
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

ZVÝŠENÍ VÝKONU NITRATE KLIENTA POMOCÍ
VYROVNÁVACÍ PAMĚTI
NITRATE CLIENT PERFORMANCE IMPROVEMENT WITH CACHE IMPLEMENTATION

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE FILIP HOLEC
AUTHOR

VEDOUCÍ PRÁCE Ing. PETR MÜLLER
SUPERVISOR

BRNO 2013



Abstrakt
Cílem práce je návrh a implementace výkonnostních vylepšení modulu python-nitrate.
Výkonnostní vylepšení jsou založeny na sesbíraných případech užití, které využívají velké
množství dat. Za účelem měření dopadu změn v modulu byly implementovány výkonnos-
tní testy. Testování ukázalo, že modul python-nitrate s integrací vylepšení je v některých
případech až několikanásobně rychlejší, avšak ve dvou případech může nastat zpomalení.
Závěr práce obsahuje diskusi ohledem pokračování prací.

Abstract
The goal of the thesis is to design and implement performance improvements in python-
nitrate module. Performance improvements are based on gathered use cases, which use
large amount of data and network bandwidth. Performance test suite was implemented
in order to measure impact of changes in module. Testing proved, that python-nitrate
module with integrated performance improvements is in certain cases several times faster,
but also can be slower in two cases. Discussion regarding possible extensions is present in
the conclusion

Klíčová slova
Výkonnostní testování, vylepšení kešování, Nitrate, Python, python-nitrate, MultiCall,
XML–RPC

Keywords
Performance testing, cache improvement, Nitrate, Python, python-nitrate, MultiCall, XML–
RPC

Citace
Filip Holec: Nitrate Client Performance Improvement with Cache Implementation, bakalářská
práce, Brno, FIT VUT v Brně, 2013



Nitrate Client Performance Improvement with Cache
Implementation

Declaration
I declare this thesis is my work and it has been created under supervision of Petr Müller
and Petr Šplíchal from Red Hat. Every source has been correctly cited along with reference
to the corresponding sources.

. . . . . . . . . . . . . . . . . . . . . . .
Filip Holec

May 15, 2013

Acknowledgements
I would like to thank my Red Hat supervisor Petr Šplíchal for lead, consultations, su-
pervision, help and valuable feedback to this thesis and Petr Müller for providing hints,
consultations, feedback and willingness to help. I would also like to thank my family and
friends for encouragement and support.

c© Filip Holec, 2013.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.



Contents

1 Introduction 3

2 Nitrate and python-nitrate 4
2.1 Nitrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 python-nitrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Caching in python-nitrate . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Classes in python-nitrate . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Performance of an application 9
3.1 Measuring the performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Performance standards . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Bad performance: why is it common . . . . . . . . . . . . . . . . . . 11
3.1.3 Opinion of analysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Fundamentals of effective application performance testing . . . . . . . . . . 12
3.2.1 Choosing appropriate performance testing tool . . . . . . . . . . . . 13
3.2.2 Testing tool architecture . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.3 Appropriate performance test environment . . . . . . . . . . . . . . 14
3.2.4 Realistic performance targets . . . . . . . . . . . . . . . . . . . . . . 16
3.2.5 Stable application for performance testing . . . . . . . . . . . . . . . 18
3.2.6 Ensuring Accurate Performance Test Design . . . . . . . . . . . . . . 19

3.3 Server and Network KPIs (Key Performance Indicators) . . . . . . . . . . . 20
3.4 Interpreting Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.1 The Analysis Process . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.2 Performance test output types . . . . . . . . . . . . . . . . . . . . . 22

4 Performance test suite design 24
4.1 Real-life use cases and test cases . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.2 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 python-nitrate performance improvements 29
5.1 Feature enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.1 FE00: Test Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.2 FE01: MultiCall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.3 FE02: Tag Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.4 FE03: Common Caching . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.5 FE04: Persistent cache . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.6 FE05: Container initialization . . . . . . . . . . . . . . . . . . . . . . 32

1



5.2 Implementation and testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3.1 10 Test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.2 100 Test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.3 1000 Test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Conclusion 36

A Performance values 38

B Contents of CD 45

C Commits in python-nitrate git repository 46

2



Chapter 1

Introduction

The goal of this bachelor thesis is to improve performance in python-nitrate module, a
Python interface to the Nitrate test case management system, and create performance test
suite for this module. Issues related to performance are very common and these are mainly
visible when python-nitrate has to fetch hundreds and even thousands of objects. I think
one of the solutions can be improvement of caching in classes, because the current one does
not cover all classes. With the purpose of measuring the improvements, a new performance
test suite has to be implemented. Next step is to find out what this module is currently
doing and try to implement features that are not yet present. In the end, improvements
are measured with the performance test suite.

This thesis is divided into two main parts, and that is the theoretical part, and part
that includes performance test suite, implementation of feature enhancements and testing.

Theoretical part consists of two major chapters: detailed overview of Nitrate and
python-nitrate module and performance testing. The core in this part is to understand
the whole concept of python-nitrate, but also to get familiar with ways of performance test-
ing of an application and what needs to be done to perform successful performance testing.

In the performance test suite part use cases are presented along with their test cases.
This test suite is later used in testing part, where they are run under multiple variations of
conditions. Improvements, testing and results of the thesis describe the process of testing
improved implementations and comparison to the original implementation of the python-
nitrate module. The evaluation of testing is present along with commentary.

The last chapter, conclusion, is dedicated to final assessment of the whole thesis and
its contribution to python-nitrate users. Also possible future enhancements are discussed
there.

3



Chapter 2

Nitrate and python-nitrate

2.1 Nitrate

Nitrate [4] is a test case management system (TCMS) and it’s written in Python and uses
Django web framework.

According to documentation, this management system provides several features:

• XML–RPC interface

• audit traceability

• increased productivity – identification of gaps in product coverage

• reproducibility across planning, cases and execution

• multiple authentication backends

XML-RPC [10] is a Remote Procedure Call method. It uses HTTP as a transport and
passes XML. Using this, a client can call methods with specified parameters on a remote
server (which is named by URI) and get back structured data. xmlrpclib handles all the
details that are necessary to translate between conformable Python objects and XML on
the wire.

Nitrate is an open source project and its source code can be viewed via browser at:

https://fedorahosted.org/nitrate/

or using git:

git clone git://git.fedorahosted.org/nitrate.git

2.2 python-nitrate

python-nitrate [9] is a Python [7] interface to the Nitrate test case management system.
The package consists of a low-level driver that allows direct access to Nitrate’s XML–RPC

4



API. In addition, python-nitrate is a high-level Python module with natural object inter-
face and a command line interpreter, which is useful for fast debugging and experimenting.

python-nitrate fetches data from Nitrate database and interprets it, user can modify
the data and update it in Nitrate instance or use it to display requested information.

The core of the thesis is to analyze python-nitrate module as a whole, suggest improve-
ments in implementation and integrate these changes to the module. As mentioned before,
improvements are going to be measured by performance test suite, that will be integrated
into python-nitrate. Since many users suffer from decline in performance of specific use
cases (because of redundant or time-consuming operations), these enhancements of the
module are essential.

python-nitrate is an open source project with accessible source codes and RPMs that
can be viewed and downloaded here:

http://psss.fedorapeople.org/python-nitrate/download/

2.2.1 Caching in python-nitrate

python-nitrate client supports currently 4 types of caching. First type is CACHE NONE,
where caching is disabled and every object change is immediately written to server. Every
query is sent to server even if several same queries entered in a row. Second type is
CACHE CHANGES. When using this caching type, caching is enabled and changes are
pushed to the server only if operation update() is entered or upon destruction. Fetching
from server is the same as in CACHE NONE. Third type is CACHE OBJECTS, where
any loaded object is saved for possible future use. Finally, caching type CACHE ALL
caches all available objects (those which are in class, for example if user name is required
with ID 123, every user will be cached).

Caching type
Reference NONE CHANGES OBJECTS ALL
first fetch fetch fetch and store fetch all and store
second fetch fetch use cached use cached

Table 2.1: Caching objects

2.2.2 Classes in python-nitrate

There are several classes in python-nitrate module. Their tree structure is displayed in
figure 2.1 :

Config class represents the extraction of python-nitrate configuration from user config-
uration file (located in $HOME/.nitrate). These preferences are later used (for example, the
url of server, configuration of test suite, . . . ). Configuration is parsed using ConfigParser
[11] module. More information are present in python-nitrate documentation.

5



Figure 2.1: Classes overview in python-nitrate

NitrateNone is used to distinguish uninitialized values from regular “None“. All at-
tributes of an Nitrate object are initialized to NitrateNone in init ().

Nitrate is the core class and parent to every class handling objects from server. In
order to develop common caching for all Nitrate subclasses, method new () in this class
has to be implemented.

Bug is a class responsible for interpreting bug connected to test case and case run.

Class Build is connected to Product class and an object of this class contains informa-
tion about build of product.

CaseStatus contains the status of specified test case. This class does not need caching,
since it does not communicate with server (all case statuses are present in this class). These
statuses are: PROPOSED, CONFIRMED, DISABLED, NEED UPDATE.

Category is connected to test case and it determines the type (category) of test case, for
example “Regression“ test case. This class has caching CACHE OBJECTS implemented.

An object of Component class specifies the component of test case. For example:
wget, bash, rpm, . . . . Like Category, this class also has CACHE OBJECTS caching.

