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Summary 

This master's thesis deals wi th mathematical models of walking robots. Two such models 
are introduced. The rimless wheel, a passive precursor for other models, is studied analy
tically in detail. The compass gait biped model is analysed and simulated numerically in 
the Python programming language. A method for finding the conditions for passive gait 
of the biped is also implemented. 

Abstrakt 

Tato diplomová práce se zabývá m a t e m a t i c k ý m i modely kráčejících robo tů . Dva z těchto 
modelů jsou vybrány a analyzovány. Pasivní model „rimless wheel", k te rý slouží jako 
základ pro další, složitější modely, je podrobně analyzován. „Compass gait" model dvou

nohého robota je v práci analyzován a numericky simulován v programovacím jazyce 
Python. Metoda pro nalezení podmínek pro pasivní chůzi robota je rovněž implemen

tována . 
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1 Introduction 
The capability of walking is one of humans' most underrated strengths. The deceiving 
simplicity of this exercise - most human babies are able to walk by the time they are 18 
months old - hides the complex and highly nonlinear dynamics behind it. It is precisely 
these dynamics that make it very difficult to replicate the mechanisms of walking in ro
bots. 
However, the motivation for any such endeavours is clear. Compared wi th other ways of 
moving that utilize wheels, walking is much more versatile. Bipedal robots are able to 
move in places where wheeled robots would inherently struggle, such as areas wi th rough 
terrain. Another potential advantage of walking robots that should not be disregarded is 
that they are better suited for areas primarily designed for the movement of people, such 
as buildings or stairways. 

The history behind the idea of constructing machines goes back to antiquity. First 
successes came in the 1960s, driven by a rapid development of related mathematical tech
niques and engineering. In 1967, the Waseda University based in Tokyo initiated the 
W A B O T project which culminated six years later in W A B O T - 1 , the world's first hu-
manoid robot able to walk [1]. Since then, many similar projects have been undertaken 
by numerous teams at universities and private companies. Examples of these can be for 
instance the Massachusetts Institute of Technology Leg Laboratory founded by Marc Ra i -
bert in 1980 or the company Honda wi th its so-called P series - a progression of humanoid 
robot prototypes developed in the 1990s. 
Around the same time, new, more aggressive approaches in the construction of legged 
robots relying on exploiting the mechanical system's passive dynamics started being in
vestigated. In his seminal paper [2] written in 1990, McGeer examined the natural cyclic 
behavior of a collection of simple mechanical systems. He succeeded in popularizing the 
usage of techniques based on the study of Poincare maps in the analysis of robotic sys
tems. 
Nowadays, the field of legged robotics is stil l undergoing rapid growth. The state of the 
art is exemplified in the works of companies such as Boston Dynamics and its Atlas ro
bot, whose amazing acrobatic prowess displayed in various YouTube videos ([3][4]) can 
be appreciated by anyone with access to the Internet. 

M y interest in the subject was sparked in the year I spent at the University of L ' A q u i l a 
as a part of a two-year Master's degree program. There, a friend of mine introduced me 
to the M I T course Underactuated Robotics taught by Russ Tedrake, whose lectures are 
readily available online [5]. M y desire to learn and understand the course load led to the 
creation of this thesis. A s a consequence, some unusual notational choices, such as defining 
the positive direction of an angle to be clockwise, have been made in compliance wi th this 
course. 
The goal of the thesis is to give an introduction to the study of simple legged robots. M u c h 
of the literature that is available glosses over the techniques used to model such systems. 
For this reason, special care was given to a thorough explanation of these procedures. 
The proofs of the stated theorems were chosen so that they would not require a deep 
understanding of the theory. Indeed, cursory experience from an undergraduate course on 
dynamical systems is enough to follow the proofs. 
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The thesis consists of three major parts. In Section 2, mathematical foundations re
levant to the main body of work are presented. This includes a brief introduction to the 
theory of dynamical systems wi th a couple of canonical examples. The notion of stabil i ty 
which is fundamental for qualitative analysis of dynamical systems, is presented together 
wi th various definitions of stability used throughout the thesis. The Poincare map - a link 
between the stability of continuous and discrete systems - is also introduced. The first 
section also contains a short summary of the Euler-Lagrange equations used to derive 
equations of motion for mechanical systems. 
The second part is devoted to the rimless wheel model. The model and its assumptions 
are described and the equations of motion of its swing phase are derived. The mapping 
that governs its collision phase is also obtained. A Poincare map for the system is defined 
and studied extensively. Its fixed points are identified for different possible arrangements 
of the model's parameters and their stability is treated as well. To conclude, the fixed 
points' regions of attraction are found and visualized. 
The third part deals with the compass gait model. The readers is first introduced to 
its description and assumptions. Then, the system of differential equations governing its 
swing phase is obtained. The impact conditions and mapping are derived, too. In addition, 
a numerical solver of the hybrid system is implemented in Python. A Poincare map for 
the system is defined analogically to the rimless wheel case and a search algorithm for its 
fixed points is demonstrated in Python. Bo th Python codes are included in the appendix. 
In Section 5, the results of the thesis and possible future extensions are summarized. 
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2 Mathematical Background 

2.1 Dynamical Systems 
Many phenomena in science deal wi th quantites changing in time. Be it mechanical sys
tems in physics, chemical reactions, or populations in biology, all of them can be described 
by the framework of dynamical systems. In essence, dynamical systems can be described 
by a state space (or phase space) and a rule that defines how they change in time. 
In general, this scheme can have many different forms, but the two of the most typical 
examples are continuous dynamical systems, also called flows, where the rule is described 
by a system of differential equations 

i = / ( x ) , (2.1) 

and discrete dynamical systems described by a system of difference equations 

y„+i = / ( y „ ) , n = 0 , l , 2 , . . . (2.2) 

where x and y „ are elements of the respective systems' state spaces and / is a function 
from the state space to itself. Under some conditions on the function / , these rules imply 
that knowing the state of the system at one point in time uniquely determines the sys
tem's state at any other time in the future. Dynamical systems such as 2.1 and 2.2 where 
the function / does not explicitly depend on time are said to be autonomous. 
Although the restriction to autonomous systems might seem too confining at first glance, 
any non-autonomous system can be turned into an autonomous one. A s an example, con
sider the function on the right hand side of the differential equation (2.1) to be dependent 
on t as well. If we extend the state space by introducing a new state variable x n + i = t, 
we get r id of the time dependence simply by including the equation x n + i = 1. It should 
be mentioned that this comes at the cost of adding an extra dimension to the state space. 
For more information, refer to [6]. 

To acquaint the reader with the subject, we present two typical examples of continuous 
and discrete dynamical systems. 

Example 2.1 (Population growth). Consider the simplest model of population growth 
described by the first-order differential equation 

x = rx, 

where x(t) is the population at time t, and r > 0 is the growth rate. If the equation is 
accompanied with an ini t ial condition x(0) = XQ determining the population at time 0, 
the solution can be written as 

x(t) = x0ert, 

thus predicting an exponential growth. Even though the system is extremely simplistic, it 
can serve as a basis for other, more complex models. One of them is the so-called logistic 
growth model, which extends the idea of a simple exponential growth by introducing 
a carrying capacity of the population. The corresponding equation is given by 

x = r x ( l - ^ j , (2.3) 
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where the constant C > 0 is the aforementioned carrying capacity. The consequence of 
adding this parameter is that as x gets closer to C, the population growth slows rapidly. 
This continuous model has a famous discrete time counterpart, which brings us to to our 
second example. 

Example 2.2 (Logistic map). Consider the deceptively simple one-dimensional difference 
equation 

ž/n+l = H/n (1 - Vn) , U = 0, 1, 2, . . . , 

wi th 0 < r < 4 and y0 G (0,1). Just like in the continuous case described in (2.3), we can 
consider yn to carry the meaning of a population size. This elementary looking equation 
is often given as an example of how extraordinarily complicated behavior can arise out of 
nowhere. In particular, the system's character varies immensely for different values of the 
parameter r. 
Let us fix the ini t ial population y0. When 0 < r < 1, the population yn eventually 
dies out. In contrast, for 1 < r < 3, the population eventually approaches a nonzero 
steady state. However, as we keep increasing r, the population first starts periodically 
oscillating between two values, then four values, then 8,16, and so on. When r reaches 
approximately 3.56995, the system starts behaving chaotically. B y this we mean that 
it exhibits great sensitivity to the ini t ial condition yQ. We wi l l formalize this k ind of 
sensitivity by introducing the notion of stability. For more detail about the logistic map, 
see [6]. 

Before we proceed to the section about stability, we first mention the possibility of 
a dynamical system exhibiting the properties of a continuous system and a discrete system 
at the same time. Such systems are called hybrid dynamical systems. One important class 
of hybrid systems are systems with impulse effects. For such systems, the pair of a state 
space and a rule is extended by a subset S of the state space called the switching surface. 
The system's states then behave according to different rules, depending on if they lie on 
the switching surface or not. The rule can be summarized as 

x = /(x), i f x £ S , ^ 

x + = g(x~), if x~ g S. 

Example 2.3 (Bouncing ball) . A n example of such a system can be the bouncing ball 
model. Consider a ball which is dropped from an init ial height and which loses energy 
wi th each of its bounces. If by x(t) we denote the ball's vertical position above the ground 
at time t, this model can be described by the relations 

x = —g, if x > 0, 

x+ = x~, x+ = —\x~ if x~ = 0. 

Here, g is the gravitational acceleration and A > 0 is a parameter describing the dissipation 
of the ball's energy at each bounce. A n example of a numerical simulation of this model 
can be seen in [7]. 
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2.2 Stability 
The notion of stability is paramount in the study of dynamical systems. It is an example of 
a qualitative approach. Studying stability provides a way to increase one's understanding 
of the system without explicitly solving it - oftentimes such a solution is impossible to 
derive. 
Many different approaches to stability may be considered. In this section, we state the 
definitions of stability used in the thesis. Before we do that, we introduce the concepts of 
equilibria and fixed points. 

Definition 2.4. Consider the continuous dynamical system (2.1). We say that a state x 
is an equilibrium point of the system if /(x) = 0. 

Analogically, we define a fixed point of a discrete dynamical system. 

Definition 2.5. Consider the discrete dynamical system (2.2). We say that a state x n is 
a fixed point of the system if / (x n ) = x n . 

We proceed to define the various notions of stability used in the thesis. 

Definition 2.6. Let (X, d) be a metric space. Consider the continuous dynamical system 
(2.1) and let / : X —> X be continuous. We say that an equilibrium point x G X is stable 
in the sense of Lyapunov if Ve > 0, 36 > 0 such that Vy G X we have 

d(x,y) < 5 d(x,y(t)) < e, V* G R, 

where y(t) denotes the solution of (2.1) wi th the ini t ial condition y(t) = y. We say that 
a fixed point x G X is unstable in the sense of Lyapunov if it is not stable. 

Remark. The symbol / " in the definitions below represents an iteration of n compositions 
of the function / . 

Definition 2.7. Let (X, d) be a metric space. Consider the discrete dynamical system 
(2.2) and let / : X —> X be continuous. We say that a fixed point x G X is stable if 
We > 0, 36 > 0 such that Vy G X we have 

d(x,y) < 5 d ( r ( x ) , r ( y ) ) < e, Vn G N. 

We say that a fixed point x G X is unstable if it is not stable. 

Definition 2.8. Let (X, d) be a metric space. Consider the discrete dynamical system 
(2.2) and let / : X —> X be continuous. We say that a fixed point x G X is asymptotically 
stable if it is stable and if 35 > 0 such that Vy G X we have 

d(x,y)<6 => l i m r f ( f ( x ) , f ( y ) ) = 0. 

Definition 2.9. Let (X, d) be a metric space. Consider the discrete dynamical system 
(2.2) and let / : X —> X be continuous. Let x G X be asymptotically stable. We define 
the region of attraction of x to be the set of all points y G X such that 

l im d ( r ( x ) , r ( y ) ) = 0. 
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In the special case where ( X , d) = (M, | • |), we also introduce the notion of semistability. 

Definition 2.10. Consider the discrete dynamical system (2.2) wi th the state space R. 
Let / : M. —> M. be a continuous function. We say that a point x G M. is semistable if 
Ve > 0, 35 > 0 such that either G (—oo, x), or G (x, oo), we have 

< 5 d(fn(x)Jn(y)) < e, V n G N . 

We wi l l distinguish the two different cases for y by calling x either semistable from below 
or semistable from above. 

In the next section, we show how studying the stability of a continuous dynamical 
system can be rephrased into studying the stability of a discrete system. 

2.3 Poincare M a p 
One of the most common methods used for studying the stability of periodic orbits of 
dynamical systems makes use of the Poincare map (also called the return map). The es
sence of the method lies in converting the problem of stability in the sense of Lyapunov of 
a continuous dynamical system's periodic solution to the problem of stability of a discrete 
dynamical system's fixed point. Refer to e.g. [8]. 

To explain the driving idea behind this approach (see [9]), we consider an autonomous 
equation in M™ 

x = / ( x ) . (2.5) 

Let x(t) be a periodic solution to this equation. Because the solution is periodic, it must 
correspond to a closed orbit T in the n-dimensional phase space. Let xo G T. Further, 
we construct an (n — l)-dimensional hyperplane £ so that it is perpendicular to T and 
it passes through x 0 . If we then consider a point x G £ "close" to x 0 , the solution of 
(2.5) passing through x wi l l again intersect S. The intersection of the solution wi th the 
hyperplane is denoted by -P(x). The mapping P : £ —> £ is called the Poincare map. 

The requirement that S must be a hyperplane perpendicular to T can be easily gene
ralized. In fact, it is sufficient to assume that £ is an (n — l)-dimensional hypersurface 
transversal to T, where by transversality we mean that £ is not tangent to T at x 0 . For 
more details, see [8]. 

