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Summary

This master’s thesis deals with mathematical models of walking robots. Two such models
are introduced. The rimless wheel, a passive precursor for other models, is studied analy-
tically in detail. The compass gait biped model is analysed and simulated numerically in
the Python programming language. A method for finding the conditions for passive gait
of the biped is also implemented.

Abstrakt

Tato diplomova prace se zabyva matematickymi modely kracejicich robotu. Dva z téchto
modell jsou vybrany a analyzovany. Pasivni model ,rimless wheel®, ktery slouzi jako
nohého robota je v praci analyzovan a numericky simulovan v programovacim jazyce
Python. Metoda pro nalezeni podminek pro pasivni chuzi robota je rovnéz implemen-
tovana.
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1 Introduction

The capability of walking is one of humans’ most underrated strengths. The deceiving
simplicity of this exercise - most human babies are able to walk by the time they are 18
months old - hides the complex and highly nonlinear dynamics behind it. It is precisely
these dynamics that make it very difficult to replicate the mechanisms of walking in ro-
bots.

However, the motivation for any such endeavours is clear. Compared with other ways of
moving that utilize wheels, walking is much more versatile. Bipedal robots are able to
move in places where wheeled robots would inherently struggle, such as areas with rough
terrain. Another potential advantage of walking robots that should not be disregarded is
that they are better suited for areas primarily designed for the movement of people, such
as buildings or stairways.

The history behind the idea of constructing machines goes back to antiquity. First
successes came in the 1960s, driven by a rapid development of related mathematical tech-
niques and engineering. In 1967, the Waseda University based in Tokyo initiated the
WABOT project which culminated six years later in WABOT-1, the world’s first hu-
manoid robot able to walk [1]. Since then, many similar projects have been undertaken
by numerous teams at universities and private companies. Examples of these can be for
instance the Massachusetts Institute of Technology Leg Laboratory founded by Marc Rai-
bert in 1980 or the company Honda with its so-called P series - a progression of humanoid
robot prototypes developed in the 1990s.

Around the same time, new, more aggressive approaches in the construction of legged
robots relying on exploiting the mechanical system’s passive dynamics started being in-
vestigated. In his seminal paper [2] written in 1990, McGeer examined the natural cyclic
behavior of a collection of simple mechanical systems. He succeeded in popularizing the
usage of techniques based on the study of Poincaré maps in the analysis of robotic sys-
tems.

Nowadays, the field of legged robotics is still undergoing rapid growth. The state of the
art is exemplified in the works of companies such as Boston Dynamics and its Atlas ro-
bot, whose amazing acrobatic prowess displayed in various YouTube videos ([3][4]) can
be appreciated by anyone with access to the Internet.

My interest in the subject was sparked in the year I spent at the University of L’Aquila

as a part of a two-year Master’s degree program. There, a friend of mine introduced me
to the MIT course Underactuated Robotics taught by Russ Tedrake, whose lectures are
readily available online [5]. My desire to learn and understand the course load led to the
creation of this thesis. As a consequence, some unusual notational choices, such as defining
the positive direction of an angle to be clockwise, have been made in compliance with this
course.
The goal of the thesis is to give an introduction to the study of simple legged robots. Much
of the literature that is available glosses over the techniques used to model such systems.
For this reason, special care was given to a thorough explanation of these procedures.
The proofs of the stated theorems were chosen so that they would not require a deep
understanding of the theory. Indeed, cursory experience from an undergraduate course on
dynamical systems is enough to follow the proofs.



The thesis consists of three major parts. In Section 2, mathematical foundations re-
levant to the main body of work are presented. This includes a brief introduction to the
theory of dynamical systems with a couple of canonical examples. The notion of stability,
which is fundamental for qualitative analysis of dynamical systems, is presented together
with various definitions of stability used throughout the thesis. The Poincaré map - a link
between the stability of continuous and discrete systems - is also introduced. The first
section also contains a short summary of the Euler-Lagrange equations used to derive
equations of motion for mechanical systems.

The second part is devoted to the rimless wheel model. The model and its assumptions
are described and the equations of motion of its swing phase are derived. The mapping
that governs its collision phase is also obtained. A Poincaré map for the system is defined
and studied extensively. Its fixed points are identified for different possible arrangements
of the model’s parameters and their stability is treated as well. To conclude, the fixed
points’ regions of attraction are found and visualized.

The third part deals with the compass gait model. The readers is first introduced to
its description and assumptions. Then, the system of differential equations governing its
swing phase is obtained. The impact conditions and mapping are derived, too. In addition,
a numerical solver of the hybrid system is implemented in Python. A Poincaré map for
the system is defined analogically to the rimless wheel case and a search algorithm for its
fixed points is demonstrated in Python. Both Python codes are included in the appendix.
In Section 5, the results of the thesis and possible future extensions are summarized.



2 Mathematical Background

2.1 Dynamical Systems

Many phenomena in science deal with quantites changing in time. Be it mechanical sys-
tems in physics, chemical reactions, or populations in biology, all of them can be described
by the framework of dynamical systems. In essence, dynamical systems can be described
by a state space (or phase space) and a rule that defines how they change in time.

In general, this scheme can have many different forms, but the two of the most typical
examples are continuous dynamical systems, also called flows, where the rule is described
by a system of differential equations

x = f(x), (2.1)

and discrete dynamical systems described by a system of difference equations

Yny1 = f(yn)7 n = OJ 17 27 oo (22)

where x and y,, are elements of the respective systems’ state spaces and f is a function
from the state space to itself. Under some conditions on the function f, these rules imply
that knowing the state of the system at one point in time uniquely determines the sys-
tem’s state at any other time in the future. Dynamical systems such as 2.1 and 2.2 where
the function f does not explicitly depend on time are said to be autonomous.

Although the restriction to autonomous systems might seem too confining at first glance,
any non-autonomous system can be turned into an autonomous one. As an example, con-
sider the function on the right hand side of the differential equation (2.1) to be dependent
on t as well. If we extend the state space by introducing a new state variable x,.; = t,
we get rid of the time dependence simply by including the equation x,,.; = 1. It should
be mentioned that this comes at the cost of adding an extra dimension to the state space.
For more information, refer to [6].

To acquaint the reader with the subject, we present two typical examples of continuous
and discrete dynamical systems.

Example 2.1 (Population growth). Consider the simplest model of population growth
described by the first-order differential equation

T =rz,

where z(t) is the population at time ¢, and r > 0 is the growth rate. If the equation is
accompanied with an initial condition x(0) = xy determining the population at time 0,
the solution can be written as

2(t) = zpe™,

thus predicting an exponential growth. Even though the system is extremely simplistic, it
can serve as a basis for other, more complex models. One of them is the so-called logistic
growth model, which extends the idea of a simple exponential growth by introducing
a carrying capacity of the population. The corresponding equation is given by

& =rz (1 - %) , (2.3)
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where the constant C' > 0 is the aforementioned carrying capacity. The consequence of
adding this parameter is that as x gets closer to C, the population growth slows rapidly.
This continuous model has a famous discrete time counterpart, which brings us to to our
second example.

Example 2.2 (Logistic map). Consider the deceptively simple one-dimensional difference
equation

Ynt1 = TYn (1 — Yn) , n=0,1,2,...,

with 0 <7 <4 and yy € (0,1). Just like in the continuous case described in (2.3), we can
consider y, to carry the meaning of a population size. This elementary looking equation
is often given as an example of how extraordinarily complicated behavior can arise out of
nowhere. In particular, the system’s character varies immensely for different values of the
parameter 7.

Let us fix the initial population y;. When 0 < r < 1, the population y, eventually
dies out. In contrast, for 1 < r < 3, the population eventually approaches a nonzero
steady state. However, as we keep increasing r, the population first starts periodically
oscillating between two values, then four values, then 8,16, and so on. When r reaches
approximately 3.56995, the system starts behaving chaotically. By this we mean that
it exhibits great sensitivity to the initial condition yo. We will formalize this kind of
sensitivity by introducing the notion of stability. For more detail about the logistic map,
see [6].

Before we proceed to the section about stability, we first mention the possibility of
a dynamical system exhibiting the properties of a continuous system and a discrete system
at the same time. Such systems are called hybrid dynamical systems. One important class
of hybrid systems are systems with impulse effects. For such systems, the pair of a state
space and a rule is extended by a subset S of the state space called the switching surface.
The system’s states then behave according to different rules, depending on if they lie on
the switching surface or not. The rule can be summarized as

t=g(x7), ifx—€8S. (24)

{Xzf&% if x ¢ S,
Example 2.3 (Bouncing ball). An example of such a system can be the bouncing ball
model. Consider a ball which is dropped from an initial height and which loses energy
with each of its bounces. If by x(¢) we denote the ball’s vertical position above the ground
at time ¢, this model can be described by the relations

T =—g, if x>0,

=27, 1t =-\i" if 27 =0.
Here, g is the gravitational acceleration and A > 0 is a parameter describing the dissipation

of the ball’s energy at each bounce. An example of a numerical simulation of this model
can be seen in [7].



2.2 Stability

The notion of stability is paramount in the study of dynamical systems. It is an example of
a qualitative approach. Studying stability provides a way to increase one’s understanding
of the system without explicitly solving it - oftentimes such a solution is impossible to
derive.

Many different approaches to stability may be considered. In this section, we state the
definitions of stability used in the thesis. Before we do that, we introduce the concepts of
equilibria and fixed points.

Definition 2.4. Consider the continuous dynamical system (2.1). We say that a state x
is an equilibrium point of the system if f(x) = 0.

Analogically, we define a fixed point of a discrete dynamical system.

Definition 2.5. Consider the discrete dynamical system (2.2). We say that a state x,, is
a fized point of the system if f(x,) = x,.

We proceed to define the various notions of stability used in the thesis.

Definition 2.6. Let (X, d) be a metric space. Consider the continuous dynamical system
(2.1) and let f: X — X be continuous. We say that an equilibrium point x € X is stable
in the sense of Lyapunov if Ve > 0, 30 > 0 such that Vy € X we have

dix,y) <6 = d(x,¥(t)) <e, VteR,

where y(t) denotes the solution of (2.1) with the initial condition y(¢) = y. We say that
a fixed point x € X is unstable in the sense of Lyapunov if it is not stable.

Remark. The symbol f™ in the definitions below represents an iteration of n compositions
of the function f.

Definition 2.7. Let (X, d) be a metric space. Consider the discrete dynamical system
(2.2) and let f : X — X be continuous. We say that a fixed point x € X is stable if
Ve > 0, 46 > 0 such that Vy € X we have

dix,y)<déd = d(f"(x), f"(y)) <e, VneN

We say that a fixed point x € X is unstable if it is not stable.

Definition 2.8. Let (X, d) be a metric space. Consider the discrete dynamical system
(2.2) and let f: X — X be continuous. We say that a fixed point x € X is asymptotically
stable if it is stable and if 30 > 0 such that Vy € X we have

d(x,y) < = lim d(f"(x), f*(y)) = 0.

Definition 2.9. Let (X,d) be a metric space. Consider the discrete dynamical system
(2.2) and let f : X — X be continuous. Let x € X be asymptotically stable. We define
the region of attraction of x to be the set of all points y € X such that

Tim d(f"(x), /"(y)) = 0.

6



In the special case where (X, d) = (R, |-|), we also introduce the notion of semistability.

Definition 2.10. Consider the discrete dynamical system (2.2) with the state space R.
Let f : R — R be a continuous function. We say that a point x € R is semistable if
Ve >0, 36 > 0 such that either Vy € (—o0, ), or Vy € (z,00), we have

d(z,y) <6 = d(f"(x), f"(y)) <e, VneN

We will distinguish the two different cases for y by calling x either semistable from below
or semistable from above.

In the next section, we show how studying the stability of a continuous dynamical
system can be rephrased into studying the stability of a discrete system.

