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Abstract 

 The oil and gas industries are encountering various challenges and concerns pertaining to the 

processing and management of data. A substantial quantity of data is generated through a variety 

of techniques and processes. The implementation of a comprehensive technical analysis of this 

database is necessary in order to enhance the operational efficiency of the oil and gas sectors. This 

paper presents a thorough and up-to-date review of the current state of machine learning and 

artificial intelligence research as applied to addressing challenges within the oil and gas industry. 

This extensively researched and thorough study can serve as a definitive resource for machine 

learning applications in the industry. The conducted review revealed that machine learning 

techniques possess significant potential for addressing challenges across various domains within 

the oil and gas industry, encompassing prediction, classification, and clustering tasks. The oil and 

gas industry are currently generating vast amounts of data on a daily basis. As a result, there is a 

growing need for the implementation of machine learning and big data handling techniques in 

order to enhance the efficiency of the industry. This study offers a comprehensive analysis of the 

various applications and use cases of artificial intelligence (AI) and machine learning (ML) 

techniques within the petroleum industry. Specifically, it focuses on how these techniques can be 

utilized to optimize upstream processes, including reservoir studies, drilling, and production 

engineering. 

 

Anotace 

 Ropný a plynárenský průmysl se setkává s různými problémy týkajícími se zpracování a 

správy dat. Podstatné množství dat je generováno prostřednictvím různých technik a procesů. 

Zavedení komplexní technické analýzy této databáze je nezbytné pro zvýšení provozní účinnosti 

ropného a plynárenského sektoru. Tato práce představuje aktuální přehled současného stavu 

výzkumu v oblasti strojového učení a využití umělé inteligence při řešení problémů v ropném a 

plynárenském průmyslu. Tato rozsáhlá a důkladná studie může sloužit jako zdroj pro využívání 

strojového učení v průmyslu. Provedený výzkum odhalil, že techniky strojového učení mají 

významný potenciál pro řešení problémů napříč různými oblastmi v rámci ropného a 

plynárenského průmyslu, včetně úloh predikce, klasifikace a shlukování. Ropný a plynárenský 

průmysl v současné době denně generuje obrovské množství dat. V důsledku toho roste potřeba 
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implementace technik strojového učení a zpracování velkých dat, což bude mít za následek zvýšení 

efektivity tohoto odvětví. Tato studie nabízí komplexní analýzu různých případů využití technik 

umělé inteligence (AI) a strojového učení (ML) v ropném průmyslu. Konkrétně se zaměřuje na to, 

jak lze tyto techniky využít k optimalizaci předřazených procesů, včetně studií nádrží, vrtání a 

výrobního inženýrství. 
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1. Introduction  

Artificial intelligence (AI) is the study of how to combine human intelligence and computing 

capacity to tackle extremely complex, highly nonlinear problems. Artificial intelligence (AI) 

enables computers to independently reason and make decisions. Machine learning (ML) is a 

subfield of AI that provides statistical methods for investigating and analyzing large data sets. ML 

also includes supervised, unsupervised, and reinforced learning as subgroups. When historical or 

labelled data is available for function approximation-based forecasting of the future, supervised 

learning is the data learning strategy employed. In the absence of labelled historical data, machine 

learning techniques such as unsupervised learning are frequently used for clustering. Combining 

supervised and unsupervised learning methods to provide reinforcement learning when some data 

is labelled, and some is not. 

Hydrocarbon reservoirs have been discovered at greater depths and in more remote locations. 

The daily demand for materials derived from petroleum is increasing (Lantham, 2019). Companies 

must therefore implement measures aimed at optimizing production, reducing costs, and mitigating 

the environmental effects of hydrocarbon production. Traditional methods for the exploration, 

production, and management of hydrocarbon resources cannot be utilized to achieve these 

objectives. Nonetheless, organizations have the potential to increase their profitability through the 

efficient application of data-driven technologies if they utilize cutting-edge strategies and 

advanced modelling techniques. The mathematical methods utilized in this context are founded on 

the conservation of mass, momentum, and energy. In contrast, empirical approaches are founded 

on prior observations and experimental information. The limitations of mathematical methods in 

various operational scenarios and the imprecision of empirical methods necessitate the use of a 

number of simplifying assumptions when employing these approaches. As a result, their ability to 

manage complex relationships, noise, and incomplete data is diminished.  

In the context of exploration and production activities, a multiplicity of daily operational 

processes generates vast quantities of data. These databases have the potential to be utilized in 

data-driven methodologies and the interpretation of massive amounts of data, thereby facilitating 

the development of effective decision-making strategies. Using these models improves and 

optimizes the production of hydrocarbons (Hamzeh, 2016). 
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1.1. Objective 

This research will primarily focus on analyzing and shedding light on AI-derived technologies 

so that future applications of these technologies can be better understood. This paper will focus 

primarily on the following aspects of petroleum operations: reservoir engineering, exploration, 

production, and drilling. Following a review of these topics, we will then examine the potential 

future applications of the technology before concluding. 
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2. AL and ML (background) 

The technology of artificial neural networks (ANN) possesses a variety of desirable 

characteristics, including adaptive learning, self-organization, defect tolerance, real-time 

operation, and seamless integration with existing systems. Neural networks are capable of adapting 

and learning from input stimuli, enabling them to recognize patterns without prior knowledge of 

the underlying models or functional relationships. Neural networks can independently organize or 

generate a unique representation of the data they are presented with. Machine Learning is 

considered a subfield of Artificial Intelligence as a whole. To obtain insight into the potential for 

hydrocarbon extraction, the oil and gas industries collect a vast amount of data from both surface 

and subsurface sources. The sensors are widely acknowledged as the primary method for collecting 

voluminous amounts of data. In order to plot and analyze the data, technical analysis and 

intervention are required. Methods of machine learning establish a correlation between input 

variables and predict the output. In the discipline of machine learning, the tangible behavior of the 

system remains unchanged and unaltered. The oil and gas industries generate a vast amount of 

data, and establishing correlations between these data is a complex process. Multiple input and 

output signals connected by synaptic weights are incorporated into artificial neural networks 

(ANNs). The artificial neural network (ANN) model computes the weighted sum of inputs and 

their respective weights, which is then transmitted through a transfer function to generate the 

layer's output. Increasing the model's number of hidden layers improves its convolutional and 

nonlinear properties. There are two distinct calculations involved in the computation of concealed 

and output nodes: summation and transformation. These calculations are carried out using active 

functions, which may be linear or non-linear (Nyein et al., 2018). Several AI algorithms are listed 

below: 

2.1. Artificial Neural Network (ANN) 

Deep Learning is widely acknowledged as a subfield encompassed within the broader domain 

of Machine Learning. Deep learning encompasses the utilization of a computational framework 

referred to as an Artificial Neural Network (ANN) to acquire knowledge and comprehension of 

patterns and concepts within data. Neural networks represent a category of algorithms that are 

frequently utilized in the field of machine learning for the purpose of data modelling. The 

application of deep learning algorithms in the oil and gas sector enables the effective handling of 
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large datasets, leading to enhanced performance in the presence of significant data volumes. Deep 

learning algorithms possess the ability to perform complex operations that exceed the capabilities 

of conventional machine learning algorithms. The inputs are subject to processing within neural 

networks. Artificial Neural Networks (ANNs) have demonstrated significant efficacy as a machine 

learning methodology for tackling intricate problems. Artificial Neural Networks (ANN) are 

widely utilized in the oil and gas industries to tackle complex and nonlinear problems that cannot 

be adequately addressed through linear relationships. The Feed Forward Artificial Neural Network 

(FF-ANN) is a neural network architecture that facilitates the transmission of information in a 

unidirectional manner, specifically in the forward direction. This type of network incorporates 

hidden neurons (Ashena and Thonhauser, 2015). The utilization of neural networks in the 

petroleum sector encompasses a range of domains, such as seismic pattern recognition, drill bit 

diagnosis, improvement of gas well production, identification of sandstone lithofacies, and 

prediction and optimization of well performance (Ali, 1994).  

The utilization of artificial neural network (ANN) models facilitates the prediction of pipeline 

conditions, thereby empowering operators to evaluate and forecast the state of pipelines (Tabesh 

et al., 2009). The application of a machine learning model facilitates the estimation of the 

percentage of sand content within a reservoir. The seismic impedance, instantaneous amplitude, 

and frequency were the input parameters employed in this study. The schematic representation of 

a neural network is depicted in Figure 1. 

 

Figure 1. Flowchart of neural network (Sircar et al., 2021). 
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2.2. Fuzzy logic 

Neuro-Fuzzy techniques are frequently utilized in research pertaining to the optimization of 

well placement in various fields. The application of the Neuro-Fuzzy methodology has led to a 

decrease in the duration needed for achieving satisfactory placement (Zarei et al., 2008). A fuzzy 

logic model may be developed to assess the reservoir characteristics of three offshore gas wells 

situated in Iran (Ilkhchi et al., 2006). The researchers conducted a prediction concerning the 

permeability of rock within a gas reservoir. The approach is beneficial for identifying patterns 

within datasets of considerable magnitude. The present study investigates the behavior of a 

reservoir as a means of cost-effectively and efficiently recovering hydrocarbon resources. 

2.3. Genetic algorithm 

The Genetic Algorithm (GA) is an algorithm that is derived from Charles Darwin's theory of 

natural evolution. The algorithm utilizes the process of natural selection. The offspring with the 

highest level of excellence are chosen to contribute to the population of the succeeding generation. 