In effect, by "cutt ing through" the phase space wi th £ , we can identify orbits of (2.5) 
near T wi th points lying in £ . Crucially, since T is a closed orbit, the point xo is a fixed 
point of P. In other words, 

P ( x 0 ) = x 0 . 

The Lyapunov stability of the periodic solution x(t) then coincides wi th the stability of 
x 0 according to Definition 2.7, with metric space ( X , d) = (£,cf), where d is the usual 
Euclidean metric, and the function f — P. 

Remark. In Definition 2.7, we require the function / to be continuous. The theorems 
establishing the Poincare map's existence and continuity can be found in [8]. 
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For the purposes of the thesis, this definition for continuous dynamical systems must 
be extended so that it encompasses systems wi th impulse effects defined in (2.4) as well. 
In such systems, a natural choice for £ is the switching surface S. This question is treated 
in [10]. 

2.4 Euler-Lagrange Equations 
For some mechanical systems, deriving the corresponding equations of motion is in its 
essence a simple task. Consider for example the one-dimensional system consisting of 
a point mass on the end of a linear spring. B y applying Newton's second law of motion 
F = ma, we immediately arrive at the equation 

m'x = —kx, 

where x(t) measures the displacement of the point mass from the equilibrium position at 
time t. The problem is that this method does not scale well for larger, more complicated 
systems. In most applications, a different general scheme is required. This systematic ap
proach was put together by the French-Italian mathematician Lagrange in his famous two 
volume treatise Mecanique analytique, first published in the years 1788 and 1789 (refer to 
[12])-

Lagrange's method is based on the calculus of variations, a field of mathematics con
cerned wi th finding the maxima and minima of functionals - mappings from a set of 
functions to the real numbers. A s the scope of this thesis is too narrow to contain a re
asonable treatment of the calculus of variations, we only mention (informally) the basic 
idea behind the Euler-Lagrange equations based on [11]. For a more in-depth description 
of Lagrangian mechanics, refer to [13]. 

Consider a mechanical system consisting of n point masses. Define the quantity L by 

L = T-U, 

where T and U are the sums of each of the point masses kinetic and potential energies, 
respectively. This quantity is called the Lagrangian of the system. Clearly, 
L = L(x(t), x(t), t), where x(t) and x(£) are the positions and velocities of each of the 
point masses at time t. 
Now, consider the functional A (the so-called action) defined by 

A ( x ( t ) ) = r L ( x ( t ) , x ( t ) , t ) , 
Jti 

and let x(t) be a function defined for t G [£1,^2] wi th its endpoints fixed. That is, 
x ( t i ) = x i , x ( t 2 ) = x 2 . It can be shown that the functional A is differentiable. This means 
that 

A(x( t ) + h(t)) - A(x(t)) = F(h) + R(h), 

where F is linear in h and there exists positive constants e and C such that 

|h| < e \R\ < Ch2. 
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The linear part F(h) of the increment is then called the differential or the variation of 
the functional. A deeper explanation can be found in [13]. 

We state the following theorem without proof. 

Theorem 2.11. Let x(£) be a function wi th its endpoints in t\ and £2 fixed that yields 
a stationary value of the functional A, where by stationary value we mean that its variation 
F(h) is equal to zero. Then 

dt 
dL 
<9x 

dL 
<9x 

— —— — 0. (2.6) 

Combined wi th Hamilton's principle, which can be stated as "The motion of a system 
of particles is the one that yields a stationary value of A", this implies that x(t) must 
satisfy (2.6). 

The power of this method lies in the ease wi th which it can be used. Essentially, if one 
can find the kinetic and potential energies of the system, finding the equations of motion 
is only a routine question of taking a couple of derivatives. 

Remark. It can be shown that the Euler-Lagrange equations are independent of the co
ordinate system. This means that they are valid for any coordinates describing the con
figuration of the mechanical system (these do not necessarily need to be the Cartesian 
coordinates). These are called generalized coordinates and are usually denoted by q(t). 
Their time derivatives q(t) are called generalized velocities. The Euler-Lagrange equations 
(2.6) can be restated as 

dt 
dL 
dq 

dL 
dq 

0. (2.7) 

To conclude this section, we note that the equations can be generalized to include 
the effects of external forces as well. If W(q ) is the work done by these forces, then the 
equation 

di 
OL 
dq 

dL 
dq 

dW 
dq 

(2.8) 

must hold. 

The mathematical apparatus introduced above wi l l be used in solving various problems 
in the rest of the thesis. 
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3 The Rimless Wheel 
One of the simplest models of walking is the so-called rimless wheel. It is an example of 
a passive walker - the system's movement is caused entirely by gravity and cannot be 
controlled. We wi l l only concern ourselves wi th the 2D case of the model. 
Consider a spoked wheel without the outer r im rolling down a ramp, wi th the spokes (or 
the legs) being evenly spaced. For simplicity, we assume the spokes to be rigid and all the 
mass to be concentrated in the center of the wheel. We further assume the spoke collisions 
to be perfectly inelastic and impulsive. Hence, the wheel loses some energy whenever one 
of its legs collides wi th the ground. We also do not consider the possibility of the stance 
leg slipping and assume the transfer of support to be instantaneous - there is no double-
support phase. 

y 

Figure 1. The rimless wheel model and the parameters that define it. 

The model is completely specified by four parameters. These are the angle of the slope 
7, the angle between two successive spokes 2a, the length of each spoke / and the wheel's 
mass m. 
Natural assumptions on the parameters that govern the model can be made. Namely, 

7T 
0 < 7 < - , / > 0, g > 0, m > 0. 

Remark. In fact, we could also allow 7 = 0. However, it would introduce an additional 
special case for our analysis and hence we wi l l only briefly comment on this possibility at 
the end of this section. 
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We also add an additional assumption on the number of spokes - we wi l l restrict our 
work to wheels wi th at least 5 spokes. The reason for this is that wi th the assumptions 
outlined above, wheels wi th only 3 or 4 legs lose all of their energy upon collision and any 
further analysis is pointless. The condition of at least 5 legs can be written as 

The angle 9 changes dynamically wi th time. In our model, it is taken to be a direc
ted angle, with clockwise direction being positive, in accordance wi th [5]. Whi le this is 
somewhat unusual, the choice of clockwise direction as the positive one stems from the 
fact that the ramp is sloped down from left to right. This way, as the wheel rolls down, 
the angle increases. 

We split our analysis of the model into several parts. First , we wi l l analyse the swing 
phase - the phase inbetween two collisions. We wi l l derive the differential equation gover
ning the swing phase and calculate the wheel's angular velocity just before next collision. 
Next, we wi l l study the behavior of our system at the time of the collision. Combining 
these two, we wi l l define a return map for the wheel's angular velocity just after the col
lision. Then, we wi l l identify the fixed points of this map and discuss their stability, and 
at the end, we wi l l specify their regions of attraction. 

0 < a < - . 
4 ' 

since if the number of spokes is n , then a = -. 
We wi l l denote the region of admissible angles a and 7 by fi(«,7). 
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3.1 Swing Phase M o d e l 
To derive the differential equation governing the wheel's motion, we wi l l use Lagrange's 
method. First , consider that the configuration of the wheel at time t depends solely on the 
angle of its stance leg. In other words, we do not distinguish between legs, they are all the 
same from the point of further analysis. Hence, we only have one generalized coordinate, 
namely q(t) = 0(t). We place the origin of the Cartesian coordinate system to the point 
where the stance leg is touching the ground. The position of the center of mass is then 
given by 

r s i n (0) 
I-

cos (9) 

Since all of the mass is assumed to be concentrated in the center, the wheel's kinetic 
energy (denoted by T) and potential energy (denoted by U) are given by 

• t • •mx x -ml292. 
2 

U = mgx2 = mgl cos {9). 

The Lagrangian function is defined in accordance wi th Subsection 2.4 as 

L = T-U 

and the Euler-Lagrange equations take the form of 

dL 
89 

d_ 
dt 

dL 

9fJ 
mgl sin (9) d_ 

dt 
ml 

I 
sin (9), (3.2) 

which is the well-known equation of a simple pendulum. 

Remark. This is a nonlinear second order differential equation. A closed-form solution 
can be found (see for example [14]), but its derivation is quite technical and since it does 
not really bear on the rest of our analysis, we omit it completely. Of course, given init ial 
conditions, it is t r ivial to find an approximate solution numerically. 

In the next step, we wish to describe the angular velocity of the wheel at the end of 
the swing phase (just before the next collision) wi th respect to the beginning of the swing 
phase (just after the previous collision). Before we proceed, we must find the value of 
the state variable 9 before and after the collision. We denote these by 0(O~) and 0(O + ) , 
respectively. In the same way, we introduce the angular velocities 0(O~) and 0(O + ) . B y 
a simple geometrical argument presented in F ig . 2, we find that 

0(0") = 7 + " , 

9(0+) = 7 - a . 

The first diagram represents the configuration just before the collision. The second one 
captures the situation right after the collision. A s the stance leg changes, so must the 
configuration. 
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Figure 2. The two situations showing the wheel's state a moment before and after a col
lision. 

Remark. We can see that 9 only changes by 2a along the wheel's whole swing. A s the 
number of legs increases, a becomes smaller and the equation (3.2) can in fact be linearized 
around 9 — 7. The question of finding its solution then dramatically simplifies. 

Given an init ial positive angular velocity 9(0+) = u, we would like to derive an expres
sion for the final angular velocity 9(0~). First , we must distinguish between two distinct 
cases. If u is too small, the wheel wi l l not have enough energy to vault its mass over 
the point of maximum potential energy, that is, 9 = 0. In that case, it is going to slowly 
reverse direction and come back to its ini t ial configuration 9 = 7 — a wi th 9 = —u. 
This happens because in our considerations, the wheel conserves energy during the swing 
phase. In the second case, the wheel has enough energy to carry its mass over the critical 
point and it completes one full step. Next, we calculate exactly the critical value of ui that 
is needed for the second case to be true. 

We do this by means of analysing the wheel's energy. A t time t = 0 + , the kinetic and 
potential energies are given by 

T = -mZ V 
2 

U = mgl cos (#(0+)) = mgl cos (7 — a). 

The total energy is given as the sum of these two values. 

E = T + U = -ml2u2 + mgl cos (7 — a) 

This value must be constant during the whole swing phase. Now, the potential energy is 
maximized at the highest point of the swing (the stance leg being vertical). It is given by 

U* = mgl cos (0) = mgl. 

If the wheel has greater total energy than this critical value, it wi l l be able to complete 
a step. This condition can be expressed followingly. 

£ ( 0 + ) > U* 

I 
-ml2u2 + mgl cos (7 — a) > mgl 
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B y simplifying and expressing u, we obtain 

00 > \/2y (1 — cos (7 — a)). (3.3) 

This condition is valid for the case 7 < a. In the special case of 7 = a, this condition 
reduces to the simple 

u > 0. 
However, the condition (3.3) is invalid for 7 > a, as in that case the center of mass at 
time t = 0 + is already over the critical point and hence the wheel wi l l always make a step 
forward. 

Remark. The expression in the condition (3.3) comes up frequently in subsequent text 
and hence we decided to denote it by 

uf = \ / 2 f t 1 - cos ( 7 - a ) ) . (3.4) 

The subscript / stands for forward. 

7 < a 7 = a 7 > a 

6>0 
e = o 

Figure 3. The positions of the wheel's legs at the moment of collision for 7 < a, 7 = a, 
and 7 > a respectively. Note that for 7 > a, the center of mass is already over the critical 
line 0 = 0. 

Next, we would like to express the angular velocity at the end of the step as a function 
of u. We wi l l again use the fact that energy is conserved. We wi l l denote the final angular 
velocity by 9{t~). The energy in the ini t ial and final state must be equal. This gives us 

£(0+) = E(t~), 

1 1 
-ml2u2 + mgl cos (7 — a) — -ml29 (t~) + mgl cos (7 + a). 

B y dividing by ml and rearranging, we get 

1 • 1 

-19 (t~) = -lu)2 + g(cos (7 — a) — cos (7 + a)). 

Now, we apply the formulas for the sum and difference of two angles and obtain 

l /^ 2 ( r ) = ^lu2 + 2g sin (7) sin (a). 

Finally, we express 9{t~) for OJ satisfying (3.3). 
0(r)= y/uj2 + 4y sin (7) sin (a). (3.5) 
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3.1.1 Backward Motion 

Before we proceed further, we extend our previous work to include the possibility of 
moving in the other direction, that is, up the ramp. The analysis is identical to one done 
before for the wheel rolling down, just wi th different ini t ial conditions for our differential 
equation. Here, #(0 +) = 7 + 0; and #(0 +) = —u, where u > 0. 
A s not to repeat the same calculations, we only state the results. We arrive at a condition 
similar to (3.3) for making a full step up the ramp. 

0(0+) = -u < - y 2 y ( ! - c o s (7 + «))• ( 3- 6) 

This condition is required for all possible arrangements of 7 and a, as for moving up the 
ramp, it can never happen that the center of mass is already over the vertical line 0 = 0. 

Remark. Similarly to the forward motion case, for further clarity we denote 

ub = - c o s (7 + «)) • (3-7) 

The subscript b stands for backward. 

Once again, we also derive the formula for the final angular velocity depending on u, 
following the same steps as in the forward motion case. 

f)(f-) = xju2 - 4 ^ sin (7) sin (a). (3.8) 

3.1.2 Rocking Motion 

Here, we complete our analysis by considering the last possible option for u, i.e. the case 
when it does not satisfy either of the conditions (3.3) and (3.6). This can be expressed as 

ub < 0 < u>f. (3.9) 

This means that the wheel does not have enough energy and after its center reaches its 
highest point, it slowly comes back to its ini t ial state with the angular velocity reversed. 