2.3 Poincaré Map

One of the most common methods used for studying the stability of periodic orbits of
dynamical systems makes use of the Poincaré map (also called the return map). The es-
sence of the method lies in converting the problem of stability in the sense of Lyapunov of
a continuous dynamical system’s periodic solution to the problem of stability of a discrete
dynamical system’s fixed point. Refer to e.g. [8].

To explain the driving idea behind this approach (see [9]), we consider an autonomous
equation in R"

% = f(x). (2.5)

Let x(t) be a periodic solution to this equation. Because the solution is periodic, it must
correspond to a closed orbit I' in the n-dimensional phase space. Let xy € I'. Further,
we construct an (n — 1)-dimensional hyperplane 3 so that it is perpendicular to I' and
it passes through xg. If we then consider a point x € ¥ ”"close” to Xg, the solution of
(2.5) passing through x will again intersect X. The intersection of the solution with the
hyperplane is denoted by P(x). The mapping P : ¥ — ¥ is called the Poincaré map.

The requirement that ¥ must be a hyperplane perpendicular to I' can be easily gene-
ralized. In fact, it is sufficient to assume that 3 is an (n — 1)-dimensional hypersurface
transversal to I', where by transversality we mean that > is not tangent to I' at xy. For
more details, see [8].

In effect, by ”cutting through” the phase space with 3, we can identify orbits of (2.5)
near [" with points lying in 3. Crucially, since I" is a closed orbit, the point xq is a fixed
point of P. In other words,

P(Xo) = Xp-

The Lyapunov stability of the periodic solution %(¢) then coincides with the stability of
xo according to Definition 2.7, with metric space (X,d) = (X,d), where d is the usual
Euclidean metric, and the function f = P.

Remark. In Definition 2.7, we require the function f to be continuous. The theorems
establishing the Poincaré map’s existence and continuity can be found in [8].
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For the purposes of the thesis, this definition for continuous dynamical systems must
be extended so that it encompasses systems with impulse effects defined in (2.4) as well.
In such systems, a natural choice for ¥ is the switching surface S. This question is treated
in [10].

2.4 Euler-Lagrange Equations

For some mechanical systems, deriving the corresponding equations of motion is in its
essence a simple task. Consider for example the one-dimensional system consisting of
a point mass on the end of a linear spring. By applying Newton’s second law of motion
F' = ma, we immediately arrive at the equation

mi = —kx,

where z(t) measures the displacement of the point mass from the equilibrium position at
time t. The problem is that this method does not scale well for larger, more complicated
systems. In most applications, a different general scheme is required. This systematic ap-
proach was put together by the French-Italian mathematician Lagrange in his famous two
volume treatise Mécanique analytique, first published in the years 1788 and 1789 (refer to

[12]).

Lagrange’s method is based on the calculus of variations, a field of mathematics con-
cerned with finding the maxima and minima of functionals - mappings from a set of
functions to the real numbers. As the scope of this thesis is too narrow to contain a re-
asonable treatment of the calculus of variations, we only mention (informally) the basic
idea behind the Euler-Lagrange equations based on [11]. For a more in-depth description
of Lagrangian mechanics, refer to [13].

Consider a mechanical system consisting of n point masses. Define the quantity L by
L=T-U,

where T and U are the sums of each of the point masses kinetic and potential energies,
respectively. This quantity is called the Lagrangian of the system. Clearly,

L = L(x(t),%(t),t), where x(t) and x(t) are the positions and velocities of each of the
point masses at time ?.

Now, consider the functional A (the so-called action) defined by

and let x(¢) be a function defined for ¢ € [t1, t5] with its endpoints fixed. That is,
x(t1) = x1,%(t2) = x5. It can be shown that the functional A is differentiable. This means
that

A(x(t) +h(t)) = A(x(1)) = F(h) + R(h),

where F' is linear in h and there exists positive constants ¢ and C' such that
lh| <& = |R| < Ch%

8



The linear part F'(h) of the increment is then called the differential or the variation of
the functional. A deeper explanation can be found in [13].

We state the following theorem without proof.

Theorem 2.11. Let x(¢) be a function with its endpoints in ¢; and ¢, fixed that yields
a stationary value of the functional A, where by stationary value we mean that its variation
F(h) is equal to zero. Then
d |0L oL
— == =0 (2.6)
dt | 0x ox
Combined with Hamilton’s principle, which can be stated as ”The motion of a system
of particles is the one that yields a stationary value of A”, this implies that x(t) must
satisfy (2.6).

The power of this method lies in the ease with which it can be used. Essentially, if one
can find the kinetic and potential energies of the system, finding the equations of motion
is only a routine question of taking a couple of derivatives.

Remark. Tt can be shown that the Euler-Lagrange equations are independent of the co-
ordinate system. This means that they are valid for any coordinates describing the con-
figuration of the mechanical system (these do not necessarily need to be the Cartesian
coordinates). These are called generalized coordinates and are usually denoted by q(t).
Their time derivatives q(t) are called generalized velocities. The Euler-Lagrange equations
(2.6) can be restated as
d [G_L} _ oL =0. (2.7)
dt | 0q oq
To conclude this section, we note that the equations can be generalized to include
the effects of external forces as well. If W (q) is the work done by these forces, then the
equation

d {8L] oL oW 28)

dt |04 9a  0q
must hold.

The mathematical apparatus introduced above will be used in solving various problems
in the rest of the thesis.



3 The Rimless Wheel

One of the simplest models of walking is the so-called rimless wheel. It is an example of
a passive walker - the system’s movement is caused entirely by gravity and cannot be
controlled. We will only concern ourselves with the 2D case of the model.

Consider a spoked wheel without the outer rim rolling down a ramp, with the spokes (or
the legs) being evenly spaced. For simplicity, we assume the spokes to be rigid and all the
mass to be concentrated in the center of the wheel. We further assume the spoke collisions
to be perfectly inelastic and impulsive. Hence, the wheel loses some energy whenever one
of its legs collides with the ground. We also do not consider the possibility of the stance
leg slipping and assume the transfer of support to be instantaneous - there is no double-
support phase.

~

Figure 1. The rimless wheel model and the parameters that define it.

The model is completely specified by four parameters. These are the angle of the slope
v, the angle between two successive spokes 2a, the length of each spoke [ and the wheel’s
mass m.
Natural assumptions on the parameters that govern the model can be made. Namely,

0<7<g, [ >0, g >0, m > 0.

Remark. In fact, we could also allow v = 0. However, it would introduce an additional
special case for our analysis and hence we will only briefly comment on this possibility at
the end of this section.

10



We also add an additional assumption on the number of spokes - we will restrict our
work to wheels with at least 5 spokes. The reason for this is that with the assumptions
outlined above, wheels with only 3 or 4 legs lose all of their energy upon collision and any
further analysis is pointless. The condition of at least 5 legs can be written as

T
O0<a<—
a<

™

since if the number of spokes is n, then a =
We will denote the region of admissible angles o and v by 4 4.

o) = (0,%) x (0%) (3.1)

3

The angle 6 changes dynamically with time. In our model, it is taken to be a direc-
ted angle, with clockwise direction being positive, in accordance with [5]. While this is
somewhat unusual, the choice of clockwise direction as the positive one stems from the
fact that the ramp is sloped down from left to right. This way, as the wheel rolls down,
the angle increases.

We split our analysis of the model into several parts. First, we will analyse the swing
phase - the phase inbetween two collisions. We will derive the differential equation gover-
ning the swing phase and calculate the wheel’s angular velocity just before next collision.
Next, we will study the behavior of our system at the time of the collision. Combining
these two, we will define a return map for the wheel’s angular velocity just after the col-
lision. Then, we will identify the fixed points of this map and discuss their stability, and
at the end, we will specify their regions of attraction.

11



3.1 Swing Phase Model

To derive the differential equation governing the wheel’s motion, we will use Lagrange’s
method. First, consider that the configuration of the wheel at time ¢ depends solely on the
angle of its stance leg. In other words, we do not distinguish between legs, they are all the
same from the point of further analysis. Hence, we only have one generalized coordinate,
namely ¢(t) = 6(t). We place the origin of the Cartesian coordinate system to the point
where the stance leg is touching the ground. The position of the center of mass is then
given by

sin (0)

cos (0)

Since all of the mass is assumed to be concentrated in the center, the wheel’s kinetic
energy (denoted by T') and potential energy (denoted by U) are given by

1 .
T = —mx'x = —mi*6?,
2 2

U = mgzxy = mgl cos (6).

The Lagrangian function is defined in accordance with Subsection 2.4 as
L=T-U
and the Euler-Lagrange equations take the form of

oL d [8L

D %] = mglsin (0) — i [ml@} =0

00 dt dt

= %sin (9), (3.2)

which is the well-known equation of a simple pendulum.

Remark. This is a nonlinear second order differential equation. A closed-form solution
can be found (see for example [14]), but its derivation is quite technical and since it does
not really bear on the rest of our analysis, we omit it completely. Of course, given initial
conditions, it is trivial to find an approximate solution numerically.

In the next step, we wish to describe the angular velocity of the wheel at the end of
the swing phase (just before the next collision) with respect to the beginning of the swing
phase (just after the previous collision). Before we proceed, we must find the value of
the state variable 6 before and after the collision. We denote these by 6(0~) and 6(0%),
respectively. In the same way, we introduce the angular velocities (07) and 6(0"). By
a simple geometrical argument presented in Fig. 2, we find that

607) =v+aq,

6(0%) =~ —a.

The first diagram represents the configuration just before the collision. The second one
captures the situation right after the collision. As the stance leg changes, so must the
configuration.

12



Figure 2. The two situations showing the wheel’s state a moment before and after a col-
lision.

Remark. We can see that 6 only changes by 2« along the wheel’s whole swing. As the
number of legs increases, o becomes smaller and the equation (3.2) can in fact be linearized
around ¢ = ~. The question of finding its solution then dramatically simplifies.

Given an initial positive angular velocity 9(0*) = w, we would like to derive an expres-

sion for the final angular velocity 9(0_). First, we must distinguish between two distinct
cases. If w is too small, the wheel will not have enough energy to vault its mass over
the point of maximum potential energy, that is, 8 = 0. In that case, it is going to slowly
reverse direction and come back to its initial configuration 8 = v — a with = —w.
This happens because in our considerations, the wheel conserves energy during the swing
phase. In the second case, the wheel has enough energy to carry its mass over the critical
point and it completes one full step. Next, we calculate exactly the critical value of w that
is needed for the second case to be true.

We do this by means of analysing the wheel’s energy. At time ¢ = 0%, the kinetic and
potential energies are given by

1
T = —ml*w?
2
U = mglcos (0(07)) = mgl cos (v — ).

The total energy is given as the sum of these two values.

1
E:T+U:§ml2w2+mglcos(fy—a)

This value must be constant during the whole swing phase. Now, the potential energy is
maximized at the highest point of the swing (the stance leg being vertical). It is given by

U* = mgl cos (0) = mgl.

If the wheel has greater total energy than this critical value, it will be able to complete
a step. This condition can be expressed followingly.

E(0") >U*
Lo 9
§ml w” 4+ mglcos (v — o) > mgl

13



By simplifying and expressing w, we obtain

w > \/2%(1—COS (v —a)). (3.3)

This condition is valid for the case v < «. In the special case of v = «, this condition
reduces to the simple

w > 0.

However, the condition (3.3) is invalid for 7 > «, as in that case the center of mass at
time t = 07 is already over the critical point and hence the wheel will always make a step
forward.

Remark. The expression in the condition (3.3) comes up frequently in subsequent text
and hence we decided to denote it by

Wy = \/2%(1 —cos(y—a)). (3.4)

The subscript f stands for forward.

