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Abstract  

 

Banana (Musa spp.) is an important crop in the African Great Lakes region in terms of income 

and food security, with the highest per capita consumption worldwide. Pests, pathogens and 

environmental stress hamper sustainable production of bananas. Effort is being made to 

improve the East African highland bananas (EAHB) through conventional crossbreeding, but 

the selection cycle is too long. Improving the efficiency of selection in conventional 

crossbreeding is a major priority in banana breeding. Marker assisted selection (MAS) has the 

potential to reduce the selection cycle and increase genetic gain. However, the application of 

molecular tools has been hampered by the limitations inherent with the classical MAS tools and 

nature of traits in banana. While genomic selection can address some of the limitations of 

classical MAS, no report about its utility in banana is available to date. This Thesis provides 

the first empirical evidence on the performance of six genomic prediction models for 15 traits 

in a banana genomic selection training population based on genotyping by sequencing (GBS) 

data. The prediction models tested were Bayesian ridge regression (BRR), Bayesian LASSO 

(BL), BayesA, BayesB, BayesC and reproducing kernel Hilbert space (RKHS). The aim was to 

investigate the potential of genomic selection (GS) as a method of selection that could benefit 

breeding through increased genetic gain per unit time and cost. Trait variation, the correlation 

between traits and genetic diversity in the training population were analyzed as an essential first 

step in the development and selection of suitable genomic prediction models for banana traits. 

A training population of 307 genotypes consisting of EAHB breeding material and its progeny 

was phenotyped for more than 15 traits in two contrasting conditions for two crop cycles. The 

population was also genotyped by simple sequence repeats (SSR) and single nucleotide 

polymorphism (SNP) markers. Clustering based on SSR markers revealed that the training 

population was genetically diverse, reflecting a complex pedigree background, which was 

mostly influenced by the male parents. A high level of correlation among vegetative and fruit 

bunch related traits was observed. Genotype response to crop cycle and field management 

practices varied greatly with respect to traits. Fruit bunch related traits accounted for 31–35% 

of principal component variation under low and high input field management conditions. The 

first two principal components accounted for 50% of phenotypic variation that was observed in 

the training population. Resistance to black leaf streak (Black Sigatoka) was stable across crop 

cycles, but varied under different field management depending on the genotype. The best cross 

combination was 1201K-1 × SH3217 based on selection response (R) of hybrids. The predictive 
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ability of genomic prediction models was evaluated for traits phenotyped over two crop cycles 

and under different cross validation strategies. The 15 traits were grouped into five categories 

that included plant stature, suckering behaviour, black leaf streak resistance, fruit bunch and 

fruit filling. Models that account for additive genetic effects provided better predictions with 

12 out of 15 traits. The performance of BayesB model was superior to other models particularly 

on fruit filling and fruit bunch traits. Reproducing kernel Hilbert space model fitted with 

pedigree and marker data (RKHS_PM) produced mixed results with the majority of traits 

showing a decrease in prediction accuracy. Although RKHS models account for dominance and 

epistasis, heterosis is another non-additive genetic factor that affects prediction accuracy in 

bananas.  Models that included averaged environment data for crop cycle one and two were 

more robust in trait prediction even with reduced numbers of markers. Accounting for allele 

dosage in SNP markers (AD-SNP) reduced predictive ability relative to traditional bi-allelic 

SNP (BA-SNP), but the prediction trend remained the same across traits. Since high correlation 

in prediction was observed within trait categories, only traits easy to phenotype should be 

considered for genomic predictions during the breeding phase. Although validation and more 

optimization of model parameters are still required, the high predictive values observed in this 

study confirmed the potential of genomic prediction in selection of best parents for further 

crossing and in the negative selection of triploid hybrids with inferior fruits to reduce the 

number of progenies to be evaluated in the field.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

Abstrakt 

Banánovník je důležitou plodinou v oblasti Velkých jezer ve východní Africe, která se 

vyznačuje nejvyšší spotřebou banánů na hlavu na světě. Banánovník má v této oblasti zásadní 

význam při zajišťování dostatku potravin a představuje významnou část příjmů místních 

obyvatel. Produkci banánů však snižují choroby a škůdci, a také abiotické stresy. Klasické 

šlechtění s cílem získat odrůdy s lepšími vlastnostmi je u této plodiny časově i technicky 

náročné. Výběr pomoci molekulárních markerů má potenciál šlechtění urychlit a usnadnit, 

bohužel avšak využití molekulárních metod naráží u banánovníku na řadu překážek. Některé z 

nich by mohla překonat genomická selekce, ale její využití u této plodiny dosud nebylo  

popsáno. Tato práce přináší první poznatky o úspěšnosti šesti genomických predikčních modelů 

pro patnáct vybraných znaků u testovací populace banánovníku. V práci byly testovány 

Bayesian Bridge Regression (BRR), Bayesian LASSO (BL), BayesA, BayesB, BayesC a 

Reproducing kernel Hilbert space (RKHS). Hlavním cílem bylo ověřit potenciál genomické 

selekce jako selekční metody, která by mohla významně urychlit a zlevnit šlechtitelské 

programy banánovníku. V práci byla také zkoumána variabilita jednotlivých hodnocených 

znaků a jejich korelace s genetickou diverzitou testovací populace, což byl nezbytný krok před 

vlastním výběrem vhodného predikčního modelu pro fenotypové znaky banánovníku. 

Testovací populace čítající 307 jedinců a zahrnující šlechtitelský materiál včetně potomstev 

byla fenotypována pro 15 znaků při pěstování za dvou kontrastních podmínek a po dvě 

kultivační období. Tato populace byla také genotypována pomocí SSR a SNP markerů. Analýza 

pomocí SSR markerů odhalila, že testovací populace je geneticky variabilní, což odráží její 

komplexní rodokmen, který je do značné míry ovlivněný samčím rodičem. Vysoká míra 

korelace byla pozorována u vegetativních znaků a vlastnosti trsu plodů. Chování jednotlivých 

genotypů bylo variabilní v průběhu dvou kultivačních obdobích a při odlišných podmínkách 

kultivace. Znaky související s vlastnostmi trsu představovaly 31 - 35% variability hlavního 

komponentu v kontrastních polních podmínkách. První dva hlavní komponenty byly odpovědné 

za 50% fenotypové variability pozorované v testovací populaci. Rezistence vůči chorobě 

“Black Sigatoka” se v průběhu kultivačních období neměnila, ale lišila se v různých polních 

podmínkách. Na základě hodnocení vlastností hybridů bylo nejlepší kombinací křížení 1201K-

1 × SH3217. Předpovídací schopnost prediktivních genomických modelů byla stanovena 

pomocí znaků hodnocených po dvě kultivační období a pomocí různých validačních strategií. 

Patnáct fenotypových znaků bylo sdruženo do pěti kategorií, které zahrnovaly vzrůst rostliny, 

odnožování, rezistenci k chorobě Black Sigatoka, vlastnosti trsu a vlastnosti plodu. Modely 
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zohledňující aditivní genetické efekty dávaly lepší předpovědi pro 12 z 15 znaků. Model 

BayesB dopadl nejlépe, zejména pro znaky ovlivňující trs a plod. Model Reproducing kernel 

Hilbert space, který zohledňoval rodokmen a data získaná analýzou markerů (RKHS_PM) měl 

sníženou prediktivní hodnotu. Ačkoli RHKS model zohledňoval dominanci a epistazi, heteroze 

je dalším neaditivním genetickým faktorem, který ovlivňuje přesnost predikce modelů. Modely, 

které zahrnovaly zprůměrovaná environmentální data za obě kultivační období byly ve svých 

předpovědích přesnější a to přesto, že se opíraly o méně markerů. Přihlédnutí k dózi alel u SNP 

markerů (AD-SNP) snižovalo prediktivní hodnotu oproti klasické bi-alelické metodě (BA-

SNP), ale trendy jednotlivých predikcí zůstaly stejné pro všechny znaky. S ohledem na vysokou 

korelaci predikcí u kategorií jednotlivých znaků by během šlechtění měly být do genomických 

predikcí zahrnuty pouze takové znaky, které jsou jednoduše fenotypovatelné. Ačkoli je nutná 

další validace a optimalizace parametrů modelu, vysoké prediktivní hodnoty pozorované v této 

práci potvrdily potenciál genomické selekce při výběru nejvhodnějších rodičů pro křížení. 

Zároveň umožňují negativní selekci triploidních hybridů s podřadnými vlastnostmi plodů a 

umožní tak snížení rozsahu potomstva, které musí být hodnoceno v polních podmínkách. 
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1 General introduction 

 

1.1 Origin of banana 

Bananas and plantains are large perennial herbaceous monocotyledonous plants collectively 

known as bananas. They belong to the order Zingiberales, family Musaceae and genus Musa. 

The genus Musa has about 70 confirmed species, which include edible, ornamental types and 

their wild relatives. It was previously divided into five sections: Australimusa (2n = 2x = 20), 

Callimusa (2n = 2x = 20), Eumusa (2n = 2x = 22), Rhodochlamys (2n = 2x = 22) and 

Ingentimusa (2n = 2x = 14) (Swennen and Vuylsteke 2001; Daniells et al. 2001; Wong et al. 

2002). However, the recent revision by Häkkinen (2013) recognizes only section Callimusa, 

which combines Australimusa and Callimusa, and section Musa, which combines Eumusa and 

Rhodochlamys. Section Ingentimusa was considered as part of section Callimusa. This revision 

is supported by evidence from molecular studies (Hřibová et al. 2011). 

 

Cultivated bananas are believed to have arisen by intra- and inter-specific hybridization 

between Musa acuminata (AA genome) and Musa balbisiana (BB genome) species at the area 

of origin (INIBAP, 1995). The two species belong to section Musa (formerly Eumusa). They 

are wild diploid bananas endemic in the Asia and Pacific regions, which includes: India, 

Southeast Asia, Malaysia, Indonesia, Philippines and Papua New Guinea (Sharrock et al. 2001). 

Most diversity is found in M. acuminata, which has several subspecies including, for example, 

M. a. ssp. burmannica, M. a. ssp. siamea, M. a. ssp. malaccensis, M. a. ssp. truncata, M. a. ssp. 

microcarpa, M. a. ssp. zebrina, M. a. ssp. errans and M. a. ssp. banksii (Fig 1). Bats 

(Glossophaga soricina) are one of the natural pollinators that could have facilitated the 

hybridization and seed dispersal process in the wild (Buddenhagen 2008). Later, female sterility 

developed such that even pollinated flowers produced seedless fruits (Simmonds, 1962). It is 

also likely that erratic meiosis within improved diploids followed by backcrossing gave rise to 

parthenocarpic triploids (De Langhe et al. 2010; Perrier et al. 2011). Human intervention 

accelerated the process of banana evolution and domestication. Hybrids that were seedless 

(parthenocarpic), palatable and had good agronomic traits were selected and grown near human 

settlements. 
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Fig 1. Geographical distribution of banana domestication areas is Southeast Asia (Perrier et al. 2011) 

 

The wide spread of many popular cultivated seedless bananas could have occurred by traders 

from Arabia, Persia, India and Indonesia who navigated the Indian Ocean from Southeast Asia 

(INIBAP 1995) (Fig 2). As they moved, they carried along with them suckers of different 

cultivars with a broad mixture of genomic combinations between M. acuminata (AA) and M. 

balbisiana (BB), and ploidy levels. These included diploid (AA, AB), triploid (AAA, AAB, 

ABB) and tetraploid (AAAB, AABB, ABBB) that were delivered to the coastal areas. Within 

these genomic combinations, we have East African highland cooking (matooke) and beer 

bananas (both AAA), dessert bananas (AAA and AAB), plantains (AAB), cooking bananas 

(ABB) and Mshare, or Mchare bananas (AA). Likewise, the Portuguese and Spaniards between 

16th and 19th century, carried bananas to all over tropical America (INIBAP 1995). However, 

several domestication pathways have been proposed (Perrier et al. 2011).  
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Fig 2. Distribution pathways of domesticated bananas from Asia Pacific to Africa and other tropical areas 

(Perrier et al. 2011) 

 

1.2 Importance of banana 

For several centuries, bananas have been an integral part of the farming systems especially in 

the tropics and sub-tropics. The crop is grown in 130 countries worldwide (Workman 2006; 

Evans and Ballen 2012). Bananas contribute tremendously to the livelihood of resource-poor 

populations especially in the sub-Saharan Africa by providing food security and income (FAO, 

2010). Sub-Saharan Africa produces nearly a third of global banana production. The utility of 

banana depends on the genotypes and area. In the temperate countries, the most commonly 

consumed bananas are the dessert type (Cavendish, AAA). Cavendish banana is grown for 

export and it is a cash crop, thus a source of income for the exporting countries. The fruit are 

eaten when ripe yellow. However, in other countries, Pome, Silk, Mysore and Sukali Ndizi 

(AAB bananas) are also consumed as dessert bananas. Plantains are AAB bananas with high 

starch content and the fruit remains very firm even after ripening. They are mostly eaten after 

roasting and they make good chips as well.  

 

In East Africa, there are two main groups of bananas that are endemic in the region. The EAHB 

(AAA) and the Mchare (AA). They are grown in areas around Lake Victoria, the highlands and 

part of the rift valley where severe drought periods are not experienced during the year 

(Karamura 1998). In Uganda, Rwanda and Burundi, the per capita consumption of banana is 
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estimated at 400-600 kg per year, the highest in the world, indicating that the crop is a major 

staple in the region (Karamura et al. 1998). EAHB are divided into cooking (matooke) and beer 

bananas. The term matooke is synonymous to food in Uganda and these bananas are cooked 

when fresh green in different forms. However, during peak harvesting seasons, the surplus 

matooke is used for wine production in Western Uganda. The beer bananas are very astringent 

due to high tannin content (http://www.promusa.org/Uganda). They are allowed to ripen, juice 

is squeezed out of the pulp and fermented to make beer, hence the name beer banana, also 

known as Mbidde. The Mchare bananas have high starch content with firm pulp texture and are 

mostly roasted before eating. 

 

India is the highest producer of ABB cooking bananas. These bananas have starchy fruits and 

sometimes are cooked when ripe for example, Saba and Bluggoe. In East Africa, about 85% of 

produced bananas are consumed locally due to high demand and only a small percentage is 

exported (Ortiz and Swennen 2014). Bananas provide about 25% of food energy requirements 

for around 90 million people in East, West and Central Africa (Sharrock et al. 2001).  

 

1.3 Main banana production areas 

The highest production of bananas occurs in India followed by China and East Africa. Uganda 

in particular produces about 10 million metric tons per year (De Buck and Swennen 2016). East 

Africa is considered a secondary centre of banana genetic diversity harboring over 84 cultivars 

that are not found elsewhere in the world. It is believed that EAHB are a product of single 

hybridization event that were introduced by Arab traders at the East African coast way back in 

600 A.D (Karamura 1998) and over the time, several somatic mutations and selection pressure 

led to the origin of many distinct cultivars grown in the region (Kitavi et al. 2016). The EAHB 

subgroup (AAA) was named Lujugira-Mutika (Shepherd 1957). The accessions in Uganda have 

been grouped into five clone sets (Nfuuka, Nakitembe, Nakabululu, Musakala and Mbidde) 

based on end-use and morphological distinctiveness (Karamura 1998). The Mbidde clone set is 

used for beer production due to the astringency of fruit when fresh green while the rest of the 

clone sets are used as matooke.  

 

Banana plants grow with varying degrees of success in diverse climatic conditions, but 

commercial banana plantations are primarily found in equatorial regions comprising of the 
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humid tropics and subtropics. In the primary centre of genetic diversity (Asia and Pacific), 

several hundreds of different banana cultivars are grown alongside other wild uncultivated 

genotypes. In West Africa, especially in Nigeria and Cameroon, large fields of plantain cultivars 

are maintained (Ortiz and Vuylsteke 1994) as well as in Latin America. The Caribbean 

countries mostly grow the Cavendish bananas, which are mainly exported to Europe and United 

States, accounting for 13% of export banana (FAO 2014).  

 

1.4 Production challenges 

Reductions in productivity of landrace banana fields in various countries have been reported 

(Macharia et al. 2010). The causes are pests, pathogens and environmental stress (Jones, 2000; 

Biruma et al. 2007; Kumar et al. 2011, van Asten et al. 2011, Swennen et al. 2013). The major 

pests include banana weevils (Cosmopolites sordidus, Gold et al. 2004; Sadik et al. 2010) and 

the parasitic nematodes (Fig 3). Many nematode species have been associated with banana yield 

decline and amongst them are Radopholus similis, Helicotylenchus multicinctus and 

Pratylenchus goodeyi (Dochez 2004). These infect and damage banana roots that leads to 

toppling of plants due to poor anchorage.  

 

Bacterial, fungal and viral diseases affect bananas, causing varying degrees of yield loss (Jones, 

2000). For instance, banana bacterial wilt caused by Xanthomonas campestris pv. musacearum 

reduces crop yield by up to 100% (Biruma et al. 2007). Black leaf streak also known as Black 

Sigatoka is a disease caused by a fungus Pseudocercospora fijiensis previously known as 

Mycosphearella fijiensis, that affects banana leaves (ProMusa 2002) reducing yield by 30-50% 

(Rowe and Rosales, 1996). Fusarium wilt also known as Panama disease is a soil borne disease 

caused by a fungus Fusarium oxysporum f. sp. cubense. It caused significant losses in the 

banana export industry when large plantations of cv. ‘Gros Michel’ were wiped out in the 1940-

1960s (Stover 1962; Ploetz 2000). The export industry was revived when a banana cultivar 

called Cavendish was discovered to grow in areas where cv. ‘Gros Michel’ had been wiped out 

(Simmonds 1954). It was tested to be resistant to F. oxysporum f. sp. cubense (Foc) race 1 and 

race 2 and it replaced the cv. ‘Gros Michel’ as a commercial cultivar for global export markets. 

 

Foc is divided into four races that include race 1, race 2, race 3 and race 4. However, Foc race 

3 does not affect banana, but Heliconia species, which belongs to the same order as bananas 
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thus, only three races are important to banana (Czislowski et al. 2017). The order of races 

reflects the increasing pathogenicity of Foc, hence all cultivars that are susceptible to race 1 

and 2 are susceptible to race 4. Race 4 is further subdivided into the tropical race 4 (TR4) and 

sub-tropical race 4 (STR4). In East Africa, Foc race 1 affects ABB (Pisang Awak) and AAB 

(Sukali Ndizi) banana varieties but not the AAA (EAHB). The tropical race 4 (TR4) affects the 

commercial banana (cv. Cavendish), which replaced cv. ‘Gros Michel’ despite its resistance to 

other Foc races. Incidences of TR4 have been reported in Indonesia and Mozambique (Ploetz 

2015), but it is not yet known if the EAHB and other cultivars will resist, or succumb to TR4. 

Of late, banana bunchy top virus (BBTV) transmitted by Pentalonia nigronervosa (banana 

aphid), though first reported in 1889 in many Asian banana growing countries, is reported to 

affect areas of Rwanda, Burundi and parts of Democratic Republic of Congo including many 

other banana-growing areas. It is said to be more significant on plantains than EAHB (Kumar 

et al. 2011), causing significant yield decline in those areas.  

 

Among the abiotic constraints, limited rainfall (drought stress) reduces banana production 

especially in rain-fed agricultural systems. Since bananas are mostly grown in tropics and sub-

tropics, taking a global and long-term view, the availability of water is thought to be the most 

critical limiting factor for photosynthesis on dry land, and hence for agricultural production 

(van Asten et al. 2011). Bananas require more than 1500 mm/year of rainfall for optimal growth 

and yield, but in many areas the average annual rainfall is ≤ 1200 mm/year (Taulya 2015). 

Drought stress causes stomatal closure and has deleterious effects on numerous physiological 

processes. It reduces photosynthesis and damages the photosynthetic machinery of chloroplasts 

through a process known as photo-oxidation (Audran et al. 1998). Hence, the most productive 

plant communities are the ones best supplied with water (Öpik et al. 2005). Under situations of 

mild drought stress, production has been shown to increase if potassium supply is sufficient 

(Taulya 2015), but not many farmers in developing countries use fertilizers, or apply sufficient 

mulch in the banana fields. 

 

Cultivated bananas are vegetatively propagated, which limits gene flow and recombination, and 

hampers their potential to evolve and adapt to the changing environmental (biotic and abiotic) 

pressures (Myles 2013). Although the improvement of agronomic practices can lead to higher 

yield (Ndabamenye et al. 2012), sustainability is limited. Breeding for resistant cultivars is the 

only sustainable solution to banana production constraints (Simmonds 1986; Rowe 1990).   
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Fig 3: Main production constraints affecting East African highland banana. Banana field (A) infected with 

black leaf streak disease spreads spores from infected leaves (B) to a healthy plantation (D). Photosynthetic area 

is reduced by increasing leaf senescence, which affects yield. Banana fruit from plants infected by bacterial wilt 

(C) are rotten and not edible. The inoculum from infected plants is transmitted to the young health plants through 

farm tools and insects. R. similis (H) burrows into the banana roots causing necrosis (G). Plant anchorage into the 

soil and nutrient uptake are reduced, which lead to toppling (E). The adult banana weevil (J) lays eggs into the 

banana pseudostem, which hatch into larvae (I). The larvae make tunnels into the corm (F) that impede nutrient 

movement and weaken the attachment of pseudostem to the corm, resulting in plant snapping.  
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1.5 History of banana breeding programs 

Several inter- and intra-specific hybridization events that took place in the wild were facilitated 

by natural pollinators. They gave rise to hybrids that had lost many of the wild characteristics 

and had attributes attractive to humans such as high yield, plant vigour, seedlessness and 

palatability of fruits (Simmonds 1962). The ability of man to select and domesticate the best 

hybrids was the most primitive and by far the most successful method of banana breeding. The 

selected cultivars were clonally propagated and spread over a wide area across the world 

(Perrier et al. 2011). Rapid evolution for better adaptation of the selected cultivars has been 

limited under nature’s dynamic forces because of three main reasons: (i) most of the selected 

hybrids are sterile/partially sterile (Heslop-Harrison and Schwarzacher 2007), (ii) banana 

propagation and distribution is by vegetative means (Zohary 2004), and (iii) male fertile 

diploids are not grown in farmers’ fields. Changes in the environment have increased pests and 

pathogens pressure making most cultivars susceptible. 

 

The first breeding program was initiated in 1922 in Trinidad and later in 1924 in Jamaica. 

However, the first successful breeding program to release improved, farmer-acceptable hybrids 

was in Honduras, founded in 1984 called Fundación Hondureña de Investigación Agrícola 

(FHIA). In addition to FHIA, relatively few crossbreeding programs have been established in 

the world that are active and these include the International Institute of Tropical Agriculture 

(IITA) in Nigeria where research on banana/plantains started in1976, but the actual breeding 

started in 1987 (Ray 2002). In Uganda, IITA breeding work to improve the EAHB was initiated 

in 1994 by the late Dirk Vuylsteke (Vuylsteke, 2001). This is done in collaboration with the 

National Agricultural Research Organization (NARO). Since 2011, IITA extended its breeding 

activities to Arusha in Tanzania where breeding of Mchare bananas is ongoing. In Brazil, the 

Empresa Brasilliera de Pesquisa Agropecuaria (EMBRAPA) was established in 1982 with the 

main focus on improving the Pome and Silk, ‘AAB’ bananas. In France, the Centre de 

Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) 

began in 1983. It has stations in the Caribbean (Guadeloupe and Martinique) and Cameroon 

with their main offices in Montpellier. They focus on plantains and other banana types with the 

exception of EAHB and Mchare. Another active breeding program that was initiated as part of 

the agreement between the Ministers of Research and Development for West and Central 

African countries in 2001 is the Centre Africain de Recherches sur Bananiers et Plantains 

(CARBAP) in Cameroon, which focuses more on plantain improvement. Other institutions such 



9 
 

as Bioversity International hosted by Katholieke Universiteit Leuven, Belgium, support the 

activities of these major breeding programs by maintaining the world’s banana germplasm 

collection, called the International Musa Germplasm Transit Centre - ITC (Ray 2002; Dochez 

2004; Lorenzen et al. 2010).  

 

1.6 Breeding strategies 

Three main strategies are used in banana improvement. When natural sources of resistance are 

available within the germplasm pool, conventional crossbreeding is used (Persley and George 

1996, Ortiz and Swennen 2014). This strategy is simple and requires skills in phenotypic 

variation, taxonomy and genetics, but it is costly, labour intensive and time consuming due to 

the long selection cycle. Use of doubled haploids (Umber et al. 2016) and autotetraploids from 

chromosome doubled diploids (do Amaral et al. 2015) to fix important traits and reduce the 

selection cycle are practiced in conventional crossbreeding, but on a small scale.  

 

The second strategy is marker assisted selection (MAS). In this approach, mapping populations 

from two parents with contrasting phenotypes are developed. The population is genotyped and 

phenotyped to identify DNA loci and markers that co-segregate in the presence, or absence of 

the trait. If the markers and loci controlling the trait are in linkage disequilibrium, then the 

breeder can use these markers to track the trait of interest in breeding populations (Collard et 

al. 2005). This approach is sometimes limited by the cost of marker development, high cost of 

assays for large populations, lack of good mapping populations for agronomically and 

economically important traits, and the need for technical capacity and modern infrastructure.  

 

When natural sources of resistance are not available or have not been identified yet in the 

species germplasm, then genetic transformation remains the only strategy of choice (Tripathi et 

al. 2010). This involves the introduction of foreign genes into the target organism. However, 

this technology is limited to traits that are controlled by a single gene, or few genes with major 

genetic effects. Use of genetic engineering approaches to quantitative traits has not been done 

in banana.   
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1.6.1 Constraints in conventional crossbreeding of bananas 

Conventional banana crossbreeding starts with the identification of the right parents to cross. 

At flowering, hand pollination is done. Pollen from a fertile diploid is rubbed onto stigma of 

newly opened female flowers every morning. It is hard to predict the outcome of crosses 

because of limited knowledge about the genetics of parental clones and how traits are inherited. 

The success of conventional crossbreeding relies on large numbers of hybrids from which 

selection is made (Ortiz and Swennen 2014). The hybrids generated come from several cross 

combinations of parental clones that differ in ploidy (Fig 4). The erratic meiosis of polyploids 

causes production of gametes with unpredictable chromosome constitution. While some 

gametes are haploid, others carry unreduced number of chromosomes, or additional 

chromosomes leading to variable ploidy levels and aneuploids in hybrids. Flow cytometry has 

been used to ascertain the ploidy level in bananas (Doležel 1997). A flow cytometer is used to 

measure the fluorescence intensity of cell nuclei stained by a DNA fluorochrome such as 

propidium iodide (PI), or 4´,6-diamidino-2-phenylindole (DAPI). As the fluorescence is 

proportional to DNA amount, the assay is suitable for ploidy estimation. 

 

 

Fig 4. Crossbreeding scheme for improvement of East African Highland bananas showing crosses involving 

parents of different ploidy levels 

 

Getting many hybrids in banana breeding is a challenge due to partial, or complete sterility of 

cultivars that have to be improved (Ssebuliba et al. 2006). This is further complicated by low 
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embryo germination (Ssebuliba et al. 2005). Banana seeds do not readily germinate when 

planted directly in the soil, except for the wild species. Thus, banana breeding programs use in 

vitro embryo rescue techniques to increase the germination rate to about 30-40 % of seed 

embryos using artificial medium (Vuylsteke and Swennen 1992) (Fig 5). Despite the difficulty 

of getting seeds from banana crosses and having embryos germinate in vitro, about 90 % of 

hybrids are never selected and advanced from early evaluation trial (EET) to a preliminary yield 

trial (PYT) because a majority do not bear edible fruit, or show other shortcomings. This 

problem is not unique to banana only, but has been encountered in other crops, for example, 

99.99 % of the 52,000 apple seedlings were discarded after 26 years of evaluation by Dresden-

Pillnitz, a Germany apple-breeding program (Ignatov and Bodishevskaya 2011).   

 

 

Fig 5. Conventional cross breeding steps of EAHB. The disease susceptible triploid EAHB (A) is crossed with 

a disease resistant wild diploid (B). At flowering, the female flowers of EAHB are hand pollination (C) by mature 

pollen from the male flowers (D). The pollinated fruit bunch (E) is covered with a polyethene bag to exclude other 

sources of pollen. After all the hands are pollinated, the bunch cover is removed and the fruit bunch is allowed to 

mature, harvested and ripened before seed extraction (F). The seeds are cracked to extract the embryos (G), which 

are germinated on artificial medium (H). The germinated embryos are transferred onto the proliferation medium 

A B 

H 
EET 

C D 

E F 

G 

I J 
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(I) after which they are cloned and transferred onto the rooting medium (J). The resulting plantlets are hardened 

in a screenhouse after weaning before they are planted in the early evaluation trial (EET). 

 

Banana improvement progress is assessed by phenotypic evaluation of hybrids at various levels 

(Ortiz and Vuylsteke 1995b; Ortiz 2016) (Fig 6). The evaluation levels include EET, PYT, 

advanced yield trial (AYT) and multilocational evaluation trial (MET). Newly generated 

hybrids are first planted in the EET and the selection is based on the ability of a genotype to 

produce a good fruit bunch and host plant resistance to black leaf streak for at least two crop 

cycles. The number of replications per genotype in EET range from one to three. Usually, less 

than 10 % of the genotypes are selected from EET. The selected genotypes are multiplied so 

that each genotype is planted in two, or three single row plots of five replicates in a PYT (Ortiz 

and Vuylsteke 1995b). Data on both yield and agronomic traits are collected for at least two 

crop cycles. The quality of fruits is also used to select genotypes that are advanced to AYT, or 

MET. Unlike EET and PYT, which are on-station trials, AYT and MET are off-station trials, 

that involve more replications, blocks and different agroecological zones. The purpose of AYT 

and MET is to evaluate the stability of genotype performance under different environmental 

conditions because the genotype by environment (G × E) interaction affects trait expression 

(Taghouti et al. 2010; Manrique and Hermann, 2000). These trials are done in collaboration 

with farmers and the selection of best genotypes is more farmer-centred as acceptability of 

hybrids is the key in the final step of cultivar release. Each banana plant occupies an area of 6 

m2, or 9 m2, depending on the spacing (Tushemereirwe et al. 2015). Hence, going through all 

these steps requires a lot of land. The many evaluation steps make the time required for cultivar 

development to be very long (Tenkouano et al. 1999).  

 

1.6.2 Achievements and improvement strategies 

To date, conventional banana crossbreeding has delivered a few improved cultivars to farmers 

from different breeding programs, but the rate is too low to cope with the demand. For example, 

the FHIA breeding program released some hybrids that have been widely distributed due to 

their high yield and resistance to Fusarium wilt, EMBRAPA in Brazil released some Pome and 

Silk hybrids resistant to Fusarium wilt and some are currently being tested in East Africa. The 

IITA-NARO breeding program has also released a few cooking banana hybrids and about 26 

more hybrids (NARITA) are still under regional evaluation (Tushemereirwe et al. 2015). 
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Methods that can increase seed set and germination, and speed up the selection process are 

required to improve the breeding efficiency in banana.  

 

To increase selection speed in conventional breeding, the genetic breeding values of parents 

should be known so that target crosses are made. A reliable and cost-effective selection system 

should be used to select the best hybrids with targeted traits prior to field evaluation. Marker 

assisted selection, MAS (Choudhary et al. 2008) is one way to improve conventional breeding 

efficiency.  Reports on the use of MAS in banana breeding are limited because of two major 

challenges: (1) many traits, especially those of agronomic and economic importance may be 

controlled by many quantitative trait loci (QTL), each having a small effect on the phenotype 

(Asíns 2002; Collard et al. 2005; Choudhary et al. 2008), and (2) the difficulty to identify all 

markers across the entire genome that are linked to QTL (Guo et al. 2011) due to the cost, labour 

involved in marker assays and complexity of polyploid genomes. Details on these issues and 

how markers have been used in banana research are discussed in the next section.  

 

In Uganda, the IITA-NARO collaboration is focused on improving the EAHB that are 

susceptible to both biotic and abiotic stress (Lorenzen et al. 2010). The choice of breeding 

parents currently used was based mostly on field and screen-house phenotypic characterization 

of available germplasm to identify sources of host plant resistance in diploids and female 

fertility within the different clone sets of the EAHB (Ssebuliba et al. 2005, 2006; Karamura 

1998). Since then, several hybrids have been generated from crosses involving Calcutta 4 (wild 

diploid), improved parthenocarpic diploids, EAHB and tetraploids with EAHB background. 

Due to partial sterility, polyploidy and the low percentage of germinating embryos in tissue 

culture, few segregating populations have been generated from a single set of parents to allow 

molecular characterization and mapping of all important traits (Mbanjo et al. 2012a; Pillay et 

al. 2012; Xu 2010), but efforts are being made to generate more mapping populations. However, 

many hybrids with related background are generated that can constitute a training population 

for genomic predictions. 

 

Application of molecular markers to assess breeding progress is still limited in the program 

although simple sequence repeat markers are used in genotyping. The new developments in 

genotyping such as genotyping by sequencing (Elshire et al. 2011) and MAS such as genomic 

selection (GS) (Meuwissen et al. 2001), should be explored to reduce selection cycle and 

increase product output in a cost-effective way. This Thesis therefore focuses on the 
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development and evaluation of genomic prediction models based on SNP markers derived from 

genotyping by sequencing approach and phenotypic data from related hybrids of mixed ploidy 

levels and their parents as a training population. The training population was chosen to mirror 

the breeder’s population so that inferences can easily be made as opposed to the classic bi-

parental diploid mapping populations commonly used in QTL analysis (Heffner 2009). The 

population consisting of 307 genotypes was phenotyped under low input and high input field 

management conditions for two crop cycles. Results of experiments are summarized in 

publications under section six. It is expected that the information provided in this Thesis will 

be useful in improving the efficiency of banana breeding. 
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2 Role of molecular markers in banana research 

2.1 General overview 

Cultivated bananas are susceptible to pests, pathogens and environmental stresses, causing yield 

reduction that leads to food insecurity (Stover 1962; Ploetz 2000; Gold et al. 2004; Biruma et 

al. 2007; Tenkouano et al. 2012; Tripathi et al. 2015). Whereas chemical intervention is possible 

to some extent, it is not a sustainable solution, given the risk of environmental pollution and the 

economic burden on small-scale farmers. Thus, breeding for resistant banana cultivars is the 

most sustainable solution (Rowe and Rosales 1993).  

 

Molecular markers play a significant role in identification of genomic loci controlling important 

traits in plant breeding (Brown et al. 2017). Markers that are linked to traits of interest are 

determined by linkage and association analysis. Estimation of genetic diversity facilitates gene 

introgression by choosing parents that are likely to give better genetic gain. The introgression 

process is quickened by marker assisted selection. Markers are also helping in taxonomic 

validation, cultivar identification, and characterization of evolutionary and speciation events. 

Molecular markers reduce the selection cycle in conventional cross breeding as compared to 

the classic phenotypic selection (Fig 6). The use of molecular markers shows promise in 

improving the efficiency of plant breeding (Ortiz and Swennen 2014), but in banana breeding 

programs, their utility is currently limited.  

 

The release and improvement of a draft genomic sequence of the double haploid M. acuminata 

cv. Pahang, A genome (D'Hont et al. 2012; Martin et al. 2016) and a draft sequence of M. 

balbisiana cv. ‘Pisang Klutuk Wulung’, B genome (Davey et al. 2013) made a significant 

contribution to marker development in banana. Numerous gene transcript data consisting of 

46,665 expressed sequence tags (EST) and 35,752 annotated genes associated with M. 

acuminata and M. balbisiana are publicly available (Li et al. 2013; Wang et al. 2012a; 

https://www.ncbi.nlm.nih.gov/gquery/?term=Musa [retrieved on 14 August 2017]). Several 

papers have reported on the utility of molecular markers in banana research and these are 

summarized in Table 1.  

 

https://www.ncbi.nlm.nih.gov/gquery/?term=Musa
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Fig 6: Approaches to hybrid selection in banana breeding program. (A) the classical phenotypic selection of 

banana hybrids and (B) integrated genomic selection and phenotypic selection approach being investigated. 
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Table 1. Summary of molecular markers that have been used in banana research. 

Marker application Marker type Reference 

Molecular systematics  Isozymes, SSR, 

DArT, RFLP, ETS 

and ITS 

Simmonds (1966); Bhat et al. (1992); 

Janssen and Bremer (2004); Kress and 

Specht (2005, 2006); Boonruangrod et 

al. (2009); Perrier et al. (2011); 

Hřibová et al. (2011); Christelová et 

al. (2011b); Čížková et al. (2015)  

Genetic diversity studies 

 

 

 

 

 

 

Isozymes, RAPD, 

SSR, AFLP, RFLP, 

SRAP, DArT and 

MSAP 

Bhat et al. (1992); Jarret et al. (1993); 

Bhat et al. (1995); Kaemmer et al. 

(1997); Tenkuoano et al. (1999); 

Crouch et al. (1999); Crouch et al. 

(2000); Pillay et al. (2001); Ude et al. 

(2002); Ude et al. (2003); Creste et al. 

(2004); Noyer et al. (2005); Wang et 

al. (2007); Risterucci et al. (2009); 

Opara et al. (2010); Onyango et al. 

(2010); Wei et al. (2011); Nyine and 

Pillay (2011); Valdez-Ojeda et al. 

(2014); Kitavi et al. (2016); Karamura 

et al. (2016); Christelová et al. (2017) 

Detection of mutant 

clones 

RAPD Newbury et al. (2000); Martin et al. 

(2006)  

Genome characterization  RAPD, RFLP, ITS, 

dCAPS, IRAP and 

SCAR 

Pillay et al. (2000); Nwakanma et al. 

(2003); Nair et al. (2005); de Jesus et 

al. (2013); Noumbissié et al. (2016); 

Mabonga and Pillay (2017) 

Cultivar identification 

and pedigree tracking 

Isozymes, RFLP, 

SSR, RAPD, EST-

SSR and ISSR  

Horry (1988); Howell et al. (2004); 

Raboin et al. (2005); Venkatachalam 

et al. (2008); Horry (2011); Hippolyte 

et al. (2012); Mbanjo et al. (2012a) 
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Linkage analysis  Isozyme, RAPD, 

RFLP, AFLP, SSR 

AS-PCR and DArT  

Fauré et al. (1993); Hippolyte et al. 

(2010); Mbanjo et al. (2012b)  

Genome-wide 

association studies and 

marker-assisted selection 

Isozymes, dCAPS 

and SNP 

Umber et al. (2016); Noumbissié et al. 

(2016) Sardos et al. (2016); 

AFLP – amplified fragment length polymorphism, AS-PCR – allele specific-polymerase chain reaction, DArT – 

diversity array technology, dCAPS – derived cleaved amplified polymorphic sequences, EST – expressed 

sequence tags, ETS – external transcribed spacer, MSAP – methylation-sensitive amplified polymorphism, IRAP 

– inter retrotransposon amplified polymorphism, , ISSR – inter simple sequence repeats, ITS – internal transcribed 

spacer, RAPD – randomly amplified polymorphic DNA, RFLP – restriction fragment length polymorphism, SCAR 

– Sequence characterized amplified region, SNP – single nucleotide polymorphism, SRAP – sequence-related 

amplified polymorphism, SSR – simple sequence repeats 

 

2.2 Gene markers  

Useful markers for molecular breeding are those that are tagged to genes having significant 

contribution to traits of interest (Collard et al. 2008). When a gene and a marker are in linkage 

disequilibrium, it allows for the screening of plant germplasm, or hybrid lines at the earliest 

stages of plant improvement. The association of these markers with important traits can be 

identified through classical linkage analysis, genome-wide association studies, or candidate 

gene approaches. For example, Miller et al. (2008) identified 50 distinct nucleotide binding site 

leucine rich repeats (NBS-LRR) linked to resistance gene analogs in cv. ‘Calcutta 4’. Based on 

these findings, Emediato et al. (2009) were able to design degenerate primers that could amplify 

sequence analogs for resistance genes to black leaf streak disease in M. acuminata cv. ‘Calcutta 

4’ (resistant) and M. acuminata cv. ‘Pisang Berlin’ (susceptible). 

 

Similarly, Wang et al. (2012b) identified randomly amplified polymorphic DNA (RAPD) 

markers that could distinguish between cultivars resistant and susceptible to Foc TR4 using 

pooled DNA from resistant and susceptible cultivars. Two RAPD markers were converted to 

sequence characterized amplified regions (SCAR) markers, which could be amplified in Foc 

TR4-resistant banana genotypes, but not in the susceptible genotypes. This work continues at 

the National banana program in Brazil (EMBRAPA) and shows a great promise in providing 

an early screen for resistance to Foc TR4 (Silva et al. 2016). 
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M. balbisiana (B genome) is a good source of resistance, or tolerance to biotic and abiotic 

stresses (Vanhove et al. 2012; Ravi et al. 2013). However, it harbors endogenous banana streak 

virus (eBSV), which is activated when plants are stressed, or upon hybridization (Harper et al. 

1999; Lheureux et al. 2003). This causes the limited use of any B genome containing accession 

in banana breeding. Lheureux et al. (2003) mapped the eBSV-expressed locus on a linkage 

group using amplified fragment length polymorphism (AFLP) markers. In a different study, 

Noumbissié et al. (2016) used simple sequence repeat (SSR) markers and eBSV-specific PCR 

markers to identify hybrids containing the B genome that were free of eBSV. These hybrids 

resulted from crossing a tetraploid accession (AABB) with a diploid accession (AA). They 

found that chromosome translocation and recombination had produced 24 offspring (13% of 

the population) that did not contain eBSV. Using derived cleaved amplified polymorphic 

sequences (dCAPS), Umber et al. (2016) identified the existence of infectious and non-

infectious BSV alleles. By chromosome doubling a haploid plant with B genome 

(homozygosity checked using SSR markers), they produced lines, which were free of the 

infectious BSV alleles. The two studies give a hope for the possibility of using diagnostic 

markers and producing eBSV-free B genome hybrids that could be useful in banana breeding. 

 

2.3 Linkage and association mapping 

Linkage and association mapping are the basis of MAS in plant breeding, but have not gained 

significant practical application in banana breeding. This could be attributed in part to 

limitations inherent with the marker technologies themselves (Foolad 2007; Pillay et al. 2012), 

polyploid nature of banana, and the difficulty in developing and maintaining banana genetic 

mapping populations. Earlier attempts in linkage and association mapping used F1 and F2 

diploid populations, which limited the resolution and accuracy of mapping quantitative trait loci 

(QTL) affecting important traits (Asíns 2002). Efforts should be made to develop double 

haploid populations, or recombinant inbred lines to facilitate QTL mapping in banana (Pollard 

2012).  

 

Genetic linkage maps are useful in gene identification and understanding the inheritance pattern 

of traits (Korte and Farlow 2013). Linkage maps are derived from genotyping bi-parental 

segregating populations. An important prerequisite is that the two parents from which the 

segregating population is derived are significantly different in the trait of interest. Moreover, 
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the markers used to genotype the population should show the segregation and population 

structure, and should be distributed on all chromosomes. Proper and accurate collection of 

phenotype data is critical if linkage maps are to be of any value. To avoid bias in phenotyping, 

data from multiple years and locations should be collected.  

 

To date, a limited number of Musa genetic linkage maps have been reported (Table 2). This is 

because cultivated bananas are mostly triploid and partially, or completely sterile (Ssebuliba et 

al. 2006), which makes it difficult to generate adequate study populations. Indeed, often they 

lack genetic variability for the most important traits, which hinders construction of genetic 

linkage maps. All genetic linkage maps reported so far are from diploid segregating population.  

 

Table 2: Summary of banana genetic linkage maps currently publicly accessible  

Reference Popn type Popn 

size 

No. of 

markers 

Linkage 

groups 

Type of 

markers 

Segregation 

distortion 

(%) 

Fauré et al. 

(1993) 

F2 (SF265 × 

banksii) 

92 77 15 RFLP, 

isozyme 

and 

RAPD 

36 

Hippolyte et 

al. (2010) 

F1 (Borneo 

× P. Lilin) 

180 489 11 SSR and 

DArTs 

22 

Mbanjo et 

al. (2012) 

F1 (half-sib, 

6142-1 × 

8075-7 and 

6142-1-S × 

8075-7) 

139 316 15 SSR, 

DArTs 

and AS-

PCRs 

41 

 

 

The first genetic mapping population (Fauré et al. 1993) consisted of an F2 population of 92 

individuals derived from selfing an F1 hybrid (SFB5) that resulted from a cross between SF265 

and M. acuminata ssp. banksii. Seventy-seven loci consisting of RAPDs, Isozymes and RFLPs 

were placed on 15 linkage groups and covered 606 cM.  Segregation distortion was 36% of the 

mapped loci and was biased towards M. acuminata ssp. banksii. Hippolyte et al. (2010) 

published the most saturated map to date using an F1 diploid (AA) population created from a 
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cross between M. acuminata cv. Borneo and M. acuminata cv. ‘Pisang Lilin’. The map was 

constructed using 489 markers (including, SSR and diversity array technology, DArT) 

distributed across 11 linkage groups and covering 1197 cM. The segregation distortion of alleles 

was 22%. The most recent genetic linkage map is that of Mbanjo et al. (2012b). They used an 

F1 population consisting of two half sibs derived from crosses between M. acuminata hybrids 

and these were 6142-1 × 8075-7 and 6142-1-S × 8075-7. Two maternal (6142-1 and 6142-1-S) 

and one paternal (8075-7) maps were generated using DArT, SSR and AS-PCR markers. The 

most inclusive map was the paternal map with 316 markers that were distributed on 15 linkage 

groups covering 1004 cM. However, 41% of the allele loci showed segregation distortion. 