The researchers obtained similar results for both of the genetic algorithm methodologies. The 

utilization of the genetic algorithm methodology is implemented in order to ascertain the most 

advantageous arrangement of multilateral wells within a reservoir that exists in three dimensions. 

A well placement framework in combination with a genetic algorithm was employed to 

proficiently handle diverse numbers of producers and injectors (Yeten et al., 2003). The utilization 

of the genetic algorithm (GA) has been observed in the domains of oil field growth, production 

scheduling, seismic inversion, and the analysis of reservoir characteristics (Velez-Langas, 2005). 

2.4. Linear regression  

Linear regression is a commonly employed method for conducting statistical analysis. Linear 

regression involves the examination of the correlation between process variables. Projections 

regarding global oil production are formulated through the utilization of models that rely on both 

linear and nonlinear regression techniques. In comparison to alternative methodologies, the inverse 

regression model exhibited superior performance. It is projected that the global oil production will 

attain a volume of 4593 Mt by the year 2020 (Aydin, 2014). The analysis of authentic well logging 

data involves the utilization of multiple linear regression models. The utility of the model has been 

demonstrated to identify and analyze patterns within oil and gas layers (Peng et al., 2016). 

Regression analysis on the variables have the potential to influence the future economic aspects of 
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crude oil (Wang and Liu, 2017). Regression modelling was developed utilizing statistical 

methodologies. 

2.5. Principal component analysis (PCA) 

Principal Component Analysis (PCA) is a statistical methodology that utilizes prominent 

patterns and trends present in extensive datasets to aid in the prediction of production outcomes. 

The application of principal components methodology is frequently utilized in forecasting 

production from reservoirs that contain substantial quantities of liquid-rich shale. The principal 

component was computed utilizing the Singular Value Decomposition (SVD) method. Makinde 

and Lee (2019) conducted a study wherein they utilized derived principal components to generate 

predictions pertaining to oil production. The application of the model demonstrated its 

effectiveness in accurately forecasting production results.  

The methodology utilized for the mapping of channelized reservoirs involved the application 

of Cumulative Distribution Function based Principal Component Analysis (CDF-PCA). Findings 

have been presented that showcased the enhanced and consistent outcomes achieved through the 

utilization of CDF-PCA in combination with geological facies, reservoir properties, and production 

forecast model (Chen et al., 2014). Principal component analysis was utilized to assess the 

sustainability of the natural gas industry in China. The process of identifying and assessing the 

sustainability index of natural gas was carried out using Principal Component Analysis (PCA). 

This can be attributed to the concurrent expansion in both demand and supply. 
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3. Application of AI and ML in oil and gas industry   

3.1. Reservoir engineering 

The process of reservoir characterization is of utmost importance as it involves the quantitative 

determination of several parameters, including porosity, permeability, fluid properties, and other 

pertinent characteristics, for the reservoir. The objective of this practice is to improve the 

understanding of the characteristics and dynamics of the reservoir. The exact measurement of the 

Pressure-Volume-Temperature (PVT) properties of reservoir oils is crucial for performing 

reservoir estimations, forecasting reservoir performance, and optimizing production conditions. 

The objective of this study is to develop resilient and sophisticated models utilizing Multilayer 

Perceptron (MLP) and Radial Basis Function (RBF) neural networks. The purpose of utilizing 

these models is to estimate the solution gas-oil ratio, while considering various factors including 

bubble point pressure, reservoir temperature, oil gravity (API), and gas specific gravity. 

The evaluation and analysis of the performance of the multilayer perceptron (MLP) and radial 

basis function (RBF) models were conducted by means of a comparative assessment with various 

established empirical correlations. The evaluation was performed by employing statistical and 

graphical error analyses. The results of this study indicate that the suggested models demonstrate 

enhanced performance in comparison to the empirical correlations that were examined. The 

models exhibit a notable degree of concurrence between the projected values and the empirical 

values. Nevertheless, it is important to acknowledge that the developed radial basis function (RBF) 

model exhibited superior accuracy and efficiency in comparison to the proposed multilayer 

perceptron (MLP) model. 

3.1.1. Artificial Neural Network (ANN) 

The origins of the study on artificial neural networks (ANNs) can be attributed to the year 

1943, when McCulloch and Pitts developed a basic computational model for neural networks 

(McCulloch and Pitts, 1943). In 1954, Hebb introduced learning rules for neural networks. 

Subsequent to that, artificial neural networks (ANNs) have experienced substantial growth and 

have been widely employed in various fields (Hebb, 1949).  Artificial neural networks (ANNs) are 

computational algorithms employed to identify and analyze both linear and non-linear 

relationships between input and output variables in a given dataset. The main goal of an Artificial 

Neural Network (ANN) is to establish a functional relationship between a specified set of input 
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patterns and their corresponding set of output patterns (Oludolapo et al., 2012). MLP-NNs 

basically include three sets of layers, input layer, hidden layer(s), and also output layer (Figure 2). 

The networks under consideration can be characterized as a configuration comprising of neurons, 

biases allocated to each neuron, interconnections or links connecting the neurons, and weights 

assigned to these interconnections. The learning process is conducted through the utilization of 

input and target datasets, and is facilitated by the implementation of training algorithms. 

 

Figure 2.  Model of MLP-NNs (Hashemi Fath et al., 2020). 

3.1.2. Multilayer perceptron neural networks (MLP -NNs) 

 Multi-layer perceptron neural networks (MLP-NNs) are instructed through the utilization of 

the Back Propagation (BP) technique, which incorporates an error-correction mechanism as an 

integral component of its learning process. This procedure is consistently implemented during the 

entirety of the training process. The network effectively produces network outputs through the 

processing of input data that is transmitted into the network. Subsequently, the error value is 

ascertained through a process of comparing the goal values with the output generated by the 

network. Subsequently, the weights and biases undergo adjustments in order to minimize the error, 

and the training procedure persists until the neural network attains a predetermined threshold of 

acceptable error. The error function commonly employed for this purpose is known as Mean 

Square Error (MSE). 

3.1.3. Radial basis function neural networks (RBF-NNs) 

Radial Basis Function Neural Networks (RBF-NNs) are widely employed across various 

domains, such as function approximation, pattern classification, and other related areas. These 

networks have gained significant popularity due to their ease of construction, robustness against 

input noise, rapid training capabilities, and extensive coverage (Fu and Wang, 2003). The network 
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exhibits a favorable response, even towards patterns that have not been employed for the purpose 

of learning (Yu et al., 2011). 

The structural composition of a radial basis function neural network (RBF-NN) encompasses 

three distinct layers, namely the input layer, the hidden layer, and the output layer, as visually 

depicted in Figure 3. The primary role of the input layer is to facilitate the distribution of input 

signals to the subsequent hidden layer. The concealed layer of the neural network is comprised of 

radial basis functions, whereas the output layer produces the network's output by linearly 

amalgamating the outputs of the concealed neurons. The primary function of the input layer is to 

serve as a channel for transmitting input signals to the hidden layer. The hidden layer of the neural 

network contains radial basis functions, which are responsible for processing the input data. On 

the other hand, the output layer combines the outputs of the hidden neurons in a linear manner to 

generate the final output of the network. 

 

Figure 3. Model of RBF-NN (Fath et al., (2020). 

 

3.1.4. Comparison of MLP and RBF neural networks 

The Multilayer Perceptron (MLP) and Radial Basis Function (RBF) neural networks are both 

classified as feed-forward neural networks. This categorization indicates that the transmission of 

information within the network architecture is unidirectional, specifically from the input neurons 

to the output neurons. Several fundamental distinctions have been identified between Multilayer 

Perceptron (MLP) and Radial Basis Function (RBF) neural networks (Yu et al., 2011). Firstly, one 

could argue that Radial Basis Function Neural Networks (RBF-NNs) demonstrate a greater degree 
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of simplicity when compared to Multi-Layer Perceptron Neural Networks (MLP-NNs). Moreover, 

it is widely acknowledged that Radial Basis Function Neural Networks (RBF-NNs) are generally 

more conducive to training when compared to Multilayer Perceptron Neural Networks (MLP-

NNs), primarily because of their uncomplicated and consistent three-layer architecture. 

Furthermore, Radial Basis Function Neural Networks (RBF-NNs) operate as networks that 

approximate local functions. In these networks, the outputs are determined by specific hidden 

neurons located within distinct local accessible fields. In contrast, Multilayer Perceptron Neural 

Networks (MLP-NNs) exhibit a global operation characteristic, wherein the network outputs are 

subject to the influence exerted by all neurons within the network. The Multilayer Perceptron 

(MLP) and Radial Basis Function (RBF) neural networks utilize different classification 

methodologies. Radial Basis Function Neural Networks (RBF-NNs) utilize hyper spheres as a 

means to effectively separate clusters, while Multilayer Perceptron Neural Networks (MLP-NNs) 

employ hyper surfaces for the purpose of cluster separation. 