V<« V= v >«
0>0
<p :0:0 :—~>‘1
i | |
\: ‘
4
gl v 7

Figure 3. The positions of the wheel’s legs at the moment of collision for v < «, v = «,
and v > « respectively. Note that for v > «, the center of mass is already over the critical
line 6 = 0.

Next, we would like to express the angular velocity at the end of the step as a function
of w. We will again use the fact that energy is conserved. We will denote the final angular
velocity by 0(t~). The energy in the initial and final state must be equal. This gives us

E(07) = E(t7),

%lewQ + mglcos(y — a) = %ml292(t_) + mgl cos (7 + «).
By dividing by ml and rearranging, we get
%ZQQ(t_) = %le + g(cos (y — a) — cos (7 + a)).
Now, we apply the formulas for the sum and difference of two angles and obtain

1. . 1
5192(15_) = 5[&)2 + 2gsin () sin ().

Finally, we express 6(t~) for w satisfying (3.3).

0(t") = \/w2 + 4% sin (7y) sin (). (3.5)

14



3.1.1 Backward Motion

Before we proceed further, we extend our previous work to include the possibility of
moving in the other direction, that is, up the ramp. The analysis is identical to one done
before for the wheel rolling down, just with different initial conditions for our differential
equation. Here, (0%) = v + a and §(0") = —w, where w > 0.

As not to repeat the same calculations, we only state the results. We arrive at a condition
similar to (3.3) for making a full step up the ramp.

6(0%) = —w < —\/2%(1 — cos (v + a)). (3.6)

This condition is required for all possible arrangements of v and «, as for moving up the
ramp, it can never happen that the center of mass is already over the vertical line 6 = 0.

Remark. Similarly to the forward motion case, for further clarity we denote

wy = —\/2%(1 —cos (7 + «)). (3.7)

The subscript b stands for backward.

Once again, we also derive the formula for the final angular velocity depending on w,
following the same steps as in the forward motion case.

0(t) = \/w2 — 4% sin (7y) sin (). (3.8)

3.1.2 Rocking Motion

Here, we complete our analysis by considering the last possible option for w, i.e. the case
when it does not satisfy either of the conditions (3.3) and (3.6). This can be expressed as

wp < 9 < Wwy. (39)

This means that the wheel does not have enough energy and after its center reaches its
highest point, it slowly comes back to its initial state with the angular velocity reversed.

0(t™) = —0(0™). (3.10)

This concludes our investigation of the swing phase model.
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3.2 Collision Analysis

In this section, we will study what happens at the time when the wheel’s next leg collides
with the ground. At that point, we come to a discontinuity that we must fully under-
stand and describe. For one, the stance leg and together with it the angle 6 describing
the wheel’s configuration are changed. In addition, the collision does not conserve energy,
there is some dissipation present. However, since we assume collisions to be perfectly ine-
lastic and impulsive, we know that angular momentum must be conserved. We will use
this to calculate the change in angular velocity.

By L(¢7) and L(¢") we denote the angular momentum around the point of collision just
before and after the leg hits the ground, respectively. These two momenta must be equal.

We begin by calculating L(¢7).
To do this, we first move the origin of our coordinate system to the point of collision and
then calculate the position and velocity of the center of mass (denoted by x., x.). It can
be shown that
x, — 21sin (a) - cos () s sin (0(t7))
sin () cos (0(t7))

If we substitute 6(t~) = v + «, we get

. —1. —2sin (@) cos () +sin (y + @) _. sin (v — «)
2sin () sin () 4 cos (v + o) cos (7 — )

20 sin ()

Figure 4. The situation just before the collision. Here, x,; represents the point where the
stance leg is touching the ground, x., the point where the next leg is going to collide with
the ground, and x. the wheel’s center of mass. Clearly, x. = x4 + (X. — Xg)-

16



We obtain x, by differentiating the first expression for x. with respect to time.
. ot~ . +

o = 10(t7) - cos (0(t7)) 100 cos (v + )

—sin (0(t7)) —sin (7 + «)

Now, we apply the well-known formula L(¢~) = x. x mx, (see Subsection. The momentum
is then equal to

L(t7) =k (l sin (7 — a) - (—mlf(t ) sin (y + @) — L cos (y — @) - mlf(t™) cos (v + a)) )

where k represents the vector [0,0,1]7.
By rearranging and using the formula for the cosine of a difference of two angles, this can

be simplified to A '
L(t7) = —kml?0(t~) cos (2a).

By doing the exact same analysis for the instant right after the collision ¢ = t*, we derive
the new position and velocity of the center of mass.

o sin (7 — )
cos (v — «)
[ eostr-a)
x, = 10(tT) -
&) —sin (y — «)

The new angular momentum is given by
L(tT) = —kmI?4(t™).

By setting the two momenta to be equal, we can express the new angular velocity after
impact (t*) in terms of 6(¢™).

0(t) = 6(t7) cos (20). (3.11)

This formula represents the loss of velocity due to dissipation of energy (notice that
cos (2a) is always less or equal to 1).

Remark. The loss of energy can be expressed as
E{tT) - E(t)=T(@") - T(t")

1 .. 1 .
= —ml*6*(tT) — Eml?QGQ(t_)

2
- %mﬁ cos® (2a)0%(t7) — %leéz(t‘) (3.12)
= —%ml292(t_) - (1 = cos® (2a))

1 .
= —éml2 sin? (2a)0%(t7).
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3.3 Long-Term Behavior

So far, we have only studied a small moment in the wheel’s motion - what happens in
the process of making one "step”. The question of what happens as time goes on is much
more interesting. To answer it, we first introduce a Poincaré map for the angular velocity
at the beginning of each step and thus obtain a discrete dynamical system. We can then
investigate its properties, such as fixed points and stability.

3.3.1 The Poincaré Map

We introduce a mapping from the angular velocity at the start of the n'* cycle to the start
of the next one. Each cycle consists of a swing phase and a collision. In our investigation
of the swing phase, we derived formulas (3.5), (3.8), and (3.10) for the angular velocity at
the end of the swing in terms of the velocity at the start of it. Also, as we have established
carlier (see formula (3.11)),

O(t") = cos (2)0(t 7).

By bringing this together, we are ready to define the mapping. By 0,,, we denote the
angular velocity at the start of the n'® cycle. We split the definition into two cases, v < «
and v > «, as there are qualitative differences between them.

For v < a, we have

cos (204)\/0% + 49 sin (7) sin () for 6, > wy

Oni1 = { — cos (2a0)6,, for wy, < 6,, < wy (3.13)
— COS (2@)\/9% — 49 sin () sin (a)  for O, < wh.

Notice that the map is not defined for 0, being equal to one of the critical values w; and
wy, that disconnect the definition. This is because for those values of én, the state variables
6 and 6 are moving along a heteroclinic orbit towards the unstable equilibrium 6 = 0,
9 = 0. This takes infinite amount of time and so the (n + 1) cycle never happens and
hence the map cannot be defined.

For 7 > «, the condition (3.3) disappears and hence we define the map as follows.

cos (20)\/62 + 49 sin (7)sin (a)  for 6, > 0

Ons1 = { —cos (2a)0, for wy < 6, <0 (3.14)
— COS (20()\/9% — 49 sin () sin () for 0, < wp.

In this case, the unstable equilibrium 6 = 0, 6 = 0 is unreachable, because the wheel’s
center of mass is over its maximum potential energy state at all times (see Fig. 3). Thus,
the issue with heteroclinic orbits is not present. This allows us to extend the definition to
the two critical angular velocities wy and w,.

Now, given a pair of initial data (), 6’), we can use this recursive definition to say what
the wheel will do in the n'* cycle. This gives us the apparatus for describing its long-term
behavior.
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3.3.2 Some Properties of the Poincaré Map

The natural question that immediately arises is that of deriving a closed-form expression
from our recursive definition. Owing to the inherent disconnectedness of the map, this
is only partially possible. Nevertheless, even these partial results will be of considerable
help later. In this section, we state and prove some of them.

We define 6,,.., to be the angular velocity after m cycles, starting from 6,,. We begin with
the "backward motion” regime, where the wheel is moving up the ramp.

Lemma 3.1. Let m € N and
Onsi <wy, Vie{0,1,2,...,m—1,m}.

Then

1 — cos?™ (2a)

1 —cos? (2a) (3.15)

Opsm = — COS (2a)\/cosz(m1) (20) - 62 — 4% sin (7) sin («) -

Proof. We prove this by induction. For m = 1, this statement is equivalent to

Ony1 = — cos (2a) \/9% - 4% sin () sin («)

which is true by the map’s definition (either (3.13) or (3.14)). We assume it is true for
m = k and show that it then must be true for m = k + 1. By our definition we have

Opiks1 = — COS (20z)\/6’fb+,g 4% sin () sin («).

We use the formula for a partial sum of the geometric series

1 — cos?* (2a) 0
Sl St 7 i (9
1 — cos? (2v) Z cos™ (2a)

and substitute our induction hypothesis. We obtain

Onihi1 = — cos (200)-
1
2

cos® (2a) (cosz(kl) (20) - 62 — 4% sin (7) sin ( Z cos™ (2a) > - 4% sin (7) sin ()

By distributing cos? (2«) inside the bracket and simplifying, we get

Onini1 = — cos (2a0) , | cos? (2a) - 62 — 4% sin (7y) sin ( Z cos? (2a).

After using the partial sum formula one last time, we arrive at exactly the formula (3.15)

for m = k 4+ 1 and the proof is done.
O
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Next, we attempt find a closed formula for the other time direction, in a sense, asking
the question what the angular velocity would have to look like m steps ago, given that
we know Gn We define én,m to be such angular velocity that after m cycles it is exactly
equal to 0.

Lemma 3.2. Let m € N and

Opi <wp, Vi€{0,1,2,...,m—1,m}.

Then

1 — cos™2™ (2av)
1—cos™2(2a)

O = —\/COS2m (200) - 62 + 4% sin (7) sin («) -

Proof. To prove that this is true, we will use the result of Lemma 3.1. Using that formula,
it is sufficient to show that

1 — cos?™ (2a)
1 — cos? (2a)

0, = — cos (2a) \/cos2(m—1) (200) - 62, — 4% sin () sin () -

holds. After substituting the formula for 6,,_,, into this expression and simplifying, we
arrive at

0, = — cos (2a)-

\/003—2 (200) - 62 + 4% sin () sin (a) - (

cos* (=1 (2a) — cos™* (2a) 1 — cos®™ (2a)
1 —cos™2(2a) 1 — cos? (2a)

But since 1 —cos™?(2a) = —cos % (2a) - (1 — cos? (2a)),  the bracket multiplying the
term 49 sin (7y) sin (o) vanishes and we obtain

b, = —\J62 = 16,

which is clearly true because we assume 6,, to be negative.
O

Now, we turn our attention to the "rocking” regime. We have to distinguish between
the cases v < « and v > «, but the formulas themselves are much simpler. In fact, we
can unify the formulas for both time directions into one expression.

Lemma 3.3. Let m € Z. Let either
Wb<én+i<Wf for v < a

or
wp < Opis <0 for v > a,

Vie{m,m+1,..,0}ifm<0,orVie{0,1,..,m}if m > 0. Then

Onim = (—1)™ cos™ (200)6),.

Proof. Similarly to the proofs above, this can be easily done by using inductive reasoning.
O
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Finally, we set our eyes toward the ”forward” direction.

Lemma 3.4. Let m € N. Let

Onti > wy for v < «

or

O >0 for v > «a,
Vie{0,1,2,...,m—1,m}. Then

Opym = cOS (204)\/6082(’”1) (20) - 62 + 4% sin () sin () -

1 — cos?™ (2a)
1 —cos? (2a)

Proof. The proof of this statement is completely identical to the proof of Lemma 3.1.

