
{ } Univerzita Hradec Králově 
Fakulta info rm at iky a managementu 

Z a d á n í b a k a l á ř s k é p r á c e 

Autor: Serhii Konar 

Studium: 11900796 

Studijní program: B06SSA140002 Informační management 

Studijní obor: Information Management 

Název baka lářské práce: Personalized assistant in emergency situations 

Název bakalářské práce AJ: Personalized assistant in emergency situations 

CÍL metody, literatura, předpoklady: 

The goal of the thesis is to conduct a research on navigating systems and develop a mobile 
application to assist in emergency situations caused by natural hazard. 

A-GPS vs GPS. [n.d.). Diffen. Retrieved August 19, 2021 API. [n.d.). Map box. Retrieved August 19, 
2021 Google Maps Platform Documentation |. [n.d.). Google Developers. Retrieved August 19, 
2021 Hildenbrand, J. [2020, November 10). How does GPS work on my phone? Android Central 
TomTom Developer Portal | Maps APIs and SDKs for Location Applications, [n.d.). TomTom 
Developer Portal. Retrieved August 19, 2021 

Zadávajícípracovistě: Kate d ra in fo rm acn í ch te chn o 1 o gi í, 

Fakulta informatiky a managementu 

Vedoucí práce: doc. Ing. Pavel Čech, Ph.D. 

Oponent: Ing. Martina Husáková, Ph.D. 

Datum zadání závěrečné práce: 9.9.2021 



University of Hradec Králové 

Faculty of Informatics and Management 

Personalized assistant in emergency situations 

Bachelor's/Master's Thesis 

Author: Serhii Konar 

Branch of Study: Information Management 

Supervisor: Pavel Cech 

Hradec Kralove August, 2022 

1 



Declaration: 

I declare I wrote the Bachelor's/Master's thesis myself, using only the listed 
bibliography. 

In Hradec Králové, August 2022 Signature 
Serhii Konar 

2 



Annotation 
English: With the advent of new technologies, it is necessary to solve problems in 

modern ways. The bachelor thesis deals with implementation and design of an Emergency 
application for Android operating systems. The final version of the app is developed using 
common as well as modern development technologies and practices. The application notifies 
users i f the tsunami occured and helps to find the nearest shelters. The thesis contains a 
review of existing applications, methodologies, design and app architecture and usability 
testing. Also, the ideas of future development are covered at the end of the thesis. 

Czech: S nástupem nových technologií je potřeba řešit problémy moderními způsoby. 
Bakalářská práce se zabývá implementací a návrhem nouzové aplikace pro operační systémy 
Android. Finální verze aplikace je vyvíjena pomocí běžných i moderních vývojových 
technologií a postupů. Aplikace upozorní uživatele, zda došlo k tsunami, a pomůže najít 
nejbližší úkryty. Práce obsahuje přehled existujících aplikací, metodik, designu a architektury 
aplikací a testování použitelnosti. V závěru práce jsou také uvedeny představy budoucího 
vývoje. 

3 



Acknowledgements 
I would like to thank my supervisor of my Bachelor thesis Pavel Čech for help and assistance. 

Also I am glad that another student wished to help to develop the backend part of the app. 

4 



Content 

Abstract 2 

Content 3 

Introduction 5 

Lack of information in emergency situations 5 
Similar apps 5 

Methodology 7 
1.1 Basic definitions and classifications of mobile apps 8 

Native apps (Valdellon, 2020) 9 
Web-apps 10 
Hybrid apps 10 

1.2 Android development features 11 
Variety of Android devices 11 
Different versions of Android 11 

1.3 Architecture of the app 12 
1.4 Specifics of Android app development 12 
1.5 How does the smartphone know your location? (Ionescu, 2010) 13 

2. Technologies and tool for Android development 14 
2.1 Selecting the programming language 14 
2.2 Features of Kotlin 14 

Data classes in Kotlin 14 

2.3 Selecting an architecture pattern 16 
2.3.1 Clean architecture 16 

How to implement the structure? 17 
2.3.2 M V V M architecture (Guide to App Architecture |, 2020) 17 

How to implement the M V V M pattern ( M V V M Architecture - Android Tutorial for 
Beginners - Step by Step Guide, 2020) 18 
Advantages of M V V M Pattern: 19 
M V P pattern 19 
Creating a user interface without using templates 20 
More structuring 21 

3. How a beta-version of Emergency App was created? M V V M structure. 23 
3.1 Dependency Injection 24 
3.2 Use Cases 24 
UI components and data representation 25 

Data models 26 
Services 28 
Foreground service 28 
Modeling 28 

3.3 Applying pattern to handle different HTTP responses 28 

5 



3.4 Integration of Google Maps to our app 29 
3.5 Connecting to Firebase 30 
3.6 Working with a network. Retrofit 31 

Why to use? 31 
Basic implementation 31 

3.7 What data do we expect to receive? 32 
Modeling an objects 33 

3.8 Android permissions 33 
Types of permissions 33 

3.9 Configuring permissions in the app 34 
3.10 Firebase 35 

Firebase Cloud Messaging 36 
3.11 Foreground Location 3 6 
3.12 Emergency notification 3 7 

UX/UI 39 
4.1 Principles of creating UI for Android app 39 
4.2 Users' opinions 41 

5. Results 42 
5.1 Key achievements 42 
5.2 Future development 42 
5.3 Conclusion 43 

Bibliography 43 
Image references 45 

6 



1. Introduction 
Humans live in a modern society where new technologies are being developed every 

day. That is why scientists and engineers need to find out modern approaches for different 
problems. Every day thousands of people die due to natural disasters, man-made disasters or 
health related reasons. We can not reduce the number of deaths to zero yet, but at least we can 
reduce the number of deaths caused by natural disasters. For this reason some developers 
have already developed mobile applications to help people in emergency situations. 

Lack of information in emergency situations 
Many people do not know how to react in emergency situations. One of the reasons is lack of 
information or disinformation. In the past 10 years there were tsunamis that killed a lot of 
civilians. The tsunami in Japan in 2011 killed about 18,500, although other estimates gave a 
final toll of at least 20,000. {Japan Earthquake and Tsunami of 2011 - Aftermath of the 
Disaster, 2011) Sometimes it is not enough to warn about tsunamis using sirens on the 
streets. Moreover, it w i l l lead people to panic, but the app could send more specific 
instructions about what to do, people wi l l have enough information about nearest shelters. 

First thing that comes to mind is to notify the users about an imminent disaster. Once the 
users were notified they could decide what to do next. Also, developing such apps is 
important because it wi l l lead us to better or innovative solutions in future. There are a lot of 
dangerous areas where people live: near volcanoes, the ocean, etc. This group of people live 
in risky zones and one day the hazzard can occur. To minimize the number of victims it is 
necessary to follow the instructions that the emergency app gives you. 

Similar apps 
There are a lot of similar apps. One of them is Earthquake & Tsunami Alerts (iOS only). 
The application's main screen is a live 
map that shows earthquakes. It is 
designed following design principles 
with great user experience. The 
application receives data about 
earthquakes from various sources. In 
case of an approaching tsunami or 
earthquake all the users w i l l receive a 
notification and a loud siren wi l l play. 
The app saves quake data such as 
location, magnitude, depth. Also, it 
could be a great educational tool. 

Hazards - Red Cross is another 
emergency app developed by Red Cross 
organization in New Zealand. It has 
almost the same features as 
Earthquake & Tsunami Alerts. 
However, the last one is supported by 
both mobile platforms (Android/iOS). 
A n d also, it send the notification 
according to your current location. 

Monitor quakes activity Analyze earthquake data 

(Earthquake Tsunami Alerts, 2022) 

7 



{Hazards - Red Cross -Apps on Google Play, 2021) 

Air alert is another app that could be kind of an emergency app. Unlike the previous 
examples, this one notifies the user about an air attack in their region. In case of danger the 
user w i l l hear the siren as in other apps. 
{Air alert, 2021) 

The apps do not support navigation to a shelter. 

Goal 
Keeping in mind those examples, we are going to create our own app, conducting features 
from similar apps. The idea is to create an Android application and connect it to a server to 
work with useful data related to tsunamis. The application must notify the user in case of an 
approaching tsunami. Using web-application we are able to create a simulation of the tsunami 
by setting up the origin point and danger area and then send emergency notification to a user. 

8 



2. Methodology 
Programming language 

To build an Android application the programming language should be selected. We 
have the possibility to select between Kot l in and Java. I decided to code in Kotl in , because it 
has a lot of new features over Java. Moreover, Kot l in works on JVM(Java Virtual Machine). 
Coding in Kot l in w i l l make our experience awesome, because we can use such features as 
Data classes, extension functions or at least write less lines of code. The app is built and 
supported for Android 8 and latest versions. 

Asynchronous requests 
During the development we are calling different H T T P (Hypertext Transfer Protocol) 

requests in asynchronous way and then we push the received data to our U I (User-Interface) 
thread. That makes our app more responsive in terms of using the app. 

Tools 
Developers do not like to code one thing many times. That is why in our work we use 

different libraries. We used Retrofit to call H T T P requests. Since the main feature of the map 
is navigation, we need to integrate a map to our map. There are a lot of different solutions, 
but I have decided to use Google Maps for the app, because it has a big popularity over the 
Android community. Also, it has a lot of useful features that would definitely help us to build 
our emergency app. 

Enterprise Architect 
This program wi l l be used to create an U M L diagram according to rules of OOP 

(Object-oriented programming). It w i l l be much more convenient to build the architecture in 
the application i f we think about it before coding. Also it is very helpful, because the 
developer could see the relations between classes and properties on the scheme in easy way. 

Firebase 
Firebase is a tool developed by Google. It combines cloud functions and cloud 

technologies for your application. Firebase can be used as a backend of the app. It also 
supports Cloud Messaging, so we are able to send notifications to the user. Firebase plays the 
role of a backend that could provide us with some data. 

Architecture 
Creating an Android app we could select any architecture. Some of the architectures 

might be more suitable for different purposes. Mostly it depends on the developer's view. Our 
app is designed according to M V V M (Model-View-ViewModel) architecture to separate 
business logic. Also, the principles of Clean Architecture are strictly followed. Comparing 
M V V M to other patterns it seems to be the most testable due to following 
single-responsibility principle. 

9 



Pattern Dependency on Android 
API 

XML 
Complexity 

Unit 
Testability 

Follow Modular and 
single 

responsibility principle 

MVC High Low Difficult No 

MVVM Low or No dependency Medium to High Best Yes 

(Architecture comparison. 2022) 

Literature resources 
To build the app the developer should read a lot of different articles related not even to 
programming, but also we need to know more about tsunamis and other hazards. One of the 
resources that was used is ScienceDirect. It is a very popular web-site where "smart people" 
could publish interesting articles related to science or research. It helped to find similar works 
and compare them. Also, the most common resource of information is official Android 
documentation by Google where it is possible to find out anything you need for your 
application. Reading the documentation, the developer w i l l delve into Android deeper. 

Cooperation with others 
To release a better product developers usually need to have other developers or even a team. 
That is why I cooperated with another student, who helped me to build a server part. 

