
Software development of a computer aided
method to capture and determine crack

lengths of fracture mechanics test specimens

Master thesis

Study programme: N2612 – Electrical Engineering and Informatics
Study branch: 3906T001 – Mechatronics

Author: Bc. Michal Dostálek
Supervisor: Prof. Dr. rer. nat. Stefan Bishoff

Liberec 2016

Acknowledgements

I would like to express my sincere gratitude M.A. Dipl.-Ing.(FH) Stefan Keck for

the continuous support and innovative ideas.

I would like to thank my supervisor Prof. Dr. rer. nat. Stefan Bishoff for his

insightful guidance.

Abstract

Cracks are important indicators reflecting the material properties and their effects

on the resulting constructions. This thesis presents an automatic crack capturing,

detection and classification methodology for a crack test stand. The algorithm is

written in C/C++. The complete graphical user interface was created as well.

The test samples are captured and stored with use of complementary metal-

oxide-semiconductor industrial cameras. The captured samples are converted into a

grey-scale images and areas with possible cracks are found by utilizing morphological

image processing techniques and thresholding operations.

Cracks are classified and measured with the help of a scaling factor and mathe-

matical elementary functions. The classification methods were tested on real samples

with success over 95%. The experimental results revealed the influence of parameter

settings and filter selection and also proved that the proposed approach is effective

for automatic crack detection and classification.

The testing algorithm is universal and usable for all sorts of materials from

plastics, metals to wood and composites. The program was developed and tested

using also fibre materials with epoxide core. Other samples were e.g materials which

were tested for their suitability for use in industry.

Part of this thesis also covers the basic principles used in image processing.

Keywords: Computer vision, crack classification, fracture mechanics, crack detection

Contents

1 Introduction 13

2 Digital image processing 15

2.1 Image formats . 15

2.1.1 Lossy compression . 16

2.1.2 Lossless compression . 19

2.2 Image processing techniques . 20

2.2.1 Thresholding . 20

2.2.2 Image smoothing . 22

2.3 Template matching . 25

2.4 Morphological operators . 26

2.4.1 Dilation . 26

2.4.2 Erosion . 27

2.4.3 Opening . 28

2.4.4 Closing . 29

3 Image acquisition 30

3.1 Hardware . 31

3.1.1 Camera . 31

3.1.2 Camera lens . 32

3.1.3 Filter . 33

3.2 Software . 37

3.2.1 WebCam . 37

3.2.2 uEye . 39

3.2.3 Final program . 44

4 Image processing 47

4.1 OpenCV 3.0.0 . 47

4.2 Pre-processing . 48

6

4.2.1 Reading of a scaling factor . 48

4.2.2 Thresholding method algorithm 51

4.2.3 Morphological method algorithm 53

4.3 Processing . 59

4.4 Post-processing . 64

5 Result presentation 67

6 Conclusion 70

Appendix A Contents of enclosed DVD 71

Appendix B Changelog of Capture program 72

Appendix C Changelog of CrackAnalizer program 73

7

List of Figures

Figure 1.1 Proposed approach flowchart 14

Figure 2.1 Resulting image . 19

Figure 2.2 Dilation . 27

Figure 2.3 Erosion . 28

Figure 2.4 Opening . 29

Figure 2.5 Closing . 29

Figure 3.1 CIE 1931 diagram . 34

Figure 3.2 Properties of the used filters 34

Figure 3.3 Without a filter . 35

Figure 3.4 Blue filter with high light intensity - Zenith blue 35

Figure 3.5 Orange filter with high light intensity 35

Figure 3.6 Orange filter with low light intensity 35

Figure 3.7 Combination of blue and orange filter with low light intensity 35

Figure 3.8 Blue filter with high light intensity - Regal blue 36

Figure 3.9 Orange filter with high light intensity - Cool LED Orange . . 36

Figure 3.10 Orange filter with low light intensity - Cool LED Orange . . . 36

Figure 3.11 Green filter with low light intensity 36

Figure 3.12 WebCAM flowchart of used algorithm 42

Figure 3.13 uEye flowchart of used algorithm 43

Figure 3.14 Capturing program . 44

Figure 3.15 Capturing program settings 45

Figure 3.16 Simplified capture program flow diagram 46

Figure 4.1 Image for taking the scaling factor 49

Figure 4.2 Thresholded image with template matching 50

Figure 4.3 Input data from camera . 51

Figure 4.4 Treshold Otsu . 52

Figure 4.5 Threshold Gauss . 52

Figure 4.6 Cross (left) and Diamond (right) kernel 53

8

Figure 4.7 Input data from camera . 53

Figure 4.8 Gradient of the image . 54

Figure 4.9 Erosion . 55

Figure 4.10 Dilatation . 56

Figure 4.11 Contrast stretching and saturation 57

Figure 4.12 Preprocessed image after thresholding operation 58

Figure 4.13 Segmentation after template matching 59

Figure 4.14 Segmentation filter . 60

Figure 4.15 Segmented image after the use of modified mean filter 61

Figure 4.16 Crack reconstruction . 62

Figure 4.17 Reconstructed path . 63

Figure 4.18 Output image . 65

Figure 5.1 Darker image . 68

Figure 5.2 Brighter image . 68

Figure 5.3 Threshold of darker image . 68

Figure 5.4 Threshold of brighter image 68

Figure B.1 Changelog: Capture program 72

9

List of Tables

3.1 Structure containing data about camera 39

3.2 Used structures . 40

4.1 Properties . 65

4.2 Output file . 66

10

List of abbreviations

ADC Analog to Digital Converter. 31

AIO Asynchronous I/O. 31

BSD Berkeley Software Distribution. 47

CCD Charge-coupled Device. 30, 32, 70

CCOEFF Cross correlation coefficient. 25, 26

CGM Computer Graphics Metafile. 19

CMOS Complementary Metal oxide semiconductor. 30, 32

CPU Central Processing Unit. 13

CUDA Compute Unified Device Architecture. 47, 48

DCT Discrete Cosine Transform. 16

EEPROM Electrically Erasable Programmable Read-Only Memory. 39

GIF Graphics Interchange Format. 18

GPU Graphics Processing Unit. 13, 48

IDE Integrated Development Environment. 47

INDE Integrated Native Developer Experience. 47

IPP Integrated Performance Primitives. 47

JPEG Joint Photographic Experts Group. 16, 18, 19

MDL Minimal Description Length. 24

MMX Multi Media Extension. 47

NCC Cross correlation. 25

OS Operating System. 47

OSAD Optimized Sum of Absolute differences. 25

PNG Portable Network Graphics. 18

SAD Sum of Absolute differences. 25

SDK Software Development Kit. 39, 70

11

SHD Sum of Hamming Distances. 25

SI Systeme international d’unites, International System of Units. 64

SPD Spectral Power Distribution. 33

SSD Sum of Squared Differences. 25

SSE Streaming SIMD Extensions. 47

SVG Scalable Vector Graphics. 19

SW Software. 13

TBB Threading Building Blocks. 47

USB Universal Serial Bus. 15, 31, 39

VGA Video Graphics Array. 40

WVGA Wide Video Graphics Array. 31

12

1 Introduction

1. Detection rate is the most important aspect. If the small cracks can be

only partially detected or they are not detected at all, the classification and

evaluation is pointless and the equipment or the arrangement of the test stand

has to be changed.

2. Detection accuracy: under the assumption that we have a high detection

rate, the crack detection accuracy must be acceptable, in other words objects

which could be misidentified must be removed by the use of SW (Software)

filters or another non complex algorithms.

3. Detection efficiency. As mentioned above there can be over thousands of

acquired images. The processing of such huge number of samples is a challeng-

ing task for the CPU (Central Processing Unit) or even for a GPU (Universal

Serial Bus). The efficiency of image processing must be high enough, which

makes complex algorithms not suitable for this application.

The requirements have to be carefully followed. To meet the detection rate condition

it is necessary to have as much detailed images as possible. Therefore the images

have to be stored with a high resolution and contrast. The best parameters can be

achieved only by using a high quality capturing system (cameras, lenses, filters etc.).

The description of the used equipment is in section 3.1. However, the equipment can

get expensive and it is always necessary to evaluate the relationship between costs

and effectiveness. Moreover, this relationship is non-linear and the effectiveness of

the detection rate can by partially overtaken by software methods (both increased

and decreased but always followed with a loss of computational power).