PlanType object contains type of test plan (for example Integration, Unit, . . . ). This
class was recently implemented along with basic type of caching (CACHE CHANGES).

PlanStatus class represents the status of test plan. Since it can only have two states
(DISABLED, ENABLED), no communication with server is required to interpret what

6



state is test plan in.

Class Priority is connected to test case and determines its priority. This class does not
fetch information from server since priorities (P1 . . . P5) are present there.

Objects of Product contain the product information. It is connected to all major Mu-
table classes, so caching of this class is really important.

RunStatus, like CaseStatus and PlanStatus is a class that objects does not communi-
cate with server (only two statuses, RUNNING and FINISHED).

Class Status has total of 8 pre-defined statuses (thus no network communication).
These states relate to case runs and are the following: IDLE, PASSED, FAILED, RUN-
NING, PAUSED, BLOCKED, ERROR and WAIVED

User class objects encapsulate information about user. This is the only class with
CACHE ALL caching type.

Utils only consists of tests for utility functions.

Version is connected to Product. Instances of this class hold information about ver-
sions.

Mutable is a general class for all mutable Nitrate objects. The difference between
mutable and immutable objects is in the existence of update() method, which pushes any
changes to the Nitrate server (and update() method performs the actual update). Every
class has its own implementation of update() method.

Bugs objects embody relevant bug list for test case and case run objects. This class
is not a part of cache implementation (caching is not desired as the whole class will be
rewritten).

CaseRun class instances handle case run information. It is connected to test case,
since case run is a test case in a test run (one test case can have multiple case runs in
multiple test runs). It is uncertain whether this class will have its own cache due to lack of
information stability (changing status might be quite common).

TestCase instances handle test cases that are present in test plans and it makes sense
to implement caching in this class.

TestPlan objects represent test plan in Nitrate. It may contain several test cases and
test runs.

TestRun is a class that handles test run instances. They contain case runs that are
created from test cases in a test plan, one test run is connected to one specific test plan.

Container is a general container class for handling sets of objects. It provides the
add() and remove() methods for adding and removing objects and the internal add() and

7



remove() which perform the actual update to the server (implemented by respective class).

CaseComponents is a container class that deals with components linked to a certain
test case.

CaseTags, RunTags and PlanTags container classes process tags connected to cases,
runs or plans. All tags are fetched in a single call.

ChildPlans container is used to fetch children test plans of a specified test plan in one
call.

TestCases container fetches all test cases of a test plan in a single call.

TestPlans container fetches all test plans connected to a test case in a single call.

Table 2.2 shows current type of caching in classes:

Caching type
Class NONE CHANGES OBJECTS ALL
Bug X X X X
Build OK N/A X X
CaseStatus N/A N/A N/A N/A
Category OK N/A OK X
CaseRun OK OK X X
TestCase OK OK X X
TestPlan OK OK X X
TestRun OK OK X X
PlanStatus N/A N/A N/A N/A
PlanType OK N/A OK X
Priority N/A N/A N/A N/A
Product OK N/A X X
RunStatus N/A N/A N/A N/A
Status N/A N/A N/A N/A
User OK OK OK OK
Version OK N/A X X

Table 2.2: Classes (excluding Container subclasses) and their current type of caching

8



Chapter 3

Performance of an application

Why is performance testing [8] important and why do it in the first place? Badly performing
applications are not a great benefit to a company or an organization. These applications
mostly create a net cost of time and, of course, money. Moreover, if application does not
deliver benefits, its future is not bright.

Performance testing is very significant, but underrated part of testing (unlike unit or
functional testing). Sadly, it is not appreciated among executives and its importance is,
as already mentioned, ignored. This fact has slightly changed in the last decade despite
efforts of many known software consultants and highly publicized failures of key software
applications.

Performance of application depends on perception. A well-performing application lets
the user carry out a given task without irritation or perceived delay. Performant applica-
tion does not display blank screen during login and can complete user’s task without letting
their attention wander. However, delivering acceptable level of performance is a struggle
for a lot of applications.

In this context, application is being referred to as a whole, since it is composed of many
parts. The higher level consists of the application software and the application landscape.
For example servers required to run and also the network infrastructure for communication
are latter. Either way, if problems occur in any of these areas, application performance is
sure to decline.

Some people may say the best approach to ensuring good application performance is to
observe the behavior of each of these areas (under load and stress) and solve any problem
that occurs. This is a common mistake. since you end up dealing with the symptoms of
performance rather than dealing with the cause.

3.1 Measuring the performance

There are several key indicators that must be taken into account. They could be divided into
two groups: service-oriented and efficiency-oriented. Service-oriented indicators measure
how well (or not) an application is providing a service to the users. These indicators are

9



availability and response time. Efficiency-oriented indicators measure how well (or not)
an application makes use of the application landscape. These indicators are throughput
and utilization.

These terms could be defined as following:

Availability is the amount of time of application’s availability to the user. This is
very crucial, since lack of availability could have substantial business cost even for a small
outage. In other words, this would mean complete inability for user to make effective use
of the application.

Response time is amount of time that takes the application to respond to user request.
Measuring system response time, the time between users request for response and from the
application and a complete reply to the user, is sufficient for performance testing.

Throughput is the rate at which certain application-oriented events occur. For exam-
ple the number of hits on a web page in a given period of time.

Utilization is the percentage of the theoretical capacity of a resource that is being
used. For example the amount of memory used when certain number of visitors is present
on a server or how much bandwidth is being consumed by traffic of application.

3.1.1 Performance standards

Although there have been attempts to define a standard (particularly for web-based appli-
cations), there is no generic standard to evaluate if performance of application is good or
bad. Good example is the minimum page refresh time. It came from 20 seconds rapidly to
8 seconds, but the application user wants instant response, which is likely to remain elusive.

There was a research [5] in 1986 that attempted to map user productivity to response
time. Even though the research was based on green-screen text applications, its conclusions
are probably still relevant.

Conversational interaction should not be greater than 15 seconds. Otherwise waiting
for the answer becomes intolerable for a busy call-center operator of futures trader. The
system should be designed to allow the user turn to other activities if such situation occurs.

Delays greater than 4 seconds are too long for the user to retain information in short-
term memory. These could inhibit problem-solving activity and data entry. But after the
transaction is completed, delays between 4 – 15 seconds are acceptable.

For operations demanding high level of concentration, delays should not exceed 2 sec-
onds. Waiting between 2 to 4 seconds can seem surprisingly long when the user concentrates
and is emotionally commited to completing the task at hand. Response time should be than
2 seconds when the application user has to remember information through several responses.
With the level of detailed information rises the need for responses shorter than 2 seconds.
When work is thought-intensive (for example writing a book), in order to maintain the

10



users’ interest very short response time is required (under 1 second). Response time to
pressing a key (and displaying it) should not be greater than 0.1 seconds, as well as click-
ing on object with mouse. Moreover, applications like computer games require extremely
fast interaction. To sum up, critical response time seems to be 2 seconds. If the delays
are greater, user’s productivity will almost certainly decline. Obviously, the nominal page
refresh time is not ideal since 8 seconds is highly above the critical barrier.

3.1.2 Bad performance: why is it common

It is a common habit that performance problems surface late in the application life cycle.
There is a rule: the later you discover them, the greater will be the cost to resolve (as you
can see on valve curve).

������������������������������������������������������������������������������������������

��������������������������������������������������

�������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������

�����

�����������������������������������

����������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������

��������

���������������������������

���������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������

���������������������������������������������������������

����������	 
����	���


���	�����

������	�
���	���	��

����	�����

�������

����

��	
��

���������������������������������������

��� � � �� �������� � � � � � � � �

Download at WoweBook.Com

Figure 3.1: The IT Business valve curve. Source [8]

In this figure expected outcome is represented by solid line and planned moment of
deployment by black diamond. If the application is released on schedule and immediately
starts to provide benefit to the business with nearly no problems after release. The dotted
line represents reality when development and deployment target slip, which is portrayed as
striped diamond and it involves great effort to fix performance issues in production costing
a lot of time and money.

3.1.3 Opinion of analysts

Forrester Research (http://www.forrester.com/) in 2006 provided interesting results by
looking at the number of performance defects that had to be fixed in production for a
typical application deployment. The results could be viewed in this table:

11



Approach % resolved in production
Firefighting 100%

Performance Validation 30%
Performance Driven 5%

Table 3.1: Resolving performance defects

Three levels of performance were identified. The first level is firefighting, which is typ-
ical for applications where nearly no or just little performance testing was carried out in
application deployment. This means, that all performance problems have to be resolved
in live environment (after the application is released). Although this approach is the least
desirable, it is quite common and puts companies into serious risk. The second level is per-
formance validation and it covers companies that spent time by performance testing only
in the late phase in the application life cycle. Despite this fact, still rather large number
of performance defects (30%) are present in production. This level is the most common
approach for organizations. Finally, performance driven approach is a stage where perfor-
mance testing has been conducted at every stage of the application life cycle. The outcome
of this is that only small percent of performance problems are discovered after deployment
(only 5%). This should be aim for every company to adopt it as a good habit.