1.1 Basic definitions and classifications of mobile apps 
A mobile application is a program created to run on a mobile device such as a phone, tablet, 
or watch. Mobi le applications often differ from desktop applications which are designed to 
run on desktop computers, and web applications which run in mobile web browsers rather 
than directly on the mobile device. (Techopedia, 2020) 

Smartphones usually have an operating system (OS). The most popular OS for mobile 
devices are: iOS, Android, Windows Phone. The chart below show the market share of 
operating systems for smartphones.Currently 72 percent of devices use Android as operating 

10 



system. The devices could be smartphones, tablets, smart TV, smart watches. De 
StatCounter Global Stats 

Mobile Operating System Market Share Worldwide from July 2 021 • July 2022 

# <f <r * f # 

IGS Samsung O KaiOB Unknown Nokia Unknown Windows iipne? 40 Other [dotted) 

{Mobile Operating System Market Share Worldwide, 2022) 

Developing mobile apps we should keep in mind people mostly use Android but 27% of 
people prefer iOS. The best applications from popular developers are supported on both 
platforms. The best applications are more accessible. That is why developers should also 
think about the minority that prefers other OS. 

There are some basic types of mobile app i f we categorize by approach used to code the app: 
1. Native apps are created for one specific OS 
2. Web-apps are responsive web sites which can work on any mobile device using 

browser 
3. Cross platform apps are created for a variety of platforms in one specific 

environment 
4. Hybrid apps are combinations of native and web app. It is wrapped within a native 

app. It gives the ability to make an app being downloaded from PlayMarket or 
App Store. 

Native apps (Valdellon, 2020) 
They are built for a specific platform. Thus, we can not run Android native apps on iOS 
devices. For specific platforms, programmers must code using native language. Android 
native apps are coded in Kotlin or Java, iOS native apps are coded in Swift or Objective-C 

Native apps have the advantage of being faster and more reliable in terms of performance due 
to their exceptional focus. They tend to use device resources more efficiently than other types 
of mobile apps. Native user interface is used in native apps and provides users with a more 
streamlined customer experience. 

Native apps connect with the device's hardware directly. That means native apps have access 
to a wide range of device features such as Bluetooth, phonebook contacts or N F C . On the 
other hand, it is impossible to run the native Android app on another platform. In this case 

11 



you can hire another developer to create the same app for another platform. This drives up 
costs. Also you need to maintain and update the codebase for each version. 

So, writing native apps can give you the possibility to use all the advantages of Android S D K 
on different devices. Android is an open source project that means different Android 
Manufacturers may use its own firmware for Android. Sometimes you need to think about 
how to implement one solution on different devices. For example, you can think about 
localizations to create different translations for different regions. Writing code in native 
environment supports such localizations and even more, you can create different layouts or 
U I for devices with different screen sizes. 

Web-apps 
Web apps can behave as native apps, but the main difference is that web-apps are accessed via web 
browser. Usually it is a responsive web-site that adapt its user interface to the user's device. To create 
such application developers should use H T M L , CSS, JavaScript, TypeScript, React. In this approach, 
developers create a web-site instead of coding many native apps. This cuts down costs. Also, to run 
the app you do not need to download files, so the app will not use your device memory. 

However, to use the app you need to maintain Internet connection. The web app can't work 
in offline mode. Also, web apps are dependent on web browsers which are installed on 
smartphones. Some features are not supported in all browsers. That is why some functionality 
may differ from browsers, possibly giving users varying experiences. 

The worst thing is that using such stack you can not directly access device memory or use all 
features of the device. 

Cross platform apps 
That kind of app gives you an opportunity to write code once and run on different platforms. 
They are usually coded in JavaScript, React, Flutter. Programmers do not need to create different apps 
for platforms. Thus, the costs of development can be reduced. 

Although, the performance of cross platform apps are lower than native apps. In some specific cases 
you can not use all the features of the device in a cross platform environment. 

Comparing native apps with others, it is clear that they are useful for the majority of cases. But 
sometimes it could be better to create a web application. That is applicable for small projects or web 
apps where you need to adapt UI for different screen sizes and save functionality. 

Hybrid apps 
Are considered to be web apps that look like native apps. They also have an app icon, responsive 
design, fast performance, or even be able to function offline, but they're really web apps made to look 
native. To create hybrid apps programmers use Objective C, Swift, Kotlin, Java, HTML5, etc. 
Building a hybrid app is considered to be faster and more economical than a native app 
A hybrid app can be the minimum viable product. In some situations it is a way to prove the 
viability of building a native app. They also load quickly. It is ideal for use in countries with 
slower internet connection, and provide users with a consistent user experience. There is 
much less code to maintain due to using single code base 

However, Hybrid apps might lack in power or speed. 

12 



In most cases the approach of development may be selected by the customer. In 2022, there 
are customers that are looking for developers to develop only native apps or only web-apps 
adapted for different devices. There several reasons why people choose between native app or 
web app. One of them is, different price for development and amount of time spent for 
development. Developing two native apps for two platforms may take much more time than 
writing a web-app. In our case developing a native app is mandatory and only one possible 
solution, because we want to work with geolocation and decode it. 

1.2 Android development features 
Developing on Android, the developer should know about specifics and features of different devices. 
They may differ from manufacturer. This brings some complexity in development. 

Variety of Android devices 
Developing a mobile application for android is not an easy task, because it is important to 
know a few things. Firstly, this is a large fragmentation of devices. This is an advantage for 
users: they can choose a phone for every taste and for any technical requirements. Front 
camera may not be installed in smartphones. Sim Cards can be as many as you like. Two 
screens may be present, for example, an additional one on the back 
Imagine a situation, you need to use a camera in the App. Firstly, the programmer should 
verify i f the device has a camera or not. If the user does not have a camera, they are notified 
that this feature is not available without a camera. 

Also developers should consider different screen sizes. The app should be optimized for 
small screens and tablets. 

Different versions of Android 
There are a variety of Android versions. This make developers to think about some important 
points during the development: 

• During the development process, it is necessary to take into account the specificity 
of displaying the user interface on different versions of Android. For example, system 
controls may differ from Android versions and skins of the same Android version; 

• Different versions have different features and support different logic. For example, 
before version of Android 6.0 (Marshmallow), applications did not have to request 
permission separately (access to the camera, microphone, and so on), they were listed 
in Google Play and it was supposed that the user was familiar with them before 
downloading. After Android 6.0, each permission must be requested separately at the 
time the application is running. Accordingly, i f you do not implement logic options 
for different Android versions when developing an application, it wi l l not work 
properly in all versions; 

• Libraries and software methods are updating: some of them are considered 
deprecated and need to be replaced with newer lines of code. So, developers have a 
choice: support only latest Android versions or to allow as many users as possible to 
install a mobile application; 

13 



StatCounter Global Stats 
Android Version Market Share Worldwide From Mar 2021 - Mar 2022 

O 10.0 O 11.0 O 9.0 Pie O 8.1 Oreo O 6.0 Marshmallow •:• 8.0 Oreo O 7.0 Nougat O 5.1 Lollipop -:- 7.1 Nougat — Other (dotted) 

{Android Persians Market Share^ 2022) 

1.3 Architecture of the app 
You need to take into account the architecture and the structure of the app. Unlike iOS, where 
applications are architecturally a single whole, in Android they are assembled from logically 
independent and separate parts - activities and fragments. 

This approach was created precisely in order to ensure the operation of applications on 
absolutely any mobile, including those with a very small amount of R A M and very weak 
processors. If the parts of the application are independent, any of them can be thrown out of 
memory at the right time and not spend precious resources on maintaining its life cycle. 

There are a lot of architectural patterns that developers may apply to build an architecture. 

Google's recommended programming language for building android apps is currently Kotlin, 
not Java. The difference between them is significantly smaller than between Objective-C and 
Swift for iOS, but they are still slightly different approaches to development. 

1.4 Specifics of Android app development 
A s well as other platforms Android has its own specifics for development. Creating mobile 
applications for Android has the following specifics: 

• Android is the most popular operating system in the world. A s a consequence, the 
diversification of the devices it manages is huge. In the process of creating an 
application, you need to make sure that the application supports the vast majority of 
gadgets of the target audience. 

• A t the development stage, pay attention that U I / U X should take into account not 
only the different sizes of devices, but also the work in multi-window mode, and the 
pixel density of screens: thin fonts on low-quality displays wi l l be distorted or 
disappear altogether. 

14 



• The number of current versions of Android in use is many. When creating 
applications, you need to consider all of those that your target audience uses. 

• During the development process, when designing the interface, it is necessary to be 
guided by the concept of Material Design (see https://material.io/design). 

• Google's recommended programming language for Android is Kotl in. 

1.5 How does the smartphone know your location? (Ionescu, 2010) 
Receiver in the smartphone provides location and time information to a software, using radio 

waves between satellites. The user does not have to send any data to the satellite for maintaining GPS 
tracking. The user is only for receiving and processing the data from four or more satellites that are 
dedicated for geolocation use. 

GPS is precise, but it's slow and uses a lot of power on both ends. Thus, when user uses 
navigator you need a bit more energy to maintain the smartphone's work. 
Atomic clock is installed in each satellite and the satellite sends a time-coded signal on a specific 
frequency. Receiver on smartphone starts gathering data from the satellites with the strongest signals 
after determining visible satellites. GPS data is slow, because satellites run on rechargeable batteries, 
and sending a fast signal thousands of miles would require a lot of energy — so it can take up to 
several seconds to get precise location. 

To triangulate where the user is located and what time it is phone's GPS receiver uses the data 
from satellite signals. Triangulation means that four satellite are are required for GPS to work. To 
determine altitude, the smartphone receives the fourth signal. So it is enough to receive three signals 
to get the user's location on the map. 

15 

https://material.io/design


2. Technologies and tool for Android development 
There are a lot of different ways developers could build the app. Thousands of tools, APIs 

(Application programming interface), libraries or even languages could be used for native or 
cross-platform development. For native android apps a developer should choose between Kotlin and 
Java. 

2.1 Selecting the programming language 
Programmers can code native Android applications using Kot l in or Java. During the 

last years Kot l in gained its popularity. Google has listed Kot l in as the primary programming 
language for Android devices since 2017. However, older applications were usually written 
in Java and still work on the latest versions of Android. 

2.2 Features of Kotlin 
Kotl in is a general purpose, free, open source, statically typed "pragmatic" 

programming language initially designed for the J V M (Java Virtual Machine) and Android 
that combines object-oriented and functional programming features. 

Kotlin Supports Full Java Interoperability 
One of the major as well as the best features of Android Kot l in is its deep 

interoperability with Java. This feature has attracted many Java developers as well as Android 
app developers to coding in Kotl in. 

Developers from JetBrains made the code to run on J V M (Java Virtual Machine). That is why 
Kot l in supports Java libraries as well as Kot l in libraries , providing full Java interoperability. 

Both the languages co-exist, so this makes it easier for developers to be productive. 
Developers can easily compile one Android project in both languages (Java and Kotlin). 

