
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FEATURE EXTRACTION AND SELECTION
FOR EMOTIONS DETECTION FROM EEG
SIGNALS USING PYTHON
FEATURE EXTRACTION AND SELECTION FOR EMOTIONS DETECTION FROM EEG SIGNALS

USING PYTHON

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR SIMONA ČEŠKOVÁ
AUTOR PRÁCE

SUPERVISOR Dr. SOYIBA JAWED, MSc
VEDOUCÍ PRÁCE

BRNO 2023



 

Institut: Department of Computer Systems (UPSY)
 

Student: Češková Simona
 

Programme: Information Technology
 

Specialization: Information Technology
 

 

Category: Signal Processing
 

Academic year: 2022/23
  

Assignment:
 

1. Study and learn about the various emotions.
2. Get acquainted with feature extraction and selection methods, and their application to the

detection of emotions.
3. Find out the challenges for emotion detection and the limitations of the existing methods.
4. Design a model for feature extraction and feature selection of emotion detection.
5. Implement and evaluate the designed model.
6. Conduct critical analysis and discuss the achieved results and their contribution.

 
 

Literature: 
Based on the supervisor's recommendation.

Requirements for the semestral defence: 
Fulfillment of Items 1 to 3 of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
 

Supervisor: Jawed Soyiba, Dr., MSc
 

Head of Department: Sekanina Lukáš, prof. Ing., Ph.D.
 

Beginning of work: 1.11.2022
 

Submission deadline: 10.5.2023
 

Approval date: 31.10.2022

Bachelor's Thesis Assignment
143557

Feature Extraction and Selection for Emotions Detection from EEG Signals 
Using Python

Title:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno



Abstract
This work deals with the extraction and selection of features of EEG signals for emotion
detection. Processing these signals included steps such as signal pre–processing, extraction
of its features and subsequent selection of features. For verification of the correct implemen-
tation, the extraction and selection results were evaluated by a machine learning algorithm.
This work works with the already measured DREAMER dataset.

Abstrakt
Tato práce se zabývá extrakcí a selekcí vlastnosti EEG signálů pro detekci emocí. Proces
zpracovávání těchto signálů obsahuje kroky jako předzpracování signálu, extrakci jeho vlast-
ností a následnou jejich selekci. Pro ověření správné implementace byly výsledky extrakce
a selekce ohodnoceny algoritmem strojového učení. Tato práce pracuje s již naměřeným
datovým souborem DREAMER.
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Rozšířený abstrakt
Tato práce je zaměřena na použití metod v oblasti detekce emocí pomocí EEG signálů.
Použitý dataset EEG signálů se nazývá DREAMER a byla zde uplatněna neinvazivní
metoda měření. Detekce emocí lze využít při lékařských posudcích a léčbě psychických
onemocnění.

Hlavní částí této práce byla extrakce a selekce vlastností, které lze získat z EEG signálů,
naměřených z 23 subjektů, kteří sledovali 18 krátkých videí. Na konci každého videa každý
subjekt ohodnotil, jak se cítil pomocí skóre na stupnici 1–5 pro emoční dimenzi valence
a arousalu.

Celý proces probíhal ve čtyřech krocích a každý z těchto kroků navazuje na ten před-
chozí:

1. Příprava EEG signálů

2. Extrakce vlastností signálu

3. Selekce nejdůležitějších vlastností

4. Ohodnocení předchozích kroků

Pro dosáhnutí co nejpřesnějších výsledků bylo nutné neupravený EEG signál vyčistit
od šumu, mrknutí oka a dalších nechtěných zásahů do signálu, které pronikly při nahrávání.
K tomu byl použit pásmový filtr, který propouštěl frekvence mezi 0,5-40,0Hz, nástroj ICA
a manuální čištění komplexnějších segmentů. Vzorkovací frekvence byla snížena na 64Hz.
Signál byl poté připraven pro hlavní část mé práce, nalezení nejlepšího řešení a kombinace
metod extrakce a selekce vlastností signálu.

Před extrakcí bylo nutné signál rozdělit na jednolitvá frekvenční pásma a na 4 skupiny
dle umístění elektrod, z kterých signál pochází, z lidského mozku. Frekvenčních pásma
rozdělují EEG signál na pět druhů vln – delta, théta, alfa, beta a gama. Osm elektrod
se při měření nacházelo ve frontální části a po dvou elektorádách se dalších šest nacházelo
v okcipitální, temporální a parientální části mozku.

Časová a frekvenční doména signálu poskytovala vlastnosti, které charakterizují signál,
proto jsem extrahovala statistické vlastnosti, Hjortovy parametry, entropie a výkonovou
spektrální hustotu. Všechny vlastnosti byly zvlásť extrahované pro každé frekvenční pásmo
a pro každou ze čtrnácti elektrod. Extrahovaná data jsem normalizovala, protože poté
dosahovala lepších výsledků.

Dohromady jsem dosáhla celkového počtu 10220 extrahování vlastností, které tvořily
vektor, pro jeden subjekt a jedno video. Celková matice vektorů obsahovala tedy 414 vek-
torů. Při tomto množství bylo nutné některá nepodstatná data vyřadit, neboli použít
metodu selekce. Navrhla jsem 3 možné úpravy skóre a 3 metody selekce. Během testování
se ukázalo, že nejlepší výsledky pro selekci byla schopná dodat kombinace binárního skóre
s lineární diskriminační analýzou. Binární skóre bylo rozděleno na nízkou a vysokou valenci
a arousal. Ostatní metody dosáhly negativních výsledků s výrazně menší přesností měření.

Ohodnocení proběhlo s použitím čtyř klasifikátorů strojového učení a nejlepší výsledky
jsem dosáhla pomocí naivní Bayesovské klasifikace. Pro objektivní hodnocení jsem použila
k-násobnou křížovou validaci. Průběh selekce a ohodnocení selekce bylo zvlášť rozděleno
pro emoční dimenzi valence a arousalu. Proto byla metoda implementována dvakrát s dvěmi
klasifikátory, natrénovanými pro danou emoční dimenzi.

Rozdělení elektrod do jednotlivých částí dokázalo, že vlastnosti extrahované z frontální
části mozku dosáhly největší přesnosti. Tento výsledek jsem ověřila s literatou. K zlepšení



výsledků jsem dále testovala jakou přesnost byly schopné vytvořit vlastnosti extrahované
z časové a frekvenční domény. Frekvenční doména se jasně ukázala jako lepší a největší
přesnost byla dosažena s použitím výkonové spektrální hustoty.

Výsledné řešení extrakce emocí se skládá z použití pouze vlastností signálu jeho frekvenční
domény a z frontální části rozdělení mozku, které byly následně normalizované. Řešení
selekce bylo složeno z binárního označení skóre sebeohodnocení subjektů a lineární diskrim-
inační analýzy.

Toto řešení ohodnocené naivní Bayesovskou klasifikací dosáhlo průměrné přesnosti 98,05%.
Emoční dimenze valence dosáhla průměrné přesnosti 97,61% a dimenze arousalu 98,49%.
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Chapter 1

Introduction

The aim of this thesis is to get acquainted with the process of emotion prediction by us-
ing EEG signals. Humans feel emotions depending on their mental state, substantiated
by some event or action. Therefore, after measuring data affected by some events, it can
be determined what emotions the human felt at the time.

My main motivation for this thesis is that the results of emotion prediction can be
used in medicine to detect depression and subsequent treatment. By using the predic-
tion of emotions for a mentally ill person, it is possible to determine how much their health
differs from that of a healthy person to determine their treatment accordingly. The mentally
ill person’s measured values tend to be closer to negative emotions compared to a healthy
person.

Firstly this process involved understanding the principles of EEG and its other parts
related to this topic. Learning about EEG led to raising important questions such as: What
EEG signal is, and how the human brain is capable of generating one? How differ the in-
dividual measured signals? Answers to these subjects are explained in chapter 2. This
thesis worked with two emotions, valence and arousal. Their purpose was also explained
in chapter 2, including all other algorithms and methods further used.

Secondly, a dataset which enables implementation and testing is named DREAMER
and defined in chapter 3.

Further, an essential part constitutes a feature extraction and selection, which comes
next after cleaning signal during 3.2, because it could contain some unwanted noise. Fea-
ture extraction clarified in 4.1 comprises the practical use of several concepts, such as time–
domain, frequency–domain and entropy features. Feature selection follows up at 4.3, and it
works with the features and methods to select only the best ones. Finally, emotion classi-
fication 4.3 evaluated the entire process and affirmed new findings.

An essential step in the course of the solution was experimentation and testing 5, which
led to the compilation of the final solution 5.3 and its implementation 6.
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Chapter 2

Theoretical introduction

This section explains crucial aspects of EEG studying subsequent to practical usage. De-
scribed methods and terms are further used in the following chapters Data 3 Proposed
solution 4.