 

Association mapping (genome-wide association study, GWAS) offers the opportunity to link 

genetic markers and their location on genetic maps to phenotypic differences (Korte and Farlow 

2013). The advantage of GWAS is the non-reliance on bi-parental populations and the ability 

to capture both recent and historical recombination events (Borevitz and Nordborg 2003; Korte 

and Farlow 2013). Whereas linkage mapping requires recombinant inbred lines to achieve a 

good resolution, GWAS utilizes a panel of genotypes from unrelated population, or a population 

with known genetic substructure to identify associations between molecular markers that are in 

linkage disequilibrium with genetic loci affecting phenotypes.  

 

Genome-wide molecular markers such as SNP are preferred for GWAS. For example, Sardos 

et al. (2016) performed GWAS for parthenocarpy in banana. A panel of 104 diploid (AA) 

accessions was genotyped by sequencing (GBS) and 5,544 SNP markers were derived. The 

SNP markers were associated with the publicly available phenotypic data on parthenocarpy. 

Thirteen genomic loci were identified to be associated with parthenocarpy and female sterility. 

The genes identified in these regions were mostly related to growth regulators such as auxin, 

gibberellin and abscisic acid, whereas the others were involved in gametophyte development 

and one histidine kinase implicated in female sterility. Such studies need to be extended to other 

traits using more objective and empirical phenotypic data. 

In GWAS, the effect of each marker on the trait is estimated and markers with the smallest 

probability values (P-values) are considered to have a strong significant association with the 

trait (Korte and Farlow 2013). In order to limit the number of false associations between 

markers and traits, a Bonferroni correction is used. For example, if the confidence level is set 

at 95%, Bonferroni correction = 0.05 divided by the number of SNP markers analyzed. GWAS 

results are presented on Manhattan plots generated by qqman-package in R (R core team, 2017), 
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or in trait analysis by association, evolution and linkage (TASSEL) pipeline. The Bonferroni 

correction line on a Manhattan plot is placed at -log10 × Bonferroni correction value (Fig 7). All 

markers that are above the Bonferroni correction line are considered to be significantly 

associated with the trait.   

 

 

Fig 7. Manhattan plot generated in R using qqman package showing the Bonferroni correction line (red) 

and the location of markers associated with the trait under study. 

 

2.4 Genetic diversity studies 

Genetic diversity is indispensable in breeding and is perhaps the single most limiting factor to 

plant improvement. It is upon which breeders base their decisions to choose the parents to cross. 

Conventionally, phenotypic, or morphological characters associated with vegetative and floral 

structures of banana have long been used to estimate diversity and distinguish among cultivars 

(Karamura 1998). However, phenotypic characteristics are greatly influenced by genotype, 

environment and the interaction between genotype and environment (Batte et al. 2017). This 

limits the genetic gain achieved from crossbreeding when parents are chosen on the basis of 

morphological characteristics. Molecular markers have been used to supplement this effort and 

expand germplasm diversity analysis among various collections and representative populations 

displaying regional variation. A variety of molecular markers has been used in banana genetic 

diversity studies and they included isozymes, RAPD, AFLP, SRAP, RFLP DArT, MSAP and 

SSR (Table 1). 
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Results from different banana genetic diversity studies cannot be compared. Each study is 

unique in terms of population composition, type and number of markers used. However, the 

general consensus is that molecular diversity does not correlate well with phenotypic diversity 

(Crouch et al. 2000; Kitavi et al. 2016). The genetic variation explaining the substantial 

morphological variation among regional Musa landraces is still lacking despite the availability 

of numerous molecular markers. EAHB have been classified into five clone sets based on 

phenotypic characteristics (Karamura 1998). This grouping has not been supported by any of 

the molecular studies (Pillay et al. 2001; Kitavi et al. 2016; Karamura et al. 2016a). Hence, 

EAHB are considered to be a product of single hybridization event and the morphological 

differences observed are most probably a result of several somatic mutations, and selection 

events that led to many distinct cultivars (Kitavi et al. 2016).  

 

Markers can also be used to identify variation from sources where it has not been previously 

reported. In plantain landraces of West Africa, RAPD, SSR and AFLP markers showed very 

low polymorphisms (Crouch et al. 2000; Noyer et al. 2005). However, HpaII and MspI, MSAP 

profiles revealed three clusters that were not correlated with morphological differences in 

plantains (Noyer et al. 2005) and a subset of plantains from Cameroon was genetically distinct 

from others (Ude et al. 2003).  

 

Somaclonal mutation resulting from prolonged sub-culturing of plants in tissue culture and 

chimerism create diversity within cultivars. Molecular markers have been used to detect such 

variation. For example, Martin et al. (2006) were able to differentiate somaclonal mutant named 

CUDBT-B1 from the parent clone cv. ‘Grand Naine’ using RAPD marker S-20 (5’-

GGACCCTTAC-3’). The marker produced a unique 1650 bp band only in mutants. In 

plantains, analysis of 48 clones derived from a single meristem of cv. Agbagba using RAPD 

markers showed polymorphism within the clones. Field evaluation of these clones correlated 

well with their genetic clustering leading to a conclusion that cv. Agbagba comprised of 

periclinal chimera (Newbury et al. 2000).  

 

2.5 Genomic selection in banana  

QTL analysis is quite straightforward once one has a well-saturated linkage map and accurate 

phenotypic data. However, this applies to qualitative traits, or traits governed by few QTL with 
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major genetic effects such as pest and disease resistance (Asíns 2002; Heffner et al. 2009). For 

highly quantitative traits such as yield, or drought stress, QTL mapping becomes powerless due 

to the presence of many loci contributing to the trait, each with small-explained variance (Asíns 

2002; Collard and Mackill 2008). Even if these QTL could be identified, introgressing and 

selecting for them during breeding using MAS would be tedious. To overcome the above 

challenges, genomic selection (GS) that uses predictive models has been proposed with the 

prospect to reduce the selection cycle and increase genetic gain per unit time.  

 

Genomic selection (GS) is a form of MAS that utilizes high-density molecular markers such as 

SNP to estimate the genomic breeding value of a genotype using a statistical model (Meuwissen 

et al. 2001). The approach used to perform genomic selection is called genomic prediction while 

the unit of selection is called the genomic estimated breeding value (GEBV). In this approach, 

identification of individual QTL associated with a trait of interest is not necessary because QTL 

are assumed to be in linkage disequilibrium with at least one, or more SNP (Desta and Ortiz 

2014). Since generation of marker data is increasingly becoming cheaper than phenotyping, it 

is expected that GS will reduce breeding costs, increase selection intensity and accelerate 

breeding efficiency.  It is a well-established technique in animal breeding (Hayes and Goddard 

2010) and it is gaining popularity among plant breeders (Crossa et al. 2010; Lorenz et al. 2011; 

Ceballos et al. 2015; Crossa et al. 2016) with several publications in cereal breeding and fruit 

trees. GS has not been applied in bananas yet, but it is currently being investigated. More details 

on genomic selection are given in section three.  

 

2.6 Characterizing evolutionary and speciation events 

Identifying and utilizing progenitors of modern banana cultivars in breeding schemes provides 

potential sources of improved quality traits associated with important commercial cultivars. 

This provides bridges for gene transfer of traits such as host plant resistance to pathogens and 

pests as well as drought tolerance from wild relatives. Understanding how these modern 

cultivars arose may allow us to reconstruct them while also including source of resistance to 

major abiotic and biotic sources of stress (Perrier et al. 2011). Therefore, proper identification 

and classification of bananas both at morphological and more importantly at molecular level is 

very necessary. 
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Several studies have utilized isozymes, SSR, DArT, chloroplast (and mitochondria) DNA 

RFLP, 5´ external transcribed spacer rDNA (5´ETS rDNA) sequence information and various 

cytological techniques to elucidate the domestication pathways of bananas (Boonruangrod et 

al. 2009; Perrier et al. 2011). For example, through molecular analysis, the EAHB have been 

shown to be a product of three subspecies of M. acuminata (M. a. ssp. banksii, M. a. ssp. zebrina 

and M. a. ssp. malaccensis) while M. balbisiana and M. a. ssp. banksii are the founders of 

plantains (Boonruangrod et al. 2009; Perrier et al. 2011).  

 

The family Musaceae consists of domesticated edible and ornamental species, and their wild 

relatives. The Musaceae family consists of three genera including, Ensete, Musa and Musella 

(Janssens et al. 2016). Different classification systems in banana have been reported including 

molecular phylogeny. Isozymes such as esterase, acid phosphatase and catalase were used in 

the earlier classification of bananas (Simmonds 1966; Bhat et al. 1992). Christelová et al. 

(2011a, 2017) used 19 informative SSR markers to discriminate different levels of classification 

of Musa accession held at the International Musa Germplasm Transit Centre (ITC), Belgium.  

 

Internal transcribed spacers (ITS) of rDNA show genetic variation despite the evolutionary 

conservation of rRNA genes. This variation was used to assess the structure and genetic 

diversity of Musaceae family. Analysis of ITS1 and ITS2 sequences revealed that section 

Callimusa and Australimusa were in the same clade while Eumusa and Rhodochlamys formed 

the second clade of genus Musa (Hřibová et al. 2011). Results from intronic sequence analysis 

of single copy genes from Musa accessions supported the merger of Callimusa with 

Australimusa and Eumusa with Rhodochlamys however, the old classification is still widely 

used. Recent findings by Janssens et al. (2016) based on the analysis of four gene markers 

(rps16, atpB-rbcL, trnL-F and ITS) using Bayesian inference methods, gave further support for 

the merger of Callimusa, Astralimusa and Ingentimusa into one clade while Eumusa and 

Rhodochlamys formed the second clade.  In addition, the divergence time of Musaceae family 

and evolution of genus Musa were estimated to be 69 Mya and 51 Mya, respectively 

(Christelová et al. 2011b). These studies were expanded by using cytogenetics, ITS and SSR 

markers (Čížková et al. 2015). However, discrepancies in estimates of divergence time of 

Musaceae family and speciation of Musa are noted in various publication depending on the 

analysis method used (Janssen and Bremer 2004; Kress & Specht 2005, 2006; Janssens et al. 

2016). 
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2.7 Genome characterization, cultivar identification and pedigree tracking 

Four types of genomes are present in banana and these include A, B, S and T representing M. 

acuminata, M. balbisiana, M. schizocarpa and M. textilis, respectively (Swennen and 

Vuylsteke, 2001). Many cultivated bananas consist of one, or a combination of two genomes. 

The most common genomes within the edible bananas are the A and B genomes. Markers 

specific to these genomes allow determination of genomic composition of allopolyploids and 

track recombination event between genomes in hybrid progeny. For example, three RAPD 

Operon primers A17, A18 and D10 were used to distinguish between A and B genome 

composition in 40 banana accessions (Pillay et al. 2000), thus providing a quick means of 

genome characterization. Nwakanma et al. (2003) used PCR-RFLP on ribosomal DNA internal 

transcribed spacer (ITS) and identified markers that were specific for A and B genomes in 

bananas. Restriction digest of ITS-PCR products revealed a 530 bp fragment that was specific 

to A genome and two fragments of 350 bp and 180 bp that were specific to B genome and their 

intensity increased with increasing number of copies of B genomes in the accessions. 

de Jesus et al. (2013) used a combination of flow cytometry, PCR-RFLP based on ITS 

amplification products and SSR markers and confirmed the genomic constitution of 94.6% of 

the total accessions maintained at the EMBRAPA ex situ collection. Their results supported the 

hypothesis of homeologue recombination between A and B genomes. One inter-retrotransposon 

amplified polymorphism (IRAP) marker designed from a long terminal repeat (LTR) of Musa 

Ty3- gypsy-like retroelement (M. acuminata Monkey retrotransposon, AF 143332) was 

identified to be specific for the B genome in bananas. The marker was used to classify the AAB 

and ABB cultivars in South India and clarified the genome composition of some cultivars that 

had been misidentified (Nair et al. 2005). Howell et al. (2004) developed nine RAPD primers 

that distinguished banana accessions from ITC based on genome composition and ploidy level 

following cluster analysis and these improved the precision of Musa identification and 

classification.  Mabonga and Pillay (2017), reported a SCAR marker developed from a RAPD 

amplicon that produced 500 bp and 700 bp fragments in A and B genomes, respectively. They 

concluded that the two genomes may not be fully differentiated as previously reported. 

 

Germplasm collection centres and breeding programs maintain records of accessions and 

crosses made, but mistakes arise due to human error either during in vitro sub-culturing, or field 

planting. Molecular markers have proven to be useful in cultivar identification and pedigree 

tracking. For example, cv. Cavendish and cv. ‘Gros Michel’ are popular dessert bananas that 
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arose from 2n restitution and n gamete donors. RFLP markers showed that the 2n donors could 

have been cvs. Samba, Chicame, or ‘Akondro Mainty’ because they shared almost the full allele 

profiles (Raboin et al. 2005). Cv. ‘Akondro Mainty’ was highly linked to cv. Cavendish based 

on isozyme, ribosomal gene spacer patterns and anthocyanin markers (Horry 1988; Horry 

2011), whereas cv. Chicame could have contributed the 2n gametes to cv. ‘Gros Michel’. 

However, it was not possible to identify a single n gamete donor that crossed with 2n gamete 

donor to produce the triploid cultivars, but putative candidates were cvs. Sa and ‘Khai Nai On’. 

Similar observation was made when a set of 22 SSR markers was used to analyze 561 Musa 

accessions (Hippolyte et al. 2012). SSR-based platform for clarifying identity and integrity of 

accessions conserved by the International Musa Germplasm Transit Centre (ITC) was 

established. Several accessions have been proven to be true to type while others were 

misidentified based on SSR and cytological results (Christelová et al. 2011a; Christelová et al. 

2017).   

 

Expressed sequence tags-SSR (EST-SSR) markers were used to clarify the genotype identity in 

a diploid segregating population from hybrid 6142-1 and 8075-7. The analysis revealed two 

half-sib populations instead of a single full-sib population (Mbanjo et al. 2012a). 

Venkatachalam et al. (2008) used a combination of RAPD and inter simple sequence repeat 

(ISSR) markers to identify and classify the South Indian cultivars. The authors were able to 

separate global cultivars such as cvs. Williams and Robusta from those that had limited 

geographical distribution and purely endemic to South India.  
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3 Genomic prediction 

3.1 Overview of genomic selection 

Clarification on usage of terms: Genomic selection is a method of making a decision on which 

individuals to choose from a population and advance in the breeding process based on the 

differences in their genomic merit (value). Genomic prediction is a statistical model-based tool 

that utilizes genomic data to estimate the genomic merit of an individual in a population. 

Therefore, genomic prediction is a means to genomic selection and the output of genomic 

prediction that facilitates genomic selection decision is called the genomic estimated breeding 

value (GEBV).  

 

Genomic selection (GS) based on genomic prediction models is a form of marker assisted 

selection (MAS), which allows selection of individuals that have not been phenotyped 

(Goddard and Hayes 2007; Goddard 2009). It utilizes dense markers that are spread across the 

genome to predict the genomic breeding value of an individual (Meuwissen et al. 2001; Heffner 

et al. 2009). As the predictions are based on genomic information, the selection index is called 

genomic estimated breeding value (GEBV). Genomic selection addresses some limitations of 

classical MAS and GWAS by simultaneously estimating all marker effects on the trait. Hence, 

it is suitable for prediction of polygenic traits controlled by many small-effect QTL without a 

need to identify individual QTL (Heffner et al. 2009) and the associated markers.  

 

Genomic prediction is mostly used for selection of parents for further crossing (Goddard and 

Hayes 2007). However, Crossa et al. (2014) proposed that genotypic values should also be used 

to select genotypes with potential for release as new cultivars in maize and wheat breeding. 

Several modifications to the original genomic selection methodology of Meuwissen et al. 

(2001) have been proposed and these include: weighted genomic selection, optimal haploid 

value selection, genotype building selection and optimal population value selection (Goiffon et 

al. 2017).  

 

Genomic selection has been made possible by high-throughput next generation sequencing 

technologies that caused a dropdown in genotyping costs and by advances in genotyping 

methods (Elshire et al. 2011; Deschamps et al. 2012). When dense markers became available 

through approaches like genotyping by sequencing (Elshire et al. 2011; Poland et al. 2012a), 



29 
 

most linear regression models could not handle data where the number of phenotypes, or sample 

size (n) were less than the number of predictors, or markers (p) (Jannink et al. 2010; de los 

Campos et al. 2013). To address the issue of small ‘n’ and large ‘p’, Bayesian and kernel 

methods were developed alongside many other approaches (de los Campos et al. 2009a; Pérez 

and de los Campos 2014). The Bayesian methods use the Monte Carlo Markov Chain (MCMC) 

algorithms to sample from a posterior probability distribution (Meuwissen et al. 2001). The 

posterior distribution of estimates is generated from prior probabilities, which are user defined. 

 

Prior probabilities are very subjective, but can be derived from historical information (Goldstein 

2006), like, if one knows the heritability of a trait, or the number of genes controlling the trait. 

When only prior densities are used, then a non-informative model is generated. The priors are 

updated when data become available to yield a more realistic posterior probability distribution 

(Goldstein 2006). Hence, when a lot of data are available, the influence of prior probability on 

the posterior probability distribution is superseded by the likelihood of the data.  

 

The MCMC algorithms use the Gibbs sampler (Gelfand et al. 1990) and every time a sample is 

obtained, the model is updated (Meuwissen et al. 2001). The number of iterations that the 

MCMC must run are pre-set. The user also defines how many iterations should be discarded as 

burn-in so that the Gibbs sampler does not pick samples from initial values that can bias the 

mean of estimates. After the burn-in, the interval at which the sampler should collect the 

samples to update the model is also defined, which is referred to as thin (MacEachern and 

Berliner 1994). Thinning reduces sample autocorrelation of the Markov chain, which can cause 

biased Monte Carlo standard errors. It also allows efficient use of computer storage space by 

reducing the number of posterior samples kept. This means that any number of predictors can 

be fitted in the model, thus enabling whole-genome regression and prediction (de los Campos 

et al. 2013). While whole-genome regression is possible, the large amount of data from GBS 

can still create computational challenges. These have been partly addressed by Bayesian 

methods that perform variable shrinkage and selection of the linear predictors (de los Campos 

et al. 2013; Pérez and de Los Campos 2014). 

 

Genomic selection has been successful in dairy cattle for selection of bulls that give female 

offspring with high milk production (Goddard and Hayes 2007). Traditionally, selection of 

bulls for milk production depended on the performance of their daughters, which could make 

the selection cycle very long. In plants, traits such as yield, sensory quality and postharvest 



30 
 

qualities can only be determined after harvest, which also increases the selection cycle. The 

primary advantage of GS is the ability to reduce selection cycle and increase selection intensity 

that results in faster genetic gain per unit time and cost. Genetic gain (G) can be estimated as 

the product of selection intensity (i), prediction accuracy (r) and square root of additive genetic 

variance (√ẟ2
A) divided by selection cycle time (t). Prediction accuracy is influenced by 

phenotypic variance (ẟp), which is also influenced by the correlation between the breeder’s and 

farmer’s environment while additive genetic variance is influenced by the heritability of the 

trait. In practice, the breeder can increase genetic gain by increasing the selection intensity (i) 

and by reducing the selection cycle time (t) even when the prediction accuracy is low compared 

to phenotypic selection accuracy (Desta and Ortiz 2014; Bassi et al. 2016).  

 

The predictive abilities of different genomic prediction models have been demonstrated in 

various crops ranging from cereals to forest trees (Crossa et al. 2010; Heffner et al. 2011; de 

Oliveira et al. 2012; Kumar et al. 2012; Würschum et al. 2013; Beaulieu et al. 2014; Crossa et 

al. 2014; Crossa et al. 2016; Onogi et al. 2016; Gezan et al. 2017). However, information 

concerning use, or performance of genomic prediction models in banana breeding is not 

available to date. This section of PhD Thesis divulges more of the main developments in the 

field of genomic predictions to date starting from genotyping by sequencing, then predictive 

models and computational requirements while putting banana breeding into perspective.   

 

3.2 Genotyping by sequencing: a step towards genomic prediction 

Genotyping by sequencing (GBS) is a next generation sequencing-based method that takes 

advantage of reduced representation libraries to enable high throughput genotyping of large 

numbers of individuals at a large number of SNP loci (Glaubitz et al. 2014). Advances in 

sequencing technologies led to reduction in genotyping costs, which caused a rapid growth of 

sequence databases (Bernardo and Yu 2007). Of all marker types, SNP markers are the most 

abundant in the genomes of animal and plant species. This makes them the molecular markers 

of choice for genomic predictions as they satisfy the requirement of dense markers (Bernardo 

and Yu 2007; Elshire et al. 2011).  

To reduce the cost of SNP genotyping without compromising quality, several reduced 

representation sequencing approaches were developed (Sonah et al. 2013).  These include 

diversity array technology sequencing (DArTseq), restriction site associated DNA (RAD, Baird 



31 
 

et al. 2008), genotyping by sequencing (GBS) and reduced representation library (RRL), or 

complexity reduction of polymorphic sequences (CRoPS) (van Orsouw et al. 2007; Elshire et 

al. 2011; Beissinger et al. 2013). Of the four, GBS is a low coverage approach, but by far the 

most advantageous when genotyping large populations. Library construction for GBS is simple 

and it requires small amounts of starting DNA. The introduction of a barcoding system to 

samples allows several samples to be multiplexed and sequenced on the same sequencing lane, 

which reduces the sequencing cost per sample. When a proper choice of restriction enzyme is 

made, high SNP coverage in gene-rich regions of the genome can be attained in a highly cost-

effective manner (Elshire et al. 2011; Sonah et al. 2013). The choice of restriction enzymes for 

GBS library preparation depends on the number of tags it can generate and the distribution of 

tags across the genome (Hamblin and Rabbi, 2014). The fewer the tags, the more reads per tag 

and the better the depth of coverage. However, the tags should be uniformly distributed across 

the entire genome to get good genomic representation markers. Use of restriction endonuclease 

ApeKI was demonstrated to give good depth of coverage in barley and maize (Elshire et al. 

2011).  

 

To improve the robustness of the GBS protocol, Poland et al. (2012a) modified the original 

GBS protocol by using a two-enzyme approach (PstI/MspI), a rare cutter and a frequent cutter. 

This approach was used to genotype bi-parental barley and wheat populations and was used to 

develop a genetically anchored reference map to identify SNP and tags (Poland et al. 2012a). 

Further studies in wheat were carried out to prove the robustness of GBS in breeding 

applications (Poland et al. 2012b). Sonah et al. (2013), also improved the standard ApeKI 

protocol by carrying out a final amplification step with selective primers extending across the 

3´-ApeKI sites by 1 or 2 bases into the insert. With this modification, both the number and depth 

of coverage of called SNPs were significantly improved. Using the PstI restriction enzyme 

alone with the standard GBS protocol was also found to give good sequence data. It is a 

relatively rare cutting enzyme, which generates a moderate number of tags, thus giving more 

reads with better depth of coverage. The tradeoff is that it gives a lower number of SNP markers 

(Hamblin And Rabbi, 2014). This is good for genotyping multi-ploidy populations (e.g. banana) 

that have varying number of alleles at any given locus. In cassava, a combination of PstI and 

TaqI improved the distribution and number of SNP markers (Hamblin and Rabbi, 2014). 

 

Sequence reads from mitochondria DNA (mDNA) and chloroplast DNA (cpDNA) present a 

problem when mapping reads to a reference genome especially in polyploid plants. For 
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example, in heterozygous autotetraploid potato, cpDNA was shown to represent 60% of total 

reads (Uitdewilligen et al. 2013). However, in the M. a. ssp. malaccensis complete chloroplast 

DNA (cpDNA), only 14 PstI restriction sites were found whereas in the current publicly 

available banana reference genome (Martin et al. 2016), there are 85714 restriction sites for 

PstI. This suggests that the number of tags from cpDNA in the sequence library are very few 

for banana, reducing a possible contamination of nuclear genome sequence reads with 

organellar DNA sequences even when CTAB DNA extraction protocol is used (Lutz et al. 

2011).   

 

Genotyping by sequencing has also some limitations, the main ones being the high level of 

missing data (Glaubitz et al. 2014), low coverage and non-uniform distribution of sequence 

reads (Beissinger et al. 2013; Hamblin and Rabbi, 2014). The problem of missing data is usually 

overcome by imputation methods such as random forest regression, multivariate normal 

expectation maximum algorithm and impute amongst other methods (Poland et al. 2012b). 

Proper choice of restriction enzyme during library construction and technical replication during 

sequencing can also help to improve coverage and reduce missing data.  

 

RAD sequencing in comparison to GBS offers ‘deep-sequencing’ of SNP with a wide range of 

coverage depending on the requirement of the researcher (Fonseca et al. 2016), while DArT 

sequencing provides data with a few missing data points both dominant and co-dominant 

markers (Sansaloni et al. 2011), but the two methods are not yet as cheap as GBS for genotyping 

large populations.  

 

3.3 Downstream analysis of GBS data 

GBS protocol generates millions of short sequences reads, on average 100 bp each using the 

Illumina sequencing platform. One main requirement for downstream analysis of sequence 

reads is a reference genome sequence, or DNA contigs from a representative species (Elshire 

et al. 2011; Perea et al. 2016). Tools such as Burrows-Wheeler alignment (Li and Durbin 2009) 

and Bowtie 2 (Langmead and Salzberg 3012) work on the principle of Burrows-Wheeler 

transform (BWT). They were designed to map short reads to the reference sequence in an 

efficient and accurate manner, but many other read alignment tools exist. Once the reads are 
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aligned to the reference, SNP discovery and genotyping can be done by variant caller tools such 

as SAMtools, genome analysis toolkit (GATK), or FreeBayes (Clevenger et al. 2015). 

 

The choice of a variant caller depends on the nature of the species under study (Clevenger et al. 

2015). Calling SNPs from diploid organisms is straight-forward and also many polyploids with 

an even ploidy level behave like diploids. However, for autopolyploid species, special 

considerations must be made (Uitdewilligen et al. 2013). In allopolyploids such as wheat (T. 

aestivum) with three sub-genomes, it is possible to map reads to specific sub-genomes and call 

SNPs for each genome (Dvorak et al. 2006).  Bananas are polyploid and some triploid bananas 

such as EAHB are composed of three A sub-genomes originating from different subspecies that 

are not easy to distinguish (Perrier et al. 2011). SNP calling from a banana population 

comprising individuals of different ploidy levels requires a careful choice of variant caller tools.  

 

Each variant caller has advantages and limitations. For example, SAMtools does not perform 

well in calling heterozygous SNP, despite being simple to use. In contrast, GATK has many 

steps and requires special data formats, but it is good for handling species with different ploidy 

levels and when allele dosage is required. It is also capable of distinguishing true SNP from 

sequence artifacts. The indel realignment step in GATK improves alignment around indels, 

which removes frameshifts that usually result in false-positive SNP calls (Polyanovsky et al. 

2011; Clevenger et al. 2015). 

 

Bioinformatics workflows and pipelines make SNP calling and genotyping from GBS reads 

more efficient. Currently, the bioinformatics pipeline that is commonly used is the TASSEL-

GBS (Glaubitz et al. 2014). Other bioinformatics pipelines that have been developed include 

Stacks and next generation sequencing eclipse plugin, NGSEP (Catchen et al. 2011; Perea et 

al. 2016). They offer flexibility of handling large number of samples with reduced errors. The 

main characteristics of bioinformatics workflows and pipelines is that they combine the utility 

of several specific tools and allow the user to specify some parameters although default settings 

are always provided. Among such tools are the FASTX Toolkit and Picard Tools 

(http://hannonlab.cshl.edu/fastx_toolkit/; http://broadinstitute.github.io/picard/). Custom 

requirements are not easy to implement in standard pipelines and this may call for the user to 

develop a customized workflow to execute specific tasks. The output SNP can be used for 

GWAS, population structure analysis, genetic diversity studies and genomic predictions 

(Elshire et al. 2011). Depending on the final use of SNP data, some conversion tools may be 

http://hannonlab.cshl.edu/fastx_toolkit/
http://broadinstitute.github.io/picard/
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required to change the genotype data formats so that the data are compatible with other 

software. This involves writing Perl scripts, or R functions. 

 

3.4 Genomic prediction models 

The basic model commonly used in simple experiments to predict dependent variable given the 

independent variable data, or vice versa, is the simple linear regression model, or the least 

squares estimation model given by the formula: y = α + βx + e, where y is a vector of dependent 

variables, α is the y intercept, β is the regression coefficient, x is a matrix of independent 

variable and e is the vector of random residuals. If there are many co-variate factors that 

influence the outcome variable, then the multiple linear regression model is adopted, which 

takes the form: y = α + β1x1 + β2x2 + …. βnxn + e. The utility of these models in genomic 

selection is limited due to the high number of linear predictors (Crossa et al. 2010). 

 

Animal breeders have for a long time relied on the use of phenotypic data and pedigree 

information to predict the breeding value of individuals (Goddard and Hayes 2007). Best linear 

unbiased prediction (BLUP) model has been used to estimate random effects (genetic merit). It 

is a linear model of the form: y = Xβ + Zu + e, where y is a vector of phenotypic observations, 

β and u are vectors of fixed and random effects, respectively, X and Z are design matrices, e is 

a vector of random residuals (Robinson, 1991). The advent of next generation sequencing 

technologies increased access to genotypic data. Integrating these data into prediction models 

showed an increase in genetic gain per unit time (Meuwissen et al. 2001; Goddard and Hayes 

2007; Legarra et al. 2008; Hayes et al. 2009).  

 

Meuwissen et al. (2001) incorporated SNP markers as random variables in BLUP equation in 

their simulation study. They made an assumption that marker effects were normally distributed 

and that all loci had equal variance, thus the genetic variance of an individual locus could be 

obtained by dividing the total genetic variance, Vg by the total number of loci, n (Vg/n). 

However, in some cases a few loci with major effects, or many loci with varying effects control 

the trait, and are not uniformly distributed across the genome. This makes the assumption of 

equal genetic variance unrealistic and leads to model over-parameterization (Resende et al. 

2012). Parametric and semiparametric models based on Bayesian principles that perform 
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shrinkage and variable selections were developed as alternatives for use in genomic prediction 

(de los Campos et al. 2013; Pérez and de Los Campos 2014). 

 

3.4.1 Implementation of genomic prediction 

Genomic prediction is implemented in three phases, which include training, validation and 

breeding (Jannink et al. 2010; Nakaya and Isobe 2012). In the training phase, a panel of 

genotypes representing the genetic diversity within a breeding program is phenotyped and 

genotyped. The marker variance and their effect on the trait (regression coefficient) at each 

locus are estimated and the population’s trait mean is obtained from the phenotypic data. This 

yields a model of the form “predicted phenotype (ŷ) = general phenotype-mean in the 

population (intercept, μ) + GEBV (⅀Xβ) + residual error (ℇ)”. This can be expressed as ŷ = μ 

+ ⅀Xβ + ℇ, where X is a matrix of independent linear predictors such as SNP markers and β is 

the regression coefficients of the independent linear predictors. The residual errors could be 

environmental or spatial errors. When ℇ is assumed to be random and normally distributed, that 

is, ℇ = ~N(0, ẟℇ
2), where ẟℇ

2 is the variance of random residuals, then GEBV = ŷ – μ (Pérez and 

de Los Campos 2014). 

 

The complexity of the above genomic prediction model can be increased by adding a 

relationship information. This information can be in the form of a genomic relationship matrix 

(G-matrix), or pedigree matrix (VanRaden 2008). The G-matrix (G) can be calculated from 

SNP data (X) consisting of score for minor alleles that take the form of 0, 1 and 2 for diploid 

organisms, where 0 and 2 are homozygous major and minor allele states, respectively, while 1 

represents the heterozygous state of a locus. Hence, G = XX´, where X´ is the transpose of X, 

which is a data frame of ‘n’ individuals and ‘p’ SNP markers.  

 

Pedigree matrix can be calculated when pedigree records are available using the pedigreemm 

R-package (Vazquez et al. 2010). The choice as to whether a pedigree matrix is added to the 

model, or not depends on the relationship of individuals in the GS population. When there is a 

weak relationship, addition of pedigree matrix distorts the relationship based on genomic data 

causing a reduction in performance of genomic prediction models (Zhong et al. 2009). 

However, in some cases a combination of pedigree information with marker data was shown to 

improve the prediction accuracy of genomic prediction models (Crossa et al. 2014).  
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3.4.2 Estimate of model performance 

In genomic selection, predictive ability is a measure of performance of a genomic prediction 

model and is determined by cross validations. Predictive ability of a model is the correlation 

between the predicted and observed value of a trait, or the correlation between GEBV and 

observed phenotype (Crossa et al. 2010). Usually, the correlation between GEBV and predicted 

phenotype is approximately 1.0. Most studies used five-fold (K=5) and ten-fold (K=10) cross 

validation (Jannink et al. 2010). However, other strategies are also used. For example, 90 % of 

the genotypes are used as training set while 10 % as cross validation (testing) set, but there are 

many other approaches (Crossa et al. 2016). The average correlation of these cross validations 

is reported as the predictive ability, or prediction accuracy of that model for a trait (Crossa et 

al. 2014; Crossa et al. 2016). It is important that during cross validation there is no overlap 

between genotypes in the training set and testing set.  

 

Cross validation is a convenient way of evaluating the accuracy of genomic prediction models. 

In order to use the genomic prediction model, the accuracy of prediction is first confirmed at 

the validation phase for breeders to have confidence in the model (Nakaya and Isobe 2012). 

The validation population should consist of genotypes that are different from those used in the 

training population. This population is genotyped to allow prediction of the GEBV, then 

phenotyped preferably in an environment other than that in which the training population was 

phenotyped (Ly et al. 2013). The correlation between the observed phenotype and GEBV gives 

the prediction accuracy of the model. To maintain a good performance of the model, the 

validation and breeding populations must be related to the training population and genomic 

prediction models have to be updated over time because of linkage disequilibrium decay 

(Nakaya and Isobe 2012). The data collected from breeding and validation populations can be 

used to update the genomic prediction model to improve its accuracy (reviewed by Varshney 

et al. 2013; Ly et al. 2013).   

  

In genomic prediction, the predictive ability value is the proportion of genetic variance 

explained by marker data. It is often misinterpreted as the proportion of genotypes correctly 

selected by genomic prediction versus phenotypic selection. As discussed by Bassi et al. (2016), 

a prediction accuracy of 0.5 does not mean that 50% of the top selected individuals will actually 

be phenotypically selected. In many cases the percentage of individuals correctly selected based 

on GEBV has been above the prediction accuracy. For example, Beaulieu et al. (2014) reported 
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that with predictive values between 0.33 and 0.44, they were able to achieve 90 % of 

traditionally estimated breeding values during validation. Similarly, Heffner et al. (2011) 

reported a 95 % prediction accuracy of genomic prediction compared to phenotypic selection 

in a multi-family wheat population even if the predictive values ranged from 0.22 to 0.76. The 

tradeoff between genomic selection and phenotypic selection is that genomic selection can 

afford faster genetic gain per unit time, although it is not 100 % accurate as phenotypic selection 

(Desta and Ortiz, 2014; Bassi et al, 2016).  

 

During the breeding phase, new hybrids from the breeding program are genotyped and the 

genotype data are fed into a validated genomic prediction model to predict the GEBV. The 

breeder uses these GEBV to make a decision on which hybrids to select for further crossing, or 

phenotyping. The model also predicts the likely phenotypic outcome for each hybrid (Pérez and 

de Los Campos 2014). Selection can be done at the nursery stage so that only hybrids with a 

good combination of traits are taken to the field for evaluation and the rest are discarded before 

wasting resources on them. It is important for the breeders to develop the ‘selection index’ of 

GEBV so that selection is product focused.  

 

‘Selection index’ of GEBV means that among the traits the breeder is predicting, a priority 

order is set as a way of eliminating hybrids that do not meet product requirements. It is an 

efficient way of simultaneously selecting for all traits that define a best parent, promising 

candidate cultivar, or best cross combination (Bassi et al. 2016). If the selection is intended to 

eliminate hybrids with low genetic value, this can be referred to as negative selection that 

reduces the phenotyping burden. For example, in banana, most hybrids are triploid and majority 

show poor fruit filling characteristics. When selecting candidate cultivars, fruit filling trait such 

as fruit circumference should be given top priority in the ‘selection index’ of GEBV. Once the 

number of hybrids to phenotype is reduced, more replications can be planted without much 

strain on financial resources (Heffner et al. 2009), or some evaluation stages such as EET and 

PYT can be skipped so that hybrids are evaluated faster than usual in multiple locations to 

reduce the selection cycle. This allow the identification of high performing hybrids with stable 

traits in a much shorter time.  
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3.4.3 Types of genomic prediction models 

Different studies in both animals and plants have tested the predictive ability, or accuracy of 

different genomic prediction models (Legarra et al. 2008; Heffner et al. 2011; Kumar et al. 

2012; Würschum et al. 2013; Crossa et al.2014; Weng et al. 2016; Momen et al 2017). These 

models include ridge regression best linear unbiased prediction (rrBLUP), genomic best linear 

unbiased prediction (GBLUP), best linear unbiased prediction method including a trait-specific 

relationship matrix (TABLUP), least absolute shrinkage and selection operator (LASSO), 

Bayesian ridge regression (BRR), Bayesian LASSO (BL), BayesA, BayesB, BayesC, BayesCπ, 

BayesDπ, elastic net (EN), reproducing kernel Hilbert Space (RKHS), Bayesian neural 

networks (BNN) and Bayesian regularization for feed-forward neural networks (BRNN) 

(Robinson 1991; Tibshirani 1996; Meuwissen et al. 2001; Park and Casella 2008; Zhang et al. 

2010; Pérez and de Los Campos 2014).  

 

The difference in these models largely lies in how they estimate the marker variance and how 

they generate the posterior distribution of marker effects (Table 3). They also differ in the 

assumptions made about traits. Some assume that the traits are controlled by additive genetic 

effects, while other account for non-additive genetic effects such as dominance and epistasis 

(e.g. RKHS). The characteristics of these models have been summarized in various publications 

(Meuwissen et al. 2001; Habier et al. 2011; Pérez and de Los Campos 2014; Desta and Ortiz 

2014). In this Thesis, the predictive ability of six models was investigated using different cross 

validation strategies and these included BRR, BL, BayesA, BayesB, BayesC and RKHS models 

and a summary of their characteristics is given in Table 3.    

  

The above prediction models were developed and optimized for diploid organisms. However, 

they have been extended to polyploid organisms (Crossa et al. 2014; Gezan et al. 2017) where 

a balanced distribution of alleles is assumed to exist as in diploids. Banana is unique in that 

breeding populations are generated by crossing parents of different ploidy levels, which results 

in a mixture of diploid, triploid and tetraploid hybrids. The generation of a prediction model 

with a population consisting of genotypes of different ploidy levels is usually a challenge due 

to (i) uncertainty of allele frequency in that population and (ii) uncertainty of allele dosage at 

the loci. Blischak et al. (2015) attempted to address the problem of allele dosage uncertainty in 

a simulated autopolyploid population. They treated the genotypes as latent variables in a 

hierarchical Bayesian model and sequence reads as random samples. They concluded that 

uncertainty of allele dosage in polyploids in addition to number of individuals sampled and 



39 
 

sequencing coverage affected the calculation of allele frequencies. Yet, allele frequency is key 

in population genetics models for understanding allele inheritance patterns.  

 

Table 3: Main characteristics of the six genomic prediction models evaluated in this Thesis 

Model 

characteristics 
BRR BL BayesA BayesB BayesC RKHS 

Parametric Yes Yes Yes Yes Yes  

Semiparametric      Yes 

Additive genetic 

effects 
Yes Yes Yes Yes Yes  

Non-additive 

genetic effect 
     Yes 

Distribution of 

marker effects 
Gaussian 

Fixed, 

Gamma, or 

Beta 

Scaled t Scaled t Gaussian  

Distribution of 

marker variance  
X -2 

Double 

exponential 
X -2 X -2 X -2  

Uniform 

shrinkage 
Yes      

Nonuniform 

shrinkage 
 Yes Yes Yes Yes  

No marker 

selection 
Yes      

Variable marker 

selection  
 Yes Yes Yes Yes  

Prior probability 

of marker effect 
   Yes Yes  

Source: Desta and Ortiz (2014) and Pérez and de Los Campos (2014)  

 

In bananas, the expected level of heterozygosity varies with ploidy level. For example, if a bi-

allelic SNP, A/G is segregating at locus i, then, one, two and three possible heterozygotes are 

expected in diploids (AG), triploids (AAG and AGG) and tetraploids (AAAG, AAGG and 

AGGG), respectively. Determining the level of heterozygosity at a locus depends on how well 

the sequencing reads represent the true genotype and the choice of bioinformatics tools used 
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during SNP calling. Picard tools allow normalization of sequencing reads by marking and 

removing duplicates so that genomic regions with fewer reads that are uniquely mapped are not 

excluded during SNP calling. In addition, GATK has an option of setting the ploidy level during 

SNP calling with UnifiedGenotyper that allows heterozygosity to vary according to ploidy level 

(Clevenger et al. 2015). This is very useful when dealing with populations of mixed ploidy 

levels. Genomic prediction models use marker data in a numeric form. In order to maintain 

allele dosage status of the SNP data, careful choice of tools that convert SNP data to numeric 

format is important. R-based script named AlleleDosage R function was developed as part of 

this Thesis to address this issue. The script can be accessed from the link. 

http://olomouc.ueb.cas.cz/system/files/users/public/scripts/AlleleDosage_R_function.docx  

 

Other than allele dosage and mixed ploidy population, several factors influence the predictive 

ability of genomic prediction models. They include size and composition of the training 

population, the relationship between training and breeding populations, differences in linkage 

disequilibrium between markers and QTL across training and breeding populations, number of 

markers used, the interaction between genotype and environment, and heritability of the trait 

(Crossa et al. 2016; Bassi et al. 2016). In order to reach high predictive ability, the population 

should be large enough to capture most of the segregating alleles in the breeding gene pool. As 

noted by Bassi et al. (2016), no ideal population size exists for all species and traits. Hence, 

attention should be paid to how related the individuals are, the heritability of the trait, whether 

the population is bi-parental, or a mixture of several families and the cost involved in 

phenotyping the training population. The breeding population should come from genotypes that 

were involved in the training phase. The number of markers should be large enough so that at 

least one, or more markers are in linkage disequilibrium with the QTL controlling the trait 

(Myles 2013; Desta and Ortiz 2014). GBS gives many SNP markers that improves the 

prediction accuracy of the genomic prediction models compared to other platforms that give 

fewer markers with less missing data (Heslot et al. 2013). 

 

Increasing the size of a training population has been shown to increase prediction accuracy and 

most studies have used training populations ranging from 200 to 10,000 individuals (Lorenz et 

al 2011). The gain in prediction accuracy due to increase in population size has a threshold 

beyond which it plateaus, or makes no economic sense.  Banana populations are expensive to 

phenotype as each banana plant occupies 6 m2 of field space for at least two, or three crop cycles 

(Tushemereirwe et al. 2015). To obtain representative phenotypic data, each clone has to be 

http://olomouc.ueb.cas.cz/system/files/users/public/scripts/AlleleDosage_R_function.docx
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replicated within the experimental plot and in several locations. Phenotyping thousands of 

banana clones requires very large fields and the cost would be exorbitant in comparison to 

phenotyping the same number of genotypes in cereals like wheat, which require about 0.054 m2 

(18 cm between plants x 30 cm between rows) per plant, i.e. 0.9 % of what is needed for banana.   

 

Therefore, the effective size of a training population required to achieve a high accuracy of the 

genomic prediction model depends on the population under study (Goddard 2009) and the 

heritability of trait of interest (Lorenz et al. 2011). Many breeding programs, including animal 

breeding use a small number of parental lines that constitute the effective breeding population. 

Animal breeders, however, keep phenotypic and genotypic records from many progenies 

around the world and these constitute an effective training population, which makes genomic 

prediction relatively easy to implement at no substantial cost (vanRaden et al. 2009).  