3.2. Exploration 

The hydrocarbon exploration process is inherently associated with various risks. The 

explorationist plays a crucial role in the identification of subsurface prospects with precision, 

aiming to facilitate the subsequent drilling and exploitation of hydrocarbon resources. In the early 

years of the 21st century, the utilization of limited two-dimensional seismic data was considered 

crucial for the precise identification of drilling sites through subsurface mapping. Owing to the 

existence of multiple hazards, the likelihood of attaining success was estimated to be 1 in 7. Over 

the course of time, a progressive accumulation of data was acquired within each of the designated 

leased areas for exploration. The substantial quantity of data discussed in this context i s commonly 

known as big data. The storage of this data is facilitated by memory space with a capacity of 

Terabytes, which has been made possible by advancements in the acquisition, processing, and 

interpretation of seismic and well data. The extensive dataset was subjected to analysis using the 

machine learning framework. The main objective of employing big data and integrating machine 

learning methods is to improve the signal to noise ratio within the realm of data acquisition and 

processing. The clean data that was acquired was employed in the analysis of 2D, 3D, and 4D 

seismic data using various robust algorithms. The accurate delineation of various subsurface layers 

enabled the interpreter to produce volumetric maps of the subsurface. Subsequently, the maps 

underwent a conversion process utilizing well-logging data, resulting in the generation of 
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amplitude, porosity, and saturation maps. The researchers employed inversion techniques to 

enhance their comprehension of the data parameters obtained from the subsurface models (Zhang 

et al., 2020). 

3.2.1. Unmanned Aerial Vehicle (UAV) 

An aircraft lacking a human pilot on board is commonly denoted as an Unmanned Aerial 

Vehicle (UAV), alternatively known as a drone or a remotely piloted aircraft system (RPAS). In 

contemporary times, there has been a significant surge in the utilization of unmanned aerial 

vehicles (UAVs), commonly known as drones, within the realms of civil and business domains. 

This technological advancement has witnessed its widespread integration across diverse fields, 

encompassing but not limited to agriculture, archaeology, land surveying, mining, and the 

petroleum industry. The utilization of remote sensing has been significantly employed within the 

oil and gas industry. The industry currently employs a diverse range of aerial remote sensing 

instruments to investigate natural oil seepages and detect instances of oil spill disasters in the 

marine ecosystem.  

Drones are now extensively utilized in various industrial sectors, including farming, 

archaeology, surveying, mining, and the energy industry, in both civil and commercial contexts 

(Yao et al., 2019). The ability of drones to effortlessly transport sensors is significantly 

transforming various processes, pushing the boundaries of traditional approaches, and offering 

unique and innovative perspectives. According to Mordor Intelligence, drones have the potential 

to significantly impact the oil and gas industry as a disruptive force. This is due to their ability to 

fulfil various essential services within the sector, such as emergency response, monitoring of 

pipelines and infrastructure, inspections of oil derricks, mapping of oil spills, and detection of 

fugitive gas emissions, among other applications. Unmanned Aerial Vehicle (UAV) drones exhibit 

a wide range of physical configurations and dimensions, accompanied by diverse attributes and 

functionalities. Drones possess a diverse range of technologies that offer potential utility within 

the oil and gas sector. These technologies encompass various components such as platforms, 

sensors (both passive and active), and cameras. The subsequent section will provide a 

comprehensive examination of the methodologies and practical implementation of these various 

tools, elucidating their potential applications in real-time scenarios.  
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3.2.2. UAV petroleum exploration 

 Prior research has employed high-resolution three-dimensional orthomosaic images acquired 

from unmanned aerial vehicles (UAVs) for the purpose of producing sophisticated geologic maps, 

with a specific emphasis on lithofacies and structural attributes (Vollgger and Cruden, 2016; Bemis 

et al., 2014). In a more advanced version, unmanned aerial vehicles (UAVs), colloquially referred 

to as drones, possess the capacity to be employed in order to facilitate entry into geographically 

arduous areas, such as vertical or overhanging rock formations. This proposed application aims to 

enhance the accuracy of spatial mapping by incorporating remote orientation measurements in 

addition to on-site observations. By doing so, it seeks to bridge the gap between traditional field 

techniques and satellite-based remote sensing methods, (Pavlis and Mason, 2017; Madjid et al., 

2018; Vasuki et al., 2014; Chesley et al., 2017). The researchers utilized an unmanned aerial 

vehicle (UAV) equipped with a digital camera to acquire multiple high-resolution images of a 

geological formation located in Spain. The aforementioned images were subsequently employed 

to create a three-dimensional (3D) virtual depiction of the outcrop. The utilization of the model 

served as a method for depicting underground formations with the purpose of simulating the fluid 

dynamics taking place within a reservoir (Jacobs, 2013). Outcrop analogs, like the one presented, 

are highly beneficial tools for geologists and petroleum engineers as they enable the examination 

of sedimentary and structural characteristics that may not be easily identifiable through seismic 

surveys. The utilization of these analogs facilitates the understanding of the dynamics exhibited 

by actual reservoirs and provides additional perspectives to subsurface models. In the given 

context, the utilization of hyperspectral remote sensing data can effectively highlight the 

mineralogical distinctions present in comparable outcrops. This, in turn, enhances the 

understanding of the variations in porosity and permeability within the subsurface reservoir. In 

order to generate a 3D/virtual/digital representation of an outcrop, the researchers employed a 

drone equipped with a digital camera to capture a multitude of high-resolution photographs of a 

specific geological formation located in Spain. The development of the model aimed to investigate 

the dynamics of fluid within a reservoir by employing an analogy to subsurface formations. 

Geologists and petroleum engineers have the capability to examine sedimentary and structural 

attributes that are below the resolution of seismic surveys. This enables a more comprehensive 

understanding of reservoir behavior and enhances the data available for subsurface model 

simulations. Detailed outcrop analogs, such as the one mentioned, play a crucial role in facilitating 
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this investigation. In this scenario, the utilization of hyperspectral remote sensing data could be 

employed to enhance the understanding of the diverse variations in porosity and permeability of 

subsurface reservoirs. The provided figure is displayed as (Figure 4). 

 

Figure 4. A detailed virtual outcrop constructed by mosaicking close-up images (Cawood et al., 

2017). 

3.2.3. UAV platforms 

Unmanned Aerial Vehicles (UAVs) display a broad spectrum of physical structures, 

incorporating various sizes and proportions, ranging from large, long-endurance models to small 

counterparts. Drones have been classified based on various performance attributes, such as flight 

altitude and range, dimensions (specifically wingspan), velocity, duration, landing mechanism, and 

weight (specifically take-off weight). Drones can be categorized into distinct classifications based 

on their weight. The classification of Class I can be delineated into four discrete categories 

(Hassanalian and Abdelkefi, 2017). Table 1 presents different classifications of drones.  

 

Table 1. Drones’ categorization based on their weight (Asadzadeh et al., 2017). 
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 Drones can be categorized into two separate categories according to their airframe design: 

fixed-wing vehicles (as shown in Figure 5) and rotary-wing vehicles (as depicted in Figure 6). 

 

Figure 5. Examples of lightweight fix-wing commercial drones ( Asadzadeh et al., 2017). 

 

Figure 6. Examples of lightweight rotary-wing commercial drones (Asadzadeh et al., 2022). 

3.2.4. UAV sensors 

 The domain of drone technology embodies the amalgamation of conventional aerial and 

space-based remote sensing techniques with the utilization of portable, handheld sensors and 

detectors. A diverse range of commercial sensors has been developed for drones, with the intention 

of meeting specific requirements. The sensors mentioned in the text include a range of capabilities, 

including high-resolution photography, Thermal Infrared (IR) cameras, hyperspectral imaging 

systems, Radio/Light Detection and Ranging (RADAR/LiDAR), and gas detectors known as 

sniffers or imagers (Colomina and Molina, 2014). In this section, we provide a succinct overview 

of the passive and active sensors currently available in the market, as well as those under 

development, which are specifically intended for integration with unmanned aerial vehicle (UAV) 

platforms. 
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3.2.5. Passive sensors 

 Passive sensors are employed to measure the intrinsic radiation that is either reflected or 

emitted by the materials under observation. At present, drones predominantly employ passive 

sensors in the form of visible-light digital cameras. The current market for drone cameras is 

characterized by a wide array of options, with a notable abundance of choices. This trend is 

anticipated to persist and even intensify as the market further evolves and matures. The selection 

of a suitable camera model depends on several factors, including the particular domain of 

application, financial limitations, project scale, and compatibility with the designated vehicle, 

while also considering constraints such as weight restrictions. In the field of surveying, it is crucial 

to employ a high-resolution camera that is equipped with a large sensor size and a fast shutter 

speed, particularly utilizing a global shutter mechanism. The determination of a camera's spatial 

resolution is contingent upon the size of its sensor. Typically, cameras equipped with larger sensors 

provide a wider imaging range and increased coverage area during a single operation. In general, 

it is recommended that the cameras mounted on unmanned aerial vehicles (UAVs) possess a 

minimum resolution of 10 megapixels (MP) or higher. Some examples of cameras with different 

megapixel counts include the Canon 5D Mark III (20 MP), DJI Zenmuse (20 MP), Sony RX100 

(20 MP), GoPro series (12 MP), iLook (13 MP), Ricoh GR2 (16 MP), DJI Phantom4 (12 MP), 

Canon 5Ds (50 MP), and Hasselblad X1D (50 MP), among others. The majority of these cameras 

could be utilized for capturing still or video footage in daylight conditions. Thermal infrared (IR) 

cameras are also available, which possess the capability to capture radiations in the Longwave 

Infrared (LWIR) spectrum, specifically within the wavelength range of 7.5 to 14 m. These cameras 

have the ability to convert these captured radiations into temperature images and video, which are 

calibrated for accuracy. In Table 2, a compilation of thermal imaging cameras commonly employed 

in conjunction with drone platforms is presented, along with their respective features.  
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Table 2. Common thermal IR imaging cameras for drones (Asadzadeh et al., 2017). 