2.1 Electroencephalography
Electroencephalography is a technique to observe how the brain functions [9]. This tech-
nique is based on non–invasive studying electrical brain activity, which is caused by brain
cells named neurons. The observation itself takes place with the help of electrodes located
on the scalp [28]. They recognize neurophysiological response [30] and Abnormalities can
be found in collected data in contrast with the brain’s normal function and then be clas-
sified as Parkinson’s disease or Alzheimer’s disease [8]. EEG signals do not have a usage
field only in medicine for diagnosing people suffering from the neurological problems. Their
other uses include identity authentication, emotion state recognition and design of the Brain
computer interface systems [24].

2.2 EEG Signals
The EEG signals are stochastic signals formed by a group of sinusoids which differ in the fre-
quency spectrum. The frequency range of the whole signal is between 0 and 100 Hz [45][19].
Also, the EEG signal includes unwanted parts called artifacts. In this group of unsettling
signal sections are eye movements, and muscle or lateral eye movements [45] [15].

The 10 20 system for placement of electrodes was used in this thesis, mentioned in chap-
ter 3.

10–20 system is based on the positions of sensors called electrodes on the head scalp. It
means, that each electrode has to be placed after each step in distances accorded to 10 or
20% showed at 2.1. Apart from the necessary distance, their placement is on anatomical
landmarks which it is considered to be nasion, inion and preauricular points [18].

2.2.1 Frequency Waves

From EEG signals can be extracted waves with different frequency spectrums. Most im-
portant information can be found in the band around 0.5 to 30 Hz [19].

The application of low–pass filters is necessary for removing noise and attenuating
the signal. High–pass filters are used to cut out slow fluctuation or direct current com-
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Figure 2.1: Figure from [46] shows the layout of electrodes for compliance with 20% spacing
between them.

ponents [10]. In this frequency range five waves are located - delta, theta, alpha, beta
and gamma [22] and these five frequency bands are shown in figure 2.2.

Delta 𝛿

These waves are presented in a frequency range of 0.5 – 4.0 Hz [22]. Delta waves are
distinguished by the characteristic of having the highest amplitude compared to other waves.
Causing impulse of these waves is a profound sleep [12].

Theta 𝜃

Theta waves can be found between 4 – 8 Hz frequency [22]. They appear in situations when
a human is light sleeping or under stress caused by negative emotions. Other expressions
can be light sleep and emotional stress [12] and particularly frustration or disappointment.
The presence of theta wave is normal for children younger than 13 years, but on the opposite,
it’s abnormal for adults in an awakened state [22].

Alpha 𝛼

A frequency band for the alpha wave is between 8 – 13 Hz [22]. They are associated
with states of relaxation and closed eyes [12]. And also with states during creative activity,
effortless alertness and wakefulness. Commonly alpha waves can be found at the back
part of the head with the presence of higher amplitude in the occipital lobe [22].

Beta 𝛽

The frequency range where beta waves lies is 14 - 26 Hz [22]. A beta wave occurs during
activities when a person is active, busy, anxious thinking and has active concentration [12].
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Gamma 𝛾

The last frequency spectrum is within 30 – 100 Hz [22] for the gamma wave. Gamma waves
are recorded only occasionally when a human brain is processing more than one different
sense at the same time. This process is called cross–modal processing [22].

Figure 2.2: These figures show different behaviour of the EEG waves during 1 second.
Figures were taken from [22].

2.3 Division of the Human Brain
The human brain can be subdivided into three parts – cerebellum, brainstem and cerebrum
shown in this figure 2.3.

Cerebrum is further split into left and right cerebral hemispheres [32]. the left hemi-
sphere tends to be responsible for positive emotions and in the opposite the right hemisphere
is more associated with negative emotions [1].

Figure 2.3: Partition of human brain from [22].
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Both left and right hemispheres are partitioned into Frontal, Parietal, Temporal, Oc-
cipital, Insular and Limbic lobes. Each of them arranges a different tasks for the body [22].

Frontal lobe signicates majority of activity in whole cerebrum and is responsible for emo-
tion control. Temporal lobe is responsible for emotional perception [3]. Another fea-
ture of the frontal lobe is evoking a surprise. For temporal and occipital lobes it is happiness
and disgust. The parietal lobe may cause sadness [1].

Cerebellum manages complex body movements [22]. as motor coordination, posture
and balance. Cerebellum lies under the cerebrum’s occipital and part of the temporal lobe.
Cerebellar peduncles are structures that attach cerebellum to brainstem. [32].

2.4 Valence–Arousal Model
Valence and arousal are crucial emotions for assembling an emotion classification algorithm,
because their ratio describes possible found emotion [13].

Valence and arousal 2D model is in figure 4.7 representing complex emotions.
The numeric values of valence and arousal coordinate to point on a 2D model 2.4.

Valence dimension measures if a human has negative or positive feelings and the arousal
dimension measures whether a human feels bored or excited. [13].

Figure 2.4: Valence and arousal model from [57].

2.5 Features
The process of searching for important pieces of information from EEG signals involves
analysing a signal through its features. The signal can be represented in the time–domain
or frequency–domain [47]. The representation is shown in figure 2.5.

If signal analysis aims to discover a signal composition, then it is fitting to use repre-
sentation in the frequency domain. Fourier analysis can be used in this situation [36].
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Figure 2.5: Figure shows a representation of the same signal (a) in time domain (b) and fre-
quency domain (c). Figure is from [36].

2.5.1 Time–domain Features

Time–Domain includes features:

• Statistical: mean, median, variance, standard deviation, skewness, and kurtosis [47]

• Zero–crossing rate [47]

• Entropies [47]

Hjorth Parameters

Three Hjorth Parameters are activity, mobility and complexity. Each of them is used
to display different statistical properties [39].

Activity corresponds to the variance of the signal and measures the power spectrum
in the frequency domain. It means that if the activity values are higher, higher frequencies
are more common. This also applies otherwise with low frequencies [39].

Mobility returns a proportion of the standard deviation of the power spectrum [39].
Complexity displays a resemblance between a signal and a pure sine wave. If the signal

approaches a shape similar to the sine wave, complexity gets near to number 1 [39].

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑣𝑎𝑟(𝑦(𝑡)) 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 =

√︃
𝑣𝑎𝑟(𝑦′(𝑡))

𝑣𝑎𝑟(𝑦(𝑡))
𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =

𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑦′(𝑡))

𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑦(𝑡))
[39]

(2.1)
Where 𝑦(𝑡) is a function in time–domain and 𝑦′(𝑡) is a derivation of the function.

2.5.2 Frequency–Domain Features

The power spectral density is a frequency–domain feature. A signal contains frequency com-
ponents, and PSD facilitates indicating these components. It means that PSD (figure 2.6)
calculates power for each frequency component and depicts their differences in distribu-
tion [11].
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Figure 2.6: Power spectral density of 14 channel EEG signal dataset DREAMER. Subject
number 10 and movie clip number 12.

PSD can be assesseed by welch method. It differs from the fast Fourier Transform
in that the resulting frequency spectrum is smoother because the Welch method divides
the data into equal-sized units whose signals are attenuated at the ends of the unit’s range.
Therefore, there are no value jumps during the frequency domain representation. The disad-
vantage is that, in contrast to the FFT method, some information is lost, which is a reason
for the occurrence of overlapping when parts of the signal partially overlap. The calcula-
tion of Welch’s method takes place by computing the squared root of the FFT for each
divided section of the signal. This data gives the number of an estimation of the spectral
density, and the average of all provides the result with PSD estimation [43].

2.6 Methods for feature selection and classification
In this section, can be found a description of concepts, algorithms and methods for the clas-
sification and selection of extracted EEG features. The methods used for selection are de-
scribed in 2.6.2, 2.6.3, 2.6.4 and 2.6.5. Algorithms for evaluation of feature selection are
shown in 2.6.6.

2.6.1 Variance

Variance is a concept that I used in conjunction with PCA 2.6.5. Variance is the standard
deviation power two.

𝑠2 =

∑︀
(𝑥𝑖 − �̄�)2

𝑛− 1
[26] (2.2)

Its theorem says that after computing a mean value of the whole data (�̄�), where 𝑥 is
a sample, every value is compared with the mean. A sum of distances (distance is al-
ways a positive value) between the mean and every value is divided by an amount of data
values [26].

If the variance value is small, data are concentrated around the mean and their sizes do
not differ wildly. However, the bigger valence is the distance between the mean and the num-
ber is more significant. This means that data are quite different sizes [26].

9



2.6.2 Pearson Correlation Coefficient

Pearson Correlation Coefficient is between two values 𝑥, 𝑦 and represents a linear relation-
ship between these two values [26]s.

𝑟 =
𝑐𝑜𝑣(𝑥, 𝑦)2

𝜎𝑥𝜎𝑦
where 𝑐𝑜𝑣𝑥,𝑦 =

∑︀
(𝑥𝑖 − �̄�)(𝑦𝑖 − 𝑦)

𝑛− 1
[26] (2.3)

It is calculated as covariance, which represents an association between two random
variables, for x and y, then divided by a multiple of standard deviations from these vari-
ables [26].

2.6.3 Minimum Redundancy and Maximum Relevance

A group of features selected this way expresses fewer data but more pieces of information
for the classification algorithm [5].