Last minute performance testing

Even though performance validation mode is much better than firefighting mode, last
minute performance testing is still pretty dangerous. There is always a risk that serious
performance defects that surface in production and the time to correct problems identified
before release won’t be sufficient. This could cause delays in application rollout, or appli-
cation is deployed with severe performance defects and will cost a lot of time and money.
Moreover, application might be withdrawn from circulation until problems are fixed. These
outcomes affect negatively the business and the confidence of the users of the application.
The best approach is to test for performance as soon as possible instead than postpone it
to last minute.

Another unfortunate habit is that developers and testers overlook the amount of people
in user community and their geography (developers are likely to ignore large number of
users who have low-bandwidth, high-latency WAN links. Underestimating the popularity
of (mostly) web application is no strange thing either. For example, if you estimate 10000
hits on your new web page and it suddenly becomes 1 million hits, your application infras-
tructure will most likely collapse.

3.2 Fundamentals of effective application performance test-
ing

Performance awareness should be built into the application life cycle as early as possible

Performance requirements can be divided into functional an nonfunctional requirements.

12



Regression and unit testing are considered as functional, performance related requirements
can be considered as nonfunctional requirements. These are very important when trying to
carry out effective performance testing.

Performance testing is much more than generating load and seeing what happens. Many
other factors must be taken into account before appropriate performance testing strategy
can be implemented. According to book The Art of Performance Testing [8], these are the
most important requirements for performance testing:

• choose appropriate performance testing tool

• design appropriate environment for performance testing

• setting performance targets that are realistic and appropriate

• application has to be stable for performance testing

• obtaining a code freeze

• scripting and identifying critical transactions for business

• high quality test data

• accurate performance test design

• identification of server and network monitoring key Performance Indicators (KPIs)

• enough time to performance test effectively

Although a lot of these requirements are obvious, some of them are not. Generally, it’s
the requirements you underestimate have actually the greatest impact on the success or
failure of performance testing. Every point will be examined in detail.

3.2.1 Choosing appropriate performance testing tool

During the last 15 years, automated tools transformed from
”
fat-client“ norm to web-

enablement. This norm is better for performance tester because of more automated tools
vendors to choose from, thus tester can choose from offering with even low budget (open
source tools are available as well on http://www.opensource.org/). However, if the needs
of performance testing move outside the Web, the number of available tools decreases and
obsolete (and bad) technologies are still present. These technologies center on recording
application activity and modifying resulting scripts for performance test rather than ex-
ecution and analysis. Web-based technologies can cause some problems for performance
testing tools too. For example, not all tools will be able to offer a solution when deal-
ing with streaming media or client certificates. Despite these problems, automated tools
are required in order to carry out serious performance testing. There is no practical way
to perform reliable (and repeatable) performance testing without some form of automation.

The main goal of automated performance testing tools is to simplify the testing pro-
cess. Normally, automated tools record user activity and render this data as transactions

13



or scripts. These scripts are later used to create scenarios that represent a mix of typical
user activity or to create load testing sessions and can be considered as actual performance
tests. Once created, they can easily be reused, which is a great advantage compared to
manual testing. One of the greatest advantages over manual testing is the option to corre-
late performance data from various sources (for example the network, servers, application
response time) and display them in a single view. This information is stored for each test
run, thus making comparison of the multiple results easy.

3.2.2 Testing tool architecture

Typical components of an automated performance test tools are:

Scripting module enables recording of user activity and possibly support many mid-
dleware protocols. Modification of the scripts should be allowed to associate internal and
external data and to configure granularity of response-time measurement.

Test management module is responsible for the creation and execution of load tests ses-
sions or, for example, scenarios that represent different mixes of user activity. The sessions
use scripts and one or more load injectors (which generate the load, it could generate from
multiple workstations or servers, depending on the amount of load that is required).

Analysis module has the ability to analyze the data collected after test is executed. Ob-
tained data is generally a mixture of autogenerated reports and the report is in graphical or
tabular form. Also, an ’expert’ capability could be present (automated analysis of results
and point out areas of concern).

Monitoring network and server performance while load is test is running is possible
with additional modules. In Figure 2 is a demonstration of a typical performance tool de-
ployment. Group of servers or workstations will inject application load and will represent
application users by creating ’virtual users’.

3.2.3 Appropriate performance test environment

Ideally, the best test environment would be an exact copy of the deployment environment,
but this case is very rare (for a number of reasons). Therefore the typical performance test
environment could be a subset of the deployment environment. But you should certainly
attempt to make the performance test environment as close to a replica of the live environ-
ment as possible within existing constraints. This is different from unit testing, where the
goal is to ensure that the application works correctly.

It could take several weeks or even months to set up acceptable performance test envi-
ronment, since the process is rather difficult. Therefore, to complete this activity, you need
to plan for a realistic amount of time. Understanding the entire test environment enables
more efficient test design and planning. Moreover, it can help to identify testing challenges
early in the project. Occasionally, this process must be revisited periodically throughout
the life cycle of the project.

14



��������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������

�����������������������������������

�������������������

��������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������

�������������������������������

���������������

�����������������������������������������������������������������������

� ���������������������������������������������������������������

��������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������

����������������������������������������������������������������������

� ������������������������������������������������������

���������	�
����
���������

�����������	
�
���������	�

��������	
���������
�����������	
�

����
����	����
���
���
���������

�����
�����	�����
�����	���

�����������

��������
������

����	���	
���������

�����������������������������������������������

��� � ����������� � �� � � � � � ��� � � � � � � � � � ��� ��� � � �� �������� � � � � � ��� � ��

Download at WoweBook.Com

Figure 3.2: Performance tool deployment. Source [8]

Virtualization

Virtualization is a relatively new factor influencing design of test environment, which
allows multiple ’virtual’ servers to exist on a single physical machine. Ideal conditions are
when live environment also makes use of virtualization. If so, very close approximation will
be possible between live and test environment.

Injection Capacity

In order to generate the required load for performance testing, you need to ensure that
hardware resources are sufficient. One or more machines are used to simulate real user and
to generate load using automated performance test tools. Of course, there is a limited num-
ber of users you can generate from machine (it depends on technology). Another important
task is to make sure that none of the injectors are overloaded (CPU or memory utilization),
because it may have severe impact on results of the performance test. Representing many
users with only one machine is a compromise in automated performance testing, so the
goal should be to use as many machines to represent load injection as possible (and thus
spreading the load).

15



3.2.4 Realistic performance targets

Performance targets are often referred to as performance goals or a Service Level Agreement
(SLA). It is crucial to have clearly defined performance testing targets, otherwise it may
be a waste of time.

Consesus
Consensus on the performance targets is critical, so everyone involved and on whom the

application will have an impact, from application users to senior management must agree
on the same performance targets.

Unfortunately, promoting consensus have not been important, since performance test-
ing has been always last-minute activity or even completely omitted. Gaining consensus
on performance testing projects within an organization should contain promoting a culture
of consultation and involvement. Therefore, interested parties should be involved in the
project at its early stage.

The following groups or individuals should be ideally involved:

• Departmental Heads

• The developers and testers

• The infrastructure team

• The application users

Key Performance Targets

Generally, there are three performance targets that apply for any performance testing.
These are based on service-oriented performance indicators:

• Availability or uptime

• Concurrency, scalability and throughput

• Response time

The following, which are as much a measure of capacity as of performance, can be added:

• Network utilization

• Server utilization

Availability or uptime
This is very simple requirement: the application has to be available to the user at all

times, the only exception is planned maintenance. It certainly must not fail within the tar-
get level of throughput or concurrency. Testing the availability is not as simple as it seems.
For example, a successful ping of the server’s physical machine does not necessarily mean
the application is available. Another important parameter here is load. The application
might run very well at modest loads, but when load increases, it may start to time out and
return errors, thus suggesting lack of capacity for the generated load.

16



Concurrency, scalability and throughput

First, the definition of the word concurrency is required. According to Scott Barber’s
white paper [2], concurrency is (from the perspective of a performance testing tool) the
number of active users generated by the software, which is not necessarily the same as the
number of users accessing the application concurrently. The point is, that capacity goals can
be derived from concurrency and scalability. Achieving the scalability targets demonstrates
sufficient capacity in the application landscape for the application to deliver to the business.

In terms of performance testing, two distinct areas are referred as concurrency:

Concurrent virtual users are understood as the number of active virtual users. This
number is often different from the number of users actually accessing the testing applica-
tion.

On the other hand, concurrent application users is the number of users that are cur-
rently accessing (are logged in) the tested application. This is key measure of how many
virtual users are active in a certain moment. Another thing that needs to be decided is if
the process of login and logout (and everything it involves) will also be a part of applica-
tion activity testing. If we decide to include it to include these processes, users which are
logged out will be not truly concurrent with other users. There are a lot of solutions to this
problem (increase the execution time or persistence of each transaction, . . . ), but if these
processes are not included as a part of testing, it becomes a whole lot easier.

The 80/20 rule applies (among many other things) also in performance testing: out
of 100 users of application, around 20 users will be using the application anytime during
the working day. Of course, allowances for usage peaks outside of normal limits should be
included in testing. For example, in a large university, day-to-day usage could be relatively
flat, but only at certain times of the year (student enrollment, published results, registra-
tion of projects, . . . ) concurrent usage increases significantly.

When the application is considered as stateless, the performance testing target is through-
put rather than concurrency. This situation happens, when the application has no concept
of the traditional logged-in user. This kind of performance is measured as ’hits’ per minute
or per second.

Response Time

As mentioned before, good response time is a matter of perception.

