is assigned to each new state. The original state is substituted by a set of new states, 
even if the state already applies to the condition of maximal one incoming and outcoming 
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transition. The original state is removed after the multiplication. The returned family 
consists only of newly created states. 

5.3 Approximation of Language Equivalence 

The language equivalence calculation in a SAT-solver-based minimization is very hard be
cause the reduction algorithm multiplies a family to many states (even hundreds of states). 
The calculation of the simulation relation is slow too. The multiplication is done many times 
in a minimization process and families are getting bigger and bigger. It is necessary to calcu
late only an under-approximation of language equivalence. The state equivalence checking 
algorithm with defined distance is an adaptation of an automata equivalence checking A l 
gorithm 2.14. The approximation approach has a specified distance, on which the language 
equivalence of two states must be confirmed, otherwise, the states are not equivalent. 

Algorithm 5.17 The approximation algorithm for forward language equivalence checking 
Input: N F A M = (Q, E , 5,1, F), two state q,r G Q, and distanceMax G N 
Output: "Yes,, if L (q) = ~i(r), otherwise "No,, 

1: visited <— 0 > contains allowable next states after reaching distanceMax 
2: closed <— 0 
3: todo <— {(q, r)} 
4: distance <— 0 
5: while todo / 0 do 
6: Pick (X, Y) G todo and remove it 
7: if (X, Y) <£ closed then 
8: visited <— visitedUlUl' 
9: if X = Y then 

10: continue 
11: end if 
12: if (X, Y) is bad pair then 
13: return "No, ~t(q) / ~L*(r)„ 
14: end if 
15: for a G E do 
16: if distance = distanceMax then 
17: if S(X, a) \ visited / 0 V 5(Y, a) \ visited / 0 then 
18: return "No, L(q) / L(r)„ 
19: end if 
20: end if 
21: todo^todoU{(5(X,a),5(Y,a))} 
22: end for 
23: closed 4- closed U {(X,Y)} 
24: distance <— distance + 1 
25: end if 
26: end while 
27: return "Yes ~t(q) = ~L*(r)„ 

A n empty set closed is initialized at the beginning of the algorithm. The closed set 
will store the already processed pairs and prevents the algorithm from an infinite loop. 
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Thereafter, the set todo will be initialized, and the pair ({p}, {q}) is inserted. The pair 
of a set of states (X, Y) is equivalent if X and Y are identical. The pair (X, Y) is bad if 
one of the sets is empty, but the other is not, or if a state of X or Y is final whereas the 
other is not. Otherwise, successors for X and Y are generated into todo. If the set todo is 
empty, then the languages of states are equivalent. After reaching a maximal destination, 
the calculation can continue, but only with states in visited. Any other state means that 
the language equivalence cannot be determined at the given distance. The algorithm for 
backward language equivalence checking uses a backward transition function <5_1 instead 
of 5. 
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Figure 5.18: States q\ and q2 are backward equivalent at distance 1, but states q% and q± 
are not. Nevertheless, the states q^ and q^ are equivalent on a distance 2. 

5.4 S A T Solver Coding 

As has been already mentioned, the SAT solver gives information on how to perform the 
most optimal merging of states of the family. The main information for the solver coding 
is language equivalence. Only states with forward or backward language equivalence can 
be merged. The problem of optimal state merging is that some states can be in more than 
one language equivalence. For example, state q\ is in backward language equivalence with 
a state q2 and in forward language equivalence with state qo. This example is shown in 
Figure 5.19. 
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Figure 5.19: A suboptimal merge of an automaton on the left. States q\ and q2 were merged 
based on a backward language equivalence. This backward merge blocks a merge of states 
go, Qi and q2, q%. based on the forward language equivalence. 

The minimization cannot be optimal if the merge is not performed based on the SAT 
solver information. For example, if a state q\ is merged with a state q2 based on a backward 
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language equivalence, then the state qo cannot be merged with a state q\ based on a forward 
language equivalence. Every state can be merged based on constant language equivalence 
information (the information is not recalculated after merge) only with backward language 
equivalent states or only with forward language equivalent states, not with states from both 
groups. The main question is: Which states merge to get the most optimal solution? Let 
the SAT solver decide. 