 The acquisition of data can be enhanced through the utilization of this configuration, which 

additionally enables the seamless integration of temperature data onto visible footage for 

subsequent analyses. The thermal drones are commercially promoted as a comprehensive unit, 

which encompasses a thermal camera as an integral component. The technique of trace gas 

imaging is facilitated through the utilization of a distinct category of specialized thermal infrared 

cameras. These cameras are designed to measure a narrow spectral range that aligns with the 

distinctive absorption characteristics of a specific gas molecule, enabling the detection and 

visualization of said gas. The camera in question is equipped with a sensor array operating in the 

mid-wave infrared (MWIR) range, specifically between 3 and 5 micrometers. This sensor array 

captures comprehensive imagery of the scanned object. The presence of gas leaks and plumes in 

the image is discernible due to fluctuations in the intensity of the detected radiation. Recently, there 

has been a development of a novel cohort of compact gas imaging cameras that can be integrated 

with unmanned aerial vehicles (UAVs). These cameras utilize advanced technologies that are 

currently undergoing active development. Thermographic cameras demonstrate exceptional 

sensitivity in detecting trace gases such as ethylene, ethanol, and methanol, even at extremely low 

concentrations. Additionally, these cameras are capable of detecting lightweight hydrocarbons 

(C1-C8), Volatile Organic Compounds (VOCs), and various other gases. Table 3 presents a 

comprehensive compilation of the characteristics pertaining to a selection of optical imaging 

cameras currently available in the market, which possess the potential to be employed in the 

detection of gas leaks through the utilization of unmanned aerial vehicles. Figure 7 displays 

illustrations of the aforementioned cameras. 
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Table 3. Examples of optical gas imaging cameras available for drones (Asadzadeh et al., 2017). 

 

Figure 7. Optical gas imaging cameras used in drones (Asadzadeh et al., 2017). 

3.2.6. Active sensors 

 Active sensors are characterized by the presence of an integrated light or illumination source. 

In comparison, active systems exhibit greater weight than passive systems as a result of the 

necessity for a power supply to generate the signal. As a consequence, the available selection of 

active sensors for the integration of drones is comparatively narrower in scope when compared to 

their passive counterparts. Active sensors that are currently utilized for drones include Lidar (Laser 

imaging detection and ranging), Synthetic Aperture Radar (SAR), laser fluorosensors, and laser 

gas detectors. The deployment of an Unmanned Aerial Vehicle (UAV) integrated with a Light 

Detection and Ranging (LIDAR) system necessitates the attachment of a laser scanner to the drone, 

which has the ability to emit ultraviolet, visible, or near-infrared light. The aforementioned system 

is utilized for the purpose of ascertaining the diverse distances to a particular target. This is 

achieved by illuminating the said target with a laser that emits pulsed light, and subsequently 

examining the duration it takes for the reflected light to travel back. Laser detectors commonly 

report gas concentrations as parts per million multiplied by meters (PPM-M), representing the 
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concentration of gases over the vertical air column between the measuring platform and the desired 

location. 

 Another laser-based sensor that warrants mention is the laser fluorosensor. The sensors’ 

function based on the principle that aromatic compounds found in oil demonstrate interaction with 

ultraviolet light, leading to the absorption of energy. Consequently, these compounds emit the 

surplus energy in the form of observable fluorescence emission. By employing spectral analysis 

and measuring fluorescence decay rate, the system demonstrates the ability to detect the presence 

of oil and differentiate between different types of oil, such as light, heavy, or medium (Fingas and 

Brown, 2018). Synthetic Aperture Radar (SAR) is a frequently utilized active sensor for the 

identification of oil spills and seepage in the offshore regions adjacent to satellite platforms. The 

observation of oil on the water surface has been found to have a suppressive impact on capillary 

waves, primarily attributed to the phenomenon of Bragg scattering. The aforementioned 

dampening effect subsequently results in a reduction in the radar backscatter. As a result, synthetic 

aperture radar (SAR) imagery reveals a discernibly darker appearance when depicting oil slicks.  

 

Figure 8. An example of UAV-SAR equipped with P-, C-, and L-band antennas (Asadzadeh et 

al., 2017). 

3.2.7. Applications of drones in oil and gas industries 

 As previously stated, the implementation of drone technology is expected to have a substantial 

influence on the detection and monitoring operations across different sectors of the petroleum 

industry. The examination and interpretation of unmanned aerial vehicles, more commonly 

referred to as drones, can be approached and analyzed from multiple perspectives. To enhance the 
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discussion, a comprehensive methodology was utilized to analyze the present state of drone remote 

sensing in the petroleum industry. There exist six primary categories that encompass the detection 

of offshore oil spills, detection of oil leakage and monitoring of pipelines, sensing of gas emissions, 

inspection of remote facilities, petroleum exploration (specifically, land surveying, geologic 

mapping, and petroleum exploration), and environmental monitoring. Due to the significant 

significance of pipeline monitoring in the midstream industry, a dedicated section has been 

designated to discuss this topic. Our research has primarily centered on the identification of 

terrestrial oil seepage within the specified area. 

3.2.8. Oil leakage detection and pipeline monitoring 

 The worldwide network of pipelines for the transportation of oil and gas extends across a 

distance exceeding 3 million kilometers (Gomez and Green, 2017). Pipeline integrity failure is a 

commonly observed phenomenon that frequently results in the loss of human lives and substantial 

environmental damage. Within the Russian context, it has been noted that there exists an average 

frequency of (1.1 - 1.4) pipeline ruptures per every 10 kilometers annually (Gomez and Green, 

2017). The growing prevalence of worldwide networks has led to an urgent requirement for 

ongoing monitoring systems in order to improve the safety and reliability of petroleum pipelines, 

regardless of their location above or below ground.  The conventional approach to pipeline 

monitoring entails conducting visual inspections of the pipeline structure or evaluating the 

ecological impacts, such as vegetation and soil conditions, in order to detect subterranean oil leaks. 

The identification of minor yet persistent petroleum losses, which constitute less than 1% of the 

pipeline's flow capacity, can present difficulties when exclusively relying on visual examination, 

especially in regions characterized by damp soil conditions (Correa Pabon ´ and Souza Filho, 

2016). At present, drones are being acknowledged as highly effective tools for fulfilling the need 

for pipeline monitoring. 

 The identification of minute quantities of oil seepage on the surface can be accomplished by 

employing hyperspectral remote sensing techniques. the identification of oil can be accomplished 

by observing its occurrence within a pixel's surface area, which typically falls within the range of 

2.5-25% (Asadzadeh and Souza Filho, 2017). This determination is made through the analysis of 

SWIR spectral data. The feasibility of detecting small oil leaks using drone-mounted hyperspectral 

systems, which provide a ground sampling distance between 5 and 50 cm, is enhanced. This 
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technology enables the identification of even the slightest amount of oil leaks that are detectable 

by the sensor. This capability demonstrates significant efficacy in the detection of oil leaks within 

soil conditions that are both bare and uniform. One instance demonstrating the effective utilization 

of airborne hyperspectral remote sensing data is its capacity to detect hydrocarbon spills 

originating from a pipeline, exhibiting a detection threshold of approximately 20 barrels (Taylor, 

2000). The most formidable situation, nonetheless, occurs when the leakage is in its nascent stage, 

resulting in the gradual permeation of hydrocarbon fluid into the soil without reaching the surface. 

 In the provided scenario, it is recommended to employ thermal imaging technology as a 

method to precisely detect the underground leakage, which is estimated to be located at a depth of 

approximately 3 meters. The objective can be accomplished through the development of a 

cartographic representation illustrating the variations in temperature across the surface. The 

methodology is based on the discrepancies in heat capacity between soils that have been 

contaminated with petroleum and their adjacent areas (or in comparison to previous images). This 

leads to discernible fluctuations in surface temperature at the location of the leakage. The 

thermographic map illustrates that the soils containing oil in close proximity to oil pipelines exhibit 

elevated temperatures, as depicted in Figure 9a. In contrast, the emissions of natural gas from gas 

pipelines give rise to cooler anomalies, as depicted in Figure 9b. The occurrence of this 

phenomenon can be ascribed to the adiabatic expansion of the gas that is being released (Mucsi et 

al., 2004). 

 

Figure 9. Evidence of petroleum leaking points in temperature data from remote sensing: a) a 

heated oil leakage-related location (circled). b) a cool anomaly (dark blue) brought on by a gas 

leak (Mucsi et al., 2004). 
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 It is expected that conducting surveys during nighttime will  result in the most favorable 

outcomes when employing this technique. The acquisition of nocturnal temperature data, with a 

spatial resolution ranging from 10 to 20 cm and collected at regular intervals, holds the capability 

to identify subtle fluctuations in the thermal properties of the backfill material surrounding 

pipelines resulting from petroleum leakage (Guozhong et al., 2009). The utilization of fixed-wing 

unmanned aerial vehicles (UAVs) emerges as the most suitable approach for systematic and timely 

monitoring of pipelines due to their extensive coverage capabilities. As an example, a compact 

aircraft equipped with appropriate sensors, travelling at a velocity of 80 kilometers per hour, has 

the capability to traverse a distance of 200 kilometers in a time frame of less than 3 hours. Thus, 

through the utilization of a fleet of unmanned aerial vehicles, the inspection of an extensive 

pipeline could be expeditiously conducted within a span of a few hours. On the other hand, the 

inherent adaptability and agility offered by rotary wing vehicles render them a viable option for 

shorter and geographically limited inspection missions.  