Network Utilization

The impact of network utilization on performance testing depends on the available band-
width between servers and the user. Exhausting available bandwidth is much less probable
in a modern data center compared to in-house testing. However, when moving closer to
the user side, change in performance can be significant - especially when communication
involves the Internet. Large numbers of network conversations with high data presentations
rates will have strongest impact on the transmission path with the lowest bandwidth.

17



Typical network metrics that should be measured while performance testing include the
following:

Data volume is the amount of data presented to the network. This is fairly important
when users will be connecting to the application over low-bandwidth WAN links. High data
volume combined with network latency effects and bandwidth restrictions does not usually
yield good performance.

Data throughput is the rate that data is presented to the network. Performance target
could be just several bytes per second. This target can be achieved by monitoring data
throughput and it can discover if any problems are occurring. Unexpected reduction in
data throughput is often the first indication of capacity problems, where the servers cannot
keep up with the requests and virtual users start to suffer from time-outs.

Data error rate occurs when large number of network errors that require retransmission
of data slow down throughput, thus degrading performance of the application.

Server utilization

Server resources that an application is allowed to use might be limited. This can be
determined by monitoring KPIs while the server is under load. Many server performance
metrics can be monitored, but the most important are:

• CPU utilization

• Memory utilization

• Disk I/O (input and output)

• Disk space

3.2.5 Stable application for performance testing

When the test environment is provided and performance targets are set, application stabil-
ity for performance testing has to be confirmed. This may seem obvious, but performance
testing turns quite often to bug-fixing exercise and time for testing declines rapidly.

Stability of an application could be defined as the confidence that an application does
exactly what it says on the box. If there are serious problems with the functionality of
the application, there is no point in performance testing, since these problems will mask
important problems that are results of stress and load. Naturally, code quality is significant
factor in performance testing and is paramount to good performance.

There are several areas that can hide problems:

High data presentation might be a serious problem even though the application is function-
ally stable and it can be due to coding or design inefficiencies. User restrictions in bandwidth
will certainly have negative impact on performance. Therefore application should not have
redundant conversations between client and server, also excessive data (large images, . . . )

18



within a web page are not preferred.

Poorly performing SQL is another problem, where if using SQL database, bad coding or con-
figuration of stored procedures usually causes decline in application’s performance. These
flaws have to be identified and corrected, since this effect on the performance testing will
only be magnified under increasing load.

Large number of application network round trips would make application vulnerable to the
effects of latency, bandwidth restriction and network congestion.

Undetected application errors may be also a problem. Even though the application works
properly from a functional perspective, there might be errors that are not apparent to the
users or the developers. They may be creating inefficiencies that can impact performance
and scalability. For example, several HTTP 404 Not Found errors in a single transaction
might not be a big problem, but multiply it by several thousands transactions per minute
could have serious impact on performance.

3.2.6 Ensuring Accurate Performance Test Design

When key transactions and their data requirements are identified, the next step is creating
number of different types of performance tests. There are several types of tests:

Baseline test is used to establish a point of comparison for further test runs (mainly for
measuring response time of transaction). This test is executed as a single virtual user for
a single transaction for a set period of time (or for set number of transaction iterations).
There should be no other activity on the system involved, since the goal is to provide ’best
case’ measurement. Obtained value is used to determine the amount of performance degra-
dation, in response to increasing number of users or throughput.

Load test is a standard performance test, in which the application is loaded up to the target
concurrency. It is the closest approximation of real application use, including simulation
of user interaction with the application client. Delays and pauses experienced during data
entry are taken into account as well as responses to information returned from the applica-
tion servers.

Stress test causes the application or some part of infrastructure to fail in order to deter-
mine the upper limits or sizing of the infrastructure. Stress test continues until something
breaks: response time exceeds the value specified as acceptable, no more user can log in
or the application becomes unavailable. The point of this testing is when for example the
target concurrency is 2000 users and the infrastructure fails at only 2005 users, it is good
to know this because it shows that there is very little extra capacity available.

Soak or stability testing identifies problems that may appear only after extended period of
time. The most common example is a slowly developing memory leak or an unpredicted
limitation in the number of times that a transaction can be executed. Server monitoring
is required when carrying out these type of tests. The problems will manifest typically as
a gradual shutdown in response time or as an application’s sudden loss of availability. In
order to ensure accurate diagnosis, the correlation of data from users and servers at the

19



point of failure is vital.

Smoke test focuses on what has changed. Therefore, smoke test should involve only those
transactions that have been affected by a code change.

Isolation test usually consists of repeated executions of specific transactions that have been
identified as a result of a performance issue.

Baseline, load and stress test should be always executed. Smoke test and soak test are more
dependent on application and the time

3.3 Server and Network KPIs (Key Performance Indicators)

Identifying and monitoring server and network performance metrics should be done for the
application. This is vital to achieve root-cause analysis of any problems that can appear
while performance testing the application. In ideal situation, the automated performance
test solution should contain this monitoring Lack of integration is not an excuse for omit-
ting this phase.

Server KPIs

Measuring the performance of server is done by monitoring software which observes the
behavior of specific performance counters and metrics. In Unix/Linux world, these utilities
are monitor, top, vmstat, iostat, SAR that monitors server KPIs. Monitorings using several
layers is recommended, where the top layer is called generic monitoring, which focuses on
a small amount of counters that will clearly tell if server is under stress. Next layers of
monitoring should focus on specific technologies that are part of the application: such as
the web, application and database servers.

There are several models or templates that can be used:

Generic templates is a common set of metrics that apply to all servers in the same tier
having the same operation system. The purpose is to provide first-level monitoring of the
effects of load and stress. These metrics are typically how busy the CPUs are and how
much of memory is present.

These counters should be present in the template:

• Utilization percentage of processor

• Queue length of processor

• Available memory (preferably in bytes)

• Memory pages per second

• Measuring context switches (per time unit)

• Two for physical disk: average disk queue length and disk time

20



• Network interface: Packets Received and Outbound Errors

Database server tier

Most databases are similar in architecture, but differ from monitoring perspective. As
a result, every database type will require its own template. Examples of database types:

• MySQL

• Oracle

• Microsoft SQL Server

• IBM DB2

• Sybase

• Informix

Network KPIs

While performance testing, packet round-trip time, data presentation and the detection
of any errors that may occur as a result of high data volumes are the main focus of network
monitoring. This capability might be built into automated performance test tool or it may
be provided separately. However, if the guidelines on where to inject load were followed and
the data presentation have been optimized, then network issues should be the least likely
cause of problems during performance testing.

Available performance counters for Unix/Linux and Windows operating systems monitor
the number of errors detected during a performance test execution as well as the amount of
data being handled by each NIC card. Some automated performance test tools even separate
server and network time for each element within a page to help differentiate between server
and network problems.

3.4 Interpreting Results

It is vitally important to interpret the results of performance test correctly. Since proper
performance target has been set as part of testing requirements, problems should be spotted
quickly during the test or as part of the analysis at test completion. Another important
thing to do is to have all the necessary information at hand for further diagnosis.

3.4.1 The Analysis Process

There are two approaches how to perform analysis: in real time (as the test executes) or at
its conclusion.

Real-Time Analysis is basically waiting for something to happen or for the test
to complete without apparent incident. When a problem occurs, monitoring tools are
responsible for reporting the location of the problem in the application landscape.

21



3.4.2 Performance test output types

The root of performance test results analysis is statistical analysis. There are several types
of statistical data that can be extracted from these results:

If mean [1] is mentioned, typically, arithmetic mean is implied. Mean is basically the
average of a set of values. Response times are aggregated with mean to derive their average.
Even though there exist many types of means, the most important for performance testing
is ’arithmetic mean’. For example, the arithmetic mean of 3.5, 4.6, 4.0, 4.2 and 3.9 is 4.04.
Median is the middle value in a set of numbers. It is essential for performance testing
results interpretation.

Formal mathematical formula for the arithmetic mean:

x̄ =
1
n
×

n∑
i=1

xi

Standard deviation can be defined as variation or dispersion from the calculated av-
erage (mean) value. It is used to measure confidence in statistical conclusions. Data in
random and real-life events tend to exhibit a normal distribution (also known as the
Bell Curve 3.3).

Formal mathematical formula for the standard deviation:

σ =

√∑
(x− x̄)2

n− 1

Since high standard deviation most likely indicates erratic end user experience, an effort
to achieve small standard deviation should be made. For example, when a mean response
time is 60 seconds and standard deviation is 30 seconds, user has a high chance of experi-
encing response time from 45 seconds to 75 seconds.

(Note to 3.3: σ is symbol for standard deviation, µ stands for mean)

22



Figure 3.3: The Bell curve. Source [3]

23



Chapter 4

Performance test suite design

4.1 Real-life use cases and test cases

4.1.1 Use Cases

Use Case 1: Updating Case Runs

Mass CaseRun update UC01

Description: When working with Nitrate, significant part of the
work is transferring the results of automatic tests to
case run states. Updating several hundreds of case
run states is really time consuming task, these up-
dates can take tens of minutes. The impact is much
greater since this scenario is quite common.

Culprit: Updating status of multiple Case Runs is a very time
consuming task when executed one-by-one (single up-
date in one request)

Use Case 2: Print TestCase tags

Display Test Case Tags UC02

Description: Another common task is displaying tags of all test
cases in a certain test run. It is extremely slow to
filter test cases with specified tags in large test plans
(hundreds of test cases). This task takes several min-
utes in that case, but there certainly is space for
improvement.