For the specification of SAT solver problem, it is necessary to define a set of pairs of 
states that can be merged based on the backward language equivalence and the set of pairs 
of states that can be merged based on the forward language equivalence. 

Definition 5.20 Let E~q be a set of pairs of states with equivalent backward language. The 
set of backward equivalent pairs of states is =&= {{q, r} | (q, r) G E~q, q ̂  r} 

Definition 5.21 Let Eq be a set of pairs of states with equivalent forward language. The 
set of forward equivalent pairs of states is =f = {{q,r} | (q,r) G Eq, q / r} 

The SAT solver calculates the most effective solution, which provides the maximum 
merged pairs of states, where each state must belong only to the backward equivalent pairs 
or to the forward equivalent pairs. 

Definition 5.22 The problem of optimal merge is a problem of maximizing the subsets 
P C=f and RC=b, such that \jPn\jR = 0 . 

With definition of the solver problem and the definition of forward and backward equiv
alent pairs, the SAT solver coding of this problem can be described. Not only the variables 
and formulas will be defined in the following sections, but also their count. The size (count 
of formulas) of the solver problem is the main key for SAT solver running time. The next 
goal in the future will be to decrease these numbers and speed up SAT solver decision. 

5.4.1 Variables 

Maximal two boolean variables will be used for each state of the subfamily in a solver 
coding. The family is splitted by Algorithm 5.8. There is no language equivalence relation 
between two states from different subfamilies. Splitting will speed up solver calculation. 
A prefix B is used for the states in ={, and a prefix F is used for the states in =f. The 
value of the variable signifies if a state is merged based on forward or backward language 
equivalence. 

Definition 5.23 Let =b be a set of backward equivalent pairs of states and =f be a set 
of forward equivalent pairs of states. Then the solver variables are defined as Vars = 
{Bq\qe\J=b}U{Fq\qe\J=f}. 

Let a subfamily has a set of backward language equivalent pairs of states =b= {(qo, qi), 
(<72j<?3)} and forward language equivalent pairs =f = {(qo, q3), (#4, #5), (q2, Q5)}- Then the 
variables are Fq0, Fqi, Fq2, Fq3, Bq0, Bq2, Bq3, BqA and Bq5. 
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One state can be merged only based on the backward language equivalence or based on 
the forward language equivalence. Therefore, the maximal number of variables used in the 
SAT solver coding will be twice the number of states. 

Lemma 5.24 Let the family has n members. The number of solver variables is maximal: 

Varscnt{n) = 2n (5.25) 

5.4.2 Merge Formula 

The language equivalence (backward or forward) and thus the merge of two states based on 
the language equivalence (backward or forward) is coded by logical conjunction. Two states 
can be merged only if both these states allow the merge. The states p and q with backward 
language equivalence can be merged only if the state p and q are merged with some other 
state based on the backward language equivalence. That means that the formula Bp A Bq 
must be truly evaluated. On the other hand, only some pairs of states in backward and 
some pairs of states in forward language equivalent pairs of states will be merged. Not all 
logical conjunctions that symbolize state merge will be evaluated by true. The SAT solver 
task is to maximize the count of truly evaluated conjunctions. For this reason, the logical 
conjunctions are connected with logical disjunction. 

Definition 5.26 Let =& be a set of backward equivalent pairs of states and =/ be a set of 
forward equivalent pairs of states. Then the merge formula is defined as: 

V 4>Merge (5-27) 

where 4>Merge = {Bq A Br \ (q, r) G = b } U {Fq A Fr \ (q, r) G = / } . 

Let the set of backward language equivalent paris be =b= {(<?0) <7i)> (?2> #3)} and the set 
of forward language equivalent paris be =/= {(qo, 53), (<?4, qs), (q2, qs)}- Then the merge 
formula is (Bq0 A Bq\) V [Bq2 A Bq3) V (Fq0 A Fq%) V [FqA AFq5)V (Fq2 A Fq§). 