 

In barley, the effective breeding population size is reported to be less than 50 lines (reviewed 

by Lorenz et al. 2011). Regardless of the number of parental lines used in a breeding program, 

data from many progenies resulting from crosses between parents is beneficial in genomic 

prediction. Unlike QTL mapping, the training population for genomic selection is not 

necessarily derived from bi-parental crosses, but is rather a collection of representative 

genotypes from a breeding program where genomic prediction is to be applied (Heffner et al. 

2009; reviewed by Mammadov et al. 2012). This makes it convenient to investigate the utility 

of genomic prediction in banana where the effective breeding population is small, and 

segregating populations for different traits are limited, or completely missing.  

 

During genomic prediction model development, consideration for the interaction of genotype 

by environment should be made because it leads to differences in phenotypic expressions of 

some trait (Manrique and Hermann, 2000). Traits that are strongly controlled by the genotype 

are more stable across different environments as compared to those controlled by environment. 

The G × E interaction effect analysis is useful in studying trait heritability and stability in 

breeding materials (Taghouti et al. 2010). Generally, genomic prediction models that use 

average environment data have been shown to be more robust than those based on a single 

environment (Burgueño et al. 2012). The challenge in banana is that we do not know what traits 

are stable across environments due to lack of systematic research.  
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3.5 Computational and software requirements for genomic prediction 

With the fast progress in DNA sequencing technologies, computation challenges arose to cope 

with the massively generated sequence data (Metzker 2010). The main challenges include 

efficient storage, retrieval and processing of such huge data with reduced error at reduced cost 

(Wang et al. 2009).  Most breeding programs do not have funds and technical capacity do 

establish such facilities. However, these services can be outsourced from private service 

providers. The challenge comes when standard protocols cannot deliver all the breeder needs 

to answer certain questions. Customizing a protocol for a onetime user, or a few users is very 

expensive. This means that the breeder should have the capacity to perform these specialized 

analyses. This is possible if several breeding programs come together and establish a synergy 

that helps to improve the breeding process even in small, financially less privileged breeding 

programs (Hickey et al. 2017).   

 

Numerous bioinformatics tools have been developed to perform individual tasks such as 

alignment of short reads to the reference genome, de novo assembly of reads into contigs for 

organisms without reference genome, SNP calling tools, diversity analysis software and much 

more. Some of these tools are in the form of bioinformatics kits, or pipelines and freely available 

to the public, or commercialized. For example, Galaxy tools from galaxyproject.org and the 

genomic association and prediction integrated tool (GAPIT) from Cornell University (Lipka et 

al. 2014) are freely available while other are commercialized like for example, CLC genomic 

workbench and others. Bioinformatics pipelines such as TASSEL-GBS have been developed 

to help circumvent problems associated with handling GBS data (Glaubitz et al. 2014).  

 

In genomic prediction, statistical modeling is crucial, yet GBS presents a lot of missing data 

and accurate imputations are still a challenge for polyploid crops. In order for genomic selection 

to be embraced by breeders, flexible statistical software that allows breeders to analyze massive 

genomic data in real time and requires less sophisticated computer systems is of importance. 

The R environment from www.r-project.org provides many packages that facilitate statistical 

modeling of biological data. Through integrative packages in R, genomic and phenotypic data 

can be analyzed together to generate genomic prediction models and to test their accuracy. One 

example is the Bayesian generalized linear regression (BGLR) R package used for genomic 

predictions (Pérez and de Los Campos 2014).  

 

http://www.r-project.org/
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3.6 Prospects of genomic prediction  

Molecular markers have contributed enormously to the understanding of genetic diversity 

within banana germplasm. They have been used to clarify taxonomic classification, identify 

cultivars and track pedigrees in breeding populations. However, little progress has been made 

in using DNA markers for routine breeding and selection of candidate cultivars and breeding 

parents. With advances in molecular marker technology, it is expected that genomic selection 

as a form of MAS will play a major role in improving the efficiency of conventional 

crossbreeding.  

 

Breeding recalcitrant crops and ensuring timely delivery of hybrids to farmers that address 

issues of food security and income through sustainable production is the dream of every banana 

breeder. Application of genomic predictions in banana breeding is quite timely as resources are 

always small to support long-term programs. However, more is yet to be understood about this 

field of applied biology in crop breeding. In the initial stages, resources need to be directed in 

developing efficient, accurate and cost-effective phenotyping technologies as well as building 

necessary capacities in breeding teams to implement genomic prediction.   

 

Banana breeding requires multidimensional and interdisciplinary approaches involving 

breeders, floral biologists, molecular biologists, geneticists, cytogeneticists, bioinformaticians, 

biostatisticians, agronomists and farmers/consumers (Hickey et al. 2017). Therefore, there is 

ultimate need to establish a banana interactive resource database (Musabase) to maintain global 

Musa genotypes and phenotypic information with easy to use bioinformatics pipelines and 

statistical packages for breeders. Although this may be farfetched, once achieved the benefits 

could be remarkable. A recent publication by Ruas et al. (2017), which shows effort to link 

different databases for banana information resources is a good starting point, but more is still 

required. Trait based models need to be developed and validated for routine use in banana 

breeding programs to increase genetic gain. 
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4 Goals of the Thesis 

The main goal of this Thesis is to present empirical evidence on the performance of genomic 

prediction models in banana breeding based on SNP marker data obtained by the genotyping 

by sequencing approach. The Thesis summarizes the current knowledge about bananas, 

including production constraints, breeding strategies, use of molecular markers in banana 

research and the need to accelerate conventional crossbreeding by using genome-wide markers 

through genomic predictions. Special emphasis was directed towards developing and 

understanding the predictive ability of six genomic prediction models (BRR, BL, BayesA, 

BayesB, BayesC and RKHS) and how factors such as field management and crop cycle affect 

trait variation in genotypes and the predictive ability of the prediction models for a set of 15 

traits. The working hypothesis was that field management and crop cycle had no influence on 

trait expression and predictive ability of genomic prediction models. To achieve the above 

objective, the following specific objectives were pursued through experimental analysis and the 

results obtained are summarized in publications: 

1. To assess the variation and correlation of traits in the genomic selection training 

population with respect to crop cycles and field management. 

2. To determine the genetic diversity of the genomic selection training population. 

3. To compare the predictive ability of a set of six models with marker, pedigree and both 

pedigree and marker information for fifteen traits scored in the training population and 

select the best genomic prediction model for each trait, or a group of traits. 

4.  To determine the predictive ability of models with a training population grown under 

two different field management practices (Genotype × Environment interaction). 

5. To determine the predictive ability of the best model for prediction of traits within and 

across crop cycle 1 / mother plants and crop cycle 2 / first ratoons/first suckers 

(Genotype × Cycle interaction) 

6. To determine the effect of accounting for allele dosage on the predictive ability of the 

best genomic prediction model for each trait. 

7. To determine the effect of using genomic prediction models fitted with averaged 

environment data and allele dosage SNP markers in the prediction of genotype 

performance in particular environments. 

8. To determine the accuracy of selection achieved based on GEBV relative to phenotypic 

data within the training population.   
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5 General conclusion and recommendations 

The aim of this Thesis was to develop and evaluate the predictive ability of genomic prediction 

models in a banana genomic selection training population. Among all models tested ((BRR, 

BL, BayesA, BayesB, BayesC and RKHS), BayesB was superior in prediction for most traits, 

hence, breeders could use it on all traits tested. Fruit filling and fruit bunch traits were predicted 

quite well in all cross-validation strategies. This implies that negative selection could be applied 

in breeding program to reduce the burden of phenotyping hybrids with inferior fruits. Although 

the training population was composed of genotypes of different ploidy levels, accounting for 

allele dosage in SNP markers (AD-SNP) reduced predictive ability relative to traditional bi-

allelic SNP (BA-SNP), but the prediction trend remained the same across traits. However, for 

some traits, accounting for allele dosage may be necessary. A script to account for allele dosage 

(AlleleDosage R function) was developed and can be customized depending on the user’s 

requirements and it could be applicable on all polyploid species. The R-script can be accessed 

from the following link: 

http://olomouc.ueb.cas.cz/system/files/users/public/scripts/AlleleDosage_R_function.docx  

 

The high correlation observed between traits within trait categories (plant stature, suckering 

behaviour, black leaf streak resistance, fruit bunch and fruit filling) during phenotypic analysis 

was confirmed by the predictive values. Hence, breeders do not need to predict all traits in order 

to make a decision on which hybrids to select as parents for further crossing, or as promising 

candidate cultivars. Focus should be on one, or two traits that are easy to phenotype in each 

trait category. Finally, phenotype data from all field trials should be used to train the prediction 

model so that the model is robust enough to predict the performance of new hybrids in the 

phenotyping environment.  

 

The immediate application of the prediction models is to select against triploid hybrids without 

edible fruits because they constitute the biggest percentage of hybrids in banana breeding and 

yet, they have no further use in breeding. In the diploids and tetraploids, genomic predictions 

will help in identifying the best parents for crosses. It is expected that when banana breeding 

increases the number of hybrids produced, genomic prediction will be a valuable tool during 

the selection process to improve the genetic gain per unit time and cost.  

 

When implementing genomic selection at the breeding phase, the best parental clones and the 

best promising candidate, or new cultivar should be the first priority. In order to maximise 

http://olomouc.ueb.cas.cz/system/files/users/public/scripts/AlleleDosage_R_function.docx
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genetic diversity, two alternatives are proposed. (1) After selecting the top 5 %, the best 

genotype in each family should be also selected for phenotyping. (2) After selecting the best 

genotypes, include about 5 % of genotypes with median and worst GEBV for phenotyping as 

well. Since the genotypic data will be already available, these data sets will be important for 

updating the models once prediction accuracies decrease due to changes in allele frequencies. 

Also, it will help in maintaining some rare alleles that could be totally lost if selection focuses 

on the top best.   

 

If genomic predictions are to be employed in breeding Mchare bananas and Plantain, separate 

training populations have to be assembled, phenotyped and genotyped because of differences 

in allele frequencies, trait expression and linkage disequilibrium. Selection of genotypes for the 

training population should aim at multiple families. Hybrids that show segregation for various 

traits within each family should be included in order to capture the additive and non-additive 

genetic effects like heterosis very well.  A minimum of 20 genotypes per family is 

recommended for 15 to 25 families. However, if the cross combinations are many and involve 

many half-sib families the number may be reduced so that a target training population of 300-

500 is achieved. 

 

For EAHB, Mchare and Plantain breeding programs, routine screening of ploidy level using 

flow cytometry should be done while the plants are still in the nursery. This will help during 

selection process as the genomic selection criterial for triploids would be slightly different from 

diploids and tetraploids based on the ‘selection index’ of GEBV. 

 

Given the high prediction of fruit filling, genome-wide association studies should be conducted 

to identify the loci and SNP markers associated with this trait. This could facilitate development 

of PCR-based markers alongside genomic prediction for routine diagnosis of the trait by 

breeding programs. 

 

Sensory and postharvest quality traits should be recorded on the training population so that 

genomic prediction models are developed for such traits before terminating the trials. Also, the 

fertility of improved triploids should be tested with other male parents that are not in their 

pedigree so that progressive breeding is practiced in banana. This could allow the secondary 

triploids to serve a pathway for gene pyramiding. 
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6 Publications 

6.1 Moses Nyine, Brigitte Uwimana, Nicolas Blavet, Eva Hřibová, Helena Vanrespaille, 

Michael Batte, Violet Akech, Allan Brown, Jim Lorenzen, Rony Swennen, Jaroslav Doležel 

(2017) Genomic Prediction in a Multiploid Crop: Genotype by Environment Interaction and 

Allele Dosage Effects on Predictive Ability in Banana. The Plant Genome [accepted on 19 

December 2017] 

 

Abstract 

Improving the efficiency of selection in conventional crossbreeding is a major priority in 

banana (Musa spp.) breeding. Routine application of classical marker assisted selection (MAS) 

is lagging in banana due to limitations in MAS tools. Genomic selection (GS) based on genomic 

prediction models can address some limitations of classical MAS, but the use of GS in banana 

has not been reported to date. The aim of this study was to evaluate the predictive ability of six 

genomic prediction models for 15 traits in a multi-ploidy training population. The population 

consisted of 307 banana genotypes phenotyped under low and high input field management 

conditions for two crop cycles. The single nucleotide polymorphism (SNP) markers used to fit 

the models were obtained from genotyping by sequencing (GBS) data. Models that account for 

additive genetic effects provided better predictions with 12 out of 15 traits. The performance of 

BayesB model was superior to other models particularly on fruit filling and fruit bunch traits. 

Models that included averaged environment data were more robust in trait prediction even with 

a reduced number of markers. Accounting for allele dosage in SNP markers (AD-SNP) reduced 

predictive ability relative to traditional bi-allelic SNP (BA-SNP), but the prediction trend 

remained the same across traits. The high predictive values (0.47 – 0.75) of fruit filling and fruit 

bunch traits show the potential of genomic prediction to increase selection efficiency in banana 

breeding. 
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6.2 Moses Nyine, Brigitte Uwimana, Rony Swennen, Michael Batte, Allan Brown, Pavla 

Christelová, Eva Hřibová, Jim Lorenzen, Jaroslav Doležel (2017) Trait variation and genetic 

diversity in a banana genomic selection training population. PLoS ONE 12(6): e0178734. 

https://doi.org/10.1371/journal.pone.0178734. 

 

 

Abstract 

Banana (Musa spp.) is an important crop in the African Great Lakes region in terms of income 

and food security, with the highest per capita consumption worldwide. Pests, diseases and 

climate change hamper sustainable production of bananas. New breeding tools with increased 

crossbreeding efficiency are being investigated to breed for resistant, high yielding hybrids of 

East African Highland banana (EAHB). These include genomic selection (GS), which will 

benefit breeding through increased genetic gain per unit time. Understanding trait variation and 

the correlation among economically important traits is an essential first step in the development 

and selection of suitable genomic prediction models for banana. In this study, we tested the 

hypothesis that trait variations in bananas are not affected by cross combination, cycle, field 

management and their interaction with genotype. A training population created using EAHB 

breeding material and its progeny was phenotyped in two contrasting conditions. A high level 

of correlation among vegetative and yield related traits was observed. Therefore, genomic 

prediction models could be developed for traits that are easily measured. It is likely that the 

predictive ability of traits that are difficult to phenotype will be similar to less difficult traits 

they are highly correlated with. Genotype response to cycle and field management practices 

varied greatly with respect to traits. Yield related traits accounted for 31–35% of principal 

component variation under low and high input field management conditions. Resistance to 

Black Sigatoka was stable across cycles but varied under different field management depending 

on the genotype. The best cross combination was 1201K-1xSH3217 based on selection 

response (R) of hybrids. Genotyping using simple sequence repeat (SSR) markers revealed that 

the training population was genetically diverse, reflecting a complex pedigree background, 

which was mostly influenced by the male parents. 
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8 Abbreviation 

BL   Bayesian LASSO 

BRR   Bayesian ridge regression 

cv.   Cultivar 

EAHB   East African Highland banana 

GBS   Genotyping by sequencing 

GEBV   Genomic estimated breeding value 

GS   Genomic selection 

LASSO  Least absolute shrinkage and selection operator 

RKHS_M  Reproducing kernel Helbert space with marker data 

RKHS_P  Reproducing kernel Helbert space with pedigree data 

RKHS_PM  Reproducing kernel Helbert space with pedigree and marker data 

SNP   Single nucleotide polymorphism 
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9 Presentations   

 

9.1 Conference abstract 

 

Nyine, M.  B. Uwimana, N. Blavet, E. Hřibová, H. Vanrespaille, M. Batte, V. Akech, A. Brown, 

J. Lorenzen, R. Swennen and J. Doležel (2018) The Benefits, Challenges and Prospects of 

Genomic Prediction in Polyploid Banana. [Abstract] presented at Plant and Animal Genome 

Conference XXVI. San Diego, CA (USA) 13-17 Jan. 2018. 

https://pag.confex.com/pag/xxvi/meetingapp.cgi/Paper/30796  

 

Abstract 

The interploidy breeding approaches practiced in banana limit the application of classical 

marker assisted selection strategies. Yet, there is an ultimate need to improve the efficiency of 

conventional crossbreeding and reduce the selection cycle to respond more rapidly to abiotic 

and biotic stresses. The development of sequencing and genotyping technologies such as 

genotyping by sequencing (GBS) are leveraging the breeders to explore genomic prediction-

based approaches. In this work, the performance of six genomic prediction models was 

evaluated in banana under different cross validation strategies using data from a genomic 

selection training population comprising 307 genotypes. The population consisting of diploid, 

triploid and tetraploid genotypes was phenotyped under two different field management 

conditions and genotyped using GBS. Sequence data were processed through a bioinformatics 

workflow and single nucleotide polymorphisms (SNPs) were called using the genomic analysis 

tool kit (GATK). A custom R script was developed to process the SNP data prior to input into 

the models. The genotypic data were both bi-allelic SNP and allele dosage SNP markers. The 

total number of SNP markers varied from 5574 to 10807 depending on cross-validation 

strategy. Phenotypic data collected for four years on 15 traits under plant stature, suckering 

behavior, black leaf streak resistance, fruit bunch and fruit filling were used in cross validation. 

We compared the effect of accounting for allele dosage in SNP markers on the predictive ability 

of genomic prediction models. The results permit the evaluation of benefits, challenges and 

prospects of applying genomic prediction in banana, an important polyploid clonally 

propagated crop. 
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9.2 Conference abstract 

Nyine, M. B. Uwimana, R. Swennen, M. Batte, A. Brown, E. Hřibová and J. Doležel (2016) 

Genomic breeding approaches for East African bananas. [Abstract] presented at Plant and 

Animal Genome Conference XXIV. San Diego, CA (USA) 9-13 Jan. 2016. 

http://hdl.handle.net/10568/78754  

 

Abstract 

The polyploidy nature of banana is a limiting factor in the implementation of strategies such as 

marker assisted selection (MAS) or genome wide association mapping (GWAS). The triploid 

nature of cultivated varieties complicates conventional breeding strategies and improved 

varieties can take up to 20 years before they can be released to the public, which necessitates 

the use of efficient molecular tools to more rapidly respond to abiotic and biotic stresses and to 

address the needs of growers and consumers. In addition, the high cost of phenotyping perennial 

large-stature plants such as banana, and the rapidly decreasing cost of genotyping, makes the 

use of genomic prediction models using single nucleotide polymorphism (SNP) markers 

extremely attractive to banana breeders. A Genomic Selection (GS) training population 

consisting of 307 banana genotypes was developed for initial analysis with ploidy levels of the 

plant material ranging from diploids to tetraploids. Plants were genotyped using the genotyping 

by sequencing (GBS) approach (Elshire et al. 2011) with PstI as the sole restriction enzyme. 

Sequence data was processed through a bioinformatics workflow and single nucleotide 

polymorphisms (SNPs) were called using the genomic analysis tool kit (GATK). Data was 

filtered for quality and for loci with >50% missing data. Phenotypic data for 25 traits are being 

collected from two locations since 2012. Yield-related traits (fruit pulp diameter, bunch weight, 

number of suckers, etc.) are collected at flowering and harvest Analysis of GBS data resulted 

in 11201 SNP loci. The results of multiple prediction models are discussed and compared. 
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9.3 Poster presentation 

Moses Nyine, Brigitte Uwimana, Rony Swennen, Michael Batte, Allan Brown, Pavla 

Christelová, Eva Hřibová, Jim Lorenzen, Jaroslav Doležel (2017) Trait variation in a banana 

training population for genomic selection. Annual Banana Project Meeting, April, Kampala, 

Uganda. 

 

Poster abstract 

Conventional crossbreeding is the main approach used in banana improvement. However, the 

method requires up to two decades of crossing and field evaluation to develop a new hybrid. 

This is because selection is carried out at different levels. At every level, plants are evaluated 

after three crop cycles, each taking about a year. Yield traits can only be scored at harvest while 

organoleptic traits are recorded after harvesting, making the selection process slow, expensive 

and labour intensive.  New breeding tools with increased crossbreeding efficiency are being 

investigated to breed for resistant, high yielding hybrids of East African Highland banana 

(EAHB). These include genomic selection (GS), which will benefit breeding through increased 

genetic gain per unit time. Understanding trait variation and the correlation among 

economically important traits is an essential first step in the development and selection of 

suitable genomic prediction models for banana. In this study, we tested the hypothesis that trait 

variations in bananas are not affected by cross combination, cycle, field management and their 

interaction with genotype. A training population created using EAHB breeding material and its 

progeny was phenotyped in two contrasting conditions. A high level of correlation among 

vegetative and yield related traits was observed. This could mean that the predictive ability of 

traits that are difficult to phenotype will be similar to less difficult traits they are highly 

correlated with. Therefore, genomic prediction models could be developed for traits that are 

easily measured. Black Sigatoka related traits were not affected by crop cycle, meaning that 

these could be measured in the first cycle only, to reduce on phenotyping burden. Growth traits 

such as plant height and girth were the least affected by field input management. Conversely, 

yield-related traits such as bunch weight, number of hands and number of fingers were 

significantly affected by both crop cycle and field input management. 

 

 

 

 

 



73 
 

9.4 Poster presentation  

Nyine, M., B. Uwimana, R. Swennen, M. Batte, A. Brown, P. Christelová, E. Hřibová, J. 

Lorenzen and J. Doležel (2016) Trait Variation in a Banana Training Population for Genomic 

Selection. P4D and R4D meeting, November at IITA, Ibadan, Nigeria. 

 

9.5 Poster presentation 

Nyine, M., B. Uwimana, T.R. Ssali, J. Kubiriba, E. Amorim, Y. Othman, R. Swennen, M. Batte, 

E. Hřibová and J. Doležel (2015) Towards marker assisted breeding in banana. R4D meeting, 

November at IITA, Ibadan, Nigeria. 

 

9.6 Poster presentation  

Nyine, M., B. Uwimana, R. Swennen, M. Batte, E. Hřibová, J. Lorenzen and J. Doležel (2015) 

Genomic selection to accelerate banana breeding. Roots, Tubers and Bananas (RTB) project 

evaluation, February at IITA, Sendusu, Uganda. 
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Genomic Prediction in a Multiploid Crop:  
Genotype by Environment Interaction and Allele 
Dosage Effects on Predictive Ability in Banana

Moses Nyine, Brigitte Uwimana, Nicolas Blavet, Eva Hřibová, Helena Vanrespaille, Michael 
Batte, Violet Akech, Allan Brown, Jim Lorenzen, Rony Swennen, and Jaroslav Doležel*

Abstract
Improving the efficiency of selection in conventional 
crossbreeding is a major priority in banana (Musa spp.) 
breeding. Routine application of classical marker assisted 
selection (MAS) is lagging in banana due to limitations in 
MAS tools. Genomic selection (GS) based on genomic 
prediction models can address some limitations of classical 
MAS, but the use of GS in banana has not been reported 
to date. The aim of this study was to evaluate the predictive 
ability of six genomic prediction models for 15 traits in a multi-
ploidy training population. The population consisted of 307 
banana genotypes phenotyped under low and high input 
field management conditions for two crop cycles. The single 
nucleotide polymorphism (SNP) markers used to fit the models 
were obtained from genotyping by sequencing (GBS) data. 
Models that account for additive genetic effects provided better 
predictions with 12 out of 15 traits. The performance of BayesB 
model was superior to other models particularly on fruit filling and 
fruit bunch traits. Models that included averaged environment 
data were more robust in trait prediction even with a reduced 
number of markers. Accounting for allele dosage in SNP markers 
(AD-SNP) reduced predictive ability relative to traditional bi-
allelic SNP (BA-SNP), but the prediction trend remained the same 
across traits. The high predictive values (0.47– 0.75) of fruit filling 
and fruit bunch traits show the potential of genomic prediction to 
increase selection efficiency in banana breeding.
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Core Ideas

•	 First	empirical	evidence	of	genomic	prediction	in	a	
multi-ploidy	banana	population	is	presented.

•	 The	effect	of	allele	dosage	single	nucleotide	polymorphism	
on	prediction	accuracy	depends	on	the	trait.

•	 Use	of	averaged	environmental	data	improves	
prediction	accuracy.

•	 BayesB	model	can	be	used	across	all	traits	during	
genomic	prediction	in	banana	breeding.

•	 The	high	predictive	values	show	the	potential	of	
genomic	prediction	in	banana	breeding.
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Bananas are large, perennial,	herbaceous	monocots	
with	a	majority	of	cultivated	types	being	triploid	

(2n =	3x	=	33).	They	are	a	staple	food	to	millions	of	
people	in	many	tropical	countries	and	a	source	of	income	
for	many	homesteads.	Triploid	bananas	are	mostly	
sterile	although	some	cultivars	have	residual	fertility	that	
leads	to	limited	seed	production	when	hand	pollinated	
(Ssebuliba	et	al.,	2006).	They	are	vegetatively	propagated	
by	means	of	suckers,	a	method	that	limits	gene	flow	and	
recombination.	The	lack	of	genetic	variability	of	bananas	
grown	in	particular	regions	renders	all	cultivars	suscep-
tible	to	pests,	pathogens	and	environmental	stress.	This	
causes	reduced	productivity	of	bananas	that	leads	to	food	
insecurity	and	income	loss.

Given	the	importance	of	banana,	improving	the	
resistance	of	cultivated	bananas	is	the	most	sustainable	
solution	to	declining	production	(Simmonds,	1986;	Rowe,	
1990).	This	can	be	achieved	by	crossing	with	wild	or	
improved	diploids	that	carry	host	plant	resistance	genes	
for	pathogens	and	pests.	The	triploid	nature	of	culti-
vated	bananas	such	as	the	East	African	highland	banana	
(EAHB),	impedes	the	breeding	process	due	to	low	fertility	
or	complete	sterility	of	most	cultivars.	To	overcome	
this	problem,	breeders	have	to	develop	intermediary	
improved	diploids	and	tetraploids,	which	serve	as	parents	
to	generate	secondary	triploids	that	are	resistant	and	high	
yielding.	Unlike	a	majority	of	crops,	banana	breeding	
involves	crossing	parents	of	different	ploidy	levels	(Fig.	1).	
Partial	fertility	of	polyploids	relies	on	irregular	meiosis	
and	progenies	consist	of	individuals	with	different	ploidy.	
Due	to	linkage	drag	of	undesirable	alleles,	several	evalu-
ations	and	phenotypic	selection	at	various	stages	are	
implemented	making	banana	breeding	(depicted	in	Fig.	2)	
expensive	and	slow.	Clearly,	the	integration	of	molecular	
tools	into	conventional	breeding	programs	is	required	to	
increase	banana	breeding	efficiency.

Marker	assisted	selection	(MAS)	helps	in	selection	
of	genotypes	carrying	the	trait	of	interest	at	an	early	
stage.	However,	very	few	reports	on	the	use	of	MAS	in	
banana	improvement	are	available.	For	example,	markers	
have	been	used	to	screen	for	Fusarium	tropical	race	4	
resistance	and	identification	of	banana	hybrids	that	are	
devoid	of	infectious	endogenous	banana	streak	virus	in	
the	B-genome	(Wang	et	al.,	2012b;	Umber	et	al.,	2016;	
Noumbissié	et	al.,	2016).	Most	MAS	technologies	aim	at	
identifying	molecular	markers	that	are	linked	to	traits	
through	quantitative	trait	loci	(QTL)	analysis.	Once	the	
markers	are	identified,	the	breeder	can	use	them	to	track	
the	inheritance	of	the	traits	of	interest.	Marker	assisted	
selection	has	been	successfully	implemented	where	traits	
are	controlled	by	a	few	QTL	with	major	genetic	effects	
(Asíns,	2002;	Collard	and	Mackill,	2008).	However,	some	
traits	such	as	yield,	drought	tolerance,	and	some	others	
may	be	controlled	by	numerous	QTL,	each	explaining	
a	small	portion	of	the	genetic	variance	(Asíns,	2002).	
Identifying	all	QTL	controlling	such	traits	and	the	
markers	that	are	in	linkage	disequilibrium	with	those	
QTL	becomes	a	challenge.	Even	if	it	would	be	possible	to	

identify	small-effect	QTL,	their	introgression	into	active	
breeding	programs	would	be	extremely	challenging.

A	relatively	new	approach	of	MAS	in	plant	breeding	
known	as	genomic	selection	(GS)	that	uses	genomic	predic-
tion	models	was	proposed	by	Meuwissen	et	al.	(2001).	
Several	variants	of	the	original	GS	methodology	have	also	
been	proposed	(Goiffon	et	al.,	2017).	In	GS,	high-density	
markers	spread	across	the	entire	genome	are	utilized	to	
estimate	the	genetic	value	of	a	genotype	using	statistical	
models.	As	this	estimate	is	based	on	genomic	data,	it	is	
referred	to	as	genomic	estimated	breeding	value	(GEBV).	
The	primary	advantage	of	GS	over	other	forms	of	MAS	is	
that	the	identification	of	individual	QTL	associated	with	a	
trait	of	interest	is	not	necessary	because	QTL	are	assumed	
to	be	in	linkage	disequilibrium	with	at	least	one	or	more	
SNP	(Meuwissen	et	al.,	2001;	Desta	and	Ortiz,	2014).	The	
decrease	in	genotyping	costs	by	next	generation	sequencing	
technologies	and	the	emergence	of	GBS,	which	allows	SNP	
discovery	in	large	populations,	made	genomic	prediction	
possible	(Elshire	et	al.,	2011).	As	the	generation	of	marker	
data	becomes	increasingly	cheaper	than	phenotyping,	it	is	
expected	that	GS	will	reduce	breeding	costs,	increase	selec-
tion	intensity	and	accelerate	the	breeding	efficiency.

Genomic	selection	is	implemented	in	three	phases	
that	include:	training,	validation,	and	breeding	(Jannink	
et	al.,	2010;	Nakaya	and	Isobe,	2012).	In	the	training	
phase,	a	model	of	the	form	“predicted	phenotype	=	
general	phenotype	mean	in	the	population	(inter-
cept)	+	GEBV	+	residual	error”	is	generated	from	both	
phenotypic	and	genotypic	data.	The	predictive	ability	
of	a	genomic	prediction	model	is	determined	by	cross	
validation	as	the	correlation	between	the	predicted	and	
observed	value	of	a	trait	or	the	correlation	between	
GEBV	and	observed	phenotype	(Jannink	et	al.,	2010;	
Crossa	et	al.,	2014;	Crossa	et	al.,	2016).

Genomic	selection	has	been	successful	in	animal	
breeding	(Gorddard	and	Hayes,	2007).	It	is	also	expected	
to	increase	genetic	gain	per	unit	time	and	cost	in	plant	
breeding	especially	when	applied	on	traits	with	low	heri-
tability	for	which	phenotypic	selection	is	difficult	and	for	
crops	with	long	selection	cycle	such	as	fruit	trees,	or	banana	
(Wong	and	Bernardo,	2008;	Crossa	et	al.,	2010;	Beaulieu	
et	al.,	2014;	Crossa	et	al.,	2014).	Different	studies	in	plants	
and	animals	have	tested	the	predictive	ability,	or	accuracy	
of	different	genomic	prediction	models	(Legarra	et	al.,	
2008;	Heffner	et	al.,	2011;	Kumar	et	al.,	2012;	Würschum	
et	al.,	2013;	Crossa	et	al.,	2016;	Weng	et	al.,	2016;	Momen	
et	al.,	2017).	These	include	best	linear	unbiased	predic-
tion	(BLUP)	and	different	Bayesian	models	(Robinson,	
1991;	Tibshirani,	1996;	Meuwissen	et	al.,	2001;	Park	and	
Casella,	2008;	Zhang	et	al.,	2010;	Pérez	and	de	los	Campos,	
2014).	Characteristics	of	the	models	are	summarized	in	
numerous	publications	(Meuwissen	et	al.,	2001;	Habier	et	
al.,	2011;	Desta	and	Ortiz,	2014;	Pérez	and	de	los	Campos,	
2014).	Although	these	models	were	originally	developed	
and	optimized	for	diploid	organisms,	they	have	then	been	
extended	to	polyploid	organisms	(Crossa	et	al.,	2014;	Gezan	
et	al.,	2017).	However,	all	studies	used	populations	with	
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organisms	of	the	same	ploidy	level.	Polyploid	organisms	
are	challenging	to	model	due	to	(i)	uncertainty	of	allele	
frequency	in	the	population	and	(ii)	uncertainty	of	allele	
dosage	at	the	loci	(Blischak	et	al.,	2016).

For	bananas,	besides	the	polyploid	nature,	there	is	
a	small	effective	breeding	population.	Yet	the	accuracy	
of	genomic	prediction	depends	on	the	size	of	training	
population.	It	should	be	large	enough	to	capture	all	the	
segregating	alleles	in	the	breeding	genetic	pool	(Crossa	
et	al.,	2014;	Bassi	et	al.,	2016).	However,	as	noted	by	Bassi	
et	al.	(2016),	no	ideal	population	size	exists	for	all	species	
and	traits.	The	parameters	that	need	to	be	considered	
include	relatedness	of	the	individuals,	the	heritability	of	
the	trait,	differences	in	linkage	disequilibrium	between	
markers	and	QTL	across	training	and	breeding	popula-
tions,	whether	the	population	is	bi-parental,	or	a	mixture	
of	several	families	and	the	cost	involved	in	phenotyping	
the	training	population.	For	example,	Beaulieu	et	al.	(2014)	
used	1694	open	pollinated	genotypes	of	white	spruce	
with	6385	SNP	markers	and	obtained	different	accuracies	
of	prediction	depending	on	the	trait	and	the	relation-
ship	between	the	training	and	validation	data	sets.	The	
highest	predictive	ability	observed	was	0.44	for	cell	radial	
diameter.	In	contrast,	Crossa	et	al.	(2010)	used	a	maize	
population	of	less	than	300	individuals	with	less	than	1200	
markers	and	obtained	a	predictive	ability	as	high	as	0.79	
for	male	flowering	under	well-watered	conditions.

This	study	explored	the	potential	of	genomic	predic-
tion	in	banana,	a	polyploid	crop	for	which	the	population	
was	composed	of	individuals	with	different	ploidy	levels,	
but	mostly	triploids	(~85%)	derived	from	EAHB.	The	
objectives	were	to	(i)	compare	the	predictive	ability	of	
a	set	of	six	models	with	marker,	pedigree,	and	both	
pedigree	and	marker	information	for	15	traits	scored	
in	the	training	population,	and	select	the	best	genomic	
prediction	model	for	each	trait	or	a	group	of	traits,	(ii)	
determine	the	predictive	ability	of	models	with	a	training	
population	grown	under	two	different	field	manage-
ment	practices	(i.e.,	studying	genotype	×	environment	
interaction),	(iii)	determine	the	predictive	ability	of	the	
best	model	for	prediction	of	traits	within	and	across	crop	
cycle	1/mother	plants	and	crop	cycle	2/first	ratoons/first	
suckers	(i.e.,	genotype	×	cycle	interaction),	(iv)	determine	
the	effect	of	accounting	for	allele	dosage	on	the	predic-
tive	ability	of	the	best	genomic	prediction	model	for	each	
trait,	(v)	determine	the	effect	of	using	genomic	prediction	
models	fitted	with	averaged	environment	phenotype	data	
and	allele	dosage	SNP	(AD-SNP)	markers	on	the	predic-
tion	of	genotype	performance	in	particular	environments	
and	(vi)	determine	the	accuracy	of	selection	based	on	
GEBV	relative	to	phenotypic	data	within	the	training	
population.	To	achieve	these	objectives,	a	training	popu-
lation	of	307	banana	genotypes	consisting	of	breeding	
clones	and	hybrids	was	phenotyped	and	genotyped.

Fig. 1. Conventional crossbreeding of East African Highland bananas (EAHB) starts with crossing a triploid parthenocarpic landrace 
with a wild, seeded diploid accession or a diploid cultivar showing fruit parthenocarpy. This cross gives diploids, triploids and tetra-
ploid hybrids. Tetraploids are selected and crossed with improved diploid hybrids selected from inter-diploid crosses. The resulting 
secondary triploids are evaluated, selected and advanced as promising improved genotypes aiming at new cultivars. The diploid and 
triploid (if fertile) hybrids can be further improved by crossing with other wild or improved diploids.
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MATERIALS AND METHODS
Phenotyping
The	banana	genomic	selection	training	population	used	
in	this	study	and	the	traits	measured	were	described	in	
detail	by	Nyine	et	al.	(2017).	Briefly,	the	training	popula-
tion	consisted	of	307	genotypes	that	included	diploid	(11%),	
triploid	(85%),	and	tetraploid	(4%)	plants.	The	core	breeding	
clones	(parents)	accounted	for	12%	of	the	population.	The	
triploid	parents	were	EAHB	some	of	which	were	crossed	
with	cultivar	(cv.)	Calcutta	4	to	generate	tetraploid	hybrids,	
which	are	used	as	breeding	clones	(Supplemental	Table	S1).	
The	diploid	parents	consisted	of	both	wild	and	improved	
parthenocarpic	genotypes.	The	rest	were	hybrids	from	
early	evaluation	trials	and	advanced	clones	that	had	been	
selected	over	time	during	the	20	year	of	banana	breeding	
by	the	International	Institute	of	Tropical	Agriculture	
(IITA)	and	the	National	Agricultural	Research	Organiza-
tion	of	Uganda.	In	total,	77	families	(cross	combinations)	
of	variable	sizes	were	represented	in	this	population.	
Phenotyping	was	done	at	IITA	research	station	located	at	
Sendusu	in	Namulonge,	0.53°	N	32.58°	E,	1150	m	above	
sea	level	with	rainfall	of	about	1200	mm/year	split	into	two	
rainy	seasons,	March-June	and	September-December,	and	
an	average	annual	temperature	of	22°C.

Two	phenotyping	fields	were	established	to	mimic	
different	agronomic	practices	that	farmers	use,	thus	
creating	a	difference	in	growth	environment.	A	completely	
randomized	design	with	three	replications	per	genotype	
was	used	to	establish	the	fields.	Sword	and	maiden	suckers	
were	used	as	planting	materials	with	a	spacing	of	2	×	3	m.	
In	the	genomic	selection	trial	one	(GS1),	20	kg	of	manure	
was	applied	at	planting,	but	neither	mulching,	nor	nitrogen,	
phosphorus	and	potassium	(NPK)	fertilizer	application	
was	done	afterward	and	this	was	considered	a	low	input	
field	management.	The	genomic	selection	trial	two	(GS2)	
was	planted	with	20	kg	of	manure,	then	mulched,	and	NPK	
fertilizer	(25:5:5)	was	added	at	a	rate	of	480	g	per	plant	
mat	per	year,	and	this	was	considered	a	high	input	field	
management.	In	both	fields,	sucker	management	was	done	
to	maintain	a	maximum	of	three	plants	per	mat.

Data	were	collected	on	two	crop	cycles	in	each	field	
between	2013	and	2016.	Fifteen	traits	were	considered	for	
genomic	prediction	modeling	and	these	were	categorized	
as	plant	stature,	suckering	behavior,	black	leaf	streak	
resistance,	fruit	bunch,	and	fruit	filling.	For	plant	stature,	
plant	height	and	girth	at	100	cm	from	soil	surface	were	
measured	at	flowering.	The	total	number	of	suckers	and	
height	of	tallest	sucker	were	recorded	at	flowering	of	crop	
cycle	1	and	height	of	tallest	sucker	at	harvest	to	represent	
suckering	behavior.	The	number	of	standing	leaves	and	
index	of	non-spotted	leaves	were	determined	at	flowering	
to	characterize	black	leaf	streak	resistance.	The	index	of	
non-spotted	leaves	was	calculated	according	to	the	formula	
of	Craenen	(1998)	with	some	modification	as	reported	
by	Nyine	et	al.	(2017).	The	fruit	bunch	traits	scored	at	
harvesting	included	the	days	to	fruit	maturity,	bunch	mass,	
number	of	hands,	and	number	of	fruits.	For	fruit	filling,	
fruit	length,	fruit	circumference,	fruit	diameter,	and	pulp	
diameter	were	measured	at	harvest.	The	data	were	checked	
for	outliers	and	entry	errors	prior	to	use	in	model	fitting.	It	
should	be	noted	that	not	all	traits	had	full	data	sets	because	
some	genotypes	had	not	completed	the	second	cycle	
through	harvest	by	the	time	of	these	analyses.

Genotyping
The	population	was	genotyped	by	sequencing	as	
described	by	Elshire	et	al.	(2011).	The	restriction	enzyme	
PstI	was	used	in	the	genome	complexity	reduction	during	
sequencing	library	preparation.	Barcodes	containing	
adaptors	were	ligated	to	the	genomic	DNA	fragments.	
Ninety-six	samples	were	multiplexed	and	sequenced	on	
a	single	Illumina	lane	at	the	Institute	of	Genomic	Diver-
sity,	Cornell	University.	Each	set	of	96	samples	was	run	
twice	to	increase	the	number	of	reads	per	PstI	tag.	Single-
end	reads	of	100	bp	were	generated	during	sequencing.	
A	workflow	for	the	analysis	of	sequence	reads	was	devel-
oped	(Supplemental	Fig.	S1).

Sequence	reads	were	filtered	using	fastq_quality_filter	
provided	in	the	module	fastx.0.0.13	(-q	20-p	90).	Sequence	
reads	were	subjected	to	quality	control	analysis	using	
fastqc	provided	in	module	FastQC.0.10.1.	Reads	from	each	
lane	were	de-multiplexed	into	individual	sample	reads	

Fig. 2. Approaches to hybrid selection in banana breeding pro-
gram. (A) The classical phenotypic selection of banana hybrids 
and (B) integrated genomic selection and phenotypic selection 
approach being investigated.



nyine et al.: genomic prediction in a multiploid crop 5 of 16

using	fastx_barcode_splitter.pl	provided	in	fastx.0.0.13.	
The	barcodes	were	trimmed	using	fastx_trimmer	in	the	
module	fastx.0.0.13.	Any	remaining	adaptor	sequences	
were	removed	using	fastx_clipper	also	provided	in	module	
fastx.0.0.13.	The	PstI	tag	(5’-TGCAG—–3’)	was	retained	
on	each	sequence	read	to	act	as	a	reference	point	during	
read	alignment	to	the	reference	genome.	Reads	of	the	same	
genotype	were	merged	into	one	file	for	downstream	analysis.	
Bowtie2	was	used	to	align	reads	to	the	latest	publicly	avail-
able	reference	banana	genome	(Martin	et	al.,	2016).	Read	
groups	were	added	to	aligned	sample	reads	after	which	the	
duplicate	reads	were	marked	and	removed	using	picard-
1.100.	Indels	were	realigned	and	all	realigned	reads	from	all	
samples	were	merged	into	one	file	before	SNP	calling.

Genome	analysis	tool	kit	(GATK)	version	2.7.2,	
UnifiedGenotyper	(https://software.broadinstitute.org/
gatk/documentation/)	was	used	as	the	variant	caller.	
First,	all	genotypes	were	considered	as	diploids	and	as	
such	bi-allelic	SNP	(BA-SNP)	were	called.	Second,	the	
population	was	split	and	grouped	according	to	ploidy	
level.	The	respective	ploidy	levels	were	set	during	SNP	
calling.	Preliminary	filtering	of	SNP	was	performed	
prior	to	output	of	variant	call	file	(VCF).	The	filters	used	
were	QD	<	2.0,	FS	>	60.0,	MQ	<	40	and	Haplotypescore	
>	13.0.	Further	stringent	filtering	was	done	in	R	(R	
core	team,	2016)	where	SNP	loci	with	quality	score	less	
than	98	and	more	than	50%	of	the	banana	genotypes	
having	missing	data	were	excluded.	Concordant	SNP	
loci	across	all	ploidy	levels	were	selected	to	generate	a	file	
with	SNP	where	allele	dosage	had	been	accounted	for.	
The	remaining	missing	data	were	imputed	with	impute	
function	in	R	and	SNP	converted	into	numerical	data	
for	input	into	genomic	prediction	models	using	a	custom	
R-script.	The	description	of	how	the	script	works	can	be	
accessed	here:	http://olomouc.ueb.cas.cz/system/files/
users/public/scripts/AlleleDosage_R_function.docx

Comparison of Genomic Prediction Models  
and the Effect of Field Management and  
Crop Cycle on their Performance
Bayesian	models	accounting	for	additive	genetic	effects	
(Bayesian	Ridge	Regression	[BRR],	Bayesian	LASSO	[BL],	
BayesA,	BayesB	and	BayesC),	and	reproducing	kernel	
Hilbert	space	models	with	pedigree	(P),	markers	(M),	
pedigree	and	markers	(PM)	accounting	for	non-additive	
genetic	effects	(RKHS_P,	RKHS_M	and	RKHS_PM)	
were	compared.	All	models	were	implemented	in	
R-package	BGLR	(Pérez	and	de	los	Campos,	2014)	using	
10807	BA-SNP	markers.	Since	the	training	popula-
tion	consisted	of	many	small	families	and	genotypes	of	
different	ploidy	levels,	both	phenotype	and	SNP	data	
were	completely	randomized	in	the	same	order.	The	aim	
was	to	minimize	the	effect	of	family	structure	and	ploidy	
level	during	cross	validation.