The main idea is to work with grey-scale images with cracks represented as

brighter areas which should be accentuated. This operation requires the known

mean value of the whole grey-scale image to allow contrast stretching and brightness

adjustments. In the next step, various threshold filters with different parameters

are applied, depending on the properties of the original image. But because this

13

principle is very light dependent and with higher light intensity whiter areas are

created, and the grey-scaled image is devalued. In such case it is possible to use

the image from the uEye camera in 24 bit depth mode. The light also creates a

brighter area but with the color of the used filter together with contrast stretching

in this color channel it is possible to decrease the influence of the light on the crack

evaluation.

By the use of these methods the crack is accentuated and separated from the

background. But in the image are still small irrelevant objects present. They can

be filtered out by means of small matrix filters or by the use of segmentation.

In attempt to distinguish the crack from the other irrelevant objects similar to

the crack, future extraction of the real crack becomes a key problem due to the fact

it must be simple and quick to process. In this thesis is one of possible methods to

do such operations (figure 1.1).

Figure 1.1: Proposed approach flowchart

This thesis is divided into several chapters. The main focus of the first chapter

is theory about image processing and image acquisition. Subsequently, the software

development for acquiring and processing (including some algorithms) is described.

At the end there are presented results with different hardware set-ups such as light

intensity and filter type and some recommendation for the application of the devel-

oped algorithms.

14

2 Digital image processing

2.1 Image formats

There exists hundreds of file formats that are used when manipulating with an image.

The format of the image should be chosen depending on the application. For example

in this thesis the figures are created with vector graphic and the images used for

evaluating the cracks are raster images. Those two formats have major differences.

Vector images can not be created with a capturing device such as camera, because

the data in a vector file contains information about the vectors but the camera

sensors capture a matrix. From this definition it is possible to assume why it is

necessary to have raster graphic for the camera data. Raster image formats contain

large amount of data and therefore they are memory demanding. This becomes

a problem when trying to transfer the file via the USB (Universal Serial Bus) to

the memory in a short time. This is a place for image compression which can

significantly decrease the image size but at the same time it can affect the image

quality. The used uEye cameras have the possibility to set compression parameters

internally with the option to make additional compression in the PC. The web cams

do not allow such setting but data streams are usually very lower so the size is not

the concern.

The ideal case would be a bitmap file format with lossless compression, small

size of the resulting image and very fast algorithm for handling the file. In this

chapter are several file formats presented, together with the compression algorithms

and comparison of different methods.

As mentioned before it is possible to divide image formats into two main cate-

gories:

• Lossless compression: algorithms reduce file size while preserving a perfect

copy of the original uncompressed image. Lossless compression generally re-

sults in larger files than lossy compression although it is not a rule. Lossless

15

compression should be used to avoid accumulating stages of re-compression

when editing images.

• Lossy compression: algorithms preserve a representation of the original un-

compressed image that may appear to be a perfect copy but it is not. Lossy

compression is able to achieve smaller file sizes compared to lossless compres-

sion. Most lossy compression algorithms allow variable compression ration

that trades image quality for file size.

2.1.1 Lossy compression

JPEG

JPEG is a method for lossy compression of digital images and it is the most common

format when in comes to photographic images. The compression steps of the JPEG

are as follows:

1. Division of the image into 8x8 blocks of pixels.

2. Transformation into YCbCr color space.

YCbCr color space is represented as luminance (Y) and and blue-difference

and red-difference chroma components Cb and Cr. The components of YCbCr

space are less correlated than the RGB components. Also the human eye is

more sensitive to luminance than chrominance. Therefore it is possible to

neglect more changes in the chrominance without affecting the quality of the

picture. The transformation is depicted in equation 2.1 [2].



Y

Cb

Cr


 =




0.29900 0.58700 0.11400

−0.16874 −0.33126 0.50000

0.50000 −0.41869 −0.08131






R

G

B


 (2.1)

3. The discrete cosine transform. The compression baseline process is a

mathematical transformation DCT (Discrete Cosine Transform) shown in equa-

tion 2.2. The formula is used on square matrix with dimension of N (as men-

tioned before N mostly equals 8 because larger block takes a longer time and

even thought they offer higher quality compression, the trade-off is unreason-

able). The output is a square matrix with the same dimension N filled with

16

frequency coefficients DCT (i, j). [10]

DCT (i, j) =
1√
2N

C(i)C(j)
N−1∑

x=0

N−1∑

y=0

pixel(x, y)cos

[
(2x+ 1)iπ

2N

]
cos

[
(2y + 1)jπ

2N

]

with:

C(w) =





1√
2

if w = 0

1 if w > 0

(2.2)

4. Quantization. Calculated coefficient are real number which has to be saved

as integers. Thus it is necessary to change the number type but instead just

rounding the coefficients they are first divided by quantization factor to em-

phasize certain frequencies. The human is eye less sensitive to rapid variations

in the image and higher frequencies can be suppressed by choosing higher

quantization factor for these frequencies. There exist recommended values for

both luminance and chrominance coefficients in the JPEG standard [10].

round

(
DCT (i, j)

Q(i, j)

)
(2.3)

The JPEG compression process has option to control the quality of the com-

pressed image. Let the parameter q be defined as integer value (given by user)

used for calculation of parameter α which is used in the compression process.

q = 1, 2, . . . , 98, 100

α =





50
q

if 1 ≤ q ≤ 50

2− 50
q

if 50 ≤ q ≤ 100

(2.4)

The defined α parameter is included into equation 2.5 yielding

round

(
DCT (i, j)

αQ(i, j)

)
(2.5)

The higher the value of q, the lower is α. In the rounding process is information

getting lost and the size of the image decreases.

5. Image reconstruction The DCT coefficients must be reconstructed, from

there is the YCbCr vector found with use of IDCT (Inverse Discrete Cosine

17

Transform) and finally is the RBG vector calculated by inverting the color

space transform.

JPEG 2000

The JPEG algorithm leads to possible discontinuities on the borders of the 8x8

blocks which can results in blocking artifacts. Moreover the JPEG only allows one

value of resolution when recovering the image. To improve the JPEG algorithm the

JPEG 2000 was introduced in 2000. The main difference is in the used mathematical

function. In this case a wavelet transform instead of the DCT is used.

The dyadic decomposition

JPEG and JPEG 2000 have similar compression ranges but JPEG 2000 takes

more time and computational effort. The blocking artifacts effect is not present in

the JPEG 2000 but the images becomes blurry when the compression ration is set

too high.

GIF

The images in GIF (The Graphics Interchange Format) are compressed using the

LZW (Lempel–Ziv–Welch) lossless data compression and the format supports 8-bits

per pixel, alowing only 256 colors from 24-bit RGB color space [9]. This makes the

format suitable for fast-loading visuals and animation which are also supported by

GIF format.

PNG

PNG (Portable Network Graphics) format supports lossless data compression. PNG

was created as non-patented alternative for GIF. As stated in the format specifica-

tion [6] the 24-bit RGB and 32-bit RGBA colors pallets are supported as well as

gray-scale images (with or without alpha channel) and full-color non-palette-based

RGB.

18

2.1.2 Lossless compression

SVG

SVG (Scalable Vector Graphics) is an XML-based vector image format for 2D graph-

ics with animation support. SVG images are defined in XML files (see code 2.1

created with the aid of the format specification [4] and the resulting image on fig-

ure 2.1). The files can be searched, indexed and scripted by using a text editor. It

is, however, more common to edit SVG images with drawing software.

Code 2.1: XML code for SVG graphic

<!DOCTYPE html>

<html>

<body>

<svg height="100" width="100">

<circle cx="50" cy="50" r="40"

stroke="black"

stroke-width="3" fill="red" />

</svg>

</body>

</html>

Figure 2.1: Resulting image

Other lossless formats are CGM, Gerber (RS-274x) and PPT

After consideration of all the facts in this chapter is format JPEG selected for

capturing the frames for crack analysis. The size of acquired image is in average

100kB. During the image processing are the pictures saved in JPEG 2000 using

lossless compression. The resulting format is again JPEG.

19

2.2 Image processing techniques

2.2.1 Thresholding

When identifying an object or other relevant information of an image, segmentation

is usually the first step in this process. Image segmentation divides the original

picture into a set of regions corresponding to individual objects, parts or surfaces.