24



Culprit: The main problem is that tags class are not imple-
mented. When all test cases are downloaded (in one
call), they are converted one-by-one (thus causing sig-
nificant slowdown) and communication with server is
redundant.

Use Case 3: TestCase not cached in CaseRun

TestCase not cached in CR UC03

Description: Children test plan walkthrough of a master plan is
rather ordinary task (especially when trying to gather
information about case run states of all test runs in
children test plans). It consumes a lot of time and
there is space for improvement.

Culprit: Test Cases linked to case runs are fetched every time
from server (no use of cache)

Use Case 4: Search for test case and its owners

Test case and its owners UC04

Description: When trying to display all test cases of a test plan,
usually users want to display even test case owner. It
is used to contact person who is responsible for this
test case in order to provide additional information
(review) to test case.

Culprit: The main problem is fetching users from database one
by one.

Use Case 5: Search TestCase plans

Display TestCase plans UC05

Description: The last use case consists of regular display of test
case along with every test plan that contains cur-
rent test case. This is also a standard operation that
python-nitrate users experience.

Culprit: Test plans are downloaded twice (once in test case
and then in test plan)

25



4.1.2 Test Cases

Test Case 1: Updating Case Runs

Covering mass CaseRun update use case is very important, because this is quite common
task. The main problem is in the communication - every update is executed in a single
call, instead of executing multiple updates in a single call. This feature is going to be very
helpful especially for TestRuns with large number of TestCases.

Code:

for caserun in TestRun(self.performance.testrun):

log.info(’{0} {1}’.format(caserun.id, caserun.status))

caserun.status = Status(random.randint(1,8))

caserun.update()

Basic description:

First of all, TestRun is fetched from server along with all its case runs. For every
case run, its state is changed to random state (because update happens only when state is
changed) and perform update of a single case run.

Proposed solution:

The solution might be MultiCall feature.

Test Case 2: Print TestCase tags

Use case 2 is base for this test case. Showing tags of multiple test cases in a test plan is
really complicated. The main problem is that tags class are not implemented. When all test
cases are downloaded (in one call), they are converted one-by-one (thus causing significant
slowdown).

Code:

for case in TestPlan(self.performance.testplan):

log.info(’{0}: {1}’.format(case, case.tags))

Basic description:

After initial fetch of test plan, it iterates through all of the test cases and gets id of test
case’s tag. This tag id is then converted into name using server call. This is very redundant,
because one tag is fetched several times (more significant when a lot of test cases with the
same tag).

Proposed solution:

This test case can be improved by implementing Tag class with caching.

26



Test Case 3: TestCase not cached in CaseRun

This test case shows the problem of handling test cases that occur frequently – for example
linked to case runs. These case runs are linked to test runs and they are linked to test
plans. Test runs within the same test plan are more or less similar, so caching test cases is
really a good idea.

Code:

for testplan in TestPlan(self.performance.testplan).children:

log.info(’{0}’.format(testplan.name))

for testrun in testplan.testruns:

log.info(’ {0} {1} {2}’.format(

testrun, testrun.manager, testrun.status))

for caserun in testrun.caseruns:

log.info(’ {0} {1} {2}’.format(

caserun, caserun.testcase, caserun.status))

Basic description:

The first step is fetching children of specified test plan. In every child plan, test runs
are iterated and in every test run, case runs are displayed. For every case run, their test
case is called and it is displayed, along with caserun status.

Proposed solution:

Solution can be implementing common caching class, so cached testcases can be used
to improve performance.

Test Case 4: Display test case and its owner

Code:

for testcase in TestPlan(self.performance.testplan):

log.info(’{0}: {1}’.format(testcase.tester, testcase))

Basic description:

In the beginning, test cases of a specified test plan are fetched in a single call. Every
test case has its tester and when the user is not initialized, user object is fetched from
database. This repeats until every test case is displayed with its tester.

Proposed solution:

One solution is persistent local cache with stored objects (users, . . .).

Test Case 5: Show all test plans linked to TestCase

This covers use case when displaying test plans with their test cases and all test plans of
test cases.

27



Problem is with fetching the same test plan more than once when multiple test cases
contain the same test plan.

Code:

for testcase in TestPlan(self.performance.testplan):

log.info(’{0} is in test plans:’.format(testcase))

for testplan in testcase.testplans:

log.info(’ {0}’.format(testplan.name))

Basic description:

Initially, all testcases in a test plan are fetched from database and then is every test
case processed one by one. Every test case fetches a list of test plans and test plans are
fetched one by one.

Proposed solution:

Solution might be caching test plans (so only one fetch is required) or persistent cache.

28



Chapter 5

python-nitrate performance
improvements

5.1 Feature enhancements

5.1.1 FE00: Test Suite

Performance test suite is the first step to application performance testing. During initial
state of thesis, feedback from python-nitrate users was required and a lot of comments were
received regarding performance issues. After processing these issues, five use cases that
have to be improved in the terms of performance were created. These use cases are later
converted into test cases, which performance test suite contains. Test cases can be found
in the self test section of every affected class. The performance test suite can be run as:

# python api.py --performance [class]

Every performance test in test suite displays elapsed time in human readable format
and the result of the test.

For running the performance test suite an additional section containing information
about the test bed is required:

[performance]

testplan = 1234

testrun = 12345

test-bed-prepare.py script

Use the test-bed-prepare.py script attached in the test directory to prepare the structure
of test plans, test runs and test cases. Nitrate test case management system instance is
required to run this performance test suite.

This script creates tree structure consisting of a master plan, user specified number of
test cases, test plans and test runs. These test cases are linked to test plans and also contain
a random tag. Test runs are created in the end from test plans.

29



Usage of test-bed-prepare.py script:

test-bed-prepare [--plans #] [--runs #] [--cases #]

Options:

--plans=# create specified number of plans

--runs=# create specified number of runs

--cases=# create specified number of cases

5.1.2 FE01: MultiCall

MultiCall [10] feature is used to encapsulate multiple calls to a remote server into a single
request. If enabled, TestPlan, TestRun, TestCase and CaseRun objects will use MultiCall
for updating their states (thus speeding up the process). Example usage:

multicall_start()

for caserun in TestRun(12345):

caserun.status = Status(
’’
IDLE‘‘)

caserun.update()

multicall_end()

When multicall start() is called, update queries are not sent immediately to server. Instead,
they are queued and after multicall end() is called, all queries are sent to server in a batch.

This feature enhancement resolves use case UC01, where CaseRun statuses are updated in
one call instead of one call per one CaseRun update.

5.1.3 FE02: Tag Class

For handling tags of Test Cases, Test Runs and Test Plans, new class Tag is implemented.
Tags are handled as objects instead being handled as strings, which provides much easier
access and modification.

This is very important after implementing tags caching, because tags are stored in a
single cache. This means when tag is fetched from server, it is immediately stored in Tag
cache.

5.1.4 FE03: Common Caching

In order to save calls to server and time, caching support has been extended. Originally,
caching support was present in Category, Component, User and PlanType. Now, every class
that handles objects has its own cache and it is used to save already initialized (fetched)
objects from server. Several classes are automatically fetched from server after initialization
(immutable objects), the rest will be fetched from server upon request.

Currently, there are 4 types (levels) of caching:

30



CACHE_NONE - no caching at all

CACHE_CHANGES - caching only local updates of instance attributes

CACHE_OBJECTS - caching objects for further use (default setting)

CACHE_PERSISTENT - persistent caching (caching in a file) option enabled

There is a difference from original implementation of caching. The old version had
CACHE ALL caching type (fetch every object in a class from server), but it was imple-
mented only in User class. Now, this type of caching is deprecated and it has been replaced
with new type, CACHE PERSISTENT.

Cache implementation has been improved in another way: the original cache imple-
mentation had separate __new__() function [7] in classes that supported caching, now it is
implemented in Nitrate class, thus reducing 4 implementations to 1 unified implementation
for caching in the whole module. Searching in cache is implemented in _cache_lookup()
function that is defined in Nitrate, but has multiple redefinitions in subclasses that require
special ways of searching.

5.1.5 FE04: Persistent cache

Persistent cache (local proxy) was another idea how to speed up performance of the module.
It allows class caches to be stored in a file, load caches from a file, and clear caches. This
performance improvement is very helpful mainly for immutable classes (for example User),
where all user can be imported in the beginning of a script and a lot of connections can be
saved.

This performance improvement can be activated only by specifying file name in config
section ([cache]).

Cached objects expiration

Since there are many types of objects / classes in python-nitrate module, every class has
to have expiration. This means that after certain period of time, instance of class has to
be fetched again from the server in order to stay up-to-date. Expiration times of classes
differ, for example, immutable classes have much longer expirations than mutable objects.

Cache expiration is a way how to prevent using probably obsoleted object (for example
caserun). Every class has its own default expiration time, but, of course, it can be modified
from config file (see example in [expiration]) and user input. Time unit in cache expiration
is 1 second.

There are two special values:

NEVER_CACHE -> no caching of certain class (0 seconds)

NEVER_EXPIRE -> object never expires (100 years)

Table 5.1 shows expiration times in all classes:

31



Classes Expiration
Normal 1 month

TestCase 1 hour
TestPlan 1 hour
TestRun 1 hour
CaseRun 0 hours

Table 5.1: Expiration times in persistent cache

5.1.6 FE05: Container initialization

Several containers support direct initialization of values. This saves a server call, so the
performance is improved. This type of initialization is currently available only in CaseTags,
RunTags and PlanTags classes. The principle is quite simple. When an input set is provided,
values from the input are used instead of values from server. This direct initialization is
currently enabled only if CACHE PERSISTENT caching type is enabled.