The	phenotype	data	used	were	the	average	phenotypic	
observations	per	genotype	per	field.	These	were	calculated	
using	the	function	‘aggregate’	provided	in	R-package	plyr.	
The	training	population	was	divided	into	five	groups	and	

each	group	was	used	once	as	the	testing	(cross	validation)	
set.	The	predictive	ability	of	the	model	was	determined	
as	the	average	correlation	between	the	predicted	and	
observed	phenotype	of	the	testing	sets	from	five	cross	
validations.	Across	field	management,	cross	validation	was	
done	so	that	data	from	one	field	were	used	to	generate	the	
model	using	the	training	set,	and	the	predicted	pheno-
types	of	the	genotypes	in	the	testing	set	were	correlated	to	
the	observed	phenotypes	in	the	second	field.

For	all	models,	the	priors	for	parameters	such	as	
shape,	rate,	and	counts	were	estimated	from	the	data.	
However,	for	BayesB	and	BayesC	models,	the	prior	
probability	of	a	marker	having	a	non-null	effect	on	the	
phenotype	(probIn	value)	was	set	at	0.05	and	the	degrees	
of	freedom	were	set	according	to	the	available	phenotype	
and	genotype	data.	The	genetic	variance	in	all	models	
was	set	at	0.5.	For	every	cross	validation,	10,000	itera-
tions	were	run	with	a	burnIn	of	5000	and	thin	10.

The	fifteen	traits	mentioned	above	were	predicted	with	
all	models	to	determine	the	best	genomic	prediction	model	
for	each	trait	or	group	of	traits.	The	effect	of	using	models	
generated	with	data	from	low	input	field	management	to	
predict	performance	of	genotypes	under	high	input	manage-
ment	and	vice	versa	(G	×	E	effect)	was	also	evaluated.

Next,	the	effect	of	crop	cycle	on	trait	prediction	was	
evaluated	using	one	of	the	best	identified	genomic	predic-
tion	model.	Cross	validation	across	and	within	crop	
cycles	was	done	using	the	10807	BA-SNP	markers	and	the	
average	phenotype	per	crop	cycle	1	and	crop	cycle	2	of	
each	field.	Five	cross	validations	were	performed	without	
overlap	of	genotypes	between	the	training	and	testing	
set	in	each	round.	Only	a	few	traits	representing	the	trait	
categories	were	considered	because	of	high	correlation	
of	traits	within	trait	categories	(Nyine	et	al.,	2017).	They	
included	plant	girth	at	100	cm	from	soil	surface,	index	of	
non-spotted	leaves,	bunch	mass,	and	fruit	circumference.	
The	total	number	of	suckers	was	not	analyzed	because	
this	trait	was	scored	only	in	crop	cycle	1.

Effect of Allele Dosage on Model Performance
The	performance	of	BayesB,	BRR,	BL,	and	RKHS_M	
models	fitted	with	BA-SNP	and	AD-SNP	markers	was	
compared	for	the	15	traits.	Predictions	based	on	BA-SNP	
markers	were	used	as	the	baseline	for	comparison.	Equal	
number	of	SNP	from	same	loci	for	both	BA-SNP	and	
AD-SNP	were	used.	Combined	phenotypic	data	from	the	
two	fields	for	the	two	crop	cycles	(environment	averaged	
data)	were	used	to	calculate	the	mean	phenotype	of	each	
individual	genotype.	In	this	cross-validation	strategy,	
first,	genotypes	were	completely	randomized.	A	five-fold	
cross	validation	was	performed	using	similar	priors	to	
determine	the	predictive	ability	of	the	model	for	the	trait.	
Second,	the	performance	of	parents’	model	versus	prog-
eny’s	model	was	compared	using	BA-SNP	and	AD-SNP.	
Here,	the	training	set	consisted	of	either	only	parents	
(parents’	model),	or	progeny	(progeny’s	model).	Third,	
the	population	was	divided	into	three	groups	consisting	
of	diploids,	triploids,	and	tetraploids.	The	training	set	

http://olomouc.ueb.cas.cz/system/files/users/public/scripts/AlleleDosage_R_function.docx
http://olomouc.ueb.cas.cz/system/files/users/public/scripts/AlleleDosage_R_function.docx
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comprised	of	any	two	of	the	ploidy	groups	while	the	
testing	set	consisted	of	genotypes	from	one	ploidy	level.	
Due	to	differences	in	population	sizes	under	different	
ploidy	level,	we	also	used	only	triploids	to	compare	the	
effect	of	accounting	for	allele	dosage.

The	effect	of	using	averaged	environment	model	was	
assessed	based	on	AD-SNP	to	predict	plant	girth	at	100	
cm	from	soil	surface,	total	number	of	suckers,	index	of	
non-spotted	leaves,	bunch	mass,	and	fruit	circumference	
under	low	and	high	input	fields.	The	percentage	differ-
ence	in	prediction	(PDP)	between	low	and	high	input	
fields	was	calculated	in	reference	to	the	prediction	in	the	
low	input	field	management.

To	understand	the	variation	and	trend	of	predictive	
ability	across	traits,	both	broad	(H2)	and	narrow	(h2)	
sense	heritabilities	were	estimated	following	the	methods	
described	by	Kruijer	et	al.	(2015).	The	BA-SNP	markers	
(10,807)	and	phenotypic	means	from	each	field	were	used	
to	estimate	h2	using	R-package	heritability	while	the	
results	from	analysis	of	variance	were	used	to	estimate	
H2.	Type	B	genetic	correlation	was	also	performed	based	
on	phenotypic	means	from	GS1	and	GS2	to	determine	
the	effect	of	G	×	E	interaction	on	the	trend	of	trait	
prediction	across	fields	(Burdon,	1977).

The Accuracy of Genomic Prediction  
within the Training Population
The	GEBV	obtained	from	the	models	fitted	with	
AD-SNP	with	best	and	worst	predictive	abilities	for	plant	
girth,	total	number	of	suckers,	index	of	non-spotted	
leaves,	bunch	mass	and	fruit	circumference	were	used	
to	rank	the	genotypes.	The	top	100	genotypes	were	
compared	with	the	best	100	genotypes	ranked	on	the	
basis	of	the	environment	averaged	phenotypic	data.	The	
number	of	genotypes	out	of	100	captured	by	both	GEBV	
and	phenotypic	data	was	reported	as	the	estimated	
accuracy	of	genomic	prediction	within	the	training	
population.	For	this	analysis,	the	best	genomic	prediction	
model	identified	above	was	used.

RESULTS
Genotyping
The	discovery	of	SNP	markers	from	GBS	reads	for	the	
training	population	was	based	on	the	latest	publicly	
available	version	of	the	double	haploid	Musa acumi-
nata	cv.	Pahang	reference	genome	sequence	(Martin	
et	al.,	2016).	To	account	for	allele	dosage	in	genotypes	
of	different	ploidy,	a	workflow	was	developed	for	the	
analysis	of	sequence	data	and	GATK,	UnifiedGeno-
typer	was	used	as	SNP	caller	(Supplemental	Fig.	S1).	It	
produced	52076	BA-SNP	after	pre-filtering.	Less	than	
one	percent	of	the	loci	had	multi-allelic	SNP.	They	were	
eliminated	from	the	data	to	avoid	potential	sequencing	
artifacts.	After	further	stringent	filtering	in	R	(R	core	
team,	2016),	10807	BA-SNP	markers	that	were	polymor-
phic	with	a	minimum	minor	allele	frequency	of	0.01	were	
retained.	These	were	distributed	on	11	pseudomolecules	

as	well	as	on	unanchored	scaffold	of	the	banana	refer-
ence	genome	(Fig.	3).	The	percentage	of	imputed	missing	
genotypes	was	16%.	Accounting	for	allele	dosage	within	
the	ploidy	groups	(diploids,	triploids,	and	tetraploids)	
reduced	the	number	of	SNP	markers	to	5574.

Comparison of Genomic Prediction Models  
and the Effect of Field Management and  
Crop Cycle on their Performance
The	best	genomic	prediction	model	for	different	traits	
was	selected	based	on	congruity	of	predictive	ability	
results	from	cross	validation	between	fields	using	
BA-SNP	markers.	The	predictive	ability	of	all	models	
varied	across	traits	(Table	1;	Supplemental	Table	S2).	
For	12	out	of	15	traits,	genomic	prediction	models	that	
account	for	additive	genetic	effects	gave	the	highest	
predictions	ranging	from	0.2	to	0.72.	These	were	the	
correlations	between	the	predicted	and	observed	pheno-
types	for	the	various	traits.	Reproducing	kernel	Hilbert	
space	model	combining	both	pedigree	and	marker	
information	(RKHS_PM)	gave	the	highest	predictions	
ranging	from	0.24	to	0.49	for	3	out	of	15	traits	and	these	
were	the	days	to	fruit	maturity,	height	of	tallest	sucker	
at	flowering	and	height	of	tallest	sucker	at	harvesting.	
BayesB	and	BayesC	models	predicted	equally	well	and	
better	than	other	models	for	fruit	filling	and	fruit	bunch	
traits.	For	example,	the	predictions	of	all	fruit	filling	
traits	by	both	models	ranged	from	0.65	to	0.72.	For	plant	
stature,	suckering	behavior	and	black	leaf	streak	resis-
tance	traits,	BayesB	and	BayesC	models	were	not	the	best,	
but	either	had	the	same	predictive	ability,	or	were	lower	
by	5	–	13	%	in	prediction	as	compared	to	other	models.		
The	trend	of	prediction	starting	from	the	highest	to	
the	lowest	trait	category	was	fruit	filling,	fruit	bunch,	
plant	stature,	black	leaf	streak	resistance,	and	suckering	
behavior.	In	general,	genomic	prediction	models	fitted	
with	phenotypic	data	from	GS1	underpredicted	the	
performance	of	genotypes	in	GS2,	and	vice-versa	(Fig.	
4),	but	this	did	not	affect	the	trend	of	prediction	across	

Fig. 3. Distribution of filtered SNP markers on 11 pseudomol-
ecules of the double haploid of M. acuminata cv. Pahang (Martin 
et al., 2016). Q represents the unanchored scaffolds.
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traits.	Little	difference	in	prediction	was	observed	across	
all	models	for	traits	within	the	same category.

The	performance	of	RKHS	model	fitted	with	marker	
data	(RKHS_M)	was	comparable	to	BRR,	BL,	and	BayesA	
models	fitted	with	marker	data.	RKHS	model	fitted	with	
pedigree	information	alone	(RKHS_P)	had	the	least	predic-
tive	ability	that	ranged	from	0.12	to	0.5	(Supplemental	Table	
S2).	There	was	a	4	to	29%	loss	in	predictive	ability	(LIP)	of	
most	traits	when	marker	and	pedigree	information	were	
combined	in	the	RKHS_PM	model.	However,	the	same	
model	gave	a	4	to	21%	gain	in	prediction	for	plant	height,	
height	of	tallest	sucker	at	flowering,	height	of	tallest	sucker	
at	harvesting	and	days	to	fruit	maturity.

The	effect	of	crop	cycle	on	trait	prediction	was	tested	
with	BayesB	model	using	BA-SNP	markers,	because	this	
model	either	out-performed	other	models,	or	performed	
equally	well	as	noted	in	Table	1;	Supplemental	Table	S2.	The	
cross-validation	strategies	used	were	(a)	within	crop	cycle	
cross	validation	for	which	both	the	training	and	testing	sets	
were	from	the	same	crop	cycle	and	(b)	across	crop	cycle	
cross	validation	where	the	training	and	testing	sets	were	
selected	from	different	crop	cycles	within	the	same	field.	
The	predictive	ability	of	BayesB	model	fitted	with	crop	cycle	
1,	or	crop	cycle	2	data	in	both	low	input	and	high	input	
fields	yielded	mixed	results	when	within	and	across	crop	
cycle	cross	validations	were	performed	for	different	traits	
(Table	2).	Predictive	ability	of	the	model	for	fruit	circumfer-
ence	and	bunch	mass	ranged	from	0.58	to	0.73,	while	for	
plant	girth	and	index	of	non-spotted	leaves	ranged	from	
0.39	to	0.61	and	0.26	to	0.44,	respectively,	in	both	fields	and	
crop	cycles.	Less	than	2%	variation	in	prediction	across	
and	within	crop	cycles	was	observed	in	both	bunch	mass	
and	fruit	circumference.	The	highest	difference	of	20%	in	
prediction	across	(0.28)	and	within	(0.35)	crop	cycle	was	

recorded	in	GS2	for	index	of	non-spotted	leaves	when	crop	
cycle	2	data	were	used	to	fit	the	model.

Effect of Allele Dosage
The	effect	of	AD-SNP	on	predictive	ability	of	the	best	
genomic	prediction	models	was	evaluated	for	15	traits	in	
comparison	to	predictions	based	on	BA-SNP	markers.	
For	both	BA-SNP	and	AD-SNP,	5574	SNP	markers	from	
the	same	loci	and	combined	phenotypic	data	from	the	
two	fields	for	the	two	crop	cycles	(environment	averaged	
data)	were	used	to	fit	the	models.	First,	genotypes	were	
completely	randomized	to	minimize	the	effect	of	family	
structure	and	ploidy.	Second,	the	training	set	consisted	
of	either	only	parents	(parents’	model),	or	progeny	
(progeny’s	model).	Third,	the	population	was	divided	
into	diploids,	triploids,	and	tetraploids.	The	training	
set	comprised	of	any	two	of	the	ploidy	groups	while	the	
testing	set	consisted	of	genotypes	from	one	ploidy	level.	
Lastly,	only	triploids	were	considered	during	cross	vali-
dation	since	85%	of	genotypes	in	the	training	population	
were	triploids.	The	aim	was	to	understand	what	traits	
and	which	ploidy	level	were	mostly	affected	by	allele	
dosage	when	implementing	genomic	predictions.

The	results	of	the	comparison	of	the	effect	of	
allele	dosage	on	performance	of	BayesB,	BRR,	BL,	and	
RKHS_M	models	are	summarized	in	Table	3.	When	
AD-SNP	were	used	to	fit	the	models,	predictive	ability	of	
all	models	was	trait	dependent,	but	generally	reduced	by	
15%	on	average	as	compared	to	the	traditional	BA-SNP	
markers.	When	only	triploids	were	considered	during	the	
cross	validation,	predictive	ability	for	fruit	circumfer-
ence	fell	by	10%	from	0.76	to	0.68,	while	for	bunch	mass	
it	decreased	by	5%	from	0.62	to	0.59.	The	highest	loss	in	
prediction	(PLP)	of	24	to	44%	was	observed	in	suckering	

Table 1. Comparison of average correlation (standard errors in parentheses) for five-fold cross validations 
between the predicted and observed phenotypes across models fitted with data from either low input (GS1) or 
high input (GS2) fields and 10807 bi-allelic SNP markers.

 
Trait category

 
Trait

BRR BayesB BayesC RKHS_M RKHS_PM
GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2

Plant stature Plant height 0.54 (0.06) 0.46 (0.09) 0.54 (0.06) 0.44 (0.09) 0.54 (0.07) 0.45 (0.09) 0.55 (0.06) 0.44 (0.09) 0.54 (0.05) 0.48 (0.07)
Plant girth 0.60 (0.06) 0.52 (0.05) 0.60 (0.06) 0.52 (0.06) 0.60 (0.06) 0.51 (0.05) 0.60 (0.06) 0.51 (0.06) 0.55 (0.04) 0.50 (0.05)

Suckering behavior Total number of suckers 0.16 (0.06) 0.17 (0.06) 0.16 (0.06) 0.1(9 (0.06) 0.15 (0.06) 0.19 (0.07) 0.17 (0.06) 0.18 (0.06) 0.16 (0.04) 0.17 (0.07)
Height of tallest sucker at flowering 0.28 (0.05) 0.18 (0.09) 0.27 (0.05) 0.20 (0.08) 0.26 (0.05) 0.2 (0.08) 0.28 (0.05) 0.19 (0.09) 0.30 (0.06)*0.24 (0.09)*
Height of tallest sucker at harvesting 0.27 (0.05) 0.26 (0.07) 0.28 (0.06) 0.24 (0.06) 0.27 (0.06) 0.25 (0.07) 0.26 (0.05) 0.26 (0.06) 0.29 (0.03)*0.32 (0.07)*

Black leaf streak Number of standing leaves at flowering0.36 (0.08) 0.42 (0.08) 0.43 (0.06) 0.40 (0.08) 0.36 (0.08) 0.41 (0.08) 0.37 (0.08) 0.41 (0.08) 0.29 (0.07) 0.34 (0.04)
Index of non-spotted leaves 0.35 (0.04) 0.42 (0.06) 0.34 (0.05) 0.43 (0.06) 0.34 (0.05) 0.43 (0.06) 0.35 (0.05) 0.42 (0.06) 0.32 (0.07) 0.36 (0.10)

Fruit bunch Days to fruit maturity 0.47 (0.07) 0.42 (0.09) 0.47 (0.07) 0.42 (0.09) 0.46 (0.07) 0.42 (0.09) 0.47 (0.07) 0.42 (0.10) 0.49 (0.06)* 0.44 (0.09)*
Bunch mass 0.63 (0.03) 0.61 (0.03) 0.64 (0.03)*0.62 (0.03)* 0.64 (0.03)*0.62 (0.03)* 0.61 (0.03) 0.61 (0.03) 0.52 (0.06) 0.55 (0.04)

Number of hands 0.60 (0.03)*0.62 (0.04)* 0.60 (0.02)*0.62 (0.04)* 0.59 (0.02) 0.62 (0.04) 0.59 (0.03) 0.62 (0.04) 0.48 (0.03) 0.53 (0.02)
Number of fruits 0.47 (0.03) 0.51 (0.04) 0.47 (0.03)* 0.52 (0.04)* 0.47 (0.02)* 0.52 (0.04)* 0.45 (0.03) 0.52 (0.04) 0.35 (0.04) 0.45 (0.04)

Fruit filling Fruit length 0.65 (0.04) 0.64 (0.02) 0.67 (0.04)* 0.65 (0.02)* 0.67 (0.03)* 0.65 (0.02)* 0.64 (0.04) 0.64 (0.02) 0.59 (0.07) 0.59 (0.02)
Fruit circumference 0.67 (0.02) 0.66 (0.01) 0.70 (0.01)* 0.69 (0.01)* 0.70 (0.01)* 0.69 (0.01)* 0.65 (0.02) 0.66 (0.01) 0.57 (0.05) 0.60 (0.02)

Fruit diameter 0.67 (0.01) 0.63 (0.05) 0.70 (0.01)* 0.71 (0.02)* 0.70 (0.01)* 0.71 (0.02)* 0.65 (0.02) 0.67 (0.03) 0.57 (0.04) 0.59 (0.02)
Pulp diameter 0.67 (0.02) 0.68 (0.04) 0.70 (0.01)* 0.72 (0.03)* 0.70 (0.01)* 0.72 (0.03)* 0.65 (0.02) 0.67 (0.04) 0.57 (0.04) 0.60 (0.03)

*Highest predictive value observed in both GS1 and GS2 for a trait using same model type. The values under GS1 column are the correlations between predicted and observed phenotype (predictive ability) in GS2 
when GS1 data were used to fit the model and vice versa for GS2 column.
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behavior	traits	when	AD-SNP	markers	were	used	to	fit	
model	using	genotypes	from	all	ploidy	levels.	However,	
the	trend	of	prediction	within	and	across	trait	categories	
did	not	change	by	accounting	for	allele	dosage.	Fruit	
filling	traits	were	the	best	predicted	with	the	highest	
predictive	ability	of	0.68	for	pulp	diameter.	BayesB	model	
maintained	its	superior	prediction	accuracy	over	other	
models,	especially	for	fruit	filling	and	fruit	bunch	traits.

Although	the	number	of	SNP	markers	used	in	this	
prediction	was	reduced	to	5574	because	we	wanted	to	
eliminate	the	bias	in	predictions	due	to	variable	number	

and	location	of	BA-SNP	and	AD-SNP,	the	environ-
ment	(field	management)	averaged	models	with	BA-SNP	
markers	gave	higher	predictions	than	those	obtained	with	
across	field	cross	validation	with	10,807	SNP	markers	for	
all	traits.	The	highest	predictive	ability	recorded	was	0.75	
for	fruit	filling	traits	with	the	BayesB	model	(Table	3).

When	only	parental	data	were	used	to	fit	BayesB	model	
(parents’	model),	the	predictive	ability	of	traits	within	the	
progeny	ranged	from	0.13	to	0.59	for	BA-SNP	and	from	
-0.15	to	0.33	for	AD-SNP	(Supplemental	Table	S3).	The	LIP	
due	to	accounting	for	allele	dosage	was	63%	on	average	
(36–179%).	Similarly,	when	progeny	data	were	used	to	fit	
BayesB	model	(progeny’s	model),	the	predictive	ability	of	
traits	within	parents	ranged	from	0.39	to	0.86	with	BA-SNP	
and	from	-0.03	to	0.77	with	AD-SNP	markers.	The	LIP	
due	to	accounting	for	allele	dosage	was	35%	on	average	
(1.5–107%).	The	highest	predictive	value	obtained	with	
BayesB	model	fitted	with	BA-SNP	was	0.86	for	number	of	
hands.	This	prediction	dropped	by	nearly	50%	(0.48)	when	
AD-SNP	markers	were	used.	Prediction	accuracy	of	the	
same	trait	in	progeny	using	parents’	model	was	0.45	with	
BA-SNP	and	0.03	with	AD-SNP	markers.	The	prediction	
of	bunch	mass	in	the	progeny	using	a	parents’	model	with	
AD-SNP	was	0.17	while	the	prediction	of	the	same	trait	in	
parents	using	a	progeny’s	model	reduced	to	0.08.

Since	allele	dosage	varies	with	ploidy	level,	cross	vali-
dation	across	ploidy	levels	was	performed.	Genotypes	from	
two	ploidy	levels	were	used	to	train	the	model	and	only	
genotypes	of	same	ploidy	level	were	included	in	the	testing	
set	during	cross	validation.	Accounting	for	allele	dosage	
positively	increased	the	predictive	ability	of	all	fruit	filling	
traits	in	tetraploids	with	BayesB	model,	but	the	results	from	
other	trait	categories	varied	greatly	(Supplemental	Table	
S4).	For	example,	prediction	of	pulp	diameter	increased	
from	-0.39	to	0.60,	fruit	diameter	increased	from	-0.45	to	
0.53	and	fruit	circumference	increased	from	-0.15	to	0.35.	
BayesB	model	fitted	with	triploid	and	tetraploid	data,	and	
BA-SNP	gave	the	predictions	ranging	from	0.32	to	0.86	for	
traits	among	diploids.	Tetraploids	and	diploids	were	the	
least	represented	in	the	training	population	(47	out	of	307	
genotypes,	or	15%)	and	of	which	the	majority	were	parents.	
When	their	data	were	used	to	fit	the	model	to	predict	traits	
in	triploids	the	prediction	varied	from	0.20	to	0.54	and	
from	-0.06	to	0.11	with	BA-SNP	and	AD-SNP,	respectively.

When	BayesB	model	was	fitted	with	the	environment	
averaged	data	(including	all	ploidy	levels)	and	AD-SNP	

Fig. 4. Prediction of plant height at flowering (PHF) using a Bayesian 
ridge regression model fitted with phenotype data from low input 
field (A) and high input field (B). Where A, shows underprediction 
and B, shows overprediction of PHF. The black and magenta circles 
represent genotypes in the training and testing sets, respectively.

Table 2. Average predictive ability (standard errors in parentheses) of BayesB model fitted with either crop cycle 
1, or crop cycle 2 phenotype data from low (GS1) and high (GS2) input field management using bi-allelic SNP 
markers to predict traits across and within crop cycles.

Low input field management (GS1) High input field management (GS2)
Cycle 1 model Cycle 2 model Cycle 1 model Cycle 2 model

Trait category Trait Across Within Across Within Across Within Across Within
Plant stature Plant girth 0.39 (0.04) 0.55 (0.03) 0.51 (0.02) 0.44 (0.05) 0.54 (0.02) 0.59 (0.02) 0.61 (0.02) 0.57 (0.02)
Black leaf streak Index of non-spotted leaves 0.42 (0.06) 0.44 (0.03) 0.40 (0.04) 0.41 (0.03) 0.30 (0.08) 0.26 (0.04) 0.28 (0.05) 0.35 (0.05)
Fruit bunch Bunch mass 0.58 (0.03) 0.60 (0.04) 0.60 (0.06) 0.59 (0.03) 0.63 (0.02) 0.65 (0.03) 0.65 (0.02) 0.62 (0.03)
Fruit filling Fruit circumference 0.72 (0.02) 0.71 (0.03) 0.72 (0.04) 0.72 (0.02) 0.73 (0.02) 0.73 (0.03) 0.71 (0.02) 0.72 (0.02)
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to	predict	the	traits	under	low	and	high	input	fields,	there	
was	a	2	to	8%	increase	in	predictive	ability	under	high	
input	field	relative	to	low	input	field	for	plant	girth,	bunch	
mass	and	fruit	circumference	(Table	4).	However,	for	total	
number	of	suckers	and	index	of	non-spotted	leaves,	the	
predictions	reduced	by	47	and	15%,	respectively.

Estimated	H2	and	h2	had	positive	relationship	with	
predictive	ability.	However,	h2	varied	across	fields	with	
some	traits	having	higher	h2	than	H2	(Table	5).	A	similar	
trend	was	observed	between	Type	B	genetic	correlation	
and	predictive	ability.	The	correlation	varied	between	
0.71	and	0.9	for	fruit	bunch,	fruit	filling	and	plant	stature	
traits.	The	lowest	correlation	was	recorded	on	the	index	
of	non-spotted	leaves	(Table	5).

The Accuracy of Genomic Prediction  
within the Training Population
The	first	100	genotypes	with	the	highest	GEBV	and	
the	first	100	genotypes	with	the	highest	environment	
averaged	phenotypic	data	were	compared	(Fig.	5).	The	
GEBV	used	were	obtained	from	BayesB	model	with	best	
and	worst	predictive	abilities	based	on	AD-SNP	markers.	
The	number	of	genotypes	out	of	100	captured	by	both	
GEBV	and	phenotypic	data	was	reported	as	the	estimated	
accuracy	of	genomic	prediction	within	the	training	popu-
lation	for	the	trait.	The	accuracy	of	prediction	ranged	from	
76	to	84%	for	all	the	traits	whereas	the	prediction	values	
ranged	from	0.04	to	0.76.	Models	that	gave	high	predictive	
ability	values	had	also	the	highest	prediction	accuracy.

DISCUSSION
Genotyping
Genomic	selection	as	a	form	of	marker	assisted	selec-
tion	has	been	investigated	in	a	range	of	plant	species	
including,	for	example,	maize	and	wheat	(Heffner	et	

al.,	2011;	Crossa	et	al.,	2014;	Crossa	et	al.,	2016;	Pérez-
Rodríguez	et	al.,	2017),	white	spruce	(Beaulieu	et	al.,	
2014),	sugar	beet	(Würschum	et	al.,	2013),	apples	(Kumar	
et	al.,	2012),	strawberries	(Gezan	et	al.,	2017),	and	rice	
(Onogi	et	al.,	2016).	In	these	experiments,	genotypes	of	
same	ploidy	level	constituted	the	training	population.	
The	present	study	on	banana	is	unique	in	this	respect	
as	three	ploidy	levels	were	represented	in	the	training	
population.	Within	the	three	ploidy	levels,	both	parents	
and	progeny	were	represented	in	varying	proportions.	
The	hybrids	in	the	training	population	arose	from	77	
cross	combinations,	mainly	involving	crosses	between	
tetraploids	and	diploids	(Nyine	et	al.,	2017).	Innovative	
approaches	in	SNP	calling,	including	custom	R-script	
had	to	be	adopted	for	such	an	unconventional	popula-
tion	(Supplemental	Fig.	S1).	The	script	removes	loci	with	
monomorphic	SNP,	eliminates	loci	with	more	than	two	
alternative	SNP	alleles,	and	converts	the	SNP	file	into	a	
numerical	format	while	accounting	for	allele	dosage,	and	
it	can	be	customized	to	any	polyploid	plant	species.	Loci	
with	multi-allelic	SNP	were	eliminated	because	GBS	is	a	
low	coverage	sequencing	technology.	This	makes	it	hard	
to	differentiate	true	rare	SNP	from	sequence	artifacts	
especially	when	the	population	is	small	and	the	species	is	
clonally	propagated	due	to	lower	rate	of	multiple	muta-
tions	at	the	same	locus.	Bowtie2	was	used	as	the	sequence	
alignment	tool	while	GATK,	UnifiedGenotyper	was	the	
variant	caller.	However,	as	indicated	by	Clevenger	et	al.	
(2015),	optimal	alignment	programs	and	variant	callers	
may	vary	among	species.

GATK	(https://software.broadinstitute.org/gatk/
documentation/)	in	particular	is	useful	when	handling	
polyploid	species.	It	allows	setting	the	ploidy	level	and	
reduces	false	positive	SNP	calls	arising	from	frameshifts	by	
running	INDEL	realignment	step	(Clevenger	et	al.,	2015).	
When	Picard	tools	(https://sourceforge.net/projects/picard/

Table 3. Effect of accounting for allele dosage on the predictive ability of genomic prediction models using 
environment averaged phenotype data.

Bi-allelic SNP Allele dosage SNP
Trait category Trait BRR BayesB BL RKHS_M BRR BayesB BL RKHS_M

Plant stature Plant height 0.54 (0.03)† 0.53 (0.02) 0.52 (0.03) 0.53 (0.03) 0.46 (0.07) 0.45 (0.06) 0.44 (0.07) 0.45 (0.07)
Plant girth 0.53 (0.04) 0.53 (0.03) 0.52 (0.04) 0.52 (0.04) 0.48 (0.04) 0.47 (0.04) 0.47 (0.04) 0.48 (0.04)

Suckering behavior Total number of suckers 0.32 (0.06) 0.29 (0.06) 0.33 (0.05) 0.31 (0.06) 0.21 (0.05) 0.16 (0.05) 0.21 (0.05) 0.21 (0.05)
Height of tallest sucker at flowering 0.37 (0.04) 0.34 (0.04) 0.37 (0.04) 0.38 (0.04) 0.27 (0.06) 0.26 (0.05) 0.27 (0.05) 0.28 (0.05)
Height of tallest sucker at harvesting 0.35 (0.04) 0.33 (0.03) 0.34 (0.04) 0.35 (0.04) 0.24 (0.03) 0.23 (0.03) 0.23 (0.03) 0.25 (0.03)

Black leaf streak Number of standing leaves at flowering 0.49 (0.05) 0.48 (0.05) 0.48 (0.05) 0.48 (0.05) 0.48 (0.06) 0.48 (0.06) 0.48 (0.06) 0.49 (0.06)
Index of non-spotted leaves 0.58 (0.03) 0.59 (0.03) 0.58 (0.03) 0.58 (0.03) 0.53 (0.03) 0.52 (0.03) 0.53 (0.04) 0.53 (0.03)

Fruit bunch Days to fruit maturity 0.53 (0.05) 0.54 (0.06) 0.53 (0.06) 0.53 (0.06) 0.44 (0.05) 0.43 (0.05) 0.44 (0.05) 0.44 (0.05)
Bunch mass 0.61 (0.05) 0.62 (0.04) 0.61 (0.05) 0.61 (0.04) 0.54 (0.03) 0.56 (0.03) 0.54 (0.03) 0.54 (0.02)

Number of hands 0.63 (0.04) 0.62 (0.04) 0.62 (0.04) 0.63 (0.04) 0.56 (0.03) 0.56 (0.03) 0.56 (0.03) 0.56 (0.03)
Number of fruits 0.49 (0.04) 0.49 (0.04) 0.48 (0.04) 0.50 (0.04) 0.43 (0.03) 0.42 (0.04) 0.42 (0.03) 0.43 (0.04)

Fruit filling Fruit length 0.69 (0.02) 0.70 (0.02) 0.69 (0.03) 0.69 (0.02) 0.60 (0.03) 0.64 (0.02) 0.60 (0.02) 0.59 (0.03)
Fruit circumference 0.67 (0.03) 0.75 (0.02) 0.68 (0.03) 0.66 (0.03) 0.59 (0.03) 0.66 (0.03) 0.60 (0.03) 0.59 (0.03)

Fruit diameter 0.67 (0.03) 0.75 (0.02) 0.68 (0.03) 0.66 (0.03) 0.60 (0.03) 0.67 (0.03) 0.62 (0.02) 0.60 (0.02)
Pulp diameter 0.68 (0.03) 0.75 (0.03) 0.69 (0.03) 0.67 (0.03) 0.61 (0.03) 0.68 (0.03) 0.63 (0.03) 0.61 (0.02)

†The values in parentheses are the standard errors of predictive ability.

https://software.broadinstitute.org/gatk/documentation
https://software.broadinstitute.org/gatk/documentation
https://sourceforge.net/projects/picard/files/picard-tools/1.100
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files/picard-tools/1.100/)	are	used	prior	to	SNP	calling,	
normalization	of	sequence	reads	is	possible	by	marking	
and	removing	duplicate	reads.	This	allows	regions	with	low	
reads	coverage,	but	carrying	SNP	of	interest	to	be	included	
in	the	genotype	data.	Picard	tools	also	allow	merging	of	
aligned	sample	reads	by	addition	of	read	groups,	which	
help	in	separating	genotypes	after	SNP	calling.

What is the Best Genomic Prediction Model  
for Each Trait or Group of Traits?
Different	genomic	prediction	models	were	compared	in	
this	work	in	terms	of	their	predictive	ability,	or	accuracy	
for	different	traits	as	noted	in	Table	1	and	Supplemental	
Table	S2.	We	compared	the	performance	of	models	that	
account	for	additive	genetic	effects	and	those	that	account	
for	non-additive	genetic	effects.	A	good	performance	of	
models	that	account	for	additive	genetic	effects	suggested	
that	a	large	proportion	of	phenotypic	variation	observed	
in	the	training	population	was	due	to	additive	genetic	
effects.	Indeed,	traits	with	high	narrow	sense	heritability	
(h2)	had	higher	predictive	values.	A	similar	observation	
was	made	by	Luan	et	al.	(2009).	They	reported	a	strong	
relationship	between	prediction	accuracy	and	trait	herita-
bility	in	Norwegian	red	cattle.	Differences	in	h2	between	
GS1	and	GS2,	and	H2	were	attributed	to	bias	in	residual	
error	variance.	Using	phenotypic	means	reduces	error	
variance	leading	to	over	estimation	of	h2	as	compared	to	
replicated	phenotypic	data	used	in	estimating	H2.	Usually,	

proper	estimation	of	heritability	requires	balanced	pheno-
typic	data	(Piepho	and	MÖhring,	2007).	However,	it	is	
hard	to	get	balanced	data	for	bananas	because	growth	is	
not	synchronized	between	plants	as	well	as	data	collection,	
which	causes	high	variation	between	genotypes	and	repli-
cates	in	the	same	environment.	Generally,	H2	is	specific	
to	a	given	population	at	a	given	location	and	period,	but	
depending	on	the	genetic	architecture	of	the	trait	correla-
tions	might	be	observed	across	populations.	For	example,	
our	H2	results	are	comparable	to	those	summarized	by	
James	et	al.	(2012)	from	various	publications	on	bananas	
and	plantains.

Additive	genetic	effect	models	BayesB	and	BayesC	
performed	better	than	or	equally	well	as	other	models.	
These	models	perform	both	shrinkage	and	variable	selec-
tion	on	markers	to	include	in	the	model	(Desta	and	Ortiz,	
2014).	The	prior	probability	of	a	marker	having	a	non-null	
effect	(π)	was	set	at	0.05	in	both	models	because	it	gave	the	
highest	predictive	ability	values	as	compared	to	higher	prior	
settings.	It	is	likely	that	the	same	markers	were	selected	and	
included	in	both	models	thus	yielding	closely	related	results.

Our	results	agree	with	other	studies,	which	indicate	
that	models	that	perform	specific	shrinkage	and	variable	
selection	give	better	predictive	ability	values.	For	
example,	Crossa	et	al.	(2010)	showed	that	a	BL	model	that	
shares	some	characteristics	with	BayesB	outperformed	
BLUP,	which	assumes	equal	variance	for	each	marker.	
Similarly,	Clark	et	al.	(2011)	reported	the	superiority	of	

Table 4. Performance of BayesB model fitted with average phenotype data for all fields (environments) and AD-
SNP markers for predictions of five traits representing the trait categories within low and high input fields.

Trait category Trait Low input field (GS1) High input field (GS2) Percentage loss in prediction (PDP)
Plant stature Plant girth 0.48 (0.07) † 0.52 (0.08) 8.3
Suckering behavior Total number of suckers 0.15 (0.05) 0.08 (0.05) −46.7
Black leaf streak Index of non-spotted leaves 0.39 (0.06) 0.33 (0.05) -15.4
Fruit bunch Bunch mass 0.56 (0.05) 0.57 (0.05) 1.8
Fruit filling Fruit circumference 0.66 (0.01) 0.69 (0.03) 4.5
†The values in parentheses are the standard errors of predictive ability, PDP is percentage difference in prediction.

Table 5. Estimated broad (H2), narrow (h2) sense heritability within low (h2_GS1) and high (h2_GS2) input fields and 
type B genetic correlation (r) between GS1 and GS1.

Trait category Trait H2 h2_GS1 h2_GS2 r GS1/GS2 (type B)
Plant stature Plant height 0.89 0.99 0.93 0.79

Plant girth 0.90 0.93 0.91 0.83
Suckering behavior Total number of suckers 0.80 0.45 0.36 0.49

Height of tallest sucker at flowering 0.82 0.70 0.93 0.56
Height of tallest sucker at harvesting 0.86 0.41 0.84 0.47

Black leaf streak Number of standing leaves at flowering 0.83 0.63 0.81 0.54
Index of non-spotted leaves 0.72 0.72 0.63 0.38

Fruit bunch Days to fruit maturity 0.89 0.65 0.85 0.71
Bunch mass 0.94 0.96 0.95 0.86

Number of hands 0.93 0.91 0.91 0.81
Number of fruits 0.89 0.97 0.94 0.74

Fruit filling Fruit length 0.96 0.97 0.98 0.84
Fruit circumference 0.97 0.94 0.96 0.87

Fruit diameter 0.97 0.93 0.99 0.89
Pulp diameter 0.97 0.93 0.92 0.90

https://sourceforge.net/projects/picard/files/picard-tools/1.100
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BayesB	model	over	genomic	BLUP.	They	argued	that	the	
superiority	was	highly	dependent	on	the	presence	of	large	
QTL	effects.	In	relation	to	this	argument,	it	is	likely	that	
even	in	banana,	fruit	filling	traits	could	be	controlled	by	
large	effect	QTL	that	were	selected	by	BayesB	model	in	
all	cross-validations.	However,	this	remains	to	be	proved	
by	QTL	mapping	and	genome-wide	association	studies	
that	are	out	of	the	scope	of	this	study.	Tagging	of	loci	
controlling	fruit	filling	with	DNA	markers	and	selecting	
for	favorable	alleles	should	also	be	considered.	Fruit	
filling	is	a	bunch	mass	component	that	reflects	the	sink	
capacity	of	a	fruit	bunch.	It	was	treated	separately	from	
other	bunch	mass	components	to	better	describe	the	
proportion	of	edible	part	of	the	fruit.	Variation	in	perfor-
mance	of	models	that	perform	shrinkage	and	variable	
selection	has	also	been	reported.	For	example,	in	loblolly	
pine,	BayesCπ	(Habier	et	al.,	2011)	and	BayesA	had	better	
prediction	of	fusiform	rust	disease-resistance	traits	than	
BL	(Resende	et	al.,	2012)

The	predictive	ability	of	all	models	varied	across	
traits.	Similar	predictive	values	for	traits	within	the	same	
category	confirmed	the	findings	of	Nyine	et	al.	(2017)	
who	reported	a	high	correlation	between	these	traits	and	

recommended	that	only	traits	easier	to	phenotype	should	
be	considered	for	genomic	predictions.	The	difference	
in	model	performance	between	trait	categories	suggests	
that	variation	in	trait	architecture,	number	of	QTL	
controlling	the	trait	and	linkage	disequilibrium	between	
markers	and	QTL	influence	the	performance	of	the	
models	(Clark	et	al.,	2011).

The	RKHS_PM	model,	which	accounts	for	non-addi-
tive	genetic	effects	yielded	mixed	prediction	results.	While	
some	traits	had	a	slight	increase	in	prediction,	a	majority	
showed	loss	in	predictive	ability	(Table	1;	Supplemental	
Table	S2).	Previous	studies	(Crossa	et	al.,	2010)	indicated	
minor	improvement	in	trait	prediction	in	wheat	and	maize	
when	marker	and	pedigree	information	were	included	in	
the	model.	However,	Pérez-Rodríguez	et	al.	(2017)	reported	
better	prediction	with	RKHS_P	for	wheat	lines	in	interna-
tional	environments.	The	contradictions	could	be	attributed	
to	the	training	population	structure.	Our	training	popula-
tion	consisted	of	77	subfamilies	(cross	combinations)	of	
varying	sizes	with	diverse	pedigree	background	(Nyine	et	
al.,	2017).	This	suggests	that	when	the	population	consists	
of	many	subfamilies,	the	relationship	by	pedigree	becomes	
less	important.	This	is	reflected	by	the	poor	performance	of	
RKHS_P	model,	which	gave	the	least	prediction	accuracy	
for	all	traits	(Supplemental	Table	S2).	A	similar	trend	was	
observed	by	Beaulieu	et	al.	(2014).	Hence,	the	estimates	
of	allele	distribution	within	such	a	population	is	better	
performed	with	marker	data,	while	addition	of	pedigree	
information	distorts	the	relationship	between	the	geno-
types.	Zhong	et	al.	(2009)	also	highlighted	that	knowledge	
of	pedigree	is	less	informative	in	populations	where	the	
average	genetic	relationship	is	low	and	homogeneity	is	high.

What is the Effect of G × E on Model Predictions?
We	used	a	very	conservative	approach	in	determining	
the	best	genomic	prediction	model	by	carrying	out	across	
field	(environment)	cross	validations.	The	purpose	was	to	
understand	the	effect	of	genotype	by	field	management	
(G	×	E)	interaction	on	the	model	performance.	Nyine	
et	al.	(2017)	performed	analysis	of	variance	on	the	same	
population	and	reported	a	variation	in	G	×	E	interac-
tion	across	different	traits.	However,	type	B	genetic	
correlations	(Table	5)	were	high	for	traits	related	to	fruit	
bunch	and	fruit	filling,	which	explains	why	they	had	
high	predictive	ability	values	across	all	cross-validation	
strategies.	When	Burdon	(1977)	proposed	the	use	of	type	
B	genetic	correlation,	he	noted	that	in	the	analysis	of	
variance,	any	genetic	expression	variation	between	envi-
ronments	can	lead	to	statistical	interaction	that	is	not	
necessarily	a	true	interaction	characterized	by	a	change	
in	ranking	of	genotypes	between	different	environ-
ments.	The	results	showed	that	models	fitted	with	GS1	
phenotype	data	underpredicted	the	phenotypic	expres-
sion	of	genotypes	in	GS2	while	the	models	fitted	with	
GS2	phenotype	data	overpredicted	genotypes	in	GS1	
(Fig.	4).	However,	the	trend	of	prediction	did	not	change	
(Table	1).	A	similar	approach	was	used	by	Ly	et	al.	(2013),	
who	observed	that	across	environment	cross	validations	

Fig. 5. Accuracy of genomic prediction in the training population. 
(A) Percentage of genotypes selected by both GEBV and pheno-
typic data within the first best ranked 100 genotypes. (B) Cor-
relations of the best and worst BayesB models used to generate 
GEBV. Where, PG is plant girth at 100 cm from soil surface, TS is 
total number of suckers, INSL is index of non-spotted leaves, BM is 
bunch mass, FC is fruit circumference and CV is cross validation.
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resulted	into	lower	prediction	accuracies.	However,	our	
prediction	values	were	substantially	higher	as	compared	
to	those	reported	in	other	crops.