This wi l l allow the developer to switch the programming language instead of changing the 
codes. So, i f you need access to a Kot l in method from a Java class or vice versa, you can do it 
easily. 

Data classes in Kotlin 
Typically, a data class in Java contains lots of boilerplate code which developers have 

to skip in order to find out the real use of that class. 

But now in Kotl in , Android developers can write the equivalent of the same Java code in a 
simple manner, and with lesser code. Therefore, the data classes in Kot l in are also known to 
be one of the useful features. The data class in kotlin generates all the code under the hood 
during the compilation. 

Extension function 
Extensions of this language are very useful because they allow developers to add 

methods to classes without making changes to source code of the class 

Null safety 

16 



This feature of Kot l in is one of the strongest because this language is relatively safe. 
Moreover, programmers can avoid errors such as "NullPointException" using the Null Safe 
function. 

Clean and Compact Syntax 
With the help of Kot l in , you get things done with only a few lines of code comparing 

to Java 

In addition, clean syntax and code offer benefits, such as easy maintenance, easy-to-read 
code, and easy 

Standard Library Functions 
The benefit of using Kot l in is that it offers standard library functions. This is the most 

important factor for Android developers. 
You can easily make the implementations of higher-order functions with the help of idiomatic 
patterns, such as let, apply, use, and others, with much ease. 

Moreover, it also has multiple utilities to work with char and string sequences. Also, Kotlin 's 
J D K classes can be useful in working with Input and Output operations, files, and threading 
with more convenience. 

Coroutines 
Asynchronous or non-blocking programming is an important part of the development 

process. When building server, desktop, or mobile applications, it's important to provide a 
user experience that's not only flexible from a user's point of view, but also scalable as 
needed. 

Kot l in solves this problem in a flexible way. It provides coroutine support at the language 
level. 

In addition to asynchronous programming, coroutines also provide a variety of other 
possibilities, such as concurrency and actors. 

https://www.spaceotechnologies.com/blog/kotlin-features/ 

Features of Kotlin that Java do not supports: 
• Lambda expressions and inline functions (i.e., performant custom control structures) 
• Separate interfaces for read-only and mutable collections 
• Declaration-site variance & Type projections 
• Range expressions 
• Type inference for variable and property types 
• Coroutines 
• Extension functions 
• Null-safety 
• Primary constructors 
• First-class delegation 
• Operator overloading 
• Companion objects 
• Smart casts 
• Data classes 

17 

https://www.spaceotechnologies.com/blog/kotlin-features/


• String templates 
• Singletons 

Java is still supported on Android. Android runs over J V M . That means we are able to run 
Java apps on Android. Java was the official language of Android until Kot l in came along. 
Google has supported this language by making it official for the platform. We are choosing 
Kot l in since it has more features over Java and it is more modern approach to develop for 
Android. 

Why is Kotlin good for Android app development? 
• Kot l in is a quite new programming language that has its own feature that Java does 

not. A n d this makes Kot l in the best for developing native Android apps in 2022. 
• Google considers Kot l in as the official language of the Android platform. 
• Kot l in has a big community. Kot l in was released in 2016 and started to gain 

popularity. 

2.3 Selecting an architecture pattern 
There are a lot of different architecture patterns that could be used for building an Android 

app. A l l of them exist to reduce boilerplate code, make your code scalable and understandable. It is 
important to keep code clean and scalable. For this reason architecture patterns exist. So what 
is clean architecture and how can we apply it in our project? 

2.3.1 Clean architecture 
This is one the most important software design philosophies. The majority of 

architectures are built following its principles. Generally, clean architecture separates 
business logic and U I 

[Clean Anhilcciuiv. 2019) 

Firstly, we need to understand the basic definitions to apply such approach: 
• Entities - Encapsulate the most important rules for the functioning of the enterprise 

level. Entities can be an object with methods or a collection of data structures and 
functions. 

• Use Cases - organize the flow of data to and from objects. 

18 



• Controllers, Gateways, Presenters - it's all a set of adapters that most efficiently 
convert data from Use Cases and objects to pass to the top layer (usually the user 
interface). 

• UI, External Interfaces, DB, Web, Devices - the outer layer of the architecture, 
usually consisting of elements such as user interfaces, front-ends, databases, and web 
frameworks. 

Understanding those definitions can help us to structure the project 

How to implement the structure? 
Atypica l Android project usually requires a separation of concepts between user 

interface, operation logic, and data model. We need to create three different packages or 
modules: 

• Domain - contains definitions of application logic, server data model, abstract 
definition of repositories, and definition of use cases. This is a simple, pure kotlin 
module (android independent). 

• Data - contains an implementation of the abstract definitions of the domain layer. Can 
be reused by any application without modification. It contains data source repositories 
and implementations, a database definition and its D A O , network A P I definitions, 
some conversion tools to convert network A P I models to database models and vice 
versa. 

• App or Presenter layer - it depends on Android and contains fragments, view 
models, adapters, activities and U I parts. 

2.3.2 M V V M architecture (Guide to App Architecture |, 2020) 
Google has its own code-libraries to help Android developers to reduce the boilerplate 

code and for better structuring and separation of business logic. 
M V V M stands for Model-View-ViewModel , that is why this pattern consists of three parts. 
Applying the pattern we should consider the next parts of logic: Model , View and 
ViewModel . Model is the business data layer and is not associated with any particular 
graphical representation. In Android, according to the "clean" architecture, the model can 
contain a database, a repository, and a business logic class. The picture below describes the 
interaction between different components. View contains a structural definition of what users 
wi l l get on their screens. You can put static and dynamic content here. There may not be any 
application logic here. For our case, the view can have an activity or a fragment. Only U I 
(user interface) can be here. ViewModel binds the model and the view. Responsible for 
managing data links and possible conversions. This is where the binding comes in. In 
Android, we don't worry about this because we can use the AndroidViewModel or 
ViewModel class directly. {ViewModel Overview , 2020) 

19 



V i e w M o d e l 

Observe Data 
C h a n g e s ^ 

V i e w M o d e l 

Model Change 
Callbacks 

Send Data 

Data Streams Receive Data 

T-4- , Data _Chancjes Cal lbacks. 

[MWMArchitecture, 2022) 

How to implement the M V V M pattern ( M V V M Architecture - Android Tutorial for 
Beginners - Step by Step Guide, 2020) 

To implement the M V V M pattern, it is important to start with components that need 
another component to work. 
We can see the class diagram below that represents the M V V M architecture. A n d this 
means that the View (Activity/Fragment) knows about the View-Model , and not vice versa, 
and the View Model knows about the Model , and not vice versa. That is, the view wi l l have a 
relationship with the ViewModel , and the ViewModel w i l l have a relationship with the 
Model . Strictly in that order, nothing else. This architecture makes the application easy to 
maintain and test. 

20 



Activity / Fragment 

r •> 
Remote Data Source 

(AppArchitecture, 2020) 

In addition, we can fetch data using databases and API-calls in a more convenient way from 
Repository. 

Advantages of M V V M Pattern: 
• A lot of extra effort is minimized as it allows reviewing the complete setup at the 

compilation stage. 
• In this model, the user is allowed to write custom X M L attributes by using Binding 

adapters. 
• Helps to separate the code 

M V P pattern 
With the development of the visual programming environment and the introduction of 
widgets that encapsulate the rendering and processing of user input, there is no need to create 
a separate controller class. But developers still need to separate logic from presentation, only 
now at a higher level of abstraction. Because it turns out that i f you create a form with 
multiple custom elements, it also contains both interface and data logic. The M V P pattern 
describes how to separate the U I from interface logic (what happens when interacting with 
widgets) and from data (what data to display on the screen). 

• Model 
This is your application's data, the logic behind getting it and saving it. It is often 
based on a database or results from web services. In some cases, it wi l l need to be 
adapted, changed, or extended before being used in the View. 

• View 
Usually it is a form with widgets. The user can interact with its elements, but when 
some widget event affects the logic of the interface, the View wi l l send it to the 
presenter. 

21 



• Presenter 
The Presenter contains all the U I logic and is responsible for keeping the Model and 

View in sync. When the view notifies the presenter that the user has done something (such as 
pressing a button), the presenter decides to update the model and synchronizes all changes 
between the model and the view. 
Speaking about different architectural patterns we can not say that M V P is definitely better 
than M V V M or vise-versa. Both of them have their advantages and disadvantages. 
Developers select that pattern which is the most suitable to solve concrete problems. 

Creating a user interface without using templates 
H o w would you build a user interface (UI) without using the above patterns? They 

would take layout, add widgets to it, and write logic in code. Such code, which describes the 
logic of the View, is tightly coupled to the user interface, since it directly interacts with the 
elements on the screen. This is a good but straight forward approach. It is applicable only for 
very simple interfaces. When the logic gets more complex, maintaining such a U I can 
become a nightmare! 

The root of the problem is that building the U I in this way violates the Single 
Responsibility Principle, which says, " A class should have only one reason to change." If a 
U I component contains code for display, logic, and data, then it has several reasons to 
change. For example, i f you want to change the type of a custom element that is used to 
display data, then the change should not affect the logic. However, since the logic is so tightly 
coupled to the controls, it wi l l also need to be changed. If you wi l l not use architecture 
patterns, you wi l l definitely face complexity of support. Changes in the UI , logic or data w i l l 
most likely lead to changes in other parts. Therefore, it is much more difficult to make 
changes, which makes it difficult to maintain. In addition, you wi l l suffer from hard 
testability. Application logic and data can be written in such a way that each component can 
be tested separately. However, Ul-related code does not lend itself well to unit testing because 
it often requires user interaction to run logic in the UI . In addition, any visualization often 
requires human evaluation that everything "looks right". Note that there are solutions for 
automating user interface testing. However, they only simulate user interaction. They are 
generally more difficult to set up and maintain than unit tests and are most often used in 
integration testing as they require the entire application to run. If your U I code is mixed with 
logic and data code, then it becomes much more difficult to reuse it. So, the code and 
relationships become 0. 

Choosing a good architecture pattern and following main principles of Clean 
Architecture is so important as writing good code. Because applying pattern and following 
architecture styles wi l l make your code more readable. 

In real projects programmers usually combine M V V M architecture pattern and Clean 
architecture principles. It is a useful practice. 

Programmers usually want to make their code cleaner and without bugs. If we want to 
find out possible bugs we usually write Unit tests. Separating business logic and U I 
representation makes your code testable, so you can test a code when you consider to find 
and avoid a bug. Also, programmers can write Unit tests to test a behavior before writing a 
code. Thus, you have a test-covered code that improves your application and efficiency many 
times. 

22 



In my opinion, the main advantage is that the M V V M pattern follows the principle of 
separation of concerns. That makes your code structured. 

On the other hand, let's imagine that we want to build an application without applying 
any architecture and patterns. What problems may it cause? First idea that comes in my mind, 
the code is not that flexible and scalable. You wi l l suffer from hard coded code which mi 
closely related to your UI . Every time you implement a new feature it is much harder to 
maintain. Also , this is the reason why the development of the app may be delayed or costly to 
develop. Also, we wi l l not have all the advantages that appear applying a pattern that means 
our code is less testable and possibly has errors. However, in specific situations you can omit 
architecture patterns, especially in small projects. 