Lemma 3.5. Let m € N. Let

On—i > wy for v < «

or
O,—; >0 for v > «a,

Vie{0,1,2,...,m—1,m}. Then

1 — cos™2™ (2av)
1—cos™2(2a)

O = \/COSQm (20) - 62 — 4% sin () sin («) -

Proof. The proof of this statement is completely identical to the proof of Lemma 3.2.

]

Before proceeding to the next section, we must deal with the issue of heteroclinic orbits
arising when v < a. We do this now to avoid running into trouble later. In the event that
the system enters one of these pathological orbits, our definition of the Poincaré map

(refer to (3.13)) essentially breaks down.

Definition 3.6. Let v < . We define the sets of heteroclinic orbits (denoted by H; and
Hy) to be the sets of angular velocities such that after a finite number of steps, they reach

the heteroclinic orbits w, and wy, respectively.

H ={0,€R|IMmeN: 0, m=w}
Hy:={6, €R|IMEN: 0,4, =w;}.

In addition, we define their union H.

H = H1UH2.

As we can see, both sets H; and H, are countable and thus have measure 0 in R.
Practically speaking, they do not have an influence on the wheel’s behavior, but we

include them with the purpose of having our analysis as complete as possible.

Remark. 1f v < a and 0, € H, then the limit lim,, o 9n+m does not exist.
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3.3.3 Fixed Points Existence

By the Poincaré map’s fixed point, we mean an angular velocity w* satisfying
én—i-l = Qn = w".

These points are of great importance because they represent repeating cycles of the same
motion - a powerful tool for predicting how the wheel is going to behave. We begin by
establishing the conditions for their existence. As we have two different definitions for the
Poincaré map, we again split the analysis in two cases.

For v < q, it is easy to see that there is always the fixed point

w =0
for the reason that if 6, = 0, then, according to (3.13) and (3.14),
fpi1 = —cos(2a)-0=0.

This fixed point represents the wheel being stopped with two legs touching the ground
and supporting it and we will denote the fixed point by wj,,,.

Next, we will investigate the possibility of the existence of a fixed point w* satisfying (3.3).
This would represent rolling down the ramp at ”constant speed”. From the definition of

our return map (see (3.13), (3.14)), we get the equation

w* = cos (2a) \/w*2 + 4% sin () sin ().

By raising both sides of the equation to the second power and distributing cos? (2a) over
all other terms, we obtain

w2(1 — cos? (2a)) = 4% cos? (2a) sin (7) sin (a).

We use the fact that 1 — cos? (2a) = sin? (2a), we divide by it and then take the square
root of both sides.

w* = 2cot (2a) \/% sin (7) sin ().

Taking the root is justified because in our model we assume the wheel to have at minimum
five legs, which gives a < § and thus cot (2a)) > 0, sin (@) > 0. Because we are in the case
of v < a, also sin () > 0.

It needs to be emphasized that this fixed point only exists when w* actually satisfies (3.3),
that is,

2 cot (200)/sin (7) sin (@) > 1/2(1 — cos (7 — a)) (3.16)

must be satisfied. The validity of this inequality depends solely on the parameters o and
~v of our model. We denote this fixed point by w; ;.

Lastly, we check the possibility of the existence of a fixed point for moving up the
ramp. Going through the same procedure as above, just for the equation

w* = — cos (2a) \/w*2 - 4% sin (7) sin (),
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we obtain
0 < w* = —4cot? (Qa)% sin () sin () < 0

and thus a contradiction. This makes sense intuitively, it should not be possible for the
wheel to be moving up the ramp indefinitely as it is losing speed both from the collisions
and in the swing phases.

To conclude, in the case of v < «, the return map has either one or two fixed points. There
is always wy,,, corresponding to the wheel standing on two of its legs, and for parameters
satisfying (3.16), there is also w},; corresponding to the wheel rolling down at constant
speed.

For v > «, the situation is a bit different. Here, the fixed point w}
by our definition of the Poincaré map (see (3.14)),

rol

stop = 0 vanishes because

én—l—l = — cos (2@)6’n

is only valid for 6, < 0. In other words, the slope is too steep for the wheel to stand on
two legs.

However, wy , is still present, and contrary to the previous case, it has no extra condition
depending on the parameters. For v > «, it always exists.

3.3.4 Fixed Points Stability

In this section we investigate the stability of our fixed points in accordance with our
definitions 2.7 and 2.8. We will start with proving the following results.

Lemma 3.7. Let 0 < o < 7, 0 <~ < 7. Then the inequalities

2 cot (20)/sin (7) sin (@) > /2 - (1 — cos (y — )

and

—2-(1—cos(y+a)) < —Fizay\/l(l—cos(v—a))

are equivalent.

Proof. We start with the first inequality.

2 cot (20)/sin () sin (o) > /2 - (1 — cos (7 — a)).
We square both sides and divide by two.
4 cot? (2a) sin () sin (o) > 2 - (1 — cos (y — a)).

2
2
M sin (y) sin (2a) > 1 — cos (7 — ).

sin® («)
Because cos? (2a) is strictly positive on 0 < a < §, we can divide by it.

2sin (y)sin (o) 1 —cos(y — «)
sin? (2a) cos? (2a)

Now, we move both fractions on the same side, combine them into one and use the fact
that 2sin () sin («) = cos (7 — a) — cos (7 + «).

1 —cos(y—a) 2sin(y)sin(a)

— < 0.
cos? (2ar) sin? (2a)
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(1 —cos (v — a)) - sin? (2a) — (cos (y — &) — cos (7 + a)) - cos? (2a)

< 0.
cos? (2a) - sin? (2a)

We distribute the terms sin? (2a) and cos? (2«) in the numerator inside the brackets and
obtain
sin? (2a) — cos (7 — @) + cos (7 + ) - cos? (2a)

< 0.
cos? (2a) - sin? (2a)

We add and subtract cos? (2a) from the numerator and multiply the inequality by sin? (2a),
which is also strictly positive on 0 < o < 7.

1 —cos(y—a)+ (cos(y+a) — 1) - cos? (2a)

< 0.
cos? (2a)

We split up the fraction again and multiply both sides by two.

2-(1—cos(y—a))
cos? (2a)

<2-(1—cos(y+a)).

Both sides are positive and hence we can take the square root and finally multiply them
by —1.
1

cos (2a)

\/2 1—cos(y—a))>—/2(1—cos(y+a)).

This is exactly the second inequality in the statement of the lemma. Crucially, this whole
procedure can be done in the other direction as well, and so the claim is proved.

0
Lemma 3.8. Let Hn < wp. Then
0n+1 > gn
Proof. Clearly,
0% — 4% sin (7) sin (o) < 62,
It follows that
\/9721 — 4% sin (7) sin (o) < 1/62,
cos (2@)\/9.,2Z — 4% sin () sin (@) < [6,],
— CoS (2&)\/931 - 4% sin (7) sin (@) > —[6,| = 6,
én—i—l > én'
O

Theorem 3.9. Let 9n < wp. If v < @, further assume that Qn ¢ H. Then Im € N such
that

en-i—m > Wy.
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Proof. We will prove this by contradiction. Assume 9n+m < wp, Vm € N. Then by
the Lemma 3.8, the sequence 6,,,,, is strictly increasing. The only possibility is that it
converges to some w satisfying

w < —\/2%(1 —cos (v + ).

But from the Lemma 3.1, we have a formula for 6,,.,. By taking the limit for m going to
infinity, we obtain

m—o0 m— 00 1— COS2 (20[)

: . 1— 2m (9
an G = lim (— cos<2a>\/cos2<m—l> (20) 02 47 sin (3) sin (a) - T “”)

1

nll—rgo 9n+m = —cos (2a) \/—4% sin (7) sin («) - T cos2 (20 (2a)

and we have a negative number inside the square root, which is a contradiction with
0pm converging to w. Importantly, we were able to take the limit as m goes to infinity
only because we assumed that 6,, ¢ H. Otherwise, the limit would not exist. [

We will use these results later for establishing the exact bounds of the regions of

attraction of our fixed points. We start with discussing the stability of w,,,.

*
stop

Theorem 3.10. Let w?

stop
and unstable for v = a.

be a fixed point. Then w?, ~is asymptotically stable for v < «

Proof. Assume v < a. Let € > 0. Take § = min (¢, /2¢(1 — cos (y — a))). Then for any
0, satisfying ' '
|9n - w:top| = |9n’ < 57

we have
101 — Witop| = 0pi1] = | — cos (2a)8,| = cos (2a) - |0, < 6 < e.
By induction, _
Onim — Whiopl < €, Vm € N
and thus wg,,, is stable. Furthermore,
lim |G — Witepl = 1im [(—=1)™ cos™ (20)0,,| = 0
m—0o0 m—r0o0

and so it is asymptotically stable as well. Now, in the case of v = «, the above proof fails
because

min (g, \/2%(1 —cos(y—a))) =0.

For all § > 0, if 0 < |6,| < 8, then by the Theorem 3.9, there is some m such that

0n+m > Wy

and hence

9n+m+1 = —cos (2a)04m > 0.
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It follows that

Ot = COS (2&)\/92+m+1 + 4‘;] sin () sin («).

This means that

cos (2a) \/4% sin (7y) sin («)

which is a constant. Therefore, if ¢ is smaller than this constant, it follows that for all
d >0 and 0 < |0,]| < 6, there is some index m such that |6,,4,42| > € and the proof is
done.

|‘9n+m+2| >

b

25
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Figure 5. A phase plot of a trajectory with 6, converging to w*, ~ (with parameters m =
1, =1, ¢g=981, a=

0(0) = —0.132, 64(0) =2).

stop (

%, 7 =0.025 and initial conditions

Before we state the stability theorem of the other fixed point, we first prove two partial
results dealing with the monotonicity of the Poincaré map around w’

Lemma 3.11. Let (9 > w* .. Then

roll*

roll*

l<9n+1<9

rol

Proof. Let 6, > Wy oy Then 0, = W', + 6, where § > 0.
We first show that 9 > 0p11. As both of these quantities are non-negative, this is equi-
valent to showing that §2 — 62, > 0. We have

Or — 071 = (Wioy +0)* — cos” (2a) ((w::oll +0)* + 4% sin () sin (a))

= (wiy +6)*(1 — cos? (2a)) — 4% sin () sin () cos? (2a)

= sin? ( Wiy +6)* — 4cot? (204)% sin (7) sin (a))
= SlIl ( roll + 5 'roll) = SiIl2 (QQ)( roll§ + 5 )
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For the second part of our proposition, namely 0n+1 > w? ., it is sufficient to observe

that

roll»

6721+1 :gzz = 93&1 - ‘92 + 92 - Wmll
= —sin® (20)(2w)0 4 6%) + (Wroy + 0)* — wiy
= —sin (204)(2er”5 +6%) + 2w ;0 + 62
= cos? (2a) (2w’ ;0 + 6%) > 0.

roll

roll

Lemma 3.12. Let wy < 9 < w* .. Then

roll*

0, <9n+1<w

roll*

Proof. Let wf <0, < Woir-
Then 6, = w? , — 8, where 0 < § < w* ,, — V/29(1 — cos (y — «)). In the exact same way
as in the proof of Lemma 3.11, we end up with

0r,y — 6 = —sin® (20) (—2w},,6 + 5°),

and because of our conditions on J, we also have

0 < 2wy,

2wrud + 6% < 0.
This gives us the inequality 6,1 > 0,.
For the other one, we again have

Wy — éiﬂ = Wiy — 02, + 0% — 06
= —cos? (2a)(—2w ;6 + 6%) > 0.

Remark. For v > a, the assumptions on 6, in Lemma 3.12 can be relaxed into

0<9 < w?

roll*

This is possible because of a different definition of the Poincaré map for v > « (see (3.14)).

At this point, we can procede to state and prove the stability theorem of w .