Trait	overprediction	in	GS1	with	models	fitted	with	
GS2	data	and	vice	versa	indicated	a	variation	in	genotype	
response	to	environment	that	influenced	the	training	
population	trait	mean,	estimated	marker	effect	and	
the	predictive	ability	of	the	genomic	prediction	models	
(Crossa	et	al.,	2016).	The	high	correlation	between	the	
two	fields	shows	that	it	is	possible	to	use	phenotype	data	
from	any	of	the	field	management	conditions	to	predict	
genotypes	that	have	the	potential	to	perform	well	in	other	
field	management	conditions.	However,	the	predicted	
and	the	actual	observed	phenotype	may	differ	for	a	single	
genotype.	For	example,	plants	that	had	poor	fruit	filling	
characteristics	under	low	input	field	management	did	not	
fill	under	high	input	field	management,	as	well.	However,	
for	genotypes	that	fill	their	fruits,	there	was	an	increase	
in	fruit	size	depending	on	the	amount	of	available	nutri-
ents	and	soil	moisture	in	the	field.	A	similar	trend	was	
reported	in	maize	flowering	where	QTL	were	consistent	
across	environments	and	less	affected	by	environment	
interaction	(Buckler	et	al.,	2009).	This	means	that	genomic	
prediction	models	could	be	used	in	‘negative	selection’	to	
discriminate	the	poor	fruit	filling	hybrids	from	those	with	
potential	of	fruit	filling	at	an	early	stage.

In	banana	breeding,	most	triploid	hybrids	are	sterile.	
The	application	of	genomic	prediction	in	its	strict	sense	
of	selecting	best	parents	for	further	crossing	(Meuwissen	
et	al.,	2001;	Gorddard	and	Hayes,	2007)	may	not	be	
realistic,	unless	the	focus	is	only	on	diploid	and	tetra-
ploid	improvement.	Since	the	prediction	models	give	
both	GEBV	and	predicted	phenotype	(Pérez	and	de	
los	Campos,	2014),	these	two	parameters	can	be	used	
to	eliminate	triploid	hybrids	that	are	likely	to	be	of	no	
value.	Crossa	et	al.	(2014)	also	proposed	that	another	
application	of	genomic	prediction	was	to	predict	the	
genetic	values	of	individuals	for	potential	release	as	
cultivars.	Therefore,	if	the	prediction	accuracy	remains	
high	during	the	breeding	phase,	then	breeders	could	
save	time,	space,	and	money	by	excluding	90%	of	hybrids	
from	phenotyping	(Fig.	2).	To	achieve	this,	breeders	
have	to	set	priority	order	of	traits,	which	could	serve	
as	the	‘selection	index’	for	promising	candidate	culti-
vars	(i.e.,	within	triploids	hybrids)	and	future	parental	
clones	(within	diploid	and	tetraploid	hybrids).	Also,	
family	based	selection	should	be	done	to	reduce	future	
inbreeding	and	maximize	genetic	diversity	to	ensure	
increase	in	genetic	gain	(Jannink	et	al.,	2010).

Although	crop	cycle	was	shown	to	influence	varia-
tion	in	fruit	filling,	fruit	bunch	and	plant	stature,	and	
no	effect	on	black	leaf	streak	resistance	traits	(Nyine	et	
al.,	2017),	the	predictions	within	and	across	crop	cycle	
1	and	crop	cycle	2	did	not	vary	much	for	fruit	filling	
and	fruit	bunch	traits.	This	is	because	fruit	filling	and	
fruit	bunch	traits	increase	in	crop	cycle	2	relative	to	
crop	cycle	1	(Tushemereirwe	et	al.,	2015).	However,	for	
black	leaf	streak	resistance,	resistant	hybrids	remain	

resistant	across	crop	cycles	and	field	management.	
Variation	may	be	observed	among	susceptible	hybrids	
depending	on	the	spore	density	in	the	field	(Tushem-
ereirwe,	1996).	Disease	expression	also	depends	on	vigor	
of	the	plant	due	to	available	nutrients,	seasonal	changes	
and	relative	humidity	in	the	field	(Tushemereirwe,	1996).	
This	probably	explains	the	variation	observed	in	the	
prediction	within	and	across	crop	cycle	for	the	index	of	
non-spotted	leaves.

In	bananas,	suckering	behavior	traits	had	the	lowest	
prediction	accuracy.	One	possible	explanation	is	the	low	
heritability	and	poor	representation	of	markers	linked	
to	the	QTL	controlling	these	traits.	Second,	scoring	total	
number	of	suckers	at	crop	cycle	1	from	a	trial	established	
with	suckers,	seems	to	result	in	biased	phenotype	data.	
Two	types	of	suckers	are	used	as	planting	materials,	the	
sword	and	maiden	suckers.	Most	maiden	suckers	are	much	
closer	to	flowering	than	sword	suckers	(Ortiz	and	Vuyl-
steke,	1994)	and	tend	to	direct	most	of	resources	toward	
the	initiation	of	the	inflorescence,	and	less	to	the	develop-
ment	of	lateral	buds	(future	suckers).	On	the	contrary,	
sword	suckers	commit	most	of	their	resources	to	lateral	
bud	development.	Hence,	when	a	field	is	established	with	
suckers,	the	variation	in	physiological	age	of	suckers	likely	
impacts	sucker	emergence	that	causes	bias	in	total	number	
of	suckers	produced	by	a	genotype	at	first	crop	cycle.

When	environment	averaged	models	were	used	to	
predict	the	performance	of	genotypes	in	a	particular	
environment,	the	predictions	were	high	(0.75	for	fruit	
filling	traits)	despite	the	lower	number	of	SNP	markers	
(Table	3).	This	indicated	that	incorporation	of	data	from	
many	environments	could	make	the	models	more	robust	
(Burgueño	et	al.,	2012).	As	discussed	by	Burgueño	et	
al.	(2012),	breeders	either	evaluate	new	breeding	lines	
so	that	they	can	select	the	best	to	advance,	or	evaluate	
the	performance	stability	of	new,	or	old	lines	in	a	new	
environment.	In	each	of	these	cases,	the	model	should	be	
robust	enough	to	give	accurate	predictions	in	the	respec-
tive	environments	(Pérez-Rodríguez	et	al.,	2017).	Hence,	
using	data	from	multi-environment	trials	and	crop	cycles	
to	fit	the	model	has	the	advantage	of	incorporating	infor-
mation	due	to	genetic	relationship	and	the	interaction	
between	genotype	and	environment	(Crossa	et	al.,	2014).

Traits	that	are	stable	across	environments	are	much	
easier	to	predict	using	data	from	one	environment.	
However,	if	there	is	a	proportional	change	(collinearity)	in	
the	trait	expression	within	an	environment	across	geno-
types,	then	selection	based	on	predictions	is	likely	to	be	
efficient	(Burgueño	et	al.,	2012).	Plant	environments	vary	
and	may	refer	to	geographical	locations	with	different	
weather	and	climatic	conditions,	difference	in	seasons	
within	a	same	location	and	difference	in	soil	conditions	
based	on	the	different	agronomic	practices	used.	As	peren-
nial	plants,	bananas	suffer	the	consequences	of	nutrient	
deficiency	and	soil	moisture	variation	across	seasons	
and	locations	depending	on	field	management	practices	
(Ndabamenye	et	al.,	2012;	Taulya,	2015).	These	factors	influ-
ence	phenotypic	expression	of	traits	and	are	likely	to	affect	



nyine et al.: genomic prediction in a multiploid crop 13 of 16

the	predictive	ability	of	prediction	models.	Although	we	
considered	field	management	and	crop	cycle	as	the	major	
environment	co-variables,	phenotyping	of	the	current	
training	population	in	a	different	geographical	location	is	
ongoing.	Once	the	data	are	available,	they	will	be	used	to	
update	the	models	to	the	benefit	of	the	breeding	program.

Bi-Allelic SNP vs. Allele Dosage SNP
Whereas	many	factors	have	been	reported	to	influ-
ence	the	accuracy	of	genomic	predictions	(Crossa	et	al.,	
2014),	our	results	showed	that	allele	dosage	was	another	
important	factor	to	consider	when	conducting	predic-
tions	in	multi-ploidy	populations	(Supplemental	Table	
S4).	The	loss	in	predictive	ability	of	the	models	fitted	with	
AD-SNP	relative	to	those	fitted	with	BA-SNP	could	be	
attributed	to	variation	in	minor	allele	frequency	across	
loci,	a	key	factor	for	determining	SNP	effects	on	the	traits	
and	the	allopolyploid	nature	of	the	training	population.	
The	negative	correlations	observed	from	across	ploidy	
cross	validation	indicated	a	weak	relationship	between	
the	training	and	testing	sets	(Crossa	et	al.,	2016).	Clearly,	
not	all	traits	were	affected	equally	by	allele	dosage	
(Supplemental	Table	S4).	The	effect	of	allele	dosage	
becomes	more	important	as	the	ploidy	level	increases.	
This	suggests	that	additive	genetic	effects	vary	across	
traits.	It	is	likely	that	the	effect	of	deleterious	recessive	
alleles	is	masked	by	the	dominant	alleles	and	the	more	
copies	of	masking	alleles	the	better	the	effect	(Gu	et	al.,	
2003).	However,	for	traits	controlled	by	exclusively	reces-
sive	alleles,	the	effect	of	allele	dosage	may	be	different.	In	
cassava,	a	large	proportion	of	deleterious	alleles	arising	
from	mutations	have	not	been	eliminated	by	breeding	
due	to	limited	recombination,	but	the	maintenance	
of	cassava	yield	through	breeding	has	been	attributed	
to	masking	of	most	damaging	mutations	(Ramu	et	
al., 2017).

Predictions	within	multi-family	population	was	
shown	by	Heffner	et	al.	(2011)	to	be	accurate	and	cost	
effective.	It	is	likely	that	genomic	prediction	models	
trained	only	on	diploid	segregating	populations	would	
be	less	efficient	in	prediction	of	traits	among	triploid	
banana	hybrids,	yet	promising	candidate	cultivars	are	
selected	in	this	ploidy	level.	Second,	allele	dosage	could	
be	accounted	for	in	the	marker	data	especially	when	
predicting	fruit	filling	in	tetraploids	although	use	of	
models	that	assume	diploid	state	of	all	genotypes	still	
performed	better	in	many	cross-validation	strategies.

To	ensure	that	good	hybrids	are	not	left	out,	selection	
based	on	GEBV	should	be	done	with	prior	knowledge	of	
ploidy	level	in	multi-ploidy	populations.	Bunch	mass	and	
general	phenology	in	bananas	tend	to	increase	with	increase	
in	ploidy	level	although	in	banana	hybrids,	the	trend	is	
not	always	uniform	due	to	positive	and	negative	heterosis	
(Tenkouano,	2000).	Since	banana	breeding	involves	
crossing	parents	of	different	ploidy	levels,	prediction	of	
hybrid	performance	based	on	parental	phenotype	data	
is	less	accurate	due	to	heterosis.	That	is	why	the	parents’	
model	prediction	accuracies	were	low.	Although	we	did	

not	measure	heterosis	in	this	study,	the	results	of	selection	
differential	and	response	to	selection	reported	by	Nyine	et	
al.	(2017)	show	that	it	exists	in	this	training	population.

When	the	progeny’s	model	was	used	to	predict	the	
parental	traits,	the	predictions	were	appreciably	high	
(Supplemental	Table	S3).	This	indicated	that	a	large	size	
of	the	training	set	relative	to	the	testing	set	improves	
prediction	(Jannink	et	al.,	2010;	Clark	et	al.,	2011;	Crossa	
et	al.,	2014).	The	lesson	learned	is	that	in	bananas,	when	
the	training	population	is	made	up	of	many	diverse	
hybrids,	the	segregation	of	parental	alleles	is	observed.	
Most	of	the	additive	genetic	effects,	heterosis,	domi-
nance,	and	epistasis	that	control	the	phenotype	are	
captured	in	the	model	when	all	these	phenotypic	variants	
are	available	(Lorenz	et	al.,	2011).	These	results	suggest	
that	for	plant	species	with	small	effective	breeding	popu-
lation	sizes	like	banana	that	show	heterosis,	increasing	
the	number	of	progeny	from	several	parental	crosses	in	
the	training	population	could	improve	the	predictive	
ability	of	the	models	for	future	hybrids	as	compared	to	
using	only	parental	clones.

The Accuracy of Genomic Prediction
The	prediction	accuracy	within	the	training	population	
based	on	GEBV	was	above	75%	even	with	models	that	
had	low	predictive	abilities.	The	accuracy	of	genomic	
prediction	model	is	determined	by	the	correlation	
between	GEBV	and	the	observed	phenotype,	or	the	
correlation	between	predicted	phenotype	and	observed	
phenotype	(Jannink	et	al.,	2010;	Lorenz	et	al.,	2011).	This	
shows	the	proportion	of	genetic	variance	explained	by	
marker	data.	It	is	therefore	not	surprising	that	even	with	
low	correlations,	the	accuracy	of	prediction	can	be	high.	
Beaulieu	et	al.	(2014)	reported	that	with	GEBV	accura-
cies	between	0.33	and	0.44,	they	were	able	to	achieve	
90%	of	traditionally	estimated	breeding	values	during	
validation.	Similarly,	Heffner	et	al.	(2011)	reported	a	95%	
prediction	accuracy	of	genomic	prediction	compared	to	
phenotypic	selection	in	a	multi-family	wheat	population	
even	when	the	predictive	values	ranged	from	0.22	to	0.76.

The	true	accuracy	is	estimated	at	the	validation	stage	
using	the	validation	population.	It	depends	on	the	size	of	
the	training	population,	heritability	of	the	trait	and	the	
estimated	number	of	effects	(Lorenz	et	al.,	2011).	Some-
times,	it	is	not	possible	to	explain	all	the	genetic	variance	
due	to	missing	marker	data,	or	failure	to	capture	other	
QTL	affecting	the	trait.	This	is	further	confounded	by	
uncontrolled	environmental	variable	(Buckler	et	al.,	
2009;	Burgueño	et	al.,	2012).	That	is	why	genomic	selec-
tion	is	considered	less	accurate	than	phenotypic	selection	
but	its	power	lies	in	increased	selection	intensity	within	a	
much	shorter	time	hence	increasing	the	genetic	gain	per	
unit	time	and	cost	(Desta	and	Ortiz,	2014;	Lorenz	et	al.,	
2011).	Our	results	suggest	that	even	with	low	predictive	
values,	the	accuracy	of	prediction	within	the	training	
population	was	high.	It	remains	to	be	verified	at	the	vali-
dation	stage	if	the	accuracy	remains	high.	Given	the	long	
selection	cycle	observed	in	banana	as	depicted	in	Fig.	2,	
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prediction	accuracies	above	70%	could	result	in	acceler-
ated	selection	efficiency	at	reduced	cost	as	compared	to	
phenotypic	selection.

Conclusion and Practical Implications
Polyploid	breeding	programs	ought	to	use	genomic	
prediction	models	that	have	been	fitted	with	data	from	
genotypes	of	all	ploidy	levels	otherwise	genomic	selection	
will	face	similar	limitations	as	other	MAS	techniques,	
which	focus	on	bi-parental	populations	for	QTL	and	
marker	discovery.	Fruit	filling	and	fruit	bunch	traits	had	
the	highest	predictive	ability	hence,	could	be	targeted	for	
early	selection	of	hybrids.	Accounting	for	allele	dosage	in	
SNP	markers	(AD-SNP)	reduced	predictive	ability	of	the	
models	relative	to	traditional	bi-allelic	SNP	(BA-SNP).	
Unlike	autopolyploid,	allele	dosage	seems	to	have	less	
influence	on	genomic	prediction	in	allopolyploid	popula-
tions.	However,	if	ploidy	specific	prediction	models	are	
required,	the	R	script	reported	could	be	used	to	generate	
AD-SNP.	The	heritability	of	traits	estimated	in	this	
training	population	were	high	and	positively	correlated	
with	the	predictive	ability.	The	results	demonstrate	that	
genomic	prediction	in	multi-ploidy	population	is	possible	
and	the	prediction	accuracy	can	be	improved	by	using	
models	based	on	data	from	many	different	environments.

To	generate	prediction	models	for	each	ploidy	level	
is	expensive	in	the	initial	stages	of	genomic	selection,	
but	as	the	training	population	keeps	growing	it	becomes	
possible.	To	minimize	costs,	the	current	models	based	on	
multi-ploidy	population	should	be	validated	and	used	with	
the	following	recommendations:	(i)	unlike	other	breeding	
programs	where	genomic	prediction	is	used	entirely	for	
prediction	of	best	parents	for	further	crossing,	in	banana,	
selection	among	triploids	should	aim	at	identifying	
promising	candidate	cultivars	because	a	majority	of	them	
are	sterile	and	breeding	clones	should	be	selected	from	
diploids	and	tetraploids,	(ii)	‘selection	index’	is	required	for	
efficient	selection	of	new	hybrids,	i.e.,	the	priority	order	of	
traits	should	be	set	for	promising	cultivars	and	breeding	
clones,	(iii)	family-based	(cross	combination)	selection	
should	be	considered	to	avoid	reducing	genetic	diversity,	
(iv)	the	lowest	GEBV	should	be	targeted	for	plant	height,	
or	else	a	ratio	of	plant	height	to	plant	girth	at	100	cm	from	
soil	surface	should	be	used.	In	the	light	of	genomic	selec-
tion,	a	potential	area	of	research	would	be	to	investigate	
the	level	of	fertility	in	triploid	banana	hybrids	so	that	they	
are	also	selected	as	parents.	This	will	allow	‘progressive’	
breeding	to	be	practiced	in	banana	for	faster	genetic	gain	
since	some	traits	are	already	fixed	in	the	triploids.
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Supplemental Table S1: List of banana genotypes used in genomic predictions (Nyine et al. 2017) 

S/No Genotype name Female parent Male parent Ploidy 

1 Enzirabahima   Triploid 

2 Kabucuragye   Triploid 

3 Tereza   Triploid 

4 Enyeru   Triploid 

5 Nakayonga   Triploid 

6 Namwezi   Triploid 

7 Entukura   Triploid 

8 Nakasabira   Triploid 

9 Nakawere   Triploid 

10 Nante   Triploid 

11 Kazirakwe   Triploid 

12 Nfuuka   Triploid 

13 Calcutta 4   Diploid 

14 1201K-1 Nakawere Calcutta 4 Tetraploid 

15 917K-2 Enzirabahima Calcutta 4 Tetraploid 

16 660K-1 Enzirabahima Calcutta 4 Tetraploid 

17 1438K-1 Entukura Calcutta 4 Tetraploid 

18 222K-1 Nfuuka Calcutta 4 Tetraploid 

19 376K-7 Nante Calcutta 4 Tetraploid 

20 365K-1 Kabucuragye Calcutta 4 Tetraploid 

21 401K-1 Entukura Calcutta 4 Tetraploid 

22 2180K-6   Diploid 

23 8075-7 SH3362 Calcutta 4 Diploid 

24 7197-2 SH3362 Long Tavoy Diploid 

25 SH3142 SH1734 Pisang Jari Buaya Diploid 

26 SH3362 SH3217 SH3142 Diploid 

27 SH3217 SH2095 SH2766 Diploid 

28 5610S-1 Kabucuragye 7197-2 Diploid 

29 9128-3 Tjau lagada Pisang lilin Diploid 

30 1968-2 Who-gu Calcutta 4 Triploid 

31 861S-1 Namwezi Calcutta 4 Diploid 

32 cv. Rose   Diploid 
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33 Pisang Lilin   Diploid 

34 Kokopo   Diploid 

35 Long Tavoy   Diploid 

36 M. a. M. a. malaccensis 250   Diploid 

37 28165S-1 1201K-1 1968-2 Triploid 

38 25583S-2 1201K-1 5610S-1 Triploid 

39 26660S-1 1201K-1 5610S-1 Triploid 

40 28434S-9 1201K-1 5610S-1 Triploid 

41 17503S-3 1201K-1 7197-2 Triploid 

42 16242S-1 1201K-1 8075-7 Triploid 

43 12479S-1 1201K-1 9128-3 Triploid 

44 12479S-13 1201K-1 9128-3 Triploid 

45 26317S-1 1201K-1 9128-3 Triploid 

46 27262S-1 1201K-1 9128-3 Triploid 

47 27262S-3 1201K-1 9128-3 Triploid 

48 27770S-20 1201K-1 cv. Rose Triploid 

49 27770S-4 1201K-1 cv. Rose Triploid 

50 27935S-1 1201K-1 cv. Rose Triploid 

51 27960S-1 1201K-1 cv. Rose Triploid 

52 28036S-11 1201K-1 cv. Rose Triploid 

53 28036S-2 1201K-1 cv. Rose Triploid 

54 28164S-3 1201K-1 cv. Rose Triploid 

55 28246S-4 1201K-1 cv. Rose Triploid 

56 28246S-7 1201K-1 cv. Rose Triploid 

57 27935S-7 1201K-1 cv. Rose Triploid 

58 26363S-1 1201K-1 Kokopo Triploid 

59 26075S-6 1201K-1 Long Tavoy Triploid 

60 26075S-7 1201K-1 Long Tavoy Triploid 

61 26075S-8 1201K-1 Long Tavoy Triploid 

62 27346S-2 1201K-1 M. a. malaccensis 250 Triploid 

63 27346S-4 1201K-1 M. a. malaccensis 250 Triploid 

64 27437S-1 1201K-1 M. a. malaccensis 250 Triploid 

65 27579S-1 1201K-1 M. a. malaccensis 250 Triploid 

66 27579S-3 1201K-1 M. a. malaccensis 250 Triploid 
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67 28030S-2 1201K-1 M. a. malaccensis 250 Triploid 

68 28030S-6 1201K-1 M. a. malaccensis 250 Triploid 

69 28071S-1 1201K-1 M. a. malaccensis 250 Triploid 

70 28465S-2 1201K-1 M. a. malaccensis 250 Triploid 

71 28465S-21 1201K-1 M. a. malaccensis 250 Triploid 

72 28479S-2 1201K-1 M. a. malaccensis 250 Triploid 

73 26337S-22A 1201K-1 SH3217 Triploid 

74 26337S-40 1201K-1 SH3217 Triploid 

75 26840S-7 1201K-1 SH3362 Diploid 

76 26315S-1 1201K-1 SH3142 Triploid 

77 12419S-13 1201K-1 SH3217 Triploid 

78 26337S-11A 1201K-1 SH3217 Triploid 

79 26337S-2 1201K-1 SH3217 Triploid 

80 26337S-34 1201K-1 SH3217 Triploid 

81 26337S-37 1201K-1 SH3217 Triploid 

82 26337S-39 1201K-1 SH3217 Triploid 

83 26337S-43 1201K-1 SH3217 Triploid 

84 28263S-2 1201K-1 SH3217 Triploid 

85 12618S-1 1201K-1 SH3362 Triploid 

86 26316S-7 1201K-1 SH3362 Triploid 

87 26840S-10 1201K-1 SH3362 Triploid 

88 25328S-3 1438K-1 1537K-1 Triploid 

89 24948S-10 1438K-1 5610S-1 Triploid 

90 24948S-13 1438K-1 5610S-1 Triploid 

91 24948S-24 1438K-1 5610S-1 Triploid 

92 24948S-9 1438K-1 5610S-1 Triploid 

93 26060S-1 1438K-1 9128-3 Triploid 

94 13573S-1 1438K-1 9719-7 Triploid 

95 27914S-1 1438K-1 cv. Rose Triploid 

96 27914S-13 1438K-1 cv. Rose Triploid 

97 28095S-1 1438K-1 cv. Rose Triploid 

98 27264S-2 1438K-1 cv. Rose Diploid 

99 27914S-24 1438K-1 cv. Rose Triploid 

100 27914S-26 1438K-1 cv. Rose Triploid 
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101 27914S-3 1438K-1 cv. Rose Triploid 

102 25474S-1 1438K-1 Kokopo Triploid 

103 26369S-4 1438K-1 Long Tavoy Triploid 

104 28481S-1 1438K-1 M. a. malaccensis 250 Triploid 

105 28561S-2 1438K-1 M. a. malaccensis 250 Triploid 

106 26725S-1 1438K-1 SH3362 Triploid 

107 25499S-7 1438K-1 SH3142 Triploid 

108 26039S-2 1438K-1 SH3217 Triploid 

109 26466S-2 1977K-1 5610S-1 Triploid 

110 26466S-5 1977K-1 5610S-1 Triploid 

111 22598S-2 365K-1 1201K-1 Triploid 

112 14539S-4 365K-1 660K-1 Triploid 

113 9750S-13 401K-1 9128-3 Triploid 

114 25031S-1 5610S-1 2180K-6 Diploid 

115 25031S-15 5610S-1 2180K-6 Diploid 

116 25031S-16 5610S-1 2180K-6 Diploid 

117 25031S-17 5610S-1 2180K-6 Diploid 

118 25031S-19 5610S-1 2180K-6 Diploid 

119 25031S-27 5610S-1 2180K-6 Diploid 

120 25031S-33 5610S-1 2180K-6 Diploid 

121 25031S-34 5610S-1 2180K-6 Diploid 

122 25031S-7 5610S-1 2180K-6 Diploid 

123 24583S-2 660K-1 5610S-1 Triploid 

124 26260S-3 660K-1 5610S-1 Triploid 

125 13284S-1 660K-1 9128-3 Triploid 

126 25371S-2 660K-1 9128-3 Triploid 

127 9187S-8 660K-1 9128-3 Triploid 

128 26709S-1 660K-1 Calcutta 4 Triploid 

129 27713S-1 660K-1 M. a. malaccensis 250 Triploid 

130 27825S-4 660K-1 M. a. malaccensis 250 Triploid 

131 27873S-18 660K-1 M. a. malaccensis 250 Triploid 

132 27873S-38 660K-1 M. a. malaccensis 250 Triploid 

133 27873S-4 660K-1 M. a. malaccensis 250 Triploid 

134 27873S-5 660K-1 M. a. malaccensis 250 Triploid 
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135 28188S-2 660K-1 M. a. malaccensis 250 Triploid 

136 25623S-11 8817S-1 917K-2 Triploid 

137 28492S-1 917K-2 1968-2 Triploid 

138 26998S-1 917K-2 2180K-6 Triploid 

139 27074S-1 917K-2 2180K-6 Triploid 

140 25117S-1 917K-2 5610S-1 Triploid 

141 25117S-2 917K-2 5610S-1 Triploid 

142 25117S-3 917K-2 5610S-1 Triploid 

143 25508S-1 917K-2 5610S-1 Triploid 

144 25628S-11 917K-2 5610S-1 Triploid 

145 26815S-3 917K-2 5610S-1 Triploid 

146 26815S-8 917K-2 5610S-1 Triploid 

147 26815S-9 917K-2 5610S-1 Triploid 

148 26990S-10 917K-2 5610S-1 Triploid 

149 26990S-11 917K-2 5610S-1 Triploid 

150 26990S-4 917K-2 5610S-1 Triploid 

151 27073S-1 917K-2 5610S-1 Triploid 

152 27744S-1 917K-2 5610S-1 Triploid 

153 12949S-2 917K-2 7197-2 Triploid 

154 25909S-3 917K-2 7197-2 Triploid 

155 25089S-4 917K-2 861S-1 Triploid 

156 19798S-2 917K-2 9128-3 Triploid 

157 24434S-3 917K-2 9128-3 Triploid 

158 25435S-11 917K-2 9128-3 Triploid 

159 25435S-4 917K-2 9128-3 Triploid 

160 25737S-1 917K-2 9128-3 Triploid 

161 26288S-4 917K-2 9128-3 Triploid 

162 26975S-1 917K-2 9128-3 Triploid 

163 26975S-2 917K-2 9128-3 Triploid 

164 7798S-2 917K-2 9128-3 Triploid 

165 27184S-4 917K-2 cv. Rose Triploid 

166 27885S-9 917K-2 cv. Rose Triploid 

167 27184S-8 917K-2 cv. Rose Triploid 

168 27494S-12 917K-2 cv. Rose Triploid 
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169 27494S-4 917K-2 cv. Rose Triploid 

170 27494S-5 917K-2 cv. Rose Triploid 

171 28068S-9 917K-2 cv. Rose Triploid 

172 27184S-6 917K-2 cv. Rose Triploid 

173 27885S-1 917K-2 cv. Rose Triploid 

174 24410S-2 917K-2 Kokopo Triploid 

175 25680S-11 917K-2 Long Tavoy Triploid 

176 25680S-13 917K-2 Long Tavoy Triploid 

177 27261S-1 917K-2 M. a. malaccensis 250 Triploid 

178 27261S-10 917K-2 M. a. malaccensis 250 Triploid 

179 27261S-11 917K-2 M. a. malaccensis 250 Triploid 

180 27334S-5 917K-2 M. a. malaccensis 250 Triploid 

181 27401S-1 917K-2 M. a. malaccensis 250 Triploid 

182 27524S-12A 917K-2 M. a. malaccensis 250 Triploid 

183 27524S-12B 917K-2 M. a. malaccensis 250 Triploid 

184 27524S-22 917K-2 M. a. malaccensis 250 Triploid 

185 27524S-30 917K-2 M. a. malaccensis 250 Triploid 

186 27833S-10 917K-2 M. a. malaccensis 250 Triploid 

187 27833S-13 917K-2 M. a. malaccensis 250 Triploid 

188 27886S-5 917K-2 M. a. malaccensis 250 Triploid 

189 28033S-14 917K-2 M. a. malaccensis 250 Triploid 

190 28033S-15 917K-2 M. a. malaccensis 250 Triploid 

191 28033S-18 917K-2 M. a. malaccensis 250 Triploid 

192 28033S-23 917K-2 M. a. malaccensis 250 Triploid 

193 28033S-3 917K-2 M. a. malaccensis 250 Triploid 

194 28060S-8 917K-2 M. a. malaccensis 250 Triploid 

195 28200S-3 917K-2 M. a. malaccensis 250 Triploid 

196 28257S-1 917K-2 M. a. malaccensis 250 Triploid 

197 28257S-2 917K-2 M. a. malaccensis 250 Triploid 

198 28257S-4 917K-2 M. a. malaccensis 250 Triploid 

199 28432S-19 917K-2 M. a. malaccensis 250 Triploid 

200 28432S-20 917K-2 M. a. malaccensis 250 Triploid 

201 28432S-3 917K-2 M. a. malaccensis 250 Triploid 

202 28780S-1 917K-2 M. a. malaccensis 250 Triploid 



8 
 

203 26874S-5 917K-2 SH3362 Triploid 

204 12468S-18 917K-2 SH3217 Triploid 

205 12477S-13 917K-2 SH3217 Triploid 

206 8386S-19 917K-2 SH3217 Triploid 

207 13522S-5 917K-2 SH3362 Triploid 

208 25974S-? 917K-2 SH3362 Triploid 

209 25974S-19 917K-2 SH3362 Triploid 

210 25974S-21 917K-2 SH3362 Triploid 

211 25974S-30 917K-2 SH3362 Triploid 

212 25974S-35 917K-2 SH3362 Triploid 

213 26666S-1 917K-2 SH3362 Triploid 

214 28476S-7 917K-2 SH3362 Triploid 

215 9494S-10 917K-2 SH3362 Triploid 

216 16457S-2 Entukura 365K-1 Triploid 

217 26540S-182 Entukura 8075-7 Diploid 

218 28260S-2 Enzirabahima Calcutta 4 Triploid 

219 21086S-1 Kazirakwe 7197-2 Triploid 

220 28073S-1 Namwezi 7197-2 Triploid 

221 25356S-1 Tereza 7197-2 Triploid 

222 HB unknown unknown Triploid 

223 HJ unknown unknown Triploid 

224 HX unknown unknown Triploid 

225 26337S-11B 1201K-1 SH3217 Triploid 

226 16285S-13 Calcutta 4 660K-1 Diploid 

227 26337S-22B 1201K-1 SH3217 Triploid 

228 16285S-3 Calcutta 4 660K-1 Diploid 

229 26337S-28 1201K-1 SH3217 Triploid 

230 25066S-1 1438K-1 Kokopo Triploid 

231 16285S-6 Calcutta 4 660K-1 Diploid 

232 25066S-2 1438K-1 Kokopo Triploid 

233 16285S-8 Calcutta 4 660K-1 Diploid 

234 25974S-11 917K-2 SH3362 Triploid 

235 25974S-15 917K-2 SH3362 Triploid 

236 25457S-1 1438K-1 Kokopo Triploid 
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237 16191S-6 Calcutta 4 917K-2 Diploid 

238 24797S-7 917K-2 Kokopo Triploid 

239 25102S-1 917K-2 Kokopo Triploid 

240 28452S-11 Nakasabira Calcutta 4 Triploid 

241 28033S-9 917K-2 M. a. malaccensis 250 Triploid 

242 25974S-13 917K-2 SH3362 Triploid 

243 28256S-1 917K-2 cv. Rose Triploid 

244 25974S-17 917K-2 SH3362 Tetraploid 

245 12468S-6 917K-2 SH3217 Triploid 

246 27914S-11 1438K-1 cv. Rose Triploid 

247 27914S-18 1438K-1 cv. Rose Triploid 

248 27914S-21 1438K-1 cv. Rose Triploid 

249 27914S-22 1438K-1 cv. Rose Triploid 

250 27914S-6 1438K-1 cv. Rose Triploid 

251 27914S-7 1438K-1 cv. Rose Triploid 

252 27914S-8 1438K-1 cv. Rose Triploid 

253 27873S-12 660K-1 M. a. malaccensis 250 Triploid 

254 27873S-14 660K-1 M. a. malaccensis 250 Triploid 

255 27873S-17 660K-1 M. a. malaccensis 250 Triploid 

256 27873S-33 660K-1 M. a. malaccensis 250 Triploid 

257 27873S-37 660K-1 M. a. malaccensis 250 Triploid 

258 27873S-7 660K-1 M. a. malaccensis 250 Triploid 

259 26224S-3 1201K-1 SH3362 Triploid 

260 26840S-9 1201K-1 SH3362 Triploid 

261 26316S-14 1201K-1 SH3362 Triploid 

262 26224S-2 1201K-1 SH3362 Triploid 

263 26840S-5 1201K-1 SH3362 Triploid 

264 25653S-3 1201K-1 SH3142 Triploid 

265 26315S-3 1201K-1 SH3142 Triploid 

266 28528S-1 1201K-1 Kokopo Triploid 

267 26369S-8 1438K-1 Long Tavoy Triploid 

268 26530S-1 1438K-1 SH3362 Triploid 

269 27528S-1 1438K-1 M. a. malaccensis 250 Triploid 

270 27915S-3 1438K-1 M. a. malaccensis 250 Triploid 
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271 28561S-5 1438K-1 M. a. malaccensis 250 Triploid 

272 27915S-2 1438K-1 M. a. malaccensis 250 Triploid 

273 28974S-11 1438K-1 M. a. malaccensis 250 Triploid 

274 28974S-15 1438K-1 M. a. malaccensis 250 Triploid 

275 28974S-22 1438K-1 M. a. malaccensis 250 Triploid 

276 28974S-29 1438K-1 M. a. malaccensis 250 Triploid 

277 29114S-1 5610S-1 M. a. malaccensis 250 Diploid 

278 29114S-14 5610S-1 M. a. malaccensis 250 Triploid 

279 29114S-19 5610S-1 M. a. malaccensis 250 Triploid 

280 29114S-24 5610S-1 M. a. malaccensis 250 Triploid 

281 27873S-26 660K-1 M. a. malaccensis 250 Triploid 

282 27873S-31 660K-1 M. a. malaccensis 250 Triploid 

283 29165S-5 660K-1 M. a. malaccensis 250 Triploid 

284 28506S-1 Entukura Calcutta 4 Triploid 

285 29364S-2 Namwezi cv. Rose Tetraploid 

286 28077S-5 Nfuuka 8075-7 Triploid 

287 28164S-15 1201K-1 cv. Rose Triploid 

288 29285S-20 1201K-1 cv. Rose Triploid 

289 26337S-32 1201K-1 SH3217 Triploid 

290 27684S-5 1201K-1 SH3362 Triploid 

291 24948S-12 1438K-1 5610S-1 Triploid 

292 24948S-21 1438K-1 5610S-1 Triploid 

293 24948S-27 1438K-1 5610S-1 Triploid 

294 29586S-4 1438K-1 5610S-1 Triploid 

295 24948S-22 1438K-1 5610S-1 Triploid 

296 24948S-2 1438K-1 5610S-1 Triploid 

297 24948S-29 1438K-1 5610S-1 Triploid 

298 26820S-1 917K-2 1968-2 Triploid 

299 25474S-5 917K-2 861S-1 Triploid 

300 25974S-18 917K-2 SH3362 Triploid 

301 28476S-8 917K-2 SH3362 Triploid 

302 25974S-31 917K-2 SH3362 Triploid 

303 29275S-1 Enzirabahima M. a. malaccensis 250 Tetraploid 

304 29275S-4 Enzirabahima M. a. malaccensis 250 Tetraploid 
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305 29275S-5 Enzirabahima M. a. malaccensis 250 Tetraploid 

306 29636S-1 Tereza 7197-2 Tetraploid 

307 28776S-2 Tereza 8075-7 Triploid 
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Supplemental Table S2: Comparison of average correlation for five-fold cross validations between the predicted and observed phenotypes across all models fitted 
with data from either low input (GS1) or high input (GS2) fields and 10807 bi-allelic SNP markers 

The values under GS1 column are the correlations between predicted and observed phenotype (predictive ability) in GS2 when GS1 data were used to fit the model and vice 
versa for GS2 column. 

 

Trait 
category Traits BRR BL BayesA BayesB BayesC RKHS_P RKHS_M RKHS_PM 

    GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 
Plant 
stature Plant height 0.54 0.46 0.55 0.45 0.54 0.45 0.54 0.44 0.54 0.45 0.42 0.40 0.55 0.44 0.54 0.48 

 
Plant girth 0.60 0.52 0.6 0.51 0.6 0.51 0.60 0.52 0.60 0.51 0.44 0.40 0.60 0.51 0.55 0.50 

Suckering 
behaviour Total number of suckers 0.16 0.17 0.17 0.20 0.17 0.20 0.16 0.19 0.15 0.19 0.12 0.12 0.17 0.18 0.16 0.17 

 

Height of tallest sucker 
at flowering 0.28 0.18 0.30 0.20 0.28 0.18 0.27 0.20 0.26 0.20 0.27 0.24 0.28 0.19 0.30 0.24 

 

Height of tallest sucker 
at harvesting 0.27 0.26 0.26 0.28 0.28 0.25 0.28 0.24 0.27 0.25 0.28 0.29 0.26 0.26 0.29 0.32 

Black leaf 
streak 

Number of standing 
leaves at flowering 0.36 0.42 0.37 0.40 0.37 0.42 0.43 0.40 0.36 0.41 0.17 0.19 0.37 0.41 0.29 0.34 

 

Index of non-spotted 
leaves 0.35 0.42 0.35 0.42 0.34 0.43 0.34 0.43 0.34 0.43 0.22 0.22 0.35 0.42 0.32 0.36 

Fruit bunch Days to fruit maturity 0.47 0.42 0.47 0.42 0.47 0.42 0.47 0.42 0.46 0.42 0.44 0.41 0.47 0.42 0.49 0.44 

 
Bunch mass 0.63 0.61 0.62 0.61 0.62 0.62 0.64 0.62 0.64 0.62 0.41 0.43 0.61 0.61 0.52 0.55 

 
Number of hands 0.60 0.62 0.59 0.62 0.59 0.63 0.60 0.62 0.59 0.62 0.34 0.39 0.59 0.62 0.48 0.53 

 
Number of fruits 0.47 0.51 0.47 0.53 0.47 0.52 0.47 0.52 0.47 0.52 0.25 0.33 0.45 0.52 0.35 0.45 

Fruit filling Fruit length 0.65 0.64 0.65 0.64 0.65 0.64 0.67 0.65 0.67 0.65 0.50 0.48 0.64 0.64 0.59 0.59 

 
Fruit circumference 0.67 0.66 0.67 0.67 0.66 0.66 0.70 0.69 0.70 0.69 0.40 0.42 0.65 0.66 0.57 0.60 

 
Fruit diameter 0.67 0.63 0.67 0.68 0.66 0.67 0.70 0.71 0.70 0.71 0.39 0.40 0.65 0.67 0.57 0.59 

 
Pulp diameter 0.67 0.68 0.67 0.69 0.66 0.68 0.70 0.72 0.70 0.72 0.39 0.41 0.65 0.67 0.57 0.60 
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Supplemental Table S3: Comparison of predictive ability of BayesB model fitted with parents’ data and progeny’s data using bi-allelic and allele dosage SNP 
markers 

  Parents model Progeny model 

Trait category Traits BA-SNP AD-SNP LIP BA-SNP AD-SNP LIP 

Plant stature Plant height 0.36 0.18 -50.0 0.77 0.51 -33.8 

 Plant girth 0.39 0.05 -87.2 0.80 0.43 -46.3 

Suckering behaviour Total number of suckers 0.13 0.06 -53.8 0.39 0.22 -43.6 

 Height of tallest sucker at flowering 0.23 0.12 -47.8 0.50 0.37 -26.0 

 Height of tallest sucker at harvesting 0.19 -0.15 -178.9 0.43 -0.03 -107.0 

Black leaf streak Number of standing leaves at flowering 0.31 0.20 -35.5 0.43 0.46 7.0 

 Index of non-spotted leaves 0.39 0.33 -15.4 0.85 0.77 -9.4 

Fruit bunch Days to fruit maturity 0.39 0.32 -17.9 0.77 0.66 -14.3 

 Bunch mass 0.50 0.17 -66.0 0.66 0.08 -87.9 

 Number of hands 0.45 0.03 -93.3 0.86 0.48 -44.2 

 Number of fruits 0.31 0.10 -67.7 0.77 0.36 -53.2 

Fruit filling Fruit length 0.59 0.23 -61.0 0.78 0.22 -71.8 

 Fruit circumference 0.49 0.17 -65.3 0.65 0.62 -4.6 

 Fruit diameter 0.42 0.22 -47.6 0.66 0.65 -1.5 

 Pulp diameter 0.49 0.23 -53.1 0.66 0.68 3.0 

LIP = 100*((prediction with AD-SNP – prediction with BA-SNP)/prediction with BA-SNP)   

  

 

 



14 
 

Supplemental Table S4: Effect of ploidy level and allele dosage on the predictive ability of BayesB model fitted with environment averaged phenotype data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Bi-allelic SNP Allele dosage SNP 

Trait category Traits Tetraploid Triploid Diploid Tetraploid Triploid Diploid 

Plant stature Plant height 0.04 0.37 0.71 -0.54 0.10 0.09 

 Plant girth 0.02 0.38 0.72 -0.02 -0.06 -0.46 

Suckering behaviour Total number of suckers -0.17 0.07 0.34 -0.48 -0.04 0.01 

 Height of tallest sucker at flowering 0.19 0.31 0.32 -0.42 0.01 -0.13 

 Height of tallest sucker at harvesting 0.06 0.20 0.57 -0.15 -0.03 -0.17 

Black leaf streak Number of standing leaves at flowering 0.19 0.40 0.38 0.05 0.09 -0.12 

 Index of non-spotted leaves -0.09 0.44 0.70 -0.30 0.12 0.31 

Fruit bunch Days to fruit maturity 0.01 0.46 0.56 0.01 0.06 0.21 

 Bunch mass 0.15 0.39 0.73 0.03 0.03 -0.50 

 Number of hands 0.33 0.44 0.70 0.48 0.08 0.05 

 Number of fruits 0.50 0.37 0.57 -0.21 0.03 0.08 

Fruit filling Fruit length -0.10 0.54 0.86 0.25 0.06 -0.21 

 Fruit circumference -0.15 0.43 0.79 0.35 0.05 -0.25 

 Fruit diameter -0.45 0.39 0.77 0.53 0.11 -0.15 

 Pulp diameter -0.39 0.41 0.79 0.60 -0.05 -0.23 
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Supplemental Fig. S1: Workflow used to analyse the genotyping by sequencing (GBS) reads to generate SNP marker data used in genomic predictions 
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Pavla Christelová3, Eva Hřibová3, Jim Lorenzen2¤, Jaroslav Doležel3*
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Biotechnological and Agricultural Research, Olomouc, Czech Republic, 4 Laboratory of Tropical Crop

Improvement, Division of Crop Biotechnics, Katholieke Universiteit Leuven, Leuven, Belgium, 5 Bioversity

International, Leuven, Belgium, 6 International Institute of Tropical Agriculture, Arusha, Tanzania

¤ Current address: Bill & Melinda Gates Foundation, Seattle, Washington, United States of America

* B.Uwimana@cgiar.org (BU); dolezel@ueb.cas.cz (JD)

Abstract

Banana (Musa spp.) is an important crop in the African Great Lakes region in terms of

income and food security, with the highest per capita consumption worldwide. Pests, dis-

eases and climate change hamper sustainable production of bananas. New breeding tools

with increased crossbreeding efficiency are being investigated to breed for resistant, high

yielding hybrids of East African Highland banana (EAHB). These include genomic selec-

tion (GS), which will benefit breeding through increased genetic gain per unit time. Under-

standing trait variation and the correlation among economically important traits is an

essential first step in the development and selection of suitable GS models for banana. In

this study, we tested the hypothesis that trait variations in bananas are not affected by

cross combination, cycle, field management and their interaction with genotype. A training

population created using EAHB breeding material and its progeny was phenotyped in two

contrasting conditions. A high level of correlation among vegetative and yield related traits

was observed. Therefore, genomic selection models could be developed for traits that are

easily measured. It is likely that the predictive ability of traits that are difficult to phenotype

will be similar to less difficult traits they are highly correlated with. Genotype response to

cycle and field management practices varied greatly with respect to traits. Yield related

traits accounted for 31–35% of principal component variation under low and high input

field management conditions. Resistance to Black Sigatoka was stable across cycles but

varied under different field management depending on the genotype. The best cross com-

bination was 1201K-1xSH3217 based on selection response (R) of hybrids. Genotyping

using simple sequence repeat (SSR) markers revealed that the training population was

genetically diverse, reflecting a complex pedigree background, which was mostly influ-

enced by the male parents.
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Introduction

East Africa is considered a secondary center of banana genetic diversity. Uganda in particu-

lar is a home to over eighty cultivars of East African Highland banana (EAHB) commonly

divided into cooking and beer types [1]. The crop greatly contributes to the income and food

security of many smallholder farmers in the region. The significance of the crop in the region

is reflected in the per capita consumption that ranges between 250kg and 600kg with an aver-

age of 400kg in Uganda [2]. Over 85% of the production is consumed locally due to high

demand [3, 4]. Sustainable production of bananas is a challenge because of disease, insect

and nematode pressure. This is worsened by abiotic stress arising through factors associated

with climate change [5]. Yield reductions in EAHB are caused by pests such as root burrow-

ing nematodes especially Radopholus similis and banana weevil (Cosmopolites sordidus).