One of the simplest method of image segmentation is thresholding. It is effective

method how to separate objects especially when the grey levels of object pixels are

different from the grey levels of the background.

Thresholding in non-linear operation converting a grey-scaled image into a binary

image. The basic application assigns one of two levels to every pixels, depending on

its previous intensity. For effective use of this process in image processing application

the threshold must be automatically selected. Threshold methods can be split into

several categories [15].

• Histogram shape-based method

The peaks and values of the histogram determinate the threshold value. For

example if there are two dominant peaks in the image histogram the threshold

value can lie between those peaks. The pixels are handled independently of

their surrounding and the new pixel value is obtained by simple comparing

the pixel intensity with threshold value T.

g(x, y) =





0 if(x, y) < T

1 if(x, y) >= T
(2.6)

• Clustering-based method

The grey-scale levels are clustered into two parts (background and foreground).

The method can be further divided as follows [3]:

– Iterative-based methods

The basic steps for iterative thresholding can be described as follows.

1. Estimation initial threshold value T

2. Dividing of the histogram into two parts P1 and P2 using T

3. Calcultion of mean intensity of the histogram parts P1 and P2 as

µ1 and µ2

20

4. Settting if the new threshold (equation 2.7).

T =
µ1 + µ2

2
(2.7)

5. Repeat steps 2 to 4 until the mean values µ1 and µ2 do not change

This method was described by Calvard et al. [1] and it has several mod-

ification which are increasing efficiency.

– Clustering thresholding

The most used and known clustering thresholding method is Otsu’s method

(detailed described in ...)

– Minimal error thresholding

– Fuzzy clustering thresholding

• Entropy-based method

Entropy is a part of the second law of Thermodynamics. It measures sponta-

neous dispersal of energy. Kapur et al. [12] used the following approach. The

background and the foreground are considered as two different signals. Each

has its entropy evaluated and summed. In the sum maximum is the threshold

value optimal.

• Object attribute-based method

This method use similarity measure to extract a threshold value between the

original and binarized image. Example of method falling into this category is

moment preserving thresholding [19].

• Others, including e.g. the spatial methods which use high-order probability

distribution together with correlation or local methods to adapt the threshold

on individual pixels.

Otsu’s method

Otsu’s thresholding method is one of the clustered-based thresholding algorithms. It

is assumed that the image has bimodal histogram (containing two dominant peaks)

and the pixels can be separated into two classes: foreground and background. The

algorithm finds the optimum point of separation of those two classes. The threshold

value is calculated by minimizing the weighted within-class variance (equation 2.8):

σ2
w(t) = q1(t)σ

2
1(t) + q2(t)σ

2
2(t) (2.8)

21

where σ2
1 is variance of the pixels in the background and σ2

2 is the variance of the

pixels in the foreground.

The process of minimizing the weighted within-class variance is equivalent to

maximizing between-class variance, in other words, maximizing the distance be-

tween the clusters therefore separating the objects from background. The class

probabilities q1, q2 and class means µ1, µ2 are defined as follows (equations 2.9):

q1(t) =
I∑

i=1

P (i) and q2(t) =
t∑

i=t+1

P (i)

µ1(t) =
t∑

i=1

iP (i)

q1(t)
and µ2(t) =

I∑

i=t+1

iP (i)

q2(t)

(2.9)

The individual class variances are shown in the following equations 2.10.

σ2
1(t) =

t∑

i=1

[i− µ1(t)]
2P (i)

q1(t)

σ2
2(t) =

I∑

i=t+1

[i− µ2(t)]
2P (i)

q2(t)

(2.10)

This method shows good results when the histogram bimodal condition is sat-

isfied. In case that the object is significantly smaller then the background area the

histogram looses its bimodality and the method becomes less effective. Furthermore

if there is a additive noise present in the image the valleys of the histogram are

degraded and the optimal threshold can not be reached. The program with additive

noise can be solved using improved two-dimensional Otsu’s method.

2.2.2 Image smoothing

Image noise is an undesirable side effect of an image capture produced by camera

sensors. This unwanted signal adds spurious information and usually it is removed

before more image processing steps take place (e.g. image smoothing before edge

detection significantly improves the result).

22

Mean filter

Mean filtering is an easy to implement method for smoothing images. Each pixel

in the image is replaced with the average value of its neighbours (including itself).

This leads to elimination of the pixels which do not fit into their surroundings.

The mean filter is a convolution filter with kernel of usually size 3x3 (equa-

tion 2.11. Larger kernels are used for more intensive blurring.

Mean filter kernel =

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

(2.11)

Gaussian filter

Gaussian blur is one of the most used effects suppressing image noise and details.

The blurring is done by use of Gaussian function (called normal distribution func-

tion in statistics) shown in equation 2.12. For use on two dimensional image the two

dimensional Gaussian function has to be calculated as the product of two 1D Gaus-

sian functions (equation 2.13). The x stands for distance from the origin in the

horizontal axis, similarly y represents the distance in the vertical axis and σ is the

width of the Gaussian kernel.

1D : G(x) =
1√

2πσ2
e−

x2

2σ2 (2.12)

2D : G(x) =
1√

2πσ2
e−

x2+y2

2σ2 (2.13)

Gaussian filtering is done by convolving each point in the input array with a

Gaussian kernel (An example of 5x5 Gaussian kernel is shown in equation 2.14.

Then they are summed up to produce the output array. The center value has the

largest value which is decreasing symmetrically as the distance from origin increases.

This results in gentle smoothing and edge preservation.

23

Gaussian kernel =
1

273
·

1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1

(2.14)

Gaussian adaptive filter

Effective smoothing of the noise can be achieved by using a Gaussian filter with

large variance. If the filter is applied on the part of image with abrupt changes in

pixel brightness there can also occur side effects such as edge position displacement

or edge vanishing. This is problem solvable by adapting the Gaussian filter to the

parameters of pixel in the local area. In other words some parts of the image can

be more noisy and thus need more smoothing.

Let Iσ1 , Iσ1 , . . . , Iσn be smoothed images calculated as convolution of the original

image I0 with a series of increasing Gaussian kernels Gσ, σ = σ1, . . . , σn as

Iσ = I0 ∗Gσ (2.15)

The goal is to find appropriate σ from the scale-space at each x,y pair. The criterion

is based on the MDL (Minimal Description Length). A Gaussian filtering can be

seen as:

I0(x, y) = Iσ(x, y)︸ ︷︷ ︸
Low−pass

+ εσ(x, y)︸ ︷︷ ︸
Residual

(2.16)

where the εσ is the difference between the original image and the smoothed image.

Rewriting the equation 2.16 with description length results in:

dlI0(x,y) = dlIσ(x,y) + dlεσ(x,y) (2.17)

The description length of Iσ can be estimated by using Scaling-Uncertainty Principle.

The description length of εσ can be obtained with use of Central Limit Theorem.

Combining the results yields the final algorithm:

Î(x, y) = I0(x, y) ∗ e−
x2+y2

2σ∗(x,y) (2.18)

24

2.3 Template matching

Template matching is a technique to find areas in a source data pattern that matches

an another data pattern. There are several method for template matching. Every

template matching method can be also calculated as a normalized function. Primary

concept of template matching is to slide a template across the source image and look

for similarities. This will be done by calculating the metric at each point, location

and pixel. The result of this operation is an information about how good or bad the

match was. In practice we use the function minmaxLoc() to find the highest value

in a map created by the template matching function. In OpenCV 3.0.0 are several

methods implemented for this kind of function, but in for the means of this thesis

only two of them are used:

• SAD (Sum of Absolute differences)

• OSAD (Optimized Sum of Absolute differences)

• SSD (Sum of Squared Differences)

• NCC (Cross correlation) Cross correlation is algorithm based on finding a

position of biggest match by taking a smaller sample (template) and a larger

dataset (image), the template will be overplayed and for each pixel in will

be a value calculated by multiplying. Then a sum will be calculated and the

template will be slided.

Normalized cross correlation is a well-known method for pattern finding. Tem-

plate T is correlated in opposition to an image X. The correlation at each point

of the image. Then the highest score for overlaying will be chosen as a winner.