0(r) = -0(0+). (3.10) 

This concludes our investigation of the swing phase model. 
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3.2 Collision Analysis 
In this section, we wi l l study what happens at the time when the wheel's next leg collides 
wi th the ground. A t that point, we come to a discontinuity that we must fully under
stand and describe. For one, the stance leg and together with it the angle 9 describing 
the wheel's configuration are changed. In addition, the collision does not conserve energy, 
there is some dissipation present. However, since we assume collisions to be perfectly ine
lastic and impulsive, we know that angular momentum must be conserved. We wi l l use 
this to calculate the change in angular velocity. 
B y L(t~) and L ( t + ) we denote the angular momentum around the point of collision just 
before and after the leg hits the ground, respectively. These two momenta must be equal. 

We begin by calculating L(t~). 
To do this, we first move the origin of our coordinate system to the point of collision and 
then calculate the position and velocity of the center of mass (denoted by x c, x c). It can 
be shown that 

21 sin (a) 
— cos(7) 

sin (7) 

sin (0(r)) 

cos (#(£")) 

If we substitute 9(t ) = 7 + a, we get 

I-
—2 sin (a) cos (7) + sin (7 + a) 

2 sin (a) sin (7) + cos (7 + a) 
I-

sin (7 — a) 

cos (7 — a) 

Figure 4. The situation just before the collision. Here, x s i represents the point where the 
stance leg is touching the ground, x c o; the point where the next leg is going to collide wi th 
the ground, and x c the wheel's center of mass. Clearly, x c = x s t + (xc — x s t ). 
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We obtain x c by differentiating the first expression for x c wi th respect to time. 

Wit-
cos (0(r)) 

- s i n (0(r)) 
Wit-

cos (7 + a) 

- sin (7 + a) 

Now, we apply the well-known formula L(t ) = x c x m x c (see Subsection. The momentum 
is then equal to 

k (I sin (7 — a) • (—mW(t ) sin (7 + a)) — I cos (7 — a) • ml9(t ) cos (7 + a] L(r 

where k represents the vector [0, 0 ,1 ] T . 
B y rearranging and using the formula for the cosine of a difference of two angles, this can 
be simplified to 

L ( r ) = - k m / 2 0 ( r ) c o s (2a). 

B y doing the exact same analysis for the instant right after the collision t = t+, we derive 
the new position and velocity of the center of mass. 

I-

WitA 

sin (7 — a) 

cos (7 — a) 

cos (7 — a) 

— sin (7 — a) 

The new angular momentum is given by 

L(*+) = -kml26{t+). 

B y setting the two momenta to be equal, we can express the new angular velocity after 
impact 9{t+) in terms of 9{t~). 

9\t+) = 6(t-) cos (2a). (3.11) 

This formula represents the loss of velocity due to dissipation of energy (notice that 
cos (2a) is always less or equal to 1). 

Remark. The loss of energy can be expressed as 

E(t+)-E(t-)=T(t+)-T(r) 
l-ml292{t+) - l m Z ? 2 0 2 ( r ) 

l-ml2 cos2 (2a)62(t-) - ^ml262(t-

~ml262(r) • (1 - cos 2 (2a)) 

- ^ m / 2 s i n 2 (2a)0 2 ( r ) . 

(3.12) 
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3.3 Long-Term Behavior 
So far, we have only studied a small moment in the wheel's motion - what happens in 
the process of making one "step". The question of what happens as time goes on is much 
more interesting. To answer it, we first introduce a Poincare map for the angular velocity 
at the beginning of each step and thus obtain a discrete dynamical system. We can then 
investigate its properties, such as fixed points and stability. 

3.3.1 The Poincare M a p 

We introduce a mapping from the angular velocity at the start of the nth cycle to the start 
of the next one. Each cycle consists of a swing phase and a collision. In our investigation 
of the swing phase, we derived formulas (3.5), (3.8), and (3.10) for the angular velocity at 
the end of the swing in terms of the velocity at the start of it. Also, as we have established 
earlier (see formula (3.11)), 

0(t+) = cos (2a)0(t~). 

B y bringing this together, we are ready to define the mapping. B y 9n, we denote the 
angular velocity at the start of the nth cycle. We split the definition into two cases, 7 < a 
and 7 > a, as there are qualitative differences between them. 
For 7 < a, we have 

for 9n > Uf 

for Ub < 0n < ujf (3.13) 

for 9n < Ub-

Notice that the map is not defined for 9n being equal to one of the critical values Uf and 
uib that disconnect the definition. This is because for those values of 9n, the state variables 
0 and 9 are moving along a heteroclinic orbit towards the unstable equilibrium 9 = 0, 
9 = 0. This takes infinite amount of time and so the (n + l)th cycle never happens and 
hence the map cannot be defined. 
For 7 > a, the condition (3.3) disappears and hence we define the map as follows. 

for 9n > 0 

for ub<en<0 (3.14) 

for 9n < Ub-

In this case, the unstable equilibrium 9 = 0, 9 = 0 is unreachable, because the wheel's 
center of mass is over its maximum potential energy state at all times (see F ig . 3). Thus, 
the issue wi th heteroclinic orbits is not present. This allows us to extend the definition to 
the two critical angular velocities Uf and Ub-
Now, given a pair of ini t ial data {9,9), we can use this recursive definition to say what 
the wheel wi l l do in the nth cycle. This gives us the apparatus for describing its long-term 
behavior. 

7n+l 

cos (2a) \ j9 n + 4f sin (7) sin (a) 

• cos{2a)9 n 

— cos (2a) y9n — 4y sin (7) sin (a) 

cos (2a) y6>2 + 4f sin (7) sin (a) 

9n+i = { - cos (2a)^ n 

• cos (2a) 01 4 | sin (7) sin (a) 
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3.3.2 Some Properties of the Poincare M a p 

The natural question that immediately arises is that of deriving a closed-form expression 
from our recursive definition. Owing to the inherent disconnectedness of the map, this 
is only partially possible. Nevertheless, even these partial results wi l l be of considerable 
help later. In this section, we state and prove some of them. 
We define 9 n + m to be the angular velocity after m cycles, starting from 9n. We begin wi th 
the "backward motion" regime, where the wheel is moving up the ramp. 

Lemma 3.1. Let m 6 N and 

9n+i < ub, Vz G { 0 , 1 , 2 , . . . ,m - l,m}. 

Then 

9 n + m = - cos (2a )^ /cos 2 (™- 1 ) (2a) - 0 * - ^ sin ( 7 ) sin (a) • L - ^ L M . (3.15) 

Proof. We prove this by induction. For m — 1, this statement is equivalent to 

9n+1 = - cos (2a) y 91 - 4y sin (7) sin (a) 

which is true by the map's definition (either (3.13) or (3.14)). We assume it is true for 
m = k and show that it then must be true for m — k + 1. B y our definition we have 

9 n + k + 1 = - cos (2a)^9l+k - 4y sin (7) sin (a). 

We use the formula for a partial sum of the geometric series 

1 - cos 2 f c (2a) ^ 2 i 
v J = \ cos^ (2a) 

1 - cos 2 2a ^ y 1 

v ' i=0 

and substitute our induction hypothesis. We obtain 

9 n + k + 1 = - cos (2a)- fe-i 
1 

2 \ 2 
cos 2 (2a) ^cos 2 ^" 1 ) (2a) • 92

n - 4y sin (7) sin (a) • c o s 2 i ( 2 a ) J ~ 4 y s i n (t) s i n (a) 

B y distributing cos 2 (2a) inside the bracket and simplifying, we get 

9 n + k + 1 = - cos (2a) cos 2 f c (2a) • ̂ 2 — 4y sin (7) sin (a) • cos2* (2a). 

i=0 

After using the partial sum formula one last time, we arrive at exactly the formula (3.15) 
for m = k + 1 and the proof is done. 

• 
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Next, we attempt find a closed formula for the other time direction, in a sense, asking 
the question what the angular velocity would have to look like m steps ago, given that 
we know 9n. We define 9n-m to be such angular velocity that after m cycles it is exactly 
equal to 9n. 

Lemma 3.2. Let m 6 N and 

9n-i < ub, Vz G { 0 , 1 , 2 , . . . ,m - l,m}. 

Then 

/ n / n x Ao , Q . / x . / x 1 — c o s ~ 2 m (2a) 
' c o s " 2 m (2a) • 92

n + 4y sin (7) sin (a) 
I K U K ' 1 - cos" 2 (2a) ' 

Proof. To prove that this is true, we wi l l use the result of Lemma 3.1. Using that formula, 
it is sufficient to show that 

9n = - cos (2a) * / c o s 2 ^ " 1 ) (2a) • 92

n_m - 4 ? sin (7) sin (a) 1 C ° s 2 m ^ 
I K U v ' 1 - cos 2 (2a) 

holds. After substituting the formula for 9n-m into this expression and simplifying, we 
arrive at 

9n = — cos (2a)-

, - Ao . 9 • / x • / x (cos2^"1) (2a) - cos" 2 (2a) 1 - c o s 2 m (2a) 
' cos" 2 (2a) -91 + 4 | sin (7) sin (a) ' 

I w / v ' V 1 - c o s " 2 (2a) 1 - c o s 2 (2a) 

But since 1 — c o s - 2 (2a) = — c o s - 2 (2a) • (1 — cos 2 (2a)), the bracket mult iplying the 
term 4j sin (7) sin (a) vanishes and we obtain 

a . I hi \h I 

which is clearly true because we assume 9n to be negative. 

• 
Now, we turn our attention to the "rocking" regime. We have to distinguish between 

the cases 7 < a and 7 > a, but the formulas themselves are much simpler. In fact, we 
can unify the formulas for both time directions into one expression. 

Lemma 3.3. Let m £ Z . Let either 

Ub < 9n+i < Uf for 7 < a 

or 

ub < 9n+i < 0 for 7 > a, 

V % G {m, m + 1 , 0 } if m < 0, or V % e { 0 , 1 , m } if m > 0. Then 

^ + m = ( - l ) m c o s m (2a)9n. 

Proof. Similarly to the proofs above, this can be easily done by using inductive reasoning. 

• 
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Finally, we set our eyes toward the "forward" direction. 

Lemma 3.4. Let m 6 N . Let 

Qn+i > ojf for 7 < a 

or 

0n+i > 0 for 7 > a, 

V z G {0,1, 2 , m — 1, m}. Then 

cos (2a) * / c o s 2 ^ " 1 ) (2a) • 02 + 4 sin (7) sin (a) 1 C ° s 2 m ^ 
I K U v ' 1 - cos 2 (2a) ' 

Proof. The proof of this statement is completely identical to the proof of Lemma 3.1. • 

Lemma 3.5. Let m 6 N . Let 

Qn-i > Uf for 7 < a 

or 

Qn-i > 0 for 7 > a, 

V % G {0,1, 2 , m — 1, m}. Then 

0«-m = y c o s " 2 m (2a) • ̂  - 4y sin (7) sin (a) • \ Z ^ ^ T ^ " 

Proof. The proof of this statement is completely identical to the proof of Lemma 3.2. • 

Before proceeding to the next section, we must deal with the issue of heteroclinic orbits 
arising when 7 < a. We do this now to avoid running into trouble later. In the event that 
the system enters one of these pathological orbits, our definition of the Poincare map 
(refer to (3.13)) essentially breaks down. 

Definition 3.6. Let 7 < a . We define the sets of heteroclinic orbits (denoted by H1 and 
H2) to be the sets of angular velocities such that after a finite number of steps, they reach 
the heteroclinic orbits cut, and ujf, respectively. 

Hx := {0n e R I 3m e N : Qn+m = Ub}-

H2 •= {0n e R I 3m e N : Qn+m = w/} . 

In addition, we define their union H. 

H := # 1 U H2. 

A s we can see, both sets H\ and H2 are countable and thus have measure 0 in R. 
Practically speaking, they do not have an influence on the wheel's behavior, but we 
include them with the purpose of having our analysis as complete as possible. 

Remark. If 7 < a and Qn e H, then the l imit linin^oo Qn+m does not exist. 
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3.3.3 Fixed Points Existence 

B y the Poincare map's fixed point, we mean an angular velocity u* satisfying 

These points are of great importance because they represent repeating cycles of the same 
motion - a powerful tool for predicting how the wheel is going to behave. We begin by 
establishing the conditions for their existence. A s we have two different definitions for the 
Poincare map, we again split the analysis in two cases. 
For 7 < a, it is easy to see that there is always the fixed point 

u* = 0 

for the reason that if 9n = 0, then, according to (3.13) and (3.14), 

9 n + 1 = - cos (2a) -0 = 0. 

This fixed point represents the wheel being stopped with two legs touching the ground 
and supporting it and we wi l l denote the fixed point by 0J*stop-

Next, we wi l l investigate the possibility of the existence of a fixed point u* satisfying (3.3). 
This would represent rolling down the ramp at "constant speed". From the definition of 
our return map (see (3.13), (3.14)), we get the equation 

u>* = cos (2a) y u*2 + 4y sin (7) sin (a). 

B y raising both sides of the equation to the second power and distributing cos 2 (2a) over 
all other terms, we obtain 

u*2{l - cos 2 (2a)) = 4y cos 2 (2a) sin (7) sin (a). 

We use the fact that 1 — cos 2 (2a) = s in 2 (2a), we divide by it and then take the square 
root of both sides. 

00* = 2 cot (2a) Jj sin (7) sin (a). 

Taking the root is justified because in our model we assume the wheel to have at minimum 
five legs, which gives a < | and thus cot (2a) > 0, sin (a) > 0. Because we are in the case 
of 7 < a, also sin (7) > 0. 
It needs to be emphasized that this fixed point only exists when u* actually satisfies (3.3), 
that is, 

2 cot (2a) A / s i n (7) sin (a) > v / 2 ( l - cos ( 7 - a ) ) (3.16) 

must be satisfied. The validity of this inequality depends solely on the parameters a and 
7 of our model. We denote this fixed point by OJ*O11. 