AlgorithmmRMR chooses features according to two criteria. The first one is that fea-
tures with a high mutual affinity are reduced. This step ensures minimum redundancy.
The second criterion signifies finding features affecting the target variable [42]. the target
variable is an aim for prediction from the data. Therefore is used as a central variable
to which features are linked [33]. the greedy search algorithm performs the process of pick-
ing features. In every step, one feature is selected [42].

2.6.4 Linear Discriminant Analysis

To drop a number of features from data, LDA dimensionally decreases duplicative and con-
ditional features. Decreasing dimensions means that LDA reduces the number of dimen-
sions in the data. LDA uses between–class variance (separability), a number calculated
as a mean of feature one minus the mean of feature two and a within class variance (abso-
lute value of the difference between the mean and instance of each feature). An output is
a lower dimensional space where within class variance is lower, and between class variance
is bigger [44].

2.6.5 Principal Component Analysis

PCA is a linear method for eliminating redundant dimensions of the data to achieve a data
(features) reduction but still keeping the majority of the information. [7].

Data reduction is needed to prevent overfitting a model while classifying features or be-
cause specific data carries less information than others [56].

PCA transforms the data so that a new first dimension contains shown at figure 2.7 infor-
mation with the highest variance. Then, a new second dimension includes data with the sec-
ond highest variance and continues this way with other dimensions. Because of how great
the variance number is, the data hold more information [7].

PCA also excludes features with significant correlation between them because they are
not usable by themselves. An output is dimensionally reduced data that represents an ideal
collection of features [56].
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Figure 2.7: PCA over two dimensioned data from [56].

2.6.6 Classifiers

There are several types of learning classifiers and those used in section 5.2 are described:

• Support vector machine is a learning classifier proposed for data classification.
Before using SVM for classification, the data has to be labelled because SVM assorts
them into groups. For the separation, SVM uses a hyperplane [53]. the hyperplane
creates a border between the two groups of data, sorted based on a different classes
they tend to [14]. Choosing the right hyperplane aims to maximize the length be-
tween separated data [53] [14]. A dashed line in figure 2.8 indicates the hyperplane
with support vectors on the sides. The data is formed of data points (little stars
and triangles), and if some are located near the hyperplane, they are called support
vector [27] [14].

Figure 2.8: Support Vector Machine from [27].
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• The k-nearest neighbor is another classification tool that works by making predic-
tions from its stored data. The number ksymbolizes the value for which it searches
the number of records and selects the most identical to the predicted one [55].

• The naive Bayes classifier is a probabilistic learning classifier. One of the meth-
ods that can be used to solve Naive Bayes is the Gaussian method. This method
is based on the Bayes theorem. The data meet the Gaussian distribution and are
continuous [21].

2.6.7 Testing methods

The test methods include k–fold cross–validation and hold–out validation.

• The k–fold cross–validation works on the principle of taking a dataset and splitting
it into k subsets – folds. Then, one fold is selected as a test subset from these randomly
created folds, others as train subsets. After training the model and evaluating a test
subset, the test subset becomes training one, and another different for testing is picked
from rest folds. Exchanging of folds repeats until every combination is attempted [4].
Figure 2.9 describes how were individual subsets of shuffling for testing.

Figure 2.9: Example of 5–fold cross-validation process from [4].

• The hold–out validation was used by splitting the dataset into two parts: training
and testing. Next, the model needs to be trained on the training data for evaluating
the testing data. Usually letting one–fifth of the data for testing because the model
is unfamiliar with them yet, so evaluation shows its performance. [4]
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Chapter 3

Data

This chapter describes the data on which this work was built. In the first section 3.1 it is
shown what kind of data it is and which dataset it comes from. The second section 3.2 shows
the work with the data that is necessary before connecting to other parts of the solution.
Cleaning and preparing the data so that the results were not affected by noise.

3.1 Dataset
The data used for emotion prediction are from a dataset [23] called DREAMER. This
dataset consists of 23 subjects. Each subject has two different types of records, baseline
and stimuli. Stimuli records are the last 60 seconds of 18 different movie clips that were
indicating different emotions. For clearing current emotional state subjects also watched
one neutral video before each movie clip [23].

3.1.1 Channels

For recording the dataset was used the Emotiv EPOC wireless EEG headset [23]. This
headset includes 16 contact–sensors to record EEG signals at 128 Hz sampling rate. Elec-
trodes are placed in locations following the International 10–20 system standard 3.1.

14 out of 16 contact–sensors represent 14 channels [15]:

• AF3, AF4, F7, F8, F3, F4, FC5, FC6, T7, T8, P7, P8, O1, O2

Figure 3.1: Placement of channels from [15].
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3.1.2 Movie Clips

The selection of movie clips was focused to induce in subjects these nine emotions: [23]

• amusement, excitement, happiness, calmness, anger, disgust, fear, sadness and sur-
prise [23]

Each of these emotions has two movie clips that represent it. The show time of every clip
was between 65 and 393 seconds, but recorded was only the last 60 s of the video to prevent
mixing different kinds of emotions during measuring. Table 3.1 shows list of movie clips
with their target emotion and average valence and arousal score [23].

Movie clip Target emotion Valence Arousal
1 Searching for Bobby Fischer calmness 3, 17± 0, 72 2, 26± 0, 75

2 D.O.A surprise 3, 04± 0, 88 3, 00± 1, 00

3 the Hangover amusement 4, 57± 0, 73 3, 83± 0, 83

4 the Ring fear 2, 04± 1, 02 4, 26± 0, 69

5 300 excitement 3, 22± 1, 17 3, 70± 0, 70

6 National Lampoon’s VanWilder disgust 2, 70± 1, 55 3, 83± 0, 83

7 Wall–E happiness 4, 52± 0, 59 3, 17± 0, 98

8 Crash anger 1, 35± 0, 65 3, 96± 0, 77

9 My Girl sadness 1, 39± 0, 66 3, 00± 1, 09

10 the Fly disgust 2, 17± 1, 15 3, 30± 1, 02

11 Pride and Prejudice calmness 3, 96± 0, 64 1, 96± 0, 82

12 Modern Times amusement 3, 96± 0, 56 2, 61± 0, 89

13 Remember the Titans happiness 4, 39± 0, 66 3, 70± 0, 97

14 Gentlemans Agreement anger 2, 35± 0, 65 2, 22± 0, 85

15 Psycho fear 2, 48± 0, 85 3, 09± 1, 00

16 the Bourne Identity excitement 3, 65± 0, 65 3, 35± 1, 07

17 the Shawshank Redemption sadness 1, 52± 0, 59 3, 00± 0, 74

18 the Departed surprise 2, 65± 0, 78 3, 91± 0, 85

Table 3.1: List of movie clips from [23].

3.1.3 Evaluation

At the begging of the measurement, the concepts of the VAD model were explained to all
participants. The VAD model consists of emotions: valence, arousal and dominance and these
three emotions are rated for each movie clip. Per the video, all participants were asked
to self–evaluate their feelings. They used a number between 1 and 5 (1 was the least, and
5 was the highest score) and rated according to the VAD model [23].
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23 participants

18 movie clips

Valence score Arousal score Dominance score Baseline EEG Stimuli EEG

Figure 3.2: Structure of subjects and movie clips.

I created a tree structure 3.2 according to the dataset DREAMER to simplify the data
and node relations. From these three emotions scores, my task was to choose two. I
selected valence and arousal because they create a clearer combination to represent emotions
on a valence-arousal map 4.7 than combined with dominance.

3.2 Signal–preprocessing
From the original signal, which was full of noise and unwanted segments, it was necessary
to create a new one, more efficient for further data analysis. The first step was defining
high–pass and low–pass filters according to the smallest and largest possible frequency that
carries pieces of information. The high–pass filter was set at 0.5 Hz because of the delta’s
wave lower limit. The low–pass filter is set at 40 Hz.

3.2.1 Cleaning Artifacts

I used ICA for cleaning artifacts that the band–pass filter could not remove. If other diverse
signals in the original signal were presented, then the ICA tool could find them and separate
these noise signals from the rest of the usable data [15].

Figure 3.3: Uncleaned data in the python tool ICA.
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The data from the dataset DREAMER contained much noise and disturbing parts—for
example figure 3.3. some data could not be properly cleaned by ICA, so I manually cleaned
all other presented artifacts. A red highlighted part marked as BAD_ could be caused by an
eye blink because the dislocation was presented simultaneously in all channels. These
highlighted parts were then removed.

According to [23], in the beginning, the number of participants was 25 (the final number
was 23). However, due to technical problems during the recording, they had to eliminate
two records from the final dataset. Their comment about the technical problem was a reason
why these problems could affect individual channels in other participants’ measurements.
According to this, I assumed that visible noise in channels ICA005, ICA006 and ICA013 was
caused by incorrectly placing the cap with electrodes on the head of participants or by loose
wire connections.

Figure 3.4: Marked activity on the human brain for examination of EEG signal.

Figure 3.4 shows a centre of brain activity for each electrode. For example, a channel
on the head marked as ICA007 contained significant activity around the eye area, and in fig-
ure 3.4, the same channel has periodical spikes. These spikes could be lateral eye movements
following the location on the head. This EEG montage was used for manual cleaning con-
trol.