R(x, y) =

∑
x′,y′(T (x′, y′) · I(x+ x′, y + y′))

√∑
x′,y′ T (x′, y′)2 ·∑x′,y′ I(x+ x′, y + y′)2

(2.19)

• SHD (Sum of Hamming Distances)

• CCOEFF (Correlation coefficient) It is the same basic framework like NCC

but with a different underlying calculation. This method matches a template

relative to its mean against the image relative mean, so a perfect match will

be the value 1 and a perfect mismatch will be the value -1. The value 0 means

25

there is no correlation.

R(x, y) =
∑

x′,y′

(T ′(x′, y′) · I ′(x+ x′, y + y′))

where

T ′(x′, y′) = T (x′, y′)− 1

w · h ·
∑

x′′,y′′
T (x′′, y′′)

I ′(x+ x′, y + y′) = I(x+ x′, y + y′)− 1

w · h
∑

x′′,y′′
I(x+ x′′, y + y′′)

(2.20)

And for the Normed CCOEFF:

R(x, y) =

∑
x′,y′(T

′(x′, y′) · I ′(x+ x′, y + y′))
√∑

x′,y′ T
′(x′, y′)2 ·∑x′,y′ I

′(x+ x′, y + y′)2
(2.21)

2.4 Morphological operators

Morphological operators offers local pixel transformation for processing region shapes

usually used for binary images. The transformations are based on the comparison

of pixel surrounding using a patters (structuring element). The operations can be

used for smoothing of region boundaries before shape analysis or for removing noise

from the picture (caused e.g. by imperfect segmentation). Main operations are di-

lation and erosion are discussed in the following sections. Those operations are used

for definition of more complex morphological operators such as closing and opening

which are also further discussed in this section.

In the following definition is binary image I(u, v) defined as a set of pixel location

in the foreground.

QI = {(u, v) | I(u, v) = 1} (2.22)

For the simplification is variable p defined to represent the coordinate pair p = (u, v)

and the equation 2.22 becomes equation 2.23.

QI = {p | I(p) = 1} (2.23)

2.4.1 Dilation

Dilation expands and thickens objects in binary images. The output of this operation

is controlled by the shape of the used structure element. Let the object A be the

picture which should be dilated and object B the structure element. A dilation of

26

A by B can be described as following set of operation (equation 2.24 [5]).

A⊕B = {(p + q) | p ∈ A,q ∈ H} (2.24)

The structuring element has a defined anchor point which usually lies in the center

of the kernel. The kernel is scanned over the image and the output pixel value is the

maximum value of all the pixels in the input pixel surrounding. When applying the

Figure 2.2: Dilation

dilation it is necessary to provide sufficiently large image domains so that operation

can not “fall of” the edges. The dilation is commutative (structuring element and

the image can switch roles, relation 2.25) as well as associative (big structures can

be break into smaller ones, relation 2.26).

A⊕B = B ⊕ A (2.25)

A⊕ (B ⊕ C) = (A⊕B)⊕ C (2.26)

2.4.2 Erosion

Erosion operation performs thinning and constriction of the object in binary im-

age (fig 2.3). The output of the operation is controlled by the structuring element.

Let the object A be the picture which should be eroted and object B the struc-

ture element. A erosion of A by B can be described as following set of operation

(equation 2.27 [5]).

A	B = {(p ∈ Z) | (p + q) ∈ A, for every q ∈ H} (2.27)

27

BA A B

Figure 2.3: Erosion

In opposite to dilation operation erosion is neither commutative (eq. 2.28) nor

associative however the following relation holds (eq. 2.29).

A	B 6= B 	 A (2.28)

(A	B)	 C) = A	 (B ⊕ C) (2.29)

Erosion and dilation are dual operation which means that the erosion of an

image A equals dilation of the image A complement. In other words erosion can

be computed as dilatation of the image background and similarly for the dilation

(eq. 2.30 and 2.31).

A	B = (A⊕H∗) (2.30)

A⊕B = (A	H∗) (2.31)

Due to the non-linear properties of the operations (they exist multiple input images

with the same result after erosion), erosion and dilation are not inverse functions.

2.4.3 Opening

Opening is defined as dilation of the erosion of an image A by structuring element

B (eq 2.32).

A ◦B = (A	B)⊕B (2.32)

Opening is used for removal of small objects in the foreground (figure 2.4).

28

Figure 2.4: Opening

2.4.4 Closing

The closing of image A by B (figure 2.5) is defined as erosion of the image dilation

(eq. 2.33).

A •B = (A⊕B)	B (2.33)

Figure 2.5: Closing

Closing is useful for closing small holes in the object. Together with opening is

this method very effective for noise removal.

29

3 Image acquisition

Picture in digital world is a numeric representation of a two dimensional signal.

The picture is stored in the computer memory as a combination of ones and zeros.

Depending on whether the image resolution is fixed or not, we can determine the

image type: vector or raster. Mostly the term “digital picture” defines a raster

image.

Raster images have a finite set of digital values in rows and columns called pixels.

Pixels are the smallest individual element in an image holding an information about

the brightness of a given color at any specific point. To obtain these values and

store them in our device a sensor in role of an interface between the digital and the

real world is needed.

The two major types of digital image sensors used in camera systems are CCD

(Charge-coupled Device) and CMOS (Complementary Metal Oxide Semiconduc-

tor) [11]. The main difference between the two types is in the technology and

principle of acquiring and storing the image. CCDs are powered by a single ampli-

fier and the information is collected from each diode at a time before uploading to

camera memory. CMOS sensors have individual amplifiers and collectors for each

photo diode which leads to a better energy and time efficiency [7]. CCDs are less

prone to noise and more sensitive to light than CMOS sensors resulting in better

brightness in dark situations. In other words, pixels in CCD sensors are committed

to capturing light which produces higher-quality images but it can causes the cam-

era to be less efficient. CMOS sensors cut out a step by integrating technology into

the chip that converts visual information to digital data as it is processed to the

chip. This makes the sensors highly efficient although the extra task of the pixels

can result in increased noise in the final image [16].

The resolution of a digital camera is limited by the image sensor and by the used

camera lens [14]. The number of pixels in the sensor determines the camera’s “pixel

count”. The pixel count in a typical sensor is calculated as product of the row count

30

and the columns count. For example a 1,000 by 1,000 pixel sensor has 1,000,000

pixels (1Mpx).

After the process of taking and saving the picture in the internal memory a way

how to save the picture to corresponding device. The transfer of the data must be

dealt with from both SW and HW point of view. The most used hardware is USB

or FireWire interface and the software depends on the type of the camera.

3.1 Hardware

3.1.1 Camera

Camera is in image processing a key element. The resolution and the noise of the

sensor affects the processed image. In the best case scenario it influences only the

time needed to process the image, in the worst case scenario the image becomes

unprocessable. Two types of cameras were used for testing: a webcam and two

industrial uEye cameras.

uEye

IDS uEye is an industrial camera often used for image processing methods with

USB interface and resolution from WVGA up to 10 Megapixel. The used model

is a UI - 2230 with a resolution of 1024 horizontal pixels and 768 vertical pixels

(genearting the resulting matrix with 786 432 points in each channel).

Maximal frame rate of such device is 74 fps in AIO mode with a resolution

of 256x256 but for the use of crack capturing the use of 30 fps is sufficient. The

exposure time can be set from 0.066 ms to 1040 ms. This camera has a 12-bit ADC

which means that for each color value we have 4096 possibilities for each color.

Those cameras have a C-mount connection which makes them more universal than

the standard web cameras for PCs. Such device allows a better possibility for

adjustment as they can be used with a lens and filter system. The main drawback

is its price and the limited possibility of use without the original capturing uEye

Cockpit program. The main reason for the incompatibility between the uEye and

other programs is that these cameras are listed as a multifunction HW and not as a

capturing device. This fact is given by the drivers distributed by the IDS Company.

One of the advantages is the possibility to communicate in both ways (Camera-PC,

PC-Camera) so the settings of the device can be changed directly. IDS uEye cameras

31

have very sophisticated control flow with almost unlimited possibilities discussed in

section 3.2.2.