Theorem 3.13. Let w} ; be a fixed point. Then w} , is asymptotically stable.

Proof. Let e > 0. Take 0 = min (e, w}; — \/2%(1 — cos (y — «))). Then for any 0, satis-
fying
<0,

) *
971 = Wrol

as a corollary of Lemma 3.11 and Lemma 3.12, we have

Ons1 — Wign| < |0n — wipy| <6 <e.

Wroll
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By induction,

Opim — Wiy <&, YmeN

and thus w;,, is stable.

Furthermore, thanks to the combination of Lemma 3.11 and Lemma 3.12, it follows that
if
én > Wy,

then Vm € N,

0n+m > (Uf

This makes it possible for us to evaluate the following limit.

lim én—i-m — Wroy| = | lim (én-&-m) — Wrou
m—0oQ m—0o0
. 1— 2m (9

= n’ILLHéo (cos (2a)\/0082(m—1) (2a) - 62 + 4% sin (7) sin («) - . —C((;SSQ ((203)> — W

(20)y /42 50 () s (@) - 5
= |cos (2a), [4= sin (y) sin (@) - —5— —w

[ 7 sin? (20) "

= |2 cot (204)\/% sin () sin (@) — wyoy | = |wroy — wWion| =0

[
It remains to find the exact bounds of regions of attraction for both fixed points.
ok ; :
. 0.0 /y — 0.2 0.4 0.6 0.8 ’7 J:’ « 1.0 9'

Figure 6. A phase plot of a trajectory with 6, converging to wr,; from above (with
parameters m =1, [ =1, ¢g=981, a=%, <~ =T and initial conditions 0(0) =

. 7
0.292, 6(0) = 5).
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3.3.5 Regions of Attraction

Because of the dependence on parameters v and «, we divide our discussion of the fixed
points’ regions of attraction into five distinct cases covering the whole region () of
admissible angles o and v defined in (3.1). We define these cases followingly.

O =1{(,7) € Qo | 7> al.
- Q(aﬁ) ’ v = Oé}.
) sin (o) < v/2(1 — cos (v — a))}.

(
2a)4/sin (7) sin (@) = /2(1 — cos (7 — a))}.
Qs = {(a,7) € ary) | 7 < @, 2cot (2a)4/sin (

)
(
(
(
Clearly,

) and Ra(wr,,).

roll

We will denote the two fixed points’ regions of attraction by Ra(w},,
We begin with the most straightforward case, which is that of (a,7y) € ;. As it was
shown and explained earlier in the chapter concerning the existence of fixed points, in the
event of v > «, the fixed point w!, = vanishes. On the other hand, the condition v > « is

sufficient for the presence of w? ;.

*
stop

Theorem 3.14. Let (a,v) € €. Then v}, is an asymptotically stable fixed point with
a region of attraction
RA<(U* ) =R.

roll

Proof. For v > a, the fixed point w;, ;, always exists and by Theorem 3.13, it is asympto-
tically stable. From the choice of § in the proof of the Theorem 3.13, we immediately get
a first estimate for the region of attraction.

Ra(wron) 2 (wy, 00).
The left bound is of this form to allow the use of Lemma 3.12 in the proof. However, as
was noted earlier, in the case of v > a the assumptions of Lemma 3.12 can be relaxed.
This gives us a new estimate

Ra(w?,;) 20, 00).

roll

Continuing in the same fashion, we can extend this to include (wy,0) as well. This is
justified because if _
Qn € (wb, O),

then

9n+1 = — cos (2a)én
and 5o 0,11 > 0. That implies that 6,1, € Ra(w’,,) and hence 0, € Ra(w},;). This gives
us

Ra(woy) 2 (wp, 00).

roll
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Finally, the Theorem 3.9 says that if 6,, < wj, then there exists some m such that

Hn—i—m > Wy
and 50 6,4 € Ra(w?,). This implies that 6, € Ra(w?,,). It follows that

Ra(w?,) = (—00,00)

roll

and the proof is done. O

- RA (w;tap)
- Ra(wyoy)

* * A
wstup Wroll an

Figure 7. Stability plot with («,v) € ;.

*

Next, we investigate {2;. From previous analysis, we know that the fixed point wg,,,
exists and it is unstable. We can also see that the by plugging in v = «, the condition

(3.16) for existence of w?,,

2 cot (2)/sin (7) sin (@) > 1/2(1 — cos (y — a))

reduces to the simple

cot (2a) - | sin ()| > 0,
which is satisfied for all o € (0, §).

Theorem 3.15. Let (a,7) € Q. Then w},, is an unstable fixed point and wy,, is an

asymptotically stable fixed point with a region of attraction

Ra(wron) =R\ ({0} U H).

roll

Proof. The idea of the proof is identical to that of Theorem 3.14. The only change is that
we cannot relax our assumptions on Lemma 3.12. That particular step in the proof then
yields a weaker estimate

Ra(wr,y;) 2 (0,00),

roll

with zero excluded from the interval. The remaining extension to the interval (—oo,0) is
unchanged. Of course, we cannot include the sets H; and Hy in the region of attraction

because in that case the limit lim,, o (6y4.,) would not exist. O
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- RA(w:tap)
- Ra(wy o)

* * A
wstop Wroll Gn

Figure 8. Stability plot with («, ) € Q.

The third possibility is that («, ) € Q3. This means that the Poincaré map has only

one fixed point, w,,. Before we find its region of attraction, we prove a helpful lemma.

Lemma 3.16. Let (a,7) € Q3. Let 0, > wy, 0, ¢ H.
Then Im € N such that 0,4, < wy.

Proof. We prove this by contradiction. Let 9n+i > wy for all i+ € N. Then by our as-
sumption,

Ons > 2cot (204)\/% sin (7y) sin ()

and so by Lemma 3.4,

. : 1— cos? (2
Opti = cos (2ar) \/0032(1—1) (2a) - 62 + 4% sin () sin (a) cos? (2a)

e, VieN.
1 —cos? (2a)’ 'e
But as was shown in the proof of Theorem 3.13, this sequence

converges to 2cot (2cr)/4 sin () sin (), which is a contradiction with the assumption
that

2 cot (2ar)4/sin (7) sin (a) < 4/2(1 — cos (y — a)).
U

Theorem 3.17. Let (a,v) € 3. Then w},,, is an asymptotically stable fixed point with
a region of attraction

RA(w:top) = R \ H

*

Proof. From 7 < a, we know that the fixed point w,,,

asymptotically stable. On the other hand,

exists and by Theorem 3.10, it is

2 cot (2a)/sin (7) sin (@) < 1/2(1 — cos (y — a))
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*

implies that the fixed point w} ,; does not exist.
From the proof of Theorem 3.10, we immediately obtain an initial estimate

RA(w:top) 2 (_wf7 Wf) :
Lemma 3.16 then provides a clear way to extend the region to the interval
(wf ) OO) \ H.

Let 9n lie inside this set. Then by Lemma 3.16, there exists an m € N such that 9n+m < wy,
and so

Ontm € RA(w:top)’

which implies .
0, € RA(w:top)'

It is simple to verify that if 0, € (—m Wy, —wf>, then

9n+1 S (O, (AJf)

and thus we can extend Ra(w},,) to

1
- . H
( cos (2ar) wf,oo> \
Thanks to Lemma 3.7, we know that
((Ub, 0) - RA(w:top)ﬂ

and by using Theorem 3.9 in the same way as Lemma 3.16, we can extend this to (—o0, wp),
too. U

- RA (w;top)
] Rara

* * A
wstop Wioll 0n

Figure 9. Stability plot with («,v) € Q3.

The fourth option is that (a,7) € 4. We still only have the fixed point w?, . The

stop*
other fixed point w;;, does not exist, but in a sense it is asymptotically stable from above,
as we show below.
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Lemma 3.18. Let (a,) € Q4. Let 6, > wy, 6, ¢ H.

Then .
rr%l—lgo Ontm = w:oll'
Proof. This follows from the combination of Lemma 3.4 and Lemma 3.11. O

Theorem 3.19. Let (a, ) € 4. Then W3op 18 an asymptotically stable fixed point with
a region of attraction
Ra(Wiop) = (—00,wy) \ H.

stop
Proof. The proof is identical to that of Theorem 3.17, with the difference that it is not
possible to use Lemma 3.16 to extend R(w},,) above the value /29 (1 — cos (y — a)). In

fact, Lemma 3.18 shows that values from the interval (/2%(1 — cos (y — )), 00) converge
to \/24(1 — cos (y — a)). O

- RA (w;top)
- Ra(wion)

w w,

* * A
stop roll 0n

Figure 10. Stability plot with («,v) € Q4.

Remark. Although the fixed point w,;, does not exist, we can see that
the point 2 cot (2cr)/4 sin () sin (a) is semistable from above.

Finally, we move to the last possibility, namely that («,v) € Q5. This is by far the
most interesting one, as both fixed points exist and have their own regions of attraction.
Before we state the theorem, we introduce the following notation.

Definition 3.20. Let (a,7) € Q5. Let

OJ? = W,
Wl =— ! w
27 " cos (2a)

Let m € N. By w and wi® we denote the values from the interval (—oo,w9) satisfying

m N » 0
wi' = 0p_m, where 0, =wy,
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m ) ) 0
wy' =0,_m, Wwhere 0, = ws.

Then we define the sets 7, and I}

stop
m m m
Iroll - (wl ) )7

Im

stop — = ( gt

Wy w{”) .

It is important to note that the validity of this definition comes from Lemma 3.7.
Otherwise we could not have known whether w) < w3 was actually true.

Remark. Lemma 3.2 gives us closed formulas for wi* and wj.

1 — cos~2m (Qa)) |

= —\/ 2 <m (20) - (1~ cos (7 + ) + 2sin (7)sin () - oo ¢

wy' = _\/2% ' (COS_Q("HJ) (2a) - (1 = cos (y — a)) + 2sin (y) sin (a) - 11_—(3((:)(?8_2;”((22&0;))

Remark. The elements of H; and Hy form the boundary of the union of all I"”

rol
In other words,
( OOCUQ ((U roll stop)UH>'

We are prepared to state the theorem itself.

, and 17

stop*

Theorem 3.21. Let («,7) € Q5. Then w
a region of attraction

“top 18 an asymptotically stable fixed point with

RA(w:top> = ( w27wf <U stop)) (317>

and wy ,; is an asymptotically stable fixed point with a region of attraction

Ra(wron) = < Wy, 00 (U mll>> (3.18)

Proof. The conditions for the existence of both fixed points are satisfied and from Theo-
rems 3.10 and 3.13, we know that they are both asymptotically stable. From the proofs
of these theorem, we immediately obtain first estimates for their regions of attraction.

RA(w:top) 2 (_wf7 wf) )

RA( roll) (Cdf, )

As a consequence of Lemma 3.7, we know that

W) < wh < —wy,
where w and w9 are defined according to Definition 3.20. It is straightforward to see that
if '

0, € (wg, —wy),
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then ‘ '
Opi1 = —cos (2a) - 0, € (cos (2a) - wy,wy),

and hence 0,1 € Ry (Wiop)s Which implies

én € RA(w:top).

On the other hand, if '
0, € (w?,wg) ,

then
0

0pp1 = —cos (2a) - 0, € (wy, — cos (2a) - w?) .
by the same logic as before, .
0, € Ra(w},;)-

roll
To extend the regions to —oo, we simply use the intervals I, and I}y, from Defini-

tion 3.20. Thanks to the continuity of the Poincaré map, if 0, € I, then
Opim € (w3, —wy)

and if §,, € I",, then
; 0,0

This completes the proof. O

- RA (w;top)
- Ra(wion)

3 2 2 1 T 0 0 * * ;
wy Wi wy wi wy Wy wy Wstop Wy Wroll On

Figure 11. Stability plot with («,v) € Q.