Lastly, we check the possibility of the existence of a fixed point for moving up the 
ramp. Going through the same procedure as above, just for the equation 

u* = — cos (2a) ^1 u*2 — 4y sin (7) sin (a) 
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we obtain 
0 < u*2 = - 4 cot 2 (2a) y sin (7) sin (a) < 0 

and thus a contradiction. This makes sense intuitively, it should not be possible for the 
wheel to be moving up the ramp indefinitely as it is losing speed both from the collisions 
and in the swing phases. 
To conclude, in the case of 7 < a, the return map has either one or two fixed points. There 
is always 0J*stop corresponding to the wheel standing on two of its legs, and for parameters 
satisfying (3.16), there is also u*oU corresponding to the wheel rolling down at constant 
speed. 
For 7 > a, the situation is a bit different. Here, the fixed point ou*top = 0 vanishes because 
by our definition of the Poincare map (see (3.14)), 

0 n + i = - cos (2a)0 n 

is only valid for 0 n < 0. In other words, the slope is too steep for the wheel to stand on 
two legs. 
However, u*oU is still present, and contrary to the previous case, it has no extra condition 
depending on the parameters. For 7 > a, it always exists. 

3.3.4 Fixed Points Stability 

In this section we investigate the stability of our fixed points in accordance wi th our 
definitions 2.7 and 2.8. We wi l l start wi th proving the following results. 

Lemma 3.7. Let 0 < a < | , 0 < 7 < | . Then the inequalities 

2 cot (2a) \Jsin (7) sin (a) > A / 2 • (1 — cos (7 — a)) 

and 

- A / 2 - ( 1 - c o s (7 + a ) ) < . ^ 2 - ( 1 - c o s ( 7 - a ) ) 
cos(2a) 

are equivalent. 

Proof. We start wi th the first inequality. 

2 cot (2a) A / s i n (7) sin (a) > A / 2 • (1 — cos (7 — a)) . 

We square both sides and divide by two. 

4 cot 2 (2a) sin (7) sin (a) > 2 • (1 — cos (7 — a)). 

cos 2 (2a) . , . . . . , . 
2 2 sin (7) sin (2a) > 1 — cos (7 — a) . 

sin (a) 

Because cos 2 (2a) is strictly positive on 0 < a < | , we can divide by it. 

2 sin (7) sin (a) 1 — cos (7 — a) 

s in 2 (2a) ' cos 2 (2a) 

Now, we move both fractions on the same side, combine them into one and use the fact 
that 2 sin (7) sin (a) = cos (7 — a) — cos (7 + a) . 

1 — cos (7 — a) 2 sin (7) sin (a) ^ 

cos 2 (2a) s in 2 (2a) 
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(1 — cos (7 — a)) • s in 2 (2a) — (cos (7 — a) — cos (7 + aj) • cos 2 (2a) ^ 

cos 2 (2a) • s in 2 (2a) 

We distribute the terms s in 2 (2a) and cos 2 (2a) in the numerator inside the brackets and 
obtain 

s in 2 (2a) — cos (7 — a) + cos (7 + a) • cos 2 (2a) ^ 

cos 2 (2a) • s in 2 (2a) 

We add and subtract cos 2 (2a) from the numerator and mult iply the inequality by s in 2 (2a), 
which is also strictly positive on 0 < a < | . 

1 — cos (7 — a) + (cos (7 + a) — 1) • cos 2 (2a) ^ 
cos 2 (2a) 

We split up the fraction again and mult iply both sides by two. 

2 • (1 — cos (7 — a)) 
cos 2 (2a) 

< 2 • (1 - cos (7 + a)). 

Both sides are positive and hence we can take the square root and finally mult iply them 
by - l . 

1 
•y/2 • (1 - cos (7 - aj) > - A / 2 • (1 - cos (7 + a ) ) . 

cos (2a 

This is exactly the second inequality in the statement of the lemma. Crucially, this whole 
procedure can be done in the other direction as well, and so the claim is proved. 

• 

Lemma 3.8. Let 9n < uj,. Then 

9n+i > 9n. 

Proof. Clearly, 

It follows that 

9l - A9- sin (7) sin (a) < 62

n. 

92

n - 4y sin (7) sin (a) < \Jd2 

cos ( 2 a ) A / 0 2 - 4 y sin (7) sin (a) < % 

- c o s ( 2 a ) A / 6 1 2 - 4 y sin (7) sin (a) > -\Qn\ = 6n. 

• 
Theorem 3.9. Let 6n < Ub- If 7 < a, further assume that 9n ^ H. Then 3m G N such 
that 
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Proof. We wi l l prove this by contradiction. Assume 9 n + m < ub, V m G N . Then by 
the Lemma 3.8, the sequence 9 n + m is strictly increasing. The only possibility is that it 
converges to some u satisfying 

OJ < - W 2 y ( l - c o s (7 + a ) ) . 

But from the Lemma 3.1, we have a formula for 9 n + m . B y taking the limit for m going to 
infinity, we obtain 

a 1 — c o s 2 m (2a) l im 9 n + m = l im I - c o s ( 2 a ) W c o s 2 ( m - 1 ) ( 2 a ) - 0 2 _ 4 £ s i n ( 7 ) s i n ( a ) 
I K" v ' 1 - cos 2 (2a) 

g 1 
l im 9 n + m = — cos (2a) 4 / —4- sin (7) sin (a) 

m—¥00 I w / v ' 1 - c o s 2 (2a) 

and we have a negative number inside the square root, which is a contradiction wi th 
9 n + m converging to u. Importantly, we were able to take the l imit as m goes to infinity 
only because we assumed that 9n ^ H. Otherwise, the limit would not exist. • 

We wi l l use these results later for establishing the exact bounds of the regions of 
attraction of our fixed points. We start wi th discussing the stability of ui*stop. 

Theorem 3.10. Let ou*top be a fixed point. Then u*top is asymptotically stable for 7 < a 
and unstable for 7 = a. 

Proof. Assume 7 < a. Let e > 0. Take S = min (e, ^ / 2 y ( l — cos (7 — a))). Then for any 
9n satisfying 

\0n - U*stop\ — Î Til < 8, 

we have 

\9n+1 -u*stop\ = \9n+1\ = I - c o s ( 2 a ) 0 „ | = cos (2a) • \9n\ < S < e. 

B y induction, 

and thus 0J*stop is stable. Furthermore, 

n+m 

l im \ 9 n + m - u i * \ = l im | ( - l ) m c o s m ( 2 a ) 0 n | =0 

and so it is asymptotically stable as well. Now, in the case of 7 = a , the above proof fails 
because 

min (e, ^ 2 y ( l - cos (7 - a))) = 0. 

For all S > 0, if 0 < \9n\ < S, then by the Theorem 3.9, there is some m such that 

9n+m 

and hence 
9 n + m + 1 = - cos (2a)9n+m > 0. 
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It follows that 

This means that 

0n+m+2 = cos (2a) 4 /9 2

n + m + 1 + 4- sin (7) sin (a) 

\9 n+m+2 > cos (2a) \J4y sin (7) sin (a) 

which is a constant. Therefore, if e is smaller than this constant, it follows that for all 
5 > 0 and 0 < \9n\ < 5, there is some index m such that | # n + m + 2 | > e and the proof is 
done. 

• 

-0.4'y — a -0.2 0.0 0.2 0.4-7 + 0 # 0 . 6 

Figure 5. A phase plot of a trajectory wi th 9n converging to 0J*stop (with parameters m = 
1, 1 = 1, g = 9.81, a = | , 7 = 0.025 and init ial conditions 
9(0) = -0 .132, 0(0) = 2). 

Before we state the stability theorem of the other fixed point, we first prove two partial 
results dealing wi th the monotonicity of the Poincare map around OJ*M. 

Lemma 3.11. Let 9n > u*oU. Then 

Uroll < ^n+l < On-

Proof. Let 9n > u*0ii- Then 9n = u*oU + 8, where S > 0. 
We first show that 9n > 9n+i- A s both of these quantities are non-negative, this is equi
valent to showing that 9\ — 0\+\ > 0. We have 

91 - 62

n+1 = (oo*roll + 5)2 - cos 2 (2a) {[u*rM + 5)2 + 4^ sin (7) sin (a)) 

= (u*roll + S)2(l - cos 2 (2a)) - 4y sin (7) sin (a) cos 2 (2a) 

= s in 2 (2a) ({u*oll + S)2 - 4 cot 2 ( 2 a ) | sin (7) sin (a) j 

= s in 2 (2a) ((u>*roU + S)2 - u?oll) = s in 2 (2a)(2cu*roll5 + 52) > 0. 
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For the second part of our proposition, namely 9n+i > co*oU, it is sufficient to observe 
that 

til , ,*2 _ til til , til , ,*2 

= - s in 2 (2a) (2u*roll5 + 52) + (oo*roll + 5)2 - oofoll 

= - s in 2 (2a) ( 2 ^ + 52) + 2u*roll5 + 52 

= cos 2 (2a)(2oo*roll5 + 52) > 0. 

• 
Lemma 3.12. Let Uf < 9n < oo*oU. Then 

9n < 9n+i < UJ*O11. 

Proof. Let ujf < 9n < u* roll' 
Then 9n = u*oU — 8, where 0 < S < u*oll — ^ / ^ f (1 — cos (7 — a)). In the exact same way 
as in the proof of Lemma 3.11, we end up wi th 

92

n+1 - 9 2 = - s in 2 {2a){-2u*roll5 + 52), 

and because of our conditions on 8, we also have 

S < 2ujroll; 

-2u*roll5 + 52<0. 

This gives us the inequality 9n+i > 9n. 
For the other one, we again have 

, ,*2 hi _ , ,*2 ta I to _ tii 
uroll an+l — u'roll un+l " r Vn Un 

cos 2 (2a)(-2u;oll5 + 52)>0. 

• 
Remark. For 7 > a, the assumptions on 9n in Lemma 3.12 can be relaxed into 

0 < 0n < U*roll. 

This is possible because of a different definition of the Poincare map for 7 > a (see (3.14)). 

A t this point, we can precede to state and prove the stability theorem of oo*oll. 

Theorem 3.13. Let u*oU be a fixed point. Then u*oU is asymptotically stable. 

Proof. Let e > 0. Take 8 = min (e,u*oU — - \ / 2 | ( l — cos (7 — a))). Then for any #„ satis
fying 

0r. roll <s. 

as a corollary of Lemma 3.11 and Lemma 3.12, we have 

-1 Uroll < — ÜJ. roll <5<e. 
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B y induction, 

and thus to*oll is stable. 

>n+m Uroll < e, V m G N 

Furthermore, thanks to the combination of Lemma 3.11 and Lemma 3.12, it follows that 
if 

0 n > ojf, 

then V m G N , 

9 n+m > Wf. 

This makes it possible for us to evaluate the following l imit . 

l im 
m—¥oo 

On+m WrM 
l im 7 n+m) Uroll 

a 1 — c o s 2 m (2a) 
l im [ cos (2a) \ / c o s 2 ^ " 1 ) (2a) • 0 2 + 4y sin (7) sin (a) • ^ J 

I X COS I ZiOi J 
00 roll 

g 1 
cos (2a) 114- sin (7) sin (a) • , 2 

/ sin (2a) 
— CO, 

2 cot (2a) \I y sin (7) sin (a) - oo*oll 

roll 

\Uroll Uroll\ 

• 

It remains to find the exact bounds of regions of attraction for both fixed points. 

9 f 
5.5 -

5.0 

4.5 

4.0 

3.5 

3.0 

2.5 

0.0 j — a 0.2 0.4 0.6 0.8 -y + a 1.0 ^ 

Figure 6. A phase plot of a trajectory wi th 9n converging to co*oll from above (with 
parameters m — 1, / = 1, # = 9.81, a = | , 7 — f a n d init ial conditions 0(0) = 
0.292, 0(0) = 5). 
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3.3.5 Regions of Attraction 

Because of the dependence on parameters 7 and a, we divide our discussion of the fixed 
points' regions of attraction into five distinct cases covering the whole region fi(Qj7) of 
admissible angles a and 7 defined in (3.1). We define these cases followingly. 

Qi = {(a , 7) G fyQ,7) I 7 > a} . 

Q 2 = {(a , 7) e fyQ,7) I 7 = a} . 

f23 = {(a, 7) G ^ ( 0 , 7 ) I 7 < a , 2 cot (2a) yjsin (7) sin (a) < A /2(1 

f24 = {(a, 7) G ^ ( 0 , 7 ) I 7 < a ; 2 cot (2a) A / s i n (7) sin (a) = \ / 2 ( l 

f25 = {(a, 7) G fi(Q,7) I 7 < a, 2 cot (2a) \Jsin (7) sin (a) > A /2(1 

Clearly, 
5 

i=i 

We wi l l denote the two fixed points' regions of attraction by i?^(u;* t o p) and RA(U:*OU). 

We begin wi th the most straightforward case, which is that of (a ,7) G Q\. A s it was 
shown and explained earlier in the chapter concerning the existence of fixed points, in the 
event of 7 > a, the fixed point cu*top vanishes. O n the other hand, the condition 7 > a is 
sufficient for the presence of a;*oZZ. 

Theorem 3.14. Let (a, 7) G Q i . Then u*oU is an asymptotically stable fixed point wi th 
a region of attraction 

RA(oo*roll)=R. 

Proof. For 7 > a, the fixed point u*oU always exists and by Theorem 3.13, it is asympto
tically stable. From the choice of S in the proof of the Theorem 3.13, we immediately get 
a first estimate for the region of attraction. 

