
BRNO UNIVERSITY OF TECHNOLOGY 
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 

FACULTY OF INFORMATION TECHNOLOGY 
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ 

DEPARTMENT OF COMPUTER SYSTEMS 
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ 

FEATURE EXTRACTION AND SELECTION 
FOR EMOTIONS DETECTION FROM EEG 
SIGNALS USING PYTHON 
FEATURE EXTRACTION AND SELECTION FOR EMOTIONS DETECTION FROM EEG SIGNALS 

USING PYTHON 

BACHELOR'S THESIS 
BAKALÁŘSKÁ PRÁCE 

AUTHOR 
AUTOR PRÁCE 

SUPERVISOR 
VEDOUCÍ PRÁCE 

SIMONA ČÉŠKOVÁ 

Dr. SOYI BA JAWED, MSc 

BRNO 2023 



Bachelor's Thesis Assignment 
143557 

Institut: Depar tment of C o m p u t e r S y s t e m s ( U P S Y ) 

Č é š k o v á S i m o n a 

Information Techno logy 

Information Techno logy 

Student : 

P r o g r a m m e : 

Spec ia l i za t ion : 

Tit le: F e a t u r e E x t r a c t i o n a n d S e l e c t i o n f o r E m o t i o n s D e t e c t i o n f r o m E E G S i g n a l s 
U s i n g P y t h o n 

S igna l P r o c e s s i n g Ca tegory : 

A c a d e m i c year : 2022 /23 

Ass ignmen t : 

1. S tudy and learn about the var ious emot ions . 
2. Ge t acqua in ted with feature extract ion and se lec t ion methods , and their appl icat ion to the 

detect ion of emot ions . 
3. F ind out the cha l l enges for emot ion detect ion and the l imitations of the exist ing methods . 
4. Des ign a mode l for feature extract ion and feature se lec t ion of emot ion detect ion. 
5. Implement and eva luate the des igned mode l . 

6. C o n d u c t crit ical ana lys is and d i s c u s s the ach ieved results and their contr ibut ion. 

Li terature: 

• B a s e d on the superv isor ' s recommenda t ion . 
Requ i remen ts for the semes t ra l de fence : 

• Fulf i l lment of Items 1 to 3 of the ass ignment . 

Deta i led formal requi rements can be found at ht tps: / /www.f i t .vut .cz/study/ theses/ 

Superv iso r : J a w e d S o y i b a , Dr . , M S c 

H e a d of Depar tment : S e k a n i n a L u k a s , prof. Ing., P h . D . 

Beg inn ing of work: 1.11.2022 

S u b m i s s i o n dead l ine : 10 .5 .2023 

App rova l date: 31 .10 .2022 

Facul ty of Information Techno logy , Brno Univers i ty of T e c h n o l o g y / Bože těchova 1/2 / 6 1 2 66 / Brno 

https://www.fit.vut.cz/study/theses/


Abstract 
This work deals w i th the extraction and selection of features of E E G signals for emotion 
detection. Processing these signals included steps such as signal pre-processing, extraction 
of its features and subsequent selection of features. For verification of the correct implemen­
tat ion, the extraction and selection results were evaluated by a machine learning algori thm. 
This work works w i t h the already measured D R E A M E R dataset. 

Abstrakt 
Tato p r á c e se zabývá ex t r akc í a selekcí vlastnosti E E G s ignálů pro detekci emocí . Proces 
zpracovávání t ě ch to s igná lů obsahuje kroky jako p ř edzp racován í s ignálu , extrakci jeho vlast­
nos t í a n á s l e d n o u jejich selekci. P r o ověření s p r á v n é implementace byly výs ledky extrakce 
a selekce ohodnoceny algori tmem s t ro jového učení . Tato p r á c e pracuje s již n a m ě ř e n ý m 
d a t o v ý m souborem D R E A M E R . 

Keywords 
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cation 
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Rozšířený abstrakt 
Tato p r á c e je z a m ě ř e n a na použ i t í metod v oblasti detekce emoc í p o m o c í E E G signálů . 
P o u ž i t ý dataset E E G s ignálů se nazývá D R E A M E R a byla zde u p l a t n ě n a neinvazivní 
metoda měřen í . Detekce emoc í lze využ í t př i l ékařských posudc ích a léčbě psychických 
onemocněn í . 

Hlavn í čás t í t é t o p r á c e byla extrakce a selekce v las tnos t í , k t e r é lze z í ska t z E E G s ignálů , 
n a m ě ř e n ý c h z 23 s u b j e k t ů , k t e ř í sledovali 18 k r á t k ý c h videí . N a konci k a ž d é h o videa k a ž d ý 
subjekt ohodnoti l , jak se cít i l p o m o c í skóre na stupnici 1-5 pro e m o č n í dimenzi valence 
a arousalu. 

Celý proces p r o b í h a l ve č ty řech kroc ích a k a ž d ý z t ě ch to k roků navazuje na ten před­
chozí: 

1. P ř í p r a v a E E G s ignálů 

2. Ext rakce v l a s tnos t í s igná lu 

3. Selekce nejdůleži tě jš ích v l a s tnos t í 

4. O h o d n o c e n í p ředchoz ích k roků 

Pro d o s á h n u t í co nej přesnějš ích výs ledků bylo n u t n é n e u p r a v e n ý E E G signál vyčis t i t 
od š u m u , m r k n u t í oka a dalš ích nech těných zá sahů do s ignálu , k t e r é pronikly př i n a h r á v á n í . 
K tomu by l použ i t p á s m o v ý filtr, k t e r ý p r o p o u š t ě l frekvence mezi 0,5-40,0Hz, n á s t r o j I C A 
a m a n u á l n í č iš tění komplexnějš ích s e g m e n t ů . Vzorkovací frekvence byla sn ížena na 64Hz. 
Signál by l p o t é p ř i p r a v e n pro h l avn í čás t m é p ráce , na lezení nej lepšího řešení a kombinace 
metod extrakce a selekce v l a s tnos t í s ignálu . 

P ř e d ex t r akc í bylo n u t n é s ignál rozděl i t na j edno l i tvá f rekvenční p á s m a a na 4 skupiny 
dle u m í s t ě n í elektrod, z k t e r ý c h s ignál pocház í , z l idského mozku. F rekvenčn ích p á s m a 
rozděluj í E E G signál na p ě t d r u h ů v l n - delta, t h é t a , alfa, beta a gama. O s m elektrod 
se př i m ě ř e n í nacháze lo ve f rontá lní čás t i a po dvou e l ek to rádách se dalš ích šest nacháze lo 
v okcip i tá ln í , t e m p o r á l n í a p a r i e n t á l n í čás t i mozku. 

Časová a frekvenční d o m é n a s igná lu poskytovala vlastnosti , k t e r é cha rak te r i zu j í s ignál , 
proto jsem extrahovala s ta t i s t i cké vlastnosti , Hjortovy parametry, entropie a výkonovou 
s p e k t r á l n í hustotu. Všechny vlastnosti by ly zvlášť e x t r a h o v a n é pro k a ž d é frekvenční p á s m o 
a pro k a ž d o u ze č t r n á c t i elektrod. E x t r a h o v a n á data jsem normalizovala, p ro tože p o t é 
dosahovala lepších výs ledků . 

Dohromady jsem d o s á h l a celkového p o č t u 10220 e x t r a h o v á n í v l a s tnos t í , k t e r é tvoř i ly 
vektor, pro jeden subjekt a jedno video. Celková matice v e k t o r ů obsahovala tedy 414 vek­
t o r ů . P ř i tomto m n o ž s t v í bylo n u t n é n ě k t e r á n e p o d s t a t n á data v y ř a d i t , neboli použ í t 
metodu selekce. Navrh la jsem 3 m o ž n é ú p r a v y skóre a 3 metody selekce. B ě h e m te s tován í 
se ukáza lo , že nejlepší výs ledky pro selekci byla s c h o p n á dodat kombinace b i n á r n í h o skóre 
s l ineárn í d i sk r iminačn í ana lýzou . B i n á r n í skóre bylo rozdě leno na n ízkou a vysokou valenci 
a arousal. O s t a t n í metody dosáh ly nega t ivn í ch výs ledků s v ý r a z n ě menš í p ře snos t í měřen í . 

O h o d n o c e n í p r o b ě h l o s p o u ž i t í m č ty ř k las i f ikátorů s t ro jového učen í a nejlepší výs ledky 
jsem d o s á h l a p o m o c í na ivn í Bayesovské klasifikace. P r o ob jek t ivn í h o d n o c e n í jsem použ i la 
k - n á s o b n o u kř ížovou validaci . P r ů b ě h selekce a o h o d n o c e n í selekce bylo zvlášť rozdě leno 
pro e m o č n í dimenzi valence a arousalu. P ro to byla metoda i m p l e m e n t o v á n a d v a k r á t s dvěmi 
klasifikátory, n a t r é n o v a n ý m i pro danou e m o č n í dimenzi . 

Rozdě len í elektrod do j edno t l i vých čás t í dokáza lo , že vlastnosti e x t r a h o v a n é z f rontá lní 
čás t i mozku dosáh ly největš í p ře snos t i . Tento výs ledek jsem ověři la s l i teratou. K zlepšení 



výs ledků jsem dá le testovala jakou p řesnos t by ly s chopné vy tvo ř i t vlastnosti e x t r a h o v a n é 
z časové a f rekvenční domény . F rekvenčn í d o m é n a se j a s n ě u k á z a l a jako lepší a největš í 
p řesnos t by la d o s a ž e n a s p o u ž i t í m výkonové s p e k t r á l n í hustoty. 

Výs ledné řešení extrakce emoc í se s k l á d á z použ i t í pouze v l a s tnos t í s ignálu jeho frekvenční 
d o m é n y a z f rontá lní čás t i rozdě len í mozku, k t e r é byly n á s l e d n ě no rma l i zované . Řešen í 
selekce bylo s loženo z b i n á r n í h o označen í skóre s e b e o h o d n o c e n í s u b j e k t ů a l ineárn í d iskr im­
inační analýzy. 

Toto řešení o h o d n o c e n é na ivn í Bayesovskou klasifikací dosáh lo p r ů m ě r n é p řesnos t i 98,05%. 
E m o č n í dimenze valence d o s á h l a p r ů m ě r n é p řesnos t i 97,61% a dimenze arousalu 98,49%. 
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Chapter 1 

Introduction 

The a im of this thesis is to get acquainted wi th the process of emotion predict ion by us­
ing E E G signals. Humans feel emotions depending on their mental state, substantiated 
by some event or action. Therefore, after measuring data affected by some events, it can 
be determined what emotions the human felt at the time. 