3.2.2 Comparison of Clean and Not Clean Data

Pre–processed data was compared with raw data, whose only modification was apply-
ing a band-pass filter and setting the standard 1020 montage. No sections were marked
as BAD_ and removed for further use. Here is a comparison between these two different data
with applied skewness and peak–to–peak functions.

The peak–to–peak function indicates a signal disparity between its lowest and highest
points [54]. Artifacts on the signal create big spikes caused by blinking, for example.
Furthermore, these spikes are so significant that they produce abnormalities in extracted
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Figure 3.5: Comparison between cleaned and uncleaned signal with calculated
peak–to–peak values of each channel.

features. This phenomenon can be seen in the figure 3.5, showing the big difference between
the data with removed artifacts (pre–processed) and data that includes artifacts (not pre–
processed). It is clear from figure 3.5 that channel T8 is most affected by oscillations.

AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4
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Comparation of skewness
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Not pre-processed data

Figure 3.6: Comparison between cleaned and uncleaned signal with calculated skewness
values of each channel.

From figure 3.6 picturing skewness of the EEG signal is clear that T8 channel was indeed
the most affected one by the noise. However, after noise extraction, signals of every channel
were in a norm. This proved that preprocessing was successful because the signal showed
no noticeable signs of noise.

At this point, all 18 cleaned movie clips were ready to move on to the next step in chap-
ter 4.
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Chapter 4

Proposed solution

This chapter describes my solution for feature extraction and selection for emotion detec-
tion. Due to the fact that this work focuses on experiments, part of which is an uncleaned
dataset DREAMER, where the number of artifacts was still presented, its solution will be
not only extraction and selection of features but also other elements related to the emotion
detection process. The process of the entire work is based on figure 4.1.

A felicitous representation of the whole process is figure 4.1 of a pipeline because
the process, including multiple algorithms, is complex and includes several steps. For my
method, I followed [38] to split the solution into four subsolutions. These four subsolutions,
with a square that symbolizes the result, are marked in uppercase in the pipeline 4.1.

FEATURE
CLASSIFICATION

   Learning machine:

SVM rbf
SVM linear
K-NN
NB

FEATURE SELECTION

Raw EEG
data

Cleaned signal

SIGNAL PRE-PROCESSING

ICA
Manual blinks cleaning

Filtering

Feature matrix
FEATURE

EXTRACTION

FEATURES OF
 time-domain

  frequency-domain

Labels

Extraction and
preparation of

labels

 Feature matrix with
according labels RESULT

ACCURACY

LDA
PCA
mRMR

Figure 4.1: The basic pipeline of the emotion recognition system through EEG.

The processing section 3.2 was focused on editing and cleaning the original signals
from the DREAMER set for the prospect of using them in the next steps to the solution.
The result was a cleaned signal that was ready for feature extraction. During this extrac-
tion 4.1, features for both its domains and entropies were calculated. After calculating these
properties, they moved to the selection phase 4.2. The selection section consists of the first
step of choosing the number of classes for labels and the second step of choosing the learn-
ing classifier model that was performing the selection. The result was a matrix that con-
tained only relevant information. In last section 4.3.2, this matrix was imported together
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with the classes into the model, which verified the accuracy and correctness of all three
previous steps.

4.1 Feature Extraction
This section describes work on signal utilization for transformation to a feature matrix.
The feature matrix consisted of vectors that contained all possible combinations of cal-
culated properties from frequency bands and channels.The tree structure 4.2 represents
feature extraction from the data. Each record with a duration of 60s contained the data
for 14 channels. A signal from each channel is subdivided into four brain parts and then
into five waves depending on their frequencies.

Every wave has its own time–domain and frequency–domain features. Before extraction,
the signal was downsampled from sampling rate of 128 Hz to sampling rate of 64 Hz
according to the Nyquist–Shannon sampling theorem [41].

1 record of 60s

14 channels

Temporal Frontal

Delta Theta Alpha

Time–Domain features Frequency–Domain features

Beta Gamma

Parietal Occipital

Figure 4.2: Structure of extracted features. For simplicity, the feature nodes come out only
from the alpha frequency band, but it applies to all other frequency bands.

4.1.1 Preparation for Feature Extraction

This subsection describes the preparation of the data. Previously was mentioned in chap-
ter 2 that the human brain is built from brain lobes. Each brain lobe has a different
predisposition for accomplishing diverse tasks. Therefore, I use a channel layout according
to the placement of their relevant electrodes.

• Frontal: F3, F4, AF3, AF4, F8, F7, FC5, FC6

• Temporal: T7, T8

• Parietal: P7, P8

• Occipital: O1, O2

The number of features, 1 460, was extracted from the parietal, occipital and temporal
lobes, because each contains 2 channels. From the frontal lobe it was 5 840, because it
includes 8 channels. A total number of features equals 14× 5× (17 + 129) = 10 220.
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4.1.2 Features

In [24] and [47] were mentioned time–domain, frequency domain and entropy features that
I used during feature extraction. List of features:

Time–domain:

• Statistical features: mean, median, variance, Standart deviation (STD), kurtosis, min-
imum, maximum, Root Mean Square (RMS),skewness, energy, Peak to peak (PTP)

• Hjorth parameters – activity, mobility, complexity

• Entropies: Permutation entropy, Sample entropy and Approximate entropy

Frequency–domain:

• Power spectral density

Extracted features in feature matrix were ready for feature selection.

4.2 Feature Selection
Feature selection removes attributes when it is established on specific requirements. There-
fore, this method helps decrease the number of features needed for the following manipula-
tion of the data [2].

Feature selection section shows in what form it is possible to select only the most essen-
tial data from the overall feature matrix. Labels and classes 4.2.1 had to be selected before
choosing a selection method. After that, three methods were chosen to select data on which
the experiments were carried out. One of the parameters necessary for the use of any method
is the number 4.2.2 of different data to keep in order to achieve the highest possible accuracy
and relevance.

4.2.1 Classification of Target Label

Participants in the dataset DREAMER self–evaluated how they felt during the experiment.
The participant’s self–evaluation and their features should both constitute their predicted
emotion. Therefore I used the self–evaluation as a target variable and proposed three new
ranking systems.

The ranking system used in dataset DREAMER is between 1 and 5 (1 is the lowest,
and 5 is the highest number [23].

Decomposition of Label Systems

The first ranking system was divided into quadrants – figure 4.3 (c) and named as Q for
simplification. The second was partitioned into halves – figure 4.3 (a,b) and named VA,
where for both valence and arousal, ranking was replaced with a binary score, 1 for high
and 0 for low, following these rules:⃦⃦⃦⃦

⃦⃦⃦⃦ 𝑉 ≤ 3 = 0 . . . 𝐿𝑉 − low valence
𝐴 ≤ 3 = 0 . . . 𝐿𝐴− low arousal
𝑉 > 3 = 1 . . . 𝐻𝑉 − high valence
𝐴 > 3 = 1 . . . 𝐻𝐴− high arousal

⃦⃦⃦⃦
⃦⃦⃦⃦
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Figure 4.3: Figures of different classification systems from [13].

For example, scores from movie clip number 7 were at first converted into binary raking
for valence and arousal separately (VA). Then suitably into the quadratic (Q) raking system.
Here are the results from clip number 7 (each of the 23 subjects has assigned one value):

V : 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
A: 1,0,0,0,0,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,0,0,0
Q: 3,1,1,1,1,1,3,0,3,3,1,3,1,3,1,3,1,1,3,1,1,1,1

The strong correlation is between A and Q because, with one exception, it can be seen that
when 𝐴 = 0, then 𝑄 = 1 and when 𝐴 = 1, then 𝑄 = 3. This indicates a situation in which
only one decisive value (in this case, an emotion) determines the result. On the other
hand, if the decisive value, here valence, is almost the same for every subject, then it is not
genuinely effective because there is no variation in the data.

I solved this problem by mixing test data from different quadrants to balance the high-
/low valence and high/low arousal ratios. Table 4.1 simplifies how labels were edited
for the feature selection ranking method VA and Q.

Shortcut Description Target Emotions A V Q
HAHV high arousal high valence surprise, happiness [13] 1 1 3
HALV high arousal low valence anger, disgust, fear [13] 1 0 2
LAHV low arousal high valence neutral [13] 0 1 1
LALV low arousal low valence sadness [13] 0 0 0

Table 4.1: Two proposed ranking methods VA and Q for feature selection.

Due to the participants’ self–evaluation cannot be divided straight into two groups,
because the number of labels is odd, there is also the third option 4.4 to add one neutral
label. Rules for creating this third ranking system named N :⃦⃦⃦⃦

⃦⃦ 𝑉 ≤ 3 𝑜𝑟 𝐴 ≤ 2 = −1 . . . 𝐿− low valence/arousal
𝑉 = 3 𝑜𝑟 𝐴 = 3 = 0 . . . N − neutral valence/arousal
𝑉 ≥ 4 𝑜𝑟 𝐴 ≥ 4 = 1 . . . 𝐻 − high valence/arousal

⃦⃦⃦⃦
⃦⃦
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Figure 4.4: Ranking system N layout of the third three classes option.