To better see how this works in action, we include phase plots of two trajectories with
identical model parameters satisfying (a,y) € €25 (see Figures 12 and 13). They only differ
slightly in their initial value of . In the first case, §(0) = —5 lies in one of the intervals

I, while for the second trajectory, §(0) = —4.85 belongs to one of I, . This has the

T stop*
consequence that their long-term behaviors are in total contrast.
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21

—a

-5 L -

V-« 00 02 04 v+ a 0

Figure 12. A phase plot of a trajectory with 6, converging to wi, from below (with
parameters m =1, (=1, ¢g=981, a=%, 7= {; and initial conditions

6(0) = —0.105, 6(0) = —5). N

L ——

T-a % o2 o Tt a p

*

Figure 13. A phase plot of a trajectory with 0, converging to wj,, (with parameters
m=1, [=1 g¢g=981l, a=%, <= and initial conditions

0(0) = —0.105, #(0) = —4.85).
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3.4 Summary

To conclude the section about the rimless wheel model, we summarize the results of our
analysis and accompany them with their graphical representation. First, we derived the
differential equation governing the wheel’s motion between each two collisions. Then, we
found a relationship of the wheel’s state right before and right after a collision, based on
the law of conversation of angular momentum. We merged these to define a Poincaré map,
which we then used to find out what happens in the long term. Most of our work was
concerned with analysing the stability and finding the regions of attraction of the map’s
fixed points.

The result is that given arbitrary initial conditions (angle 6 and angular velocity 6’), one
can solve the differential equation (3.2) and apply the collision factor cos (2a/) to find the
initial value 6, for the Poincaré map. Depending on the relationship between the parame-
ters a and 7, it is possible to say exactly to which long-term behavior it converges. The
long-term behavior is summarized in Table 1.

To better convey the nature of the sets €2; partitioning {2, ), we visualize them in Fig. 14.

As a closing remark, we come back to the very beginning of the section where we
introduced natural assumptions on the parameters of the model, namely that v > 0.
Indeed, this premise was unnecessary as we could also allow v to be equal to zero. In that
case, we would obtain symmetry between the forward and backward motion regimes and
the wheel would not be able to ever increase its total energy.

We could then introduce the Poincaré map in the same way as in (3.13), and after doing
stability analysis, we would arrive at the conclusion that the case v = 0 can be described
by the results derived for the region €23.

O 0y Q3 Q4 Qs
Existence of wy,, X v v v v
Existence of wy,,; v v X X v
Stability of wg,,, — unstable as. stable  as. stable as. stable
Stability of w?,  as.stable as.stable — — as. stable
RA(Whiop) — {0} R\ H (—oo,wp)\ H see (3.17)
Ra(wiy) R R\ {0} — (wr,00) \ H  see (3.18)
Stability plot Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11

Table 1: Summary of the Poincaré map’s fixed points’ existence and stability for different
configurations of o and ~. For the purposes of compactness, the regions of attraction for
Q5 are only referred to by their equation numbers.
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Figure 14. The region of admissible angles o and v divided into €2; as defined in Subsection
3.3.5.
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4 The Compass Gait Biped

The second model that we are going to introduce and study is the compass gait biped,
also known as 2-link or acrobot. In a way, it arises naturally from the rimless wheel, which
models the dynamics of the stance leg and always has another leg ready to take over
at impact. This is of course accomplished by the wheel’s rigid frame with spokes evenly
spaced around its center of mass.

We can imagine getting rid of all but two of the wheel’s legs and introducing a way for
the swing leg to position itself to collide with the ground and successfully make a step.
This change complicates the matter greatly because then the robot is no longer passive.
It requires active control to ensure that it walks.

The control is accomplished by adding an actuator to the robot’s "hip” (the place where
the two legs are joined). The actuator can then supply torque to the system and thus
manage its behavior. Of course, even after adding the actuator, the robot is still unde-
ractuated because it has two degrees of freedom. This is so because in contrast with the
rimless wheel, where knowing the angle 6 between the stance leg and a vertical line was
enough to exactly identify the state of the system, in the case of the compass gait biped,
the angle between the stance leg and the swing leg changes dynamically. In view of this,
we must make use of the underlying dynamics of the system to successfully guide the
biped’s walk.

gl

Figure 15. The compass gait biped model.

As a consequence of adding external torque to the biped’s hip, we must get rid of our
assumption that the legs are massless. This is represented by adding point masses to both
legs.
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The modelling assumptions are esentially the same as in the rimless wheel model. We
briefly summarize them here.

The legs are rigid bodies, all of their masses are concentrated in a point.

The legs’ collisions with the ground are perfectly inelastic and impulsive.

The collisions are instantenous.

The legs cannot slip.

The swing leg retracts a little without changing the location of its point mass.

The last assumption is a bit unnatural, but it is necessary for the model to work. Consider
that when the swing leg moves from left to right to position itself for impact, it must
inevitably pass around the stance leg. However, as they have the same length, this would
lead to the swing leg’s hitting the ground and stumbling. Our premise that after a collision
the swing leg retracts a little bit solves this issue.

We will also require the hip and the swing leg’s endpoint to stay above the ground. We
will deal with the statement of this requirement after we solve the kinematics in the swing
phase model subsection.

The system is fully specified by five parameters. These are 7, the angle of the ramp’s
slope, my, the mass located at the hip, m;, which specifies the leg masses, and lengths

a and b determining the exact position of the leg masses. By [ = a + b, we will denote the
legs’ length. Fig. 15 shows this in detail.

We have some natural assumptions on these parameters.

O§7<g, a >0, b >0, g >0, myp > 0, my > 0.

The angles 6y and 6, corresponding to the stance leg and the swing leg are directed
angles with the positive direction being the clockwise one, just like in the rimless wheel
case.

The torque of the actuator at the hip is represented by 7. Its positive direction is coun-
terlockwise as shown in Fig. 15.

The initial procedure in analysing the compass gait biped is identical. We must first
deal with the swing phase, studying the system’s kinematics and dynamics. Then, we will
look at what happens when the swing leg impacts the ground.

4.1 Swing Phase Model

The robot’s configuration is described by the two angles #,; and 6, which form the vector
of generalized coordinates

gst (t)

q(t) = 0ot

We place the origin of the Cartesian coordinate system to the endpoint of the stance leg.
We denote by x, the position of my, by x5, the position of m;, by x4, the position of
Mg, and by x, the position of the endpoint of the swing leg. Similarly, by X, X5, Xsw,
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and x. we denote the respective velocities. Then
sin (0g;) , cos (0s)
Xst = Q- Xst = aest : )
cos (0) — sin (0s)
in (0, . 05
S sin (0g;) % — 1., - cos (0s) 7
cos (0s) — sin (Ag)
— sin (6,,) . _ : — 08 ()
Xsw:Xh+b' Xsw:Xh+besw' )
— 08 (Ogy) sin (Gsw)
and _ -
— sin (A, . ‘ . —c08 (0s)
X, =Xp +1- Xe = Xp, + 104y -
— c08 (Osy) sin (Gsw)

In addition, the line representing the ground is in this coordinate system given by the
equation

y = —tan(y) - .
Hence, the requirement of the hip and the swing leg’s endpoint to stay above the ground
that we mentioned at the beginning of this section can be represented by the conditions

cos (0s) > — tan () - sin (0),

cos (0s;) — cos (Bs,) > —tan (7y) - (sin (fs) — sin (Oy,)) - (4.1)
These conditions can be further simplified into
Iy <ba<iyy (4.2)
2 2
and
est + esw 2 2")/ and est - esw S 0 fOI" esw 2 Y (4 3)
Oy + 04, <2y and 6Oy —04, >0 for 6y, <~ '

To derive the dynamics of the system, we will again use Lagrange’s method. The kinetic
energy 1" and the potential energy U are given by the sums of kinetic and potential energies
at each point mass. Hence, we have

T = Tst+Th+Tsw7

U:Ust+Uh+Usw7

where 1
_ T 2,2
Ty = §sz5tht = §mla 0.
T, = SmyTx, = 1202
h = §thhXh = §mh st
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1 1 . . .
T = ik, o = 5 (Fegt 40202 201640, cos (By — esw)) ,

and
Ust = MgTsto = T ga Cos (05t>7

Un = mpgpe = mpglcos (Os),
Usw = Mg s = myg (L cos (0g) — beos (0sy)) -

The Lagrangian is again given by
L=T-U.

Since an external torque is present in the model, we must use the more general version of
the Euler-Lagrange equations

d {8L] oL oW 4)

dt [9q] 9q  9q’
where W is the work done by external generalized forces. To compute it for our case of

torque 7, first observe that the angle between the two legs is given by 6y — 6,. Since
7 has counterclockwise direction, the work W can be computed as

W=-—-1 (est - esw) =T (esw - est) .

Because g consists of two states, we will obtain two equations from (4.4). These are usually
written in the form of the so-called manipulator equations

M(q)4 + C(q,9q)q = G(q) + B(q)u. (4.5)

Here, M(q) is the system’s inertia matrix, C(q, q) captures the Coriolis and centrifugal
terms, G(q) the gravity terms, and B(q)u the external forces.
For our system, these are given by

mya® + mpl? + myl? —mybl cos (0s; — Osy)
M(q) = ,
—mybl cos (05 — O4) myb?
, 0 —myblB,,, sin (05 — 0,
C(q,q) = . ' :
myblOg sin (Og — Os,p) 0
gsin (0g) - (mya + myl + myl)
G(q) = v :
—gsin (Ogy,)myb
—1
B(q) = 7
1
and
u=r



4.2 Collision Analysis

Now, we will turn our attention to what happens at the moment the swing leg’s endpoint
hits the ground. This occurs when equality is attained in the condition (4.1). However,
due to our assumption that the swing leg retracts when it is in the air, we disregard the
possibility of it colliding with the ground when it is behind the stance leg. Putting these
two together and using the simplified version (4.3), we obtain that the collision happens

when
Ogt + Ogp = 27y and Oy > Oy . (4.6)

It follows from our assumption that the legs’ collisions are perfectly inelastic and impul-
sive that the procedure to calculate the biped’s state right after a collision as a function
of the state right before the collision is just like in the case of the rimless wheel based on
the conservation of angular momentum.

We will denote the state right before the collision by

)

Q)| [palt)|

at)] | dalt)
[0 (7))

Similarly, we denote the state right after the collision by

_ () .

q(t™) _ Os ()

q(t™) Out (1)
2nGe]

The relationship between q(¢~) and q(¢) is very simple. The pre-impact stance leg be-
comes the new swing leg, and the pre-impact swing leg becomes the new stance leg.
Essentially, all that occurs there is just relabelling. This can be written as

q(t")=R-q(t"), (4.7)
where
R = 01 (4.8)
10

and R stands for relabel.

To derive the formula for the new velocities ¢(t"), we will need two equations. The
first one is the same as in the case of the rimless wheel - the angular momentum of the
whole mechanism around the point of collision is preserved. The second one comes from
the preservation of angular momentum for the pre-impact stance leg around the robot’s
hip (see [15]).

We begin with the equation of conservation of angular momentum around the point of
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collision with the ground. We first move the coordinate system’s origin to x.,; as depicted
in Fig. 16. We also change the notation of the positions of the pre-impact stance leg and
swing leg point masses by x; and x5 to avoid confusion in regards to the relabelling of
the legs.

Figure 16. The compass gait biped just before the collision with the coordinate system’s
origin moved to the point of impact.