Comparing M V V M and M V P patterns we can firstly highlight that M V V M pattern is 
more popular and supported by Google. O f course, under the hood they are implemented 
differently. To set up our M V V M architecture we need to create a LiveData object and 
update it once we receive the data from the A P I . Also we create some public methods to 
observe LiveData from the U I layer and update it once we receive new data. Following the 
principles of Clean Architecture, I decided to use asynchronous threads to prevent freezing 
the U I thread when we call it from our ViewModel 

The best practice in 2022 is to create a ViewModel with functions that get data from 
A P I or Database asynchronously. Kot l in supports coroutines that can be very useful i f we 
want to make our app more responsive. In comparison with Java, one does not have 
coroutines, only standard Java libraries for Threading are supported. Running code in 
different threads makes the app more efficient, because you are not overloading the U I thread 
(also known as M a i n thread). We can handle different states receiving the data. For example, 
data may have states such as Loading, Error, Data. Each state may have its own 
implementation in the U I layer. For example, we can show progress bars until data is not 
loaded completely. That is why we combine coroutines with our ViewModel which is 
responsible for updating our UI. 

More structuring 
Once we have selected an architecture type we need to implement it. For small projects 

it is usually enough to select an architecture and just follow its principles. But for big projects 
or startups it is very important to organize your code well . In this case, we should consider 
how to make your code as simple as possible. Senior Android Developers suggest using 
Clean Architecture to divide our project into several modules. For better implementation of 
Clean Architecture we can use Hilt or Dagger2, the frameworks that could help us to inject 
dependencies in our code. Moreover it is important to use patterns to simplify your code and 
make it more readable. It looks very ugly when a big project has some basic classes for U I 
and these classes contain a lot of different methods to do what a programmer wants to do. 
Such an approach violates the principle of separation of concerns, it becomes harder to 
explain what's happening, because your file contains many lines. Definitely it is not a good 
way of coding. 

Let's think about which programming patterns we can use additionally to write pretty Kot l in 
code. Each pattern exists to solve concrete problems. There are many themes. Sometimes 
people. Patterns are often confused with algorithms, because both concepts describe typical 
solutions to some well-known problems. But i f an algorithm is a clear set of actions, then a 

23 



pattern is a high-level description of a solution, the implementation of which may differ in 
two different programs. 

So why do we need to use patterns? It is a proven solution. That means we spend much less 
time using complete solutions than reinventing the wheel. Patterns make code more standard. 
So, you don't need to explain what hierarchy you implemented, just say the name of the 
pattern and we can understand the behavior of classes. The need for patterns appears when 
people choose a programming language with an insufficient level of abstraction for their 
project. In this case, patterns are the crutch that gives this language its superpowers. 

In my opinion the most interesting pattern is Adapter. This pattern makes it possible to 
collaborate with two objects of incompatible interfaces. In terms of Android programming it 
is recommended to use this pattern when you are creating a RecyclerView. RecyclerView is 
just an U I component which is responsible for displaying a list of items. A n d we need 
somehow to bind data to our item in the list. Usually the item in the list has the same views 
and layout, but only the different data is displayed. In this case Adapter pattern is good to 
apply, because we want to inflate our RecyclerView with meaningful data. So, applying this 
pattern helps to collaborate with data in our list. 

We made our code better. 

class Adapter / 

«interface» 
Adapter 

«interface» 
Adapter 

Client + Ope ra t i on ! ) : vo id 

A 

Client + Ope ra t i on ! ) : vo id 

A 

Client + Ope ra t i on ! ) : vo id 

A 

ConcreteAdapter Adaptee 

adap tee : A d a p t e e 

+ Opera t i on ! ) : vo id 

+ Adap t edOpe ra t i on ( ) : vo id adap tee : A d a p t e e 

+ Opera t i on ! ) : vo id 

+ Adap t edOpe ra t i on ( ) : vo id 

{Adapter Pattern, 2022) 

I applied this pattern to operate the data set in RecyclerView that is responsible for displaying 
a list of shelters. The list of shelters w i l l be updated with our objects after the successful 
completion of the G E T request. Then, using the Adapter class we can do valuable changes in 
our RecyclerView. Adapter class can notify the RecyclerView that one item or item set was 
changed. After that the RecyclerView wi l l redraw itself to apply changes in UI . 

Also I wanted to highlight a pattern which is no less useful. It is Strategy. It is a behavioral 
design pattern that defines a family of similar algorithms and places each of them in its own 
class, after which the algorithms can be interchanged right at runtime. Imagine we have three 

24 



different situations: flood, air alert or earthquake. For these three different situations we need 
to implement a bit different logic because each shelter has its own purpose. 
So we define the interface of Strategy and implement this interface in FloodStrategy, 
AirAlertStrategy and EarthquakeStartegy. Context holds a reference to one of the strategies 
and we can execute the strategy in runtime. 

Applying the pattern helped us to make different calculations for each situation. Dividing 
each strategy that realizes an algorithm makes our code readable as well. 

Client 

Context 
-strategy 

interface 
Strategy -strategy 
interface 
Strategy 

+setStrategy(param) 
+execute() 

0 ^ +setStrategy(param) 
+execute() +algorithm() 

ConcreteStrategyOne ConcreteStrategyTwo 

+algorithm() +algorithm() 

(Strategy Pattern, 2022) 

In project I decided to apply the pattern to divide different algorithms. For different 
emergency situations we need to operate with data in different ways. For example, i f 
meteorologists warns about flood or tsunami we need to draw a route to shelter which is 
located high enough, so the tsunami wi l l not reach the point. 
The second algorithm is responsible for giving instructions during the air attack. You wi l l be 
able to find the nearest bomb shelter. A n d in case of an earthquake need to stay away from 
buildings so as not to suffer from a damaged building. A s we see, different situation requires 
another algorithm. 

3. How a beta-version of Emergency App was created? 
M W M structure. 

For that reason I divided my app into three different modules: app, data and domain. App is 
responsible for UI and presentation of data. Data - calls API, do our business logic here and contains 
package "di" (which stands for Dependency Injection) 
Domain - is a more abstract module which contains models, interfaces and use cases. 

To create a new module in Android Studio we go to the File -> N e w -> N e w Module. From 
the following templates we should select the Android Library to generate gradle files and be 
able to work with Android environment. 

Once the modules were successfully generated, we can import these modules. In app module 
we should implement domain and data modules, in data we should implement only domain 
module and domain module implements nothing. To implement modules we need to modify 

25 



our gradle files for each module. Adding this line wi l l implement domain module in our app 
module: 

Also, in gradle files we wi l l add some useful libraries to be able to use the in our project. For 
dependency injection I wi l l use Hilt. Also, I need to work with network requests and 
responses. For this purpose I wi l l use Retrofit. To handle J S O N responses I want to use the 
Gson library. For better structuring I created new packages in every module. Each package is 
responsible for separation of classes according to their functionalities or purpose. 

3.1 Dependency Injection 
It is a widely used method in programming not only in Android. The dependencies are 

provided to a class instead of creating the instances of classes itself. Good application 
architecture could be built by following the principles of dependency injection 

The new Hilt library defines a standard way to do DI in your application. Hil t provides 
containers for different Android classes in your project and mages their lifecycles under the 
hood. 
Hil t is built on top of Dagger which is also popular for library dependency injection. Since 
many Android framework classes are instantiated by the OS itself, there's an associated 
boilerplate when using Dagger in Android apps. Unlike Dagger, Hi l t can be easily integrated 
with Jetpack libraries and removes the boilerplate code, so you can focus on more relevant 
things. Hi l t automatically generates and provides: 

• Components for integrating Android framework classes 
• Bindings and qualifiers. 
• Scope annotations for the components 

Also, Dagger and Hil t can co-exist. 
So, I decided to use Hi l t in the app, because this library is written specially for Android and 
it supports all the necessary things. 

3.2 Use Cases 
To create a scalable application we need to specify our use cases for better 

understanding of the logic and separation of concerns. Use cases are considered to be as a 
part of Clean Architecture. Each usecase do the certain work. For example, I created a 
usecase for getting the locations of shelters. 

26 



Graphical representation of use cases 

(Use Cases, 2022) 

For better understanding of the action flow, I created a use case diagram in Enterprise 
Architect 
So, I specified 2 use cases for users. GetCurrentLocationUseCase - this use case obtains the 
longitude and latitude of user's location. Each UseCase performs specific actions. We assume 
that GetCurrentLocation has some useful functionality. Using this use case, we check i f the 
user has granted permission to access restricted data, in our case its GPS location of user. If 
the permission was granted, we can work with location. In other cases, we ask users to grant 
permission. GetSheltersUseCase - is used for getting a list of shelters with coordinates. The 
usecase performs a simple G E T request to a server to get data about shelters which was 
inserted in the DataBase by the Administrator. 
Administrator has only Alarm use case, which is used for notifying the users about hazzard. 
Understanding the UseCase diagram gives us a clear vision of our functional part. 

UI components and data representation 
If we speak about Android app it is crucial to create the correct relationships between 

Activities, Fragments and other Android components. Using the diagram below we build a 
simple U I . Our MainActivi ty holds MapsFragment which shows the user the map and other 
U I components such as buttons or texts. Using viewModels in MapsFragment helps us 
observe the data and once we fetched the data, we update the UI. For observing the data we 
have methods observeShelters() and observeLocationData(). 

The diagram below represents the U I module of the app, which must be separated from 
business logic. 

27 



ui::M-ainAr.tivity 

location SET vi ceProvi den LocatiorfiErvicEPrQvidE 

notificationsProvidEr: NotiflcationsProvid&r 

I 
u i:: MJ pi-Fragm ant 

mainViewModal : MainYia-wModel 

sha l tarsViawModal : ShaltarsViawModal 

mainViewModal : MainYia-wModel 

sha l tarsViawModal : ShaltarsViawModal 1 

vi ewmodels:: M-ai n V\ ewModa-l 

data: MutablaLivBData<Latl_n£> 

setLocationUseCasa-: GetLocation Use Case 

= = : . : : • = • : : • void 

obsErvELocation Data (): M uta bl El_ivE[>ata<LatLn E > 

viEwmod&l^nShElt&rsViEwM-Dd&l 

data : M uta bl&Liv&[>ata<ArrayList*3h&ltEr>; 
ussCasE:-GEtShEltErsUsECasE 

+ gatShaltarsO: void 

+ obsarvaSh &lters(): void 

(Emergency App Architecture, 2022) 

Data models 
To represent some data, programmers usually create classes. In Kot l in we can use Data 

Class. Our model consists of pieces of information that can be shown in UI. Each Data class 
must have at least one attribute. 

Bielter | | 
private LatLng l a t L n g ; | 
private Shelter Type shelterType;! 

public Shelter(LatLng latLng, ShelterType shelterType^ 
this.latLng l a t L n g ; | 
this. shelterType = shelter T y p e ^ ^ ^ ^ ^ ^ ^ ^ B 

/ Also we should define getters and settersB 

We can see that in Kot l in we write much less code than in Java to do the same. That is 
really awesome. In future we wi l l be mapping our data which was received from the server to 
our data classes. 