4.2.2 Feature Selection Methods

The selection was affected by three different methods to determine the most effective one
which will form a part of the resulting model design. I used these methods:

• Maximum Relevance–Minimum Redundancy with Pearson correlation co-
efficient

• Principal Component Analysis

• Linear Discriminant Analysis

For feature selection is essential to choose a number value of features to prevent over-
fitting or underfitting in the classification step. I followed this guide [37].

• LDA, as the only method of the three, it accepts as a number to keep for which: num-
ber of features < number of classes −1. For this reason, I chose one feature for labels
containing two and three classes. The number of features for labels containing four
classes was set at two.

• PCA and mRMR had no such limitation, so to determine the number of features
for mRMR and PCA, I used PCA with 99% variance shown in figure 4.5. Each channel
had its own number of features to keep, because for every channel the calculated
number from PCA with 99% variance differs. For the figure 4.5 representing selected
number of features from one random channel I used this guide [37]

Principal Component Analysis and Linear Discriminant Analysis

The first step of using these methods was to fit the feature matrix. Then, after an accep-
tance of input as the feature matrix, both methods transformed the matrix into a lesser
dimension matrix. This new matrix was further used as an input for the learning classifier
to evaluate.
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Figure 4.5: Figure shows numbers of features needed to achieve 99% variance. Each number
is calculated from one channel with PCA.

MRMR Method with Person’s Correlation Coeficient

According to a high number of features extracted from preprocessed data, I decided to ap-
ply the mRMR selection method, which focuses on minimum redundancy in the first
place. One of its parameters is the number of features to keep. This number is calcu-
lated from the previous step using PCA.

In case, some features were still correlated with each other even after, and the num-
ber of features was large. For this reason, I tried to add Pearson’s correlation to prevent
inaccuracies during classification that could occur. However, the results 5.1 after the ad-
dition did not affect the results significantly. Therefore, I decided not to add Person’s
correlation to other selection methods as well.

In this article [49] is mentioned that when Pearson’s correlation coefficient marked
as r applies is 0.7 ≤ |𝑟| < 1.0, then it is considered as a strong correlation between features.
To increase accuracy, I removed features with 0.7 or higher Pearson correlation coefficient.

The heatmap 4.6 displaying the heatmap indicates the value of Pearson’s correlation
coefficient as a colour, where the red tone symbolizes a positive correlation and the blue
tone a negative correlation [49]. A diagonal is coloured red because, at that point, there is
a conjunction of similar features.

Features were marked with numbers that agree with their order in the features matrix,
because only their correlations with each other are influential. A large part of the features
from the figure have values in the extreme limits above 0.7, which constitute redundancy.
Therefore final feature matrix was reduced and only features within the limits were included.

I used this guide [49] to apply Person’s correlation coeficient and heatmap.
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Figure 4.6: Display of Pearson’s correlation coefficient in the heatmap.

4.3 Clasification of Emotions
This section describes the usage of the previous feature selection for emotion recognition
and its evaluation. The classifier learning classifier is needed to evaluate whether feature ex-
traction and selection succeeded. Emotion recognition needed a learning classifier algorithm
to achieve the final stage at the pipeline shown 4.1.

Accuracy of feature extraction and selection as an essential output of a classifier learning
classifier. Before an evaluation I normalized the data. According to this [25], support
vector machine expects that the range of the input data is between 0 to 1 or -1 to 1.
Therefore, this SVM’s condition leads to altering the data to meet the conditions. Two
types of normalizations modify the data into the required type.

• Hard normalization, during which calculates a min and max value.

• Soft normalization works with a mean and standard deviation of one data dimension.

Even if soft normalization is recommended, I tried both methods for selection and classifi-
cation process.
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4.3.1 Valence and Arousal Categorization

The dataset was recorded while all participants watched a video focused on eliciting one
emotion. Therefore, the feature classification process needed to work with particular at-
tributes to predict an emotion, and these attributes required a specific pair of valence
and arousal values for each emotion. This attribute was a coordinate [𝑥; 𝑦], where
𝑥 = valence, 𝑦 = arousal.

To express every emotion in the coordinate system, I used mean values calculated
from all participants’ responses [23]. In addition, every movie–targeted emotion was repre-
sented twice, so I calculated a mean from two accorded values. A result was [𝑥; 𝑦] coordi-
nates shown in figures 4.7.

Valence

Arousal

happiness
calmness
sadness
anger
amusement 
excitement 
disgust
fear
surprise

LA/LV LA/HV

HA/LV

Valence

Arousal
happiness
calmness
sadness
anger
amusement 
excitement 
disgust
fear
surprise

Figure 4.7: The left figure illustrates the mean values of emotions rounded to a decimal
place, and the right figure represents the values rounded to whole units.

Disgust and fear are especially close located, unlike the other emotions. Their disparity
would be distinguished by adding one more dimension to achieve a 3D view. The Z axis
would represent dominance as the third emotion.

A way of verification of feature extraction and selection method was a distinction of these
emotions in an area divided into parts with high/low valence and arousal in the figure 4.7.

The feature classification in 4.3.2 was designed so that it was able to recognize four
different emotions according to valence and arousal level. Right figure 4.7 shows the distri-
bution of emotions into these four parts for VA and Q labelling methods.

4.3.2 Data structure of Classifier Input

Both emotions, valence and arousal, classify in a range of 1 to 5, which means 5 × 2 label
options. Therefore, I decided to use the same transformation to a new labelling system
from 4.2 to enable application valence and arousal into the classifier learning classifier.
The same labelling system used during feature selection was also used for feature classifi-
cation.

• The first labelling method required two support vector models. The high/low arousal
model with 1A output was trained for arousal detection, and the high/low valence
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model was trained for valence detection. They both together can recognize a respec-
tive quadrant, where a sample belongs. Both 1A and 1V output is binary, 0 for low
and 1 for high values.

• The second labelling method resembled the first one but contained an extra neutral
class. The differences in the process are displayed on the pipeline 4.8 and 4.9.

Feature selection
for valence

Feature selection
for arousal

Feature
classification for

valence

Feature
classification for

arousal

LABELS
0,1

-1,0,1

ACCURACY

DATA

DATASET

Figure 4.8: Pipeline of the steps for using two learning classifiers.

• The third labelling method was significantly different from its predecessors, as it only
included one learning classifier to predict which quadrant an emotion belonged to.
Figure 4.9 shows this case.

Feature selection
Feature

classification
ACCURACY

LABELS
0,1,2,3

DATA

DATASET

Figure 4.9: Pipeline of the steps for using one learning classifier.

4.3.3 Classification model

In the case that one of the methods would be more suitable for only one kind of learning
classifier, I used three different ones.

• SVM with RBF kernel

• SVM with linear kernel

• K–Nearest Neighbors

• Gaussian Naive Bayers

The classifier learning models were trained with the dataset divided into two parts with an
80:20 (train:test) ratio with their accorded labels. If the model was made for predict-
ing the valence level, it was trained with train valence labels. This training process was
tested with the k–fold cross–validation method with 20% of the dataset for a final check if
the model worked adequately.
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Splitting channels into four groups provides information about which brain lobe is
the most informative during emotion detection [6]. The test was carried out by using
only features from one certain channel. Then, feature selection was applied to this channel,
and features were fitted into the learning classifier.
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Chapter 5

Validation and Evaluation

This chapter explains the testing progress and how it influenced the results. During testing,
I reached a situation where creating many combinations was possible. I included all these
combinations in the solution because the results reached low accuracy values in my initial
steps of the solution. Therefore, more options were created to find a proposal solution
for feature extraction and selection methods.

labels × feature selection methods × parameters × learning classifiers

Subsections 5.1.1, 5.1.2 and 5.1.3 were incorporated into the entire process, and therefore
their results were also the final results. Due to the large number of different combinations
that could be included in testing, I first limited the selection of parameters for learning
classifiers 5.1.4. Then I narrowed down the choice of ranking method and its number
of classes 5.2.1. Finally, selection methods that did not achieve the same results as others
were discarded. This step was created by previewing all channels separately in 5.2.2.

5.1 Validations
I followed this guide [31] to select and implement validation methods.

Before using one specific classification model, I tested some possible useable models.
The main focus of the results was the accuracy of predicted samples compared with target
labels. If accuracy exceeded 80%, it was considered a successful result. The second objec-
tive was to check if the model’s training functioned correctly because the most significant
issue was that the final classification came out only one–dimensional. One–dimensional
prediction output included only one label class, so instead of proper prediction, the output
was composed, for example, only from zeros or number one. This behaviour was mainly
caused by poorly selected models’ parameters. For this reason, I also added tests for various
combinations of parameters, in particular, SVM’s gamma and C parameters and for KNN
number of neighbors parameter.

5.1.1 Hold–out Cross–Validation

The hold–out cross–validation method was used in this test process. First, the data was
divided into two parts, one train set with 80% of the data and one test set with the rest
20%. Second, every classification model was trained with the same training data and tested
with the same test data. Third, the results were evaluated, and the accuracy of these results
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was calculated. Lastly, all models were compared based on accuracy, and the best model
was selected.