32



5.2 Implementation and testing

All features listed in future features have been implemented into python-nitrate module in
order to increase performance of this module. Development was incremental, that means
after implementation of performance test suite and its integration, along with test-bed-
prepare.py script, which creates needed structure in Nitrate instance, the focus was trans-
ferred to feature enhancements. Coding conventions in PEP 8 [6] Python style guide were
followed in feature enhancement implementation.

First enhancement, MultiCall, was implemented in the beggining and the initial results
were more than satisfactory. The initial speedup was around 200%, so that was considered
as quite a success.

Tag class also boosted the performance. Tags are now treated as objects instead of
strings or ids, so the access to tags is now unified (can be accessed both through ID or
name). Since it is now a class, caching can be implemented for further performance im-
provement.

Common caching class is the biggest step in performance improvements, but probably
has low impact on performance and is a ground for persistent caching and container ini-
tialization, which significantly improves performance.

Persistent cache is implemented to provide cache saving and loading, which makes the
class objects accessible after python-nitrate exits and starts again. This feature has the
potential to remarkably speed up the module in specific cases.

Container initialization was intended mainly to initialize values from input set of values
in containers related to tags.

Performance testing of improvements is performed on server with Nitrate instance and
three test plans are created. These test plans contain different number of test cases: 10,
100 and 1000 test cases. Every test plan has its child plan, which is basically the same test
plan. One test run is created for every test plan.

The results of performance testing improvements are visible in Appendix A, where ta-
bles with times of all test cases are present.

33



5.3 Results

5.3.1 10 Test cases

Test Case
Type TC01 TC02 TC03 TC04 TC05

Original implementation 32.26s 23.69s 16.83s 12.39s 44.80s
Improved implementation 13.57s 24.18s 42.24s 0.00s 101.98s

Improved + persistent cache 14.47s 5.57s 19.65s 0.00s 62.99s

Table 5.2: Comparison of results with 10 Test cases (mean)

Test Case
Type TC01 TC02 TC03 TC04 TC05

Original implementation 3.39s 0.35s 0.36s 0.26s 0.96s
Improved implementation 1.47s 1.31s 1.99s 0.00s 6.89s

Improved + persistent cache 2.16s 1.51s 12.60s 0.00s 19.66s

Table 5.3: Comparison of results with 10 Test cases (standard deviation)

The obvious thing here is that even though there is great progress in first and fourth
test case, regress occured in test case three and five in improved implementation. This
is because all immutable objects are immediately fetched and cached, whereas in the old
implementation it was only initialization (no contact with server). Plus, when set of ob-
jects was being fetched from server in original implementation, only one call was required.
Second test case made progress only when persistent cache was enabled – otherwise the
performance was comparable to old implementation.

5.3.2 100 Test cases

Test Case
Type TC01 TC02 TC03 TC04 TC05

Original implementation 382.33s 204.05s 26.73s 26.64s 480.65s
Improved implementation 169.21s 248.77s 69.31s 0.00s 731.58s

Improved + persistent cache 152.69s 14.06s 18.61s 0.00s 514.02s

Table 5.4: Comparison of results with 100 Test cases (mean)

MultiCall feature again increased the performance of the module. The difference in tags
initialization, that is enabled in CACHE PERSISTENT caching mode, has now remarkably
increased speed in second test case. Checking CaseRuns in TestRuns in TestPlans (TC03)
took longer as expected, as well as fifth test case. Displaying test cases with their testers
(TC04) uses cached information (no network activity).

34



Test Case
Type TC01 TC02 TC03 TC04 TC05

Original implementation 12.41s 10.97s 1.34s 1.02s 15.95s
Improved implementation 11.71s 36.40s 7.88s 0.00s 101.00s

Improved + persistent cache 16.88s 2.27s 33.92s 0.00s 129.02s

Table 5.5: Comparison of results with 100 Test cases (standard deviation)

5.3.3 1000 Test cases

Test Case
Type TC01 TC02 TC03 TC04 TC05

Original implementation 3596.04s 2578.52s 97.50s 148.44s 6088.95s
Improved implementation 1021.09s 2636.77s 262.06s 0.00s 6278.45s

Improved + persistent cache 996.48s 53.99s 164.63s 0.00s 6419.04s

Table 5.6: Comparison of results with 1000 Test cases (mean)

Test Case
Type TC01 TC02 TC03 TC04 TC05

Original implementation 121.30s 6.63s 4.68s 5.36s 45.75s
Improved implementation 40.32s 49.71s 17.21s 0.00s 57.41s

Improved + persistent cache 11.71s 36.40s 7.88s 0.00s 101.00s

Table 5.7: Comparison of results with 1000 Test cases (standard deviation)

Huge difference is observed while displaying tags of test cases. That test case is nearly
48 times faster with Tag class implemented compared to original implementation. Multicall
speeds up first test case 3.6 times, which is comparable to previous tests. Again, displaying
test cases and their users does not take any time since all information is already cached.
Remarkable deterioration is present in test cases 3 and 5 (reasons mentioned earlier).

5.3.4 Summary

To sum up, MultiCall improvement made a big difference in performance along with Tag
class implementation. Caching is certainly responsible for speeding up specific test cases in
the module. On the other hand, changes in initialization of classes and handling of objects
significantly slowed down particular test cases. In the third test case with persistent cache
enabled, first iteration takes much more time than the others (because of fetching objects
from database). Objects cached in persistent cache are used in further iterations. Standard
deviation is very high under these conditions.

35



Chapter 6

Conclusion

The goal of this thesis has been improvement of performance in python-nitrate module and
implementation of caching support for all relevant classes. Measuring the impact of im-
provements required performance test suite, which was created in the beginning. Test cases
present in this test suite were derived from use cases, that required large data manipulation
and they were provided by python-nitrate users.

The main achievements are implementation of caching in a parent Nitrate class in this
module, but also Persistent cache and MultiCall feature, which improved performance of
updating part of module. Tag class is also introduced in order to provide better tag han-
dling. Draft of container initialization is presented in Container classes handling tags, which
also remarkably improves performance. Lastly, test-bed-prepare.py script has been imple-
mented and it creates desired structure of test plans, test cases and test runs in Nitrate
instance for running performance tests in test suite.

The important results are those created in the testing part that these feature enhance-
ment really improved performance in python-nitrate module. We can see that several
feature enhancements have large impact on performance, but some changes, unfortunately,
make the module slower. More detailed commentary is present in result section.

Future of this thesis is bright, since feature enhancements created while working on this
thesis are ground for further improvements and will be almost certainly part of upstream.
There is still space for a lot of things in the future, for example creating container caching
for all containers, rewriting Bugs class, fixing minor bugs, . . .

36



Bibliography

[1] B.L. Agarwal. Basic Statistics. New Age International Pvt Ltd Publishers, 1st
edition, 2009.

[2] Scott Barber. Get performance requirements right – think like a user [online].
http://www.perftestplus.com/resources/requirements_with_compuware.pdf,
2007 [cit. 2013-05-14].

[3] David L. Chandler. Explained: Sigma [online].
http://web.mit.edu/newsoffice/2012/explained-sigma-0209.html, 2012 [cit.
2013-05-14].

[4] David Malcolm, Yuguang Wang, June Zhang and Xuqing Kuang. Nitrate: Test Case
Management System [online]. https://fedoraproject.org/wiki/Nitrate,
2012-03-15 [cit. 2013-05-04].

[5] G.L.Martin, K.G.Corl. System response time effects on user productivity. Behaviour
and Information Technology, vol. 15 (no. 1):3–13, 1986.

[6] Guido van Rossum, Barry Warsaw. PEP 8 – Style Guide for Python Code [online].
http://www.python.org/dev/peps/pep-0008/, 2001 [cit. 2013-05-13].

[7] Mark Lutz. Learning Python. O’Reilly Media, 3rd edition, 2007.

[8] Ian Molyneaux. The Art of Application Performance Testing. O’Reilly Media,
Cambridge, 1st edition, 2009.

[9] Petr Šplíchal, Zbyšek Mráz, Martin Kyral and Lukáš Zachar. python-nitrate: Python
API for the Nitrate test case management system [online].
http://psss.fedorapeople.org/python-nitrate/, 2012 [cit. 2013-05-12].

[10] Python Software Foundation. xmlrpclib – XML-RPC client access [online].
http://docs.python.org/2/library/xmlrpclib.html, 2013 [cit. 2013-05-12].

[11] Python Software Foundation. ConfigParser – Configuration file parser [online].
http://docs.python.org/2/library/configparser.html, 2013 [cit. 2013-05-13].