Webcam

Webcam is much simpler device than an industrial camera, it has a CMOS or a

CCD sensor and no mount for a lens system. These devices have mostly only a one

way communication possibility (they stream video and audio stream). The received

data can be then processed and stored. Most settings like contrast and brightness

of these cameras are changed on the received image with algorithm rather then on

the CMOS/CCD chip settings. Webcam have also a smaller resolution then the

industrial cameras but they are easier to use.

3.1.2 Camera lens

A lens is an optical device affecting the focus of a light beam through refraction.

In photography are lenses part of a camera body and together with other camera

mechanism allow to make images of objects. The lenses used in camera, video camera

or e.g. microscope do not differ in principle but they have different construction.

IDS uEye cameras dispose of C-mount which allows the camera lens system to be

mounted. In this case there is no electronic control for the mounted setup thus are

the lenses controlled manually. Three main parameters determines lenses properties:

focal length, maximum aperture and minimum focus. The used lenses has a fixed

focal length with adjustable aperture and focus.

The distance between the lens and the image sensor with the object in the focus

is called the focal length of the lens. The value is usually given in millimetres with

typical values of 28 mm, 50 mm or 100 mm. For the zoom lenses are both maximum

and minimum focal length stated (e.g. 18 mm- 50 mm).

An aperture is an opening in which the light can travel. It has the possibility to

control the amount of the light reaching the film or sensor. The lens specification

includes maximum and minimum aperture. The lenses with higher maximum aper-

ture (lower f-number) create a brighter image. Moreover wider maximum aperture

allow smaller depths of field that soften backgrounds. This creates great softening

image and the object appears separated from the background.

The minimum focus distance is the shortest distance at which a lens can focus.

If the distance between the camera and the photographed object is smaller the

acquired image is blurred.

32

3.1.3 Filter

Term filter in context of photography and videography represents a camera accessory

with an optical filter which can be inserted into the optical path. It is used for

adjusting the exposure and bringing out colours and textures. In most cases is the

filter mounted on the camera lens however on the test stand is the filter mounted

on the adjustable light source.

Filters have a high influence on the process of detection cracks (figure 3.3 -

3.11). Experimentally was found out that filters containing orange colour have the

best properties for accentuation of the cracks on dark colored background. There are

several types of filters, for example color filters, polarization filters, clear filters and

UV filters. Each type has specific function and combination of more filters is in some

cases possible. Color filters work on subtraction of certain colors of light, letting the

remaining colors trough. Such filters can be used for contrast enhancement, mostly

in black and white photography. For example yellow, orange and red filters can

be used for enhancing the contrast between the clouds and the sky. This effect is

getting stronger as the intensity of the red color in the filter increases. Polarizing

filters are colorless therefore they do not affect the color balance. Rather they filter

out light with specific direction of polarization.

There are properties of four used filters in figure 3.2. In the tables are X,Y

chromaticity co-ordinates according to CIE 1931. The absorption (abs) of a filter is

calculated from the Y% value. It brings another way of expressing the light-stopping

properties of that filter. Thanks to the linear properties of abs, the values can be

added or subtracted more easily than using Y%. The graph showing transmitted

light (Y%) is representative of overall average transmission of that filter, as perceived

by the human eye. The (Y%) value is one of the Tristimulus values (a set of values

unique to each colour) that are calculated mathematically from the data contained

in the SPD (Spectral Power Distribution) graph.

33

Figure 3.1: CIE 1931 diagram

Figure 3.2: Properties of the used filters

34

Figure 3.3: Without a filter

Figure 3.4: Blue filter with high light intensity - Zenith blue

Figure 3.5: Orange filter with high light intensity

Figure 3.6: Orange filter with low light intensity

Figure 3.7: Combination of blue and orange filter with low light intensity

35

Figure 3.8: Blue filter with high light intensity - Regal blue

Figure 3.9: Orange filter with high light intensity - Cool LED Orange

Figure 3.10: Orange filter with low light intensity - Cool LED Orange

Figure 3.11: Green filter with low light intensity

36

3.2 Software

Microsoft R© Windows has at its disposal an integrated program for capturing videos

and images from standard plug and play cameras. This integrated program has very

limited possibilities but in some applications is sufficient for capturing and archiving

images from the cameras. However, this program has two major drawbacks. First

drawback is that it can use only one camera at a time and the second drawback is

that it can use only cameras which are listed under windows as capturing devices.

As mentioned in section 3.1.1, the industrial cameras are seen by computer as not

specified devices and hence they cannot be used with this program. Industrial IDS

cameras can be used only with special drivers and program, which can be obtained

from the manufacturers websites. Unfortunately, this program can only work with

IDS camera systems. Meaning that for the capturing with two different cameras, two

running programs, two computers memory access processes and two communication

buses would have to be used at the same time. For the use of any combination of

uEye cameras and webcams there is a need to use an own program. For the use of

webcams it is possible to use standard OpenCV 3.0.0 libraries, but for the use of

the uEye cameras we will need to use external libraries and write our own methods.

3.2.1 WebCam

The use of WebCam capturing device is simple thanks to the created framework

libraries. Concept of such framework is explained with the help of a very simple

acquisition program (code 3.1) which is also supposed to demonstrate the philosophy

of OpenCV and use of the pre-defined functions.

37

Code 3.1: Aqusition program for WebCam

VideoCapture cap(0); // cv::VideoCapture is a class for video

capturing, cap() is the name and 0 is the number of the first

installed camera

if(!cap.isOpened()) // Check if we succeeded in opening the port to

the camera, otherwise terminate the program with error code

(return -1)

return -1;

namedWindow("MyWindow_nrX",1); // Create a window with parameters:

namedWindow(const char* name, int flags=CV_WINDOW_AUTOSIZE), name

is identifier that will windows use for the window caption,

supported flags are: WINDOW_NORMAL, WINDOW_AUTOSIZE or

WINDOW_OPENGL

for(;;)

{

Mat frame; // Create a matrix variable

cap >> frame; // Get a new frame from camera and save it to

frame

cvtColor(frame, frame, CV_BGR2GRAY); // Converts an image from

one color space to another. The syntax is cvtColot(source,

destination, code of color space)

imwrite("../../images/Gray_Image.jpg", frame); // Saves an

image to disk with a syntax imwrite("PATH/name.format",

source);

imshow("Image", frame); // Shows saved image in our Mat on the

monitor. Syntax is imshow("name", source);

if(waitKey(30) >= 0) break;

}

As presented in the code above, the main idea resides in opening the device which

is listed in windows devices with assigned number. For example in a notebook with

an integrated camera and another web camera, the integrated camera has number

zero and the external camera has number one. Special cases are uEye and another

industrial cameras which are also counted from zero. In the practical application

it means that in the notebook with integrated web camera and IDS/uEye camera

connected, both have number zero but they are listed in different device class.

38

3.2.2 uEye

As mentioned before uEye requires a specific control procedure. The dynamic li-

braries included in the original driver can be used but first it is necessary to under-

stand them and create methods for their use. The information about the camera

is stored in CAMINFO register inside the camera EEPROM. It can be accessed by

use of function is GetCameraInfo(). This information is then read out in form of

64 byte data structure (table 3.1).

Table 3.1: Structure containing data about camera

Type Register name Register content

Char SerNo[12] Serial number of the camera

Char ID[20] e.g. “IDS GmbH”

Char Version[10] “v1.00” or later

Char Date[12] “01.08.2004”, date of quality check

Unsigned char Select Camera ID

Unsigned char Type Camera type (64 = uEye USB 2.0 14 bit)

Char Reserved[8] Reserved

With the information it is possible to access the camera memory and set the desired

parameters. Please find examples of the functions used in the main algorithm in the

list below. For all the function please refer to the attached CD (appendix A).

• Color formats: something

• Possible image output: something

The next step is to access the camera, make the initialization steps and read the

image.

Initialization steps

• is InitCamera() – Opens the driver and establishes contact with the HW.

Without this instruction the camera will not be connected to the system.

• is ExitCamera() – Closes the camera and deallocates memory which was

allocated by the SDK (Software Development Kit).

39

Selection of operating modes and return of properties (camera list, bright-

ness, contrast, color corrections, output image format, color depth etc.):

is GetCameraList()

With this information about the attached cameras can be queried. In order to

obtain all information, the field size must be adapted to the number of connected

cameras. In the following table 3.2 the used structures are described.