M y main motivat ion for this thesis is that the results of emotion prediction can be 
used in medicine to detect depression and subsequent treatment. B y using the predic­
t ion of emotions for a mentally i l l person, it is possible to determine how much their health 
differs from that of a healthy person to determine their treatment accordingly. The mentally 
i l l person's measured values tend to be closer to negative emotions compared to a healthy 
person. 

F i r s t ly this process involved understanding the principles of E E G and its other parts 
related to this topic. Learning about E E G led to raising important questions such as: W h a t 
E E G signal is, and how the human brain is capable of generating one? How differ the in ­
d iv idua l measured signals? Answers to these subjects are explained i n chapter 2. Th is 
thesis worked w i t h two emotions, valence and arousal. The i r purpose was also explained 
in chapter 2, including a l l other algorithms and methods further used. 

Secondly, a dataset which enables implementat ion and testing is named D R E A M E R 
and defined i n chapter 3. 

Further, an essential part constitutes a feature extraction and selection, which comes 
next after cleaning signal dur ing 3.2, because it could contain some unwanted noise. Fea­
ture extraction clarified i n 4.1 comprises the pract ical use of several concepts, such as t i m e -
domain, frequency-domain and entropy features. Feature selection follows up at 4.3, and it 
works w i t h the features and methods to select only the best ones. F ina l ly , emotion classi­
fication 4.3 evaluated the entire process and affirmed new findings. 

A n essential step i n the course of the solution was experimentation and testing 5, which 
led to the compilat ion of the final solution 5.3 and its implementat ion 6. 

3 



Chapter 2 

Theoretical introduction 

This section explains crucial aspects of E E G studying subsequent to pract ical usage. De­
scribed methods and terms are further used in the following chapters D a t a 3 Proposed 
solution 4. 

2.1 Electroencephalography 

Electroencephalography is a technique to observe how the brain functions [9]. Th is tech­
nique is based on non-invasive s tudying electrical brain activity, which is caused by brain 
cells named neurons. The observation itself takes place w i t h the help of electrodes located 
on the scalp [28]. They recognize neurophysiological response [30] and Abnormal i t ies can 
be found i n collected data i n contrast w i t h the brain's normal function and then be clas­
sified as Parkinson's disease or Alzheimer 's disease [8]. E E G signals do not have a usage 
field only in medicine for diagnosing people suffering from the neurological problems. Thei r 
other uses include identity authentication, emotion state recognition and design of the B r a i n 
computer interface systems [24]. 

2.2 E E G Signals 

The E E G signals are stochastic signals formed by a group of sinusoids which differ i n the fre­
quency spectrum. The frequency range of the whole signal is between 0 and 100 H z [45] [19]. 
Also , the E E G signal includes unwanted parts called artifacts. In this group of unsettl ing 
signal sections are eye movements, and muscle or lateral eye movements [45] [15]. 

The 10 20 system for placement of electrodes was used i n this thesis, mentioned i n chap­
ter 3. 

10-20 system is based on the positions of sensors called electrodes on the head scalp. It 
means, that each electrode has to be placed after each step in distances accorded to 10 or 
20% showed at 2.1. A p a r t from the necessary distance, their placement is on anatomical 
landmarks which it is considered to be nasion, in ion and preauricular points [18]. 

2.2.1 F r e q u e n c y Waves 

From E E G signals can be extracted waves w i t h different frequency spectrums. Most im­
portant information can be found i n the band around 0.5 to 30 H z [19]. 

The applicat ion of low-pass filters is necessary for removing noise and attenuating 
the signal. High-pass filters are used to cut out slow fluctuation or direct current com-

4 



Figure 2.1: Figure from [46] shows the layout of electrodes for compliance wi th 20% spacing 
between them. 

ponents [10]. In this frequency range five waves are located - delta, theta, alpha, beta 
and gamma [22] and these five frequency bands are shown i n figure 2.2. 

Delta 5 

These waves are presented i n a frequency range of 0.5 - 4.0 H z [22]. De l t a waves are 
distinguished by the characteristic of having the highest ampli tude compared to other waves. 
Causing impulse of these waves is a profound sleep [12]. 

T h e t a 6 

Theta waves can be found between 4 - 8 H z frequency [22]. They appear in situations when 
a human is light sleeping or under stress caused by negative emotions. Other expressions 
can be light sleep and emotional stress [12] and par t icular ly frustration or disappointment. 
The presence of theta wave is normal for children younger than 13 years, but on the opposite, 
it 's abnormal for adults i n an awakened state [22]. 

A l p h a a 

A frequency band for the alpha wave is between 8 - 1 3 H z [22]. They are associated 
wi th states of relaxation and closed eyes [12]. A n d also wi th states dur ing creative activity, 
effortless alertness and wakefulness. Common ly alpha waves can be found at the back 
part of the head wi th the presence of higher ampli tude i n the occipi ta l lobe [22]. 

Beta j3 

The frequency range where beta waves lies is 14 - 26 H z [22]. A beta wave occurs during 
activities when a person is active, busy, anxious th ink ing and has active concentration [12]. 

5 



G a m m a 7 

The last frequency spectrum is wi th in 30 - 100 H z [22] for the gamma wave. G a m m a waves 
are recorded only occasionally when a human brain is processing more than one different 
sense at the same time. This process is called cross-modal processing [22]. 

Delta Wave Alpha waves 

Theta waves Beta waves 

Gamma waves 

Figure 2.2: These figures show different behaviour of the E E G waves dur ing 1 second. 
Figures were taken from [22]. 

2.3 Division of the Human Bra in 

The human brain can be subdivided into three parts - cerebellum, brainstem and cerebrum 
shown i n this figure 2.3. 

Cerebrum is further split into left and right cerebral hemispheres [32]. the left hemi­
sphere tends to be responsible for positive emotions and in the opposite the right hemisphere 
is more associated wi th negative emotions [1]. 

Frontal lobe Parietal lobe 

Somatosensory 
association 
area > 

Temporal lobe Occipital lobe 

Figure 2.3: Pa r t i t ion of human bra in from [22]. 

(i 



B o t h left and right hemispheres are part i t ioned into Frontal , Par ie ta l , Temporal , Oc­
cipi ta l , Insular and L i m b i c lobes. Each of them arranges a different tasks for the body [22]. 

Frontal lobe signicates majority of act ivi ty i n whole cerebrum and is responsible for emo­
t ion control. Temporal lobe is responsible for emotional perception [3]. Another fea­
ture of the frontal lobe is evoking a surprise. For temporal and occipi ta l lobes it is happiness 
and disgust. The parietal lobe may cause sadness [1]. 

Cerebel lum manages complex body movements [22]. as motor coordination, posture 
and balance. Cerebel lum lies under the cerebrum's occipi ta l and part of the temporal lobe. 
Cerebellar peduncles are structures that attach cerebellum to brainstem. [32]. 

2.4 Valence—Arousal Mode l 

Valence and arousal are crucial emotions for assembling an emotion classification algori thm, 
because their ratio describes possible found emotion [13]. 

Valence and arousal 2D model is in figure 4.7 representing complex emotions. 
The numeric values of valence and arousal coordinate to point on a 2D model 2.4. 

Valence dimension measures if a human has negative or positive feelings and the arousal 
dimension measures whether a human feels bored or excited. [13]. 

Ii 
High-Arousal. 

Negative-Valence 

Arousal 
. t-. 

high 

Tense 

Angry 

Frustrated 

•^negati vi 

Depressed 

HI Bored 
Low-Arousal, 

Negative-Valence Tired 

Excited 

Delighted 

Happy 

I positive1 

High-Arousal, 
Positive-Valence 

•Valence 

Content 

Relaxed j y 

Low-Arousal, 
C a l m Positive-Valence 

low 

Figure 2.4: Valence and arousal model from [57]. 

2.5 Features 

The process of searching for important pieces of information from E E G signals involves 
analysing a signal through its features. The signal can be represented i n the t ime-domain 
or frequency-domain [47]. The representation is shown i n figure 2.5. 

If signal analysis aims to discover a signal composit ion, then it is fitting to use repre­
sentation i n the frequency domain. Fourier analysis can be used i n this si tuation [36]. 

7 



F R E Q U E N C Y . Hz o 0 time 

Figure 2.5: Figure shows a representation of the same signal (a) i n t ime domain (b) and fre­
quency domain (c). Figure is from [36]. 

2.5.1 T i m e — d o m a i n Features 

T i m e - D o m a i n includes features: 

• Statist ical: mean, median, variance, standard deviation, skewness, and kurtosis [47] 

• Zero-crossing rate [47] 

• Entropies [47] 

H j o r t h Parameters 

Three Hjor th Parameters are activity, mobi l i ty and complexity. E a c h of them is used 
to display different statist ical properties [39]. 

A c t i v i t y corresponds to the variance of the signal and measures the power spectrum 
in the frequency domain. It means that if the act ivi ty values are higher, higher frequencies 
are more common. This also applies otherwise wi th low frequencies [39]. 

M o b i l i t y returns a proport ion of the standard deviat ion of the power spectrum [39]. 
Complexi ty displays a resemblance between a signal and a pure sine wave. If the signal 

approaches a shape similar to the sine wave, complexity gets near to number 1 [39]. 

i i w i - i - \var(y'(t)) , . mobility(y1 (t)) r . 
activity = var(y{t)) mobility = \ r r r v complexity = — — [39] 

V var(y(t)) mobility(y(t)) 

(2-1) 
Where y(t) is a function i n t ime-domain and y'(t) is a derivation of the function. 

2.5.2 F r e q u e n c y — D o m a i n Features 

The power spectral density is a frequency-domain feature. A signal contains frequency com­
ponents, and P S D facilitates indicat ing these components. It means that P S D (figure 2.6) 
calculates power for each frequency component and depicts their differences i n distr ibu­
t ion [11]. 

8 



Figure 2.6: Power spectral density of 14 channel E E G signal dataset D R E A M E R . Subject 
number 10 and movie cl ip number 12. 

P S D can be assesseed by welch method. It differs from the fast Fourier Transform 
in that the resulting frequency spectrum is smoother because the Welch method divides 
the data into equal-sized units whose signals are attenuated at the ends of the unit 's range. 
Therefore, there are no value jumps during the frequency domain representation. The disad­
vantage is that, in contrast to the F F T method, some information is lost, which is a reason 
for the occurrence of overlapping when parts of the signal par t ia l ly overlap. The calcula­
t ion of Welch's method takes place by computing the squared root of the F F T for each 
divided section of the signal. Th is data gives the number of an estimation of the spectral 
density, and the average of a l l provides the result w i th P S D estimation [43]. 