Because in the worst case, all states can be backward and forward language equivalent, 
the maximal count of logical conjunctions (that code merge of two states) will be the 
combination of backward and forward language equivalent pairs of states. 

Lemma 5.28 Let the family has n members. The maximal count of a logical conjunction 
in the merge formula is: 

1 = 2 • — - 2 - = n • (n - 1) (5.29) 

5.4.3 Merge Rules 

The most important part of the information in SAT solver coding are the rules, which block 
the merge of the state based on a forward language equivalence after performing the merge 
based on a backward equivalence, and vice versa. The rule must be created for states that 
are in both forward and backward language equivalence. 
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Definition 5.30 Let ={, be a set of backward equivalent pairs of states and =f be a set of 
forward equivalent pairs of states. Then the merge rules formula is defined as: 

/\<t>Rules (5.31) 

where (j)Rules = {Bq => ->Fq \ {q, r} G =\, A{q, s} G =/ , where q,r, s G Q}. 

Let the set of backward language equivalent paris be =b= {(qo,qi), (?2> #3)} and the set 
of a forward language equivalent paris be =f = {(go> ?3)> (?4> ?5)> (Q2, Q5)}- Then the merge 
rule formula is (Bqo ^Fqo) A (Bq2 =>• ^Fq2) A (Bq3 ^Fq3). 

In the worst case, all states will be used in the forward and backward language equivalent 
pairs of states. That means that the rule will be created for every state. 

Lemma 5.32 Let the family has n members. The maximal count of implications in a merge 
rule formula is: 

Implicationcnt(n) = n (5.33) 

5.4.4 Coding 

With the information, such as solver variables, merge formulas, and rules, the merge prob
lem can be coded. 

Definition 5.34 The minimization formula is defined as a logical confunction of merge 
formula and merge rules formula: 

MergeFormula A MergeRulesFormula. (5.35) 

Let the set of backward language equivalent paris be =b= {(lo,Qi), (Q2, Q3)} and the set 
of forward language equivalent paris be = /= {(qo, 53), (^4,^5), (^2,^5)}- The the minimiza
tion formula is: 

((Bq0 A Bqi) V (Bq2 A Bq3) V (Fq0 A Fq3) V (Fqi A Fqb) V (Fq2 A Fq5)) A 

((Bq0 ^Fq0)A(Bq2 ^Fq2) A (Bq3 ^Fq3)) 

We use SAT solver Z 3 2 for solving the problem of optimal merge in this thesis. The problem 
of optimal merge is written in the Z3 solver syntax (lower case prefixes b and / are used 
due to Z3 syntax rules) as: 

; variables 
(declare-const bq_0 Bool) 
(declare-const bq_l Bool) 
(declare-const bq_2 Bool) 
(declare-const bq_3 Bool) 
(declare-const fq _ 0 Bool) 
(declare-const fq_ 2 Bool) 
(declare-const fq _ 3 Bool) 
(declare-const fq_ 4 Bool) 

2 Z3 solver is available at https://github.com/Z3Prover/z3 
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(declare-const fq_5 Bool) 
; rules 
(assert (=> bq_0 (not fq_0))) 
(assert (=> bq_2 (not fq_2))) 
(assert (=> bq_3 (not fq_3))) 
; merge formulas 
(assert-soft (and bq_0 bq_l) :weight 1) 
(assert-soft (and bq_2 bq_3) :weight 1) 
(assert-soft (and fq_0 fq_3) :weight 1) 
(assert-soft (and fq_2 fq_5) :weight 1) 
; run the solver and get the result 
(check-sat) 
(get-model) 

The solver is forced to maximize a truly evaluated conjunctions in the merge formula 
[7]. Z3 solver returns all variables and its evaluation. Only pairs of states where both states 
were assigned to true, will be merged together. In our example, the solver evaluates by 
true variables Bqo, Bq\, Fq2, and Fq$. Wi th the information about language equivalent 
pairs, it can be seen that only pairs (qo, q\) based on a backward language equivalence and 
(q2,%) based on a forward language equivalence will be merged. 