28 



i w / z / J n. . . . r I t 

In terms of Clean Architecture we should define our models in the model package in 
the domain module which is the abstract 
layer of our application. 
In my app I have specified some models: 

• LatLng - represents a latitude a 
longitude 

• Shelter - has a LatLng attribute, so 
it has its own location. Also shelters have 
a specific type. We can have shelters to 
rescue from floods or air attacks. 

mod els:: LatLng 

latitude: double 
Ic-ngtitude: double 

^ + LatLng(double, double): LatLng 

models: she l te r 

latLng: LatLng 
type: ShelterType 

^Enumeration* 
mod e I = i i S h elterTy pe 

FLOOD 
AIR ATTACK 

{Domain Layer, 2022) 

Repositories 
According to Clean Architecture, a repository is a kind of abstraction that allows 

access to entities by using an interface. We create a ShelterRepository in the domain module. 
Also, we must create the realization of the interface in the data module. We create the 
realization of the interface in ShelterRepositorylmpl. It must be in the data module because 
we want to access our server to fetch data using Retrofit 

For this reason a created a package which is called di (Dependency Injection). In this 
package we declare classes using Hilt. The di package consists of classes which are 
responsible for network requests and RetrofitClient building. So the reason why we 
implement the interface in the data module is that this module gives us access to our backend 
that provides us useful information. 

user, as BZ\IG etSh eltersU ZE C 3 = e 

> 
repositori eni5h elterReptuitoryl m pi 

+ Gt1:5helteriJsr^a^(5relten^erj«isitory):void 
+ invoke)): void 

> + getSh elters(): Array Listen e Ite r> 

I 

f «int&rface» 
i e p o = i t o i i e =: :Sh e 11 e i P e p o = i t o rv 

;etSh e Ite rs(): ArrayList^h Biter: 

29 



Services 
Service is one of the application's components. They are used to perform 

long-running tasks in the background thread. In addition, the developer can bind some 
primitive U I to control behavior of the service. In Android there are three types of services. 

Foreground service 
Is a type of service that performs an operation which is noticeable for the user. For 

example, audio streaming wi l l require playing sound via foreground service. Very important 
thing is that to start foreground service we need to show a notification to the user. The 
notification shows what is currently running in the foreground. The service does not require 
user interface, but in cases it could be useful to customize the notification, for example add 
buttons in notification. This approach can help us to send some commands to the service and 
the service can handle them. 

Modeling 
The architecture of the app or it is scratch can be modeled in Enterprise Architect. 

That way of modeling the architecture is very good. Because you visualize what type of 
relations and classes you need. Modeling strong scratch and is important for programmers. O f 
course it is better when the programmer can see the relation between parts of the program. It 
gives a clear vision what components, libraries and classes programmer should use. I believe 
that modeling the architecture before writing the code is better approach in software 
development than building an architecture on the go. Visualizing the architecture is good 
because Software Engineers could prevent duplication of classes, bugs. Also , the model 
usually represents the final product. So it is much better to create classes and components 
which were described in model at first time when coding than modify the file and 
functionality many times. 

3.3 Applying pattern to handle different HTTP responses 
Every time when when we call an A P I to get a list of shelters we expect to receive a result. 
O f course you expect to fetch result successfully, but the could be the case when Retrofit or 
other networking library produce an exception due to some reasons, for example device is not 
connected to the Internet. In this case the user w i l l not receive expected result and the 
program did not handle an error. A s we want to improve user's experience, we can handle the 
exception and then notify user about Internet connection using UI . 

To handle different results and states there is a sealed class which is an advantage of Kotl in . 
Sealed classes represent class hierarchy that gives more interaction over inheritance. A l l 
direct subclasses are generated at compile time. That means each instance has limited set of 
types that is known at compile time. With the help of this feature, we can handle three 
different states when fetching data: Loading, Success and Error. Each state is an instance of 
our sealed class, let's name it Result. 

When we do a call to api we need to think about doing it asynchronously and handle different 
states. Our first state is Loading that we return oncle we requested H T T P . A n d using 
try/catch construction we can handle an error. If the error is occured we return 
Resource.Error class and provide exception in the constructor. H T T P request is called 
asynchronously and we do not overload our UI . Once the data fetched successfully we can 
get that data from U I accessing to class Result.Data<T>. 

30 



sealed c l a s s Resource<out T>{ 

ob j e c t Loading: Resource<Nothing>{) 

c l a s s E r r o r ( v a r e x c e p t i o n : E x c e p t i o n ) : Resour*ce<Exception>() 

c l a s s Data<T>(vsr data: T): Resource<T>() 

<? © VA I 

Mäcön 
... Bpurg-en-Bresse 

(Response Handling, 2022) 

We can use Kot l in Coroutines to achieve asynchronous work on main thread. 

3.4 Integration of Google Maps to our app 
The main idea is to draw danger areas on the map using Google Maps API . Maps A P I 

provides various methods and features to implement our awesome ideas in the app. To work 
with Maps A P I we also should import Maps S D K to access those methods. Also, to set up 
our environment we should provide an A P I key. We can receive it from Google Cloud 

Console. Google Cloud Console is a default tool for 
developers where they can configure different APIs, 
not only for Maps, but even for artificial intelligence. 
But we wi l l focus on Maps A P I . So what features 
could be useful for our app? Firstly, we need to add a 
Google map in our app and then we can configure it. 
In terms of programming we should create a 
GoogleMap object. A s we want to display on the 
map shelters that means we should put a marker on 
the map. Marker is a pointer that has a specific 
position on the map. That is why we should provide a 

desMonts s>,-o„t,. inn. v C u n e o latitude and longitude of the shelter. Latitude and 
Hj longitude are decimal numbers, so in code it should 

A v jgnon d^Mercant^fr^j be of type float. We can provide our marker with 
some custom attributes such as title or even change 
the default marker icon. 

A s we want to highlight a danger area we need to 
draw a polygon. It is not much more complicated 
than adding a marker. Only the difference is that we 
should provide at least 3 points. In a real situation 
there could be more points. Those points represent 
the bounds of the polygon. That is why we also 
should configure the polygon using latitudes and 
longitudes. 

Also, we can specify some actions when the user 
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ clicks on the polygone or marker. That could help us 

to develop more useful features in our app. 

(Map Fragment, 2022) 

,_Rarc naturel 
regional \ 

'desMonts ; öMon te l ima r 
.d'firdeche ; 

31 



In Conclusion, the main thing on which we should concentrate is our points. They wi l l help 
us to draw a polygon or put a marker. 

Also, we need to use the Directions A P I which is also developed by Google. The reason is 
that we want to draw a route and do navigation in our app. This A P I could help us to 
configure different routes. For example, evacuating by car and evacuating on foot requires 
showing different routes. We can easily restrict our A P I in Google Cloud Console and use 
Directions A P I together with Maps API . Requesting the route to a specific direction we 
should define the destination. A n d as custom attributes we can specify the transportation 
mode. There are also other attributes that could be configured, but we wi l l focus only on this 
because they are more useful. 

B y requesting the direction, we wi l l receive encoded polylines that need to be decoded. And 
then we can draw it on our map. Also, we can estimate the time of arrival to the destination. 

3.5 Connecting to Firebase 
To implement the features we want we should connect our app to Firebase. We can easily do 
this in Firebase Console by simply writing the main package of your app. Also, it is desirable 
to generate S H A certificate fingerprints and provide it in Firebase. It is possible to do in 
Android Studio. We need to run a task signingReport using Gradle Tasks. 

App ID © 

1:1042880985587:android:a1 df5b25d123f302633a86 

App nickname 

Emergency app 

Package name 
eu.emergency.app.maps 

SHA certificate fingerprints © Type © 

5 5 : 2 a : 8 2 : c 2 : 7 2 : 7 2 : c d : 1 7 : 7 9 : f 7 : 8 0 : e 6 : f 4 : 3 2 : 7 4 : d 8 : 7 8 : 3 e : 3 6 : 9 6 SHA-1 

f9 : a2 :1b : a c : a1 :5a : d 1 : 7 5 : b 8 : 1 e : e e : 2 3 : f e : 9 0 : b 5 : 9 b : 0 e : 3 0 : 0 b : 2 9 : b f : a f : 
38 : eb :7 f : 5e :3b :77 :dc :9e : c3 : f 1 

Add fingerprint 

Remove this app 

(Firebase Settings, 2022) 

After setting up the app in Console, we must download a json file with our configuration and 
put the file in app's directory. After that we are able to work with Firebase. Firstly, we want 
to get data about warnings. For this reason we could think about using Cloud Firestore. It w i l l 
allow us to store data in 
very structured form. 
A n d we are able to read 
the data easily from 
Android App. Firestore 
stores that in form of 

Q Protect your Cloud Fire ir phishing Configure App Check 

ft > warnings > 3RV4vzyY6ur6B.. 

^ emergencyapplication-1 beef [B warning, = | B 3RV<1vzyY6urfi3Rdir3iV • 

+ Start collection -J- Add document + Start collection + Start collection 

3RV4viyY6ur6BRdir3.lV > + Add field 
3zVseQvMFec5gL2LevQw 

ihl Zi2nlgXDSviwgj KUÜQ 

o6Z4VoyvGD17PtpVTfgB 

• concernedArea 

•» areaBounds 

latitude: 44.146739625584985 

longitude: 36.793212B90625D1 

- topLeft 

latitude: 46.403776166694634 

http://3RV4viyY6ur6BRdir3.lV


collections. We are able to get all documents in the collection. Every document represents a 
J S O N object, so we are able to extract some data from the document stored in Cloud 
Firestore. To get the data from Cloud Firestore we should firstly initialize Firestore to it by 
simply providing the instance: 
S B B B S B 
Compared with Realtime Database, Cloud Firestore is a bit faster. A n d it is more suitable 
when we want to work with a big amount of data. Also, Firestore supports a special type of 
data which is called GeoPoint. In our case it w i l l be 
very helpful, because we are able to extract latitude and 
longitude. {Firebase Cloud Store, 2022) 
val docRef = db.collection("cities").document("SF") ^ 

.addOnSuccessListener { document -> if (document != null) { ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 
Log.d(TAG, "DocumentSnapshot data: ${document.data}") ^ 
Log.d(TAG, "No such document") 

} 
} 
.addOnFailureListener { exception -> 

Log.d(TAG, "get failed with ", exception) 
} 

3.6 Working with a network. Retrofit 
Every Android app needs an Internet connection i f you want to obtain some data from 
database. For this reason we can use internal android services. But mostly, developers use 
Retrofit as a library to work with Internet requests. Retrofit is a type-safe H T T P client for 
Android 

Why to use? 
Using Retrofit made networking easier in Android apps. A s it has many features like easy to 
add custom headers and request types, file uploads, mocking responses, etc through which we 
can reduce boilerplate code in our apps and consume the web service easily. 