3.3. Drilling engineering 

 The petroleum industry encounters several challenges in the drilling process, including issues 

such as loss of circulation, bit wear, borehole stability, excessive torque, and stick slip vibration, 

among others. These aforementioned issues possess the potential for resolution through the 

utilization of machine learning techniques (Noshi and Schubert, 2018). The process of drilling a 

well presents significant challenges due to the limited availability of information regarding 

subsurface conditions. These challenges become more pronounced as drilling depths increase or 

when the trajectory of the well deviates from a strictly vertical path. Furthermore, the operational 

process becomes increasingly intricate and challenging as a result of various drilling phenomena, 

including differential pipe sticking, lost circulation, and severe doglegs, among others. Artificial 

intelligence methodologies have gained significant traction in addressing these challenges in recent 

times. 

3.3.1.  Well planning 

 The process of constructing a well for the purpose of achieving faster and safer operations, as 

well as managing economic budgets, requires the implementation of sophisticated decision-

making strategies that are informed by relevant experiences. AI has been subjected to rigorous 

testing by experts from diverse geographical locations to evaluate its efficacy in different stages 



31 

 

of effective planning. The diagram presented below illustrates several potential outcomes in 

relation to the meticulous preparation for effective well planning. 

 

3.3.1.1.  Drill bit selection 

 Based on the attributes pertaining to formation, the following industries are anticipated to 

derive the greatest benefits from the implementation of artificial intelligence (AI). The trained 

artificial neural network (ANN) has emerged as a crucial instrument for deciphering data, 

categorizing empirical correlations, and determining the optimal drill bit by leveraging user-

defined information databases. Possible inclusions in the database may encompass IADC bit codes 

pertaining to common rock formations, rock strength data, geological characteristics, compaction 

properties, and traditional rates of penetration (ROP) values associated with the rocks. Therefore, 

based on user input, artificial neural networks (ANNs) possess the capability to effectively acquire 

knowledge of codes and numerical values, enabling them to make informed decisions regarding 
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the suitable bit for a given drilling environment, such as a polycrystalline diamond compact (PDC), 

roller cone, diamond insert, or hybrid bit. The layout of the drill bit selection is depicted in Figure 

10, which illustrates the Artificial Neural Network (ANN) configuration.  

 

Figure 10. Layout for drill bit selection by ANNs (national Oilwell Varco, 2013). 

3.3.1.2.  Mud and fracture gradient prediction 

 In the last decade, the utilization of neural network systems, specifically Generalized 

Regression Neural Networks (GRNNs), in conjunction with the identification of proximate oil and 

water-bearing formations, as well as the implementation of highly discerning production and 

injection techniques, has yielded accurate results. Indeed, several experts consider Generalized 

Regression Neural Networks (GRNNs) to exhibit higher levels of accuracy and reliability 

compared to conventional methodologies like D-exponent, Comb, Ben Eaton, and others. Gaussian 

Radial Basis Function Neural Networks (GRNNs) are frequently utilized for the purpose of 

predicting the estimations of gradients, specifically in relation to depth, overburden gradient, and 

Poisson ratio. The neural network model illustrates the anticipated mud and/or fracture gradient 

for the given dataset by utilizing all of the input data, which may consist of authentic field data or 

estimations derived from alternative methodologies. It is imperative to employ the forecast solely 

within the provided data range. Extrapolations conducted at greater depths may yield substantial 
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errors and inaccuracies due to their heavy dependence on the extent of the provided data (Sadiq 

and Nashwi, 2000). 

3.3.1.3.  Casing collapse and depth determination  

 Casing collapse poses a significant challenge within the oil and gas industry, making it highly 

advantageous to develop strategies for its prevention. The utilization and training of the back-

propagating neural network (BPNN) technique can be employed. A neural network utilizing back-

propagation, featuring a customizable quantity of internal (hidden) layers interconnected with the 

input and output layers, as previously demonstrated in the Middle East and Asia, has the capability 

to provide a "knowledgeable" prediction of the depth at which the casing of newly drilled wells 

will experience collapse. In order to evaluate and provide insights regarding the anticipated depth 

and probability of casing collapse, expressed in terms of time, the data layer has the capability to 

incorporate diverse inputs such as location, depth, pore pressure, corrosion rate, and casing 

strength, among others. Figure 11 presents a schematic representation of the methodology 

employed in this particular case. The method, currently undergoing refinement in terms of result 

accuracy and input data generalization, is of recent origin. 

 

Figure 11. layout for casing collapse occurrence and depth determination using BPNN (Bello et 

al., 2016). 

3.3.1.4.  Quality and performance of oilfield cement slurries 

 The prediction of composition, particle size distribution, and thickening time (neat and 

retarded) can be achieved by utilizing the Diffuse Reflectance Infrared Fourier Transform (DRIFT)  

spectra of cement powders. The technique utilizes Artificial Neural Networks (ANNs) to generate 

predictions for the performance of slurry. The primary objective is to establish a database that 
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characterizes the behavioral attribute of cement particles through the identification of their infrared 

spectrum. The presence of impurities, variations in particle size distribution, the effects of cement 

ageing, and the utilization of non-API cements can provide the opportunity to obtain highly 

detailed and precise information about the inherent characteristics of cement through spectral 

analysis. This level of data cannot be accessed through the use of API tables. 

 In 1994, Schlumberger developed the initial database pertaining to the evaluation of quality 

and performance of oilfield cement slurries. This database encompassed information from 158 

distinct cements across the globe, incorporating empirical data on various characteristics such as 

oxide composition, lime content, insoluble residue content, particle size distribution and diameter, 

general composition, loss of ignition, and surface area. Subsequently, Fletcher et al. (1994) 

developed models for predicting cement properties and quality by utilizing the complete diffuse 

spectra as input variables.  

3.3.1.5.  Selection of offshore platform 

 The process of selecting an offshore platform necessitates the application of specialized 

expertise, taking into account a range of distinct factors such as the characteristics of the site, water 

and well depth, projected production rates, cost considerations, operator proficiency, and 

anticipated weather and tidal conditions. In their study, Wang et al. (2011) developed a selection 

model for Deepwater floating platforms utilizing artificial neural networks from BP. This study 

proposes a methodology for the case-specific determination of the most appropriate offshore units 

(SPAR, TLP, FPSO, or semi-submersible) through the utilization of non-linear Backpropagation 

Neural Networks (BPNNs). The BPNNs consist of nine input nodes and one hidden layer, which 

incorporates five model functions: technology maturity, field development time, cost, operator 

experience, and risk assessment. The layout of the offshore platform selection is depicted in Figure 

12, which illustrates the BPNN configuration.  
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Figure 12. BPNN layout of the offshore platform selection (wang et al., 2011). 

3.3.1.6.  Trajectory and directional planning 

 The application of fuzzy theory and the development of general algorithms have yielded 

significant benefits in the domains of trajectory and directional planning, specifically in the context 

of offshore well design. Fuzzy reasoning techniques can be employed to develop a comprehensive 

dataset specific to offshore drilling. Following the retrieval of comparable events from the dataset, 

a general method was devised to predict feasible trajectories and relevant directional information. 

Nevertheless, it is imperative to validate the forecasts by means of computer simulations to 

ascertain their accuracy. 

3.3.2.  AI in pattern recognition 

 The evaluation of parameters in intelligent technologies, irrespective of the specific technique 

employed (such as Case-Based Reasoning, Artificial Neural Networks, or generic algorithms), 

relies on a substantial dataset comprising relevant information from numerous past instances. This 

suggests that a methodical case study is generated and uploaded to the database alongside previous 

incidents whenever a novel problem arises in a specific drilling region. An intelligent system has 

the capability to compare an input feed with a specific range of data and disregard any other 

information stored in the database. This functionality serves to reduce the likelihood of errors and 
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enhance the precision of decision-making. This capability is facilitated by a consecutive stream of 

data that is systematically arranged based on criteria such as well depths, dates, areas, costs, or 

selected processes. The utilization of data obtained from shallow wells will be limited to the 

analysis of input feed for a well with a depth of 900 meters. Conversely, the data collected from 

mid-range and deep wells will not be employed in the processing of the input feed. The 

aforementioned prediction methodology has undergone refinement and augmentation in order to 

effectively identify and evaluate input streams at a cognitive level within specific datasets. Several 

modelling systems and inspection techniques have been developed and implemented in the drilling 

industry over the years, as shown in Figure 13. 

 

Figure 13. AI pattern recognition pattern recognition (Bello et al., 2016). 