5.5 SAT-solver-based Minimizat ion 

This section describes an automaton minimization process with the usage of the techniques 
described in this chapter, such as finding families, multiplying, and solver problem coding. 

Equivalent initial or final states cannot be sometimes minimized, because the algorithm 
minimizes only families. And the family consists of states with a common ancestor or 
successor. Initial states do not have any ancestor. For the same reason, the two final 
states without forward transition that are forward equivalent cannot be in the family. It is 
necessary to modify an automaton to an automaton with only one initial and maximal two 
final states (one can be final and initial). 

5.5.1 One Initial State 

If the automaton has more than one initial state, then this initial behavior can be replaced 
by a creation of a new initial state. A l l transitions going from the old initial states will be 
duplicated and assigned to the new initial state. 

Definition 5.37 Let M = (Q,T,,S,I,F) be the NFA. The automaton with one initial 
state is Mi = (Qi, E , 5j, qo, F) where: 

1. Qj = QU {qo} is a finite set of states, 

2. E is an alphabet, 

for s = q0, 
otherwise. 

J±. I = {qo} is a set containing one initial state, and 
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5. F C Q is a set of final states. 

start 

Figure 5.38: The automaton M on the top with two initial states (po and p\) and the 
equivalent automaton M j with one initial state (go) at the bottom. 

5.5.2 Central Final State 

If an automaton has more than one final state, then the final behavior of these states can 
be replaced by a creation of the new final state. And all transitions going to the old final 
states will be duplicated and assigned to the new final state. A l l old states that are not 
initial will lose their final behavior. A l l states that are final and initial remain final because 
it is not always easy to create the automaton containing only one initial and one final state. 

Definition 5.39 Let M = (Q, S, 5,1, F) be NFA. The automaton with one final state 

is Mp = (QF, 5F, I, Fp) where: 

1. Qp = Q U {/o} is a finite set of states, 

2. £ is an alphabet, 

Up£F5(P>a) f ° r s = fo, 3. 5F(s,a) 
S(s, a) otherwise. 
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4- I <^ Q is a initial state, and 

5. Fp = (I fl F) U {fo} is a set of final states. 

start 

Figure 5.40: The automaton M on the top with two final states (p^ and p$) and at the 
bottom equivalent automaton Mp with one final state (fo). 

5.5.3 SAT-solver-based Minimization Algorithm 

At the beginning of the SAT-solver-based minimization algorithm, the closed set is ini
tialized to 0. This set will contain already minimized families. The input automaton is 
modified to have only one initial and one central final state. The families are found by 
Algorithm 5.11. The automaton is reduced while there exist such families that are not 
yet in the closed set. Each family is backuped. The backup contains states, their initial or 
final behavior, and transitions of states. The backup will be used if the SAT solver returns 
the bigger family than the family was. The family is multiplied by Algorithm 5.16. The 
multiplication is done only once before merge. While it is possible to merge some states in 
the family, the SAT solver returns the most optimal merge suggestion. The family is then 
merged according to this suggestion. After the SAT solver reduction, the family is added to 
the close set. If all families are already in close set, then the result automaton is returned. 
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Algorithm 5.41 SAT-solver-base minimization algorithm of N F A 
Input: N F A M = (Q, £ , 6,1, F) 

1: closed <— 0 
2: M <— M .makeOneInitialState() 
3: M <— M.makeCentralFinalState() 
4: while True do 
5: families <— M.findFamiliesQ 
6: families <— families \ closed 
7: if families = 0 then 
8: break 
9: end if 

10: for family G families do 
11: backup <— create backup of the states and transitions of the family 
12: family <— multiply States (f amily) 
13: while True do 
14: mergeSuggestion <— SATsolverMergePrediction{family) 
15: if mergeSuggestion = 0 then 
16: break 
17: end if 
18: for groupOf States G joinSetsWithCommonElem(mergeSuggestion) do 
19: family <— family U mergeStates(groupOfStates) 
20: family <— family \ groupOf States 
21: end for 
22: end while 
23: if family > backup then 
24: for state G family do 
25: remove state and its transitions from M 
26: end for 
27: for state G backup do 
28: restore states and transitions from backup 
29: end for 
30: family <— get states from backup 
31: end if 
32: closed <— closed U {family} 
33: end for 
34: end while 
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Chapter 6 