Basic implementation 
To work with Internet you need to grant permission in AndroidMainfest.xml 

<uses-permission android:name="android.permission.INTERNET" /> 

Also, If we need to specify endpoints to get, create, update or delete data in the database, we 
can easily do it with the Retrofit library, using annotations. A l l the necessary A P I calls we 
write in separated interface. The library generates all boilerplate code under the hood. 

To work with H T T P requests we need to initialize Retofit, using Retrofit.Builder() 
Usually, we parse data with J S O N (JavaScript Object Notation). For this reason we should 
specify converterFactory property of RetofitClient. Converter factory needs to be added, 
just so Retrofit can convert J S O N data into Kotlin or Java objects model, to use in Android 
Project. GsonConverterFactory is converter factory developed by Google that can help us 
to convert data from J S O N to a model of object. 

To work with Retrofit we basically need the following three classes: 

33 



1. A model class which is used as a J S O N model. In Kot l in it is a simple Data class. 
2. A n interface that defines the H T T P operations needs to be performed. 
3. RetrofitBuilder class: Instance which uses the interface defined above and the 
Builder A P I to allow defining the U R L endpoint for the H T T P operations. It also takes the 
converters we provide to format the Response. 

http s: //square. github. i o/retrofit/ 

p n o v i d e s R e t r o f i t ( ) : R e t r o f i t = R e t r o f i t . B u i l d e r O 
. baseUn l ( baseU r l ) 
. addCorwer tenFac to ry (GsonConven te rFac to ry . c rea te 0 ) 

. b u i l d O 

{Retrofit Dependency, 2022) 

Other features of Retrofit: 
Interceptors -is a powerful mechanism that can log, and retry calls. 

Headers - are components of a network packet sent by a browser or client to the server to 
request for a specific page or data on the Web server. We can specify them using Retrofit. 
Also we can specify headers for specific requests. It makes sense when we need to check i f 
the user has a permission to see the content 

Handle requests - probably the main feature of Retrofit. We can check whether the response 
was successful or not and receive the body of the response in the form of Data Class. 

3.7 What data do we expect to receive? 
To create a responsive mobile app it is clearly visible that we need to work with H T T P 

requests and handle data models. Almost every H T T P response should receive or return some 
data. A n d we want to work with our data as an object to get some useful data using object 
properties. 

Programmers usually use J S O N to build models. But in Kot l in we receive J S O N format as a 
String value. Storing the objects in String values is not that convenient. So that is why we 
need to convert our J S O N format to Kot l in Data Class. For that purpose we should use a 
converter. Building an instance of Retrofit object we should provide a converter factory. For 
example, for processing J S O N we can use GsonConverterFactory. (Retrofit also supports 
converters for X M L responses) 

So after successful response Retrofit w i l l return an object as a Kot l in Data class. It gives us a 
strong advantage because now we can use that data for our business logic. We expect to 
receive a list of shelters using a G E T request. The list must store some data type. In our case 
it could be Shelter. For example we wi l l use the list of shelters to create a RecyclerView 
using Adapter or put a marker on the map. Understanding these use cases gives us a clear 
vision of what J S O N object we should receive and what exact data we should store in our 
BackEnd. For example i f we know that we want to display our shelter on the map it is clear 
that we should provide our J S O N with latitude and longitude. 

34 



Modeling an objects 
To work with data in Object oriented programming (OOP) developers could create a 

class that represents a particular object. Since the app is being coded in Kotl in , it is better to 
use data class for that purpose. A shelter should have a name, elevation above the sea and 
coordinates in the form of latitude and longitude. Using data class provides us quick access to 
its fields. We could access each field without generating getters and setters functions. It is 
already done by Kotl in . 

3.8 Android permissions 
Android permissions might be useful for developers to support user privacy using the app by 
accessing to: 

• Restricted data, such as system state and a user's contact information. 
• Restricted actions, such as connecting to a paired device and recording audio. 

Types of permissions 
There are three types of permissions in the Android operating system. Each permissions 
specify the scope of restricted data that your app can access, and the scope of restricted 
actions that your app can perform, when the system grants your app that permission. 

Install-time permissions 
This permission type is no longer supported in the latest versions of Android due to lack of 
privacy. When you declare install-time permissions in your app, the system automatically 
grants your app the permissions when the user installs your app. 

Normal permissions 
Restricted data and actions may be accessed by using these permissions. However, the data 
and actions present very little risk to the user's privacy, and the operation of other apps. 

Android assigns the the protection level as "normal" to normal permissions 

Allow APP to access photos, 
media, and flies, on your 

device? 

{Permissions Request, 2019) 

Examples of normal permissions: 
android.permission.INTERNET - to access the data 
over the Internet 
android.permission.USE_BIOMETRIC - to some 
biometric data as fingerprint or face within your app 

Runtime permissions 
Runtime permissions are marked as "dangerous" 
permissions in a list of Android permissions. They give 

your app additional access to restricted data. Also, 
they allow your app to perform restricted actions that 
more substantially affect the system and other apps. 

35 



Because it is a "dangerous" permission we need to request a permission in a runtime before 
the user access the restricted data or perform a restricted action. 

Examples of private user data may include current location, contact information or media 
files 

How to use permissions 
If the app offers functionality that might require access to restricted data or actions, determine 
whether you can get the information or perform the actions without needing to grant 
permissions. Developers may implement features such as taking photos, pausing media 
playback 
If you find out that your app must access restricted data or perform action, you need 
permission. Then you should think about which type of permission you need. For example, 
access to GPS location requires granting permissions in runtime. 

Android permissions are used widely in almost any Android app. 

3.9 Configuring permissions in the app 
We need to keep in mind what data we want to use to make our app working properly. 

We need to provide an I N T E R N E T permission to work with our API . Also we need to grant 
permission at runtime to get the user's location. Observing a user's location is co-called 
"dangerous permission". That is why the app is needed to ask the user to grant it manually. 
Such type of permission also requires a notification to be shown in the notification bar. Thus, 
the user understands which processes are running. 

We are going to observe the user's location in the foreground service. For this reason we also 
need to grant F O R E G R O U N D S E R V I C E permission. This could be provided in the 
AndroidManifest file and we don't need to ask the user to grant manually. 

Since we are going to access the user's location we need to grant permissions: A C C E S S F I N E 
L O C A T I O N , A C C E S S C O A R S E L O C A T I O N and A C C E S S B A C K G R O U N D L O C A T I O N . 
These permissions are supposed to be dangerous. That is why we need users to grant them 
directly. 
A C C E S S B A C K G R O U N D L O C A T I O N - gives us the possibility to get the info about the 
user's location in the background. This feature is supported in Android A P I higher than 31 
(Android 12). 
A C C E S S F I N E L O C A T I O N and A C C E S S C O A R S E L O C A T I O N are needed to be granted 
to access the user's location. The main and only one difference is that A C C E S S F I N E 
L O C A T I O N returns more precise data. In our app we are going to use all of these 3. 

The diagram below shows the workflow of granting "dangerous" permissions 

36 



o 
Declare the permission 
in your app's mani fest file 

e 
Design yourapp UX 
to be se l f-explanatory 

o 
Wait for the user 
to request a 
spec i f i c ac t ion 

o 
Declare the permission 
in your app's mani fest file 

e 
Design yourapp UX 
to be se l f-explanatory 

o 
Wait for the user 
to request a 
spec i f i c ac t ion 

Permission \ 
| already 
"g ran ted 

to your app? / 

Yes 

e 
Request the permission 
to s h o w the 
sys tem dia log 

No © 
Gracefully degrade 
your app's exper i ence 

© 
Gracefully degrade 
your app's exper i ence 

(Permissions Request, 2019) 

3.10 Firebase 
Firebase is a service that provides cloud functions. It could help to create apps with 

backend while mobile developers focus on the U I of the app. It has functions such as: cloud 
storage, creating and signing in users, sending messages, working with machine learning and 
more. With the help of Firebase we wi l l build our backend. We wi l l store the list of shelters in 
Database and also we wi l l use Cloud Messaging to send notifications to a client. 

Also, Firebase provides performance monitoring. B y default it automatically attributes the 
actions related to the lifecycle of the application. Such as the time period between opening 
until becoming responsive. Moreover, the developer could specify different actions to be 
measured. For example, we can measure the time after receiving the notification and tapping 
the notification. This w i l l help us to understand how much time user spend to open the app 
after receiving the notification. 

Both of the databases supported by Firebase are non-relational. The difference between 
Realtime Database and Cloud Firestore is that Cloud Firestore supports storage of files, 
images and collections which provide better querying. A n d Realtime Database also could 
store data but in one J S O N tree (JavaScript Object Notation). I decided to use Realtime D B , 
because we wi l l not store a big amount of data 

37 



https://emergency2-76ce8-default-rtdb.firebaseio.com/ 

• — shelters 

• — s i 

capacity: 1000 • 

lat: 53 

lng:53 

name: "Underground shelter" 

[Firehose Database, 2022) 

Firebase Cloud Messaging 
It is a tool which is also included in the definition of Firebase. F C M gives us a 

possibility to send push-notifications on multiple Android devices. On real projects 
developers usually develop their own middleware, the so-called layer between server and 
user. 
It is a good tool for small projects. However, Cloud Messaging has very critical cons. Some 
of them I have experienced on my own. 

Firebase Cloud Messaging has a very strong minus which is an unrealistic G C M heartbeat 
interval.This is possibly the most frustrating bug in Google Cloud Messaging. Google Cloud 
Messaging works by maintaining an idle socket connection from an Android device to 
Google's servers. This is awesome because it consumes less battery power compared to 
polling. The device is woken up instantly when the message arrives. 

To ensure that the device is still connected, Android w i l l send a heartbeat every 28 minutes i f 
you are connected via mobile data and every 15 minutes i f you are using Wif i . The 
connection could be terminated only when the heartbeat failed, and G C M wi l l try to 
re-establish it and attempt to deliver any pending push notifications. That means the higher 
the heartbeat interval, the less battery consumed thus the less times the device has to be 
woken up after receiving the notification. The heartbeat interval on Android devices may 
vary from different manufacturers. 

However, this comes at a great price: the higher the heartbeat interval, the longer it takes to 
identify a broken socket connection. So, i f we do not want to notify the user's instantly we 
can use Firebase Cloud Messaging, but in our case we want to deliver notification as soon as 
possible. For that reason we wi l l work on a better solution. 

3.11 Foreground Location 
Some functionality of the app should be running in foreground service. The foreground 

service can work when even the app is closed. The foreground service can be killed by the 
system to optimize usage of resources. We are going to get the user's location in the 
foreground. This wi l l help us to notify users in the area of danger. 

This part of the app was designed to make the user experience more responsive. 

38 

https://emergency2-76ce8-default-rtdb.firebaseio.com/


Since we are going to get the user's location in the foreground service, we need to request 
permission F O R E G R O U N D L O C A T I O N . Firstly, we provide it in the Manifest file and 
then request the user to grant the permission. Doing such work we can get the user's accurate 
location any time we want and use that location to draw a polyline which navigates to the 
nearest shelter. In our case we wi l l use the user's location only in case of hazzard after the 
notification was sent. 