Table 3.2: Used structures

Type Register name Register content

Ulong dwCount Number of cameras connected to

the system

UEYE CAMERA INFO uci[1] Structure of the uEye CAM

info [20]

• is SetColorMode() sets the required color mode in which is the image data

saved or displayed by the VGA board. When saving the image data it is important

to allocate enough memory (depending on selected color mode). For possible

parameters please refer to the datasheet [20]).

• is AllocImageMem() allocates image memory for an image with given height,

width and color depth according to the equation 3.1.

size =

[
width ·

(
bitspixel + 1

8

)
+ adjust

]
· height (3.1)

Calculation of line increments is depicted in equations 3.2 and 3.3.

line = width ·
[

(bitspixel + 1)

8

]
(3.2)

line increment = line + adjust (3.3)

with

adjust = 0 if line is divisible by 4 without rest

adjust = 4− line%4 if line is not divisible by 4 without rest

• is SetImageMem() activates the allocated image memory for receiving the im-

age.

40

• is FreezeVideo() digitizes an image and transfers it to the active image memory.

In DirectDraw mode the image is digitized in the DirectDraw buffer (either on

the VGA card or in a back buffer). If you are using ring buffering, the image

is recorded to the next non-locked image buffer in the sequence. As soon as the

last non-locked sequence buffer has been filled, the sequence event/the sequence

message is triggered. The picture recording takes place triggered, if the trigger

mode were activated before.

Image acquisition and memory management:

• is GetActiveImageMem() returns the pointer to the beginning and the ID

number of the active memory.

The functions described above give an sense of the program structure but they cover

only a very small part of functions used in the program. Due to the complexity of

the program are the used functions not further discussed and the program run is

represented with flow graphs (the functions details can be found in [18]). The

flow graph shown on figure 3.12 depicts algorithm used for capturing images with

WebCAM. The figure 3.13 represents the flow diagram of algorithm dedicated for

uEye.

41

Figure 3.12: WebCAM flowchart of used algorithm

42

Figure 3.13: uEye flowchart of used algorithm

43

3.2.3 Final program

The final program PictureMaker includes algorithms for use of both WebCam and

uEye camera (figure 3.16). After the program is started the window for setting up

the parameters appears (figure 3.14).

Figure 3.14: Capturing program

The window contains four buttons and information about connected devices.

The functions of the buttons are described in the following list.

• Take pictures

The destination folder is opened and the check for older images from the

cameras is initialized. After that one or two windows (depending on number

of connected devices) are opened with camera previews and every tenth frame

saved.

• Camera

This button opens a setting window in which the parameters of the test stand

can be adjusted. The cameras preview opens but no pictures are saved.

• Settings

A new dialogue window with possibility of changing the camera and destination

folder setting opens (figure 3.15).

• Refresh

The information on the main window are actualized.

44

Figure 3.15: Capturing program settings

Functions Camera and Take picture are called with the parameters set in Settings.

Each call is made by an interrupt and passes to the given function the information

about type of the camera, number of the camera and target folder for saving the

pictures.

45

Figure 3.16: Simplified capture program flow diagram

46

4 Image processing

4.1 OpenCV 3.0.0

OpenCV1 (Open Source Computer Vision Library) is an open source computer vision

and machine learning software library released under a BSD license. OpenCV was

built to provide a common infrastructure for computer vision applications and to

accelerate the use of machine perception in the commercial products [17].

The roots of those libraries are based on Intels INDE (Integrated Native Devel-

oper Experience) OpenCV. Intel R© INDE OpenCV IDE (Integrated Development En-

vironment) integration provided a framework for the use under the Microsoft VS (Vi-

sual Studio), Eclipse and Android Studio. Standard optimization with OpenCL
TM

and Intel R© IPP (Integrated Performance Primitives) and Intel R© TBB (Threading

Building Blocks) ensured Intels INDE OpenCV applications optimization to Intel’s

heterogeneous platforms, accelerated with Intel R© HD and Intel R© Iris
TM

graphics

family. Now these features are available under the above described OpenCV.

The library has over 2500 optimized algorithms, including a set of both classic

and state-of-the-art computer vision and machine learning algorithms. This library

is used by well-established companies like Google, Honda, Sony, or Microsoft. It

was even used as a detection of intrusions in surveillance videos in Israel or for

monitoring of mine equipment in China 2.

OpenCV was designed for computational efficiency and with a strong focus on

real-time applications on every OS. For that reason it takes advantage of MMX and

SSE instructions. A program written in optimized C/C++, with a use of these

libraries can take advantage of multi-core processing or enabled with OpenCL, it

can take advantage of the hardware acceleration.

Last versions of OpenCV are able to use the hardware support of CUDA (Com-

pute Unified Device Architecture). CUDA3 is a parallel computing platform and

1https://developer.nvidia.com/opencv
2http://opencv.org/about.html
3http://www.nvidia.com/object/cuda_home_new.html

47

programming model invented by NVIDIA. It enables dramatic increases in com-

puting performance by harnessing the power of the GPU. The possibility to use

a CUDA support enabled the use of OpenCV in medical, chemical and aerospace

research. For example the GPUs can simulate blood flow and identify hidden arte-

rial plaque without invasive imaging techniques or exploratory surgery. According

to NASA [21] the use of a CUDA model reduced the computational time from ten

minutes to three seconds.

4.2 Pre-processing

The main task of pre-processing is to prepare the acquired image for the processing

part, meaning to accentuate the real crack and reduce the influence of the surround-

ing objects created by material, light and camera properties. This can be done

by several methods. Two of the used methods are described. The first method

which was used and developed is based on standard thresholding algorithms. It

takes an advantage of grey-scale images. The uEye cameras have the possibility

to record and store monochromatic images. However, the cameras do not produce

grey-scale images by direct acquisition but rather by conversion of the taken image

from RGB into 8 bit grey-scale image. That means that this conversion can be done

in computer as well and both RGB and Grey-scale images are available.

The second method is based on edge and corner detection method. The detection

of corners using a morphological corners is not implemented in OpenCV 3.0.0 and

there is a need for custom definitions of non-square structuring elements. The main

advantage of such algorithm is its independence on the threshold value.

4.2.1 Reading of a scaling factor

To be able to analyse the crack length it is necessary to know the size of the pixel

in the test probe image in millimetres. The scaling is possible only if there is a

reference. In this particular case is the millimetre paper placed next to the test

probe (figure 4.1).

48

Figure 4.1: Image for taking the scaling factor

The millimetre paper is not placed on the same place in every picture and there-

fore it is first necessary to find its position. The area with the millimetre paper is

found with use of template matching algorithm. Then it converted into grey-scale

and an adaptive threshold filter is applied (figure 4.2).

49

Figure 4.2: Thresholded image with template matching

Such data are stored in a matrix (two dimensional array) and the mean value

between the lines is calculated as a mean value in x and y direction (eq. 4.1).

lengthxy[mm] =
Number of white pixelsxy
Number of black pixelsxy

(4.1)

With use of the previous equation is the scaling factor for the crack analysis obtained.

50

4.2.2 Thresholding method algorithm

The first algorithm is based on classical thresholding methods and generates suffi-

cient results for the first set of test probes. After installing the uEye camera the

results became insufficient due to higher resolution and better brightness. The screen

from the uEye camera (figure 4.3) is used for comparison of both algorithms.

Figure 4.3: Input data from camera

In the first step is the image converted into grey-scale image. After this con-

version two thresholding methods are used. First method is the Otsu’s method

mentioned in section 2.2.1 (figure 4.4). The second method is thresholding with

use of the Gauss method (figure 4.5). In both results is the crack visible and at

least partially separated from the background. These crack pictures can be modi-

fied with use of the contrast stretching method. For the contrast stretching it can

use a standard procedure of calculation a linear function (equation 4.2).

g(i, j) = α · f(i, j) + β (4.2)

51

Where α is called gain and β is called bias.

Figure 4.4: Treshold Otsu Figure 4.5: Threshold Gauss

The method using the Otsu’s algorithm is better but it shows only a part of the

crack and therefore it cannot be used without any modifications. The method using

the adaptive mean Gauss algorithm shows the whole crack, but the length cannot

be estimated or calculated due to the light influence at the end of the probe. In

some cases it is possible to use such preprocessed data but it is not recommended

for the real analysis of the crack length.