Experiments 

We test the efficiency of SAT-solver-based reduction algorithm using Z3 solver on two sets of 
automata and compare it with the existing tool RABIT/Reduce (version 2.5) [12] running 
on Java 11.0.11. The fist set was created from regular expressions, particular from databases 
of network intrusion detection systems Bro [5] and Snort [4], the academic papers [11, 34], 
the RegExLib database [29], and industrial regexes [21] used for security purpose. The 
second set containing bigger (with more transitions) automata was constructed from Nested 
antichains for WS1S [16]. The SAT-solver-based reduction algorithm was implemented with 
Python 3.8.5. The experiments were performed on one thread of A M D Ryzen 7 3800XT 
8-Core and 32 G B of memory. 

The chapter also provides a comparison of SAT solver running time in dependence on 
the size of the automaton alphabet and a size of a family of states, on the most difficult 
type of family (1:1). 

6.1 Reduction of Regexes 

The efficiency of the investigated approach is compared with a tool RABIT/Reduce on 3730 
automata, with a total of 63538 states and 84093 transitions. Automata were modified to 
have one initial and maximal two final states (one can be final as well as initial). The size 
of automata is between 10 and 400 states. The average count of transitions per state is 1.57 
(from each state leads approximately 1.57 transitions). The bigger the transition density is, 
the slower the solver minimization is. First, the solver is compared with RABIT/Reduce, 
which uses state merging and transition pruning. Then the solver is used as a supplement 
of RABIT/Reduce after running a merge, transition pruning, and saturation, which is the 
best-known combination. RABIT/Reduce uses lookahead simulation for an approximation 
of language relations. Lookahead was set to 1 for all experiments. Bigger lookahead did 
not give better minimization results, only slower down the RABIT/Reduce. 

6.1.1 S A T Solver vs R A B I T 

The new minimization approach using SAT solver information for better state merging and 
maximal distance 10 in the algorithm for checking of the language equivalence 5.17 mini
mizes the input automata to a total of 59421 states. The tool RABIT/Reduce using state 
merging and transition pruning minimizes the input automata to a total of 58734 states. 
This means that the minimization using the SAT solver approximated the RABIT/Reduce 
result with an accuracy of 98.84%. 
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Figure 6.1: Comparison of the count of states of the results of SAT-solver-based reduction 
algorithm with maximal distance 10 and RABIT/Reduce with lookahead 1, which uses state 
merging and transition pruning. SAT-solver-based reduction approximates RABIT/Reduce 
result at 98.84%. 

In this set of states, the maximal distance 1 has the minimal effect on the time of the 
calculation of language equivalence (42.340 sec with maximal distance 10 and 40.700 sec 
with maximal distance 1), but gives much worse results (59421 states with maximal distance 
10 and 60313 with maximal distance 1). 

Figure 6.2: Comparison of the count of states of the results of SAT-solver-based reduction 
algorithm with maximal distance 1 and RABIT/Reduce with lookahead 1, which uses state 
merging and transition pruning. 
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The SAT-solver-based algorithm maximized states reduction, not transition reduction. 
SAT-solver-based minimization reduced the input automata to a total of 77945 transitions. 
Nevertheless, RABIT/Reduce returns automata with 75316 transitions. The comparison is 
in Figure 6.3 

0 100 200 300 400 500 600 
RABIT - output automaton transitions count 

Figure 6.3: Comparison of the count of transitions of the results of SAT-solver-based re
duction algorithm with maximal distance 10 and RABIT/Reduce with lookahead 1, which 
uses state merging and transition pruning. 
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Figure 6.4: Comparison of the reduction time of the SAT-solver-based reduction algorithm 
with maximal distance 10 and RABIT/Reduce with lookahead 1, which uses state merging 
and transition pruning. The SAT-solver-based algorithm reduces automata 7.5 times faster 
than the tool RABIT/Reduce. 
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Another engaging part of the comparison is the minimization duration. The R A B I T / R e -
duce, using state merging and transition pruning, minimizes 3730 automata in 317.830 s. 
On the contrary, the solver did approximately the same minimization in only 42.340 s. 
That is 13.32% of the time consumed by RABIT/Reduce. The comparison is in Figure 6.4. 
However, the solver minimization is slower on automata with high transition density. 