Also, I wanted to stress that getting a precise user's location means we touch privacy. 
Sending the build in production, we need to specify the reasons in Google Play Console why 
we need to use the user's location, for what feature. In other cases, the moderator w i l l reject 
the submission of our application to the Play Market. 

Display list of shelters 
Since we want to display a list of shelters, we need to provide data about our shelters to 

the 1 U I element that represents items in the style of the list. Using RecyclerView and it's 
adapter class could help us to resolve the problem. For this purpose we need to create our 
own adapter class. Remember that the adapter pattern is created to interact with two objects 
of incompatible interfaces. In our case it w i l l help us to bind the objects we received from the 
server to the RecyclerView by attaching an adapter to it. 

To give more information to a user about shelters' location it is important to create a 
graphical representation of the item in the list that stands for shelter. In other words, 
developers should create an .xml file where the U I for item list is designed. A n d then, that U I 
wi l l be used as a template. We could substitute and change the U I according to what data we 
received from the backend. 

Using the adapter class for our RecyclerView we could populate the list with items containing 
the data from our server. For this reason recyclerview supports an adapter. 

To setup an adapter we basically need to assign the value to property: 

Once the adapter has been connected to the recyclerview, the contents of the list w i l l be 
displayed. 

3.12 Emergency notification 
Since we are going to notify the users via notification, we need to build it. We are going 

to run a service that wi l l show a notification once the message is sent. Since we want to send 
the notification even i f the app is closed we should use foreground service. After Android 8 
(Oreo) was released, developers needed to create a notification channel. This gives 
developers more options on how to manage notification broadcasting, because different 
notifications could be sent on different notification channels. For example, we possibly have 
two different notification channels. First one is for our service that observes the user's 
geolocation in the foreground. A n d the second notification channel is for sending emergency 
push notifications. 

After configuring notification channels, we can show the notification to the user. To build a 
notification we can user standard Android library. Using class NotificationCompat.Builder, 
we can configure different parameters for our notification, such as icon, title, text etc. Since 

39 



our notifications are tied to time, we need to set the highest priority for the notification and 
show it from foreground service. Also it is great to open a specific screen of the app after 
clicking on the notification. For this purpose, we can create a Pendinglntent and pass it to 
NotificationCompat.Builder v ia setPendinglntent(intent). In addition, we could use some 
prepared by Google styles for notifications even though we could create our custom design 
for notifications. In our case we just use some standart notification layout. For instance, 
creating custom views for notification could be useful i f you develop a music player and you 

want to change or start/stop 
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B music from notification. 

Emergency App • now '<f 

Tsunami! 
Go to the shelter 

Flooded area Shelters 

Android devices are not only 
smartphones. That could also 
be a smartwatch that uses 
Wear OS to work. To make the 
user's experience more modern 
we can duplicate our 
notification on smartwatch i f it 
is connected via Bluetooth. 

(Emergency Notification, 2022) 

var builder = NotificationCompat.Builder(this, C H A N N E L I D ) 
.setSmalllcon(R.drawable.notificationicon) 
. setContentTitle(textTitle) 
.setContentText(textContent) ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 
.setPriority(NotificationCompat.PRIORITY_DEFATJLT) 

40 



4. UX/UI 
In the majority of cases the best apps usually have a responsive and cool design. 

4.1 Principles of creating UI for Android app 
Android devices support two modes for displaying color palette. It is light and dark 

mode. Thus, developers should think about optimization for different users. To make it easier 
to set up colors developers just need to create two different themes which specify colors for 
text, buttons, status bar etc. The best practice is to get the color directly from the theme, 
because this wi l l save your time in the future. Theme is just an .xml file where you could 
create some styles and then reuse it in your app. 

To create U I developers usually needed to specify margins and paddings for different 
elements of the interface. Many developers suggest using margins and paddings which are 
numbers divisible by 4. Ideally, is to create a new file where you specify constant values for 
different types of margins. 

Google suggests Android developers to follow Material Design guidelines which 
combine best design practices for Android development. One of its principles is to specify 
colors such colorPrimary, colorOnPrimary. Also there are colors such colorSurface and 
onSurfaceColor. Primary color is the main color of the color palette, this color is used more 
often than others. But what is colorOnPrimary? Prefix "On" means that this color is for the 
text. So, colorOnPrimary wi l l be set up for the texts where the background of the element has 
colorPrimary. Also we need to keep in mind that the text must be readable, otherwise it does 
not look good. So, having those colors set up in theme wi l l help us to easily redefine colors of 
the U I elements for dark and light mode. 

One of the main principles of U X is to make the U I as easy as possible, so the user intuitively 
understands what to click, swipe etc. (10 Fundamental UI Design Principles You Need to 
Know | Dribbble, 2021) 
To make our app usable it is not enough to write code that works perfectly. Developers should 
also consider features of the app in terms of a user. That means our app should be easy to use. 
For this reason the term U X / U I exists. 

The goal of a U I / U X designer is to bring the user to some logical point in the interface. Make 
sure the user achieves their goal. 

U X - is User Experience. This is what experience / impression the user receives from 
working with your interface. Does he succeed in achieving the goal and how easy or difficult 
is it to do? 

U I - is User Interface. It's what the interface looks like and what physical characteristics it 
acquires. It determines what color your "product" w i l l be, whether it wi l l be convenient for a 
person to hit the buttons with his finger, whether the text wi l l be readable etc. 

So, U X / U I design is a design of any user interface in which usability is as important as 
appearance. 

The direct responsibility of a U X / U I designer is, for example, to "sell" a product or service 
through the interface. It is on the basis of the work of the U X / U I designer that the user 
makes a decision: "Like or dislike. Buy or not buy." 

41 



The difference between U X and U I is that the U X designer plans how you wi l l interact with 
the interface and what steps you need to take to get things done. A n d the U I designer comes 
up with how each of these steps wi l l look like. A s you can see from the examples above, U X 
and U I are so closely related that sometimes the line between concepts is blurred. 

So, we want to make our app as good as possible. That means we need to focus on logic and 
design of the app. They should be very convenient to use. 

One of the main principles of U X is don't make users think. 
U X designers must follow the design standards developed for products, applications, and web 
design. For example, you should not place navigation in an unexpected place for users. Make 
sure people recognize buttons, calls to action, and links right away and find them easily, and 
these design elements lead potential customers to the right place. 

The basis of creativity and innovation is not to create experiences that users have to re-learn, 
but to solve problems that competitors have not thought 

^^^^^^^^^^^^^^m about 
8:40 .Oi « <5> VA • 

In the early 1900s, the basic building blocks of design consisted 
of three key elements: dots, lines, and planes. The most skilled 
U X professionals understand how to apply them to minimize 
design complexity, facilitate product navigation, and thereby 
improve user experience. 

Also, it is very important to select a color palette for the 
application. Following the U I principles, we should select the 
main color for the palette. In material design it is called 
primaryColor. This color w i l l be the most frequent color in the 
application. In the Emergency App, blue color is considered to 
be a primary. Selecting colors is no less important than writing 
code. Different colors can evoke different emotions and feelings 
(Cao, 2021). Blue is considered to be a color of trust and is 
associated with water, bringing a feeling of calmness, reliability, 
peace. For this reason, blue is the primaryColor. Users should 
trust our app, because the app wi l l be used in emergency 
situations. 

Since our app is developed for emergency situations, the user 
should be notified in case of emergency. In our application the 
main focus is on the map. The direction to a shelter should be 
drawn there as well as locations of all shelters. Also, in terms of 
U X principles it is important to send notifications with loud 
sound, so the user could recognize that Emergency App sent a 
notification. To make the user's experience better, the 
notification should have two action buttons. First one to navigate 

(List of Shelters, 2022) to a shelter, second to show the list of shelters. This feature gives 
users more options and a clear vision of how the app works. 

r 

UHK 

Long: 1 5.829230 Lat: 50.203760 a Long: 1 5.829230 Lat: 50.203760 

227 meters . 
Shrine Hills 

Long: 125.576339 Lat: 7.079876 a 
151 meters 

University of Mindanao 

Long: 125.609627 Lat: 7.067043 

11 meters 

Velké náměstí 

Long: 15.832329 Lat: 50.2C 

248 meters 

* 

S&M mall 
Long: 125.588161 Lat: 7.049955 a 
7 meters 

L 

42 



Concluding, it is enough to click one button in notification to see the dangerous area and be 
navigated to a shelter. Performing only one click makes the app usability much easier. On the 
contrary, the notification could be sent without any action buttons and by only clicking on the 
notification we can navigate to a shelter. But in dangerous situations users might not know i f 
the notification is clickable or not. They want to save lives and be in a safe place as soon as 
possible. That is why adding action buttons to a notification can make the experience better. 

4.2 Users' opinions 
To create a better user's experience it is important to keep in touch with users. They 

could possibly explain what is missed in the app and what could be improved. For that reason 
the expertes in U X / U I were asked to share thoughts on application. The group of 3 U I / U X 
designers and 3 users were selected to give a better assessment of the app. 

According to their comments we should work around and bring an awesome experience to 
potential user's. 
One of the valuable remarks is that user's should know what is happening in the app at the 
moment. It was advised to use the progress bar to show that data is loading. It seems to be not 
very important, but users are already used to seeing the loading of the particular screens. 
Using progress bars is very often practiced in different applications. It is considered quite 
successful according to U X principles. 

Some users(testers, designers) think that it is not that much convenient to display the 
coordinates of a shelter using latitude and longitude. People came up with such a thing as an 
address, a street and postal code. For people it is more readable i f the location is expressed as 
street and building number. However, we still need latitude and longitude to navigate to a 
shelter. User do not care about exact coordinates because it is too hard to even imagine the 
approximate location, but Maps A P I could help to get address and street using the 
coordinates. So, the location of the shelter should be written using street and building number 
to make it more understandable. 
Since our application needs to maintain an Internet connection, it would be very nice i f the 
program displayed a message after the connection was lost. 

Also, testers suggested removing the button "Start" from the main screen which is supposed 
to start the simulation. It is better to start the simulation automatically since we want to make 
it useful in real situations and we want to show how it should work. 

It would be better i f we add the button "Navigate to the shelter" which must be visible only in 
case of hazzard. It is better because the user could think whether to use navigation or 
evacuate on his own. It is better because not every user wants to use navigation. For some of 
them, it is enough to be warned of an emergency. This should bring better user experience for 
users. It is not a good idea to navigate to a shelter every time the hazard occurs i f the user 
does not want to for many reasons: battery usage, sick internet connection etc. 

43 



5. Results 
The final result of the work is a complete Android app for emergency situations. 

5.1 Key achievements 
The U M L diagram was designed to create some technical requirements for the app's 

functionality. The UseCase model was designed to capture requirements. 
The Emergency app was developed in Kot l in language. Besides that we created a 
web-application to send warnings about tsunamis. So, we have a mobile client for ordinary 
users and a web client for an administrator who could send an emergency notification. 
Also, to make the app working, the Android app as well as web app was connected to 
Firebase to use its features. For now the app is just a simulation of behavior in real hazzard. 
The mobile app supports such functionality: 

• Observe user's geolocation even i f the app is closed 
• Automatically start the simulation 
• Send emergency notification 
• Draw flooded area on the map 
• See full list of shelters 
• The navigation to a shelter 

Also we focused on U X and U I to make it convenient to use in case of real hazzard. N o less 
important is styling for light and dark mode. The app is considered to be more responsive 
after implementation of dark theme support as a lot of people use it. 