2.6 Methods for feature selection and classification 

In this section, can be found a description of concepts, algorithms and methods for the clas­
sification and selection of extracted E E G features. The methods used for selection are de­
scribed in 2.6.2, 2.6.3, 2.6.4 and 2.6.5. Algor i thms for evaluation of feature selection are 
shown i n 2.6.6. 

2.6.1 V a r i a n c e 

Variance is a concept that I used i n conjunction wi th P C A 2.6.5. Variance is the standard 
deviation power two. 

n — 1 

Its theorem says that after computing a mean value of the whole data (x), where x is 
a sample, every value is compared wi th the mean. A sum of distances (distance is al­
ways a positive value) between the mean and every value is d ivided by an amount of data 
values [26]. 

If the variance value is small , data are concentrated around the mean and their sizes do 
not differ wildly. However, the bigger valence is the distance between the mean and the num­
ber is more significant. This means that data are quite different sizes [26]. 
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2.6.2 P e a r s o n C o r r e l a t i o n Coefficient 

Pearson Correla t ion Coefficient is between two values x, y and represents a linear relation­
ship between these two values [26] s. 

r = - where covxv = [261 (2-3) 
(Txav

 , y n - l 
cov{x,y)2 _ u _ _ ^2(xi - x){yi - y) 

It is calculated as covariance, which represents an association between two random 
variables, for x and y, then divided by a mult iple of standard deviations from these vari­
ables [26]. 

2.6.3 M i n i m u m R e d u n d a n c y a n d M a x i m u m Relevance 

A group of features selected this way expresses fewer data but more pieces of information 
for the classification a lgori thm [5]. 

A l g o r i t h m m R M R chooses features according to two criteria. The first one is that fea­
tures wi th a high mutua l affinity are reduced. This step ensures m i n i m u m redundancy. 
The second cri terion signifies finding features affecting the target variable [42]. the target 
variable is an a im for prediction from the data. Therefore is used as a central variable 
to which features are l inked [33]. the greedy search algori thm performs the process of pick­
ing features. In every step, one feature is selected [42]. 

2.6.4 L i n e a r D i s c r i m i n a n t A n a l y s i s 

To drop a number of features from data, L D A dimensionally decreases duplicative and con­
di t ional features. Decreasing dimensions means that L D A reduces the number of dimen­
sions i n the data. L D A uses between-class variance (separability), a number calculated 
as a mean of feature one minus the mean of feature two and a wi th in class variance (abso­
lute value of the difference between the mean and instance of each feature). A n output is 
a lower dimensional space where wi th in class variance is lower, and between class variance 
is bigger [44]. 

2.6.5 P r i n c i p a l C o m p o n e n t A n a l y s i s 

P C A is a linear method for el iminat ing redundant dimensions of the data to achieve a data 
(features) reduction but s t i l l keeping the majori ty of the information. [7]. 

D a t a reduction is needed to prevent overfitting a model while classifying features or be­
cause specific data carries less information than others [56]. 

P C A transforms the data so that a new first dimension contains shown at figure 2.7 infor­
mat ion wi th the highest variance. Then , a new second dimension includes data wi th the sec­
ond highest variance and continues this way wi th other dimensions. Because of how great 
the variance number is, the data hold more information [7]. 

P C A also excludes features wi th significant correlation between them because they are 
not usable by themselves. A n output is dimensionally reduced data that represents an ideal 
collection of features [56]. 
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Dimension 2 

Dimension 1 

Figure 2.7: P C A over two dimensioned data from [56]. 

2.6.6 Classif iers 

There are several types of learning classifiers and those used i n section 5.2 are described: 

• Support vector machine is a learning classifier proposed for data classification. 
Before using S V M for classification, the data has to be labelled because S V M assorts 
them into groups. For the separation, S V M uses a hyperplane [53]. the hyperplane 
creates a border between the two groups of data, sorted based on a different classes 
they tend to [14]. Choosing the right hyperplane aims to maximize the length be­
tween separated data [53] [14]. A dashed line i n figure 2.8 indicates the hyperplane 
wi th support vectors on the sides. The data is formed of data points (little stars 
and triangles), and if some are located near the hyperplane, they are called support 
vector [27] [14]. 

Srpiirulirlj? 

I [> perplane 
Suppoi I 

Vet Uifs 

Figure 2.8: Support Vector Machine from [27]. 
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• The fc-nearest neighbor is another classification tool that works by making predic­
tions from its stored data. The number A:symbolizes the value for which it searches 
the number of records and selects the most identical to the predicted one [55]. 

• The naive Bayes classifier is a probabil ist ic learning classifier. One of the meth­
ods that can be used to solve Naive Bayes is the Gaussian method. T h i s method 
is based on the Bayes theorem. The data meet the Gaussian dis t r ibut ion and are 
continuous [21]. 

2.6.7 T e s t i n g m e t h o d s 

The test methods include A:-fold cross-validation and hold-out validation. 

• The k—fold cross—validation works on the principle of taking a dataset and spl i t t ing 
it into k subsets - folds. Then, one fold is selected as a test subset from these randomly 
created folds, others as t ra in subsets. After t ra ining the model and evaluating a test 
subset, the test subset becomes t ra ining one, and another different for testing is picked 
from rest folds. Exchanging of folds repeats un t i l every combination is at tempted [4]. 
Figure 2.9 describes how were ind iv idua l subsets of shuffling for testing. 

Split l 

Split 2 

Split 3 

Split 4 

Split 5 

Fold i 

Fold 1 

Fold 2 

Fold 2 

Fold 2 

Fold 3 

Fold 

Fold 3 

Training data Test data 

Fold 4 

Fold. 

Fold 

Fold 5 

Fold 5 

Fold 5 

Metric 1 

Metric 2 

Metric 3 

Metric 4 

Metric 5 

Figure 2.9: Example of 5-fold cross-validation process from [4]. 

• The hold—out validation was used by spl i t t ing the dataset into two parts: t raining 
and testing. Next , the model needs to be trained on the t ra ining data for evaluating 
the testing data. Usual ly let t ing one-fifth of the data for testing because the model 
is unfamiliar w i th them yet, so evaluation shows its performance. [4] 
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Chapter 3 

Data 

This chapter describes the data on which this work was buil t . In the first section 3.1 it is 
shown what k ind of data it is and which dataset it comes from. The second section 3.2 shows 
the work wi th the data that is necessary before connecting to other parts of the solution. 
Cleaning and preparing the data so that the results were not affected by noise. 

3.1 Dataset 

The data used for emotion predict ion are from a dataset [23] called D R E A M E R . This 
dataset consists of 23 subjects. Each subject has two different types of records, baseline 
and s t imul i . S t imul i records are the last 60 seconds of 18 different movie clips that were 
indicat ing different emotions. For clearing current emotional state subjects also watched 
one neutral video before each movie cl ip [23]. 

3.1.1 C h a n n e l s 

For recording the dataset was used the E m o t i v E P O C wireless E E G headset [23]. This 
headset includes 16 contact-sensors to record E E G signals at 128 H z sampling rate. Elec­
trodes are placed i n locations following the International 10-20 system standard 3.1. 

14 out of 16 contact-sensors represent 14 channels [15]: 

. AF3, AF4, F7, F8, F3, F4, FC5, FC6, T7, T8, P7, P8, 01, 02 

Figure 3.1: Placement of channels from [15]. 
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3.1.2 M o v i e C l i p s 

The selection of movie clips was focused to induce i n subjects these nine emotions: [23] 

• amusement, excitement, happiness, calmness, anger, disgust, fear, sadness and sur­
prise [23] 

Each of these emotions has two movie clips that represent i t . The show time of every clip 
was between 65 and 393 seconds, but recorded was only the last 60 s of the video to prevent 
mix ing different kinds of emotions during measuring. Table 3.1 shows list of movie clips 
w i th their target emotion and average valence and arousal score [23]. 

Movie clip Target emotion Valence Arousa l 
1 Searching for Bobby Fischer calmness 3,17 ± 0 , 7 2 2, 26 ± 0 , 7 5 
2 D . O . A surprise 3, 04 ± 0 , 8 8 3, 00 ± 1,00 
3 the Hangover amusement 4, 57 ± 0 , 7 3 3, 83 ± 0 , 8 3 
4 the R i n g fear 2, 04 ± 1 , 0 2 4, 26 ± 0 , 6 9 
5 300 excitement 3, 22 ± 1 , 1 7 3, 70 ± 0, 70 
6 Na t iona l Lampoon 's VanWi lde r disgust 2, 70 ± 1 , 5 5 3, 83 ± 0 , 8 3 
7 W a l l - E happiness 4,52 ± 0 , 5 9 3,17 ± 0 , 9 8 
8 Crash anger 1,35 ± 0 , 6 5 3, 96 ± 0 , 7 7 
9 M y G i r l sadness 1,39 ± 0 , 6 6 3, 00 ± 1,09 
10 the F l y disgust 2,17 ± 1 , 1 5 3, 30 ± 1,02 
11 Pr ide and Prejudice calmness 3, 96 ± 0 , 6 4 1,96 ± 0 , 8 2 
12 M o d e r n Times amusement 3, 96 ± 0 , 5 6 2, 61 ± 0 , 8 9 
13 Remember the Ti tans happiness 4, 39 ± 0 , 6 6 3, 70 ± 0 , 9 7 
14 Gentlemans Agreement anger 2,35 ± 0 , 6 5 2, 22 ± 0 , 8 5 
15 Psycho fear 2,48 ± 0 , 8 5 3, 09 ± 1,00 
16 the Bourne Identity excitement 3,65 ± 0 , 6 5 3, 35 ± 1,07 
17 the Shawshank Redempt ion sadness 1,52 ± 0 , 5 9 3, 00 ± 0 , 7 4 
18 the Departed surprise 2, 65 ± 0 , 7 8 3,91 ± 0,85 

Table 3.1: L i s t of movie clips from [23]. 

3.1.3 E v a l u a t i o n 

A t the begging of the measurement, the concepts of the V A D model were explained to a l l 
participants. The V A D model consists of emotions: valence, arousal and dominance and these 
three emotions are rated for each movie cl ip . Per the video, a l l participants were asked 
to self-evaluate their feelings. They used a number between 1 and 5 (1 was the least, and 
5 was the highest score) and rated according to the V A D model [23]. 
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23 participants 

18 movie clips 

Valence score Arousa l score Dominance score Baseline E E G St imul i E E G 

I created a tree structure 3.2 according to the dataset D R E A M E R to simplify the data 
and node relations. F r o m these three emotions scores, my task was to choose two. I 
selected valence and arousal because they create a clearer combination to represent emotions 
on a valence-arousal map 4.7 than combined wi th dominance. 