RA(U*O11) 5 (w/,00). 

The left bound is of this form to allow the use of Lemma 3.12 in the proof. However, as 
was noted earlier, in the case of 7 > a the assumptions of Lemma 3.12 can be relaxed. 
This gives us a new estimate 

RAUO11) 5 [0,00). 

Continuing in the same fashion, we can extend this to include (w&, 0) as well. This is 
justified because if 

0„ G (w 6 ,0), 

then 
0 n + i = - cos (2a)0 n 

and so 0 n + i > 0. That implies that 0 n + i G RA{OJ*OU) and hence 0„ G RA{OJ*OU). This gives 
us 

RA(U*M) 5 K , o o ) . 

— cos (7 — a))}. 

— cos (7 — a))}. 

— cos (7 — a))}. 
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Finally, the Theorem 3.9 says that if 9n < uj,, then there exists some m such that 

9n+m 

and so 9 n + m G RA{OJ*O11). This implies that 9n G RA(OJ*OU). It follows that 

RA(U*M) = ( -00,00) 

and the proof is done. • 

"stop 

Figure 7. Stability plot with (a, 7) G Q i . 

Next, we investigate f2 2. From previous analysis, we know that the fixed point 0J*stop 

exists and it is unstable. We can also see that the by plugging in 7 = a, the condition 
(3.16) for existence of u*M 

2 cot (2a) A / s i n (7) sin (a) > \ / 2 ( l — cos (7 — a)) 

reduces to the simple 
cot (2a) • I sin (a)| > 0, 

which is satisfied for all a G (0, | ) . 

Theorem 3.15. Let (a, 7) G f2 2. Then u*top is an unstable fixed point and u*oU is an 
asymptotically stable fixed point wi th a region of attraction 

RA(UJ, roll J \ ( { 0 } U t f ) . 

Proof. The idea of the proof is identical to that of Theorem 3.14. The only change is that 
we cannot relax our assumptions on Lemma 3.12. That particular step in the proof then 
yields a weaker estimate 

i ? A K j D ( 0 , o o ) , 

wi th zero excluded from the interval. The remaining extension to the interval (—00, 0) is 
unchanged. Of course, we cannot include the sets Hi and H2 in the region of attraction 
because in that case the limit l i m m ^ o o ( 0 n + m ) would not exist. • 
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Figure 8. Stability plot with (a, 7) G f2 2. 

The third possibility is that (a, 7) G f2 3. This means that the Poincare map has only 
one fixed point, 0J*stop. Before we find its region of attraction, we prove a helpful lemma. 

Lemma 3.16. Let (a, 7) G f2 3. Let #„ > a;/, 9n £ H. 
Then 3m G N such that # n + m < 00f. 

Proof. We prove this by contradiction. Let 6n+i > Uf for all % G N . Then by our as
sumption, 

and so by Lemma 3.4, 

9 n + i > 2 cot (2a) \j — sin (7) sin (a) 

9 n + i = cos (2a)^/cos 2 ( - 1 ) (2a) • d\ + & sin (7) sin (a) • ^ V* G N . 
t 1 — cos z (2a) 

But as was shown in the proof of Theorem 3.13, this sequence 
converges to 2 cot (2a) ^ | sin (7) sin (a), which is a contradiction wi th the assumption 
that 

2 cot (2a) \Jsin (7) sin (a) < \ / 2 ( l — cos (7 — a)) . 

• 
Theorem 3.17. Let (a, 7) G f2 3. Then w* t o p is an asymptotically stable fixed point wi th 
a region of attraction 

RA(u:top)=R\H. 

Proof. From 7 < a, we know that the fixed point ou*top exists and by Theorem 3.10, it is 
asymptotically stable. O n the other hand, 

2 cot (2a) A / s i n (7) sin (a) < \ / 2 ( l — cos (7 — a)) 
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implies that the fixed point UJ*O11 does not exist. 
From the proof of Theorem 3.10, we immediately obtain an ini t ial estimate 

Lemma 3.16 then provides a clear way to extend the region to the interval 

(w / ,oo) \H. 

Let 9n lie inside this set. Then by Lemma 3.16, there exists a n m e N such that 9 n + m < ojf, 
and so 

0n+m G RA{w*stap), 

which implies 

0n e RA(u*stop). 

It is simple to verify that if 9n 6 (~~^2a) ' ufi ~uf)> ^ n e n 

9n+1 G (O.a;/) 
and thus we can extend RA(uj*stov) to 

Thanks to Lemma 3.7, we know that 

(ojb,0) C RA( 
^ stop ) I 

and by using Theorem 3.9 in the same way as Lemma 3.16, we can extend this to (—oo, u;&), 
too. • 

Figure 9. Stability plot with (« ,7 ) G f2 3. 

The fourth option is that (« ,7 ) G Q 4 . We still only have the fixed point uj*top. The 
other fixed point u*oll does not exist, but in a sense it is asymptotically stable from above, 
as we show below. 

32 



Lemma 3.18. Let (a, 7) G ÍI4. Let #„ > o/, fjn ^ if. 
Then 

l im On roll' 

Proof. This follows from the combination of Lemma 3.4 and Lemma 3.11. • 
Theorem 3.19. Let (01,7) G f2 4. Then u*top is an asymptotically stable fixed point wi th 
a region of attraction 

RA{u*stop) - 0 0 , Uf) \ H. 

Proof. The proof is identical to that of Theorem 3.17, with the difference that it is not 
possible to use Lemma 3.16 to extend RA{oJ*stop) above the value ^/2y (1 — cos (7 — a)). In 
fact, Lemma 3.18 shows that values from the interval (-^/2y(1 — cos (7 — a)), 0 0 ) converge 
to ^ / 2 f ( l - cos ( 7 - a ) ) . • 

k 1 1 ^->J 
t^stop ^roll On 

Figure 10. Stability plot wi th (a, 7) G f2 4. 

Remark. Al though the fixed point cu*oll does not exist, we can see that 
the point 2 cot (2a) ^Jj sin (7) sin (a) is semistable from above. 

Finally, we move to the last possibility, namely that (a, 7) G f2 5. This is by far the 
most interesting one, as both fixed points exist and have their own regions of attraction. 
Before we state the theorem, we introduce the following notation. 

Definition 3.20. Let (a, 7) G Q5. Let 

u° = u b , 

2 cos (2a) j 

Let m G N. B y ou™ and ou™ we denote the values from the interval (—00,0*2) satisfying 

u™ = 9n-m, where 9n = 0 ° , 
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= @n-m, where 9n = uo®. 

Then we define the sets I™u and 1^ as 

1roll — 1 1̂ > U2 ) ; 

jm _ ( m+1 rn\ 
1stop — \ U 2 ) U 1 ) • 

It is important to note that the validity of this definition comes from Lemma 3.7. 
Otherwise we could not have known whether < was actually true. 

Remark. Lemma 3.2 gives us closed formulas for u;™ and u™. 

co™ = - J 2 ? • f c o s - 2 m (2a) • (1 - cos ( 7 + a)) + 2 sin ( 7 ) sin (a) 1 ~ C ° S _ 2 m ^ 
I V 1 - cos" 2 (2a) 

= - J 2 ? • f c o s " 2 ^ 1 ) (2a) • (1 - cos ( 7 - a)) + 2 sin (7) sin (a) 1 ~ C ° S _ 2 m ( 2 a ) 

( \ v / v v/ // v/ / v / 1 - cos" 2 (2a) 

Remark. The elements of f / i and H2 form the boundary of the union of all I™u and I^op. 
In other words, 

( -00 ,a£ ) C O U / - p j u ^ . 
We are prepared to state the theorem itself. 

Theorem 3.21. Let (a, 7) G f2 5. Then u*top is an asymptotically stable fixed point wi th 
a region of attraction 

RA^:TOP) = (̂ 2V/) U ^ 0 7^p) j \ # (3-17) 

and u;*oZZ is an asymptotically stable fixed point wi th a region of attraction 

RAKO11) = ( V / , 00) U ^ Q I^j j \ H. (3.18) 

Proof. The conditions for the existence of both fixed points are satisfied and from Theo
rems 3.10 and 3.13, we know that they are both asymptotically stable. From the proofs 
of these theorem, we immediately obtain first estimates for their regions of attraction. 

RA(U*0U) 5 ( W / . O O ) . 

A s a consequence of Lemma 3.7, we know that 

where u\ and are defined according to Definition 3.20. It is straightforward to see that 
if 

9n G (u®, —IjJf) , 
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then 

9 n + i = — cos (2a) • 9n G (cos (2a) • Uf,Uf) 

and hence 9n+i G i?^(u;* t o p), which implies 

9n G RA(oj*stop)-

O n the other hand, if 

0n£ K ,a ; 2

0 ) , 

then 
# n + i = — cos (2a) • 9n G (a;/, — cos (2a) • cu®) . 

by the same logic as before, 
9n G RA(oj*oU)-

To extend the regions to — oo, we simply use the intervals 1^ and I™u from Defini

t ion 3.20. Thanks to the continuity of the Poincare map, if 9n G I^op, then 

and if 9n G I™oll, then 

This completes the proof. 

9n+m G (uj®, —Wf) 

9n+m ^ (̂ 15^2) • 

• 

^A^etop) 

"stop 

Figure 11. Stability plot wi th (a, 7) G VL$ 

0,i 

To better see how this works in action, we include phase plots of two trajectories wi th 
identical model parameters satisfying (a, 7) G f25 (see Figures 12 and 13). They only differ 
slightly in their ini t ial value of 9. In the first case, 9(0) = —5 lies in one of the intervals 
I™u, while for the second trajectory, 9(0) = —4.85 belongs to one of I^op. This has the 
consequence that their long-term behaviors are in total contrast. 
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j + a 

Figure 12. A phase plot of a trajectory with 0„ converging to u*oU from below (with 
parameters m — 1, I — 1, # = 9.81, a = | , 7 — 1 5 a n d init ial conditions 
6(0) = -0 .105, 0(0) = - 5 ) . 
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3.4 Summary 

To conclude the section about the rimless wheel model, we summarize the results of our 
analysis and accompany them wi th their graphical representation. First , we derived the 
differential equation governing the wheel's motion between each two collisions. Then, we 
found a relationship of the wheel's state right before and right after a collision, based on 
the law of conversation of angular momentum. We merged these to define a Poincare map, 
which we then used to find out what happens in the long term. Most of our work was 
concerned wi th analysing the stability and finding the regions of attraction of the map's 
fixed points. 
The result is that given arbitrary ini t ial conditions (angle 9 and angular velocity 8), one 
can solve the differential equation (3.2) and apply the collision factor cos (2a) to find the 
init ial value 8Q for the Poincare map. Depending on the relationship between the parame
ters a and 7, it is possible to say exactly to which long-term behavior it converges. The 
long-term behavior is summarized in Table 1. 
To better convey the nature of the sets Qi partitioning fi(Q,7), we visualize them in F ig . 14. 

A s a closing remark, we come back to the very beginning of the section where we 
introduced natural assumptions on the parameters of the model, namely that 7 > 0. 
Indeed, this premise was unnecessary as we could also allow 7 to be equal to zero. In that 
case, we would obtain symmetry between the forward and backward motion regimes and 
the wheel would not be able to ever increase its total energy. 
We could then introduce the Poincare map in the same way as in (3.13), and after doing 
stability analysis, we would arrive at the conclusion that the case 7 = 0 can be described 
by the results derived for the region Q3. 

a2 ^ 3 ^ 5 

Existence of 0J*STOP X / / / / 

Existence of u*oU / / X X / 

Stability of u*stop — unstable as. stable as. stable as. stable 

Stability of OJ*O11 as. stable as. stable — — as. stable 

— {0} R\H (-00,ujf)\H see (3.17) 

E R\{0} — (u>f, 0 0 ) \ H see (3.18) 

Stability plot F ig . 7 F ig . 8 Fig . 9 F ig . 10 F ig . 11 

Table 1: Summary of the Poincare map's fixed points' existence and stability for different 
configurations of a and 7. For the purposes of compactness, the regions of attraction for 

are only referred to by their equation numbers. 
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Figure 14. The region of admissible angles a and 7 divided into fij as defined in Subsection 
3.3.5. 
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4 The Compass Gait Biped 
The second model that we are going to introduce and study is the compass gait biped, 
also known as 2-link or acrobot. In a way, it arises naturally from the rimless wheel, which 
models the dynamics of the stance leg and always has another leg ready to take over 
at impact. This is of course accomplished by the wheel's rigid frame wi th spokes evenly 
spaced around its center of mass. 
We can imagine getting r id of all but two of the wheel's legs and introducing a way for 
the swing leg to position itself to collide with the ground and successfully make a step. 
This change complicates the matter greatly because then the robot is no longer passive. 
It requires active control to ensure that it walks. 
The control is accomplished by adding an actuator to the robot's "hip" (the place where 
the two legs are joined). The actuator can then supply torque to the system and thus 
manage its behavior. Of course, even after adding the actuator, the robot is stil l unde-
ractuated because it has two degrees of freedom. This is so because in contrast wi th the 
rimless wheel, where knowing the angle 9 between the stance leg and a vertical line was 
enough to exactly identify the state of the system, in the case of the compass gait biped, 
the angle between the stance leg and the swing leg changes dynamically. In view of this, 
we must make use of the underlying dynamics of the system to successfully guide the 
biped's walk. 

A s a consequence of adding external torque to the biped's hip, we must get r id of our 
assumption that the legs are massless. This is represented by adding point masses to both 
legs. 
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The modelling assumptions are esentially the same as in the rimless wheel model. We 
briefly summarize them here. 

• The legs are rigid bodies, all of their masses are concentrated in a point. 
• The legs' collisions wi th the ground are perfectly inelastic and impulsive. 
• The collisions are instantenous. 
• The legs cannot slip. 
• The swing leg retracts a little without changing the location of its point mass. 