The vectors Xs, Xp, and x; are in this new coordinate system given by

. i (6 (7)) |
cos (st(t_))_ 7
N _sin (st(t*))-
cos (Osw(t_))_ 7
—sin (04 (t7)) Isin (05, (t7)) — bsin (04(t7))

X1 = Xp, + b . =
—cos (O (t7)) [ cos (Bs,(t7)) — beos (B4(t7))

The positions of the point masses stay the same after the impact, but naturally, their
velocities undergo a discontinuous change. We denote the velocities of x;, x;, Xs before
and after impact by v1(t7), vi(t7), va(t7), vi(t1), vi(tT), and vo(tT), respectively. Unlike
the positions, they are independent of the origin of the coordinate system. We find them
by moving the origin to the end of the stance leg (both for the pre-impact and post-impact
state) and differentiating the positions of the point masses with respect to time. It follows
that

B _—— cos (O (t7))
V1 t = a@st t . 9
) ) —sin (O5(t7))
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cos (O (t7)) — 08 (05w (t7))

va(t7) = 10(t7) — sin (04(t7)) Ut sin (05w (t7))
Vi) = 10.(t7) _n(fe(t(t);) el _sfj?e(f:?t(j;>))
wi(t') = a(t") - | © (fe(ta);) |

We denote the angular momenta right around to the point of collision before and after
the impact by LD (¢~) and L) (+7). We then have

L(“’l)(t’) =X X my - vi(t7) +xXp X mp - VR(ET) + Xo X my - va(t7), (4.9)

LD (1) = xy x my - vi(th) 4+ x5 X my - vi (87 + X0 X my - v (), (4.10)

and of course

LD (t7) = LD (¢h). (4.11)

This is the first equation for the two unknowns 95t(t+) and ésw(t+). We obtain the
second equation by making use of the conservation of momentum for the pre-impact
stance leg around the hip. We move the origin of the coordinate system to the robot’s hip
(as depicted in Fig. 17) and then compute the new position of xgh) (the superscript (h) is
there to emphasize the different coordinate system).
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Figure 17. The compass gait biped just before the collision with the coordinate system’s
origin moved to the biped’s hip.

It is simple to verify that

xgh) | sin (64 (t7))
—cos (O4(t7))

As we said, the velocities are independent of the origin and so we do not have to
calculate them again. We denote the angular momenta of the pre-impact stance leg around
the hip right before and after impact by L") (¢7) and L™ (¢T), with

L) = x" xomy - vi(t7), (4.12)
L) = x s my - vi (¢, (4.13)

By setting the momenta equal, we get the second equation.
LW () = LW ). (4.14)

As both the equations (4.11) and (4.14) are linear in 6, (t7) and 4, (1), we can write them
in matrix form. By substituting all of the positions and velocities into these equations,
we arrive at a system of linear equations

Q+a(t") = Q-q(t"),

where

my (—=1? — a® + bl cos (2a)) — mpl®>  my (=b* + bl cos (2a))
Q. - 2 SRR
mybl cos (2av) —myb
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Q - my (ab — 2al cos (2a)) — myl® cos (2a)  myab ’ (4.16)

myab 0

and

o = 5 . (Qst(t_> - st(t_))’

This means that the post-impact vector of velocities is given by the formula
a(t) = (Q:'Q ) a(t). (4.17)

Remark. One might wonder why we chose « in this way. The reason is that this, again,
nicely connects to the rimless wheel model, where 2a was the angle between two successive
legs. In fact, by choosing a = £ - (05(t™) — 05, (¢ 7)), this relation holds for the biped, too.
If we substitute m; = 0 into the matrices Q, and Q_, we obtain exactly the equation
(3.11). This makes sense because in the rimless wheel case we assumed the weight of the
legs to be zero.

At this point, we have all that we need in order to numerically simulate the system.
Given initial conditions 84 (0), f5,(0), 85(0) and 64, (0), we solve the system of differential
equations (4.5), and if the collision condition (4.6) is satisfied, we apply the impact map-
ping (4.17), thus obtaining a new set of initial conditions. By repeating this procedure
ad infinitum, we can compute the state of the system at each time ¢.

4.3 Numerical Simulation of the Compass Gait Biped

In the previous two sections we derived the swing phase model and the impact model of
the biped. We now implement a time simulation of the system in the Python programming
language.

To handle the data we use the library NumPy which adds support for n-dimensional ma-
trices and usual linear algebra routines such as multiplying or inverting matrices. In order
to integrate the system of differential equations governing the swing phase, we utilize the
library SciPy, particularly its function scipy.integrate.solve_ivp. The function uses
a Runge-Kutta method of the fourth order to solve a given initial value problem. For more
information regarding the libraries, see [16] and [17].

To numerically simulate the system, we need to turn the system of differential equati-
ons (4.5), the collision condition (4.6), and the collision transition (4.17) into code.
We then define a function that takes in initial conditions and a final time T as arguments.
It first solves the initial value problem for time in the interval (0, T), then it runs a collision
detection procedure which returns the time of collision T*. The function then cuts off the
solution on the rest of the interval, applies the impact transition function and updates its
initial conditions accordingly. The same procedure is repeated until all of time T is used
up. At this point, the function returns a list of all the individual swing phase trajectories.
The code is available in Appendix A.
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4.4 'The Poincaré Map

Just like before, we introduce a return map for the system in order to convert the pro-
blem of finding a limit cycle (representing the biped walking) to the language of discrete
dynamical systems. We use the same notation as in Subsection 3.3.1. However, this time
we cannot simplify the analysis and only care about the angular velocity at the beginning
of each step. Instead, we will define the map for the system’s entire state.
By
P, — an
dn

Y

we denote the system’s state right after its swing leg impacts the ground. This in itself
defines the return map. However, unlike in the rimless wheel case, we do not have a formula
for q(¢7) for given initial data q(0). If by @, we denote the state of the system just before
an impact, with initial conditions q(0) = q,, q(0) = §,, then a recursive definition for
the Poincaré map similar to (3.13) and (3.14) can be written in a block matrix form as

B (4.18)

In this definition, the matrices R, Q_, and Q are taken as defined in formulas (4.8),
(4.15), and (4.16), respectively. The symbol O on the other hand represents a 2 x 2 matrix
of zeros.

4.4.1 Fixed Points of the Poincaré Map

A natural question that immediately follows is if the map introduced in (4.18) has fixed
points. These points would correspond to periodic solutions of the system, which in turn
carry the meaning of the biped walking down the slope. Even more intriguing is the
problem of existence of fixed points for passive walking, i.e. with 7 = 0, simplifying the
equation (4.5) governing the swing dynamics to

M(q)g + C(q,9)q = G(q). (4.19)

This would indicate that this system which is much more complicated than the simple
rimless wheel studied in Section 3 would also be able to exhibit a neverending rolling-like
behavior.

Indeed, it has been shown (see [2]) that these fixed points can exist, at least for small
slopes 7. Our goal is to implement a numerical method to search for them.
4.4.2 Numerical Search for Fixed Points of the Poincaré Map
To begin, we define the problem that we want to solve.
Problem 4.1. Find an element from the state space ®; so that it is a fixed point of the

Poincaré map.
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Before we introduce the numerical algorithm that solves Problem 4.1, we first refor-
mulate it into an equivalent problem that is easier to handle. First, observe that if ®; is
a fixed point, then by definition

Py, =P,

Because given a ®; we can find ®5 numerically, if we introduce a metric d on the state
space, the problem can then be thought of as the problem of minimizing d(®;, ®5). This
is justified because any metric is non-negative and attains 0 if and only if the two elements
are equal. Since the state space is a subset of R*, we can use the usual Euclidean metric.

Next, consider that for ®; to be a fixed point of the Poincaré map, it must necessa-
rily lie on the impact surface defined by (4.6), only with 64 and 6, swapped because
®, represents the state right after a collision (refer to (4.7)). This allows us to reduce the
dimension of the set of admissible states among which we are looking for the "best” one.

However, we do not even have to search exactly for states that lie on the impact
surface. Any state that belongs to the trajectory that starts with initial conditions that
lead to a perodic solution solves the problem. From the nature of the system, we know
that this periodic solution must pass through the hyperplane

O = . (4.20)

This is so because at the beginning of the step the state angles satisfy 0y < 0, and at
the end we have 0y > 0, instead. Because the functions 04 (t) and 6y, (t) are continuous
in the swing phase, there must exist a time t* when 64 (t*) = 04, (t*).

This reasoning leads us to redefining Problem 4.1 as follows.

Problem 4.2. Find initial conditions (8(0), 85, (0), 85(0), 85,(0)) satisfying
05:(0) = 04,(0) such that d(®,, ®3) is minimized, where

4

d(®,, ®y) = Z (Py; — ‘I’M)Q

=1

The choice of sampling the trajectory at 0 = 6, has the added benefit that we can
at least have a rough estimate of the position of the initial conditions in the state space.
Namely, one can expect that 64(0) is very close to 0, 84(0) is positive, and that 6y, (0) is
negative. These assumptions are of substantial help when it comes to the time complexity
of any potential algorithm.

We implement the minimization algorithm in Python, using the solver described in
Subsection 4.3. To begin, we must define the feasible region {2z and the objective function.

The set of feasible solutions (93t,95t,95w> is a subset of R3 satisfying the assumptions
outlined in the paragraph above. For small slopes of v < 0.06, we found

Qp = (—0.2,0.2) x (0,1) x (—3,0)
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to be a good starting point.

The objective function should return a positive value to each element of the feasible re-
gion. If (z1,x9,x3) € QF, then the function first creates an initial condition

05(0) = x1,04,(0) = xl,ést(O) = xg,ésw(()) = x3 according to (4.20), and then runs the
solver described earlier. If the solution does not successfully complete at least two cycles,
it is discarded. On the other hand, if it does, the objective function returns the value
d(®q, ®,) defined in Problem 4.2.

The function that minimizes the objective function on 25 is divided into two phases.
First, it runs a simple brute-force grid search over 2z to find a very rough first estimate.
In the second phase, we increase the time-step density for our solver to decrease the error
caused by inaccurate collision detections, run it, and collect the last ®,, in the sequence.
The code is available in Appendix B.

An example of the result for a particular set of parameters is given in Fig. 18. Visu-
alizing the solution is inherently trickier than in the case of the rimless wheel because of
the higher dimension of the problem. However, for periodic solutions, one leg’s trajectory
is the same as the other one’s is in the next cycle. Fig. 18 shows one full cycle, the top
part being the trajectory of the stance leg, and the bottom part that of the swing leg.
The collision transition is indicated by the dashed lines.

0.5

0.01

-03 —0.2 -0.1 0.0 0.1 0.2 0.3 9
Figure 18. A periodic solution of the system found for the parameters m;, = 10, m; =

5, a=0.5, 0=05, g¢g=9381, ~v=0.04and initial conditions
05 (0) = —0.207,  04,(0) = 0.287, 04(0) = 1.041, 0,(0) = 0.481).

50



5 Conclusions

This thesis dealt with mathematical models of walking robots. In particular, the rimless
wheel model and the compass gait biped model were chosen for study. The thesis is divi-
ded into three main chapters.

In the first chapter, some of the necessary mathematical apparatus was introduced. This
includes the theory of dynamical systems. The differences between continuous, discrete,
and hybrid systems were explained. Some definitions connected to the notion of stability
were also stated. The link between continuous and discrete systems in the form of the
Poincaré map was explained. A brief mention of Euler-Langrange equations was included
as well.

The topic of the second chapter was the rimless wheel model. A short description of
the model was followed up by a derivation of the differential equation governing its swing
phase (see (3.2)). Formulas for the angular velocity at the end of the step with respect to
the initial angular velocity were derived for the forward, the backward, and the rocking
regimes of the wheel (see (3.5), (3.8), and (3.10), respectively). The impact model based
on the law of conservation of angular momentum was derived in Subsection 3.2. The loss
of energy due to dissipation was also obtained in (3.12).