3.2 Signal—preprocessing 

From the original signal, which was full of noise and unwanted segments, it was necessary 
to create a new one, more efficient for further data analysis. The first step was defining 
high-pass and low-pass filters according to the smallest and largest possible frequency that 
carries pieces of information. The high-pass filter was set at 0.5 H z because of the delta's 
wave lower l imi t . The low-pass filter is set at 40 H z . 

3.2.1 C l e a n i n g A r t i f a c t s 

I used I C A for cleaning artifacts that the band-pass filter could not remove. If other diverse 
signals in the original signal were presented, then the I C A tool could find them and separate 
these noise signals from the rest of the usable data [15]. 

Figure 3.2: Structure of subjects and movie clips. 

0 2_5 5 75 10 123 15 17J 20 
Help I [ 

0 25 50 75 100 125 150 1T5 

Figure 3.3: Uncleaned data i n the python tool I C A . 
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The data from the dataset D R E A M E R contained much noise and disturbing parts—for 
example figure 3.3. some data could not be properly cleaned by I C A , so I manual ly cleaned 
al l other presented artifacts. A red highlighted part marked as BAD_ could be caused by an 
eye bl ink because the dislocation was presented simultaneously i n a l l channels. These 
highlighted parts were then removed. 

According to [23], i n the beginning, the number of participants was 25 (the final number 
was 23). However, due to technical problems dur ing the recording, they had to eliminate 
two records from the final dataset. The i r comment about the technical problem was a reason 
why these problems could affect ind iv idua l channels in other part icipants ' measurements. 
Accord ing to this, I assumed that visible noise i n channels ICA005, ICA006 and ICA013 was 
caused by incorrectly placing the cap wi th electrodes on the head of participants or by loose 
wire connections. 

< • ft..-*. - o x 

CA components 

ICA00O ICAOOL ICA002 ICA003 ICA004 

Figure 3.4: Marked act ivi ty on the human brain for examination of E E G signal. 

Figure 3.4 shows a centre of brain act ivi ty for each electrode. For example, a channel 
on the head marked as ICA007 contained significant ac t iv i ty around the eye area, and i n fig­
ure 3.4, the same channel has periodical spikes. These spikes could be lateral eye movements 
following the location on the head. This E E G montage was used for manual cleaning con­
trol . 

3.2.2 C o m p a r i s o n of C l e a n a n d N o t C l e a n D a t a 

Pre-processed data was compared wi th raw data, whose only modification was apply­
ing a band-pass filter and setting the standard 1020 montage. N o sections were marked 
as BAD_ and removed for further use. Here is a comparison between these two different data 
w i t h applied skewness and peak- to-peak functions. 

The peak- to-peak function indicates a signal dispari ty between its lowest and highest 
points [54]. Art i facts on the signal create big spikes caused by bl inking, for example. 
Furthermore, these spikes are so significant that they produce abnormalities i n extracted 
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Figure 3.5: Compar ison between cleaned and uncleaned signal w i th calculated 
peak-to-peak values of each channel. 

features. Th is phenomenon can be seen in the figure 3.5, showing the big difference between 
the data w i t h removed artifacts (pre-processed) and data that includes artifacts (not p re -
processed). It is clear from figure 3.5 that channel T8 is most affected by oscillations. 

Person number 6, movie clip 7 
Comparation of skewness 

Pre-processed data 
® Not pre-processed data 

AF3 F7 F3 FC5 T7 P7 O l 02 P8 T8 FC6 F4 F8 AF4 
Channels 

Figure 3.6: Compar ison between cleaned and uncleaned signal w i th calculated skewness 
values of each channel. 

F rom figure 3.6 pic tur ing skewness of the E E G signal is clear that T8 channel was indeed 
the most affected one by the noise. However, after noise extraction, signals of every channel 
were i n a norm. This proved that preprocessing was successful because the signal showed 
no noticeable signs of noise. 

A t this point, a l l 18 cleaned movie clips were ready to move on to the next step i n chap­
ter 4. 
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Chapter 4 

Proposed solution 

This chapter describes my solution for feature extraction and selection for emotion detec­
t ion. Due to the fact that this work focuses on experiments, part of which is an uncleaned 
dataset D R E A M E R , where the number of artifacts was s t i l l presented, its solution w i l l be 
not only extraction and selection of features but also other elements related to the emotion 
detection process. The process of the entire work is based on figure 4.1. 

A felicitous representation of the whole process is figure 4.1 of a pipeline because 
the process, including mult iple algorithms, is complex and includes several steps. For my 
method, I followed [38] to split the solution into four subsolutions. These four subsolutions, 
w i th a square that symbolizes the result, are marked i n uppercase i n the pipeline 4.1. 

Raw E E G 
data 

SIGNAL P R E - P R O C E S S I N G 

ICA 
Manual blinks cleaning 

Filtering 

Cleaned signal 

Extraction and 
preparation of 

labels 

FEATURE 
EXTRACTION 

FEATURES OF 
time-domain 

frequency-domain 

Feature matrix 

FEATURE SELECTION 

LDA 
P C A 
mRMR 

Labels 

Feature matrix with 
according labels 

FEATURE 
CLASSIFICATION 

Learning machine: 

. S V M rbf 
• S V M linear 
. K-NN 
. NB 

RESULT 
A C C U R A C Y 

Figure 4.1: The basic pipeline of the emotion recognition system through E E G . 

The processing section 3.2 was focused on editing and cleaning the original signals 
from the D R E A M E R set for the prospect of using them i n the next steps to the solution. 
The result was a cleaned signal that was ready for feature extraction. D u r i n g this extrac­
t ion 4.1, features for both its domains and entropies were calculated. After calculat ing these 
properties, they moved to the selection phase 4.2. The selection section consists of the first 
step of choosing the number of classes for labels and the second step of choosing the learn­
ing classifier model that was performing the selection. The result was a mat r ix that con­
tained only relevant information. In last section 4.3.2, this mat r ix was imported together 
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wi th the classes into the model, which verified the accuracy and correctness of a l l three 
previous steps. 

4.1 Feature Extraction 

This section describes work on signal ut i l iza t ion for transformation to a feature matr ix . 
The feature mat r ix consisted of vectors that contained a l l possible combinations of cal­
culated properties from frequency bands and channels.The tree structure 4.2 represents 
feature extraction from the data. E a c h record w i t h a durat ion of 60s contained the data 
for 14 channels. A signal from each channel is subdivided into four bra in parts and then 
into five waves depending on their frequencies. 

Every wave has its own t ime-domain and frequency-domain features. Before extraction, 
the signal was downsampled from sampling rate of 128 H z to sampling rate of 64 Hz 
according to the Nyquis t -Shannon sampling theorem [41]. 

1 record of 60s 

14 channels 

Temporal Frontal Par ie ta l Occ ip i t a l 

De l t a The ta A l p h a Be ta G a m m a 

T i m e - D o m a i n features Frequency-Domain features 

Figure 4.2: Structure of extracted features. For simplicity, the feature nodes come out only 
from the alpha frequency band, but it applies to a l l other frequency bands. 

4.1.1 P r e p a r a t i o n for Fea ture E x t r a c t i o n 

This subsection describes the preparation of the data. Previously was mentioned i n chap­
ter 2 that the human brain is buil t from brain lobes. Each brain lobe has a different 
predisposition for accomplishing diverse tasks. Therefore, I use a channel layout according 
to the placement of their relevant electrodes. 

. Frontal : F3, F4, AF3, AF4, F8, F7, FC5, FC6 

• Temporal : T7, T8 

• Par ie ta l : P7, P8 

• Occip i ta l : 01, 02 

The number of features, 1 460, was extracted from the parietal, occipi ta l and temporal 
lobes, because each contains 2 channels. F r o m the frontal lobe it was 5 840, because it 
includes 8 channels. A tota l number of features equals 14 x 5 x (17 + 129) = 10 220. 
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4.1.2 Features 

In [24] and [47] were mentioned t ime-domain , frequency domain and entropy features that 
I used dur ing feature extraction. L is t of features: 

Time—domain: 

• Stat is t ical features: mean, median, variance, Standart deviat ion ( S T D ) , kurtosis, min­
imum, max imum, Roo t M e a n Square (RMS),skewness, energy, Peak to peak ( P T P ) 

• Hjor th parameters - activity, mobil i ty, complexity 

• Entropies: Permutat ion entropy, Sample entropy and Approximate entropy 

Frequency—domain: 

• Power spectral density 

Ext rac ted features in feature matr ix were ready for feature selection. 

4.2 Feature Selection 

Feature selection removes attributes when it is established on specific requirements. There­
fore, this method helps decrease the number of features needed for the following manipula­
t ion of the data [2]. 

Feature selection section shows i n what form it is possible to select only the most essen­
t i a l data from the overall feature matr ix . Labels and classes 4.2.1 had to be selected before 
choosing a selection method. After that, three methods were chosen to select data on which 
the experiments were carried out. One of the parameters necessary for the use of any method 
is the number 4.2.2 of different data to keep i n order to achieve the highest possible accuracy 
and relevance. 

4.2.1 Class i f i cat ion of Targe t L a b e l 

Part icipants i n the dataset D R E A M E R self-evaluated how they felt dur ing the experiment. 
The participant 's self-evaluation and their features should both constitute their predicted 
emotion. Therefore I used the self-evaluation as a target variable and proposed three new 
ranking systems. 

The ranking system used i n dataset D R E A M E R is between 1 and 5 (1 is the lowest, 
and 5 is the highest number [23]. 

Decomposit ion of Labe l Systems 

The first ranking system was divided into quadrants - figure 4.3 (c) and named as Q for 
simplification. The second was part i t ioned into halves - figure 4.3 (a,b) and named VA, 
where for both valence and arousal, ranking was replaced w i t h a binary score, 1 for high 
and 0 for low, following these rules: 

V < 3 = 0 
A < 3 = 0 
V > 3 = 1 
A > 3 = 1 

LV — low valence 
LA — low arousal 

HV — high valence 
HA — high arousal 
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Figure 4.3: Figures of different classification systems from [13]. 

For example, scores from movie cl ip number 7 were at first converted into binary raking 
for valence and arousal separately (VA). T h e n suitably into the quadratic (Q) raking system. 
Here are the results from cl ip number 7 (each of the 23 subjects has assigned one value): 

V: 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 
A: 1,0,0,0,0,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,0,0,0 
Q: 3,1,1,1,1,1,3,0,3,3,1,3,1,3,1,3,1,1,3,1,1,1,1 

The strong correlation is between A and Q because, w i t h one exception, it can be seen that 
when A = 0, then Q = 1 and when A = 1, then Q = 3. Th is indicates a si tuation i n which 
only one decisive value (in this case, an emotion) determines the result. O n the other 
hand, i f the decisive value, here valence, is almost the same for every subject, then it is not 
genuinely effective because there is no variat ion i n the data. 