The last assumption is a bit unnatural, but it is necessary for the model to work. Consider 
that when the swing leg moves from left to right to position itself for impact, it must 
inevitably pass around the stance leg. However, as they have the same length, this would 
lead to the swing leg's hit t ing the ground and stumbling. Our premise that after a collision 
the swing leg retracts a little bit solves this issue. 
We wi l l also require the hip and the swing leg's endpoint to stay above the ground. We 
wi l l deal wi th the statement of this requirement after we solve the kinematics in the swing 
phase model subsection. 
The system is fully specified by five parameters. These are 7, the angle of the ramp's 
slope, raft, the mass located at the hip, mi, which specifies the leg masses, and lengths 
a and b determining the exact position of the leg masses. B y / = a + b, we wi l l denote the 
legs' length. F ig . 15 shows this in detail. 
We have some natural assumptions on these parameters. 

0 < 7 < - , a > 0, b > 0, g > 0, mh > 0, mt > 0. 

The angles 9st and 6SW corresponding to the stance leg and the swing leg are directed 
angles wi th the positive direction being the clockwise one, just like in the rimless wheel 
case. 
The torque of the actuator at the hip is represented by r. Its positive direction is coun-
terlockwise as shown in F ig . 15. 

The init ial procedure in analysing the compass gait biped is identical. We must first 
deal wi th the swing phase, studying the system's kinematics and dynamics. Then, we wi l l 
look at what happens when the swing leg impacts the ground. 

4.1 Swing Phase M o d e l 

The robot's configuration is described by the two angles 9st and 9SW which form the vector 
of generalized coordinates 

q(t) 
^sw {t) 

We place the origin of the Cartesian coordinate system to the endpoint of the stance leg. 
We denote by x s i the position of mst, by x f t the position of m^, by x s w the position of 

and by x e the position of the endpoint of the swing leg. Similarly, by ±st, xh, ±s 
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and x e we denote the respective velocities. Then 

x s t = a • 

xh + b-

and 

x e = xh + I • 

sm{Vst) 

cos (8 st) 

sin (9st) 

cos (0st) 

• sin (8SW) 

cos (0SIO) 

-sm{Vsw) 

- cos (0slo) 

a6st • 

*-h — Z0si • 

COS [Vst) 

- sin (6st) 

cos (6>st) 

- sin (6st) 

xh + b9s 

xe=±h + 16 s 

-cos\vSW) 

sin (6SW) 

- COS [Vsw) 

sin (6>sw) 

In addition, the line representing the ground is in this coordinate system given by the 
equation 

y = — tan (7) • x. 

Hence, the requirement of the hip and the swing leg's endpoint to stay above the ground 
that we mentioned at the beginning of this section can be represented by the conditions 

cos (6st) > - tan (7) • sin (6st), 

cos (6st) - cos (6SW) > - tan (7) • (sin (6st) - sin (6SW)). 

These conditions can be further simplified into 

71 71 
< 6 s t < - + l 

and 
6st + 6SW > 27 and 6 

st 6Sw 

< 0 for 6SW > 7 

%t + 6SW < 27 and 6st - 6SW > 0 for 6SW < 7 

(4.1) 

(4.2) 

(4.3) 

To derive the dynamics of the system, we wi l l again use Lagrange's method. The kinetic 
energy T and the potential energy U are given by the sums of kinetic and potential energies 
at each point mass. Hence, we have 

T = Tst + Th + Tgyj, 

u = ust + uh + u s w , 

where 

Tst = ^ m z x j 4 x s t = ^mia262

sU 

Th = -mhxhxh = -mhl 6st, 
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Tsw = ]^ni±T

sw±sw = ^mi • (l-0-sl + lrf);ir - 2bWs,Osll. cos v , s l 

and 
Ugt = migxst2 = migacos (9st)., 

Uh = mhgxh2 = mhgl cos (9st), 

Usw = migxsw2 = rriig (I cos (9st) - b cos (9SW)). 

The Lagrangian is again given by 

L = T - U. 

Since an external torque is present in the model, we must use the more general version of 
the Euler-Lagrange equations 

dt 
dL 
<9q 

dL dW 
(9q <9q 

(4.4) 

where W is the work done by external generalized forces. To compute it for our case of 
torque r , first observe that the angle between the two legs is given by 9st — 9SW. Since 
r has counterclockwise direction, the work W can be computed as 

W = —T ' st v sw I T I 'sw vst i 

Because q consists of two states, we wi l l obtain two equations from (4.4). These are usually 
written in the form of the so-called manipulator equations 

M(q)q + C ( q , q ) q = G ( q ) + B ( q ) u . (4.5) 

Here, M(q) is the system's inertia matrix, C(q, q) captures the Coriolis and centrifugal 
terms, G(q) the gravity terms, and B(q)u the external forces. 
For our system, these are given by 

M(q) 
rriia2 + rrihl2 + mil2 

-mibl cos (9st - 9SW) 

—mibl cos (9st 

mib2 

C(q,q) 
0 

mibWst sin I 

G(q) 

-mibl9sw sin (9st - 9SW) 

0 

g sin (9st) • {ma + mhl + mil) 

-gsin (9sw)mib 

and 

B(q) 

u = r. 
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4.2 Collision Analysis 
Now, we wi l l turn our attention to what happens at the moment the swing leg's endpoint 
hits the ground. This occurs when equality is attained in the condition (4.1). However, 
due to our assumption that the swing leg retracts when it is in the air, we disregard the 
possibility of it colliding with the ground when it is behind the stance leg. Put t ing these 
two together and using the simplified version (4.3), we obtain that the collision happens 
when 

9st + 9SW = 2 7 and 9st > 9SW. (4.6) 

It follows from our assumption that the legs' collisions are perfectly inelastic and impul
sive that the procedure to calculate the biped's state right after a collision as a function 
of the state right before the collision is just like in the case of the rimless wheel based on 
the conservation of angular momentum. 

We wi l l denote the state right before the collision by 

'9st(t-)~ 

9Sw{t~) 

9st(t-) 

9sw(t~) 

Similarly, we denote the state right after the collision by 

q(*+) 

q(*+) 

The relationship between q(t~) and q ( t + ) is very simple. The pre-impact stance leg be
comes the new swing leg, and the pre-impact swing leg becomes the new stance leg. 
Essentially, all that occurs there is just relabelling. This can be written as 

q ( t + ) = R - q ( r ) , (4.7) 

where 

(4.8) 

and R stands for relabel. 

To derive the formula for the new velocities q ( t + ) , we wi l l need two equations. The 
first one is the same as in the case of the rimless wheel - the angular momentum of the 
whole mechanism around the point of collision is preserved. The second one comes from 
the preservation of angular momentum for the pre-impact stance leg around the robot's 
hip (see [15]). 
We begin with the equation of conservation of angular momentum around the point of 

q(t") 

q(t") 

9st(t+) 

9sw(t+) 

9st(t+) 

9sw(t+) 

R 
0 1 

1 0 

43 



collision wi th the ground. We first move the coordinate system's origin to x c o Z as depicted 
in F ig . 16. We also change the notation of the positions of the pre-impact stance leg and 
swing leg point masses by x i and x 2 to avoid confusion in regards to the relabelling of 
the legs. 

i 
=1= 

x i . 
x 2 ] 

I 

XcoZ 
-3> 

7 

Figure 16. The compass gait biped just before the collision with the coordinate system's 
origin moved to the point of impact. 

The vectors x 2 , x^, and x i are in this new coordinate system given by 

x 2 = a • 

x i = xh + b • 
sin (9st(t-)) 

cos(0 s t (r)) 

sm (9sw(t )) 

cos (9sw(t~)) 

sm(0sw(t~)) 

cos {9sw(t~)) 

/ s in (9sw(t-))-bsin (9st(t-)) 

I cos (9SW(t~))-b cos (9st(t~)) 

The positions of the point masses stay the same after the impact, but naturally, their 
velocities undergo a discontinuous change. We denote the velocities of x i , x^, x 2 before 
and after impact by v i ( t ~ ) , v^(t~), v 2 ( t~ ) , v i ( t + ) , v ^ ( t + ) , and v 2 ( t + ) , respectively. Unlike 
the positions, they are independent of the origin of the coordinate system. We find them 
by moving the origin to the end of the stance leg (both for the pre-impact and post-impact 
state) and differentiating the positions of the point masses wi th respect to time. It follows 
that 

v i ( r ) = a0 a t (r 
cos(9st(t-)) 

-sm(9st(t-)) 

44 



Vh(r) = wst{r) 
cos (0 s t(r)) 

-sm(9st(t-)) 

v 2 ( r ) = Z0 r t (r) 
cos(0 s t (r)) 

- s i n (0 s t(r)) 
+ b6sw(t-

- cos (9sw(t )) 

s i n ( 0 s l o ( £ - ) ) 

v i ( t + ) = 
cos(0 a t(*+)) 

- s i n (0at(*+)) 

- c o s ( 0 S W ( £ + ) ) 

sm(Bsw(t+)) 

vh(t+) = Wst(t+) 
cos (9st(t+)) 

-sm(est(t+)) 

v 2 (t+) = ar j s t (^ 
cos(0 s < (£+)) 

-sm(est(t+)) 

We denote the angular momenta right around to the point of collision before and after 
the impact by L(co /)(£_) and L^col\t+). We then have 

L(«>0(t~) = x i x mi • v i ( r ) + x h x m h • v h ( r ) + x 2 x m z • v 2 ( r ) , (4.9) 

L M ) ( f + ) = X i x m . V i ( t + ) + X h x m h • v h ( £ + ) + x 2 x mi • v 2 ( t + ) , (4.10) 

and of course 

(4.11) 

This is the first equation for the two unknowns 9st(t+) and 9sw(t+). We obtain the 
second equation by making use of the conservation of momentum for the pre-impact 
stance leg around the hip. We move the origin of the coordinate system to the robot's hip 
(as depicted in F ig . 17) and then compute the new position of x ^ (the superscript (h) is 
there to emphasize the different coordinate system). 
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It is simple to verify that 

- s i n (9st(t-)) 

-cos(9st(t-)) 

A s we said, the velocities are independent of the origin and so we do not have to 
calculate them again. We denote the angular momenta of the pre-impact stance leg around 
the hip right before and after impact by L ^ ( £ ~ ) and L ^ ^ ( t + ) , wi th 

L( f t ' ( r ) = x f ) x m r v 1 ( r ) ; 

LW(*+) = x ? ° x m , - v i ( * + ) . 

B y setting the momenta equal, we get the second equation. 

(4.12) 

(4.13) 

(4.14) 

A s both the equations (4.11) and (4.14) are linear in 9st(t+) and 9sw(t+), we can write them 
in matrix form. B y substituting all of the positions and velocities into these equations, 
we arrive at a system of linear equations 

where 

Q 
nil 

Q+q(£+) = Q_q(r 

-l2 — a2 + bl cos (2a)) — mhl2 

mibl cos (2a) 

mi {—b2 + bl cos (2a)) 

—mfi2 

(4.15) 
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mi (ab — 2al cos (2a)) — rrihl2 cos (2a) miab 

miab 0 

and 

This means that the post-impact vector of velocities is given by the formula 

q ( t + ) = ( Q ; 1 Q - ) q ( t " ) . (4.17) 

Remark. One might wonder why we chose a in this way. The reason is that this, again, 
nicely connects to the rimless wheel model, where 2a was the angle between two successive 
legs. In fact, by choosing a = \- (9st(t~) — 9sw(t~)), this relation holds for the biped, too. 
If we substitute mi = 0 into the matrices Q + and Q _ , we obtain exactly the equation 
(3.11). This makes sense because in the rimless wheel case we assumed the weight of the 
legs to be zero. 

(4.16) 

A t this point, we have all that we need in order to numerically simulate the system. 
Given init ial conditions 9st(0), 9SW(0), 9st(0) and 9SW(0), we solve the system of differential 
equations (4.5), and if the collision condition (4.6) is satisfied, we apply the impact map
ping (4.17), thus obtaining a new set of ini t ial conditions. B y repeating this procedure 
ad infinitum, we can compute the state of the system at each time t. 

4.3 Numerical Simulation of the Compass Gait Biped 
In the previous two sections we derived the swing phase model and the impact model of 
the biped. We now implement a time simulation of the system in the Python programming 
language. 
To handle the data we use the library N u m P y which adds support for n-dimensional ma
trices and usual linear algebra routines such as mult iplying or inverting matrices. In order 
to integrate the system of differential equations governing the swing phase, we utilize the 
library SciPy, particularly its function scipy. i n t e g r a t e . solve_ivp. The function uses 
a Runge-Kut ta method of the fourth order to solve a given init ial value problem. For more 
information regarding the libraries, see [16] and [17]. 

To numerically simulate the system, we need to turn the system of differential equati
ons (4.5), the collision condition (4.6), and the collision transition (4.17) into code. 
We then define a function that takes in ini t ial conditions and a final time T as arguments. 
It first solves the ini t ial value problem for time in the interval (0, T) , then it runs a collision 
detection procedure which returns the time of collision T*. The function then cuts off the 
solution on the rest of the interval, applies the impact transition function and updates its 
ini t ial conditions accordingly. The same procedure is repeated unti l all of time T is used 
up. A t this point, the function returns a list of all the individual swing phase trajectories. 
The code is available in Appendix A . 
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4.4 The Poincare M a p 
Just like before, we introduce a return map for the system in order to convert the pro
blem of finding a limit cycle (representing the biped walking) to the language of discrete 
dynamical systems. We use the same notation as in Subsection 3.3.1. However, this time 
we cannot simplify the analysis and only care about the angular velocity at the beginning 
of each step. Instead, we wi l l define the map for the system's entire state. 
B y 

-1- 7 

we denote the system's state right after its swing leg impacts the ground. This in itself 
defines the return map. However, unlike in the rimless wheel case, we do not have a formula 
for q(t~) for given init ial data q(0). If by <fr~ we denote the state of the system just before 
an impact, wi th ini t ial conditions q(0) = q„, q(0) = q„, then a recursive definition for 
the Poincare map similar to (3.13) and (3.14) can be written in a block matrix form as 

71+1 

R O 

O Q + X Q -
(4.18) 

In this definition, the matrices R, Q _ , and Q + are taken as defined in formulas (4.8), 
(4.15), and (4.16), respectively. The symbol O on the other hand represents a 2 x 2 matrix 
of zeros. 