37

http://www.perftestplus.com/resources/requirements_with_compuware.pdf
http://web.mit.edu/newsoffice/2012/explained-sigma-0209.html
https://fedoraproject.org/wiki/Nitrate
http://www.python.org/dev/peps/pep-0008/
http://psss.fedorapeople.org/python-nitrate/
http://docs.python.org/2/library/xmlrpclib.html
http://docs.python.org/2/library/configparser.html


Appendix A

Performance values

Short name Long name
TC01 Updating multiple CaseRuns from a TestRun
TC02 Checking tags of test cases
TC03 Checking CaseRuns in TestRuns in TestPlans
TC04 Checking test cases and their default testers
TC05 Checking test plans linked to test cases
Mean Arithmetic mean

SD Standard deviation

Table A.1: Test Case names

38



10TCs Test Case
# TC01 TC02 TC03 TC04 TC05
1. 31.38s 23.48s 14.94s 13.44s 45.24s
2. 32.66s 23.54s 16.77s 12.26s 44.91s
3. 29.84s 23.59s 17.15s 12.18s 44.77s
4. 35.41s 23.40s 16.73s 12.26s 44.72s
5. 38.27s 23.51s 16.80s 12.26s 43.84s
6. 35.53s 25.14s 16.67s 12.73s 44.39s
7. 32.82s 23.91s 16.96s 12.90s 44.66s
8. 35.48s 23.53s 17.05s 12.64s 44.59s
9. 35.58s 23.47s 16.94s 12.30s 45.43s
10. 29.79s 23.49s 16.73s 12.27s 44.39s
11. 32.59s 23.58s 16.78s 12.26s 44.65s
12. 30.40s 23.52s 16.76s 12.36s 45.19s
13. 30.13s 23.98s 16.77s 12.43s 44.85s
14. 24.37s 23.72s 16.76s 12.73s 44.57s
15. 27.20s 24.08s 17.79s 12.35s 45.17s
16. 29.79s 23.96s 16.81s 12.48s 44.90s
17. 29.91s 23.44s 16.80s 12.32s 44.72s
18. 35.50s 23.51s 16.76s 12.28s 44.97s
19. 36.10s 23.46s 16.95s 12.26s 44.44s
20. 27.48s 23.41s 16.79s 12.27s 43.88s
21. 35.49s 23.69s 16.80s 12.45s 44.59s
22. 32.60s 23.49s 17.00s 12.17s 44.25s
23. 35.55s 23.54s 16.69s 12.23s 45.46s
24. 29.71s 23.48s 16.80s 12.30s 44.36s
25. 29.77s 23.84s 16.84s 12.48s 45.10s
26. 35.88s 23.52s 16.80s 12.19s 44.61s
27. 35.47s 23.63s 16.88s 12.27s 43.96s
28. 32.81s 24.10s 16.75s 12.23s 44.19s
29. 35.43s 23.44s 16.79s 12.33s 44.71s
30. 35.55s 23.51s 16.78s 12.26s 44.60s
31. 35.55s 23.44s 17.12s 12.25s 44.71s
32. 26.80s 23.44s 16.76s 12.32s 43.85s
33. 26.99s 23.51s 17.19s 12.26s 50.15s
34. 33.05s 24.63s 16.92s 13.01s 44.69s
35. 30.03s 23.66s 16.71s 12.24s 44.34s
36. 32.53s 23.57s 16.81s 12.28s 44.27s
37. 27.01s 23.71s 16.85s 12.22s 45.14s
38. 35.44s 23.58s 16.74s 12.28s 44.42s
39. 35.61s 23.95s 16.91s 12.78s 44.98s
40. 33.17s 24.14s 17.03s 12.29s 45.58s
Mean 32.36s 23.69s 16.83s 12.39s 44.80s
SD 3.39s 0.35s 0.36s 0.26s 0.96s

Table A.2: Results of run with original implementation (10 Test cases)

39



10TCs Test Case
# TC01 TC02 TC03 TC04 TC05
1. 15.17s 23.90s 42.23s 0.00s 112.40s
2. 13.02s 25.19s 42.26s 0.00s 121.19s
3. 14.13s 24.31s 42.06s 0.00s 117.27s
4. 14.64s 29.19s 42.90s 0.00s 98.272s
5. 13.98s 23.68s 41.52s 0.00s 101.67s
6. 14.95s 23.43s 41.51s 0.00s 98.521s
7. 18.64s 24.16s 41.52s 0.00s 97.526s
8. 11.44s 23.68s 41.42s 0.00s 97.701s
9. 12.97s 23.61s 41.57s 0.00s 97.988s
10. 14.12s 23.61s 41.64s 0.00s 97.747s
11. 14.96s 23.48s 41.62s 0.00s 99.564s
12. 13.03s 23.91s 41.45s 0.00s 100.25s
13. 14.11s 23.60s 42.60s 0.00s 97.842s
14. 13.22s 24.96s 42.49s 0.00s 99.893s
15. 11.48s 24.37s 42.16s 0.00s 99.963s
16. 14.16s 23.72s 41.89s 0.00s 98.834s
17. 15.10s 25.35s 43.10s 0.00s 105.80s
18. 10.53s 24.38s 44.62s 0.00s 116.31s
19. 14.94s 23.67s 42.41s 0.00s 114.44s
20. 14.01s 23.64s 41.48s 0.00s 114.85s
21. 14.08s 23.82s 42.85s 0.00s 111.51s
22. 13.03s 23.41s 42.77s 0.00s 111.25s
23. 11.34s 23.54s 41.36s 0.00s 100.05s
24. 13.03s 23.48s 41.17s 0.00s 98.225s
25. 13.04s 26.47s 42.55s 0.00s 97.650s
26. 14.04s 23.85s 42.15s 0.00s 96.986s
27. 13.42s 29.17s 53.79s 0.00s 97.544s
28. 14.02s 23.66s 41.43s 0.00s 98.086s
29. 14.98s 23.46s 41.51s 0.00s 97.438s
30. 11.38s 23.89s 41.48s 0.00s 97.184s
31. 11.38s 23.79s 41.49s 0.00s 97.539s
32. 14.05s 23.53s 42.05s 0.00s 102.49s
33. 13.07s 24.35s 41.34s 0.00s 98.271s
34. 11.45s 23.56s 41.44s 0.00s 97.616s
35. 13.93s 23.51s 41.41s 0.00s 97.681s
36. 15.01s 23.40s 41.58s 0.00s 97.101s
37. 14.07s 23.63s 42.76s 0.00s 99.172s
38. 13.08s 23.58s 41.34s 0.00s 97.714s
39. 13.08s 23.86s 41.41s 0.00s 97.779s
40. 12.94s 23.60s 41.61s 0.00s 100.17s
Mean 13.57s 24.18s 42.24s 0.00s 101.98s
SD 1.47s 1.31s 1.99s 0.00s 6.89s

Table A.3: Results of run with improved implementation (10 Test cases)

40



10TCs Test Case
# TC01 TC02 TC03 TC04 TC05
1. 10.42s 4.67s 83.27s 0.00s 130.48s
2. 13.97s 4.76s 15.09s 0.00s 50.13s
3. 14.01s 4.74s 15.07s 0.00s 50.15s
4. 14.02s 4.74s 15.09s 0.00s 51.21s
5. 11.41s 4.72s 15.16s 0.00s 50.63s
6. 13.03s 4.68s 15.19s 0.00s 51.97s
7. 13.04s 4.67s 15.15s 0.00s 50.58s
8. 13.18s 4.74s 15.58s 0.00s 50.87s
9. 13.31s 7.71s 15.19s 0.00s 86.07s
10. 18.12s 8.31s 22.08s 0.00s 93.20s
11. 14.10s 4.78s 17.79s 0.00s 77.89s
12. 19.75s 8.52s 25.72s 0.00s 94.78s
13. 18.15s 8.66s 24.65s 0.00s 87.71s
14. 19.04s 8.54s 25.22s 0.00s 79.28s
15. 17.74s 8.46s 23.78s 0.00s 66.43s
16. 14.05s 4.77s 15.07s 0.00s 77.80s
17. 15.00s 4.74s 20.05s 0.00s 50.38s
18. 15.00s 4.73s 15.05s 0.00s 50.74s
19. 14.20s 4.73s 15.10s 0.00s 50.58s
20. 13.01s 4.72s 15.11s 0.00s 50.65s
21. 13.08s 5.11s 15.42s 0.00s 50.83s
22. 15.01s 4.77s 15.28s 0.00s 50.58s
23. 14.94s 4.72s 15.18s 0.00s 52.00s
24. 13.06s 4.74s 15.18s 0.00s 50.55s
25. 12.12s 4.77s 15.22s 0.00s 68.24s
26. 14.49s 7.48s 25.75s 0.00s 51.51s
27. 15.04s 4.96s 15.40s 0.00s 63.63s
28. 15.00s 4.75s 16.98s 0.00s 50.02s
29. 13.02s 4.66s 15.40s 0.00s 50.36s
30. 13.99s 4.76s 15.28s 0.00s 50.68s
Mean 14.47s 5.57s 19.65s 0.00s 62.99s
SD 2.16s 1.51s 12.60s 0.00s 19.66s

Table A.4: Results of run with improved implementation and persistent cache (10 Test
cases)