6.1.2 S A T Solver as R A B I T ' s Supplement 

The solver with merge can be used alone or as a supplement of a RABIT/Reduce. The 
solver with merge is processed over a RABIT/Reduce best minimization. The new reduced 
automaton is a little more minimal than the RABIT/Reduce result. The difference between 
the minimized states (the difference between a number of states of the input and output 
automaton) of RABIT/Reduce itself and its version enriched by the solver is the main 
measurement. The total input number of minimized states is the same as in the previous 
example (63538). RABIT/Reduce itself minimizes the automata by 5322 states. The 
extended version of the algorithm using R A B I T and solver minimizes the automata by 5356 
states. That is, about 0.63% minimized states more than only by using RABIT/Reduce, 
which uses the strongest minimization algorithms. 

6.2 Reduction of WS1S 

The second group contains 1132 automata with a total of 35389 states and 518342 tran
sitions (14.6 transitions per state). Only the SAT-solver-based reduction algorithm with 
maximal distance 1 and RABIT/Reduce with lookahead 1 using state merging and transi
tion pruning were compared, because these automata do not contain any fragments than 
RABIT/Reduce itself can reduce. This time, the SAT-solver-based reduction gives a better 
reduction of states and transitions. However, the reduction time was higher than R A 
BIT/Reduce due to the big size of minimized families (caused by many transitions) as 
shown in the figure 6.8 

6.2.1 S A T Solver vs R A B I T 

The SAT-solver-based reduction approach minimized the input automata to a total of 
20340 states and 119103 transitions. The tool RABIT/Reduce using state merging and 
transition pruning minimizes the input automata to a total of 21236 states and 126237 
transitions. That means that the solver reduced automata about 896 (6.33%) states and 
7134 (1.82%) transitions more than RABIT/Reduce. The comparison is in Figure 6.5 and 
6.6. Unfortunately, the RABIT/Reduce was on average 5.5 times faster than SAT-solver-
based algorithm. High computation time of SAT-solver-based reduction was caused due to 
the big size of families, which slow down the solver calculations, as shown in Figure 6.8. 

45 



50 100 150 200 250 
RABIT - output automaton states count 

Figure 6.5: Comparison of the number of states of the results of SAT-solver-based reduction 
algorithm with maximal distance 1 and RABIT/Reduce with lookahead 1, which uses state 
merging and transition pruning. SAT-solver-based algorithm reduced about 896 (6.33%) 
states more. 

0 500 1000 1500 2000 
RABIT - output automaton transitions count 

Figure 6.6: Comparison of the number of transitions of the results of SAT-solver-based 
reduction algorithm with maximal distance 1 and RABIT/Reduce with lookahead 1, which 
uses state merging and transition pruning. SAT-solver-based algorithm reduced about 7134 
(1.82%) transitions more. 
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Figure 6.7: Comparison of the reduction time of the SAT-solver-based algorithm with 
maximal distance 1 and RABIT/Reduce with lookahead 1, which uses state merging and 
transition pruning. 

SAT-solver-based algorithm reduced automata slower than R A B I T in this example. 
SAT-solver-based algorithm with maximal distance 1 minimized 1132 automata in 1335.461 
sec, but R A B I T with lookahead 1 minimized automata in 241.727 sec. The time difference 
was caused by a high size of minimized families as shown in Figure 6.9 
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Figure 6.8: Dependancy of input automaton size and maximal size of minimized family 
during the reduction. 
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Figure 6.9: Experimental values of SAT solver Z3 running time in dependence on a maximal 
minimized family size. 