The Firebase was used to implement some backend logic. However, there are things that 
should be improved in future development in terms of backend. Firebase is not that good for 
sending push notifications that is why we need to use any different service or create our own. 

The code of the Android app was pushed to GitHub repository: 
https://github.com/sergevkonar/emergency app 

5.2 Future development 
It is not the best option to use Firebase for sending notifications. There are a lot of 

different options better than Firebase Cloud Messaging. One of the possible substitutes is 
Pusher (https://pusher.eom/Y 

Since we want to warn not only in case of tsunami we need to implement more use cases. The 
idea is to notify in case of earthquakes and air alerts too. To support such functionality more 
strategies should be implemented both on backend side and mobile client. On the backend 
part we need to specify the type of emergency situation, so the app could apply a particular 
strategy in different situations. 

Also, it would be good to notify the user's only in a dangerous area. In this version we notify 
all the users even those who are in a safe area. We have done the work behind, so at the 
moment we just need to show the notifications only for those who are in the selected area. 
For this reason we need to interact with our service that provides us with the user's 
geolocation. 

44 

https://github.com/sergevkonar/emergency
http://pusher.eom/Y


Also in the future, we would like to start an animation once the navigating was started. It wi l l 
improve the user experience, because everything wi l l be smooth.In addition, it could be more 
user-friendly i f the user could change the sound of the siren in the settings of the app. 

Moreover, it is a good idea to create a native app for iOS. There are a lot of ways it could be 
achieved. B y doing that, we could attract more users to our app. A s a result more users wi l l 
be notified in case of real danger and they wi l l have a possibility to save their lives. 

5.3 Conclusion 
One of the purposes of the thesis was to analyze existing emergency apps, what features 

they have and then create my own prototype of the Android app which could be used to 
notify citizens in emergency situations. 

Subsequently, application design has been created according to requirements and 
UX-principles. The description of the selected architecture patterns was given. The U I 
follows the rules of Material Design. 

Functional prototype was developed by successful implementation of mobile development 
practices and modern technologies such as Firebase and Google Maps. The final application 
is just the simulation of the behavior in the emergency situation. The map plays a crucial 
role, because there the user could see the flooded area in case of danger. 

Moreover, the nearest shelter could be found there. Another aim was to perform usability 
testing, which was carried out with a chosen group of people from various fields. Based on 
the testing, it is expected to introduce future improvements, such as an introductory guide, 
offline notification. 

Bibliography 

Air alert. (2021). Play Market. 
https://plav.google.com/store/apps/details?id=com.ukrainealarm&hl=ru&gl=US 

10 Fundamental U I Design Principles You Need to K n o w | Dribbble. (2021, December 6). 
Dribbble. https://dribbble.com/resources/ui-design-principles 

Blog, B . T. (2022, M a y 16). Geo-location tracking in Android with Kotlin - B/O Trading 
Blog. Medium. 
https://medium.eom/@.chris_42047/geo-location-tracking-in-android-with-kotlin-f4ec5774  
3956 

Cao, J. (2021, January 26). 12 colours and the emotions they evoke. Creative Bloq. 
https://www.creativebloq.com/web-design/12-colours-and-emotions-they-evoke-61515112 

ConstraintLayout : android developers. Android Developers, (n.d.). Retrieved July 28, 
2022, from 
https://developer.android.com/reference/androidx/constraintlayout/widget/ConstraintLayo  
ut?hl=fr 

45 

https://plav.google.com/store/apps/details?id=com.ukrainealarm&hl=ru&gl=US
https://dribbble.com/resources/ui-design-principles
https://medium.eom/@.chris_42047/geo-location-tracking-in-android-with-kotlin-f4ec5774
https://www.creativebloq.com/web-design/12-colours-and-emotions-they-evoke-61
https://developer.android.com/reference/androidx/constraintlayout/widget/ConstraintLayo


Create dynamic lists with RecyclerView : android developers. Android Developers, 
(n.d.). Retrieved July 28, 2022, from 
https://developer.android.com/guide/topics/ui/lavout/recvclerview 

Foreground services. (2020). Android Developers. 
https://developer.android.com/guide/components/foreground-services 

GeeksforGeeks. (2022, June 9). M V V M (Model View ViewModel) Architecture Pattern in 
Android. 
https://www.geeksforgeeks.org/mwm-model-view-viewmodel-architecture-pattern-in-and  
roid/ 

Guide to app architecture |. (2020). Android Developers. 
https://developer.android.com/topic/architecture?gclid=CjOKCQjwxb2XBhDBARIsAOjD  
Z36ZfOczVbSdfz t l0mFmTaCuBgBOx3uTOisp6Hnaw9zS4b-XiDNUWNsaAk7aEALw  
w c B & gel src=aw. ds 

Ionescu, D . (2010, March 30). Geolocation 101: H o w It Works, the Apps, and Your 
Privacy. PCWorld. https://www.pcworld.com/article/511772/geolo.html 

Manifest.permission : android developers. Android Developers, (n.d.). Retrieved July 
28, 2022, from https://developer.android.com/reference/android/Manifest.permission 

M V V M Architecture - Android Tutorial for Beginners - Step by Step Guide. (2020, March 
4). MindOrks. 
https://blog. mindorks.com/mwm-architecture-android-tutorial-for-beginners-step-by-step- 
guide 

Nava, E . (2018, August 13). Google Cloud Messaging is Extremely Unreliable for Push 
Notifications. Elad Nava. 
https://eladnava.com/google-cloud-messaging-extremely-unreliable/ 

Phamova, B . P. (n.d.). Android Mobile Application for personal safety- CVUT.CZ. 
Retrieved M a y 6, 2020, from 
https://dspace.cvut.cz/bitstream/handle/10467/88325/F8-BP-2020-Phamova-Bich%20Phu  
ong-thesis.pdf 

Japan earthquake and tsunami of 2011 - Aftermath of the disaster. (2011). Encyclopedia 
Britannica. 
https://www.britannica.com/event/Japan-earthquake-and-tsunami-of-2011/Aftermath-of-th  
e-disaster 

Handling false information in emergency management: A cross-national comparative 
study of European practices. (2021). Sciencedirect. 
https ://www. sciencedirect. com/science/article/pii/S2212420921001175 

Hazards - Red Cross - Apps on Google Play. (2021). Play Market. 
https://plav.google.com/store/apps/details?id=com.cube.gdpc.nzl.hzd 

Techopedia. (2020, August 7). Mobi le Application (Mobile App). Techopedia.Com. 
https://www.techopediacom/definition/2953/mohile-application-mohile-app#:%7E:text=A 

46 

https://developer.android.com/guide/topics/ui/lavout/recvclerview
https://developer.android.com/guide/components/foreground-services
https://www.geeksforgeeks.org/mwm-model-view-viewmodel-architecture-pattern-in-and
https://developer.android.com/topic/architecture?gclid=CjOKCQjwxb2XBhDBARIsAOjD
https://www.pcworld.com/article/511772/geolo.html
https://developer.android.com/reference/android/Manifest.permission
https://blog
http://mindorks.com/mwm-architecture-android-tutorial-for-beginners-step-by-step-
https://eladnava.com/google-cloud-messaging-extremely-unreliable/
https://dspace.cvut.cz/bitstream/handle/10467/88325/F8-BP-2020-Phamova-Bich%20Phu
https://www.britannica.com/event/Japan-earthquake-and-tsunami-of-2011/Aftermath-of-th
https://plav.google.com/store/apps/details?id=com.cube.gdpc.nzl.hzd
https://www.techopediacom/definition/2953/mohile-application-mohile-app%23:%7E:text=A


pplication%20rMobile%20AppV.What 0/o20Does%20Mobile%20Application%20rMobile  
%20App)%20Mean%3F.to%20those%20accessed%20on%20PCs. 

Valdellon, L . (2020, November 2). What Are the Different Types of Mobi le Apps? A n d 
How Do You Choose? Clever Tap. https://clevertap.com/hlog/types-of-mobile-apps/ 

ViewModel Overview |. (2020). Android Developers. 
https://developer.android.com/topic/libraries/architecture/viewmodel 

Image references 

Adapter pattern. (2022). [Model]. https://imgur.eom/a/GmKLNCs 

Architecture comparison [Table]. https ://imgur. com/a/Yi KuinT 

App architecture. (2020). [Model]. 

https://miro.medium.com/max/1400/0*vnWgSTVC8qoJdusd.png 

Clean architecture. (2019). [Model]. 
https://koenigHnedia.ravwenderlich.com/uploads/2019/06/Clean-Architecture-graph.png 
Earthquake & Tsunami Alerts. (2022). [Screenshot]. 

https://apps.apple.com/us/app/earthquake-tsunami-alerts/idl505203661 

Emergency app architecture. (2022). [Model]. https://imgur.com/LzYIPxI 

Emergency notification. (2022). [Screenshot]. https://imgur.com/w6cTYoh 

Firebase Cloud Store. (2022). rScreenshotl. https://imgur.com/iqlrqEO 

Firebase Database. (2022). [Screenshot], https://imgur.com/arspV2g 

List of shelters. (2022). [Screenshot]. https://imgur.com/zChrpSO 
Mobile Operating System Market Share Worldwide. (2022). [Diagram], 
https://gs.statcounter.com/os-market-share/mobile/worldwide 

Map Fragment. (2022). [Screenshot], https://imgur.com/rsklebw 

M V V M Architecture. (2022). [Model]. 

https://jounialdev.nyc3.digitaloceanspaces.com/2018/04/android-mvvm-pattern.png 

Permissions request. (2019). [Diagram], 

https://developer.android.com/static/images/training/pennissions/workflow-overvicw.svg 

Response handling. (2022). [Code], https://imgur.com/undefined 

Retrofit dependency. (2022). [Code], https://imgur.com/poTtaOv 

Strategy pattern. (2022). [Model]. https://imgur.com/D9XCrMd 

47 

https://clevertap.com/hlog/types-of-mobile-apps/
https://developer.android.com/topic/libraries/architecture/viewmodel
https://imgur.eom/a/GmKLNCs
https://miro.medium.com/max/1400/0*vnWgSTVC8qoJdusd.png
https://koenigHnedia.ravwenderlich.com/uploads/2019/06/Clean-Architecture-graph.png
https://apps.apple.com/us/app/earthquake-tsunami-alerts/idl505203661
https://imgur.com/LzYIPxI
https://imgur.com/w6cTYoh
https://imgur.com/iqlrqEO
https://imgur.com/arspV2g
https://imgur.com/zChrpSO
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://imgur.com/rsklebw
https://jounialdev.nyc3.digitaloceanspaces.com/2018/04/android-mvvm-pattern.png
https://developer.android.com/static/images/training/pennissions/workflow-overvicw.svg
https://imgur.com/undefined
https://imgur.com/poTtaOv
https://imgur.com/D9XCrMd