Both methods were implemented into the final program but after the change of

the cameras they could no longer be used for the crack path analysis but they are still

sufficient for the crack path estimation. Because of the swiftness of such processing

they are a useful indicator of the growth direction of the crack and therefore both

algorithms (algorithm using morphological method and algorithm using thresholding

method) are used in the preprocessing.

52

4.2.3 Morphological method algorithm

Load an image and create kernels

First operation is loading an input image. For a better comparison is used the same

image as in the previous method (figure 4.7). Then two kernels are created for use

in morphological operations (described in section 2.4). These kernels are cross and

diamond (figure 4.6).

Figure 4.6: Cross (left) and Diamond (right) kernel

Figure 4.7: Input data from camera

53

Morphological gradient

First the kernels are created and the image for processing is loaded. A matrix

for holding of the result is created and filled with a image obtained by using the

morphological gradient. The morphological gradient is calculated as follows (eq. 4.3):

gradient(src, element) = dilate(src, element)− erode(src, element)

(element is the standard plus kernel)
(4.3)

The resulting image after applying the function is depicted on figure 4.8. The

gradient operation separates the edges of the crack by the means of whiter color.

Figure 4.8: Gradient of the image

54

Erode with diamond kernel

Edges correspond to a rapid transition between darker and brighter pixels. An

erosion operator is applied on such difference. The net result replaces each pixel by

the lowest value in a certain neighbourhood, thus reducing its height (value in 3D

graphic). As a result, such peaks “erode” as the valleys expand.

Figure 4.9: Erosion

55

Dilate with cross kernel

Dilation has the exact opposite effect, peaks grow in width and the valleys are

narrowed. However, in both cases the area of constant intensity remains relatively

unchanged.

Figure 4.10: Dilatation

56

Using contrast stretching and saturation

For the contrast stretching can be again used a standard procedure of calculation a

linear function with a slight modification (eq. 4.4).

g(i, j)[channel] = α · f(i, j)[channel] + β (4.4)

Where α is called gain, β is called bias and channel is the number of RGB channel.

Sometimes these parameters are said to control contrast and brightness respectively.

Result.at<Vec3b>(y, x)[c] =

saturate_cast<uchar>(alpha*(MorfoRes.at<Vec3b>(y, x)[c]) + beta);

Saturated cast makes sure that the resulting values are valid. Each pixel and color

separately thus a triple loop is used:

for (int y = 0; y < result.rows; y++)

{

for (int x = 0; x < result.cols; x++)

{

for (int c = 0; c < 3; c++)

{ /*Function for saturation*/ }}}

This method allows the use of saturation in each RGB channel, in case of use a

filter, we can set up the parameters directly for that color channel.

Figure 4.11: Contrast stretching and saturation

57

Adaptive Gaussian thresholding on the resulting image

After applying functions like erode, dilate, gradient a threshold based image has to

be made. Thanks to the fact that the threshold is applied to three channels (instead

to one in case of grey-scale image), better effectiveness is reached. The image has

still some objects left, but most of the unwanted data is in other color than black.

The black objects: crack and dots, can be subtracted from the background and then

the dots can be filtered out.

Figure 4.12: Preprocessed image after thresholding operation

This result of the preprocessing is sufficient for the real image processing and al-

though there is still influence of the surrounding, the crack is clearly separated from

the background.

58

4.3 Processing

The processing step is the same for both algorithms. First task is to run the template

matching using a template loaded by the user and the original image. This operation

obtains the starting point of the crack. This point is saved and passed to the

preprocessed image and then this image is segmented into small sub images.

Figure 4.13: Segmentation after template matching

With the information about the start of the crack the algorithm has enough

information to make a segmentation of the rest objects and the crack by the use of

modified mean filter.

59

Figure 4.14: Segmentation filter

60

Figure 4.15: Segmented image after the use of modified mean filter

This filter influences only segments with low crack probability. The result is that

most of the small objects are eliminated and the crack reconstruction algorithm has

less false informations. Last step of the processing is to reconstruct the crack itself.

For this method are both preprocessed images used and the result is a propagation

path of the crack.

61

Figure 4.16: Crack reconstruction

62

Figure 4.17: Reconstructed path

In the image above it can be seen the propagation of the crack highlighted with

the blue colored curve. This crack starts at the green point obtained by template

matching and ends with the red point obtained by the reconstruction algorithm.

The figure 4.17 shows additionally yellow lines. These lines are blind crack paths or

small objects recognized as possible crack part. Without the segmentation and the

use of the filter, there would be many more blind paths.

63

4.4 Post-processing

Main task of post processing is to evaluate the acquired data about the crack. First

function of post processing is to evaluate the length and height of the crack. This

is done by the help of the data about the scaling obtained by preprocessing and the

data about the beginning and end of the crack obtained in processing. This part of

the work is divided into several steps:

1. Draw lines: To draw lines is the first step of post processing. Straight lines

are drawn through points obtained from the reconstructed path. If the values

of the path points are relatively in same horizontal range, they are considered

a line. When the points range varies, then the line is not vertical, a drawing

function is called and the next point is calculated as ypoint = a · xpoint + b.

2. Calculate length: The length of the drawn lines is given in pixels. This

value is recalculated using the data obtained in preprocessing to get a number

in SI unit. This value slightly differs in vertical and horizontal direction (the

mean value with the tested set-up was one millimetre is 7.5 pixels in horizontal

direction and 6.5 pixels in vertical direction).

3. Calculate angles: After the second step it is possible to calculate the angles

between each drawn line and the horizontal direction. For this step elementary

mathematical functions contained in standard math library (sine, cosine) are

used.

4. Calculate properties: To calculate properties of the crack it is necessary

to know information about time, initial crack length, initial load cycles of the

test probe and tested frequency. The first two parameters can be obtained

from the image and the following two parameters must be given by the user

(table 4.1).

64

Table 4.1: Properties

Input parameters

Initial crack length a0 [mm] 12.5

Initial load cycles N0[-] 0

Output data

Crack length a [mm]

Load cycles N [-] N = f · t
Crack increment da [mm] da = a(ti+j)− a(ti) default: j = 1

Load cycle difference dN [-] dN = N(ti+j)−N(ti) default: j = 1

Crack growth rate da
dN

[mm
cycles

] da
dN

=
a(ti+j)−a(ti)
N(ti+j)−N(ti)

5. Print image: After completing all the steps before, the processed image is

shown with basic information written in it. For example:

Figure 4.18: Output image

65

6. Save image info: The rest of the information needed for evaluation of the

material properties are saved in a file (image info.dat). This file contains such

data:

Table 4.2: Output file

Image name: image name .jpg

Resolution: width height

Date: Day\Month\Year Hours

a[mm] N[cycles] da[mm] dN[cycles]
da
dN

[mm
cycles

]

• • • • •

• • • • •

• • • • •

• • • • •

Printing of results into a file and into the final image is the last step of the post

processing.

66

5 Result presentation

Most of the results are included as an attachment on the DVD. The results and

influence of the filters with the previously used camera objectives can be also found

on the DVD. The data show that orange and yellow coloured filters have the best

performance in this particular case. This is an expected result. As mentioned in

section 3.1.3 (Filters), orange and yellow filters are used for contrast enhancement.

Results obtained with the use of red coloured filters are, contrary to expectations,

useless. Red coloured filters should also enhance contrast but in this case they reduce

the contrast of the crack path and leave other objects without a change. Results

obtained by the acquisition program are also included on the DVD. The amount of

the data makes it impossible to show all results as a part of the printed copy of this

thesis.

The test stand was changed in the end therefore they are only four sets of the

new testing data. The data can be processed with the presented program, but to

achieve a really good results in all cases, there is a need to set the light system, set

the aperture and try another filters. The filters used for the last experiments are

sufficient but they were chosen randomly (only the color of the filter was chosen by

experience). In this thesis are old (figure 4.3) and new (figure 4.1) samples used for

the explanation of the developed functions. In the last section 4.4 is the image 4.18

taken from the last experiment without properly set aperture. The algorithm used to

process this data had to use all implemented functions such as advanced search. This

is a limit case for the correct function of the algorithm without any modifications.