I solved this problem by mix ing test data from different quadrants to balance the high-
/ l o w valence and h igh / low arousal ratios. Table 4.1 simplifies how labels were edited 
for the feature selection ranking method VA and Q. 

Shortcut Description Target Emotions A V Q 
H A H V high arousal high valence surprise, happiness [13] 1 1 3 
H A L V high arousal low valence anger, disgust, fear [13] 1 0 2 
L A H V low arousal high valence neutral [13] 0 1 1 
L A L V low arousal low valence sadness [13] 0 0 0 

Table 4.1: Two proposed ranking methods VA and Q for feature selection. 

Due to the participants ' self-evaluation cannot be divided straight into two groups, 
because the number of labels is odd, there is also the th i rd opt ion 4.4 to add one neutral 
label. Rules for creating this t h i rd ranking system named N: 

V < 3 or A < 2 = —1 . . . L — low valence/arousal 
V = 3 or 4̂ = 3 = 0 . . . N — neutral valence/arousal 
V > 4 or A>4 = 1 . . . H — high valence/arousal 
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Figure 4.4: R a n k i n g system ./V layout of the th i rd three classes option. 

4.2.2 Fea ture Select ion M e t h o d s 

The selection was affected by three different methods to determine the most effective one 
which w i l l form a part of the resulting model design. I used these methods: 

• M a x i m u m Relevance—Minimum Redundancy with Pearson correlation co­
efficient 

• Pr inc ipal Component Analysis 

• Linear Discriminant Analysis 

For feature selection is essential to choose a number value of features to prevent over-
fitt ing or underfitting i n the classification step. I followed this guide [37]. 

• L D A , as the only method of the three, it accepts as a number to keep for which: num­
ber of features < number of classes —1. For this reason, I chose one feature for labels 
containing two and three classes. The number of features for labels containing four 
classes was set at two. 

• P C A and m R M R had no such l imi ta t ion , so to determine the number of features 
for m R M R and P C A , I used P C A wi th 99% variance shown i n figure 4.5. Each channel 
had its own number of features to keep, because for every channel the calculated 
number from P C A wi th 99% variance differs. For the figure 4.5 representing selected 
number of features from one random channel I used this guide [37] 

Princ ipal Component Analysis and Linear Discriminant Analysis 

The first step of using these methods was to fit the feature matr ix . Then , after an accep­
tance of input as the feature matr ix , bo th methods transformed the mat r ix into a lesser 
dimension matr ix . Th is new mat r ix was further used as an input for the learning classifier 
to evaluate. 
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Figure 4.5: Figure shows numbers of features needed to achieve 99% variance. Each number 
is calculated from one channel w i th P C A . 

M R M R M e t h o d with Person's Correlat ion Coeficient 

According to a high number of features extracted from preprocessed data, I decided to ap­
ply the m R M R selection method, which focuses on m i n i m u m redundancy in the first 
place. One of its parameters is the number of features to keep. This number is calcu­
lated from the previous step using P C A . 

In case, some features were s t i l l correlated wi th each other even after, and the num­
ber of features was large. For this reason, I t r ied to add Pearson's correlation to prevent 
inaccuracies during classification that could occur. However, the results 5.1 after the ad­
di t ion d id not affect the results significantly. Therefore, I decided not to add Person's 
correlation to other selection methods as well. 

In this article [49] is mentioned that when Pearson's correlation coefficient marked 
as r applies is 0.7 < \r\ < 1.0, then it is considered as a strong correlation between features. 
To increase accuracy, I removed features wi th 0.7 or higher Pearson correlation coefficient. 

The heatmap 4.6 displaying the heatmap indicates the value of Pearson's correlation 
coefficient as a colour, where the red tone symbolizes a positive correlation and the blue 
tone a negative correlation [49]. A diagonal is coloured red because, at that point, there is 
a conjunction of similar features. 

Features were marked wi th numbers that agree wi th their order i n the features matr ix , 
because only their correlations wi th each other are influential. A large part of the features 
from the figure have values in the extreme l imits above 0.7, which constitute redundancy. 
Therefore final feature mat r ix was reduced and only features wi th in the l imits were included. 

I used this guide [49] to apply Person's correlation coeficient and heatmap. 
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Figure 4.6: Display of Pearson's correlation coefficient i n the heatmap. 

4.3 Clasification of Emotions 

This section describes the usage of the previous feature selection for emotion recognition 
and its evaluation. The classifier learning classifier is needed to evaluate whether feature ex­
tract ion and selection succeeded. E m o t i o n recognition needed a learning classifier a lgori thm 
to achieve the final stage at the pipeline shown 4.1. 

Accuracy of feature extraction and selection as an essential output of a classifier learning 
classifier. Before an evaluation I normalized the data. Accord ing to this [25], support 
vector machine expects that the range of the input data is between 0 to 1 or -1 to 1. 
Therefore, this S V M ' s condit ion leads to altering the data to meet the conditions. Two 
types of normalizations modify the data into the required type. 

• Hard normalizat ion, dur ing which calculates a m i n and max value. 

• Soft normalizat ion works w i th a mean and standard deviation of one data dimension. 

Even i f soft normalizat ion is recommended, I tr ied both methods for selection and classifi­
cation process. 
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4.3.1 V a l e n c e a n d A r o u s a l C a t e g o r i z a t i o n 

The dataset was recorded while a l l participants watched a video focused on el ici t ing one 
emotion. Therefore, the feature classification process needed to work wi th part icular at­
tributes to predict an emotion, and these attributes required a specific pair of valence 
and arousal values for each emotion. This attr ibute was a coordinate [x;y], where 
x = valence, y = arousal. 

To express every emotion i n the coordinate system, I used mean values calculated 
from a l l participants ' responses [23]. In addit ion, every movie-targeted emotion was repre­
sented twice, so I calculated a mean from two accorded values. A result was [x; y] coordi­
nates shown in figures 4.7. 
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Figure 4.7: The left figure illustrates the mean values of emotions rounded to a decimal 
place, and the right figure represents the values rounded to whole units. 

Disgust and fear are especially close located, unlike the other emotions. Thei r disparity 
would be distinguished by adding one more dimension to achieve a 3D view. The Z axis 
would represent dominance as the th i rd emotion. 

A way of verification of feature extraction and selection method was a dist inct ion of these 
emotions in an area divided into parts w i th h igh / low valence and arousal i n the figure 4.7. 

The feature classification i n 4.3.2 was designed so that it was able to recognize four 
different emotions according to valence and arousal level. Right figure 4.7 shows the distr i­
but ion of emotions into these four parts for VA and Q labell ing methods. 

4.3.2 D a t a s t ruc ture of Classif ier Input 

B o t h emotions, valence and arousal, classify i n a range of 1 to 5, which means 5 x 2 label 
options. Therefore, I decided to use the same transformation to a new labell ing system 
from 4.2 to enable applicat ion valence and arousal into the classifier learning classifier. 
The same labell ing system used during feature selection was also used for feature classifi­
cation. 

• The first labell ing method required two support vector models. The h igh / low arousal 
model w i th 1A output was trained for arousal detection, and the h igh / low valence 
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model was trained for valence detection. They both together can recognize a respec­
tive quadrant, where a sample belongs. B o t h 1A and IV output is binary, 0 for low 
and 1 for high values. 

• The second labell ing method resembled the first one but contained an extra neutral 
class. The differences i n the process are displayed on the pipeline 4.8 and 4.9. 

DATA 

LABELS 
0,1 

-1,0,1 

DATASET 

Feature selection 
for valence 

Feature selection 
for arousal 

Feature 
classification for 

valence 

Feature 
classification for 

arousal 

A C C U R A C Y 

Figure 4.8: Pipel ine of the steps for using two learning classifiers. 

The th i rd labell ing method was significantly different from its predecessors, as it only 
included one learning classifier to predict which quadrant an emotion belonged to. 
Figure 4.9 shows this case. 

ACCURACY 

Figure 4.9: Pipel ine of the steps for using one learning classifier. 

4.3.3 Class i f i cat ion m o d e l 

In the case that one of the methods would be more suitable for only one k ind of learning 
classifier, I used three different ones. 

. S V M with RBF kernel 

• S V M with linear kernel 

• if—Nearest Neighbors 

• Gaussian Naive Bayers 

The classifier learning models were trained wi th the dataset divided into two parts w i th an 
80:20 (traimtest) ratio w i th their accorded labels. If the model was made for predict­
ing the valence level, it was trained wi th t r a in valence labels. This t raining process was 
tested wi th the A:-fold cross-validation method wi th 20% of the dataset for a final check i f 
the model worked adequately. 
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Spl i t t ing channels into four groups provides information about which brain lobe is 
the most informative during emotion detection [6]. The test was carried out by using 
only features from one certain channel. Then, feature selection was applied to this channel, 
and features were fitted into the learning classifier. 
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Chapter 5 

Validation and Evaluation 

This chapter explains the testing progress and how it influenced the results. D u r i n g testing, 
I reached a si tuation where creating many combinations was possible. I included a l l these 
combinations i n the solution because the results reached low accuracy values i n my in i t i a l 
steps of the solution. Therefore, more options were created to find a proposal solution 
for feature extraction and selection methods. 

labels x feature selection methods x parameters x learning classifiers 

Subsections 5.1.1, 5.1.2 and 5.1.3 were incorporated into the entire process, and therefore 
their results were also the final results. Due to the large number of different combinations 
that could be included in testing, I first l imi ted the selection of parameters for learning 
classifiers 5.1.4. T h e n I narrowed down the choice of ranking method and its number 
of classes 5.2.1. F ina l ly , selection methods that d id not achieve the same results as others 
were discarded. This step was created by previewing a l l channels separately i n 5.2.2. 

5.1 Validations 

I followed this guide [31] to select and implement val idat ion methods. 
Before using one specific classification model, I tested some possible useable models. 

The ma in focus of the results was the accuracy of predicted samples compared wi th target 
labels. If accuracy exceeded 80%, it was considered a successful result. The second objec­
tive was to check if the model's t ra ining functioned correctly because the most significant 
issue was that the final classification came out only one-dimensional. One-dimensional 
prediction output included only one label class, so instead of proper prediction, the output 
was composed, for example, only from zeros or number one. This behaviour was mainly 
caused by poorly selected models' parameters. For this reason, I also added tests for various 
combinations of parameters, i n particular, S V M ' s gamma and C parameters and for K N N 
number of neighbors parameter. 