3.3.2.1.  Real-time drilling risk recognition 

 The implementation of a real-time drilling risk indicator is crucial in order to proactively 

anticipate potential drilling mishaps, effectively identify the root causes of these incidents, 

accurately assess the level of risk associated with them, provide recommendations for preventive 

or control measures, and make necessary adjustments to control settings to prevent the occurrence 

of such scenarios. The capacity of the AI tool system to accurately identify significant oscillations 

in the real-time data stream originating from the storage computer (or directly from field sensors) 

is crucial for timely detection. The recognition method referred to as the "signal changing tendency 

rate automatic extraction technology" (Lian et al., 2010). Utilizing fuzzy (or case-based) reasoning, 

the application of live feed comparison with database reference sets and the timely identification 

of deviations between actual and reference function values can facilitate the estimation of drilling 

risk in advance and potentially enable real-time monitoring of downhole control parameters. A 

comprehensive analysis utilizing a robust reasoning system equipped with an extensive database 

of control parameter values (such as WOB, hook load, downhole torque, and RPMs) can yield 
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consistent average risk values, occasionally punctuated by intermittent spikes. This approach 

allows for a meticulous and dependable detection of drilling risks by comparing them to both the 

upper and lower bounds of the reference values. By conducting a basic comparison using this 

particular reasoning system, it is possible to generate continuous average risk values that exhibit 

sporadic peaks. These values can then be compared to the maximum and minimum base references 

in order to achieve accurate and dependable detection of drilling risks. The present reasoning 

system is equipped with an extensive database containing a diverse set of control parameter values 

that are susceptible to incidents, including hook load, weight on bit (WOB), downhole torque, and 

revolutions per minute (RPMs). An illustrative instance of the potential application of this system 

involves the early detection of downhole kick. This is achieved by promptly identifying significant 

fluctuations in feed from flow-rate sensors, followed by monitoring gas levels in mud through 

surveying sensors (Lian et al., 2010). 

3.3.2.2.  Drilling equipment condition recognition 

 The tool for recognizing the condition of drilling equipment has been developed and relies 

predominantly on an artificial neural network (ANN) system. This system evaluates the condition 

of various drilling components, such as the drill string, drill bit, surface equipment, and mud, in 

relation to the specific formation being drilled. Additionally, it takes into account control 

parameters, including weight on bit (WOB), revolutions per minute (RPMs), and mud flow rate. 

These parameters can be obtained in real-time or through modelling. The ultimate goal of this tool 

is to enhance drilling efficiency by optimizing the drilling process and determining the overall 

state of the drilling system. The approach utilized in this method, similar to other systems, reli es 

on the process of comparing and intelligently identifying the input data sourced from diverse 

datasets. Additionally, it involves comparing the provided data with information derived from 

previous case histories. Figure 14 depicts the utilization of an insert bit in a demanding setting for 

the purpose of condition assessment. the utilization of the AI tool enables the generation of 

comparable predictions for various types of drilling equipment (Yamaliev et al., 2009). 
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Figure 14. Detection of bit condition based on drilling environment and control parameters using 

intelligent AI tool (Yamaliev et al, 2009). 

3.4.  Production engineering 

 The significance of hydrocarbon production prediction is growing in relation to project 

development and planning, encompassing aspects such as financial and environmental regulations, 

as well as facility commissioning and decommissioning. The ability to make a precise forecast of 

a well's production performance can serve as a valuable tool for optimizing production, 

determining the necessity of work-over procedures, stimulating wells, designing facilities, and 

scheduling enhanced oil recovery procedures (Najafi et al., 2018). Machine learning is employed 

in various applications within the realm of production engineering in the oil and gas industries. 

One of the challenging endeavors involves the expeditious handling of substantial volumes of data 

for the purpose of making informed decisions. The recognition of production pattern data can be 

achieved through the utilization of machine learning methodologies. Semi-supervised learning 

involves the integration of data obtained from both labelled and unlabeled sources, specifically in 

the context of well data. Algorithms were employed for the purpose of verifying, validating, and 

restoring the data. These included the distinction between base production and well interventions, 

the assessment of physical and chemical fluid parameters for quality control, and the analysis of 

well logging data for rectification purposes. Significant quantities of data are generated during the 

process of monitoring well conditions in real time. The dataset comprises real-time measurements 

of pressure and flow rate, which are utilized for the purpose of graphing and analysis in order to 
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facilitate informed decision-making. The estimation of future well output based on historical 

production rates necessitates a substantial investment of time and computational resources, thus 

necessitating the utilization of regression and simulation techniques. Drawing upon historical 

production statistics. Artificial intelligence (AI) methodologies can be employed to facilitate the 

execution of this process with greater ease and cost-effectiveness. This section focuses on the 

utilization of artificial intelligence (AI) techniques in production optimization procedures in the 

petroleum sector. Fluid level (FL) can be utilized to monitor the fluid output rate and steam 

composition in the multiphase flow process (Alimonti and Falcone, 2004). The estimation of fluid 

production rates was conducted using the DT technique, which took into consideration the 

interrelationships among the input parameters. The researchers conducted an assessment of the 

efficacy of the Decision Tree (DT) and associated techniques, and determined that both methods 

exhibited a high degree of accuracy and reliability. Nevertheless, subsequent analysis of statistical 

parameters revealed that the decision tree (DT) approach exhibited superior performance in terms 

of classification (Li et al., 2013). 

 The devised methodology demonstrated a high degree of efficacy, as it exhibited a minimal 

occurrence of cognitive errors and exhibited exceptional aptitude in recognizing patterns. Kamari 

et al. (2014) employed the Least Squares Support Vector Machine (LSSVM) methodology in 

combination with the Cuckoo Search Algorithm (CSA) to assess the optimal rates for fluid 

production and injection. Their objective was to estimate the unloading gradient pressures in gas 

lift-operated wells. The utilization of the adaptive neuro-fuzzy inference system (ANFIS) presents 

a hybrid methodology that holds the potential for cost reduction in the context of shipping multiple 

items to diverse destinations (Okwu and Adetunji, 2018). The Particle Swarm Optimization (PSO) 

algorithm has been employed in conjunction with the Adaptive Neuro-Fuzzy Inference System 

(ANFIS) framework for the purpose of determining the weight percentage of unstable asphaltene 

(Liu et al., 2018). The approach was trained and tested using data points obtained from published 

studies, and the accuracy was assessed using statistical metrics. Li et al. (2015) proposes the 

utilization of a soft computing technique to identify defects in wells produced by sucker rod pumps. 

This approach involves the application of the clustering index and the maximum suitable scale 

variable. In order to forecast gas production in a horizontal well after stimulation operations,  a 

fusion of artificial intelligence methodologies alongside data obtained from temperature and 

pressure measurements, completions, and production logs may be used (Bhattacharya et al., 2019). 
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The study employed ANN, SVM, and RF methodologies to ascertain that the RF technique 

exhibited superior efficacy, characterized by the shortest computational time and convergence. 

Soft computing techniques can be employed to examine the production conditions of wells 

undergoing hydraulic fracturing (Wang and Chen, 2019). In order to predict well production data 

for the initial year, a range of artificial intelligence methodologies were employed. The researchers 

reached the determination that the RF technique, in comparison to alternative methodologies, 

exhibits greater accuracy due to its provision of statistical performance measure parameters that 

are deemed more satisfactory. The utilization of artificial neural network (ANN) methodology can 

be employed for the optimization of the number of separation stages, pressure, and temperature in 

multiphase separator equipment, based on the composition of the fluid flowing through it 

(Mahmoud et al., 2019). The results indicated that the methodology has the potential to predict the 

operational conditions of separators, thereby enhancing the quality of fluid produced by surface 

separators. Liu et al. (2020) emphasized the utilization of artificial neural network (ANN) and 

Support Vector Machine (SVM) methodologies in their study on oil production prediction. The 

results of their study indicated that the models successfully reproduced the target data with a high 

level of accuracy. A method for FL optimization was employed to ascertain the optimal artificial 

lift scenario for a set of wells. The application of sensitivity analysis was employed to ascertain 

and classify the appropriate artificial lift scenarios for the selected wells. Table 3 presents a 

comprehensive overview of the various applications of artificial intelligence (AI) in the 

optimization of production processes.  
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ML Author Input Output Result 

ANN Chakra et al. 

(2013) 

Historical  

Production  

Data 

Oil 

production 

Even with few data, 

the model is very 

capable at predicting 

total oil output. 

ANN Al- Fattah et 

al., 2001 

GDP growth rate, footage drilled, 

wells drilled, annual depletion, gas 

prices and other resources are all 

factors to consider 

Production 

of gas 

The algorithm was 

able to predict the total 

gas output through 

sufficient data. 

BP Osman, 

2001 

Temperature, heat, superficial gas 

velocity, and superficial liquid 

velocity are all factors to consider. 

Liquid 

holdup 

Prediction of liquid 

holdup was made 

possible due to the 

data provided. 

MLP Ghahfarokhi 

et al., 2018 

regular flowing time; distributed 

temperature sensing; distributed 

acoustic sensing 

Gas 

production 

The approach was able 

to predict gas output 

using the algorithm. 

BP Salem et al., 

2018 

diagenesis; deep; GR log; neutron 

log; density log; sonic log; deep 

resistivity log 

Porosity; 

permeability 

Porosity and 

permeability were 

successfully predicted 

using the method. 

ANN 

  

Khan et al., 

2018 

calliper; porosity; gamma ray; 

density; neutron; three separate 

resistivities; gamma ray; density; 

neutron 

Water 

saturation 

Water saturation was 

predicted when the 

data was provided to 

the algorithm. 

BBN Ghoraishy 

et al. (2008) 

Data from 59 wells Gel 

treatment 

performance 

The approach has an 

above 75% accuracy 

rate in predicting the 

target data. 