Black Leaf Streak (Black Sigatoka), a fungal disease caused by Mycosphaerella fijiensis reduces

the photosynthetic area of the plant, which decreases yield. Banana bacterial wilt caused by

Xanthomonas campestris pv. musacearum causes 100% yield loss when the banana is attacked

[6–8]. Variation in rainfall patterns impacts banana production by causing drought stress

because most farmers in the region rely on rain for agricultural production. Although pheno-

typic variation is observed in EAHB, their genetic variation is low [9, 10] making them all

susceptible to biotic and abiotic stress. Adaptation of cultivated banana varieties to changing

environment is limited because while some are capable of sexual reproduction, they are all

propagated clonally.

In order to meet the food demand for the growing population, breeding for resistance

and high yielding varieties is considered to be the most sustainable solution to address

banana production constraints [11, 12]. Unlike other crops, banana breeding is complicated

by the polyploid nature of the crop characterized by abnormal meiosis in the cultivated trip-

loid varieties that results in reduced fertility or complete sterility [13–15]. Crossing cultivated

varieties with resistant wild diploids is possible, but a majority of the generated hybrids are

inferior due to linkage drag of unfavorable genes from the wild diploids. However, when

tetraploids are obtained, further improvement is possible because they are both male and

female fertile (Fig 1). Incorporating resistance while maintaining the unique attributes such

as fruit colour, aroma, texture and taste in existing varieties is a big challenge to banana

breeders that calls for dedicated effort and careful choice of cross combinations. Crossbreed-

ing is labour-intensive, costly and time consuming. In the last two decades, some success has

been registered with new hybrids released to farmers while others are in the advanced stages

of evaluation [16]. In order to keep up with the pace at which environmental changes occur

and the demand for new varieties that are productive and of good quality, new breeding

strategies should be employed to increase breeding efficiency and reduce the lengthy selec-

tion period [3].

Marker assisted selection (MAS) has been implemented in many animal and crop breed-

ing programs. The success of MAS greatly depends on the genetic architecture of traits

being improved. To date MAS has not been effectively deployed in banana breeding. The

possible reasons are polyploidy, important economic and agronomic traits may be con-

trolled by many quantitative trait loci (QTL), each with a small additive effect, and the lack

of saturated linkage maps for QTL mapping. It is believed that the application of genomic

selection (GS) will improve the efficiency of crossbreeding programs especially for crops

with long breeding and selection cycle [17, 18] like banana. GS is a form of MAS where

selection is based on the genomic estimated breeding values (GEBV) of superior individuals

in the population as determined by a statistical model [19–21]. This technique is well estab-

lished in animal breeding [22, 23]. In plants, GS has been tested in maize and wheat [24],
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white spruce [25], rice [26] and cassava [27]. However, in bananas GS is in its infancy.

Given that new varieties are selected based on a combination of traits, a selection index of

GEBV in bananas is necessary.

GS studies have reported varying accuracies in prediction (predictive ability of GS models)

and this has been attributed to differences in trait heritability, number of markers, training

population size and genotype x environment interaction [24]. Bananas as perennial plants suf-

fer the consequences of nutrient deficiency and soil moisture variation across seasons and

locations depending on field management practices. Breeding generates genotypes from many

crosses that are genetically different and respond to growth environment differently and this

could affect the accuracy of GS. Therefore, understanding trait variation and the correlation

between different traits is essential to guide the development and selection of suitable GS mod-

els for banana breeding. In this study we tested the hypothesis that trait variations in bananas

are not affected by cross combination, cycle, field management and their interaction with

genotype. For this, a training population created using EAHB breeding material and its prog-

eny was phenotyped in two contrasting conditions. Genetic diversity of the training popula-

tion was assessed using simple sequence repeat (SSR) markers.

Fig 1. Conventional banana breeding starts with crossing 3x inferior and parthenocarpic landrace varieties

(A) with a wild, seeded 2x accession (B). 4x resulting from this cross (C) are selected and crossed with

improved 2x hybrids (D). The resulting secondary 3x (E) are selected and evaluated as potential improved

varieties. This process takes up to 15 years.

https://doi.org/10.1371/journal.pone.0178734.g001
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Materials and methods

Plant population

Data were collected at the International Institute of Tropical Agriculture, Uganda from a

banana genomic selection (GS) training population between 2013 and 2016. The institute is

located at Namulonge research station, 0.53˚ N 32.58˚ E, 1150 m above sea level with rainfall

of about 1200 mm/y split into two rainy seasons, March-June and September-December and

an average annual temperature of 22˚C. The GS population consisted of 307 genotypes that

included diploid (11%), triploid (85%) and tetraploid (4%) plants (S1 Table). The ploidy

level of the genotypes was determined using flow cytometry [28, 29]. The core breeding lines

(parents) accounted for 12% of the entire population. Two fields were established with each

genotype replicated three times in a completely randomized design. Suckers were used as

planting materials and before planting, 20kg of farmyard manure was applied in each hole.

One field (GS1) was managed without mulching, additional manure nor inorganic fertilizer

(low input). The second field (GS2) was mulched twice a year. Six months after planting, 480 g

of NPK (25:5:5) fertilizer was added and the same amount was added to each mat per year

(high input).

Traits

The yield-related traits scored included: days to fruit maturity (DFM) that is, days between

flowering and harvesting, bunch weight at full maturity (BWT), number of hands (cluster)

(NH) and number of fruit fingers (NF), fruit length (FL), fruit circumference (FC), fruit diam-

eter (FRD), pulp diameter (PLD) and peel thickness (PED), where PED = (FRD—PLD)/2. The

vegetative (growth) traits included: number of standing leaves at flowering (NSLF), youngest

leaf spotted with Black Sigatoka at flowering (YLSF), index of non-spotted leaves at flowering

(INSL), height of tallest sucker at harvesting (HTSH), plant height at flowering (PHF), plant

girth at 100 cm from soil surface (PG), height of tallest sucker at flowering (HTSF), total num-

ber of suckers at flowering (TS), number of standing leaves at harvesting (NSLH) and youngest

leaf spotted with black sigatoka at harvesting (YLSH).

Total number of suckers (TS) was recorded at flowering in cycle 1 only after which each

mat was left with a maximum of three plants and these included the flowered plant, follower

sucker and the sucker produced by follower sucker if present. A Vernier caliper was used to

measure FRD and PLD. Fruit related traits such as FL, FC, FRD and PLD were recorded

from the middle finger of the second hand on the bunch. Measurements for FC, FRD and PLD

were recorded midway the length of the finger. However, to measure FRD and PLD, a cross-

section of the fruit was made to expose the pulp. The INSL was calculated from the formula,

INSL = 100�(YLSF-1)/NSLF [30]. This formula should give percentage values ranging from

0–100% to represent completely susceptible (0%) and completely resistant (100%). In order

to get 100% INSL for completely resistant genotypes, the YLSF was scored as NSLF +1 thus

INSL = 100�((NSLF+1)-1)/NSLF or INSL = 100�NSLF/NSLF

Data analysis

All analyses were performed in R, open source statistical software from www.r-project.org. A

combination of Shapiro-Wilk test, boxplots, standard deviations and histograms were used to

check for normality and outliers in the data and where necessary the outliers were removed

before further analysis. Total number of suckers and bunch weight were transformed by square

root. Using the aggregate function from library (plyr), trait means were calculated for every
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genotype and cross combination (family) in every cycle, and field and these were used in corre-

lation analysis and principal component analysis (PCA).

Correlation analysis and test of significance for the correlations between traits were done

using library (Hmisc) and Student’s t-test based on cycle 2 data for cross combinations. Coeffi-

cient of determination (R2) was calculated as a square of correlation coefficient between cycle

1 and 2 data. To understand the structure of the population and how different traits influenced

that structure, principal component analysis was done using PCA function provided in the

library (FactoMineR). Traits (dependent variable), cross combinations and individual geno-

types were projected on the first two components (Dim1 and Dim2).

Sources of trait variation were assessed using unbalanced analysis of variance (ANOVA)

based on cycle 1 and 2 data. Linear models were constructed for each trait in respect to each

cycle, field management practice and their interaction with genotype as model_fit = lm(trait

response~clone+cycle+field+clone:field+clone:cycle, data = mydata) where lm = linear model

function. Type III SS ANOVA tables were generated using Anova function provided in the

library(car) as result = Anova(model_fit, singular.ok = TRUE, type = “III”). In cases where

no significant interactions were observed between two independent variables and where one

explanatory variable was not significant, then type II or type I SS ANOVA was used for further

investigation.

Selection differential (S) and response to selection (R) were used to compare performance

of parental cross combinations [31]. S and R were calculated as, S = P—G and R = H—G,

where P = average performance of a pair of parents, G is the average performance of all paren-

tal lines in the training population and H is the average performance of all hybrid that shared

same parental pair. Only cross combinations that had at least five hybrids were compared

across all traits using combined data from the two fields.

Genetic diversity

Genetic diversity of the training population was assessed using simple sequence repeat (SSR)

markers. Cigar leaf samples were collected from the training population in Uganda and

shipped to the Institute of Experimental Botany, Olomouc, Czech Republic under cold chain.

Samples were lyophilized prior to DNA extraction. DNA from lyophilized samples was

extracted using NucleoSpin Plant II kit, Macherey-Nagel, Germany, following the manufactur-

er’s instructions. The concentration and quality of DNA was assessed by NanoDrop ND-1000

spectrophotometer. Nineteen informative Musa SSR primers were used to genotype the GS

training population. The list of primers used, polymerase chain reaction (PCR) conditions,

and fragment analysis procedure were adopted from Christelová et al. [32].

Two independent rounds of PCR were performed on each sample. The concordance of

alleles from each sample were inspected and scored manually in GeneMarker v1.75 (Softge-

netics, State College, PA, USA). A third round of PCR was performed only for samples that

showed incongruity with the two reactions. Alleles were scored as dominant markers for pres-

ence and absence (1/0). Data were imported in R and squared Euclidean distances were gener-

ated using the function dist provided in the library(ape). Clustering was done with function

hclust based on ward.D method [33, 34]. Polymorphism information content of each marker

was estimated by PowerMarker v3.25 software [35].

Results

During data analysis, some genotypes were excluded for some traits due to missing data or

extreme outliers. The outliers were mainly recorded on plants that were infected with banana
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Xanthomonas wilt before full maturity, plants that snapped due to weevil damage and prema-

ture breaking of the peduncle due to windstorm.

Correlation of traits

Significant correlations were observed among and between growth and yield traits (Tables 1

and 2). PHF had significant positive correlation with PG followed by HTSF. PG positively cor-

related with BWT, NF and HTSF in that respective order. The traits associated with Black Siga-

toka resistance (NSLF, YLSF and INSL) also correlated significantly to each other. However,

they had significant negative correlations with fruit traits such as FC, FRD and PLD. A positive

and significant correlation was observed between BWT and all fruit traits (NH, NF, FL, FC,

FRD, PLD), which were similarly significantly and positively correlated to each other. Under

conditions of low input field management (GS1), TS, NSLH and NF were not significantly cor-

related with other traits while under high input field management (GS2), it was INSL, DFM

and HTSH that did not have significant correlation with other traits. In both fields, the highest

positive correlations were observed among the yield traits. In this population, absolute apical

dominance was not observed as all genotypes had at least one sucker at the time of flowering.

However, sucker regulation varied among genotypes with a range of 1–25 suckers per plant.

Principal component analysis (PCA)

Principal component analysis showed that in both fields, the yield (fruit) traits contributed to

the first component (Dim 1) while the vegetative (growth) traits contributed to the second

component (Dim 2) (Fig 2A and 2B). Among the vegetative traits, PHF and PG contributed to

Dim 1. Dim 1 accounted for 31.07% of variation in GS1 and 35.86% in GS2. Dim 2 accounted

for 21.89% of variation in GS1 and 15.40% in GS2. The traits with the highest negative loading

on Dim 1 included FC, FRD and PLD for GS1 while for GS2 it was FC, FRD, PLD and FL. In

both GS1 and GS2, the traits with the highest positive loading on Dim 2 were NSLF, YLSF,

INSL and NSLH. Both DFM and TS had the least contribution to the two components

with completely different orientation in GS1 and GS2. Generally, in both fields the two compo-

nents accounted for 50% of the variation observed in the genotype cross combinations (Fig 3A

and 3B).

For individual genotypes, a similar trend was observed with Dim 1 and Dim 2 accounting

for 31.43% and 19.11% of total trait variation, respectively (Fig 4A). Projection of the individ-

ual factors (genotypes) on the two components did not reveal any distinct population structure

(Fig 4B). The same trend was observed when individual cross combinations were projected

on the two components. However, in GS1 cross combinations C35 (917K-2 x Kokopo), C28

(8817S-1 x 917K-2) and C52 (SH2095 x SH2766) and in GS2 cross combinations C35 (917K-2

x Kokopo), C22 (365K-1 x 660K-1) and C29 (8817S-1 x 917k-2) were distinct and clearly sepa-

rated out from the others (Fig 3a and 3b). When the data were re-examined, genotypes from

cross C35 had the least average scores on the yield traits while cross C22, C29 and C52 had the

highest average scores on the yield traits. All the four planes of the two components were rep-

resented in the population.

Based on Black Sigatoka resistance and fruit filling (indicated by FRD), four main groups

were represented in the population: (i) genotypes with high INSL and good fruit filling, (ii)

high INSL with poor fruit filling, (iii) low INSL with good fruit filling and (iv) low INSL with

poor fruit filling. On average the observed INSL and FRD for the genotypes in the four groups

were as follows: (i) 78.1% and 3.0cm, (ii) 80.1% and 1.4cm, (iii) 66.8% and 3.1cm, and (iv)

67.1% and 1.4cm, respectively. Genotypes projected on Dim 2 had high average scores on

Phenotyping and banana genomic selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0178734 June 6, 2017 6 / 23

https://doi.org/10.1371/journal.pone.0178734


T
a
b

le
1
.

P
e
a
rs

o
n

’s
c
o

rr
e
la

ti
o

n
c
o

e
ff

ic
ie

n
ts

o
f
tr

a
it

s
u

n
d

e
r

lo
w

in
p

u
t
fi

e
ld

m
a
n

a
g

e
m

e
n

t
(G

S
1
).

P
H

F
P

G
N

S
L

F
Y

L
S

F
H

T
S

F
T

S
IN

S
L

D
F

M
N

S
L

H
B

W
T

N
H

N
F

F
L

F
C

F
R

D
P

L
D

P
E

D

P
H

F

P
G

0
.8

0
7
**

*

N
S

L
F

0
.1

0
8

0
.2

5
4

Y
L

S
F

0
.0

8
3

0
.1

8
1

0
.9

2
6
**

*

H
T

S
F

0
.3

7
3
**

0
.3

6
**

0
.3

1
9
**

0
.3

6
4
**

T
S

−0
.2

2
9

−0
.3

2
9
**

0
.0

2
2

0
.1

1
6

0
.3

**

IN
S

L
−0

.0
0
1

0
.0

2
1

0
.5

7
9
**

*
0
.8

3
4
**

*
0
.3

2
6
**

0
.2

4

D
F

M
0
.0

8
6

0
.1

3
3

0
.2

8
2

0
.2

7
7
**

0
.1

0
9

0
.0

3
8

0
.2

3
1

N
S

L
H

0
.0

4
2

0
.0

7
8

0
.3

8
6

0
.3

5
2
**

0
.3

6
3
**

0
.0

3
4

0
.1

9
4

-0
.3

5
6

B
W

T
0
.3

4
6
**

0
.5

5
4
**

*
−0

.0
8
3

−0
.1

2
2

0
.2

1
3

0
.0

2
−0

.1
3
3

0
.1

5
2

−0
.2

2

N
H

0
.3

7
2
**

0
.4

2
6
**

0
.1

9
0
.1

6
6

0
.0

8
7

0
.0

4
1

0
.1

1
9

0
.1

9
1

−0
.0

2
1

0
.4

1
1
**

N
F

0
.4

1
2
**

0
.5

1
2
**

*
0
.2

2
6

0
.1

9
5

0
.1

5
1

−0
.0

3
2

0
.1

2
6

0
.2

2
1

0
.0

5
3

0
.4

**
0
.8

7
8
**

*

F
L

0
.2

0
.4

1
1
**

−0
.0

7
7

−0
.1

1
3

0
.0

5
7

−0
.0

4
2

−0
.1

2
3

0
.1

7
3

−0
.2

6
6

0
.8

5
5
**

*
0
.1

6
8

0
.1

6
9

F
C

0
.1

9
1

0
.3

7
5
**

−0
.2

8
4
**

−0
.3

3
8
**

0
.0

2
5

−0
.0

9
7

−0
.3

2
3
**

0
.0

0
5

−0
.2

5
4

0
.8

0
7
**

*
0
.0

1
9

0
.0

0
8

0
.8

5
6
**

*

F
R

D
0
.2

0
6

0
.3

5
9
**

−0
.3

5
7
**

−0
.4

1
5
**

0
.0

2
2

−0
.1

1
−0

.3
9
5
**

−0
.0

5
5

−0
.2

5
8

0
.7

8
2
**

*
0
.0

1
7

0
.0

2
0
.8

2
**

*
0
.9

8
7
**

*

P
L

D
0
.1

9
2

0
.3

3
3
**

−0
.3

7
9
**

−0
.4

3
2
**

−0
.0

0
4

−0
.1

3
3

−0
.4

1
**

−0
.0

9
9

−0
.1

9
9

0
.7

1
7
**

*
0
.0

4
8

0
.0

5
7

0
.7

0
9
**

*
0
.9

**
*

0
.9

1
9
**

*

P
E

D
−0

.2
6
**

0
.1

0
8

0
.1

4
3

0
.0

2
4

0
.0

0
7

−0
.0

7
8

−0
.1

1
4

0
.1

0
8

−0
.0

1
3

0
.2

2
5

−0
.1

8
2

−0
.1

1
8

0
.3

5
9
**

0
.2

9
3
**

0
.2

7
2
**

0
.1

7
9

h
tt

p
s:

//
d
o
i.o

rg
/1

0
.1

3
7
1
/jo

u
rn

al
.p

o
n
e.

0
1
7
8
7
3
4
.t
0
0
1

Phenotyping and banana genomic selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0178734 June 6, 2017 7 / 23

https://doi.org/10.1371/journal.pone.0178734.t001
https://doi.org/10.1371/journal.pone.0178734


T
a
b

le
2
.

P
e
a
rs

o
n

’s
c
o

rr
e
la

ti
o

n
c
o

e
ff

ic
ie

n
ts

o
f
tr

a
it

s
u

n
d

e
r

h
ig

h
in

p
u

t
fi

e
ld

m
a
n

a
g

e
m

e
n

t
(G

S
2
).

P
H

F
P

G
N

S
L

F
Y

L
S

F
H

T
S

F
T

S
IN

S
L

D
F

M
N

S
L

H
B

W
T

N
H

N
F

F
L

F
C

F
R

D
P

L
D

P
E

D

P
H

F

P
G

0
.7

7
4
**

*

N
S

L
F

−0
.4

2
2
**

−0
.2

5
7

Y
L

S
F

−0
.1

9
7

−0
.0

2
4

0
.7

5
**

*

H
T

S
F

0
.7

0
2
**

*
0
.5

6
3
**

*
−0

.3
5
7
**

−0
.2

5
1

T
S

0
.3

5
8
**

0
.2

2
4

−0
.0

9
2

0
.0

6
2

0
.4

5
**

*

IN
S

L
0
.2

1
3

0
.2

7
2

−0
.1

2
8

0
.5

4
8
**

*
0
.0

8
4

0
.1

9
7

D
F

M
−0

.0
0
7

0
.0

0
6

−0
.0

2
6

0
.0

6
3

−0
.2

1
8

−0
.0

2
0
.1

5
2

N
S

L
H

−0
.1

4
9

−0
.0

7
7

0
.6

1
9
**

*
0
.5

3
3
**

*
−0

.2
2
2

−0
.1

5
6

0
.0

0
2

−0
.1

9
4

B
W

T
0
.3

7
**

0
.6

2
3
**

*
−0

.0
8
1

−0
.1

4
0
.4

6
**

*
0
.1

6
5

−0
.1

3
2

0
.0

1
9

−0
.1

7
3

N
H

0
.2

1
8

0
.4

2
4
**

0
.0

7
1

0
.1

1
9

0
.2

2
7

0
.0

9
0
.0

9
5

0
.1

7
5

−0
.0

6
8

0
.5

2
1
**

*

N
F

0
.3

6
8
**

0
.5

8
2
**

*
0
.0

0
6

0
.1

1
0
.3

4
8
**

0
.1

6
9

0
.1

9
4

0
.2

2
7

−0
.0

0
7

0
.5

7
**

*
0
.8

4
3
**

*

F
L

0
.2

0
4

0
.4

3
9
**

−0
.0

7
6

−0
.1

4
5

0
.2

8
5
**

0
.1

3
4

−0
.1

5
1

−0
.0

6
5

−0
.2

2
0
.8

2
6
**

*
0
.2

8
4
**

0
.2

7
**

F
C

0
.3

2
7
**

0
.4

4
9
**

−0
.2

3
3

−0
.2

5
5

0
.3

9
7
**

0
.1

9
8

−0
.1

4
6

−0
.1

5
1

−0
.1

9
0
.8

0
7
**

*
0
.1

4
8

0
.1

5
3

0
.8

5
**

*

F
R

D
0
.3

9
**

0
.4

7
8
**

−0
.2

5
4

−0
.2

8
1
**

0
.4

2
**

0
.2

8
**

−0
.1

5
6

−0
.1

5
4

−0
.2

2
3

0
.7

9
1
**

*
0
.1

5
8

0
.1

8
4

0
.8

0
3
**

*
0
.9

6
8
**

*

P
L

D
0
.3

8
9
**

0
.4

4
6
**

−0
.2

7
1

−0
.3

**
0
.3

9
8
**

0
.3

1
**

−0
.1

6
1

−0
.1

7
6

−0
.2

2
0
.7

4
1
**

*
0
.1

1
4

0
.1

3
5

0
.7

6
**

*
0
.9

4
5
**

*
0
.9

9
1
**

*

P
E

D
0
.0

0
5

0
.1

9
9

0
.0

6
2

0
.0

2
2

0
.2

4
2

−0
.1

7
1

−0
.0

4
8

0
.0

2
2

−0
.0

7
7

0
.5

1
3
**

*
0
.3

2
4
**

0
.3

4
**

0
.4

6
4
**

0
.3

3
7
**

0
.2

1
7
**

0
.1

**
*

P
-v

a
lu

e
<

0
.0

0
1
,

**
P

-v
a
lu

e
<

0
.0

5
b
u
t
>

0
.0

0
1

h
tt

p
s:

//
d
o
i.o

rg
/1

0
.1

3
7
1
/jo

u
rn

al
.p

o
n
e.

0
1
7
8
7
3
4
.t
0
0
2

Phenotyping and banana genomic selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0178734 June 6, 2017 8 / 23

https://doi.org/10.1371/journal.pone.0178734.t002
https://doi.org/10.1371/journal.pone.0178734


NSLF, YLSH, INSL, and NSLH and in contrast they had the lowest average scores on BWT,

FL, FC, FRD, and PLD and the reverse was true for those projected on Dim 1.

Analysis of variance

Visual inspection of boxplots for various traits indicated a cycle effect on data distribution of

some traits while others were not affected by cycle. For example, Plant height increased at

cycle 2 while index of non-spotted leaves did not increase (Fig 5a and 5b) and this was con-

firmed by ANOVA results. Fruit traits such as FC, FRD and PLD showed a bimodal distribu-

tion with the histogram having two peaks. Based on these parameters, the population could be

separated into two main groups, poor fruit filling genotypes with FRD < 2.0 cm and FC < 8.0

cm, and good fruit filling genotypes with FRD� 2.0 cm and FC� 8.0 cm (S1A–S1D Fig).

Fig 2. Principal component analysis plots generated in R using package FactoMineR for the traits

scored in a banana genomic selection training population. (A) shows the distribution of traits under low

input field management (GS1) and (B) shows the distribution of traits under high input field management

(GS2) on the first two components.

https://doi.org/10.1371/journal.pone.0178734.g002

Fig 3. Principal component analysis plots generated in R using package FactoMineR for the cross

combinations in a banana genomic selection training population. (A) shows the distribution of cross

combinations under low input field management (GS1) and (B) shows the distribution of cross combinations

under high input field management (GS2) on the first two components.

https://doi.org/10.1371/journal.pone.0178734.g003
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Coefficients of determination showed that under low input, cycle had less effect on NSLF,

YLSF, INSL, TS, HTSF and PED across genotype cross combinations (Table 3). The Student’s

t-test revealed that both PED and HTSF were the most stable traits across cycles at 95% confi-

dence level with P = 0.515 and P = 0.108, respectively. Under high input, cycle accounted for

less than 50% of the variation in NSLF, YLSF, INSL, TS, HTSF, DFM, NSLH, NH, NF and

PED between cross combinations. Just as in the first field, PED and HTSF were the least

affected with P = 0.216 and P = 0.108, respectively. Under high input field management, trait

variation due to cycle was more homogenous as compared to low input field management.

However, in both cases the effects were statistically significant (P< 0.001) indicating that cycle

is a source of variation in genotype performance.

When generating ANOVA models, genotype (clone) was assumed to be the main source of

variation. In addition to genotype the effect of cycle, field and their interaction with genotype

Fig 4. Principal component analysis plots generated in R using package FactoMineR for the traits

scored in a banana genomic selection training population. (A) shows the distribution of traits for

individual genotypes and (B) shows the distribution of individual genotypes on the first two components based

on mean of combined data from the two fields.

https://doi.org/10.1371/journal.pone.0178734.g004

Fig 5. Effect of cycle on trait variation in bananas, where (a) shows an increase in plant height at

flowering at cycle 2 while (b) shows no increase in index of non-spotted leaves at cycle 2.

https://doi.org/10.1371/journal.pone.0178734.g005
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was investigated. In all models for all traits, genotype had significant effect on trait variation

with P< 0.001 (Table 4, S3 Table). Traits that were not affected by the interaction between

genotype and field management practice include PHF and PG whereas traits not affected by

interaction between genotype and cycle include NSLF, YLSF, INSL, YLSH, FL, FRD and PED

(P> 0.05). Weak interaction between genotype and cycle was observed on NSLH and HTSH

with P = 0.0417 and 0.0408, respectively. In some cases, although there were significant inter-

actions between genotype and field or cycle, either field or cycle did not show significant effect

on the trait when interaction was included in the model.

Whereas there were significant interactions between genotype and field management, there

was no significant main effect of field on NSLF, YLSF, HTSF, INSL, TS, NSLH, YLSH, HTSH,

NH, NF and PED. Similarly, in the presence of significant interaction between genotype and

cycle, there was no main effect of cycle on INSL, HTSF, HTSH, FC, PLD and PED (Table 4, S3

Table). When the interactions were removed from the models, all the factors had significant

effect on the traits except INSL and PED, for which cycle had no effect. Analysis was repeated

on these two traits using type I and type II ANOVA and both produced similar results as that

observed with type III SS.

Performance of cross combinations (parental pairs)

The GS training population consisted of 77 different cross combinations representing about

two decades of banana breeding activities by IITA and NARO Uganda. Some of these cross

combinations gave rise to the tetraploids and improved diploids that are part of the core breed-

ing lines in the program. Tetraploids and triploids were predominantly used as female parents

while the diploids provided the pollen source but in some instances 2x by 2x or 4x by 4x

crosses were made. The majority of the cross combinations were excluded for this analysis in

Table 3. Coefficient of determination and Student’s t-test P-values showing the effect of cycle on

cross combinations.

GS1 GS2

Traits df R2 P-value df R2 P-value

NH 60 0.87 <0.0001 56 0.44 <0.0001

PLD 57 0.78 <0.0001 56 0.65 <0.0001

FRD 59 0.77 <0.0001 56 0.68 <0.0001

PED 58 0.06 0.5150 56 0.03 0.2161

BWT 60 0.79 <0.0001 56 0.74 <0.0001

NF 60 0.54 <0.0001 56 0.37 <0.0001

FL 59 0.77 <0.0001 56 0.64 <0.0001

FC 58 0.79 <0.0001 56 0.73 <0.0001

DFM 59 0.54 <0.0001 56 0.25 <0.0001

NSLH 60 0.63 <0.0001 56 0.38 <0.0001

PHF 66 0.65 <0.0001 63 0.73 <0.0001

PG 66 0.65 <0.0001 63 0.73 <0.0001

NSLF 66 0.25 <0.0001 63 0.28 <0.0001

YLSF 66 0.47 <0.0001 63 0.26 <0.0001

INSL 66 0.14 0.0015 63 0.21 0.0001

TS 68 0.12 0.0032 68 0.12 0.0032

HTSF 68 0.04 0.1084 68 0.04 0.1084

Df = degrees of freedom, GS1 = low input field, GS2 = high input field and R2 = coefficient of determination

https://doi.org/10.1371/journal.pone.0178734.t003
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this work because they had less than five hybrids in the population. However, crosses between

different EAHB with Calcutta 4 were treated as one cross because the EAHB represent a clone

set with very low genetic diversity [9]. In total sixteen cross combinations were compared and

they included one 2x by 2x, one 3x by 2x and fourteen 4x by 2x crosses (Table 5 and S2 Table).

The best cross in terms of yield and fruit size was C10 (1201K-1xSH3217). Many hybrids

from this cross had the highest bunch weight (R = 3.8) characterized by longer fruit fingers,

big fruit circumference and the highest pulp content. However, the plants were very tall with

big girth. Their maturity period was shorter (about 4.5 months on average) and comparable to

hybrids from EAHBxCalcutta 4. Generally, crosses involving SH3217, SH3362 and 9128–3 as

male parents produced hybrids that had good fruit filling characteristics although they varied

in Black Sigatoka resistance and suckering behavior. For example, crosses involving 9128–3

generated hybrids that had the lowest INSL.

Hybrids from a cross between 5610S-1 and 2180K-6 produced the highest number of leaves

scored at flowering (R = 2.1). They had the highest resistance to Black Sigatoka as reflected by

INSL (R = 7.2%) despite the parents being susceptible. They were the shortest (R = -62.3 cm)

with smaller plant girth. Their average maturity period was almost two months more than the

average of all parental lines (R = 54.6 days) and the longest of all other hybrids. Due to long

maturity period the number of standing leaves at harvest was very low because of normal

leaf senescence. Despite producing many fruit fingers and slightly more hands per bunch,

their average yield and size of fruits were lower than those of the parents. However, some

exceptional lines such as 25031S-7 (diploid) had sizable bunch with relatively big fruits.

Table 4. Effect of genotype (clone), field management, cycle and their interaction on trait variation.

Dep. variable Indep. variable Sum Sq Df F value Pr(>F)

PHF Clone 2222889.11 306 3.77 <0.0001

Clone:Field 432297.46 284 0.79 0.9947

Clone:Cycle 332846.71 299 1.05 0.2662

PG Clone 73176.82 306 4.30 <0.0001

Clone:Field 12061.30 284 0.76 0.9981

Clone:Cycle 13057.24 299 1.51 <0.0001

INSL Clone 116602.02 306 2.44 <0.0001

Clone:Field 58583.77 284 1.32 0.0005

Clone:Cycle 51026.49 299 0.95 0.6947

TSsqrt Clone 240.28 305 3.21 <0.0001

Clone:Field 100.88 282 1.46 <0.0001

BWTsqrt Clone 1213.89 303 12.55 <0.0001

Clone:Field 126.77 269 1.48 <0.0001

Clone:Cycle 108.68 276 1.49 <0.0001

FC Clone 9506.06 300 16.11 0.0000

Clone:Field 733.66 269 1.39 0.0001

Clone:Cycle 751.00 272 1.29 0.0021

PLD Clone 865.42 299 17.60 0.0000

Clone:Field 68.27 269 1.54 <0.0001

Clone:Cycle 60.55 271 1.29 0.0022

PED Clone 20.96 299 11.41 <0.0001

Clone:Field 16.61 269 10.05 <0.0001

Clone:Cycle 3.15 271 0.80 0.9913

sqrt Original data transformed by square root

https://doi.org/10.1371/journal.pone.0178734.t004
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Crosses involving M. acuminata ssp. malaccensis 250 as male parent produced hybrids

that were tall, slender, with bunches that had many fruit fingers poorly filled with pulp but

some individual genotype exceptions were observed. The hybrids were resistant to Black

Sigatoka and had the highest number of functional leaves at harvesting. Hybrids from cv.

Table 5. Comparison of mean performance of parental cross combinations (S) and hybrids from those crosses (R) against the mean of all parents.

CROSS C04 C05 C08 C10 C11 C12 C13 C16 C22 C27 C31 C33 C34 C37 C61 MxC4

S (NSLF) -0.5 -0.2 1.2 0.4 0.2 -0.2 -0.3 1.2 0.7 1.9 0.1 -0.3 -0.1 1.4 0.4 -1.1

R (NSLF) -0.4 0.5 0.8 0.0 1.4 0.9 0.1 1.8 2.1 1.8 0.6 0.3 -0.2 1.4 0.8 0.1

S (YLSF) -0.7 -0.4 1.4 0.3 0.0 -0.2 -0.3 1.7 0.2 1.7 -0.8 -1.1 -0.7 1.1 -0.3 -1.5

R (YLSF) -0.7 0.3 0.7 0.0 0.8 0.4 0.1 1.8 2.2 1.7 0.4 -0.1 -0.1 1.2 0.7 -0.1

S (PHF) 24.1 -33.5 6.6 35.2 35.8 17.2 -37.5 3.8 -21.8 -1.5 -14.0 -11.4 -58.2 -22.5 0.2 25.9

R (PHF) 14.8 -23.8 10.1 33.6 -23.4 -7.4 -39.4 -6.6 -62.3 2.5 0.5 7.9 -31.0 -17.6 -9.5 7.6

S (PG) 9.6 -2.9 5.0 11.1 11.7 2.8 -7.5 -0.1 -5.3 1.3 0.9 1.4 -8.5 -1.6 3.6 3.3

R (PG) 3.6 -3.2 1.2 6.0 -1.4 2.3 -6.8 -1.4 -5.7 -0.6 2.2 4.9 -5.4 -2.0 3.3 2.0

S (HTSF) 11.4 -8.5 30.1 24.2 31.7 -5.5 -18.1 20.5 -46.3 23.0 -27.5 -25.0 -33.7 0.3 -4.7 23.0

R (HTSF) 15.0 -10.3 6.3 23.3 -21.1 -7.3 -26.8 14.3 -32.5 13.4 0.8 -2.5 -14.4 -4.0 -6.4 4.2

S (INSL) -1.8 -1.0 4.9 0.9 0.3 0.2 0.7 7.2 -1.5 3.9 -6.4 -6.5 -4.2 1.1 -4.3 -7.0

R (INSL) -2.9 0.6 1.4 1.2 -1.9 -0.7 1.1 5.7 7.2 4.1 0.1 -1.8 1.8 2.7 2.2 -0.9

S (TS) -1.6 2.8 0.7 -1.0 1.1 -1.1 3.0 1.2 -1.7 0.1 -3.3 -2.9 1.3 -0.7 -0.4 0.0

R (TS) -0.3 1.9 0.6 0.8 -1.0 -1.2 0.8 1.0 -0.4 -0.8 0.3 -1.9 1.2 0.0 0.7 -1.2

S (DFM) 2.4 2.7 15.9 10.0 -1.3 4.9 6.5 31.4 14.2 32.9 8.9 10.9 8.8 28.0 8.2 -21.3

R (DFM) 7.8 6.3 21.1 7.3 -1.9 19.9 1.6 8.3 54.6 32.6 23.9 11.2 13.5 22.3 20.7 7.2

S (NSLH) -0.7 -0.9 0.3 -0.4 -0.5 -0.1 -0.7 1.3 0.5 1.5 0.4 0.1 -0.3 1.4 0.6 -0.7

R (NSLH) -0.9 0.0 0.8 -0.4 1.5 0.6 0.1 2.3 0.3 1.4 0.3 0.1 -0.1 1.1 0.1 0.2

S (YLSH) -0.4 -0.4 0.3 -0.1 -0.2 0.0 -0.3 1.0 0.1 1.1 -0.1 -0.2 -0.3 0.6 0.0 -0.4

R (YLSH) -0.5 0.1 0.5 -0.2 0.9 0.1 0.0 0.8 0.1 0.6 0.2 0.2 0.1 0.8 0.1 0.1

S (HTSH) 27.6 -0.1 25.2 34.0 26.8 5.9 -21.3 10.8 -21.7 28.9 -2.6 4.6 -21.7 1.6 -2.2 7.7

R (HTSH) 23.4 -0.3 45.0 24.0 -18.4 18.4 -23.1 17.3 -15.9 19.1 23.6 9.9 -11.6 15.0 2.9 31.0

S (BWT) 5.6 2.3 4.2 7.2 7.0 1.5 -2.3 -1.5 -0.6 2.1 2.1 1.6 -1.2 -0.2 2.6 -0.7

R (BWT) 3.4 0.7 1.0 3.8 -0.9 1.0 0.4 -4.0 -2.3 -2.3 0.7 2.5 -0.1 -2.8 3.4 1.4

S (NH) 0.7 0.1 0.2 2.6 0.5 0.7 -0.1 0.0 1.1 0.6 0.2 0.3 -0.3 -0.3 -0.1 -0.8

R (NH) 0.4 0.4 1.0 0.9 1.2 1.1 0.3 0.9 1.2 0.4 0.8 1.2 -0.4 0.5 0.7 -0.3

S (NF) 22.1 -1.8 19.7 37.2 17.5 7.0 -19.7 7.7 7.5 15.9 8.8 12.2 -13.4 9.2 3.6 -16.0

R (NF) 15.9 9.0 35.8 12.8 19.9 13.9 1.5 21.7 27.4 10.7 19.6 25.6 -3.1 16.3 13.5 2.0

S (FL) 1.6 -0.2 0.8 2.8 1.9 0.7 -1.1 -1.4 -1.5 0.4 0.5 1.0 -0.9 -0.2 1.2 0.2

R (FL) 2.8 0.3 -0.8 2.5 -1.3 -0.2 -0.2 -3.9 -2.0 -2.6 -0.5 1.6 1.3 -2.6 2.3 0.3

S (FC) 2.2 0.7 2.2 2.1 3.1 1.2 -1.2 -1.1 0.4 0.9 1.2 0.6 -0.7 0.3 1.4 0.9

R (FC) 0.8 0.0 -0.6 1.2 -1.8 -0.7 -0.4 -3.4 -2.8 -2.5 -0.8 0.1 -0.4 -3.0 0.6 0.8

S (FRD) 0.6 0.2 0.6 0.6 0.9 0.4 -0.4 0.0 0.2 0.6 0.5 0.3 -0.2 0.2 0.6 0.1

R (FRD) 0.2 0.0 -0.3 0.3 -0.7 -0.3 -0.2 -1.2 -1.0 -0.8 -0.4 -0.1 -0.2 -1.0 0.1 0.4

S (PLD) 0.6 0.2 0.6 0.6 0.9 0.3 -0.3 0.0 0.1 0.6 0.5 0.3 -0.1 0.2 0.6 0.1

R (PLD) 0.2 0.0 -0.3 0.3 -0.7 -0.3 -0.1 -1.2 -1.0 -0.9 -0.4 -0.1 -0.2 -1.0 0.1 0.4

S (PED) 0.00 0.00 0.02 0.00 0.02 0.03 -0.02 0.01 0.01 0.02 0.00 -0.03 -0.03 -0.02 -0.01 0.01

R (PED) 0.01 0.01 -0.01 0.01 0.00 0.02 -0.01 -0.01 0.01 0.04 0.02 0.01 0.00 0.00 0.01 0.00

S = Selection differential, R = Response to selection, bold values are the highest observations, C04 = 1201K-1x9128-3, C05 = 1201K-1 x cv. Rose,

C08 = 1201K-1 x malaccensis, C10 = 1201K-1 x SH3217, C11 = 1201K-1 x SH3362, C12 = 1438K-1 x 5610S-1, C13 = 1438K-1 x cv. Rose, C16 = 1438K-1

x malaccensis, C22 = 5610S-1 x 2180K-6, C27 = 660K-1 x malaccensis, C31 = 917K-2 x 5610S-1, C33 = 917K-2 x 9128–3, C34 = 917K-2 x cv. Rose,

C37 = 917K-2 x malaccensis, C61 = 917K-2 x SH3362 and MxC4 = Matooke (EAHB) x Calcutta 4

https://doi.org/10.1371/journal.pone.0178734.t005
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Rose were slender and shorter and were the highest in sucker production while other traits

varied considerably.

Hybrids from different cross combinations had longer maturity period (128–185 days) than

EAHB. On average EAHB mature within 90 days after flowering while the average maturity

period for all parental lines was 130 days.

Genetic diversity of GS training population

Out of the nineteen SSR markers, eighteen were used to delineate the structure of the study

population, because marker mMaCIR164 produced ambiguous allele profiles across samples.

From 18 loci, 195 alleles were scored and the number of alleles per locus ranged between 4 and

18 with an average of 10.8. Polymorphism information content (PIC) of the markers was high

with an average of 0.87 (0.53–0.95) while the major allele frequency was on average 0.22 (0.1–

0.45).

Despite the complex pedigree background of the GS population, SSR markers were infor-

mative enough to delineate the structure of the population (Fig 6). Hierarchical clustering

based on Ward’s criterion revealed ten groups indicating that the genetic diversity of popula-

tion was high. The triploid East African highland bananas clearly separated from other trip-

loids. They had the lowest within group genetic diversity. The tetraploids that resulted from

crossing EAHB by cv. ‘Calcutta 4’ and M. acuminata ssp. malaccensis 250 formed their own

cluster but were closely linked to that of EAHB, thus supporting the hypothesis that the tetra-

ploids were formed after fusion of unreduced gametes from triploid EAHB and haploid gam-

etes from diploid cv. ‘Calcutta 4’ and M. acuminata ssp. malaccensis 250. The within cluster

dispersion was rather homogenous and not highly diverse for the tetraploid hybrids probably

due high allele dosage from EAHB. SSR data suggested that the tetraploid presumed to be

hybrids of cv. Enzirabahima by M. a malaccensis 250 (29275S-1, 29275S-4 and 29275S-5), were

in fact admixtures from pollination of EAHB with cv. ‘Calcutta 4’. These tetraploid inherited

17 alleles specific for cv. ‘Calcutta 4’ and none of ssp. malaccensis 250 specific alleles across the

18 SSR markers used.

Hierarchical clustering of hybrids was much influenced by male parents used in the cross.

The biggest percentage of hybrids was produced from crosses involving tetraploids derived

from EAHB and cv. ‘Calcutta 4’. Hybrids from ssp. malaccensis 250 were more distinct from

the rest of the population and formed their own cluster. Four hybrids (26998S-1, 27074S-1,

28506S-1 and 27960s-1) presumed to be progeny of 2180K-6, cv. ‘Calcutta 4’ and cv. ‘Rose’ as

male parents clustered together with ssp. malaccensis 250 hybrids. SSR genotype profiles sug-

gested that those four hybrids were misidentified because they had ssp. malaccensis 250 specific

alleles. The highest genetic diversity was observed in the diploid parents and between families.