5.1.2 K–Fold Cross Validation

After selecting one classification model for implementing emotion prediction, I used
the k–Fold Cross Validation method for testing every learning classifier tp achieve the best
results. This method verified that the model’s training ended successfully. Overfitting
the model is possible in a negative scenario, so the method offers verification to prevent it.

5.1.3 Proper Functionality of Learning Classifiers

Within involving more methods that should enable better results to be achieved, learning
classifiers were often changing their behaviour. As an unwanted behaviour could be consid-
ered a state when the learning classifier evaluated all data with only one class from offered
classes. If the learning classifier evaluates in this form, proper results could not be achieved.
This case shows an example:

Learning classifier result: 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
Labels corresponding to input data: 1,1,1,1,1,1,0,0,1,0,1,0,1,1,1,1,0,1,1,1,1,1,0

From my observation of this undesirable condition, I could say this happened in the cir-
cumstances, when:

• Normalization of the data was erroneously used. The most common was when hard
normalization was presented and implemented according to [25]. This is the reason I
further used only soft normalization as the only one in implementation recommended
by [25].

• Labels were in an uneven state. The ratio of different classes in the label array did
not get close to an ideal state of 1:1 for the two classes, but for example, it contained
from 80% only class marked as 1. When this happened, the learning classifier used
a value of the class, which was the most presented, to evaluate the entire test data. I
solved this problem by using all stimuli signal data from the dataset to create more
proportionally evaluated data.

• The data was unevenly mixed into train and test data. Even if the ratio of classes was
balanced after accidental integrating data could happen, the labels, mainly in the test
subset (because the test subset was smaller than the train subset), were not in sym-
metry during hold–out cross–validation. I solved this problem by adding
5–Fold cross–validation. Even if some test subsets were not labelled evenly, the rest
provided proper results.

5.1.4 Parameters of Learning Classifiers

Learning classifier SVM with RBF kernel took two parameters, gamma and C, which could
affect a result. During accuracy testing, I added tests for using the best gamma and C
combination with the highest accuracy. SVM with linear kernel had a parameter C and
k-nearest neighbors had a parameter, that depicts number of neighbors.

These three selection methods were included in this test, and the results are general
for all usages of these methods. At the same time, all the data from the matrix of features
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were included because it was necessary to choose some input value before the other tests,
thus avoiding a large number of different possible combinations.

SVM, RBF – C SVM, RBF – gamma SVM, linear – C K–NN – n neighbor
VA 10.0 0.001 0.001 2
N 10.0 0.001 0.001 1
Q 100.0 0.001 0.001 3

Table 5.1: The best possible accuracy achieved with parameters for selection methods.

It can be seen from table 5.1 that the most common calculated value for SVM RBF
gamma is 0.001 and for C is 10.0. SVM with linear kernel ended up with 0.001 value
for its parameter C. K–nearest neighbors’s parameter number of neighbor had best accuracy
for values 1, 2, 3, so I selected a mean of these and for all tests was used the number 2
as the n neighbor parameter.

5.2 Evaluation
After combining all the previous parts, evaluating the assembled model with one of the four
selected learning classifiers was necessary. This section shows several experiments and tests
performed on the data to reduce the parts of the solution, the results of which did not reach
such accuracies as the others. The results of these experiments were presented in section
Proposed Solution 5.3.

5.2.1 Testing Different Labelling Methods

In this test, only the parameters reached in 5.1.4 were used for learning classifiers. Be-
fore performing further tests, I selected the label method to achieve the best possible test
result. In table 5.2.1 are the accuracies of feature selection with PCA, LDA and mRMR
with Pearson correlation coefficient. The three possible label methods are:

• VA – low/high valence and low/high arousal – two classes

• N – low/neutral/high valence and low/neutral/high arousal – three classes

• Q – low/high valence plus low/high arousal – four classes

A table was created for values achieved during one experiment run. These values were
used to plot figure 5.1. Table 5.2.1 shows how the values of individual rows were always
descending for every feature selection method in combination with a learning classifier.

Two learning classifiers were implemented for VA and N because the first was needed
for valence application and the second for arousal classification. The input of labels
for the feature selection algorithm was the same as for the learning classifier. It is clear
from figure 5.1 that the best percentage is always in the pink bar which depicts VA. The sec-
ond best results are shown in the second green bar N and the last quadratic resolution ended
as the worst technique.

It is clear that the best percentage is in the first line, which corresponds to VA. The sec-
ond best results are in the second line N and the quadratic resolution ended as the worst
technique. The main result which can be deducted from 5.2 is that the more classes labels
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mRMR PCA LDA
A B C D A B C D A B C D

VA 0.60 0.58 0.57 0.53 0.58 0.58 0.57 0.48 0.92 0.92 0.91 0.93
N 0.41 0.40 0.36 0.33 0.40 0.41 0.36 0.33 0.79 0.66 0.81 0.82
Q 0.36 0.35 0.32 0.25 0.34 0.35 0.31 0.23 0.84 0.68 0.83 0.86

Table 5.2: Accuracy results of testing different labelling techniques, where A = SVM
with RBF kernel,B = SVM with linear kernel, C = k–nearest neighbors, D = naive Bayes.
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Figure 5.1: Label classes and their accuracy, where A = SVM with RBF kernel,B = SVM
with linear kernel, C = k–nearest neighbors, D = Naive Bayes.

contained, the lower the score went down. The inverse proportion is between the num-
ber of classes and the accuracy value.

At this point, I limited the number of classes for representing valence and arousal to just
2, low and high, which are shown here as VA. Another symptom that can be deduced here
is that, in general, the best results went to the LDA method with a combination of naive
Bayes. In subsequent tests and experiments in 5.2.2, it will be verified if the LDA method
appears to be the best.

5.2.2 Accuracy of Different Channels

In this study [6], the authors calculated the accuracy for every channel separately. This
finding helped determine the most informative EEG channel and then also the brain re-
gion. I did the same thing to create my proposed feature extraction and selection solution.
As a test, I used three feature selection methods to select the final one with the best re-
sults. As with 5.1, the LDA method came out with the best values, which is why I chose it
in the final solution of my work.

From the accuracy results of each channel 5.2, I split channels into four groups according
to their position on a head described in 4.1.1. For each of these groups average accuracy
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value was calculated. A comparison of the importance of brain regions for emotion detection
is shown in figure 5.3.
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Figure 5.2: Channels and their accuracy.

Figure 5.3 showing accuracy for different lobes shows that in general, the frontal lobe
had the greatest accuracy in emotion prediction for all methods. This result proved that
the frontal lobe is for my experiments the most important aspect in predicting emotions.
For this reason, further experiments were performed on the frontal lobe.
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Figure 5.3: Brain regions and their accuracy.
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5.2.3 Measuring the Accuracy of Frequency Bands Separately

This subsection describes how to detect a features group with the most significant impact
on emotion detection. It is necessary to avoid taking all features calculated from all five
waves. Instead, a comparison process took place, calculating time–domain features of all
waves separately, then repeated with frequency features. Testing was made using naive
Bayes and LDA feature selection method.

The first figure 5.4 shows that frontal lobe frequency features were the most dominant.
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Figure 5.4: Frontal lobe and its accuracy for different waves and features.

The weakest part turned out to be time–domain features. Its results are around
50-60% accuracy, which was due to the fact that the classification was not successful
(the same problem was mentioned here 5.1.3). From my experiments, I discovered that if
the classifier does not receive sufficiently high–quality data, it evaluates the entire test set
with only one class, usually the one that is represented the most times in the test set. This
problem also happened with time–domain because there is usually more than a 50% chance
that the classifier hit and guessed the correct label since the labels are approximately evenly
spaced.

5.3 Proposed Seature Selection Method
All the experiments in the previous sections aimed to derive a useful method for selec-
tion. Here in this section is a summary of what the resulting solution looked like, as it
consisted of several parts.

• The first test found that the form of labels VA with the choice of only two classes was
the most effective. The reason was that it was the simplest compared to the other
methods and, therefore the easiest for both the selector and the classifier.
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• At the same time, this result was tested on several classifiers because the reference clas-
sifier should be the one that formed the best combination with the selector, and the re-
sulting accuracy is therefore unaffected only by a bad match. Gaussian naive Bayes
had a best match with LDA classifier.

• According to the assignment of the channels to their respective lobes, the frontal
lobe stood out the most. After verification in the literature [3] that frontal lobe is
truly significant as a source of information for emotion detection, I decided to use
the frontal lobe itself as the primary source of features.

Feature selection
LDA

Feature
classification

NB
RESULTS

FREQUENCY
FEATURES

DATASET

LABELS
0,1

FRONTAL
LOBE

FEATURES

Figure 5.5: Pipeline of the final solution.

• Overall, the LDA selector showed the best result, so it became part of the final solution
shown here 5.5.

• In the combination of LDA and features from the frontal lobe, the features of PSD
extracted from the frequency–domain EEG signal proved the most useful.
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Figure 5.6: Receiver operating characteristic curve of accuracy score.