5.1.1 Hold—out Cross—Val idat ion 

The hold-out cross-validation method was used in this test process. F i r s t , the data was 
divided into two parts, one t ra in set w i th 80% of the data and one test set w i th the rest 
20%. Second, every classification model was trained wi th the same tra ining data and tested 
wi th the same test data. T h i r d , the results were evaluated, and the accuracy of these results 
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was calculated. Last ly, a l l models were compared based on accuracy, and the best model 
was selected. 

5.1.2 I f - F o l d C r o s s V a l i d a t i o n 

After selecting one classification model for implementing emotion prediction, I used 
the A:-Fold Cross Val ida t ion method for testing every learning classifier tp achieve the best 
results. Th is method verified that the model's t ra ining ended successfully. Overfi t t ing 
the model is possible in a negative scenario, so the method offers verification to prevent it. 

5.1.3 P r o p e r F u n c t i o n a l i t y of L e a r n i n g Classif iers 

W i t h i n involving more methods that should enable better results to be achieved, learning 
classifiers were often changing their behaviour. A s an unwanted behaviour could be consid­
ered a state when the learning classifier evaluated a l l data w i t h only one class from offered 
classes. If the learning classifier evaluates i n this form, proper results could not be achieved. 
This case shows an example: 

Learning classifier result: 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 
Labels corresponding to input data: 1,1,1,1,1,1,0,0,1,0,1,0,1,1,1,1,0,1,1,1,1,1,0 

F rom my observation of this undesirable condit ion, I could say this happened i n the cir­
cumstances, when: 

• Normal iza t ion of the data was erroneously used. The most common was when hard 
normalizat ion was presented and implemented according to [25]. Th is is the reason I 
further used only soft normalizat ion as the only one i n implementat ion recommended 
by [25]. 

• Labels were in an uneven state. The ratio of different classes in the label array d id 
not get close to an ideal state of 1:1 for the two classes, but for example, it contained 
from 80% only class marked as 1. W h e n this happened, the learning classifier used 
a value of the class, which was the most presented, to evaluate the entire test data. I 
solved this problem by using a l l s t imul i signal data from the dataset to create more 
proport ionally evaluated data. 

• The data was unevenly mixed into t ra in and test data. Even i f the ratio of classes was 
balanced after accidental integrating data could happen, the labels, mainly i n the test 
subset (because the test subset was smaller than the t ra in subset), were not i n sym­
metry during hold-out cross-validation. I solved this problem by adding 
5-Fold cross-validation. Even i f some test subsets were not labelled evenly, the rest 
provided proper results. 

5.1.4 P a r a m e t e r s of L e a r n i n g Classif iers 

Learning classifier S V M wi th RBF kernel took two parameters, gamma and C, which could 
affect a result. D u r i n g accuracy testing, I added tests for using the best gamma and C 
combination wi th the highest accuracy. S V M wi th linear kernel had a parameter C and 
fc-nearest neighbors had a parameter, that depicts number of neighbors. 

These three selection methods were included in this test, and the results are general 
for a l l usages of these methods. A t the same time, a l l the data from the mat r ix of features 
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were included because it was necessary to choose some input value before the other tests, 
thus avoiding a large number of different possible combinations. 

S V M , RBF - C S V M , RBF - gamma S V M , linear - C i T - N N - n neighbor 
VA 10.0 0.001 0.001 2 
N 10.0 0.001 0.001 1 

Q 100.0 0.001 0.001 3 

Table 5.1: The best possible accuracy achieved wi th parameters for selection methods. 

It can be seen from table 5.1 that the most common calculated value for S V M RBF 
gamma is 0.001 and for C is 10.0. S V M wi th linear kernel ended up wi th 0.001 value 
for its parameter C. iT-nearest neighbors's parameter number of neighbor had best accuracy 
for values 1,2,3, so I selected a mean of these and for a l l tests was used the number 2 
as the n neighbor parameter. 

5.2 Evaluation 

After combining a l l the previous parts, evaluating the assembled model w i t h one of the four 
selected learning classifiers was necessary. This section shows several experiments and tests 
performed on the data to reduce the parts of the solution, the results of which d id not reach 
such accuracies as the others. The results of these experiments were presented in section 
Proposed Solut ion 5.3. 

5.2.1 T e s t i n g Different L a b e l l i n g M e t h o d s 

In this test, only the parameters reached i n 5.1.4 were used for learning classifiers. Be­
fore performing further tests, I selected the label method to achieve the best possible test 
result. In table 5.2.1 are the accuracies of feature selection wi th P C A , L D A and m R M R 
wi th Pearson correlation coefficient. The three possible label methods are: 

• VA - l ow/h igh valence and low/h igh arousal - two classes 

• N - l ow/neu t ra l /h igh valence and low/neu t ra l /h igh arousal - three classes 

• Q - l ow/h igh valence plus low/h igh arousal - four classes 

A table was created for values achieved dur ing one experiment run. These values were 
used to plot figure 5.1. Table 5.2.1 shows how the values of ind iv idua l rows were always 
descending for every feature selection method i n combination wi th a learning classifier. 

Two learning classifiers were implemented for VA and N because the first was needed 
for valence applicat ion and the second for arousal classification. The input of labels 
for the feature selection a lgor i thm was the same as for the learning classifier. It is clear 
from figure 5.1 that the best percentage is always i n the pink bar which depicts VA. The sec­
ond best results are shown i n the second green bar N and the last quadratic resolution ended 
as the worst technique. 

It is clear that the best percentage is i n the first line, which corresponds to VA. The sec­
ond best results are i n the second line N and the quadratic resolution ended as the worst 
technique. The main result which can be deducted from 5.2 is that the more classes labels 
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m R M R P C A L D A 
A B C D A B C D A B C D 

V A 0.60 0.58 0.57 0.53 0.58 0.58 0.57 0.48 0.92 0.92 0.91 0.93 
N 0.41 0.40 0.36 0.33 0.40 0.41 0.36 0.33 0.79 0.66 0.81 0.82 

Q 0.36 0.35 0.32 0.25 0.34 0.35 0.31 0.23 0.84 0.68 0.83 0.86 

Table 5.2: Accuracy results of testing different labell ing techniques, where A = S V M 
wi th RBF kernel,B = S V M wi th linear kernel, C = A:-nearest neighbors, D = naive Bayes. 

Accurancy for different label methods 
VA 

Figure 5.1: L a b e l classes and their accuracy, where A = S V M wi th RBF kernel,B = S V M 
w i t h linear kernel, C = A:-nearest neighbors, D = Naive Bayes. 

contained, the lower the score went down. The inverse proport ion is between the num­
ber of classes and the accuracy value. 

A t this point, I l imi ted the number of classes for representing valence and arousal to just 
2, low and high, which are shown here as V A . Another symptom that can be deduced here 
is that, in general, the best results went to the L D A method wi th a combination of naive 
Bayes. In subsequent tests and experiments i n 5.2.2, it w i l l be verified i f the L D A method 
appears to be the best. 

5.2.2 A c c u r a c y of Different C h a n n e l s 

In this study [6], the authors calculated the accuracy for every channel separately. This 
finding helped determine the most informative E E G channel and then also the bra in re­
gion. I d id the same thing to create my proposed feature extraction and selection solution. 
A s a test, I used three feature selection methods to select the final one wi th the best re­
sults. A s w i t h 5.1, the L D A method came out w i th the best values, which is why I chose it 
in the final solution of my work. 

F rom the accuracy results of each channel 5.2,1 split channels into four groups according 
to their posi t ion on a head described i n 4.1.1. For each of these groups average accuracy 
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value was calculated. A comparison of the importance of bra in regions for emotion detection 
is shown in figure 5.3. 

Accuracy for different channels 

Channel 

Figure 5.2: Channels and their accuracy. 

Figure 5.3 showing accuracy for different lobes shows that in general, the frontal lobe 
had the greatest accuracy i n emotion predict ion for a l l methods. Th is result proved that 
the frontal lobe is for my experiments the most important aspect i n predict ing emotions. 
For this reason, further experiments were performed on the frontal lobe. 

— i — 1 — 1 — 1 — 

Frontal Occipital Temporal Parietal 
Lobes 

Figure 5.3: B r a i n regions and their accuracy. 
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5.2.3 M e a s u r i n g the A c c u r a c y of F r e q u e n c y B a n d s Separate ly 

This subsection describes how to detect a features group w i t h the most significant impact 
on emotion detection. It is necessary to avoid taking a l l features calculated from a l l five 
waves. Instead, a comparison process took place, calculat ing t ime-domain features of a l l 
waves separately, then repeated wi th frequency features. Testing was made using naive 
Bayes and L D A feature selection method. 

The first figure 5.4 shows that frontal lobe frequency features were the most dominant. 

Accuracy in frontal lobe for the waves separately. 
1.0 T 

Time-domain Frequency-domain 
Features 

Figure 5.4: Fronta l lobe and its accuracy for different waves and features. 

The weakest part turned out to be t ime-domain features. Its results are around 
50-60% accuracy, which was due to the fact that the classification was not successful 
(the same problem was mentioned here 5.1.3). F r o m my experiments, I discovered that i f 
the classifier does not receive sufficiently h igh-qual i ty data, it evaluates the entire test set 
w i th only one class, usually the one that is represented the most times i n the test set. This 
problem also happened wi th t ime-domain because there is usually more than a 50% chance 
that the classifier hit and guessed the correct label since the labels are approximately evenly 
spaced. 

5.3 Proposed Seature Selection Method 

A l l the experiments in the previous sections aimed to derive a useful method for selec­
t ion. Here i n this section is a summary of what the resulting solution looked like, as it 
consisted of several parts. 

• The first test found that the form of labels VA w i th the choice of only two classes was 
the most effective. The reason was that it was the simplest compared to the other 
methods and, therefore the easiest for both the selector and the classifier. 
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• A t the same time, this result was tested on several classifiers because the reference clas­
sifier should be the one that formed the best combination wi th the selector, and the re­
sulting accuracy is therefore unaffected only by a bad match. Gaussian naive Bayes 
had a best match wi th L D A classifier. 

• Accord ing to the assignment of the channels to their respective lobes, the frontal 
lobe stood out the most. After verification i n the literature [3] that frontal lobe is 
t ru ly significant as a source of information for emotion detection, I decided to use 
the frontal lobe itself as the pr imary source of features. 

F R O N T A L 
L O B E 

F E A T U R E S 

F R E Q U E N C Y 
F E A T U R E S 

L A B E L S 
0.1 

Feature selection 
L D A 

Feature 
classif ication 

NB 

Figure 5.5: Pipel ine of the final solution. 