In case of the first test where the crack grow in horizontal direction another setup of

the test stand was used (aperture, light) and the results were better. In case of the

vertical growth there is a problem with shadows (also visible on figure 4.18) from

the probe attachment. These shadows are causing that part of the cracks cannot be

evaluated (this crack has empty spaces). In other words, it is possible to evaluate

the length and the angle of about 60% of the sampled images (at the beginning and

at the end it is possible). This loss in probes makes it impossible to evaluate the

67

whole process of growth. After the test aperture settings were changed to see the

influence of the settings and on some of these images it is possible to evaluate the

whole crack.

Figure 5.1: Darker image Figure 5.2: Brighter image

Figure 5.3: Threshold of darker image Figure 5.4: Threshold of brighter image

The brighter image is easier to recognize for the human eye, the crack is visible

and it seems like it would be a better choice for evaluation. But the reality is

different, the darker image has less objects for the segmentation filter and the crack

is more isolated from the rest of the background. The difference between these two

images is only 0.8 mm in length evaluation (brighter better) but the propagation can

be easier observed on the darker image. This makes the evaluation of the crack in

the growth stadium more precise. It is possible that the results could be improved

by use of difference light filters or with a different position of the light sources.

The capturing program could be further developed as the uEye camera has more

then one hundred possible settings which could affect the results of the data analysis.

68

The two most important features are embedded in this version (v0.81). The first

feature is auto gain. This function calculates the mean value of the incoming light

and sets a digital aperture (makes the image brighter or darker). This feature is

active on all cams on in default mode (in the webcams it is impossible to disable it).

Auto gain function devaluates the aperture on the objective and the installed light

sources and it is possible to switch it off. The second feature is white balancing.

This function tries to keep the same value of white and therefore devaluates the used

filters. This function can be turned off.

69

6 Conclusion

Automatic crack analysis is a powerful tool which can save time for the evaluation

of the data from fracture mechanic experiments. In case of this work two programs

were developed, one for the acquiring of the test probes images and one for the

evaluation of the data. Both programs are part of one installation package as they

require a package of libraries and register data for a proper run. Both programs

are using only open source and newly created libraries for they function thus it is

possible to distribute them under an open source licence.

Image acquisition program is able to use any camera listed under Windows as

recording device and any type of uEye camera without the need to install the IDS

acquisition software or drivers. This is possible thanks to the implementation of

the dynamic and static libraries from the IDS SDK into the installation program.

This program has at its disposal basic settings for the camera, which enhance the

advantages of the industrial cameras (such as the possibility to set the color depth,

auto white balancing and automatic gain control of the CCD for better performance).

Software for image analysis enables processing of the the acquired images and

estimation the crack propagation and its properties. Because of the use of OpenCV

3.0.0, this framework would have to be installed on the targeted computer, taking

over 3GB of space. For this reasons are the needed libraries compiled and set as a

part of the installation program. This step reduces the requirement of disk space to

120MB (just for the libraries). The analysis program produces great results for most

cases and selective filter can sort out most of the unwanted data. The program uses

separate functions for the processing of the acquired images and it can be further

modified. There are two void functions implemented for the crack pathing that can

be filled with new algorithm or with an enhancing function for the analysis, without

the need to rewrite the program itself. Both created programs have been often

modified due to the changes in equipment and new test samples. Each program has

its own changelog listed in the appendixes B and C.

70

A Contents of enclosed DVD
DVD

Master thesis Latex latex source files
Master thesis PDF pdf output
Crack Capture program

inc
src

Images produced Crack Capture program
Crack Analysis program

inc
src

Result presentation

71

B Changelog of Capture program

Figure B.1: Changelog: Capture program

72

C Changelog of CrackAnalizer program

Figure C.1: Changelog: Capture program

73

Bibliography

[1] R.T.W. Calvard et al. Picture thresholding using an iterative slection method. Transactions
on Systems Man and Cybernetics, 8(Aug):630–632. Aug. 1978.

[2] Paul Bourke. RGB colour space. Available at: http://paulbourke.net/texture_colour/
colourspace/(Accessed 3.7.2016). Mar. 1995.

[3] Daniel Mart́ın Carabias. Analysis of image thresholding methods for their application to aug-
mented reality enviroments. Master thesis on Universidad Complutense de Madrid, Available
at: http://eprints.sim.ucm.es/16932/1/Tesis_Master_Daniel_Martin_Carabias.
pdf(Accessed 4.7.2016). June 2012.

[4] Erik Dahlstrom et al. Scalable Vector Graphics (SVG) 1.1 (Second Edition). Available at:
https://www.w3.org/TR/SVG/single-page.html(Accessed 5.7.2016). Aug. 2011.

[5] Edward R. Dougherty and Roberto A. Lotufo. Hands-on Morphological Image Processing.
SPIE Publications, July 2013. isbn: 978-0819447203.

[6] David Duce. Portable Network Graphics (PNG) Specification (Second Edition). Mar. 2003.

[7] Daniel Durini. High Performance Silicon Imaging: Fundamentals and Applications of CMOS
and CCD sensors. first edition. Woodhead publishing, Feb. 2014. isbn: 978-0857095985.

[8] Adrian Kaehler Gary Bradski. Learning OpenCV. First Edition. O’Reilly Media, Inc., Sept.
2008. isbn: 978-0-596-51613-0.

[9] Graphics Interchange Format. Version 89a, Available at: https://www.w3.org/Graphics/
GIF/spec- gif89a.txt(Accessed 6.7.2016). CompuServe Incorporated Columbus Ohio.
Mar. 1990.

[10] Eric Hamilton. JPEG File Interchange Format. Version 1.02, Available at: https://www.
w3.org/Graphics/JPEG/jfif3.pdf(Accessed 6.7.2016). C-Cube Microsystems. Sept. 1992.

[11] Gerald C. Holst and Terrence S. Lomheim. CMOS/CCD Sensors and Camera Systems.
second edition. Spie Press Book, Mar. 2007. isbn: 978-0819486530.

[12] JN Kapur, P.K. Sahoo, and AKC Wong. A new method for gray-level picture threshold-
ing using the entropy of the histogram. Computer vision, graphics, and image processing,
29(3):273–285. Mar. 1985.

[13] John Miano. Compressed Image File Formats: JPEG, PNG, GIF, XBM, BMP. Addison-
Wesley Professional, Aug. 1999. isbn: 978-0201604436.

[14] Maria Petrou and Costas Petrou. Image Processing: The Fundamentals, 2nd Edition. first
edition. Willey, Apr. 2010. isbn: 978-0-470-74586-1.

[15] Mehmet Sezgin. Survey over image thresholding techniques and quantitative performance
evaluation. Journal of Electronic Imaging 13(1), 146–165, Available at: http://pequan.
lip6.fr/~bereziat/pima/2012/seuillage/sezgin04.pdf(Accessed 4.7.2016). Jan. 2014.

[16] Stuart A. Taylor. CCD and CMOS Imaging Array Technologies: Technology Review. Techni-
cal Report EPC-1998-106, Available at: https://www.microsoft.com/en-us/research/
wp- content/uploads/2016/02/CCD.pdf(Accessed 27.6.2016), Rev.3. Xerox Research
Centre Europe. 1998.

74

[17] The OpenCV Reference Manual. Release 3.0.0-dev, Available at: http://docs.opencv.
org/3.0-beta/opencv2refman.pdf(Accessed 28.6.2016). OpenCV. July 2016.

[18] The OpenCV Tutorials. Release 2.4.13.0, Available at: http://docs.opencv.org/2.4/
opencv_tutorials.pdf(Accessed 1.7.2016). OpenCV. July 2016.

[19] W.H. Tsai. Moment-preserving thresolding: A new approach. Computer Vision, Graphics,
and Image Processing, 29(3):377–393, Mar. 1985.

[20] User Manual uEye Software Development Kit (SDK). Available at: http://master-ivi.
univ-lille1.fr/fichiers/Cours/uEye_SDK_manual_enu.pdf(Accessed 3.7.2016). IDS
Imaging Development Systems GmbH. Sept. 2008.

[21] Using GPU Nodes. Article ID: 298, Available at: http://www.nas.nasa.gov/hecc/

support/kb/using-gpu-nodes_298.html(Accessed 1.7.2016). Nasa. June 2016.

[22] Nicholas Wilt. The Cuda Handbook: A comprehensive Guide to GPU Programming. First
Edition. Addison Wesley, June 2013. isbn: 978-0-321-80946-9.

75