Model validation took place in the form of 2–fold cross–validation combined with hold–
out cross–validation. Results may vary slightly depending on the randomization of the train-
ing and test subset data. For this reason, the validation would be repeated twenty times.
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Its output was the average accuracy from these ten trials and its variance. Values were
rounded to four decimal places. The results achieved an average value of 0.9805 accuracy.
Figure 5.6 shows evaluation of LDA feature selection by Gaussian naive Bayes in ROC
curve.

5.4 Discussion
From the achieved results, it was also possible to read other important values, which are
contained in the table 5.3. The results were then compared with other studies dealing
with the same topic and using same dataset DREAMER [23]. The study [13] used k–nearest
neighbors and random forest models in which binary classification of arousal and valence
occurred, so the result was achieved under similar conditions. However, it may differ
in the indication of the labelling method, when they could use a different range for low
and high arousal and valence.

In the study [13], they compared their results with other studies and methods. Their
results1 turned out to be the best of all the previous ones. My results were achieved with an
LDA selector whose input ware binary labels (0 for low and 1 for high) and the matrix com-
posed of feature vectors. LDA output was evaluated by naive Bayes classifier with 2-Fold
Cross-Validation. This process was repeated several times, and the results were averaged
to achieve the most accurate results.

My results NB KNN [13] RF [13]
Valence Arousal Valence Arousal Valence Arousal

Recall 0.9543 0.9669 - - - -
Precision 0.9864 0.9986 - - - -
F1 score 0.9693 0.9824 - - - -

Sensitivity 0.9543 0.9669 - - - -
Specificity 0.9902 0.9990 - - - -
Accuracy 0.9761 0.9849 0.9216 0.9372 0.9365 0.9379

Table 5.3: Table of achieved values.

My final solution had a positive result because my final results came out better than
the study [13] that is compared in the table 5.3. My result also contained additional
information such as recall, precision, F1–score, sensitivity and specificity. Therefore, my
method was more realistic than the method proposed by [13] because I considered all
evaluations of my solution.

1https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155937/#B4-sensors-21-03414:~:text=
5.3.1.%20Arousal%20and,the%20best%20one.

35

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155937/#B4-sensors-21-03414:~:text=5.3.1.%20Arousal%20and,the%20best%20one.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155937/#B4-sensors-21-03414:~:text=5.3.1.%20Arousal%20and,the%20best%20one.


Chapter 6

Implementation of My Solution

This chapter shows my implementation of the proposed solution from previous chapter.
For reading simplification of my implementation, all variables were written in snake case
and all functions in camel case.

6.1 Dependencies and Structure of Files
The scripts with my implemented solution use various libraries that must be installed
for the program to run correctly. Therefore, I created a file to simplify the installation
process of all dependencies named requirements.txt. File requirements.txt contains
all required libraries. Command: pip install -r requirements.txt serves for running
it.

Some of the scripts have different usage and parameters and run differently. Therefore,
I created README.md, where is a description to all scripts.

List of used libraries:

• Scikit Learn [40], Librosa [35], Matplotlib [20], mrmr_selection [34], antropy [50],
scipy [51], seaborn [52], numpy [17], pandas [48], mne [16], PyQt6 [29]

6.2 Operations with Data
A significant part of the implementation was managing multiple different types of data.
This section describes how measured EEG data and then their extracted features were
stored and further converted into 2D arrays.

6.2.1 Storing Data

The original dataset provided all the information about measured data and the subject’s
self–evaluation in .mat file structure. Due to using Python, I converted all EEG data
into .csv files in MATLAB. These files were loaded during preprocessing.

Preprocessed signals with removed artifacts were saved into .fif files. I chose the .fif
extension because I wanted to clearly distinguish the clean data from the original. Every
preprocessed file was stored in a format: [number of subject]-ica.fif. Saving and load-
ing .fif file was with the help of mne library and its function mne.io.read_raw_fif().
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Feature extraction was made to extract time–domain and frequency–domain features
separately for further particular testing. Each of these two extraction outputs were stored
in .csv files. The format of saving was [time/freq]_features[movie clip number].csv.

Labels

Labels from the participant’s self–evaluation were converted into a format corresponding
to a feature matrix described here 6.2.2.

Subject 1, movie clip 1 Subject 2, movie clip 1 . . . Subject 23, movie clip 1

Table 6.1: Structure of storing labels into the 1D array.

Every label array contained only valence or only arousal labels. Except one case, when
valence and arousal labels were combined together to create the quadratic distribution.

Labels were extracted from .mat file into .csv file in a form where each row was
one movie clip and every odd column was a valence label and an even column arousal
label. The number of columns was 46 because two columns belonged to each subject.
Script extract_labels.py converts the original subject’s self–evaluation into 4.2 labelling
form. It takes labels.csv as an input parameter and returns VA[arousal/valence].csv,
N[arousal/valence].csv and Qboth.csv.

6.2.2 Matrix of Features

In this case, it was not suitable to implement structures for storing data because every
function from used libraries works with 2D array data types. The whole process of keeping
data was continuously renewed when it led to applying some modification to the data.
This modification was pre–processing, downsampling, normalization, and transformation
into the final feature matrix for classification. After each, a new matrix was generated
and was used as a whole, not as an individual.

Feature 1 Feature 2 . . . Feature 10220
Subject 1, movie clip 1
Subject 2, movie clip 1

. . .
Subject 23, movie clip 1

Table 6.2: Structure of storing data into the 2D array.

During feature selection and extraction, functions do not operate over rows, including
individual information for one subject, but instead over columns. This behaviour is because
knowledge about the quality of one feature needs a spectrum of all its occurrences to de-
termine if the feature was important enough to be kept. Otherwise, the feature could be
redundant or less critical for classification than others. According to which concrete movie
clip data were needed, the following data in its own feature matrix were concatenated
together in zero axis.
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Matrixes of calculated features were stored in .csv files for quick and easy extraction
into a numpy array or a data frame. For manipulation with .csv files was used csv library
and pandas library.

6.2.3 Displaying the Results

Figures and charts were plotted with matplotlib.pyplot and seaborn libraries. All figure
were implemented in plot_graphs.py and artifacts_test.py() files. Functions that
rendered individual figure were called from functions implemented in other files. Figures
were used to display the results and simplify connections between them. To unify the colours
used in the figures, all colors were represented by constants at the beginning of the file.
Function plotPCA99(), that ploted number of features needed to achieve 0.99 variance
with PCA was used from [37].

In addition to the graphic variant, the results were displayed using logs. Functions that
contained unimportant side functions were implemented in help_functions.py.

6.3 Pre–processing
Preparation of a signal was done in preprocessing.ipynb Jupiter notebook, because for in-
teractive work with the signal, it was more suitable.

I created a raw array with mne.io.RawArray() with info parameter including all
channel names with their type EEG and sampling rate equal to 128 Hz. This conversion
into the raw EEG array led to the possibility of applying further signal transformation.
As a filter, I decided to use a band–pass filter through a fir method.

I used a command %matplotlib qt6 from PyQt6 library to plot an interactive figure,
where I was looking for artifacts that led to inaccurate results. These segments marked
as BAD_ had their starting index saved in raw.annotations.onset and duration of the BAD_
segment in raw.annotations.duration. Based on this knowledge, the marked indexes
were separated and deleted with np.delete() function. After these adjustments, the signal
was ready for observation and extraction of features.

To verify that preprocessing did work and that artifacts were successfully removed,
I compared calculated features from preprocessed data with not preprocessed. In a file
artifacts_test.py, functions were implemented the same way as in 6.4, but with the dif-
ference that only skewness and kurtosis were extracted from the signal’s time domain. Two
bar figure were plotted for comparison.

6.4 Feature Extraction
This section shows how feature extraction was implemented into a file named
feature_extraction.py. The first part describes the main algorithm for loading, calcu-
lating and storing data.

Firstly all files of subjects with EEG signals were loaded, converted into an array
and stored in a array called ALL_eeg_signals, where every row contained one subject’s
data. Then, after calling a function mainExtractionLoop() I applied band–pass filters
using .filter() function from mne library to pull out only certain wave’s signal data.
Ranges of single waves were established according to [22] and then regulated for cover-
age of a full frequency range 6.3.
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Delta 0.5–4.0 Hz Theta 4–8 Hz Alpha 8–13 Hz Beta 13–26 Hz Gamma 26–40 Hz

Table 6.3: Consecutive waves.

A temporary array list_f was appended every time new features were calculated.
Calculation of features took place in this order:

• By smaller value of frequency, the waves were picked, and all features from channel
AF3 were calculated. Then from channel F7, until channel AF4.

AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4

Table 6.4: Sequence of channels.

• First wave was replaced with the following one and, again features from all channels
were calculated.

A pseudo algorithm 1 visualizes the process.