Next, the long-term behavior of the wheel was examined. The analysis was approached
via the introduction of a Poincaré map, thus transforming the question of stability of
possible periodic cycles of the hybrid system into a discussion of stability of the map’s
fixed points. Some of the map’s properties used in later theorems were stated and proved
in Section 3.3.2. The conditions for the map’s fixed points’ existence were derived. It was
shown that the map has only two possible fixed points, wj;,, (corresponding to the wheel’s
motion stopping) and w,, (corresponding to the wheel’s moving downwards at constant
speed). Formulas for the values of fixed points based on the parameters specifying the
model were also presented.

Then, theorems regarding the conditions for stability of these fixed points were stated
and proved. It was shown that the region €2, ) of admissible angles o and v can be divi-
ded into five disjunctive subregions for which the long-term behavior of the wheel differs.
Precise formulas for the regions of attraction of both fixed points for each subregion of
Qo) were found.

The results of the second chapter were summarized in Subsection 3.4. A table (see Table
1) discussing the properties of the fixed points and their regions of attraction for each of
the subregions of (, ) was included, as well as a visualization of €,y in Fig. 14.

The third chapter deals with the compass gait model. The model and its assumptions
were described and explained. The system of differential equations controlling its swing
phase was derived and written in the form of the manipulator equations (4.5).

The collision conditions were found and stated in (4.3). The impact model based on the
two instances of conservation of angular momenta was derived. The momentum must be
conserved for the whole mechanism around the point where the swing leg collides with
the ground, and also for the stance leg around the biped’s hip. The impact model was
summarized in formulas (4.8) and (4.17).

Analogically to the rimless wheel, a Poincaré map was defined for the biped. A solver for
the model was implemented in Python. Finally, a method for finding fixed points of the
Poincaré map corresponding to the biped’s walking down the ramp was also implemented.
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The Python files were included in the appendix.

The main goals of the thesis were achieved. The hybrid dynamical systems underlying
the two chosen models were derived, together with ample explanations of the techniques
used. Most of the work was done on the rimless wheel model, where a comprehensive
analysis was carried out. The model’s long term behavior is essentially ”solved” in the
thesis. For the other model, the tools used for the rimless wheel were transformed into
numerical methods. However, here, more work could have been done in regard to the con-
trol of the biped via the actuator placed in its hip. In this aspect, the thesis is incomplete.
Nevertheless, it turns out that the control of the presented bipedal robot involves many
aspects that have to be taken into consideration.

There are many possible directions by which the thesis can be followed up on. After
all, the two chosen models are only a tiny part of the growing field of robotic walking. For
instance, the compass gait biped model can be improved by adding knee joints to each of
the legs. This idea is demonstrated for example in [18].

Another possibility is the use of control theory techniques to enlarge the stability region
of the biped’s passive gait. An example of this approach is described in [19].
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Appendix A: The Compass Gait Biped Solver

import math

1
2 import numpy as np
3 from scipy import integrate
4
5
6
7
8
9
10
11
12
13
14
15 swing nodel
16 th It return
7
18
19 def diffeg(t, state):
20 x 1 = state[0]
21 x 2 = state[l]
22 x 3 = state[?]
23 x 4 = state[3]
24
5 #The matrices M, C, G, and B defined in Subsection 4.1
26 M = np.matrix([[m _l*a*a + m h*1*1 4+ m 1*1*1, -m 1*b*l*math.cos(x 1 - x 2)1,
[-m 1*b*1l*math.cos(x 1 - x 2), m 1*b*b]])
27 C = np.matrix([[0, -m 1*b*1*x 4*math.sin(x 1 - x 2)], [m 1*b*1*x 3*math.sin(x 1 -
x_2), 011)
28 G = np.matrix([[g*math.sin(x 1)*(m 1*a + m h*1 + m 1*1)], [-g*math.sin(x 2)*m 1*b]l])
29 B = np.matrix([[-1]1, [111])
30 u = tau
31 acc = np.linalg.inv(M)* (-C*np.matrix([[x 3], [x 4]1]1) + G + B*u)
32
33 return [x 3, x 4, float(acc[0]), float(acc[l])]
34
36 the time of collision based a put of ay of
37 b ondition (4.2) nd (4.3).'"!
38
39 def detect collision(arr_1, arr_2):
40 for i in range(len(arr_1)):
41 if arr 1[i] + arr 2[i] > 2*gamma and arr 1[i] > arr 2[i]:
42 return [i, 'leg']
43 if arr 1[i] > math.pi/2 + gamma or arr 1[i] < -math.pi/2 + gamma:
44 return [i, 'hip']
45
46 return [len(arr 1) - 1, 'nothing']
47
48
49 2 fina
50 1 points
51
52
53 def simul (state, T, density):
54 state = state
55 bad = False
56
57 trajectories = []
58 totaltime = T
59 time subtracted = 0
60
6l while (totaltime > 0):
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62
63
64
65
66
67
68

69
70
71

72
73
74
75
76
77

78
79
80

81
82
83
84

89
90
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

timerange = [0, totaltime]

t = np.linspace(0, totaltime, density)

traj = integrate.solve ivp(diffeq, timerange, state, dense output=True)
traj = traj.sol(t)

[index, collision] = detect collision(traj[0], traj[l1l])
#If a collision of the hip with the ground or an extremely short swing phase
time corresponding
#to the biped stumbling is detected, the function terminates.
if collision is 'hip' or t[index] < 0.05:
new_traj = [t[:index] + time subtracted, traj[0][:index], traj[l][:index],
traj[2][:index], traj[3][:index]]
trajectories.append(new traj)
bad = True
return [trajectories, bad]

if collision is 'nothing':
trajectories.append([t + time subtracted, traj[0], traj[l], traj[2],
traj[3]1])
totaltime -= T

#If a collision of the swing leg with the ground is detected, the remaining
portion of the time interval
#is discarded and a new swing phase starts, with initial conditions
#based on the formulas (4.7) and (4.17).
else:
new_traj = [t[:index] + time subtracted, traj[0][:index], traj[l][:index],
traj[2][:index], traj[3][:index]]
trajectories.append(new traj)
alpha = 0.5*(traj[0] [index] - traj[l][index])
Q 1 = np.matrix([[m 1*(-1*1 -a*a + b*1l*math.cos(2*alpha)) - m h*1*1,
m_1%*(-b*b +b*1*math.cos(2*alpha))], [m l*b*1l*math.cos(2*alpha), -m 1l*b*b]])
Q 2 = np.matrix([[m _1*(a*b - 2*a*1l*math.cos(2*alpha)) -
m_h*1*1*math.cos(2*alpha), m_l*a*b], [m l*a*b, 0]])
old vels = np.matrix([[traj[2][index - 1]1, [traj[3][index - 111]11)
new _vels = np.linalg.inv(Q 1)*Q 2*old vels
state = [traj[l][index - 1], traj[0][index - 1], float(new vels[0]),
float (new vels[1])]
totaltime -= t[index - 1]
time subtracted += t[index - 1]
return [trajectories, bad]

'"''Initial conditions [theta st, theta sw, dot theta st, dot theta sw]'''

state= [-0.20741034501258232, 0.287418992418885, 1.0409143102934366, 0.480818114159959]

'"'"'"The simulation's fina time'"''
T = 10

'''"Density of the time interval'''
density = 500000

[solution, bad] = simul(state, T, density)
if bad:
print('The hip of the robot has collided with the ground.')



Appendix B: Numerical Search for Passive Gaits

1 ''"'"THE COMPASS GAIT BIPED SOLVER simul () IS REQUIRED TO RUN THIS SCRIPT'''
2
3
4
5 1 ba on the Euc an metric. For every state it returns a
6 number measuring how close it is ve gait state.'''
7 def cost function(state, density):
8 T =5
9 [solution, bad] = simul(state, T, density)
10 #if the solution does not have at least two cycles or its hip collides with the
ground,
11 #the function returns an artificial penalty
12 if len(solution) < 3 or bad:
13 cost = 1000
14 #otherwise, it returns the euclidean metric between two successive Poincare maps
15 else:
16 s_1 = solution[1]
17 s 2 = solution[2]
18 cost = (s_2[1]1[0]-s_1[11[0]1)**2 + (s_2[2]1[0]-s_1[2]1[0])**2 +
(s_2[31[01-s_1[31[01)**2 + (s_2[4]1[0]1-s_1[4]1[0])**2
19 return cost
20
21 '"'"'A wrapper for the cost function based on the insights described in Subsection 4.4.2'
22 def cost wrapper (params, density):
23 return cost_ function([params[0], params[0], params[1l], params[2]], density)
24
25 ''IA ] for a subset ce defined by the 'ranc ' argument.
26 0 y cd grid points and evaluates the
function 'f' at
27 each one of them. It returns the low value of f and its minimizer.'''
28 def grid search(f, ranges, n, density):
29 stepsize=[]
30 for i in ranges:
31 stepsize.append ((i[1] - i[0]1)/(n-1))
32
33 glob_min = 1000
34 x min = [ranges[0][0], ranges[1][0], ranges[2][0]]
35 for i in range(n+l):
36 for j in range(n+l):
37 for k in range(n+l):
38 x = [ranges[0][0] + i*stepsize[0], ranges[1][0] + J*stepsizel[ll],
ranges[2] [0] + k*stepsize[2]]
39 val = cost wrapper (x, density)
40 if val < glob min:
41 glob _min = val
42 x min = x
43 return [x min, glob min]
44
45 ''"'"The main
46 fied by the a
47 the initial
48 of the time interval partition for the ss gait biped
solver. '''
49 def find passive gait(bounds, n, initial density, final density):
50 #phase 1: a grid search in the regions defined by bounds
51 [x 0, cost] = grid search(cost_wrapper, bounds, n, initial density)
52
53 #phase 2: take the grid search solution as an initial guess and run the solver with
a higher
54 #time interval density so that it converges to a better solution naturally while

minimizing the error
5 #caused by an inaccurate collision detection
56 T = 10
7 [solution, bad] = simul([x 0[0], x O[0], x O[1], x O[2]], T, final density)
8 return [[solution[-1]1[1]1[0], solution[-1]1[2]1[0], solution[-1]1[31I[0],
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59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

solution[-11[41[0]], cost]

= -0.2
=0.2
=0
= -3

8

W wWwNN P

500 O 0w

bounds = ((a_1l, b 1),

initial density =

[omega roll, cost]
print (omega roll)
print(cost)

(2.2, b.2), (a_3, b_3))

1000
final density = 500000

find passive gait(bounds, n, initial density, final density)



List of Abbreviations and Symbols

S a N Z =

-~ T 98-

m
v
a
0

Qo)

Qh QQ) Q?)a Q47 Q5
q

wr

Wh

H17H27H

the set of real numbers

the set of natural numbers (starting with 1)
the set of integers

a metric

an iteration of n compositions of the function f
the Lagrangian of a system

the kinetic energy of a system

the potential energy of a system

the work done by generalized external forces
gravitational acceleration

the length of a leg

the mass of the rimless wheel

the angle of the ramp’s slope

one half of the angle between two legs

the angle of the rimless wheel’s stance leg

the region of possible configurations of o and « for the
rimless wheel

disjunctive partitions of €, )
the vector of generalized coordinates

the critical angular velocity for making a step forward
defined in (3.4)

the critical angular velocity for making a step back-

ward defined in (3.7)
angular momentum

the angular velocity of the wheel right after the n'”
collision

the sets of heteroclinic orbits of the rimless wheel and
their union as defined in Definition 3.6
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fixed points of the Poincaré map
the fixed points’ regions of attraction

the distance of the compass gait biped’s leg mass from
the leg’s endpoint

the distance of the compass gait biped’s leg mass from
the hip

the mass of the biped’s hip

the mass of each of the biped’s legs

the angle of the biped’s stance leg

the angle of the biped’s swing leg

the relabel matrix defined in (4.8)

the impact matrices defined in (4.15) and (4.16)
the state of the biped right after the n'* collision
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