• Overal l , the L D A selector showed the best result, so it became part of the final solution 
shown here 5.5. 

• In the combination of L D A and features from the frontal lobe, the features of P S D 
extracted from the frequency-domain E E G signal proved the most useful. 

The receiver operating characteristic curve 
1.0 . 

0.8 

2 0.6 

g; 0.4 

0.2 
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0.0 0.2 0.4 0.6 0.8 1.0 
False Positive Rate 

Figure 5.6: Receiver operating characteristic curve of accuracy score. 

M o d e l val idat ion took place i n the form of 2-fold cross-validation combined wi th h o l d -
cross-validation. Results may vary sl ightly depending on the randomizat ion of the train-
and test subset data. For this reason, the validat ion would be repeated twenty times. 
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Its output was the average accuracy from these ten trials and its variance. Values were 
rounded to four decimal places. The results achieved an average value of 0.9805 accuracy. 
Figure 5.6 shows evaluation of L D A feature selection by Gaussian naive Bayes in R O C 
curve. 

5.4 Discussion 

From the achieved results, it was also possible to read other important values, which are 
contained i n the table 5.3. The results were then compared wi th other studies dealing 
wi th the same topic and using same dataset D R E A M E R [23]. The study [13] used A;-nearest 
neighbors and random forest models in which binary classification of arousal and valence 
occurred, so the result was achieved under s imilar conditions. However, it may differ 
in the indicat ion of the labell ing method, when they could use a different range for low 
and high arousal and valence. 

In the study [13], they compared their results w i t h other studies and methods. Thei r 
results 1 turned out to be the best of a l l the previous ones. M y results were achieved wi th an 
L D A selector whose input ware binary labels (0 for low and 1 for high) and the mat r ix com­
posed of feature vectors. L D A output was evaluated by naive Bayes classifier w i th 2-Fold 
Cross-Val idat ion. Th is process was repeated several times, and the results were averaged 
to achieve the most accurate results. 

M y results N B K N N [13] R F [13] 
Valence Arousa l Valence Arousa l Valence Arousa l 

Reca l l 0.9543 0.9669 - - - -
Precision 0.9864 0.9986 - - - -
F l score 0.9693 0.9824 - - - -

Sensit ivi ty 0.9543 0.9669 - - - -
Specificity 0.9902 0.9990 - - - -
Accuracy 0 . 9 7 6 1 0 . 9 8 4 9 0.9216 0.9372 0.9365 0.9379 

Table 5.3: Table of achieved values. 

M y final solution had a positive result because my final results came out better than 
the study [13] that is compared in the table 5.3. M y result also contained addi t ional 
information such as recall, precision, F l - s c o r e , sensitivity and specificity. Therefore, my 
method was more realistic than the method proposed by [13] because I considered a l l 
evaluations of my solution. 

1https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155937/#B4-sensors-21-03414:-:text= 
5.3.1.7.20Arousal7.20and,the7.20best7.20one. 
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Chapter 6 

Implementation of M y Solution 

This chapter shows my implementat ion of the proposed solution from previous chapter. 
For reading simplification of my implementation, a l l variables were wri t ten i n snake case 
and a l l functions i n camel case. 

6.1 Dependencies and Structure of Files 

The scripts w i th my implemented solution use various libraries that must be installed 
for the program to run correctly. Therefore, I created a file to simplify the instal lat ion 
process of a l l dependencies named requirements.txt. F i l e requirements.txt contains 
al l required libraries. Command : pip i n s t a l l -r requirements.txt serves for running 
it. 

Some of the scripts have different usage and parameters and run differently. Therefore, 
I created README.md, where is a description to a l l scripts. 

Lis t of used libraries: 

• Scikit Lea rn [40], L ibrosa [35], Ma tp lo t l i b [20], m r m r selection [34], antropy [50], 
scipy [51], seaborn [52], numpy [17], pandas [48], mne [16], P y Q t 6 [29] 

6.2 Operations with Data 

A significant part of the implementat ion was managing mult iple different types of data. 
Th is section describes how measured E E G data and then their extracted features were 
stored and further converted into 2D arrays. 

6.2.1 S t o r i n g D a t a 

The original dataset provided a l l the information about measured data and the subject's 
self-evaluation i n .mat file structure. Due to using Py thon , I converted a l l E E G data 
into . csv files in M A T L A B . These files were loaded during preprocessing. 

Preprocessed signals w i th removed artifacts were saved into . f i f files. I chose the . f i f 
extension because I wanted to clearly dist inguish the clean data from the original . Every 
preprocessed file was stored i n a format: [number of subject]-ica. f i f . Saving and load­
ing . f i f file was wi th the help of mne l ibrary and its function mne.io.read_raw_fif (). 
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Feature extraction was made to extract t ime-domain and frequency-domain features 
separately for further part icular testing. Each of these two extraction outputs were stored 
in . csv files. The format of saving was [time/freq] _features [movie c l i p number] . csv. 

Labels 

Labels from the participant 's self-evaluation were converted into a format corresponding 
to a feature mat r ix described here 6.2.2. 

Subject 1, movie cl ip 1 Subject 2, movie cl ip 1 Subject 23, movie cl ip 1 

Table 6.1: Structure of storing labels into the I D array. 

Every label array contained only valence or only arousal labels. Except one case, when 
valence and arousal labels were combined together to create the quadratic dis t r ibut ion. 

Labels were extracted from .mat file into .csv file in a form where each row was 
one movie cl ip and every odd column was a valence label and an even column arousal 
label. The number of columns was 46 because two columns belonged to each subject. 
Script extract_labels .py converts the original subject's self-evaluation into 4.2 labell ing 
form. It takes labels.csv as an input parameter and returns VA[arousal/valence] .csv, 
N[arousal/valence] .csv and Qboth.csv. 

6.2.2 M a t r i x of Features 

In this case, it was not suitable to implement structures for storing data because every 
function from used libraries works wi th 2D array data types. The whole process of keeping 
data was continuously renewed when it led to applying some modification to the data. 
Th is modification was pre-processing, downsampling, normalizat ion, and transformation 
into the final feature matr ix for classification. After each, a new mat r ix was generated 
and was used whole, not as an indiv idual . 

Feature 1 Feature 2 Feature 10220 
Subject 1, movie cl ip 1 
Subject 2, movie cl ip 1 

Subject 23, movie cl ip 1 

Table 6.2: Structure of storing data into the 2D array. 

Dur ing feature selection and extraction, functions do not operate over rows, including 
ind iv idua l information for one subject, but instead over columns. This behaviour is because 
knowledge about the quali ty of one feature needs a spectrum of a l l its occurrences to de­
termine if the feature was important enough to be kept. Otherwise, the feature could be 
redundant or less cr i t ica l for classification than others. Accord ing to which concrete movie 
cl ip data were needed, the following data i n its own feature matr ix were concatenated 
together i n zero axis. 
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Matr ixes of calculated features were stored i n . csv files for quick and easy extraction 
into a numpy array or a data frame. For manipulat ion wi th . csv files was used csv l ibrary 
and pandas l ibrary. 

6.2.3 D i s p l a y i n g the Resu l t s 

Figures and charts were plotted w i t h matplotlib.pyplot and seaborn libraries. A l l figure 
were implemented i n plot_graphs .py and a r t i f acts_test .py() files. Functions that 
rendered ind iv idua l figure were called from functions implemented i n other files. Figures 
were used to display the results and simplify connections between them. To unify the colours 
used in the figures, a l l colors were represented by constants at the beginning of the file. 
Funct ion plotPCA99(), that ploted number of features needed to achieve 0.99 variance 
wi th P C A was used from [37]. 

In addi t ion to the graphic variant, the results were displayed using logs. Functions that 
contained unimportant side functions were implemented in help_functions .py. 

6.3 Pre—processing 

Preparat ion of a signal was done i n preprocessing. ipynb Jupi ter notebook, because for in ­
teractive work wi th the signal, it was more suitable. 

I created a raw array wi th mne. io. Raw Array () w i th info parameter including a l l 
channel names wi th their type EEG and sampling rate equal to 128 H z . T h i s conversion 
into the raw E E G array led to the possibil i ty of applying further signal transformation. 
A s a filter, I decided to use a band-pass filter through a f i r method. 

I used a command °/0matplotlib qt6 from PyQt6 l ibrary to plot an interactive figure, 
where I was looking for artifacts that led to inaccurate results. These segments marked 
as BAD_ had their starting index saved in raw. annotations. onset and durat ion of the BAD_ 
segment i n raw.annotations.duration. Based on this knowledge, the marked indexes 
were separated and deleted wi th np. delete () function. After these adjustments, the signal 
was ready for observation and extraction of features. 

To verify that preprocessing d id work and that artifacts were successfully removed, 
I compared calculated features from preprocessed data w i th not preprocessed. In a file 
a r t i f acts_test .py, functions were implemented the same way as i n 6.4, but w i t h the dif­
ference that only skewness and kurtosis were extracted from the signal's t ime domain. Two 
bar figure were plotted for comparison. 

6.4 Feature Extraction 

This section shows how feature extraction was implemented into a file named 
feature_extraction.py. The first part describes the main a lgor i thm for loading, calcu­
lat ing and storing data. 

F i r s t ly a l l files of subjects w i th E E G signals were loaded, converted into an array 
and stored in a array called ALL_eeg_signals, where every row contained one subject's 
data. Then , after cal l ing a function mainExtractionLoopO I applied band-pass filters 
using . f i l t e r ( ) function from mne l ibrary to pu l l out only certain wave's signal data. 
Ranges of single waves were established according to [22] and then regulated for cover­
age of a full frequency range 6.3. 
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Del ta 0.5-4.0 H z The ta 4-8 H z A l p h a 8-13 H z Be ta 13-26 H z G a m m a 26-40 H z 

Table 6.3: Consecutive waves. 

A temporary array l i s t _ f was appended every t ime new features were calculated. 
Calcula t ion of features took place i n this order: 

• B y smaller value of frequency, the waves were picked, and a l l features from channel 
AF3 were calculated. T h e n from channel F7, un t i l channel AF4. 

AF3 F7 F3 FC5 T7 P7 01 02 P8 T8 FC6 F4 F8 AF4 

Table 6.4: Sequence of channels. 

Fi rs t wave was replaced wi th the following one and, again features from a l l channels 
were calculated. 

A pseudo algori thm 1 visualizes the process. 