Algorithm 1: The main process of extracting features.
Input: Preprocessed signal in -ica.fif files
Output: Matrix of features in .csv file

1: initialize a matrix of features
2: matrix_of_features = []
3: for every subject do
4: apply band–pass filters to separate five waves
5: for each wave do
6: for each channel do
7: data = wave.get_data()[channel]
8: timeFeatures(data)
9: frequencyFeatures(data)

10: end for
11: end for
12: add features into matrix of features
13: end for
14: return matrix of features

6.4.1 Features

Classic time–domain features were calculated with numpy, statistics, librosa libraries.
Hjorth parameters were calculated from antropy library the function hjorth_params(x)
that returned mobility and complexity. Except for activity and its theorem, which is similar
to a theorem of variability, for this reason I used np.var() function. To determine the num-
ber of peaks in the signal, the find_peaks(x) function was used to return two parameters.
The first one is an array of indexes where peaks were captured. The number of peaks was
the length of the index array.
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The others were calculated using functions:

• np.mean(x), statistics.median(x), np.var(x), np.std(x), skew(x),
kurtosis(x), np.ptp(x), np.sqrt(np.mean((x)**2)), np.min(x),
np.max(x), sum(librosa.zero_crossings(x, pad=False))

Power spectrum density was extracted from data with scipy.signal.welch() method.
Python library antropy provides functions to calculate time–domain entropies:

• approximate ant.app_entropy(x), permutation ant.perm_entropy(x) and sample
ant.sample_entropy(x).

6.4.2 Parameters

Computations of entropies were significantly time–consuming compared to other compu-
tations included in feature extraction. To save calculation time, I decided to implement
into file feature_extraction.py conditions as parameters. These parameters enabled
a choice of which group of features should be calculated. The parameter all indicated
that all features had to be calculated, time called calculation of only time–domain features
and freq only frequency–domain.

6.5 Feature Selection
The implementation of methods for feature selection was divided into the implementation
of the methods themselves and other related parts.

The beginning was the implementation of PCA because its steps were further used
in other parts of the solution. I used this page [7] as a guide for correctly using the library
called sklearn.decomposition. First, the implemented function PCAnumber()
in selection_help_functions.py was used inside with the function PCA(n_components
= 0.99), where the number 0.99 shows that it is necessary to keep only the number of com-
ponents that make up 99% of the variation. This is because there were many extracted
features, and it was necessary to define from the beginning number (PCA(n_components)
to limit them. The function pca.fit_transform() was used for PCA selection, which
reduced the number of dimensions in the data and left only relevant features.

To implement PCA selection of numbers to achieve 0.99 variance 4.5 in part 4.2.2, I used
guide [37]. A code to plot 0.99 variance in this function plotPCA99() in plot_graphs.py
was used from [37] and edited.

To implement the mRMR method, I used the mrmr library by Samuele Mazzanti, who
described it in the article [33]. Used function was mrmr_classif(), whereas a parameter
I inserted the result from the PCA calculation of the function PCAnumber() from the file
selection_help_functions.py. The other two parameters were data and labels related
to them. For the application of the Pearson correlation coefficient, I used the imple-
mentation from [49], namely the function named identify_correlated(), which can be
found in the file selection_help_functions.py. At the same time, I used parts of his
code and modified them as needed in the function I called plotHeatmap() in the file
plot_graphs.py.

For the implementation of LDA, I used the sklearn.discriminant_analysis library,
of which the function LinearDiscriminantAnalysis() was most needed, which created
an LDA environment for transforming the feature matrix into the lower data dimension
with .fit() and .transform() methods.
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6.6 Learning Classifiers
Implementation of the last step in the pipeline 4.1 of learning classifiers was in the file
feature_classification.py. It consists of applying 2.9, which wraps up all the learning
classifier’s functions. K–fold was implemented with library sklearn.model_selection
and its implementation was based on this [31] source.

After splitting the matrix of features into five parts, these parts rotate in a k–fold
loop and make up X_train, X_test, y_train, y_test parameters for classifier learning
functions.

Algorithm 2: 5–fold cross–validation
Input: Matrix of features as an array
Output: Accuracy

1: divide matrix of features into 5 parts
2: for every combination of parts do
3: train learning classifier models with X_train, y_train
4: test learning classifier models with X_test, y_test
5: end for
6: return Average accuracy from predicted data y_pred

• The library sklearn was used to implement the SVM learning classifier, SVM re-
quested two essential parameters. One of them is gamma, and the second is C. After
creating SVM with svm.SVC(kernel, C, gamma) function, for training
the .fit(X_train, y_train) function was used.
Prediction y_pred is a result of .predict(X_test).

• KNeighborsClassifier() function from sklearn.neighbors was used for the imple-
mentation of k–nearest neighbors method. The implementation process was the same
as for SVM classification, but I used parameter n_neighbors insteed of parameter C
and gamma. The n_neighbors influenced the duration of the search of data for pre-
dicting labels.

• The implementation of Gaussian Naive Bayes was not fundamentally different either.
Function GaussianNB from sklearn.naive_bayes setted a model for further fitting
and testing. No additional parameters were used for GaussianNB().

The critical result came from this prediction used by sklearn library for metrics
and checked by metrics.accuracy_score(y_test, y_pred). The results were achieved
with the help of functions: precision_score(), recall_score(), f1_score() and
accuracy_score().

6.6.1 Testing Learning Classifiers

Gamma, C and n neighbor were able to affect the accuracy results. Therefore, for significant
uninfluenced changes in testing during the implementation of SVM and k–nearest neighbors,
I decided to make a test which determined the most called parameter for gamma and C.
A file best_parameters.py returned four values. The first two were calculated from SVM
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with RBF and the third from SVM with linear kernel and the last one from k-nearest
neighbors with K parameter that represented number of neighbors.

The overall implementation is on the same base as 6.6, but with a difference that,
in this case, was the resulting value of accuracy insignificant because it returned only
the value of C and gamma parameters. There was no difference for SVM with linear
kernel, except no gamma parameters were presented. A process of searching for the best C
and gamma match with the dataset is a for loop, where different combinations of values
are successively applied to the classifier. The differences for gamma and C range from 0.001
to 100.0 for SVM and for k–Nearest Neighbors, K went in range 1 to 20.

A new learning classifier is trained every time for new parameters. The test took
the matrix of features and, according labels, called a selection into individual channels..

6.7 Process of Selection and its Classification Evaluation
All individual parts of the solution had to be unified to evaluate the selection of features
by the classifier. The incorporating all these parts shows pseudo–code of the algorithm 6.7.

Algorithm 3: The overall process of selecting selection and classification.
Input: Matrix of features as .csv file.
Output: Classification accuracy.

1: load feature matrix
2: load labels
3: normalize the
4: pass matrix of features and labels into selector
5: evaluate feature selection
6: return accuracy

Usage of all parts together was in the files:

• different_method_test.py. This script tested two scenarios. The first one was
a comparison of all feature selection methods (including different labels) with all fea-
ture classification methods to exclude the worst ones. Thus, all selection functions
and classification algorithms were implemented here. Due to the fact that testing
different label systems (VA, N, Q) requires differently implemented methods for selec-
tion, I divided them all into two parts. One of them for VA and N labels had functions
named as FSmRMR(), FSPCA(), FSLDA(), channels and the other Q as FSmRMR4(),
FSPCA4(), FSLDA4(), channels4(), because the functions worked with four labels.
The second scenario took only naive Bayes for classification, due to its best results
and compared feature selection methods one more time. The results were accuracies
for different channels and lobes for each selection method.

• waves_separately.py. In this file the impact of using waves separately was tested.
LDA with NB ended up with the best score in different_method_test.py. There-
fore, they are implemented here as the only methods. The files waves_separetely.py
and proposed_solution.py did not perform its process for all channels, but for only
those located in the frontal lobe area.
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• proposed_solution.py. This was the final solution, which was created from the re-
sults of previous tests. It had its own implementation of the LDA method because it
differed significantly in its parameters and return arguments.

The necessary data files are loaded first. Then they were reduced to only specific
features according to the location of the channel or their frequency band, which were needed
for the next steps. The data were normalized and moved further into the selector. After
selection, the resulting matrix is used as input to the classifier. The classifier evaluated
the quality of the feature selection and the features used. The output was a float number
that showed the accuracy of the selected channel and frequency band or a group of channels
and frequency bands.
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Chapter 7

Results

The main aim of this work was to design a feature extraction and feature selection model
able to predict emotions. I studied EEG signals, their behaviour, and other related topics
in the classifier learning specialization to develop this model.

When initially creating the proposal model, I considered the existing options and tried
to use their great extent and combinations. From this came several ideas for the model’s
design, which were then compared to each other during experiments.

The best results were achieved by the Linear Discriminant Analysis algorithm for fea-
ture selection and evaluation by the Naive Bayes classifier. After its separate implementa-
tion and other tests, I reached a final result of 0.98 accuracy. Compared to other studies
on this topic, I achieved noticeably better results. For this reason, my work also contributes
to the further analysis of emotion detection.

7.1 Improvement Proposal
Evaluation of the results involves comparing predicted values with defaults for testing.
In this case, the subject’s self-evaluation corresponded to the primary valence and arousal
distribution because if the model can distinguish two classes with such high accuracy, it
could distinguish any other more complex labels. My solution would continue using this
primary unit, which works with two classes, and assemble a structure from it with more
units, which would form a complex emotion detection process. This process would be able
to distinguish individual emotions precisely.
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