Diploids that were linked by pedigree clustered together but the within cluster differences

were high compared to EAHB and tetraploids. Diploids such as cv. ‘Calcutta 4’, 861S-1, 5610S-

1, 2180K-1, Kokopo, and cv. ‘Rose’ clustered with their hybrids. Hybrids derived from 5610S-1

x 2180K-1 were all diploids and closely related to cv. ‘Calcutta 4’ and 861S-1 and formed a sep-

arate cluster. Although the pedigree of 2180K-1 could not be traced, there is a possibility that

one of its parents was cv. ‘Calcutta 4’. Hybrids from cv. ‘Long Tavoy’ and cv. ‘Calcutta 4’ were

not easily delineated because of the close resemblance of these genotypes. One cluster (J) com-

prising of triploid hybrids showed high within cluster diversity. Majority of advanced hybrids

especially NARITA hybrids comprising of potential candidate varieties are found in this clus-

ter. The ssp. zebrina accessions included in the analysis clustered within the main clusters sug-

gesting their genetic relatedness with other acuminata genotypes. In the population, some

genotypes were duplicates. The duplicates identified included 28465S-2 (A&B), 26337S-11
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Fig 6. Dendrogram showing the genetic diversity of the genomic selection training population based on 19 informative SSR markers. The

squared Euclidean distances were used to generate the hierarchical clusters based on ward.D criterion. Where cluster A = tetraploids (4x) by M. a. spp.

malaccensis 250, * share only female parent, cluster B = matooke (EAHB), cluster C = tetraploids from EAHB (3x) by Calcutta 4 a wild diploid (2x), cluster

D = wild and improved diploids, cluster E = Black Sigatoka resistant diploid hybrids, cluster F = hybrids of 5610S-1 as a male parent, * share grandparent

Calcutta 4, GC = good for cooking and N = NARITA hybrid, cluster G = cv. Rose was the main male parent, * share genetic background, cluster H = Long

Tavoy and Calcutta 4 are the grandparents, cluster I = mostly hybrids of SH3217 as male parent, N = NARITA, @ = released variety as NARITA 7/M9/

Kiwangazi and cluster J = triploid hybrids with complex pedigree, most advanced hybrids such as NARITAs (N) are found in this cluster of which some are

promising variety candidates and GC = good for cooking.

https://doi.org/10.1371/journal.pone.0178734.g006
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(A&B) and 26337S-22 (A&B) while 27524S-12 (A&B) that were assumed to be duplicates

were clarified to be genetically different although both were progeny of ssp. malaccensis 250.

Other supposed unique genotypes were identified as likely clonal pairs, such as 24948S-9 and

24948S-10, 24948S-22 and 24948S-27, 25623S-11 and 25628S-11, 24948S-12 and 24948S-21,

12479S-1 and 12479S-13, 25737S-1 and 25356S-1, and 25066S-1 and 25066S-2.

Discussion

Trait evaluation

Bananas express many traits that are used to evaluate hybrids in breeding programs. These

traits can be broadly classified as vegetative/agronomic (growth) traits, or yield and consumer

appeal (fruit) traits. Growth and yield related traits are used to assess the level of introgression

of resistance genes and this is done in the early evaluation trial. The index of non-spotted

leaves (INSL) is a measure of resistance to Black Sigatoka, a fungal disease that causes rapid

drying of leaves hence reducing the photosynthetic area [7]. Results from ANOVA obtained in

this work showed that INSL was not significantly affected by cycle. However, the effect of level

of input in field management on INSL depended on genotype. This suggests that resistance to

Black Sigatoka might be under strong genetic control and less influenced by cycle.

Correlation analysis showed a positive correlation between INSL, NSLF and YLSF. How-

ever, these three had low but significant negative correlations with yield-related traits under

low input field management conditions. These results suggest that whereas some Black Siga-

toka resistant genotypes give good yield, others produce inferior fruits. Reduction in functional

leaves and photosynthetic area has been shown to impact banana yield potential [7]. Tushe-

mereirwe [36] indicated that Black Sigatoka reduced yield of EAHB by more than 30%. Our

results show that under high input field management conditions, the impact of the disease on

yield traits was less severe (Tables 1 and 2). This result is in agreement with Mobambo et al.

[37] who reported that soil fertility had an effect on host plant response to Black Sigatoka and

yield in plantains. The symptoms of Black Sigatoka often increase after flowering probably

because at that time the ability of a plant to withstand the fungal attack is lowered as it commits

most of the energy and resources to the developing inflorescence. Some genotypes had no

functional leaves at harvest, indicating that they were very susceptible to Black Sigatoka after

flowering. Selection of hybrids based on the number of functional leaves at harvest as a mea-

sure of resistance to Black Sigatoka should be done with caution because of the negative associ-

ation between foliar symptoms to Black Sigatoka and fruit filling.

The present study shows that based on yield and growth traits, four groups of bananas

existed in the training population that is, genotypes with high INSL and good fruit filling, high

INSL with poor fruit filling, low INSL with good fruit filling and low INSL with poor fruit fill-

ing representing the four planes of the two components. However, PCA could not resolve the

population structure into clear-cut clusters due to complex pedigrees, although Osuji et al.

[38] used this approach to distinguish between different Musa triploids. This phenomenon

could be attributed to differences in carbon source to sink capacities.

Plant physiological studies have shown that the balance between source and sink transloca-

tion of photosynthetic assimilates is key to plant productivity [39]. In bananas, Dens et al. [40]

demonstrated the effect of manipulating the carbon source (C-source) and carbon sink (C-

sink) of mother plant on ratoon crops in cv. ‘Williams’ and cv. ‘Grand Nain’ at a mat level.

Their results showed genotype and environmental effect on flowering time, plant height and

bunch size for the first ratoon crop. They concluded that the bunch was a larger C-sink than

the ratoon crop. At individual plant level, it is likely that difference in C-source to C-sink

capacity exists in bananas because our results showed that poor fruit filling genotypes were not
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significantly affected by cycle and field inputs. It can be postulated that when plants have a

strong C-sink capacity they tend to have high yield with increased leaf senescence, while those

with low C-sink capacity maintain many leaves with low yield at harvest. More physiological

studies in banana are required to shed light on this aspect. It has been reported that at the time

of flowering, the fruits and seeds became major sinks and any factor that reduces translocation

of photosynthetic assimilates to fruits reduces the harvest index [41].

The training population consisted of poor and good fruit filling genotypes based on FL, FC,

FRD and PLD. This characteristic was consistent across cycles and field management, with

two overlapping peaks in a binary pattern (S1A Fig). However, given the consistence of the

traits under different field conditions, there is likelihood that fruit filling is under control of

one or few major-effect quantitative trait loci (QTL). Given that the training population was

not a classical bi-parental mapping population this argument may not hold, but investigations

using genome wide association studies while accounting for pedigree effect [42] may help to

unravel the underlying genetic mechanisms using genome-wide markers such as SNPs.

This study did not find sufficient evidence to show that absolute apical dominance existed

in our training population. Different levels of sucker regulation (1–25 suckers) were observed

in different cross combinations. This result is in agreement with the observation made by

Ortiz and Vuylsteke [43] that non-apical dominance genes were fixed in AA genotypes of

Musa.

GxE interaction

The effects of cycle and field input management on the genotype and how the genotype inter-

acted with these two aspects of the environment were evaluated. The effect of cross combina-

tion was also assessed. Based on coefficients of determination and analysis of variance,

genotype, cycle, field and their interactions had different levels of effect on trait variation

among cross combinations and individual genotypes. While PHF and PG significantly

increased at cycle 2, field management did not have a significant effect on these traits. This

could be attributed to the fact that the suckers used were at different physiological maturity.

Yield traits were also affected by cycle but the bi-modal distribution was maintained. When

bananas are planted in the field they first undergo an establishment phase and build reserves

that can accelerate growth of the daughter plants. Therefore, cycle 2 is best to compare geno-

types especially with regard to yield traits. Tushemereirwe et al. [16] reported a cycle effect on

traits when they analyzed some advanced hybrids, but it was not fully known whether this

behavior occurred in different banana genotypes. The effect of cycle alone varied across traits

depending on field management except for PED, HTSF and INSL that were most stable. It

should however be noted that under optimum field management the cycle explains a small

proportion of trait variation in genotypes because most traits had coefficient of determination

values below 0.4 in GS2.

The present results show that different banana traits may have different genetic architecture

with some traits influenced by GxE. In marker assisted selection this can hamper deployment

of classical marker technologies that rely on identifying QTLs. Approaches such as genomic

selection that utilize genome-wide markers in complex populations such as in this study

provide an opportunity to dissect such traits and could be exploited by banana breeders to

increase genetic gain per unit time. Genotype by environment interaction has been shown to

affect the accuracy of genomic selection models [24, 44]. Therefore, understanding genotype

trait variation across different environments is paramount.

Many hybrids generated from crossbreeding usually have inferior fruit size irrespective of

the ploidy level. Such inferiority has been attributed to linkage drag from wild diploids [45].
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Bananas have a long selection cycle, they are labor intensive, costly and require large land area

for evaluation. Any technology that can discriminate the inferior genotypes from the good

ones at a nursery stage could save a lot of resources and time for the breeders thus increasing

the breeding efficiency. With the availability of the Musa reference genome [46, 47] and

decreasing costs of next generation sequencing technologies, high density marker technologies

such as genotyping by sequencing are available for many plant species [48]. This provides an

opportunity to investigate the application of genomic selection in banana breeding.

Performance of cross combinations

The true breeding value of a genotype is determined by the quality of hybrids produced when

it is involved in a cross. By comparing the responses to selection (R) and selection differentials

(S) of sixteen cross combinations it was concluded that no single cross combination presented

all the good qualities targeted by the breeders in hybrids. This further explains the complex

trait variation observed within study population. No attempt was made to determine heritabil-

ity of the traits because of unbalanced design and the possibility of confounding from heterosis

[31]. Some hybrids that had many active leaves at harvest showed variation in fruit filling.

Performance of the hybrids was greatly influenced by the male parent involved in the cross.

Although both diploids and tetraploids had 50% segregation opportunity, the tetraploids were

genetically very similar, whereas the diploids were more genetically diverse with the exception

of SH3217 and SH3362 that were closely related. Crosses involving diploid SH3217, SH3362

and 9128–3 produced hybrids which were superior in yield compared to other crosses. These

diploids are parthenocarpic, with big fruits and many hands (clusters) per bunch. The best

cross combination was C10 (120K-1 x SH3217) that produced hybrids that were fairly resistant

to Black Sigatoka, high yielding and quick maturing. Despite the susceptibility of 1201K-1 par-

ent to Black Sigatoka, segregation was observed and some hybrids that had some acceptable

levels of resistance were produced.

Tenkouano et al. [49] reported a 4-fold contribution of male parents toward yield traits

while Rowe and Rosales [50] highlighted that breeding for improved diploids with pest and

disease resistance, parthenocarpy and good yield was the best strategy in banana improvement.

Gene pyramiding has also been suggested so that multiple introgressions of good traits are

possible [51]. Most of the improved varieties produced by crossbreeding are triploid and all

assumed to be completely sterile but no research has been conducted to evaluate their fertility.

Further improvement of these triploids is necessary given that no single hybrid has all traits

desired by farmers and consumers. The 2x by 2x hybrids were all diploid and some had sizable

bunches compared to other diploids in the core breeding set, i.e. could be interesting as

improved 2x parents. Further evaluation of these diploids for pollen viability and partheno-

carpy will be necessary before they are incorporated in the core breeding set despite their long

maturity period. Hybrids that take four months to mature may be considered quick maturing,

given that the majority take more than four months.

Genetic diversity of GS training population

Whereas principal component analysis on cross combinations and individual genotypes

showed that high genetic diversity existed in the training population, its power to resolve the

structure of the population into clear-cut clusters that make biological sense was limited. This

was attributed to complex pedigrees in the population with 77 cross combinations represented.

The half-sib families were closely related to one another with which they shared a common

parent. The population was interconnected due to shared parents in their pedigree. Use of

SSR markers proved valuable in delineating the population structure that could be easily
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interpreted. The set of markers used was reported to be informative and has been used on gen-

otyping the banana collection from the International Transit Center [32]. The polymorphism

information content (PIC) of 0.87 was high enough to resolve even the closest genotypes. Up

to ten unique clusters were resolved and results showed that clustering was mostly influenced

by the genetic diversity in diploid parents.

Triploid EAHB and tetraploids derived from them by crossing with cv. ‘Calcutta 4’ formed

two distinct but closely related clusters, supporting the hypothesis of production of unreduced

3n and reduced n gametes during meiotic events in the tetraploid progenitors [52]. Despite the

high PIC of the markers, the EAHB showed a very low genetic diversity consistent with the

hypothesis that this group of bananas is an ancient clone set [9]. Even with a high number of

polymorphic SSR markers Kitavi et al. and Karamura et al. [9, 53] failed to separate this group

into the corresponding phenotype-based clone sets of Karamura [1]. However, some genetic

differences were observed between some individual genotypes that could be attributed to

mutations within this ancient clone set. The population was predominated with genetic intro-

gression from cv. ‘Calcutta 4’. Hybrids from M. acuminata ssp. malaccensis 250 formed a

distinct cluster. Three tetraploids presumed to be arising from a cross of EAHB with ssp.

malaccensis 250 grouped together with those derived from EAHB by cv. ‘Calcutta 4’. The pres-

ence of Calcutta 4-specific alleles in these tetraploids and the absence of ssp. malaccensis 250

specific alleles suggest that these hybrids are progeny of EAHB by cv. ‘Calcutta 4’ hence the

high genetic relationship with the rest of the tetraploids. Nevertheless, these tetraploids should

be tested as parents to determine their breeding values so that the breeding genetic pool is

expanded.

The SSR markers proved useful in identifying duplicates and closely related genotypes

based on pedigree background. A combination of highly polymorphic SSR markers and the

power of Ward’s clustering method that minimizes the within-group dispersion [34] in the

Euclidean space helped to resolve the structure of the population that was highly interlinked

by pedigree background. The high level of genetic complexity observed in this population rep-

resents different recombination events that make it suitable as a training population for geno-

mic selection.

Apart from obtaining important data on the banana GS training population, important les-

sons were learned during the course of this work. Dedicated efforts are required to understand

the genome organization of bananas through cytological approaches. Ploidy analysis should be

routinely employed in breeding programs to differentiate ploidy levels so that different selec-

tion criteria are used to select hybrids intended for the breeding pipeline from those eligible

for variety release. Despite a majority of the improved hybrids being triploids, their fertility

should be tested so that further improvements can be made on them as a way to achieve gene

pyramiding while minimizing inbreeding.

Conclusion

The response of genotype trait expression to cycle and field management practices varied

greatly. The largest proportion of genetic variation was due to the greater genetic diversity of

male parents used in crosses since the tetraploids used in the majority of crosses as female

parents were genetically related. Yield traits accounted for 31–35% of the total principal com-

ponent variation observed in the population and were loaded on the first component while

vegetative traits contributed to the second component with 15–22%. A high level of correlation

within vegetative- and yield-related traits was observed but correlation between vegetative and

yield traits was low and depended on the interaction with field management practices. There-

fore, genomic selection models could be developed for traits that are easy to measure. It is
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likely that the predictive ability of traits that are difficult to phenotype will be similar to traits

easily measured but highly correlated. The study population was observed to be genetically

diverse with complex pedigree structure. Yield-related traits showed a bi-modal distribution,

which was not influenced by cycle or field management. Resistance to Black Sigatoka was also

stable across cycles but varied under different field management depending on the genotype.

Principal component analysis could not delineate this complex population structure but the

application of SSR markers in combination with Ward’s hierarchical clustering proved power-

ful and resolved the structure into biologically meaningful groups.
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S1 Fig. Variation in fruit characteristics. (A) is a histogram showing the bimodal distribution
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32. Christelová P, Valárik M, Hřibová, Van den houwe I, Channelière S, Roux N, et al. A platform for efficient

genotyping in Musa using microsatellite markers. AoB Plants. 2011. https://doi.org/10.1093/aobpla/

plr024 PMID: 22476494

33. Ward JH. Hierarchical grouping to optimize an objective function. J Am Stat Assoc. 1963; 58: 236–244.

34. Murtagh F, Legendre P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms

Implement Ward’s Criterion? J Classif. 2014; 31: 274–295.

35. Liu K, Muse SV. PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics.

2005; 21(9): 2128–2129. https://doi.org/10.1093/bioinformatics/bti282 PMID: 15705655

36. Tushemereirwe WK. Factors influencing the expression of leaf spot diseases of highland bananas in

Uganda. PhD thesis. University of Reading, U.K; 1996.

37. Mobambo K, Zoufa K, Gauhl F, Adeniji M, Pasberg-Gauhl C. Effect of soil fertility on host response to

black leaf streak of plantain (Musa spp., AAB group) under traditional farming systems in southeastern

Nigeria. Int J Pest Manag. 1994; 40: 75–80

38. Osuji JO, Okol BE, Vuylsteke D, Ortiz R. Multivariate pattern of quantitative trait variation in triploid

banana and plantain cultivars. Sci Hortic. 1997; 71: 197–202.
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S1 Table. List of genotypes in the genomic selection training population 

S/No Cross Genotype name Female parent Male parent Ploidy Description 

       

1  Enzirabahima   3x Parent 

2  Kabucuragye   3x Parent 

3  Tereza   3x Parent 

4  Enyeru   3x Parent 

5  Nakayonga   3x Parent 

6  Namwezi   3x Parent 

7  Entukura   3x Parent 

8  Nakasabira   3x Parent 

9  Nakawere   3x Parent 

10  Nante   3x Parent 

11  Kazirakwe   3x Parent 

12  Nfuuka   3x Parent 

13  Calcutta 4   2x Parent 

14 C45 1201K-1 Nakawere Calcutta 4 4x Parent 

15 C41 917K-2 Enzirabahima Calcutta 4 4x Parent 

16 C41 660K-1 Enzirabahima Calcutta 4 4x Parent 

17 C40 1438K-1 Entukura Calcutta 4 4x Parent 

18 C51 222K-1 Nfuuka Calcutta 4 4x Parent 

19 C49 376K-7 Nante Calcutta 4 4x Parent 

20 C67 365K-1 Kabucuragye Calcutta 4 4x Parent 

21 C40 401K-1 Entukura Calcutta 4 4x Parent 

22 C66 2180K-6   2x Parent 

23 C53 8075-7 SH3362 Calcutta 4 2x Parent 

24 C54 7197-2 SH3362 Long Tavoy 2x Parent 

25 C63 SH3142 SH1734 Pisang Jari Buaya 2x Parent 

26 C64 SH3362 SH3217 SH3142 2x Parent 

27 C52 SH3217 SH2095 SH2766 2x Parent 

28 C43 5610S-1 Kabucuragye 7197-2 2x Parent 

29 C65 9128-3 Tjau lagada Pisang lilin 2x Parent 

30 C57 1968-2 Who-gu Calcutta 4 3x Parent 

31 C48 861S-1 Namwezi Calcutta 4 2x Parent 

32  cv. Rose   2x Parent 

33  Pisang Lilin   2x Parent 

34  Kokopo   2x Parent 

35  Long Tavoy   2x Parent 

36  malaccensis 250   2x Parent 

37 C01 28165S-1 1201K-1 1968-2 3x Hybrid 

38 C02 25583S-2 1201K-1 5610S-1 3x Hybrid 

39 C02 26660S-1 1201K-1 5610S-1 3x Hybrid 

40 C02 28434S-9 1201K-1 5610S-1 3x Hybrid 

41 C68 17503S-3 1201K-1 7197-2 3x Hybrid 

42 C03 16242S-1 1201K-1 8075-7 3x Hybrid 

43 C04 12479S-1 1201K-1 9128-3 3x Hybrid 



44 C04 12479S-13 1201K-1 9128-3 3x Hybrid 

45 C04 26317S-1 1201K-1 9128-3 3x Hybrid 

46 C04 27262S-1 1201K-1 9128-3 3x Hybrid 

47 C04 27262S-3 1201K-1 9128-3 3x Hybrid 

48 C05 27770S-20 1201K-1 cv. Rose 3x Hybrid 

49 C05 27770S-4 1201K-1 cv. Rose 3x Hybrid 

50 C05 27935S-1 1201K-1 cv. Rose 3x Hybrid 

51 C05 27960S-1 1201K-1 cv. Rose 3x Hybrid 

52 C05 28036S-11 1201K-1 cv. Rose 3x Hybrid 

53 C05 28036S-2 1201K-1 cv. Rose 3x Hybrid 

54 C05 28164S-3 1201K-1 cv. Rose 3x Hybrid 

55 C05 28246S-4 1201K-1 cv. Rose 3x Hybrid 

56 C05 28246S-7 1201K-1 cv. Rose 3x Hybrid 

57 C05 27935S-7 1201K-1 cv. Rose 3x Hybrid 

58 C06 26363S-1 1201K-1 Kokopo 3x Hybrid 

59 C07 26075S-6 1201K-1 Long Tavoy 3x Hybrid 

60 C07 26075S-7 1201K-1 Long Tavoy 3x Hybrid 

61 C07 26075S-8 1201K-1 Long Tavoy 3x Hybrid 

62 C08 27346S-2 1201K-1 malaccensis 250 3x Hybrid 

63 C08 27346S-4 1201K-1 malaccensis 250 3x Hybrid 

64 C08 27437S-1 1201K-1 malaccensis 250 3x Hybrid 

65 C08 27579S-1 1201K-1 malaccensis 250 3x Hybrid 

66 C08 27579S-3 1201K-1 malaccensis 250 3x Hybrid 

67 C08 28030S-2 1201K-1 malaccensis 250 3x Hybrid 

68 C08 28030S-6 1201K-1 malaccensis 250 3x Hybrid 

69 C08 28071S-1 1201K-1 malaccensis 250 3x Hybrid 

70 C08 28465S-2 1201K-1 malaccensis 250 3x Hybrid 

71 C08 28465S-21 1201K-1 malaccensis 250 3x Hybrid 

72 C08 28479S-2 1201K-1 malaccensis 250 3x Hybrid 

73 C10 26337S-22A 1201K-1 SH3217 3x Hybrid 

74 C10 26337S-40 1201K-1 SH3217 3x Hybrid 

75 C11 26840S-7 1201K-1 SH3362 2x Hybrid 

76 C09 26315S-1 1201K-1 SH3142 3x Hybrid 

77 C10 12419S-13 1201K-1 SH3217 3x Hybrid 

78 C10 26337S-11A 1201K-1 SH3217 3x Hybrid 

79 C10 26337S-2 1201K-1 SH3217 3x Hybrid 

80 C10 26337S-34 1201K-1 SH3217 3x Hybrid 

81 C10 26337S-37 1201K-1 SH3217 3x Hybrid 

82 C10 26337S-39 1201K-1 SH3217 3x Hybrid 

83 C10 26337S-43 1201K-1 SH3217 3x Hybrid 

84 C10 28263S-2 1201K-1 SH3217 3x Hybrid 

85 C11 12618S-1 1201K-1 SH3362 3x Hybrid 

86 C11 26316S-7 1201K-1 SH3362 3x Hybrid 

87 C11 26840S-10 1201K-1 SH3362 3x Hybrid 

88 C58 25328S-3 1438K-1 1537K-1 3x Hybrid 



89 C12 24948S-10 1438K-1 5610S-1 3x Hybrid 

90 C12 24948S-13 1438K-1 5610S-1 3x Hybrid 

91 C12 24948S-24 1438K-1 5610S-1 3x Hybrid 

92 C12 24948S-9 1438K-1 5610S-1 3x Hybrid 

93 C69 26060S-1 1438K-1 9128-3 3x Hybrid 

94 C70 13573S-1 1438K-1 9719-7 3x Hybrid 

95 C13 27914S-1 1438K-1 cv. Rose 3x Hybrid 

96 C13 27914S-13 1438K-1 cv. Rose 3x Hybrid 

97 C13 28095S-1 1438K-1 cv. Rose 3x Hybrid 

98 C13 27264S-2 1438K-1 cv. Rose 2x Hybrid 

99 C13 27914S-24 1438K-1 cv. Rose 3x Hybrid 

100 C13 27914S-26 1438K-1 cv. Rose 3x Hybrid 

101 C13 27914S-3 1438K-1 cv. Rose 3x Hybrid 

102 C14 25474S-1 1438K-1 Kokopo 3x Hybrid 

103 C15 26369S-4 1438K-1 Long Tavoy 3x Hybrid 

104 C16 28481S-1 1438K-1 malaccensis 250 3x Hybrid 

105 C16 28561S-2 1438K-1 malaccensis 250 3x Hybrid 

106 C19 26725S-1 1438K-1 SH3362 3x Hybrid 

107 C17 25499S-7 1438K-1 SH3142 3x Hybrid 

108 C18 26039S-2 1438K-1 SH3217 3x Hybrid 

109 C20 26466S-2 1977K-1 5610S-1 3x Hybrid 

110 C20 26466S-5 1977K-1 5610S-1 3x Hybrid 

111 C71 22598S-2 365K-1 1201K-1 3x Hybrid 

112 C59 14539S-4 365K-1 660K-1 3x Hybrid 

113 C21 9750S-13 401K-1 9128-3 3x Hybrid 

114 C22 25031S-1 5610S-1 2180K-6 2x Hybrid 

115 C22 25031S-15 5610S-1 2180K-6 2x Hybrid 

116 C22 25031S-16 5610S-1 2180K-6 2x Hybrid 

117 C22 25031S-17 5610S-1 2180K-6 2x Hybrid 

118 C22 25031S-19 5610S-1 2180K-6 2x Hybrid 

119 C22 25031S-27 5610S-1 2180K-6 2x Hybrid 

120 C22 25031S-33 5610S-1 2180K-6 2x Hybrid 

121 C22 25031S-34 5610S-1 2180K-6 2x Hybrid 

122 C22 25031S-7 5610S-1 2180K-6 2x Hybrid 

123 C24 24583S-2 660K-1 5610S-1 3x Hybrid 

124 C24 26260S-3 660K-1 5610S-1 3x Hybrid 

125 C25 13284S-1 660K-1 9128-3 3x Hybrid 

126 C25 25371S-2 660K-1 9128-3 3x Hybrid 

127 C25 9187S-8 660K-1 9128-3 3x Hybrid 

128 C26 26709S-1 660K-1 Calcutta 4 3x Hybrid 

129 C27 27713S-1 660K-1 malaccensis 250 3x Hybrid 

130 C27 27825S-4 660K-1 malaccensis 250 3x Hybrid 

131 C27 27873S-18 660K-1 malaccensis 250 3x Hybrid 

132 C27 27873S-38 660K-1 malaccensis 250 3x Hybrid 

133 C27 27873S-4 660K-1 malaccensis 250 3x Hybrid 



134 C27 27873S-5 660K-1 malaccensis 250 3x Hybrid 

135 C27 28188S-2 660K-1 malaccensis 250 3x Hybrid 

136 C28 25623S-11 8817S-1 917K-2 3x Hybrid 

137 C29 28492S-1 917K-2 1968-2 3x Hybrid 

138 C30 26998S-1 917K-2 2180K-6 3x Hybrid 

139 C30 27074S-1 917K-2 2180K-6 3x Hybrid 

140 C31 25117S-1 917K-2 5610S-1 3x Hybrid 

141 C31 25117S-2 917K-2 5610S-1 3x Hybrid 

142 C31 25117S-3 917K-2 5610S-1 3x Hybrid 

143 C31 25508S-1 917K-2 5610S-1 3x Hybrid 

144 C31 25628S-11 917K-2 5610S-1 3x Hybrid 

145 C31 26815S-3 917K-2 5610S-1 3x Hybrid 

146 C31 26815S-8 917K-2 5610S-1 3x Hybrid 

147 C31 26815S-9 917K-2 5610S-1 3x Hybrid 

148 C31 26990S-10 917K-2 5610S-1 3x Hybrid 

149 C31 26990S-11 917K-2 5610S-1 3x Hybrid 

150 C31 26990S-4 917K-2 5610S-1 3x Hybrid 

151 C31 27073S-1 917K-2 5610S-1 3x Hybrid 

152 C31 27744S-1 917K-2 5610S-1 3x Hybrid 

153 C60 12949S-2 917K-2 7197-2 3x Hybrid 

154 C60 25909S-3 917K-2 7197-2 3x Hybrid 

155 C32 25089S-4 917K-2 861S-1 3x Hybrid 

156 C33 19798S-2 917K-2 9128-3 3x Hybrid 

157 C33 24434S-3 917K-2 9128-3 3x Hybrid 

158 C33 25435S-11 917K-2 9128-3 3x Hybrid 

159 C33 25435S-4 917K-2 9128-3 3x Hybrid 

160 C33 25737S-1 917K-2 9128-3 3x Hybrid 

161 C33 26288S-4 917K-2 9128-3 3x Hybrid 

162 C33 26975S-1 917K-2 9128-3 3x Hybrid 

163 C33 26975S-2 917K-2 9128-3 3x Hybrid 

164 C33 7798S-2 917K-2 9128-3 3x Hybrid 

165 C34 27184S-4 917K-2 cv. Rose 3x Hybrid 

166 C34 27885S-9 917K-2 cv. Rose 3x Hybrid 

167 C34 27184S-8 917K-2 cv. Rose 3x Hybrid 

168 C34 27494S-12 917K-2 cv. Rose 3x Hybrid 

169 C34 27494S-4 917K-2 cv. Rose 3x Hybrid 

170 C34 27494S-5 917K-2 cv. Rose 3x Hybrid 

171 C34 28068S-9 917K-2 cv. Rose 3x Hybrid 

172 C34 27184S-6 917K-2 cv. Rose 3x Hybrid 

173 C34 27885S-1 917K-2 cv. Rose 3x Hybrid 

174 C35 24410S-2 917K-2 Kokopo 3x Hybrid 

175 C36 25680S-11 917K-2 Long Tavoy 3x Hybrid 

176 C36 25680S-13 917K-2 Long Tavoy 3x Hybrid 

177 C37 27261S-1 917K-2 malaccensis 250 3x Hybrid 

178 C37 27261S-10 917K-2 malaccensis 250 3x Hybrid 



179 C37 27261S-11 917K-2 malaccensis 250 3x Hybrid 

180 C37 27334S-5 917K-2 malaccensis 250 3x Hybrid 

181 C37 27401S-1 917K-2 malaccensis 250 3x Hybrid 

182 C37 27524S-12A 917K-2 malaccensis 250 3x Hybrid 

183 C37 27524S-12B 917K-2 malaccensis 250 3x Hybrid 

184 C37 27524S-22 917K-2 malaccensis 250 3x Hybrid 

185 C37 27524S-30 917K-2 malaccensis 250 3x Hybrid 

186 C37 27833S-10 917K-2 malaccensis 250 3x Hybrid 

187 C37 27833S-13 917K-2 malaccensis 250 3x Hybrid 

188 C37 27886S-5 917K-2 malaccensis 250 3x Hybrid 

189 C37 28033S-14 917K-2 malaccensis 250 3x Hybrid 

190 C37 28033S-15 917K-2 malaccensis 250 3x Hybrid 

191 C37 28033S-18 917K-2 malaccensis 250 3x Hybrid 

192 C37 28033S-23 917K-2 malaccensis 250 3x Hybrid 

193 C37 28033S-3 917K-2 malaccensis 250 3x Hybrid 

194 C37 28060S-8 917K-2 malaccensis 250 3x Hybrid 

195 C37 28200S-3 917K-2 malaccensis 250 3x Hybrid 

196 C37 28257S-1 917K-2 malaccensis 250 3x Hybrid 

197 C37 28257S-2 917K-2 malaccensis 250 3x Hybrid 

198 C37 28257S-4 917K-2 malaccensis 250 3x Hybrid 

199 C37 28432S-19 917K-2 malaccensis 250 3x Hybrid 

200 C37 28432S-20 917K-2 malaccensis 250 3x Hybrid 

201 C37 28432S-3 917K-2 malaccensis 250 3x Hybrid 

202 C37 28780S-1 917K-2 malaccensis 250 3x Hybrid 

203 C61 26874S-5 917K-2 SH3362 3x Hybrid 

204 C38 12468S-18 917K-2 SH3217 3x Hybrid 

205 C38 12477S-13 917K-2 SH3217 3x Hybrid 

206 C38 8386S-19 917K-2 SH3217 3x Hybrid 

207 C61 13522S-5 917K-2 SH3362 3x Hybrid 

208 C61 25974S-? 917K-2 SH3362 3x Hybrid 

209 C61 25974S-19 917K-2 SH3362 3x Hybrid 

210 C61 25974S-21 917K-2 SH3362 3x Hybrid 

211 C61 25974S-30 917K-2 SH3362 3x Hybrid 

212 C61 25974S-35 917K-2 SH3362 3x Hybrid 

213 C61 26666S-1 917K-2 SH3362 3x Hybrid 

214 C61 28476S-7 917K-2 SH3362 3x Hybrid 

215 C61 9494S-10 917K-2 SH3362 3x Hybrid 

216 C62 16457S-2 Entukura 365K-1 3x Hybrid 

217 C39 26540S-182 Entukura 8075-7 2x Hybrid 

218 C41 28260S-2 Enzirabahima Calcutta 4 3x Hybrid 

219 C72 21086S-1 Kazirakwe 7197-2 3x Hybrid 

220 C46 28073S-1 Namwezi 7197-2 3x Hybrid 

221 C55 25356S-1 Tereza 7197-2 3x Hybrid 

222 C75 HB unknown unknown 3x Hybrid 

223 C76 HJ unknown unknown 3x Hybrid 



224 C77 HX unknown unknown 3x Hybrid 

225 C10 26337S-11B 1201K-1 SH3217 3x Hybrid 

226 C73 16285S-13 Calcutta 4 660K-1 2x Hybrid 

227 C10 26337S-22B 1201K-1 SH3217 3x Hybrid 

228 C73 16285S-3 Calcutta 4 660K-1 2x Hybrid 

229 C10 26337S-28 1201K-1 SH3217 3x Hybrid 

230 C14 25066S-1 1438K-1 Kokopo 3x Hybrid 

231 C73 16285S-6 Calcutta 4 660K-1 2x Hybrid 

232 C14 25066S-2 1438K-1 Kokopo 3x Hybrid 

233 C73 16285S-8 Calcutta 4 660K-1 2x Hybrid 

234 C61 25974S-11 917K-2 SH3362 3x Hybrid 

235 C61 25974S-15 917K-2 SH3362 3x Hybrid 

236 C14 25457S-1 1438K-1 Kokopo 3x Hybrid 

237 C74 16191S-6 Calcutta 4 917K-2 2x Hybrid 

238 C35 24797S-7 917K-2 Kokopo 3x Hybrid 

239 C35 25102S-1 917K-2 Kokopo 3x Hybrid 

240 C44 28452S-11 Nakasabira Calcutta 4 3x Hybrid 

241 C37 28033S-9 917K-2 malaccensis 250 3x Hybrid 

242 C61 25974S-13 917K-2 SH3362 3x Hybrid 

243 C34 28256S-1 917K-2 cv. Rose 3x Hybrid 

244 C61 25974S-17 917K-2 SH3362 4x Hybrid 

245 C38 12468S-6 917K-2 SH3217 3x Hybrid 

246 C13 27914S-11 1438K-1 cv. Rose 3x Hybrid 

247 C13 27914S-18 1438K-1 cv. Rose 3x Hybrid 

248 C13 27914S-21 1438K-1 cv. Rose 3x Hybrid 

249 C13 27914S-22 1438K-1 cv. Rose 3x Hybrid 

250 C13 27914S-6 1438K-1 cv. Rose 3x Hybrid 

251 C13 27914S-7 1438K-1 cv. Rose 3x Hybrid 

252 C13 27914S-8 1438K-1 cv. Rose 3x Hybrid 

253 C27 27873S-12 660K-1 malaccensis 250 3x Hybrid 

254 C27 27873S-14 660K-1 malaccensis 250 3x Hybrid 

255 C27 27873S-17 660K-1 malaccensis 250 3x Hybrid 

256 C27 27873S-33 660K-1 malaccensis 250 3x Hybrid 

257 C27 27873S-37 660K-1 malaccensis 250 3x Hybrid 

258 C27 27873S-7 660K-1 malaccensis 250 3x Hybrid 

259 C11 26224S-3 1201K-1 SH3362 3x Hybrid 

260 C11 26840S-9 1201K-1 SH3362 3x Hybrid 

261 C11 26316S-14 1201K-1 SH3362 3x Hybrid 

262 C11 26224S-2 1201K-1 SH3362 3x Hybrid 

263 C11 26840S-5 1201K-1 SH3362 3x Hybrid 

264 C09 25653S-3 1201K-1 SH3142 3x Hybrid 

265 C09 26315S-3 1201K-1 SH3142 3x Hybrid 

266 C06 28528S-1 1201K-1 Kokopo 3x Hybrid 

267 C15 26369S-8 1438K-1 Long Tavoy 3x Hybrid 

268 C19 26530S-1 1438K-1 SH3362 3x Hybrid 



2x = diploid, 3x = triploid and 4x = tetraploid 

269 C16 27528S-1 1438K-1 malaccensis 250 3x Hybrid 

270 C16 27915S-3 1438K-1 malaccensis 250 3x Hybrid 

271 C16 28561S-5 1438K-1 malaccensis 250 3x Hybrid 

272 C16 27915S-2 1438K-1 malaccensis 250 3x Hybrid 

273 C16 28974S-11 1438K-1 malaccensis 250 3x Hybrid 

274 C16 28974S-15 1438K-1 malaccensis 250 3x Hybrid 

275 C16 28974S-22 1438K-1 malaccensis 250 3x Hybrid 

276 C16 28974S-29 1438K-1 malaccensis 250 3x Hybrid 

277 C23 29114S-14A 5610S-1 malaccensis 250 2x Hybrid 

278 C23 29114S-14B 5610S-1 malaccensis 250 3x Hybrid 

279 C23 29114S-19 5610S-1 malaccensis 250 3x Hybrid 

280 C23 29114S-24 5610S-1 malaccensis 250 3x Hybrid 

281 C27 27873S-26 660K-1 malaccensis 250 3x Hybrid 

282 C27 27873S-31 660K-1 malaccensis 250 3x Hybrid 

283 C27 29165S-5 660K-1 malaccensis 250 3x Hybrid 

284 C40 28506S-1 Entukura Calcutta 4 3x Hybrid 

285 C47 29364S-2 Namwezi cv. Rose 4x Hybrid 

286 C50 28077S-5 Nfuuka 8075-7 3x Hybrid 

287 C05 28164S-15 1201K-1 cv. Rose 3x Hybrid 

288 C05 29285S-20 1201K-1 cv. Rose 3x Hybrid 

289 C10 26337S-32 1201K-1 SH3217 3x Hybrid 

290 C11 27684S-5 1201K-1 SH3362 3x Hybrid 

291 C12 24948S-12 1438K-1 5610S-1 3x Hybrid 

292 C12 24948S-21 1438K-1 5610S-1 3x Hybrid 

293 C12 24948S-27 1438K-1 5610S-1 3x Hybrid 

294 C12 29586S-4 1438K-1 5610S-1 3x Hybrid 

295 C12 24948S-22 1438K-1 5610S-1 3x Hybrid 

296 C12 24948S-2 1438K-1 5610S-1 3x Hybrid 

297 C12 24948S-29 1438K-1 5610S-1 3x Hybrid 

298 C29 26820S-1 917K-2 1968-2 3x Hybrid 

299 C32 25474S-5 917K-2 861S-1 3x Hybrid 

300 C61 25974S-18 917K-2 SH3362 3x Hybrid 

301 C61 28476S-8 917K-2 SH3362 3x Hybrid 

302 C61 25974S-31 917K-2 SH3362 3x Hybrid 

303 C42 29275S-1 Enzirabahima malaccensis 250 4x Hybrid 

304 C42 29275S-4 Enzirabahima malaccensis 250 4x Hybrid 

305 C42 29275S-5 Enzirabahima malaccensis 250 4x Hybrid 

306 C55 29636S-1 Tereza 7197-2 4x Hybrid 

307 C56 28776S-2 Tereza 8075-7 3x Hybrid 



 S3 Table: Summary of all trait variations in response to cycle and field 

management. 

Dep. variable Indep. variable Sum Sq Df F value Pr(>F) 

NSLF Clone 3901.23 306 3.63 <0.0001 

 Field 4.67 1 1.33 0.2492 

 Clone:Field 1360.46 284 1.36 0.0001 

 Cycle 2.63 1 0.69 0.4052 

 Clone:Cycle 1174.64 299 1.04 0.3283 

YLSF Clone 4790.39 306 4.50 <0.0001 

 Field 2.63 1 0.75 0.3852 

 Clone:Field 1483.14 284 1.50 <0.0001 

 Cycle 0.00 1 0.00 1.0000 

 Clone:Cycle 1102.33 299 0.85 0.9669 

PHF Clone 2222889.11 306 3.77 <0.0001 

 Field 1126.34 1 0.58 0.4449 

 Clone:Field 432297.46 284 0.79 0.9947 

 Cycle 8714.88 1 8.25 0.0041 

 Clone:Cycle 332846.71 299 1.05 0.2662 

PG Clone 73176.82 306 4.30 <0.0001 

 Field 1.52 1 0.03 0.8686 

 Clone:Field 12061.30 284 0.76 0.9981 

 Cycle 351.48 1 12.11 0.0005 

 Clone:Cycle 13057.24 299 1.51 <0.0001 

HTSF Clone 2151815.75 306 2.96 <0.0001 

 Field 1075.15 1 0.45 0.5014 

 Clone:Field 895154.77 284 1.33 0.0005 

 Cycle 59.52 1 0.02 0.8836 

 Clone:Cycle 976295.15 299 1.18 0.0276 

INSL Clone 116602.02 306 2.44 <0.0001 

 Field 4.96 1 0.03 0.8584 

 Clone:Field 58583.77 284 1.32 0.0005 

 Cycle 141.37 1 0.79 0.3740 

 Clone:Cycle 51026.49 299 0.95 0.6947 

TSsqrt Clone 240.28 305 3.21 <0.0001 

 Field 0.24 1 0.99 0.3204 

 Clone:Field 100.88 282 1.46 <0.0001 

NSLH Clone 4746.65 303 5.14 <0.0001 

 Field 7.50 1 2.46 0.1170 

 Clone:Field 958.14 269 1.17 0.0417 

 Cycle 20.74 1 6.78 0.0093 

 Clone:Cycle 1154.94 276 1.37 0.0002 

YLSH Clone 2261.86 303 4.18 <0.0001 

 Field 3.33 1 1.87 0.1719 

 Clone:Field 649.25 269 1.35 0.0003 

 Cycle 4.14 1 2.01 0.1562 

 Clone:Cycle 579.70 276 1.02 0.4063 



HTSH Clone 2714448.28 303 4.55 <0.0001 

 Field 7053.33 1 3.58 0.0587 

 Clone:Field 1190067.21 269 2.25 <0.0001 

 Cycle 1920.12 1 0.65 0.4196 

 Clone:Cycle 949051.52 276 1.17 0.0408 

BWTsqrt Clone 1213.89 303 12.55 <0.0001 

 Field 1.4 1 4.38 0.0365 

 Clone:Field 126.77 269 1.48 <0.0001 

 Cycle 4.04 1 15.24 <0.0001 

 Clone:Cycle 108.68 276 1.49 <0.0001 

NH Clone 3334.02 303 8.67 <0.0001 

 Field 0.03 1 0.03 0.8713 

 Clone:Field 569.58 269 1.67 <0.0001 

 Cycle 7.43 1 6.01 0.0143 

 Clone:Cycle 429.09 276 1.26 0.0048 

NF Clone 1380508.67 303 5.46 <0.0001 

 Field 112.13 1 0.13 0.7139 

 Clone:Field 333080.59 269 1.49 <0.0001 

 Cycle 4742.88 1 6.13 0.0134 

 Clone:Cycle 262980.73 276 1.23 0.0092 

FL Clone 16284.98 300 13.49 <0.0001 

 Field 33.92 1 8.43 0.0037 

 Clone:Field 1982.34 269 1.83 <0.0001 

 Cycle 5.95 1 1.10 0.2944 

 Clone:Cycle 1328.62 273 0.90 0.8661 

FC Clone 9506.06 300 16.11 0.0000 

 Field 17.79 1 9.04 0.0027 

 Clone:Field 733.66 269 1.39 0.0001 

 Cycle 2.78 1 1.30 0.2548 

 Clone:Cycle 751.00 272 1.29 0.0021 

FRD Clone 1003.46 299 17.55 0.0000 

 Field 2.52 1 13.19 0.0003 

 Clone:Field 139.73 269 2.72 <0.0001 

 Cycle 0.44 1 1.75 0.1866 

 Clone:Cycle 70.74 271 1.04 0.3331 

PLD Clone 865.42 299 17.60 0.0000 

 Field 2.70 1 16.42 <0.0001 

 Clone:Field 68.27 269 1.54 <0.0001 

 Cycle 0.52 1 3.03 0.0820 

 Clone:Cycle 60.55 271 1.29 0.0022 

PED Clone 20.96 299 11.41 <0.0001 

 Field 0.00 1 0.08 0.7799 

 Clone:Field 16.61 269 10.05 <0.0001 

 Cycle 0.00 1 0.13 0.7192 

 Clone:Cycle 3.15 271 0.80 0.9913 

sqrt Original data transformed by square root,  



 

S1 Fig. Variation in fruit characteristics. (A) is a histogram showing the bimodal distribution of fruit 

circumference (FC), (B) cross sections of poor filling fruits, (C) good filling fruits with fruit diameter 

(FRD) and pulp diameter (PLD) values in cm, and (D) poor filling and good filling banana fruits. 
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Introduction
Conventional crossbreeding is the main approach used in banana improvement. However, the method

requires up to two decades of crossing and field evaluation to develop a new hybrid. This is because selection

is carried out at different levels (Fig 1). At every level, plants are evaluated after three crop cycles, each

taking about a year. Yield traits can only be scored at harvest while organoleptic traits are recorded after

harvesting, making the selection process slow, expensive and labour intensive. Molecular tools with the

potential to improve banana breeding efficiency are being investigated. These include genomic selection

(GS), which will benefit breeding through increased genetic gain per unit time (Meuwissen et al. 2001;

Nakaya and Isobe 2009). Understanding trait variation and the correlation among economically important

traits is an essential first step in the development of GS models. In this study we tested the hypothesis that

trait variations in bananas are not affected by cross combination, cycle, field management and their

interaction with genotype.