A l g o r i t h m 1 : The main process of extracting features. 
Input: Preprocessed signal i n - i c a . f i f files 
Output: M a t r i x of features i n .csv file 

init ial ize a mat r ix of features 
matrix_of_features = [] 
for every subject do 

apply band-pass filters to separate five waves 
for each wave do 

for each channel do 
data = wave.get_data() [channel] 
timeFeatures(data) 
frequency Features (data) 

end for 
end for 
add features into matr ix of features 

end for 
return mat r ix of features 

6.4.1 Features 

Classic t ime-domain features were calculated wi th numpy, s t a t i s t i c s , l i b r o s a libraries. 
Hjor th parameters were calculated from antropy l ibrary the function hj orth_params (x) 
that returned mobi l i ty and complexity. Except for act ivi ty and its theorem, which is similar 
to a theorem of variability, for this reason I used n p . v a r O function. To determine the num­
ber of peaks i n the signal, the f ind_peaks (x) function was used to return two parameters. 
The first one is an array of indexes where peaks were captured. The number of peaks was 
the length of the index array. 
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The others were calculated using functions: 

• np.mean(x), statistics.median(x), np.var(x), np.std(x), skew(x), 
kurtosis(x), np.ptp(x), np.sqrt(np.mean((x)**2)), np.min(x), 
np.max(x), sum(librosa.zero_crossings(x, pad=False)) 

Power spectrum density was extracted from data wi th scipy.signal.welch() method. 
P y t h o n l ibrary antropy provides functions to calculate t ime-domain entropies: 

• approximate ant. app_entropy(x) , permutat ion ant .perm_entropy (x) and sample 
ant.sample_entropy(x). 

6.4.2 P a r a m e t e r s 

Computat ions of entropies were significantly t ime-consuming compared to other compu­
tations included in feature extraction. To save calculation time, I decided to implement 
into file feature_extraction.py conditions as parameters. These parameters enabled 
a choice of which group of features should be calculated. The parameter a l l indicated 
that a l l features had to be calculated, time called calculat ion of only t ime-domain features 
and f req only frequency-domain. 

6.5 Feature Selection 

The implementat ion of methods for feature selection was divided into the implementat ion 
of the methods themselves and other related parts. 

The beginning was the implementat ion of P C A because its steps were further used 
i n other parts of the solution. I used this page [7] as a guide for correctly using the l ibrary 
called sklearn.decomposition. F i rs t , the implemented function PCAnumberO 
in selection_help_functions .py was used inside wi th the function PCA(n_components 
= 0.99), where the number 0.99 shows that it is necessary to keep only the number of com­
ponents that make up 99% of the variation. This is because there were many extracted 
features, and it was necessary to define from the beginning number (PCA(n_components) 
to l imi t them. The function pea.fit_transform() was used for P C A selection, which 
reduced the number of dimensions i n the data and left only relevant features. 

To implement P C A selection of numbers to achieve 0.99 variance 4.5 i n part 4.2.2, I used 
guide [37]. A code to plot 0.99 variance i n this function plotPCA99() in plot_graphs.py 
was used from [37] and edited. 

To implement the m R M R method, I used the mrmr l ibrary by Samuele Mazzan t i , who 
described it in the article [33]. Used function was mrmr_classif () , whereas a parameter 
I inserted the result from the P C A calculation of the function PCAnumberO from the file 
selection_help_functions .py. The other two parameters were data and labels related 
to them. For the appl icat ion of the Pearson correlation coefficient, I used the imple­
mentation from [49], namely the function named identify_correlated() , which can be 
found i n the file selection_help_functions .py. A t the same time, I used parts of his 
code and modified them as needed i n the function I called plotHeatmapO in the file 
plot_graphs.py. 

For the implementat ion of L D A , I used the sklearn.discriminant_analysis l ibrary, 
of which the function LinearDiscriminantAnalysis () was most needed, which created 
an L D A environment for transforming the feature mat r ix into the lower data dimension 
wi th . f i t ( ) and .transformO methods. 
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6.6 Learning Classifiers 

Implementation of the last step in the pipeline 4.1 of learning classifiers was i n the file 
f eature_classif ication.py. It consists of applying 2.9, which wraps up a l l the learning 
classifier's functions. K-fold was implemented wi th l ibrary sklearn.model_selection 
and its implementat ion was based on this [31] source. 

After spl i t t ing the matr ix of features into five parts, these parts rotate i n a A:-fold 
loop and make up X_train, X_test, y_train, y_test parameters for classifier learning 
functions. 

A l g o r i t h m 2: 5-fold cross-validation 
Input: M a t r i x of features as an array 
Output: Accuracy 

i : divide matr ix of features into 5 parts 
2: for every combination of parts do 
3: t ra in learning classifier models w i th X _ t r a i n , y _ t r a i n 
4: test learning classifier models w i t h X _ t e s t , y_test 
5: end for 
6: return Average accuracy from predicted data y _ p r e d 

• The l ibrary sklearn was used to implement the S V M learning classifier, S V M re­
quested two essential parameters. One of them is gamma, and the second is C. After 
creating S V M wi th svm. SVC (kernel, C, gamma) function, for t ra ining 
the . f i t ( X _ t r a i n , y_train) function was used. 

Predic t ion y_pred is a result of .predict (X_test). 

• KNeighborsClassif i e r () function from sklearn.neighbors was used for the imple­
mentation of ^-nearest neighbors method. The implementat ion process was the same 
as for S V M classification, but I used parameter n_neighbors insteed of parameter C 
and gamma. The n_neighbors influenced the durat ion of the search of data for pre­
dict ing labels. 

• The implementat ion of Gaussian Naive Bayes was not fundamentally different either. 
Funct ion GaussianNB from sklearn.naive_bayes setted a model for further fitting 
and testing. N o addi t ional parameters were used for GaussianNB(). 

The cr i t ical result came from this prediction used by sklearn l ibrary for metrics 
and checked by metrics. accuracy_score (y_test, y_pred). The results were achieved 
wi th the help of functions: precision_score(), re c a l l _ s c o r e ( ) , fl_score() and 
accuracy_score(). 

6.6.1 T e s t i n g L e a r n i n g Classif iers 

Gamma, C and n neighbor were able to affect the accuracy results. Therefore, for significant 
uninfluenced changes i n testing during the implementation of S V M and A:-nearest neighbors, 
I decided to make a test which determined the most called parameter for gamma and C. 
A file best_parameters .py returned four values. The first two were calculated from S V M 
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wi th RBF and the th i rd from S V M wi th linear kernel and the last one from £;-nearest 
neighbors w i th K parameter that represented number of neighbors. 

The overall implementat ion is on the same base as 6.6, but w i t h a difference that, 
in this case, was the resulting value of accuracy insignificant because it returned only 
the value of C and gamma parameters. There was no difference for S V M w i t h linear 
kernel, except no gamma parameters were presented. A process of searching for the best C 
and gamma match wi th the dataset is a for loop, where different combinations of values 
are successively applied to the classifier. The differences for gamma and C range from 0.001 
to 100.0 for S V M and for A:-Nearest Neighbors, K went in range 1 to 20. 

A new learning classifier is trained every t ime for new parameters. The test took 
the mat r ix of features and, according labels, called a selection into ind iv idua l channels.. 

6.7 Process of Selection and its Classification Evaluation 

A l l ind iv idua l parts of the solution had to be unified to evaluate the selection of features 
by the classifier. The incorporat ing a l l these parts shows pseudo-code of the a lgori thm 6.7. 

A l g o r i t h m 3: The overall process of selecting selection and classification. 
Input: M a t r i x of features as .csv file. 
Output: Classification accuracy. 

l : load feature mat r ix 
2: load labels 
3: normalize the 
4: pass matr ix of features and labels into selector 
5: evaluate feature selection 
6: return accuracy 

Usage of a l l parts together was i n the files: 

• dif f erent_method_test .py. This script tested two scenarios. The first one was 
a comparison of a l l feature selection methods (including different labels) w i th a l l fea­
ture classification methods to exclude the worst ones. Thus, a l l selection functions 
and classification algorithms were implemented here. Due to the fact that testing 
different label systems ( VA, N, Q) requires differently implemented methods for selec­
t ion, I divided them a l l into two parts. One of them for VA and ./V labels had functions 
named as FSmRMRO, FSPCAO, FSLDAO, channels and the other Q as FSmRMR4(), 
FSPCA4 0, FSLDA40, channels4() , because the functions worked wi th four labels. 

The second scenario took only naive Bayes for classification, due to its best results 
and compared feature selection methods one more time. The results were accuracies 
for different channels and lobes for each selection method. 

• waves_separately .py. In this file the impact of using waves separately was tested. 
L D A wi th N B ended up wi th the best score i n dif f erent_method_test .py. There­
fore, they are implemented here as the only methods. The files waves_separetely .py 
and proposed_solution.py d id not perform its process for a l l channels, but for only 
those located i n the frontal lobe 
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proposed_solution.py. This was the final solution, which was created from the re­
sults of previous tests. It had its own implementat ion of the L D A method because it 
differed significantly i n its parameters and return arguments. 

The necessary data files are loaded first. Then they were reduced to only specific 
features according to the location of the channel or their frequency band, which were needed 
for the next steps. The data were normalized and moved further into the selector. After 
selection, the resulting mat r ix is used as input to the classifier. The classifier evaluated 
the quali ty of the feature selection and the features used. The output was a f l o a t number 
that showed the accuracy of the selected channel and frequency band or a group of channels 
and frequency bands. 
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Chapter 7 

Results 

The ma in a im of this work was to design a feature extraction and feature selection model 
able to predict emotions. I studied E E G signals, their behaviour, and other related topics 
in the classifier learning specialization to develop this model. 

W h e n in i t ia l ly creating the proposal model, I considered the existing options and tried 
to use their great extent and combinations. F r o m this came several ideas for the model's 
design, which were then compared to each other during experiments. 

The best results were achieved by the Linear Discr iminant Analys is a lgori thm for fea­
ture selection and evaluation by the Naive Bayes classifier. After its separate implementa­
t ion and other tests, I reached a final result of 0.98 accuracy. Compared to other studies 
on this topic, I achieved noticeably better results. For this reason, my work also contributes 
to the further analysis of emotion detection. 

7.1 Improvement Proposal 

Evalua t ion of the results involves comparing predicted values w i th defaults for testing. 
In this case, the subject's self-evaluation corresponded to the pr imary valence and arousal 
dis t r ibut ion because if the model can distinguish two classes w i t h such high accuracy, it 
could dist inguish any other more complex labels. M y solution would continue using this 
pr imary unit , which works w i th two classes, and assemble a structure from it w i t h more 
units, which would form a complex emotion detection process. Th is process would be able 
to distinguish ind iv idua l emotions precisely. 
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