6.3 Reduction Time Based on the Family Size 

This section displays the impact of family size to the time consumed by a SAT solver Z3. 
The solver running time increases with the number of language equivalent states in the 
family. The graphs below show the worst reduction scenario on family 1:1. 
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Figure 6.10: Comparison of the SAT solver Z3 running time in dependence on the size of 
the multiplied family and the size of alphabet. Each point is the average of 100 random 
families 1:1. SAT solver was finished after reaching 10 seconds. 
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The tests were performed on automata consisting of only one random family 1:1 be
tween 20 and 200 states. A l l family states have only one incoming and one outcoming 
transition, with no self-loops. The size of the alphabet is between 2 and 20 characters. 
This setup represents the worst reduction scenario because each state can be a backward 
and forward language equivalent to any other. Small alphabet size allows the existence of 
many equivalent states and thus extremely slows down the SAT solver Z3 decision. 

The SAT solver running time depends on the number of conjunctions in the merge 
formula (language equivalent pairs of states). If the letters of the alphabet are uniformly 
assigned to the family transitions and n is a count of the family states, then the number of 
conjunctions in the merged formula 5.26 is: 

Conjunctioncnt(n, = —— • | ) = ——• • = — — — - (6.11) 
J v ' ' 1 7 | S | V 2 / l s l ( n - 2 ) ! - 2 ! | S | v ' 
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Figure 6.12: Dependance between the size of multiplied family 1:1, alphabet and conjunc
tions in the merge formula 5.26. Each point is the average of 100 random families 1:1. 

It could be seen that the SAT-solver-based reduction algorithm works faster for the 
families with small count of language equivalent states. Based on that and the previous 
experiments, we can say that the SAT-solver-based reduction algorithm works best for the 
automata containing maximal three times more transitions than states. 

The explosion of the count of conjunction in the merge formula can be solved using sets 
in the future. For the family of 200 states and alphabet of size 2 we do not need 19900 
conjunctions, but only a set of backward language equivalent states using letter a, the set of 
backward language equivalent states using letter b, and two same sets for forward equivalent 
states. That is only 4 sets containing 200 states together. 
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Chapter 7 

Conclusion 

Nondeterministic finite automata can choose from more than one transition after receiv
ing the letter. This feature allows N F A to represent the language with fewer states and 
transitions than its deterministic variant but makes the reduction difficult. 

Nowadays, many efficient reduction algorithms exist, such as state merging, transition 
pruning, and saturation. A l l these techniques are implemented in the reduction tool R A -
BIT/Reduce to which we compared our investigated SAT-solver-based reduction algorithm. 

The SAT-solver-based method focuses on the local reduction of the sets of states with 
common ancestors or common successors, where part of the language of some state can be 
already covered by the languages of the other states. These groups cannot be sometimes 
reduced by the existing algorithms. SAT-solver-based algorithm simplifies (by adding states 
and transitions) these groups of states so that every state of the group has maximal one 
incoming and one outcoming transition, without changing the automaton language. This 
group is then merged. The SAT solver is used to maximize the number of merged pairs of 
states. 

The investigated reduction algorithm strongly approximates (at 98.84%) the reduction 
results of the tool RABIT/Reduce which uses state merge and transition pruning. The 
SAT-solver-based algorithm gives 7.5 times faster results on automata with 1.3 transitions 
per state. This algorithm is suitable to use for automata which have maximal 3 times more 
transitions than states. For denser automata, the result still strongly approximates the 
RABIT/Reduce solution, but slower. 

In the future, we would improve the coding of the problem of optimal merge for faster 
SAT solver calculation. As has been already mentioned, the minimization using a solver 
works slower for dense automata which have more than 3 transitions per state. The method 
could be improved to work better for automata with dense transitions. Due to a high and 
fast approximation of RABIT/Reduce merge and transition pruning results, the solver min
imization could replace the merging and transition pruning phase in standard minimization 
algorithms. 
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