41



100TCs Test Case
# TC01 TC02 TC03 TC04 TC05
1. 387.32s 203.47s 26.92s 26.36s 537.17s
2. 410.50s 245.04s 32.15s 27.24s 488.32s
3. 381.52s 197.35s 26.20s 26.27s 476.62s
4. 375.46s 200.28s 26.56s 26.36s 473.17s
5. 377.97s 199.44s 26.11s 25.88s 469.89s
6. 385.58s 199.90s 26.43s 26.71s 473.94s
7. 366.94s 200.92s 26.29s 26.21s 473.82s
8. 370.27s 220.55s 26.27s 30.19s 510.02s
9. 384.30s 200.16s 27.44s 26.57s 477.51s
10. 379.99s 204.30s 26.08s 26.83s 483.67s
11. 397.09s 201.62s 26.37s 26.35s 479.87s
12. 389.61s 200.55s 27.32s 26.03s 472.05s
13. 393.08s 199.58s 26.43s 26.30s 475.68s
14. 367.32s 199.48s 26.11s 28.58s 478.47s
15. 373.31s 198.76s 26.72s 26.03s 471.10s
16. 391.41s 200.39s 25.96s 26.12s 472.16s
17. 399.34s 199.52s 26.42s 26.11s 479.01s
18. 384.74s 210.97s 26.81s 26.17s 472.88s
19. 365.13s 199.58s 26.04s 26.35s 474.90s
20. 365.73s 199.32s 25.97s 26.16s 472.93s
Mean 382.33s 204.05s 26.73s 26.64s 480.65s
SD 12.41s 10.97s 1.34s 1.02s 15.95s

Table A.5: Results of run with original implementation (100 Test cases)

100TCs Test Case
# TC01 TC02 TC03 TC04 TC05
1. 162.32s 256.14s 58.91s 0.00s 602.19s
2. 159.77s 198.58s 61.80s 0.00s 603.15s
3. 185.12s 256.29s 71.12s 0.00s 929.54s
4. 205.02s 216.56s 66.04s 0.00s 817.48s
5. 162.86s 208.00s 59.53s 0.00s 618.50s
6. 156.96s 197.90s 58.64s 0.00s 606.39s
7. 153.63s 201.59s 59.21s 0.00s 602.34s
8. 160.70s 200.73s 59.07s 0.00s 624.24s
9. 155.45s 203.49s 58.75s 0.00s 601.45s
10. 168.48s 277.40s 76.88s 0.00s 859.51s
11. 172.30s 319.80s 75.37s 0.00s 829.94s
12. 167.94s 272.85s 78.62s 0.00s 777.54s
13. 178.71s 269.11s 75.97s 0.00s 777.58s
14. 170.68s 266.05s 74.25s 0.00s 771.62s
15. 177.66s 286.54s 76.24s 0.00s 781.20s
16. 164.28s 275.11s 76.90s 0.00s 768.95s
17. 167.28s 266.43s 75.23s 0.00s 762.79s
18. 173.85s 270.96s 75.76s 0.00s 777.96s
19. 172.86s 268.25s 73.71s 0.00s 759.46s
20. 168.46s 263.67s 74.28s 0.00s 759.89s
Mean 169.21s 248.77s 69.31s 0.00s 731.58s
SD 11.71s 36.40s 7.88s 0.00s 101.00s

Table A.6: Results of run with improved implementation (100 Test cases)

42



100TCs Test Case
# TC01 TC02 TC03 TC04 TC05
1. 177.68s 16.54s 162.47s 0.00s 1055.53s
2. 141.29s 11.15s 9.57s 0.00s 477.67s
3. 164.43s 11.11s 8.87s 0.00s 509.63s
4. 169.58s 16.32s 9.65s 0.00s 455.70s
5. 162.82s 13.22s 14.6s 0.00s 500.52s
6. 151.65s 11.49s 14.8s 0.00s 504.28s
7. 123.22s 13.62s 8.39s 0.00s 507.50s
8. 140.22s 16.13s 8.25s 0.00s 480.63s
9. 133.40s 16.56s 9.33s 0.00s 468.15s
10. 169.79s 17.75s 13.69s 0.00s 507.21 s
11. 158.40s 13.63s 13.66s 0.00s 498.86 s
12. 137.23s 14.61s 10.97s 0.00s 486.95 s
13. 122.91s 11.31s 10.12s 0.00s 473.61 s
14. 173.35s 11.55s 9.44s 0.00s 464.37s
15. 163.54s 14.83s 9.74s 0.00s 459.02s
16. 150.15s 14.73s 11.13s 0.00s 442.35 s
17. 142.64s 16.12s 9.56s 0.00s 494.08s
18. 137.55s 12.64s 12.8s 0.00s 485.47s
19. 166.70s 11.11s 12.0s 0.00s 497.32s
20. 167.25s 16.84s 13.5s 0.00s 511.64s
Mean 152.69s 14.06s 18.61s 0.00s 514.02s
SD 16.88s 2.27s 33.92s 0.00s 129.02s

Table A.7: Results of run with improved implementation and persistent cache (100 Test
cases)

100TCs Test Case
# TC01 TC02 TC03 TC04 TC05
1. 3500.39s 2578.83s 102.95s 151.36s 6145.10s
2. 3775.46s 2582.46s 99.12s 151.21s 6034.16s
3. 3480.04s 2568.07s 91.62s 143.05s 6124.31s
4. 3654.24s 2577.65s 100.10s 142.39s 6082.74s
5. 3570.07s 2585.62s 93.75s 154.21s 6058.46s
Mean 3596.04s 2578.52s 97.50s 148.44s 6088.95s
SD 121.30s 6.63s 4.68s 5.36s 45.75s

Table A.8: Results of run with original implementation (1000 test cases)

1000TCs Test Case
# TC01 TC02 TC03 TC04 TC05
1. 1066.07s 2599.66s 246.52s 0.00s 6214.93s
2. 975.58s 2642.39s 257.12s 0.00s 6327.70s
3. 1054.89s 2692.51s 284.32s 0.00s 6284.81s
4. 1023.37s 2574.27s 275.72s 0.00s 6340.08s
5. 985.58s 2675.06s 246.65s 0.00s 6224.74s
Mean 1021.09s 2636.77s 262.06s 0.00s 6278.45s
SD 40.32s 49.71s 17.21s 0.00s 57.41s

Table A.9: Results of run with improved implementation (1000 test cases)

43



1000TCs Test Case
# TC01 TC02 TC03 TC04 TC05
1. 981.42s 51.39s 453.18s 0.00s 6663.83s
2. 965.57s 51.39s 97.55s 0.00s 6375.11s
3. 958.05s 51.23s 93.98s 0.00s 6525.33s
4. 1023.49s 50.52s 90.79s 0.00s 6306.42s
5. 1053.87s 65.43s 87.68s 0.00s 6224.55s
Mean 169.21s 248.77s 69.31s 0.00s 731.58s
SD 11.71s 36.40s 7.88s 0.00s 101.00s

Table A.10: Results of run with improved implementation and persistent cache (1000 test
cases)

44



Appendix B

Contents of CD

The CD contains these folders:

• python-nitrate – repository with source codes of python-nitrate

• thesis-tex – source codes of this thesis

• thesis-pdf – this thesis in PDF format

45



Appendix C

Commits in python-nitrate git
repository

Test bed prepare script

https://github.com/psss/python-nitrate/commit/796bbda

Creates a master test plan with child test plans & runs

Prepares a set of test cases with random tags & testers

Links test cases to all test plans and test runs

Performance test cases

https://github.com/psss/python-nitrate/commit/9dcdb7b

Configuration example

Internal utility for printing time

Initial set of performance test cases

Tag class implementation

https://github.com/psss/python-nitrate/commit/6bc6109

New Tag class with support for caching implemented

PlanTags, RunTags and CaseTags containers adjusted

Relevant Tag test cases and create example updated

MultiCall support

https://github.com/psss/python-nitrate/commit/01cec90

Implemented global functions for handling multicall mode

Support in TestPlan, TestRun, TestCase and CaseRun update

Added test case measuring CaseRun.status update performance

Common Caching

https://github.com/psss/python-nitrate/commit/93d5917

Caching now handled in Nitrate instead of separate implementations

46



New caching class methods: \_cache\_lookup() and \_is\_cached()

Attribute initialization moved to a separate \_init() method

Many adjustments in handling object fetching and initialization

A bunch of new test cases covering the caching functionality

Persistent Cache

https://github.com/psss/python-nitrate/commit/760b042

New Cache class handling persistence and expiration

Various class adjustments to handle object expiration

Cache level detection from the user config file

Added detailed documentation for all cache features

Container Initialization

https://github.com/psss/python-nitrate/commit/6d69ac2

Suport for direct initialization of container objects

Implemented direct init for PlanTags, RunTags and CaseTags

47


	Introduction
	Nitrate and python-nitrate
	Nitrate
	python-nitrate
	Caching in python-nitrate
	Classes in python-nitrate


	Performance of an application
	Measuring the performance
	Performance standards
	Bad performance: why is it common
	Opinion of analysts

	Fundamentals of effective application performance testing
	Choosing appropriate performance testing tool
	Testing tool architecture
	Appropriate performance test environment
	Realistic performance targets
	Stable application for performance testing
	Ensuring Accurate Performance Test Design

	Server and Network KPIs (Key Performance Indicators)
	Interpreting Results
	The Analysis Process
	Performance test output types


	Performance test suite design
	Real-life use cases and test cases
	Use Cases
	Test Cases


	python-nitrate performance improvements
	Feature enhancements
	FE00: Test Suite
	FE01: MultiCall
	FE02: Tag Class
	FE03: Common Caching
	FE04: Persistent cache
	FE05: Container initialization

	Implementation and testing
	Results
	10 Test cases
	100 Test cases
	1000 Test cases
	Summary


	Conclusion
	Performance values
	Contents of CD
	Commits in python-nitrate git repository