4.4.1 Fixed Points of the Poincare M a p 

A natural question that immediately follows is if the map introduced in (4.18) has fixed 
points. These points would correspond to periodic solutions of the system, which in turn 
carry the meaning of the biped walking down the slope. Even more intriguing is the 
problem of existence of fixed points for passive walking, i.e. wi th r = 0, simplifying the 
equation (4.5) governing the swing dynamics to 

M(q)q + C (q ,q)q = G(q). (4.19) 

This would indicate that this system which is much more complicated than the simple 
rimless wheel studied in Section 3 would also be able to exhibit a neverending rolling-like 
behavior. 

Indeed, it has been shown (see [2]) that these fixed points can exist, at least for small 
slopes 7. Our goal is to implement a numerical method to search for them. 

4.4.2 Numerical Search for Fixed Points of the Poincare M a p 

To begin, we define the problem that we want to solve. 

Problem 4.1. F i n d an element from the state space $ 1 so that it is a fixed point of the 
Poincare map. 
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Before we introduce the numerical algorithm that solves Problem 4.1, we first refor
mulate it into an equivalent problem that is easier to handle. First , observe that if $ 1 is 
a fixed point, then by definition 

Because given a $ 1 we can find $ 2 numerically, if we introduce a metric d on the state 
space, the problem can then be thought of as the problem of minimizing d(«J?i, $ 2 ) - This 
is justified because any metric is non-negative and attains 0 if and only if the two elements 
are equal. Since the state space is a subset of M 4 , we can use the usual Euclidean metric. 

Next, consider that for $x to be a fixed point of the Poincare map, it must necessa
rily lie on the impact surface defined by (4.6), only wi th 9st and 9SW swapped because 
$ 1 represents the state right after a collision (refer to (4.7)). This allows us to reduce the 
dimension of the set of admissible states among which we are looking for the "best" one. 

However, we do not even have to search exactly for states that lie on the impact 
surface. A n y state that belongs to the trajectory that starts wi th ini t ial conditions that 
lead to a perodic solution solves the problem. From the nature of the system, we know 
that this periodic solution must pass through the hyperplane 

9st = 0SW. (4.20) 

This is so because at the beginning of the step the state angles satisfy 9st < 9SW, and at 
the end we have 9st > 9SW instead. Because the functions 9st(t) and 9sw(t) are continuous 
in the swing phase, there must exist a time t* when 9st(t*) = 9sw(t*). 

This reasoning leads us to redefining Problem 4.1 as follows. 

Problem 4.2. F i n d ini t ial conditions (9st(0), 0SW(0), 0st(0), 0SW(0)) satisfying 
#st(0) = 9SW(0) such that g?(<&i, $ 2 ) is minimized, where 

4 

d ( * i , * 2 ) = X ; ( * 2 i - * i i ) 2 

i=l 

The choice of sampling the trajectory at 9st = 9SW has the added benefit that we can 
at least have a rough estimate of the position of the ini t ial conditions in the state space. 
Namely, one can expect that 9st(0) is very close to 0, 9st(0) is positive, and that 9SW(0) is 
negative. These assumptions are of substantial help when it comes to the time complexity 
of any potential algorithm. 

We implement the minimization algorithm in Python, using the solver described in 
Subsection 4.3. To begin, we must define the feasible region QF and the objective function. 
The set of feasible solutions (Ogt, 9st, 0SW\ is a subset of M 3 satisfying the assumptions 
outlined in the paragraph above. For small slopes of 7 < 0.06, we found 

nF = (-0.2,0.2) x (0,1) x ( -3 ,0 ) 
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to be a good starting point. 
The objective function should return a positive value to each element of the feasible re
gion. If (xi, X2, £3) G £IF, then the function first creates an init ial condition 
#st(0) = xi,9sw(0) = xi,9st(0) = X2,9sw{fy = ^3 according to (4.20), and then runs the 
solver described earlier. If the solution does not successfully complete at least two cycles, 
it is discarded. O n the other hand, if it does, the objective function returns the value 
d(<$>1,<$>2) defined in Problem 4.2. 

The function that minimizes the objective function on ftp is divided into two phases. 
First , it runs a simple brute-force grid search over fip to find a very rough first estimate. 
In the second phase, we increase the time-step density for our solver to decrease the error 
caused by inaccurate collision detections, run it, and collect the last <fr„ in the sequence. 
The code is available in Appendix B . 

A n example of the result for a particular set of parameters is given in F ig . 18. V i su 
alizing the solution is inherently trickier than in the case of the rimless wheel because of 
the higher dimension of the problem. However, for periodic solutions, one leg's trajectory 
is the same as the other one's is in the next cycle. F ig . 18 shows one full cycle, the top 
part being the trajectory of the stance leg, and the bottom part that of the swing leg. 
The collision transition is indicated by the dashed lines. 

Figure 18. A periodic solution of the system found for the parameters nth = 10, vrti = 
5, a = 0.5, b = 0.5, g = 9.81, 7 = 0.04 and init ial conditions 
M0) = -0.207, M0) = 0.287, M0) = 1.041, 9SW{0) = 0.481). 
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5 Conclusions 
This thesis dealt with mathematical models of walking robots. In particular, the rimless 
wheel model and the compass gait biped model were chosen for study. The thesis is divi
ded into three main chapters. 
In the first chapter, some of the necessary mathematical apparatus was introduced. This 
includes the theory of dynamical systems. The differences between continuous, discrete, 
and hybrid systems were explained. Some definitions connected to the notion of stability 
were also stated. The link between continuous and discrete systems in the form of the 
Poincare map was explained. A brief mention of Euler-Langrange equations was included 
as well. 

The topic of the second chapter was the rimless wheel model. A short description of 
the model was followed up by a derivation of the differential equation governing its swing 
phase (see (3.2)). Formulas for the angular velocity at the end of the step wi th respect to 
the ini t ial angular velocity were derived for the forward, the backward, and the rocking 
regimes of the wheel (see (3.5), (3.8), and (3.10), respectively). The impact model based 
on the law of conservation of angular momentum was derived in Subsection 3.2. The loss 
of energy due to dissipation was also obtained in (3.12). 
Next, the long-term behavior of the wheel was examined. The analysis was approached 
via the introduction of a Poincare map, thus transforming the question of stability of 
possible periodic cycles of the hybrid system into a discussion of stability of the map's 
fixed points. Some of the map's properties used in later theorems were stated and proved 
in Section 3.3.2. The conditions for the map's fixed points' existence were derived. It was 
shown that the map has only two possible fixed points, oo*stop (corresponding to the wheel's 
motion stopping) and u*oU (corresponding to the wheel's moving downwards at constant 
speed). Formulas for the values of fixed points based on the parameters specifying the 
model were also presented. 
Then, theorems regarding the conditions for stability of these fixed points were stated 
and proved. It was shown that the region fi(Qj7) of admissible angles a and 7 can be divi
ded into five disjunctive subregions for which the long-term behavior of the wheel differs. 
Precise formulas for the regions of attraction of both fixed points for each subregion of 
^ ( 0 , 7 ) were found. 
The results of the second chapter were summarized in Subsection 3.4. A table (see Table 
1) discussing the properties of the fixed points and their regions of attraction for each of 
the subregions of fi(Q,7) was included, as well as a visualization of fi(Q,7) in F ig . 14. 

The thi rd chapter deals wi th the compass gait model. The model and its assumptions 
were described and explained. The system of differential equations controlling its swing 
phase was derived and written in the form of the manipulator equations (4.5). 
The collision conditions were found and stated in (4.3). The impact model based on the 
two instances of conservation of angular momenta was derived. The momentum must be 
conserved for the whole mechanism around the point where the swing leg collides wi th 
the ground, and also for the stance leg around the biped's hip. The impact model was 
summarized in formulas (4.8) and (4.17). 
Analogically to the rimless wheel, a Poincare map was defined for the biped. A solver for 
the model was implemented in Python. Finally, a method for finding fixed points of the 
Poincare map corresponding to the biped's walking down the ramp was also implemented. 
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The Python files were included in the appendix. 

The main goals of the thesis were achieved. The hybrid dynamical systems underlying 
the two chosen models were derived, together wi th ample explanations of the techniques 
used. Most of the work was done on the rimless wheel model, where a comprehensive 
analysis was carried out. The model's long term behavior is essentially "solved" in the 
thesis. For the other model, the tools used for the rimless wheel were transformed into 
numerical methods. However, here, more work could have been done in regard to the con
trol of the biped via the actuator placed in its hip. In this aspect, the thesis is incomplete. 
Nevertheless, it turns out that the control of the presented bipedal robot involves many 
aspects that have to be taken into consideration. 

There are many possible directions by which the thesis can be followed up on. After 
all , the two chosen models are only a tiny part of the growing field of robotic walking. For 
instance, the compass gait biped model can be improved by adding knee joints to each of 
the legs. This idea is demonstrated for example in [18]. 
Another possibility is the use of control theory techniques to enlarge the stability region 
of the biped's passive gait. A n example of this approach is described in [19]. 
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Appendix A : The Compass Gait Biped Solver 

1 import math 
2 import nurtipy as np 
3 from s c i p y import i n t e g r a t e 
4 
5 '''The p a r a m e t e r s s p e c i f y i n g t h e compass g a i t model''' 
6 gamma = 0.04 
7 g = 9.81 
8 a = 0.5 
9 b = 0.5 

10 1 = a + b 
11 m_h = 10 
12 m_l = 5 
13 t a u = 0 
14 
15 '''The s y s t e m o f d i f f e r e n t i a l e q u a t i o n s g o v e r n i n g t h e s w i n g phase model. 
16 As an i n p u t , i t t a k e s t h e t i m e and c u r r e n t s t a t e o f t h e sy s t e m . I t r e t u r n s t h e 

r i g h t - h a n d s i d e o f 
17 t h e e q u a t i o n x d o t = f ( x ) . ' ' ' 
18 
19 def d i f f e q ( t , s t a t e ) : 

x _ l = s t a t e [ 0 ] 
x_2 = s t a t e [ 1 ] 
x_3 = s t a t e [2] 
x_4 = s t a t e [ 3 ] 

24 
25 #The m a t r i c e s M, C, G, and B d e f i n e d i n S u b s e c t i o n 4.1 
26 M = n p . m a t r i x ( [ [ m _ l * a * a + m _ h * l * l + m _ l * l * l , - m _ l * b * l * m a t h . c o s ( x _ l - x _ 2 ) ] , 

[ - m _ l * b * l * m a t h . c o s ( x _ l - x _ 2 ) , m _ l * b * b ] ] ) 
C = n p . m a t r i x ( [ [ 0 , - m _ l * b * l * x _ 4 * m a t h . s i n ( x _ l - x _ 2 ) ] , [ m _ l * b * l * x _ 3 * m a t h . s i n ( x _ l -
x _ 2 ) , 0 ] ] ) 
G = n p . m a t r i x ( [ [ g * m a t h . s i n ( x _ l ) * ( m _ l * a + m_h*l + m _ l * l ) ] , [ - g * m a t h . s i n ( x _ 2 ) * m _ l * b ] ] ) 

29 B = n p . m a t r i x ([ [-1] , [ 1 ] ] ) 
u — t a u 

31 a c c = n p . l i n a l g . i n v ( M ) * ( - C * n p . m a t r i x ( [ [ x _ 3 ] , [ x _ 4 ] ] ) + G + B*u) 
32 

return [ x _ 3 , x_4, f l o a t ( a c c [ 0 ] ) , f l o a t ( a c c [ 1 ] ) ] 
34 
35 
36 '''The f u n c t i o n t h a t d e t e c t s t h e t i m e o f c o l l i s i o n b a s e d on an i n p u t o f a r r a y s o f 

t h e t a s t and t h e t a sw 
37 a c c o r d i n g t o t h e c o l l i s i o n c o n d i t i o n s (4.2) and ( 4 . 3 ) . ' ' ' 
38 
39 def d e t e c t c o l l i s i o n ( a r r 1, a r r 2 ) : 
40 f o r i i n r a n g e ( l e n ( a r r 1 ) ) : 
41 i f a r r 1 [ i ] + a r r 2 [ i ] > 2*gamma and a r r 1 [ i ] > a r r 2 [ i ] : 
42 r e t u r n [ i , ' l e g ' ] 
43 i f a r r 1 [ i ] > mat h . p i / 2 + gamma or a r r 1 [ i ] < -math.pi/2 + gamma: 

r e t u r n [ i , ' h i p ' ] 
45 

return [ l e n ( a r r 1) - 1, ' n o t h i n g ' ] 
47 
48 
49 '''The s o l v e r o f t h e compass g a i t b i p e d model. I t t a k e s an i n i t i a l c o n d i t i o n , a f i n a l 

t i m e , and d e n s i t y o f 
50 t h e t i m e i n t e r v a l as i n p u t s . By d e n s i t y , we mean t h e number o f i n t e r p o l a t i o n p o i n t s 

i n t h e i n t e r v a l [0, T ] . 
51 I t r e t u r n s t h e c o l l e c t i o n o f i n d i v i d u a l s w i n g phase t r a j e c t o r i e s . ' ' ' 
52 
53 def s i m u l ( s t a t e , T, d e n s i t y ) : 
54 s t a t e = s t a t e 
55 bad = False 
56 

t o t a l t i m e = T 
t i m e s u b t r a c t e d = 0 

60 
while ( t o t a l t i m e > 0 ) : 