 

Table 3. Applications of ML in production engineering. 
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4. Case study (Application of Machine Learning for Closure Pressure 

Determination) 

 Hydraulic fracturing destroys rock and generates a hydrocarbon fluid channel. Understanding 

rock stress helps design and execute fracturing treatments. Closure pressure equals formation 

breakdown pressure. Since hydraulic fracturing started, analytical methods including G-Function 

plot, G-dP/dG plot, square-root of time plot, and others have been used to calculate closure 

pressure. Due to the data analyst's bias, these methodologies must be objectively analyzed to better 

predict closure pressure. Machine learning teaches computers predesigned algorithms without 

programming. Complex mathematical models automate procedures based on critical learning 

aspects and predict accurately. ANNs eliminate subjectivity in closure pressure prediction in this 

paper. Neuronal systems include artificial neural networks. Neurons contain input, output, and 

hidden layers. Input, hidden, and output neurons are determined by end-result parameters. ANNs 

were created for closing pressure-dependent critical parameters. Data patterns predict output. 

Comparing this output to actual findings reduces error. Reduce mistake to align data. This article 

tests 20% and trains 80%. The ANN properly estimated closure pressure in this investigation. 

4.1. Determination of closure pressure 

 After pressure testing, pressure, rate, and formation disintegration data are collected and 

reviewed. Closing pressure procedures differ by industry. Used are experimental/field 

measurement, analytical, and statistical methods. The methodology of experimental/on-field 

measuring techniques defines them. Hydraulic techniques such as hydraulic fracturing and sleeve 

fracturing, relief techniques such as surface relief and borehole relief, lifting techniques such as 

the flat jack and the curved jack, strain recovery techniques such as Anelastic Strain Recovery 

(ASR) and Differential Strain Curve Analysis (DSCA), etc. For determining closure stress, the 

square-root of time method, the G-function plot, and the GdP/dG plot are employed. The pressure 

versus square root of time graph is comprised of bottom-hole pressure on the Y-axis and square 

root of time on the X-axis. The study applies only fall-off or decrease data after the compressors 

have been shut down. On the curve, straight lines (formation disintegration and fracture extension) 

are depicted as tangents. The pressure data for the completely open fracture and the completely 

closed fracture will be linear. These tangents converge at the fracture closure pressure. The 

dimensionless G-function relates the shut-in time to the pumping time at a constant rate. The G-
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function plot identifies the closure pressure and fluid leakage coefficient. This diagram linearizes 

pressure during typical leak-off more effectively than the square root of time depiction. The G-

dP/dG diagram is made by displaying the pressure derivative as a function of the G-function. Since 

the G-function is proportional to leak-off, its pressure derivative is constant. This diagram aids in 

the estimation of fluid leakage, fracture permeability, and fracture closure pressure. 

4.2. Methodology 

 This research utilized five xyz field wells. Mini-frac experiments on these wells provide data. 

The mini-frac test bottom-hole pressure information has a high sampling rate. Therefore, pressure 

data can be utilized to derive geo-mechanical parameters such as closure pressure. 6 Analytical 

Procedure. The technique of analysis entails graphical interpretation of the square-root of time plot 

curve. The Y-axis represents bottom-hole pressure, while the X-axis represents the square root of 

time. Figure 15 illustrates an example of such a curve. 

 

Figure 15. An example of a closure pressure curve (Nande, 2018). 
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The closing pressure analysis stages are:  

1. Plot bottom-hole pressure vs. square root of time for each well.  

2. Isolate the pressure decrease curve.  

3. Plot tangents at straight line sections on the curve.  

4. Determine the pressure at the tangent intersection.  

5. This is good closing pressure. 

 Closure pressure for wells 1–5 was achieved by following these methods. 

4.3.  Machine learning approach 

 This section describes an innovative closure pressure technique. Artificial neural network, the 

most prevalent approach to machine learning, predicts well closure pressure. This analysis utilizes 

mini-frac data from five wells. Exist both training and test data. Using training data, the network 

forecasts the closure pressure. The trained network will evaluate the outcomes using test data. The 

network was trained utilizing information from three wells and validated utilizing information 

from two wells. This study employs a single-layer ANN architecture. Each bottomhole pressure 

measurement for a well is treated as a variable or feature by the input layer. Three output terminals. 

Each output layer node will evaluate the validity of the program by comparing the actual closure 

pressure to the predicted value for each well. Analytical values of closure pressure are used to 

program the network. The labels for input-to-hidden mapping weights are θ1. The weights 

concealed to output are also designated θ2. Minimize the output gap between the network and the 

desired output. The feed-forward method computes error J (θ). The feed forward technique 

employs a sigmoid function to convert the weighted sum of input variables for each layer into a 

logical output between θ1 and θ2. 

4.4. Training the network  

 Construct the network and initialize the weight matrices θ1 and θ2 with random values to train 

it. Weights, bottom-hole pressure, and the regularization parameter λ are provided to the network. 

The feed-forward and backpropagation algorithms calculate the training set error J (θ) as well as 

the newly trained weights 1 and 2. Multiple iterations reduce the error in the training set. Using 
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the same method, Lambda (λ) values from 0.0125 to 10.24 are calculated. For each value of 

lambda, the error, J (θ), and, θ1 and θ2 are calculated. 

4.5. Testing the trained network  

 The test data set evaluates the network's performance after training. As stated, this study takes 

information from two wells. For each lambda value, the test set computes errors. Thetas need not 

be recalculated because the trained network already performs these computations. To predict 

precision, the lambda and theta values (θ1 and θ2) with the lowest error are chosen. 

4.6. Results  

 This histogram compares J (θ) for different lambda values. Error for training set is blue and 

test set is orange. The training set and test set errors are shown for lambda values from 0.0125 to 

10.24. 

 

Figure 16. Histogram Chart Showing Error for Training and Validation Set (Nande, 2018). 

 As seen in the histogram above, lambda increases training set error (blue). Regularization 

increases as lambda rises. Lambda is a penalty imposed on the hypothesis (or model) in order to 

simplify it and reduce J (θ) cost. The model may oversimplify and underfit the data as lambda 

increases. Thus, lambda increases error J (θ). For the test set, thetas trained with training data were 

used. The accuracy of the trained network's predictions is evaluated by test data. This was repeated 

for the same lambdas to achieve the lowest test error. The test set error for Lambda = 0.64 is the 

highest in the preceding chart. Lambda = 0.4 minimizes test set error; consequently, it is utilized 
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to forecast test data networks. The accuracy of the training set for lambda = 0.4 was 66%, 

indicating that the network accurately predicted the closure pressure for two out of three wells. 

With lambda = 0.4, the network accurately predicted the closure pressure for one of two wells. 

Due to insufficient training and testing data, the network's accuracy is subpar. A limited training 

and test set could cause the approximated error function to become confined in local minima. Since 

the local minima of a function are distinct from its global minima, the error may never reach the 

global minimum. Error cannot be minimized, so the model will never better match the data. 

Network performance deteriorates.
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5. Current challenges of AI in oil and gas industry  

 Various oil and gas corporations, including Saudi Aramco, Gazprom Neft, BP, and Shell, are 

embarking on endeavors related to artificial intelligence (AI) through significant investments in 

emerging ventures and Research and Development (R&D) activities. Nevertheless, there exist 

various obstacles that hinder the capacity of stakeholders to efficiently and promptly integrate 

artificial intelligence (AI) into the exploration and production operations within the oil and gas 

sector. The aforementioned matter is not exclusive to the oil and gas sector, but rather a prevalent 

obstacle observed in the present phase of artificial intelligence advancement (Duan et al., 2019). 

The achievement of artificial intelligence is reliant on human intelligence. Artificial intelligence 

systems are not universally applicable and readily accessible for procurement. Regardless, when 

AI systems are created by external entities and provided free of charge, such as TensorFlow by 

Google, they need to be tailored to fit the unique business environment and data held by an 

organization (Ng, 2016). To enhance the integration of artificial intelligence (AI) in products and 

processes, it is recommended that organizations form internal teams comprising individuals with 

proficiency in information technology and AI. These groups ought to be afforded the chance to 

make contributions towards the progress of AI systems, encompassing algorithms and datasets, 

and, at the very minimum, to personalize tools that companies will subsequently utilize in their 

operations. In order for artificial intelligence systems to be trained effectively and function 

optimally, it is imperative to have a substantial amount of high-quality data. While the utilization 

of advanced algorithms has the potential to improve outcomes when dealing with limited datasets, 

it is crucial to acknowledge that no control mechanism can effectively address the issue of 

inaccurate or unreliable information (Ransbotham et al., 2017). Hence, the availability of 

comprehensive and high-caliber information plays a pivotal role in both enabling and limiting the 

progress of AI applications. Oil and gas fields produce a significant quantity of raw data. When 

considering all relevant factors, one can make the case that the Open Government Initiative (OGI) 

does not provide a guaranteed assurance of progress. This is primarily due to widely recognized 

challenges related to the dependability and precision of field data, as well as the overall limited 

availability of substantial amounts of verified data (Hajizadeh, 2019). 