55 



t i m e r a n g e = [0, t o t a l t i m e ] 
t = n p . l i n s p a c e (0, t o t a l t i m e , d e n s i t y ) 

64 t r a j = i n t e g r a t e . s o l v e i v p ( d i f f e q , t i m e r a n g e , s t a t e , dense output=True) 
65 t r a j = t r a j . s o l ( t ) 
66 

[ i n d e x , c o l l i s i o n ] = d e t e c t _ c o l l i s i o n ( t r a j [ 0 ] , t r a j [ 1 ] ) 
# If a c o l l i s i o n o f t h e h i p w i t h t h e g r o u n d o r an e x t r e m e l y s h o r t s w i n g phase 
t i m e c o r r e s p o n d i n g 
#to t h e b i p e d s t u m b l i n g i s d e t e c t e d , t h e f u n c t i o n t e r m i n a t e s , 

i f c o l l i s i o n i s ' h i p ' o r t [ i n d e x ] < 0.05: 
new t r a j = [ t [ : i n d e x ] + t i m e s u b t r a c t e d , t r a j [0] [:index] , t r a j [1] [:index] , 
t r a j [ 2 ] [ : i n d e x ] , t r a j [ 3 ] [ : i n d e x ] ] 
t r a j e c t o r i e s . a p p e n d ( n e w t r a j ) 

73 bad = T r u e 
r e t u r n [ t r a j e c t o r i e s , bad] 

75 
i f c o l l i s i o n i s ' n o t h i n g ' : 

t r a j e c t o r i e s . a p p e n d ( [ t + t i m e s u b t r a c t e d , t r a j [ 0 ] , t r a j [ 1 ] , t r a j [ 2 ] , 
t r a j [ 3 ] ] ) 
t o t a l t i m e -= T 

79 
80 #If a c o l l i s i o n o f t h e s w i n g l e g w i t h t h e g r ound i s d e t e c t e d , t h e r e m a i n i n g 

p o r t i o n o f t h e t i m e i n t e r v a l 
81 #is d i s c a r d e d and a new s w i n g phase s t a r t s , w i t h i n i t i a l c o n d i t i o n s 
82 #based on t h e f o r m u l a s (4.7) and ( 4 . 1 7 ) . 
83 e l s e : 

new t r a j = [ t [ : i n d e x ] + t i m e s u b t r a c t e d , t r a j [0] [:index] , t r a j [1] [:index] , 
t r a j [2] [:index] , t r a j [3] [ : i n d e x ] ] 

85 t r a j e c t o r i e s . a p p e n d ( n e w t r a j ) 
86 a l p h a = 0.5* ( t r a j [0] [ i n d e x ] - t r a j [1] [ i n d e x ] ) 

Q _ l = n p . m a t r i x ( [ [ m _ l * ( - 1 * 1 -a*a + b * l * m a t h . c o s ( 2 * a l p h a ) ) - m _ h * l * l , 
m _ l * ( - b * b + b * l * m a t h . c o s ( 2 * a l p h a ) ) ] , [ m _ l * b * l * m a t h . c o s ( 2 * a l p h a ) , - m _ l * b * b ] ] ) 
Q_2 = n p . m a t r i x ( [ [ m _ l * ( a * b - 2 * a * l * m a t h . c o s ( 2 * a l p h a ) ) -
m _ h * l * l * m a t h . c o s ( 2 * a l p h a ) , m _ l * a * b ] , [m_l*a*b, 0 ] ] ) 
o l d _ v e l s = n p . m a t r i x ( [ [ t r a j [2] [ i n d e x - 1 ] ] , [ t r a j [3] [ i n d e x - 1 ] ] ] ) 
new v e l s = n p . l i n a l g . i n v ( Q 1)*Q 2 * o l d v e l s 
s t a t e = [ t r a j [1] [ i n d e x - 1 ] , t r a j [0] [ i n d e x - 1 ] , f l o a t ( n e w _ v e l s [ 0 ] ) , 
f l o a t ( n e w v e l s [ 1 ] ) ] 
t o t a l t i m e -= t [ i n d e x - 1] 
t i m e s u b t r a c t e d += t [ i n d e x - 1] 

r e t u r n [ t r a j e c t o r i e s , bad] 
95 
96 ' ' ' I n i t i a l c o n d i t i o n s [ t h e t a s t , t h e t a sw, d o t t h e t a s t , d o t t h e t a s w ] ' ' 1 

97 s t a t e = [-0.207410345012582327 0.287418992418885, 1.0409143102934366, 0.480818114159959] 
98 
99 '''The s i m u l a t i o n ' s f i n a l t i m e ' ' 1 

100 T = 10 
101 
102 ' ' ' D e n s i t y o f t h e t i m e i n t e r v a l ' ' 1 

103 d e n s i t y = 500000 
104 
105 [ s o l u t i o n , bad] = s i m u l ( s t a t e , T, d e n s i t y ) 
106 i f bad: 
107 p r i n t ( ' T h e h i p o f t h e r o b o t has c o l l i d e d w i t h t h e ground.') 



Appendix B : Numerical Search for Passive Gaits 

1 '''THE COMPASS GAIT BIPED SOLVER s i m u l { ) IS REQUIRED TO RUN THIS SCRIPT''' 
2 
3 
4 
5 '''The c o s t f u n c t i o n b a s e d on t h e E u c l i d e a n m e t r i c . F o r e v e r y s t a t e i t r e t u r n s a 

n o n - n e g a t i v e 
6 number m e a s u r i n g how c l o s e i t i s t o t h e p a s s i v e g a i t s t a t e . ' ' 1 

7 def c o s t f u n c t i o n ( s t a t e , d e n s i t y ) : 
8 T = 5 

[ s o l u t i o n , bad] = s i m u l ( s t a t e , T, d e n s i t y ) 
10 # i f t h e s o l u t i o n does n o t have a t l e a s t two c y c l e s o r i t s h i p c o l l i d e s w i t h t h e 

ground, 
11 #the f u n c t i o n r e t u r n s an a r t i f i c i a l p e n a l t y 
12 i f l e n ( s o l u t i o n ) < 3 or bad: 
13 c o s t = 1000 
14 ^ o t h e r w i s e , i t r e t u r n s t h e e u c l i d e a n m e t r i c between two s u c c e s s i v e P o i n c a r e maps 
15 e l s e : 

s 1 = s o l u t i o n [1] 
s 2 = s o l u t i o n [2] 

18 c o s t = (s_2 [1] [ 0 ] - s _ l [1] [0] ) **2 + ( s _ 2 [ 2 ] [ 0 ] - s _ l [ 2 ] [0] ) **2 + 
( s _ 2 [ 3 ] [ 0 ] - s _ l [ 3 ] [ 0 ] ) * * 2 + ( s _ 2 [ 4 ] [ 0 ] - s _ l [ 4 ] [0] ) **2 

19 return c o s t 
20 
21 ' ' 'A wrapper f o r t h e c o s t f u n c t i o n b a s e d on t h e i n s i g h t s d e s c r i b e d i n S u b s e c t i o n 4.4.2' ' 1 

22 def c o s t _ w r a p p e r ( p a r a m s , d e n s i t y ) : 
return c o s t f u n c t i o n ( [ p a r a m s [ 0 ] , p a r a m s [ 0 ] , p a r a m s [ 1 ] , p a r a m s [ 2 ] ] , d e n s i t y ) 

24 
25 '''A b a s i c g r i d s e a r c h f o r a s u b s e t o f t h e R A3 spa c e d e f i n e d by t h e 'ranges' argument. 
26 I t p a r t i t i o n s t h e s u b s e t i n t o n A 3 e v e n l y s p a c e d g r i d p o i n t s and e v a l u a t e s t h e 

f u n c t i o n ' f ' a t 
27 each one o f them. I t r e t u r n s t h e l o w e s t v a l u e o f f and i t s m i n i m i z e r . ' ' 1 

28 def g r i d s e a r c h ( f , r a n g e s , n, d e n s i t y ) : 
s t e p s i z e = [] 
f o r i i n r a n g e s : 

31 s t e p s i z e . a p p e n d ( ( i [ l ] - i [ 0 ] ) / ( n - 1 ) ) 
32 

g l o b _ m i n = 1000 
x min = [ranges [0] [0] , r a n g e s [1] [0] , ranges [2] [0] ] 
f o r i i n r a n g e ( n + 1 ) : 

f o r j i n range (n+1) : 
f o r k i n r a n g e ( n + 1 ) : 

x = [ranges [0] [0] + i * s t e p s i z e [0] , ranges [1] [0] + j * s t e p s i z e [1] , 
ranges [2] [0] + k * s t e p s i z e [2]] 
v a l = c o s t w r a p p e r ( x , d e n s i t y ) 

4 0 i f v a l < g l o b min: 
41 g l o b min = v a l 
42 x min = x 

return [x m i n , g l o b min] 
44 
45 '''The main f u n c t i o n . I f t h e r e e x i s t s one, i t f i n d s t h e f i x e d p o i n t o f t h e P o i n c a r e map 
46 i n t h e s u b s e t o f R A3 s p e c i f i e d by t h e argument 'bounds'. The v a l u e 'n' s p e c i f i e s t h e 
47 p a r t i t i o n o f t h e s u b s e t f o r t h e i n i t i a l g r i d s e a r c h . The arguments ' i n i t i a l d e n s i t y ' 

and ' f i n a l d e n s i t y ' 
48 s p e c i f y t h e d e n s i t y o f t h e t i m e i n t e r v a l p a r t i t i o n f o r t h e compass g a i t b i p e d 

s o l v e r . ''' 
49 def f i n d p a s s i v e g a i t ( b o u n d s , n, i n i t i a l d e n s i t y , f i n a l d e n s i t y ) : 
50 #phase 1: a g r i d s e a r c h i n t h e r e g i o n s d e f i n e d by bounds 
51 [x 0, c o s t ] = g r i d s e a r c h ( c o s t w r a p p e r , bounds, n, i n i t i a l d e n s i t y ) 
52 
53 #phase 2: t a k e t h e g r i d s e a r c h s o l u t i o n as an i n i t i a l guess and r u n t h e s o l v e r w i t h 

a h i g h e r 
54 #time i n t e r v a l d e n s i t y so t h a t i t c o n v e r g e s t o a b e t t e r s o l u t i o n n a t u r a l l y w h i l e 

m i n i m i z i n g t h e e r r o r 
55 #caused by an i n a c c u r a t e c o l l i s i o n d e t e c t i o n 
56 T = 10 
57 [ s o l u t i o n , bad] = s i m u l ( [ x _ 0 [ 0 ] , x _ 0 [ 0 ] , x _ 0 [ l ] , x _ 0 [ 2 ] ] , T, f i n a l _ d e n s i t y ) 
58 return [ [ s o l u t i o n [-1] [1] [0] , s o l u t i o n [-1] [2] [0] , s o l u t i o n [-1] [3] [0] , 

57 



s o l u t i o n [-1] [4] [0] ] , c o s t ] 
59 
60 a _ l = -0.2 
61 b _ l = 0.2 
62 a_2 = 0 

b_2 = 1 
64 a_3 = -3 
65 b_3 = 0 

n = 8 
67 bounds = ( ( a 1, b _ l ) , ( a _ 2 , b _ 2 ) , ( a _ 3 , b_3)) 
68 i n i t i a l _ d e n s i t y = 1000 
69 f i n a l _ d e n s i t y = 500000 
70 
71 [ o m e g a _ r o l l , c o s t ] = f i n d _ p a s s i v e _ g a i t ( b o u n d s , n, i n i t i a l _ d e n s i t y , f i n a l _ d e n s i t y ) 

p r i n t ( o m e g a _ r o l l ) 
7 3 p r i n t ( c o s t ) 



List of Abbreviations and Symbols 

K. the set of real numbers 

N the set of natural numbers (starting wi th 1) 

Z the set of integers 

d a metric 

/ " an iteration of n compositions of the function / 

L the Lagrangian of a system 

T the kinetic energy of a system 

U the potential energy of a system 

W the work done by generalized external forces 

g gravitational acceleration 

I the length of a leg 

m the mass of the rimless wheel 

7 the angle of the ramp's slope 

a one half of the angle between two legs 

9 the angle of the rimless wheel's stance leg 

fi(Q,7) the region of possible configurations of a and 7 for the 
rimless wheel 

fli, fl2, ^ 3 , ^ 4 , ^ 5 disjunctive partitions of fi(Q,7) 

q the vector of generalized coordinates 

Uf the critical angular velocity for making a step forward 
defined in (3.4) 

Ub the critical angular velocity for making a step back
ward defined in (3.7) 

L angular momentum 

9n the angular velocity of the wheel right after the nth 

collision 

Hi,H2,H the sets of heteroclinic orbits of the rimless wheel and 
their union as defined in Definition 3.6 

59 



u*stopiuroii fixed points of the Poincare map 

RA(oo*top), RA{OJ*0U) the fixed points' regions of attraction 

a the distance of the compass gait biped's leg mass from 
the leg's endpoint 

b the distance of the compass gait biped's leg mass from 
the hip 

nih the mass of the biped's hip 

mi the mass of each of the biped's legs 

9st the angle of the biped's stance leg 

9SW the angle of the biped's swing leg 

R the relabel matrix defined in (4.8) 

Q + ,Q_i__ the impact matrices defined in (4.15) and (4.16) 

<&n the state of the biped right after the nth collision 
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