 In order to optimize the informational assets held or attainable by oil and gas enterprises, it is 

crucial for them to reassess and adapt their organizational frameworks and activities. Oil and gas 
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organizations are generally not acknowledged for their cohesive, efficient, and bottom-up 

approach to improvement. Nevertheless, their reputation is built upon their meticulous approach 

to regional segmentation and the implementation of cascading processes and strategies, 

necessitating occasional adjustments. Moreover, the incorporation of information accumulation 

ought to be executed in a centralized fashion, amalgamating the data into a singular or limited 

number of data repositories. This will enhance accessibility and utilization for both human users 

and artificial intelligence software. (Ng, 2016). The development of artificial intelligence (AI) is 

fostered in a collaborative and inclusive setting, predominantly propelled by the academic 

community. For a considerable duration, this has emerged as the prevailing factor in AI research, 

characterized by limited commercial influences. The advent of artificial intelligence has compelled 

organizations spanning diverse industries and geographic regions to adopt a culture of unrestricted 

knowledge exchange, as demonstrated by platforms such as GitHub, and open dissemination, as 

exemplified by platforms like arXiv. The necessity for organizations to adapt to this cultural shift 

has become crucial in order to achieve success in the era of artificial intelligence, thereby 

motivating them to actively engage in this competitive endeavor. The adoption of open innovation 

is progressively gaining prominence within the technology industry. Nevertheless, it is important 

to acknowledge that the collaborative endeavors of oil and gas companies in joint industries, 

particularly among competitors, are not widely acknowledged, particularly in critical areas such 

as artificial intelligence (Hajizadeh, 2019). 
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6. Future perspective of AI and ML in oil and gas industry 

 The presence of a conducive condition is contingent upon the extensive adoption of a 

framework that prioritizes the dissemination of information among various entities and across 

different domains. Anticipating rapid advancements in artificial intelligence (AI) capabilities 

across upstream, midstream, and downstream applications is a reasonable expectation due to the 

implementation of well-established and submitted initiatives in prominent organizations, as well 

as the availability of comprehensive information. The aforementioned progress will be 

accompanied by the advancement of artificial intelligence (AI) tools designed to facilitate dynamic 

operations across various levels. The authors exhibit a strong belief in the substantial potential for 

the progression of performability in OGI enterprises. The source of this optimism can be attributed 

to the significant allocation of investment funds towards expenses, as well as the capacity to 

minimize losses arising from suboptimal choices, which are anticipated to decrease by 50% in 

comparison to present levels. Moreover, it is crucial to take into account a substantial aspect of the 

ecological impact within this particular context. 

 The integration of artificial intelligence (AI) into business operations presents various 

possibilities for mitigating the negative consequences of technological advancements in upstream, 

midstream, and downstream sectors. For example, the implementation of a functional AI model 

can be utilized to mitigate the presence of harmful elements in well treatment procedures or to 

enhance the efficiency of recycling produced water, thus ensuring a suitable level of resource 

recuperation. The rational scenario arises when the IT platforms have been implemented, but the 

advancement of information sharing solutions is limited. The term "restricted" implies the 

existence of supplementary regulations regarding the distribution of resources, including the 

allocation of resources among various groups within a country. It is anticipated that specific 

artificial intelligence (AI) tools will gain recognition as valuable assets , leading to a shift in 

emphasis within the field of AI towards the development and utilization of grey box hybrid models. 

Within these models, the scientifically driven component that is grounded in physical principles 

will serve as a means to mitigate the limited availability of a significant volume of empirical data. 

The researchers posit that this particular scenario is the most rational, and it is expected to have a 

comprehensive influence on the upstream, midstream, and downstream sectors (Nishant et al., 
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2020). The capacity to proficiently engage with diverse subject matters and explore information 

empowers AI-driven startups to differentiate themselves and garner investments.  

 In 2019, AI-related organizations in the United States received a significant funding amount 

of $18.5 billion, indicating a notable rise of around $2 billion in comparison to the preceding year 

(O'brien, 2020). Prominent entities within the realm of artificial intelligence actively participate in 

the acquisition of emerging companies. Earth Science Analytics, a startup, has received 

investments from Saudi Aramco, a prominent energy company. The primary objective of this 

strategic initiative is to facilitate the advancement of artificial intelligence (AI) software in the 

field of oil geoscience, with the ultimate goal of laying the foundation for the future iterations of 

this technology.  

 BP has engaged in an investment endeavor by acquiring a stake in a startup named Belmont 

Technology. The primary objective of this investment is to augment the artificial intelligence and 

digital capabilities of the company, specifically within its offshore upstream business (Umar, 

2019). Chevron, Saudi Aramco, and Shell have collaboratively founded a startup named "Maana" 

with a specific emphasis on artificial intelligence. The startup has engaged in a collaboration with 

Microsoft in order to utilize its distributed computing platform (Luck and Chronicle, 2019). 

 

7. Detailed summary 

 From a holistic viewpoint of the industry, it is advisable to formulate a collaborative formal 

proposition through the collective efforts of scholars, top-level executives, and subject matter 

specialists. The objective of this proposal is to advocate for the establishment of a cohesive 

understanding and effective coordination among major oil companies, utilizing the institutional 

advantages inherent in our nation's socialist market economy. From a strategic standpoint, it is 

imperative for company leadership to priorities business orientation, problem orientation, and goal 

orientation. The aforementioned objectives can be accomplished by implementing integrated 

design, organization, and dissemination strategies. These strategies will enhance the efficiency of 

data flow, restructure business processes, and foster innovation, revolution, and transformation in 

the management approach. Finally, it is imperative to allocate equal emphasis to both software and 

hardware components from a disciplinary perspective. It is imperative to adhere to the principles 
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of application-oriented approaches, which facilitate the mutual progress of both research and 

practical implementation. It is important to distinguish between the term "big volume of data" and 

the concept of "big data." The fundamental basis for the implementation of artificial intelligence 

(AI) applications is rooted in the utilization of standardized or normative data, as well as a 

repository of sample instances. The prioritization of data management is of utmost  importance in 

the successful implementation of artificial intelligence (AI) applications. There exists a necessity 

to consolidate the process of data labelling, improve the interoperability of data, and strengthen 

data management. This is crucial in order to establish a resilient mechanism for data trust and a 

comprehensive framework for data management. This will enhance the process of standardizing 

and ensuring compliance with data sharing practices. 

 Currently, there is a noticeable deficiency in the realm of effective communication and mutual 

understanding between engineers specializing in AI algorithms and those working in the field of 

oil extraction. Moreover, in the process of transitioning from digitalization to intelligentization, 

there exists a prominent concern regarding the optimizations of production efficiency while 

simultaneously reducing resource consumption. This issue is observed to varying degrees. 

Concurrently, the development of interdisciplinary skills in the domains of petroleum exploration 

and development (E&D) and artificial intelligence (AI) poses challenges owing to the broad range 

of disciplines involved in both industries. Moreover, this procedure is characterized by a significant 

expenditure of time. There exists a necessity to augment the extent of collaborations between 

institutions of higher education and petroleum corporations, as well as between petroleum 

corporations and information technology enterprises, with the aim of cultivating the growth and 

advancement of individuals with exceptional abilities. Efforts ought to be undertaken to establish 

innovation consortiums that facilitate diversified fusion among oil enterprises, as well as between 

oil enterprises and IT enterprises, while also promoting interdisciplinary collaboration. This will 

enable the establishment of an efficient research and development system for AI technology in 

China's petroleum industry. 

 Within the framework of informatization construction, the oil and gas sector demonstrate the 

capability to proficiently manage the considerable volume of data that is both accumulated and 

consistently generated. Furthermore, the network and its constituent nodes possess a specific 

degree of computational capability. To promote the integration of intelligent technologies  in the 
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oil industry, it is crucial to undertake a research initiative centered on developing fundamental 

algorithms and establishing an algorithmic system with independent intellectual property rights. 

The subsequent table presents a selection of studies that have employed artificial intelligence (AI) 

in various sectors of the petroleum industry. 

 

Table 4. Applications of AI in different sectors of the petroleum industry. 
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8. Conclusion and recommendations 

 This paper presents a comprehensive examination of the recent progress made in the domain 

of artificial intelligence (AI) and machine learning (ML), along with their practical 

implementations in the oil and gas sectors. This paper presents a compilation of  noteworthy 

instances wherein machine learning techniques have been utilized in the domains of exploration, 

reservoir analysis, drilling, and production. The literature review regarding the oil and gas industry 

is well-positioned to exploit the benefits of machine learning due to its capability to manage 

substantial amounts of data and execute computations swiftly. The current paper provides an 

overview and analysis of various supervised learning techniques. The utilization of machine 

learning in the oil and gas industry holds the promise of substantially altering the decision-making 

procedures conducted by administrators and engineers, thereby influencing a diverse array of 

crucial activities carried out on a daily basis. 

 The effective utilization of diverse data types or structures can lead to the realization of 

potential benefits associated with information. This transformation of data into valuable 

information enables informed decision-making. Various solutions, including Artificial Neural 

Networks (ANN), Additive Layer Manufacturing (ALM), supervised learning, fuzzy logic, linear 

regression, and Principal Component Analysis (PCA), can be employed to tackle the challenges 

faced in the oil and gas sectors and enable the formulation of lucrative strategies. It is anticipated 

that there will be a significant increase in the utilization of machine learning, specifically in the oil 

and gas industries, in the forthcoming years. The accelerated adoption of machine learning is 

expected to transpire swiftly, leading to substantial value generation for the respective industries. 

 The incorporation of both short-term and long-term strategies is imperative, as it enables the 

efficient application of successful experiences from specific instances to promote the extensive 

implementation of artificial intelligence. In order to foster collaborative innovation, it is imperative 

to consider a range of factors including top-level design, data management, allocation of research 

and development resources, talent cultivation, and value augmentation. The proposed strategy 

involves improving understanding and supporting educational interventions, specifically targeting 

individuals in diverse managerial roles. In order to create an ideal setting for the advancement of 

scientific and error-free artificial intelligence (AI) applications, it is crucial to give precedence to 

certain key domains. These include business applications, fundamental research, gradual 
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dissemination of individual achievements, and the establishment of supportive management 

systems.  
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