Materials and Methods
The training population consists of 307 genotypes that include parents and the resulting hybrids. The

population was phenotyped under low (no mulch and NPK fertilizer) and high (mulch + NPK) field input

management at Namulonge research station. Data collected on two crop cycles were analysed using R

statistical software. The correlations and significance of correlations were determined using R package

Hmisc. Analysis of variance was performed to understand the effect of genotype and the interaction between

genotype and cycle, and genotype and field management on trait variation.

Results and Discussion
A high level of correlation among vegetative and yield related traits was observed (Table 1). This could mean

that the predictive ability of traits that are difficult to phenotype will be similar to less difficult traits they are

highly correlated with. Therefore, genomic selection models could be developed for traits that are easily

measured. Table 2 summarizes the genotypic effects and the interaction between genotype and cycle and

genotype and field management on the traits. Black Sigatoka-related traits were not affected by crop cycle.

These could be measured in the first cycle thus reducing on phenotyping burden. Growth traits such as plant

height and girth were the least affected by field input management. Conversely, yield-related traits such as

bunch weight, number of hands and number of fingers were significantly affected by both crop cycle and

field input management. The variation in traits observed suggest that different genomic selection models

should be tested. For traits affected by cycle and field management, models that account for non-additive

genetic effect are likely to have better predictive ability on them. Integration of genomic selection in

crossbreeding allows simultaneous prediction and selection of best hybrids. This is likely to reduce the

selection cycle and increase genetic gain per unit time.

Conclusion
Genomic selection as a form of marker assisted selection is a non-stand alone approach but if integrated into

conventional crossbreeding it has the potential to accelerate the breeding process. The effectiveness of

genomic selection in banana will greatly depend on the prediction accuracy of the genomic selection models.
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Fig 1: Approaches to hybrid selection in banana breeding program. (A) the classical phenotypic selection of banana hybrids and (B)

integrated genomic selection and phenotypic selection approach being investigated.

Table 1: Pearson’s correlation coefficients of traits under high input field management 

Pant 

height

Plant 

girth

Index of non-

spotted leaf

Bunch 

weight

Number 

of hands

Number 

of fruits

Fruit 

length

Fruit 

circumference

Fruit 

diameter

Plant girth 0.77*

Index of non-spotted leaf 0.21 0.27

Bunch weight 0.37* 0.62* −0.13

Number of hands
0.22 0.42* 0.10 0.52*

Number of fruits
0.37* 0.58* 0.19 0.57* 0.84*

Fruit length 0.20 0.44* −0.15 0.83* 0.28* 0.27*

Fruit circumference 0.33* 0.45* −0.15 0.81* 0.15 0.15 0.85*

Fruit diameter 0.39* 0.48* −0.16 0.79* 0.16 0.18 0.80* 0.97*

Pulp diameter 0.39* 0.45* −0.16 0.74* 0.11 0.13 0.76* 0.94* 0.99*

* Significant correlation with P-value < 0.05

Table 2: Effect of genotype and genotype interaction with cycle and field management on the traits 

Trait Indep. variable Sum Sq Df F value P value

Plant height Genotype 2222889 306 3.77 <0.0001

Genotype x Field 432297 284 0.79 0.995

Genotype x Cycle 332846 299 1.05 0.266

Plant girth Genotype 73176 306 4.30 <0.0001

Genotype x Field 12061 284 0.76 0.998

Genotype x Cycle 13057 299 1.51 <0.0001

Index of non-spotted leaf Genotype 116602 306 2.44 <0.0001

Genotype x Field 58584 284 1.32 0.0005

Genotype x Cycle 51026 299 0.95 0.695

Bunch weight* Genotype 1214 303 12.55 <0.0001

Genotype x Field 127 269 1.48 <0.0001

Genotype x Cycle 109 276 1.49 <0.0001

Number of hands Genotype 3334 303 8.67 <0.0001

Genotype x Field 570 269 1.67 <0.0001

Genotype x Cycle 429 276 1.26 0.005

Number of fruits Genotype 1380509 303 5.46 <0.0001

Genotype x Field 333081 269 1.49 <0.0001

Genotype x Cycle 262981 276 1.23 0.009

* Original data was square root transformed
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Trait Variation in a Banana Training Population for Genomic Selection

Introduction

Conventional crossbreeding is the main approach used in banana improvement. However,

the method requires up to two decades of crossing and field evaluation to develop a new

hybrid. This is because selection is carried out at different levels (Fig 1). At every level,

plants are evaluated after three crop cycles, each taking about a year. Yield traits can only

be scored at harvest while organoleptic traits are recorded after harvesting, making the

selection process slow, expensive and labour intensive. Molecular tools with the potential

to improve banana breeding efficiency are being investigated. These include genomic

selection (GS), which will benefit breeding through increased genetic gain per unit time

(Meuwissen et al. 2001; Nakaya and Isobe 2009). Understanding trait variation and the

correlation among economically important traits is an essential first step in the

development of GS models. In this study we tested the hypothesis that trait variations in

bananas are not affected by cross combination, cycle, field management and their

interaction with genotype.

Materials and Methods

The training population consists of 307 genotypes that include parents and the resulting

hybrids. The population was phenotyped under low (no mulch and NPK fertilizer) and

high (mulch + NPK) field input management at Namulonge research station. Data

collected on two crop cycles were analysed using R statistical software. The correlations

and significance of correlations were determined using R package Hmisc. Analysis of

variance was performed to understand the effect of genotype and the interaction between

genotype and cycle, and genotype and field management on trait variation.

Results and Discussion

A high level of correlation among vegetative and yield related traits was observed (Table 1). This

could mean that the predictive ability of traits that are difficult to phenotype will be similar to less

difficult traits they are highly correlated with. Therefore, genomic selection models could be

developed for traits that are easily measured. Table 2 summarizes the genotypic effects and the

interaction between genotype and cycle and genotype and field management on the traits. Black

Sigatoka-related traits were not affected by crop cycle. These could be measured in the first cycle

thus reducing on phenotyping burden. Growth traits such as plant height and girth were the least

affected by field input management. Conversely, yield-related traits such as bunch weight,

number of hands and number of fingers were significantly affected by both crop cycle and field

input management. The variation in traits observed suggest that different genomic selection

models should be tested. For traits affected by cycle and field management, models that account

for non-additive genetic effect are likely to have better predictive ability on them. Integration of

genomic selection in crossbreeding allows simultaneous prediction and selection of best hybrids.

This is likely to reduce the selection cycle and increase genetic gain per unit time.

Conclusions and Recommendations
Genomic selection as a form of marker assisted selection is a non-stand alone approach but if

integrated into conventional crossbreeding it has the potential to accelerate the breeding

process. The effectiveness of genomic selection in banana will greatly depend on the prediction

accuracy of the genomic selection models.
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Fig 1: Approaches to hybrid selection in banana breeding program. (A) the classical phenotypic selection

of banana hybrids and (B) integrated genomic selection and phenotypic selection approach being

investigated.
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Table 1: Pearson’s correlation coefficients of traits under high input field management 

* Significant correlation with P-value < 0.05

* Original data square root transformed

Trait Indep. variable Sum Sq Df F value P value

Plant height Genotype 2222889 306 3.77 <0.0001

Genotype x Field 432297 284 0.79 0.995

Genotype x Cycle 332846 299 1.05 0.266

Plant girth Genotype 73176 306 4.30 <0.0001

Genotype x Field 12061 284 0.76 0.998

Genotype x Cycle 13057 299 1.51 <0.0001

Index of non-spotted 

leaf

Genotype 116602 306 2.44 <0.0001

Genotype x Field 58584 284 1.32 0.0005

Genotype x Cycle 51026 299 0.95 0.695

Bunch weight* Genotype 1214 303 12.55 <0.0001

Genotype x Field 127 269 1.48 <0.0001

Genotype x Cycle 109 276 1.49 <0.0001

Number of hands Genotype 3334 303 8.67 <0.0001

Genotype x Field 570 269 1.67 <0.0001

Genotype x Cycle 429 276 1.26 0.005

Number of fruits Genotype 1380509 303 5.46 <0.0001

Genotype x Field 333081 269 1.49 <0.0001

Genotype x Cycle 262981 276 1.23 0.009

Table 2: Effect of genotype and genotype interaction with cycle and field management on the traits 

Pant 
height

Plant 
girth

Index of 
non-
spotted 
leaf

Bunch 
weight

Number 
of hands

Number 
of fruits

Fruit 
length

Fruit 
circumference

Fruit 
diameter

Plant girth 0.77*

Index of non-
spotted leaf

0.21 0.27

Bunch weight 0.37* 0.62* −0.13

Number of hands
0.22 0.42* 0.10 0.52*

Number of fingers
0.37* 0.58* 0.19 0.57* 0.84*

Fruit length 0.20 0.44* −0.15 0.83* 0.28* 0.27*

Fruit 
circumference

0.33* 0.45* −0.15 0.81* 0.15 0.15 0.85*

Fruit diameter 0.39* 0.48* −0.16 0.79* 0.16 0.18 0.80* 0.97*

Pulp diameter 0.39* 0.45* −0.16 0.74* 0.11 0.13 0.76* 0.94* 0.99*
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Towards	  Marker	  Assisted	  Breeding	  in	  Banana	  
	  

Introduction 
 

Breeding	  offers	  the	  most	  sustainable	  solu4on	  to	  most	  of	  the	  crop	  yield-‐limi4ng	  factors	  

such	  as	  pests,	  diseases	  and	  abio4c	   stress.	  Crossbreeding	   is	   the	  main	  approach	  used	   in	  

banana	   improvement	   but	   the	   method	   requires	   up	   to	   20	   years	   to	   release	   a	   variety.	  

Integra4on	   of	   molecular	   tools	   into	   crossbreeding	   speeds	   up	   variety	   development	  

through	   marker-‐assisted	   selec4on	   (MAS)	   and	   genomic	   selec4on	   (GS).	   With	   these	  

approaches,	  banana	  breeders	  can	  shorten	  the	  breeding	  cycle	  to	  less	  than	  a	  decade.	  The	  

ini4al	  stage	  towards	  MAS	  is	  to	  generate	  segrega4ng	  popula4ons	  followed	  by	   	  mapping	  

of	   quan4ta4ve	   trait	   loci	   (QTL)	   affec4ng	   target	   traits	   using	   linkage	  mapping.	   Genome-‐

wide	   associa4on	   studies	   (GWAS)	   are	   useful	   in	   underpinning	   alleles	   responsible	   for	  

phenotypic	  varia4on.	  Given	  the	  high	  cost	  of	  phenotyping	  and	  the	  ever-‐decreasing	  cost	  of	  

genotyping,	   genomic	   selec4on	   (GS)	   is	   being	   considered	   for	   rou4ne	   use	   in	   breeding	  

programs	   and	   as	   such	   predic4ve	   genomic	   selec4on	  models	   are	   being	   developed.	   IITA	  

banana	  breeding,	  in	  collabora4on	  with	  other	  	  partners,	  	  is	  fully	  commiNed	  to	  developing	  

an	  integrated	  approach	  to	  banana	  improvement	  with	  the	  aim	  of	  increasing	  gene4c	  gain	  

per	  unit	  4me	  while	  reducing	  the	  selec4on	  cycle.	  	  

Figure 2: On-going activities related to molecular breeding of bananas within IITA in collaboration with other 
institutions such as NARO, Palacky University, EMBRAPA, and the University of Malaya 

Materials and Methods 
 
Target traits: Fusarium	  wilt,	  weevil,	  burrowing	  nematode,	  yield	  and	  agronomic	  traits.	  
	  
The	   nematode	   segrega4ng	   popula4on	   consists	   of	   two	   half-‐sib	   popula4ons	   with	   one	  
common	   male	   parent	   (Mbanjo	   et	   al.,	   2012).	   The	   weevil	   segrega4ng	   popula4on	   was	  
derived	  from	  selfing	  the	  F1	  progeny	  of	  Borneo	  and	  Kasasika.	  The	  Fusarium	  segrega4ng	  
popula4on	  was	  derived	  from	  selfing	  F1	  progeny	  of	  8075-‐7	  and	  sukali	  ndizi.	  The	  training	  
popula4on	   for	  GS	  consists	  of	  all	  breeder’s	  parental	   stock	  used	  by	   IITA	  and	  NARO	  and	  
advanced	   hybrids	   and	   hybrids	   from	   early	   evalua4on	   trials.	   	   DNA	   from	   all	   these	  
popula4ons	   was	   extracted	   and	   submiNed	   to	   Cornell	   for	   sequencing	   using	   the	  
genotyping	  by	  sequencing	  (GBS)	  approach.	  	  On-‐going	  ac4vi4es	  are	  summarized	  in	  figure	  
2.	  

Conclusions 
 

In	   marker	   assisted	   breeding,	   no	   single	   marker	   technique	   is	   sufficient	   to	   address	   all	   the	  

breeders’	  ques4ons.	  In	  bananas	  different	  traits	  have	  different	  mechanisms	  of	  gene4c	  control	  

ranging	  from	  single	  gene	  with	  major	  effect	  to	  mul4ple	  genes	  with	  small	  addi4ve	  effects	  on	  the	  

phenotype.	  The	  interac4on	  of	  genes	  by	  environment	  makes	  the	  interpreta4on	  of	  results	  even	  

more	   challenging.	   However,	  with	   genomic	   selec4on	   this	   can	   be	   corrected	   for	   in	   the	  model	  

development	  once	  phenotype	  data	  is	  collected	  in	  different	  environments	  while	  QTL	  mapping	  

could	   	   help	   in	   selec4on	   for	   pest	   and	   disease	   resistance.	   Despite	   the	   challenges,	   IITA	   in	  

collabora4on	  with	  other	  partners	  is	  commiNed	  to	  the	  development	   	  of	  pla_orms	  for	  marker	  

assisted	  breeding	  in	  banana	  as	  a	  model	  polyploid	  plant.	  Once	  a	  break-‐through	  is	  realized	  this	  

will	   set	   a	   precedence	   for	   other	   polyploidy	   breeding	   programs	   to	   embrace	  marker	   assisted	  

breeding.	  	  

References 
 
1.  A. Nakaya and S. Isobe (2012). Review: Will genomic selection be a practical method for plant 

breeding? Annals of Botany 110:1303-1316. 

2.  C. Dochez (2004). Breeding for resistance of Rhadopholus similis in East African highland bananas 

(Musa spp.). Dissertation, Katholieke Universiteit Leuven. 

3.  E.G.N. Mbanjo, F. Tchoumbougnang, A.S. Mouelle, J.E. Oben, M. Nyine, C. Dochez, M.E. Ferguson 

and J. Lorenzen (2012). Molecular marker_based genetic linkage map of a diploid banana 

population (Musa acuminata Colla). Euphytica 188:369-386. 

4.  J. Lorenzen, S. Hearne, G. Mbanjo, M. Nyine and T. Close (2011). Use of Molecular markers in 

Banana and Plantain Improvement. Acta Hort. 897:231-236. 

5.  T.H.E. Meuwissen, B.J. Hayes and M.E. Goddard (2001). Prediction of total genetic value using 

genome-wide dense marker maps. Genetics 157:1819-1829. 

Nyine, Moses1 

Uwimana, Brigitte1  

Ssali, Tendo Reuben2 

Kubiriba, Jerome2 

Amorim, Edson3 

Othman, Yasmin4 

Swennen, Rony1  

Batte, Michael1  

Hribova, Eva5  

Dolezel, Jaroslav5 

1 International Institute of 

Tropical  Agriculture (IITA) 

 

 2 National Agricultural 

Research Organisation 

(NARO) 

 

 3 Empresa Brasileira de 

Pesquisa Agropecuária 

(EMBRAPA) 
 

4 Centre for Research in 

Biotechnology for 

Agriculture (CEBAR), 

University of Malaya 
 

5 Palacky University 

B.Uwimana@cgiar.org 
 

www.iita.org 

Figure 1. A simplified depiction of genomic selection model development and application in crossbreeding 

Figure	  3.	  A	  -‐	  Part	  of	  linkage	  maps	  from	  nematode	  segrega4ng	  popula4on	  generated	  by	  Mbanjo	  et	  al.	  2012,	  B	  –	  One	  of	  
the	  genomic	  selec4on	  training	  popula4on	  phenotyping	  field	  at	  Namulonge,	  Uganda.	  	  
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Ø  Expansion	  of	  nematode	  popula4on	  

Ø  New	  diploid	  segrega4ng	  
popula4ons	  being	  generated	  

Ø  Phenotyping	  of	  exis4ng	  popula4ons	  

Ø  QTL	  linkage	  analysis	  of	  weevil	  and	  
nematode	  popula4ons	  based	  on	  
GBS	  data	  

Ø Analysis	  of	  of	  GBS	  data	  for	  training	  
popula4on	  	  

Ø Phenotyping	  of	  GS	  training	  popula4on	  

Ø Development	  of	  workflow	  for	  
implemen4ng	  GS	  in	  banana	  breeding	  

Ø Expansion	  of	  training	  popula4on	  	  	  

Ø  Screening	  of	  germplasm	  to	  iden4fy	  
resistant	  and	  suscep4ble	  accessions	  
to	  various	  produc4on	  constraints	  

	  
Ø  Design	  crosses	  for	  segrega4ng	  

popula4ons	  for	  gene4c	  studies,	  
GWAS	  and	  QTL	  linkage	  analysis	  

Results and Discussion 
 

Diploid	   nematode-‐segrega4ng	  popula4on	  was	   developed	  by	   IITA	  banana	  breeding	   (Dochez	   et	  

al.,	   2009).	   The	  popula4on	  was	  used	   to	   generate	   gene4c	   linkage	  maps	  by	  Mbanjo	  et	   al.,	   2012	  

(figure	  3A)	  based	  on	  SSR	  markers	  designed	  from	  expressed	  sequence	  tags	  (Lorenzen	  et	  al.,	  2011)	  

and	   diversity	   array	   technology	   (DArT)	   markers.	   The	   popula4on	   has	   also	   been	   genotyped	   by	  

sequencing	   (GBS)	   to	   iden4fy	   SNP	   markers.	   Together	   with	   the	   phenotype	   data,	   the	   QTLs	  

responsible	  for	  nematode	  resistance	  will	  be	  iden4fied	  once	  the	  analysis	  is	  complete.	  

	  

Two	   F2	   popula4ons	   developed	   by	   NARO	   and	   segrega4ng	   for	   weevil	   and	   Fusarium	   resistance	  

have	  been	  genotyped	  by	   IITA	  by	  GBS	  and	  SNP	  data	  are	  being	  analyzed	  to	  generate	  SNP-‐based	  

gene4c	  linkage	  map	  for	  iden4fica4on	  of	  QTLs	  for	  weevil	  and	  Fusarium	  resistance.	  

	  	  

Applica4on	  of	  genomic	  selec4on	  is	  being	  tested	  at	  IITA-‐Uganda	  for	  the	  first	  4me	  ever	  in	  banana	  

breeding.	  Over	   300	   accessions	   including	   parental	   lines	   and	   hybrids	   (training	   popula4on)	   have	  

been	  genotyped	  by	  GBS	  and	  are	  being	  phenotyped	  in	  three	  fields	  (figure	  3B).	  Disease	  and	  pest	  

resistance	   in	   plants	   is	   controlled	   by	   one	   or	   few	   QTLs	   with	   major	   effect	   on	   the	   phenotype.	  

However,	  yield	  and	  many	  agronomically	  important	  traits	  are	  controlled	  by	  many	  QTLs	  with	  small	  

effects	   on	   the	   phenotype.	   GS	   is	   ideal	   for	   such	   traits	   as	   it	   u4lizes	   genome-‐wide	   markers	   to	  

determine	  the	  genomic	  es4mated	  breeding	  value	  (GEBV)	  of	  the	  individual	  plant	  (Meuwissen	  et	  

al.,	  2001,	  Nakaya	  and	  Isobe	  2012).	  This	  is	  a	  model-‐based	  approach	  which	  requires	  the	  breeder	  

to	  generate	  genotypic	  data	  which	  are	  fed	  into	  the	  model	  to	  predict	  phenotypic	  performance	  of	  

the	   individual	   plant	   (figure	   1).	   This	   approach	   holds	   promise	   to	   improve	   the	   efficiency	   of	  

crossbreeding	  by	  reducing	  the	  selec4on	  cycle	  yet	  increasing	  gene4c	  gain	  per	  unit	  4me.	  	  



	  
GENOMIC	  SELECTION	  TO	  ACCELERATE	  BANANA	  BREEDING	  

M.Nyine,	  B.Uwimana,	  R.	  Swennen,	  M.	  Ba:e,	  E.	  Hribova,	  J.	  Lorenzen	  J.	  Dolezel	  
	  

Introduc*on	  

² Genomic	   selec*on	   (GS)	   is	   a	   form	   of	   marker-‐assisted	  
selec*on	   which	   involves	   the	   use	   of	   markers	   across	   the	  
genome	   to	   predict	   the	   gene*c	   es*mated	   breeding	   value	  
(GEBV)	  of	  a	  plant.	  

² Phenotype	   predic*on	   is	   based	   on	   a	   genomic	   selec*on	  
model	  

Why	  genomic	  selec*on?	  

² Conven*onal	  banana	  breeding	  is	  much	  slower	  
² To	  increase	  gene*c	  gain	  per	  unit	  *me	  
² Genotyping	  is	  becoming	  much	  cheaper	  than	  phenotyping	  
² To	  improve	  both	  variety	  and	  parental	  lines	  development	  

pipelines	  
² Selec*on	  is	  possible	  at	  nursery	  stage	  

Time	  scale	  for	  conven*onal	  breeding	  

State	  of	  the	  training	  popula*on	  
² 320	  accessions	  genotyped	  
² Three	  phenotyping	  established	  	  
² Experimental	  design:	  CRD	  with	  three	  plants	  per	  accession	  
² Target	  traits:	  fruit	  filling,	  stature	  and	  suckering	  	  	  
² Data	  is	  being	  collected	  on	  22	  addi*onal	  traits	  	  

Conclusion	  
Genomic	  selec*on	  coupled	  with	  increased	  hybrids	  from	  
cross-‐breeding	  should	  increase	  efficiency	  of	  banana	  
improvement	  thus,	  faster	  variety	  release	  
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Banánovníky jsou jednoděložné vytrvalé 
byliny vlhkých tropů a  subtropů (box). Je‑
jich kulturní formy lze rozdělit podle plo‑
dů. Některé jsou po dozrání sladké a  jedí 
se syrové, jiné se konzumují nezralé po te‑
pelném zpracování. Existují také banánov‑
níky s plody vhodnými pro přípravu nápo‑
jů, zejména banánového piva, banánovníky 
vhodné pro získávání vláken i okrasné baná‑
novníky. Na mezinárodním trhu převládají 
banány sladké (ovocné) a  z  nich zejména 
plody odrůdy Cavendish. Méně se na zahra‑

1. Základní potravina pro miliony

Moses nyine 
Jaroslav doležel

PotRavinovÉ 
ZdRoJe

Plody banánovníku jsou pro miliony lidí základní potravinou. Je 
tomu tak zejména v Ugandě a dalších zemích africké oblasti Vel
kých jezer. Banánovník má však mnohem širší využití. Může být 
například stavebním materiálem, dokáže nahradit talíře a afričtí 
kluci si z něj umějí udělat kopací míč. 

niční trhy vyvážejí banány s  vysokým ob‑
sahem škrobu používané na pečení (plain‑
tains). Plody pro vaření a přípravu nápojů 
jsou konzumovány téměř výhradně v oblas‑
tech, kde se pěstují. Okrasné banánovníky 
nemají jedlé plody a zdobí je květy a pana‑
šované listy. Z nepravého stonku další sku‑
piny banánovníků (především Musa textilis) 
se získávají vlákna bohatá na celulózu. Po 
vyčištění se označují jako manilské konopí 
a používají se např. na výrobu speciálního 
papíru pro filtry a bankovky. 

Banánovník ve východní Africe 

Pro obyvatele východní Afriky a  zejména 
Ugandy má banánovník velký kulturní, spo‑
lečenský a ekonomický význam. V této oblas‑
ti se pěstují hlavně odrůdy s plody vhodnými 

z východoafrické vysočiny
Banánovník

1. drobní pěstitelé prodávají trsy 
nezralých plodů banánovníku 
matooke na místním tržišti 
v Mbarara v západní Ugandě. 
Trsy váží 20–40 kg a na tržiště je 
farmáři přivážejí na kolech.

http://www.vesmir.cz
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pro vaření (matooke) a v menší míře s plody 
používanými na přípravu džusu a banánové‑
ho piva (mbidde). V obou případech se sklí‑
zí nezralé zelené plody. Dužina plodů odrůd 
typu mbidde obsahuje taniny a má svíravou 
chuť. Proto se nechávají dozrát, získají žlutou 
barvu a  jejich dužina sladkou chuť. Teprve 
poté se z nich připravují nápoje. Dužina ne‑
zralých plodů skupiny odrůd matooke nemá 
svíravou chuť a na vaření se používají nezralé 
plody. Tento typ banánů představuje hlavní 
složku výživy obyvatelstva a jejich spotřeba 
dosahuje 400–600 kg na osobu za rok, což je 
nejvíce na světě. 

V Ugandě se banánovník pěstuje na ploše 
asi 1,5 milionů hektarů a  sklidí se více než 
10 milionu tun banánů, z nichž se 80 % spo‑
třebuje v místě produkce (obr. 1). Pěstování 
banánů je hlavním zdrojem příjmů mnoha 
farmářů, zejména v  centrální a  západní 
Ugandě. Banány vhodné pro vaření mají 
široké využití. Oloupané se vaří v páře a jedí 
se jako kaše s  různými omáčkami. Jejich 
dužina má krémově bílou nebo světle žlu‑
tou barvu a vařením v páře se stává zlatožlu‑
tou (obr. 3). Jídlo známé jako katogo (obr. 3 
vpravo) se připravuje vařením oloupaných 
banánů společně s  fazolemi nebo s  pastou 
z burských oříšků, masem, rybou nebo vnitř‑
nostmi. Obvykle se podává k snídani a zahří‑
vá tělo v době ranního chladu. 

Ženy po porodu dostávají k  jídlu katogo 
připravené s vnitřnostmi, protože se věří, že 
zahřátí břišní dutiny pomůže odstranit zby‑
tek krve z dělohy a  stimuluje produkci ma‑
teřského mléka. Banánová kaše je používána 
při přechodu kojenců k normální stravě. Va‑
řené banány jsou považovány za ideální stra‑
vu nemocných lidí, kteří ztratili chuť k jídlu. 
Pokud pacient nejí ani je, naznačuje to vážný 
stav a blízkost smrti. 

Z varných typů banánů se vyrábí mouka, 
která je vhodná pro přípravu kaše, instant‑
ního banánového pokrmu (instantní tooke), 
pečiva a sladkostí. 

Z  banánů se vyrábějí také různé typy lu‑
pínků a čipsů. Navíc balením potravin do lis‑
tů banánovníku před vařením v páře (obr. 4) 
dostává jídlo unikátní chuť. Ještě nerozvinu‑
té listy (tzv. cigar leaves) se udí, balí se do 
nich maso s kořením a připravuje se tak tra‑
diční pokrm luwombo (obr. 2). Ten se podá‑

vá jen významným hostům a v restauracích 
je dražší než ostatní jídla. Z plodů banánov‑
níků mbidde, druhého nejčastějšího typu 
ve východní Africe, se připravuje banáno‑
vé pivo známé jako „tonto“, dále džusy, ví‑
no a džin. 

Moses Nyine, MSc., (*1978) vystudoval molekulární biologii na 
Makerere University v  Ugandě a  v  Mezinárodním ústavu tropic-
kého zemědělství v  Ugandě se věnuje genetice a  šlechtění baná-
novníku. V  současné době je doktorandem Univerzity Palackého 
v  Olomouci a  na olomouckém pracovišti Ústavu experimentální 
botaniky AV ČR se zabývá genetickou diverzitou rodu banánovník 
a vývojem genomických metod šlechtění banánovníku. 
Prof. Ing. Jaroslav Doležel, DrSc., (*1954) vystudoval Agrono mic-
kou fakultu na Vysoké škole zemědělské v Brně. Zabývá se struk-
turou a evolucí genomu rostlin, vede Centrum strukturní a funkč-
ní genomiky Ústavu experimentální botaniky AV ČR a přednáší na 
Přírodovědecké fakultě Univerzity Palackého v Olomouci. Od roku 
2004 je členem Učené společnosti ČR, v  roce 2012 mu předseda 
AV ČR udělil prestižní Akademickou prémii – Praemium Academiae 
– a  v  roce 2014 obdržel cenu ministra školství, mládeže a  tělový-
chovy za mimořádné výsledky výzkumu, experimentálního vývoje 
a inovací. 

3. Vlevo jídlo připravené z kaše banánů matooke a omáčky z ryby, lilku a jiné 
zeleniny. Vpravo jídlo zvané katogo připravené z banánů vařených společně 
s vnitřnostmi.

2. Příprava tradičního pokrmu luwombo vařením masa baleného v uzených lis-
tech banánovníku.

http://www.vesmir.cz
http://www.vesmir.cz
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Morfologie banánovníku
Banánovníky jsou vytrvalé jednoděložné byliny a pěstované druhy patří 
k nejstatnějším bylinám vůbec. Zkrácený podzemní stonek (oddenek) nese 
kořeny, které rostou jen do hloubky 30–45 cm, a proto čerpají živiny z po-
vrchových půdních vrstev. Apikální meristém oddenku se nachází pod po-
vrchem půdy nebo na jeho úrovni. Postupně z něj ve šroubovici vyrůstají no-
vé listy a odstředivě směrem ven vytlačují listy starší. Nové listy jsou stoče-
né, a proto se jím říká „cigar leaf“. Listové pochvy jsou tuhé (vytrvávají i po 
odumření čepelí), dlouhé, vzájemně těsně shloučené a vytvářejí tak nepravý 
stonek, který zdánlivě vypadá jako kmen. Před rozkvětem přestanou růst 
nové listy a z apikálního meristému vyroste květenství, jehož dlouhá stop-
ka prorůstá vnitřkem nepravého stonku. Vlastní květenství se pak objeví na 
bázi shluku listových čepelí v horní části rostliny, často bývá převislé. V jeho 
spodní části se nejdříve ve shlucích vytvářejí samičí květy, které se vyvíjejí 
v plody (bobule), uprostřed jsou jalové květy a na konci květenství pak shlu-
ky samčích květů. Shluky květů jsou podepřené nápadně zbarvenými toul-
covitými listeny. Pěstované odrůdy jsou bezsemenné a množí se vegetativně 
pomocí odnoží, které vyrůstají z postranních pupenů na zkráceném stonku. 
Růst odnoží reguluje apikální meristém a mezi druhy a odrůdami banánov-
níku existují velké rozdíly v počtu rychlosti jejich růstu.

Ani nejedlé části banánovníku nepřijdou 
nazmar. Slupky a  nepravé stonky se použí‑
vají na krmení hospodářských zvířat. V ně‑
kterých rodinách je zase zvykem podávat jíd‑
lo místo na talířích na banánových listech. 
V chudších oblastech si lidé z listů banánov‑
níku staví paravány pro dočasné venkov‑
ní koupelny. U příležitosti různých slavnos‑
tí se z  banánových listů zhotovují kostýmy 
pro tradiční tance. V některých oblastech se 
vlákna z nepravého stonku používají na stav‑
bu střech chýší. Děti z chudých rodin, které 
si nemohou dovolit drahý kožený míč, si hra‑
jí s míči vyrobenými z banánovníku (obr. 5). 
Sušená hlavní žilka listu se navíc používá 
pro pletení košíků (viz malý obrázek nad 
nadpisem). 

Botanická klasifikace banánovníku

Banánovníky patří do řádu zázvorníkotva‑
ré (Zingiberales), čeledi banánovníkovité 
(Musaceae), rodu banánovník (Musa). Dru‑
hy banánovníku, kterých je asi sedmde‑
sát, se na základě novějších molekulárních 
analýz člení do dvou sekcí: Musa s diploid‑
ním počtem chromozomů rovným 22 a Cal-
limusa s  diploidním počtem chromozomů 
rovným 20 nebo 18. Na evoluci kulturních 
forem se podílela jak vnitrodruhová, tak 
mezidruhová hybridizace a  vedle diploid‑
ních klonů se dvěma sadami chromozomů 
existují klony triploidní se třemi sadami 
chromozomů a tetraploidní se čtyřmi sada‑
mi chromozomů. Prostřednictvím mezidru‑
hové hybridizace se na evoluci pěstovaných 
forem podílely zejména diploidní druhy 
Musa acuminata s  genomem A, M. balbisia-
na s  genomem B  a  jen ve velmi  malé míře 
pak M. textilis s genomem T a M. schizocarpa 
s genomem S. Složení genomů pěstovaných 
forem je tedy velmi pestré a zahrnuje diploi‑
dy (AA, BB, AB, AS), triploidy (AAA, AAB, 
ABB, AAT) a  tetraploidy (AAAA,  AABB, 
ABBB, ABBT). 

Banánovníky východoafrické vysočiny 
patří do sekce Musa (podskupina Lujugira‑
‑Mutika) a  jsou to triploidní kultivary s ge‑
nomem AAA. Předpokládá se, že vznikly 
vnitrodruhovou hybridizací mezi diploid‑
ními poddruhy M. acuminata s genomy AA. 
Jsou bezsemenné, obvykle sterilní a  množí 
se výhradně vegetativně. Tyto banánovníky 
dobře rostou ve vyšších nadmořských 
výškách (1400–2000 m  n. m.) a  pro opti‑
mální růst a  vývoj vyžadují průměrné roč‑
ní srážky okolo 1300 mm. Pěstují se v oblasti 
velkých jezer a  zejména v  oblasti Viktorii‑
na jezera a na vysočinách východoafrických 
zemí. Odtud také jejich název. Na základě 
morfologie je celkem 84 kultivarů pěstova‑
ných v Ugandě klasifikováno do čtyř skupin: 
Nfuuka, Nakitembe, Nakabululu a Musaka‑
la. I  když jsou mezi jednotlivými skupina‑
mi dobře patrné morfologické rozdíly, mole‑
kulární analýzy naznačují velkou podobnost 
jejich dědičných informací. Ö

4. Nahoře: Vaření banánů balených v listech banánovníku.
5. Uprostřed: Listy banánovníku a jiné části rostliny jsou používány při zhotovo-
vání uměleckých předmětů, levných míčů a užitných předmětů.

Příště o původu banánovníku a jeho pěstování.

http://www.vesmir.cz
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potravinové zdroje — 

VýcHODNí aFrika je sekundárním 
centrem diverzity s asi 120 klonově množe-
nými odrůdami. Původ východoafrických 
banánovníků je však nejasný a vysvětlit se 
jej snaží několik hypotéz. 

První z nich předpokládá, že se tyto 
odrůdy do Afriky dostaly prostřednictvím 
obchodníků, kteří se plavili Indickým 
oceánem mezi jihovýchodní Asií a východ-
ní Afrikou. Ti mohli v období 100–600 n. l. 
do východní Afriky přivézt odnože jedlých 
odrůd. Největším problémem této hypotézy 
je absence stejných forem banánovníku 
v jihovýchodní Asii. 

Druhá hypotéza vysvětluje původ výcho-
doafrických banánovníků křížením mezi 
diploidními druhy, které se do východní 
Afriky dostaly z jihovýchodní Asie. Dosud se 
však nepodařilo nalézt žádné diploidní druhy 
nebo klony, jejichž dědičná informace by se 
podobala východoafrickým banánovníkům. 

Třetí hypotéza předpokládá změnu dě-
dičné informace odrůd přivezených z Asie 
následkem spontánních mutací, což mohlo 
mít za následek vznik kultivarů s odlišným 
fenotypem. Tzv. somaklonální variabilita 
spočívá v mutacích somatických (tělních) 
buněk, které zahrnují změny počtu a struk-
tury chromozomů. Somaklonální variabilita 
byla popsána u rostlin regenerovaných 
z buněk kultivovaných in vitro. Protože 
jsou banánovníky množeny vegetativně, 

změna dědičné informace v jejich somatic-
kých buňkách může být přenesena do další 
generace. Pro existenci takové variability 
u rostlin pěstovaných na poli však neexis-
tují žádné důkazy, a tak ani tato hypotéza 
nebyla dosud prokázána. 

V poslední době se výzkumné týmy věnují 
možnému podílu epigenetických změn na 
morfologické variabilitě východoafrických 
banánovníků. Epigenetické změny jsou 
dědičné a mohou mít za následek změnu 
fenotypu, a to aniž by došlo ke změně sek-
vencí DNA. Podstatou těchto změn, které 
ovlivňují funkci genů, jsou metylace DNA 

a modifikace histonů. Je známo, že mohou 
být vyvolány vnějším prostředím. Tyto 
změny lze jen obtížně identifikovat pomocí 
molekulárních markerů. Nicméně pokrok 
v oblasti molekulární biologie a genomiky 
dává naději, že bude v brzké době možné 
ověřit případný podíl epigenetických změn 
na vzniku východoafrických banánovníků. 

Posledním uvažovaným zdrojem morfo-
logických odlišností východoafrických 
banánovníků je epistáze. Tento jev zahrnuje 
situaci, kdy je jeden fenotypový znak ovliv-
něn více geny. 

BANáNOVNíK A OSTATNí 
ORgANISMY 
Východoafrické banánovníky ohrožuje řada 
chorob a napadá je mnoho škůdců. To může 
mít negativní dopad na výživu místních 
obyvatel a snížit příjmy malých farmářů, 
kteří si nemohou dovolit používání drahých 
pesticidů. Snad nejničivější chorobou vý-
chodoafrických banánovníků, stejně jako 
ostatních odrůd, je bakteriální vadnutí 
způsobené patologickou variantou musa-
cearum bakterie Xanthomonas campestris.1 
Infekce má za následek úplnou ztrátu úrody. 
Symptomy zahrnují předčasné dozrávání 
plodů a změnu barvy jejich dužiny (obr. 2), 
nekrózu samčího pupenu a přítomnost 
žlutého slizu na řezu nepravým stonkem 
(obr. 4). Dosud se nepodařilo nalézt odolné 
genotypy. Řešení by mohly přinést metody 
genetického inženýrství. Jediné, co mohou 

Banánovník pochází z jihovýchodní asie, kde byly některé 
jeho typy asi před deseti tisíci lety domestikovány a kde se 
také nachází primární centrum jeho diverzity. V tomto teritoriu 
se vyvinuly banánovníky typické zvlášť pro indomalajskou 
a australasijskou oblast (viz rámeček na s. 38).

text mOses nyIne, JarOslaV dOleŽel

banánovník 
z východoafrické 
vysočiny

2. ZáhADA PůVODu A PěSTOVáNí

mOses nyIne, msc., (*1978) 
vystudoval molekulární biologii na Makerere 
University v Ugandě a v Mezinárodním 
ústavu tropického zemědělství v Ugandě se 
věnuje genetice a šlechtění banánovníku. 
V současné době je doktorandem Univerzity 
Palackého v Olomouci a na olomouckém 
pracovišti Ústavu experimentální botaniky 
AV ČR se zabývá genetickou diverzitou rodu 
banánovník a vývojem genomických metod 
šlechtění banánovníku. 

Prof. Ing. JarOslaV dOleŽel, 
drsc., (*1954) vystudoval Agronomickou 
fakultu na Vysoké škole zemědělské v Brně. 
Zabývá se strukturou a evolucí genomu 
rostlin, vede Centrum strukturní a funkční 
genomiky Ústavu experimentální botaniky 
AV ČR a přednáší na Přírodovědecké fakultě 
Univerzity Palackého v Olomouci. Od roku 
2004 je členem Učené společnosti ČR, v roce 
2012 mu předseda AV ČR udělil prestižní 
Akademickou prémii – Praemium Academiae 

– a v roce 2014 obdržel 
Cenu ministra školství, 
mládeže a tělovýchovy 
za mimořádné výsledky 
výzkumu, experimentálního 
vývoje a inovací. 

farmáři v současné době dělat, je omezovat 
negativní dopady choroby vhodnými agro-
technickými postupy.

Hlavními škůdci pěstovaných banánov-
níků jsou nosatcovitý brouk Cosmopolites 
sordidus (obr. 5) a háďátka Radopholus similis 
(obr. 6), Pratylenchus spp. a Helicotylenchus 
spp. Nosatec C. sordidus páchá největší škody 
v larválním stadiu, kdy v oddenku vyžírá 
tunely, poškozuje růstový vrchol a cévní 
svazky. To způsobuje snížení příjmu vody 
a živin, zastavení růstu a vývoje. Sklizeň 
pak bývá ztrátová. Háďátka parazitují na ko-
řenech a takto vzniklá poškození vyvolávají 
nekrózy. Následkem je redukovaný příjem 
vody a živin a celková destrukce kořenového 
systému. V případě silných větrů dochází 
k vyvrácení rostlin, které nejsou v půdě 
dostatečně ukotveny. 

Z houbových chorob napadajících ba-
nánovník je nejzávažnější „Black Sigato-
ka“, kterou způsobuje houba Mycospaerella 

2. PlOdy banánOVníku 
znehodnocené infekcí bakterií 
Xanthomonas campestris pv. 
musacearum, která způsobuje 
chorobu zvanou bakteriální 
vadnutí.

Snímky na s. 36–38 © Moses nyine.

1) Tato choroba je v anglické literatuře označovaná 
jako Banana Xanthomonas Wilt (BXW).

1. řeZ 
nePraVým 
sTOnkem 
banánOVníku 
napadeného 
houbou 
Fusarium 
oxysporum 
f. sp. cubense, 
která způsobuje 
fusariové 
vadnutí.

3. kVěTensTVí 
východoafrického 
banánovníku.
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fijiensis. Její spory se šíří větrem a houba 
napadá listy, které zasychají, a to vede ke 
snížení fotosynteticky aktivní plochy rost-
liny (obr. 7) a ke snížení výnosu. Banánov-
níky východní Afriky napadají také viry 
BSV (banana streak virus) a BBTV (banana 
bunchy top virus), které však produkci zá-
sadním způsobem neohrožují. 

PANAMSKá ChOROBA
Závažnou chorobou banánovníku je fusario-
vé vadnutí, které způsobuje houba srpov-
nička Fusarium oxysporum f. sp. cubense. Do 
rostliny vniká přes kořeny a ucpává její cév-
ní systém (obr. 1). Napadá mnoho kultivarů, 
zejména ovocné typy nesoucí sladké plody. 
Naštěstí pro východoafrické farmáře však 
nenapadá jimi pěstované odrůdy. Proti této 
chorobě, nazývané též „panamská“, dosud 
neexistuje účinná ochrana. Přitom to byla 
právě ona, která zásadním způsobem změ-
nila produkci sladkých banánů pro export. 
Její tropická rasa 1 (TR1) v letech 1940–1960 
postupně zničila plantáže osazené monokul-
turami odrůdy Gros Michel. Shodou okolnos-
tí je proti této rase odolná odrůda Cavendish, 
která nahradila na infikovaných plantážích 
odrůdu Gros Michel a zachránila tak celé 
odvětví produkce banánů pro export. V sou-
časné době se však začíná šířit tropická rasa 
4 (TR4), proti které není odrůda Cavendish 
odolná, a budoucí produkce banánů pro 
export začíná být opět ohrožena. l

7. lIsT banánOVníku napadený houbou Mycospaerella fijiensis, která 
způsobuje chorobu Black Sigatoka.

Původ banánovníku
Předpokládaný původ a migrace banánovníku. Křížením mezi poddruhy 
banánovníku Musa acuminata (banksii, errans, malaccensis, microcarpa, 
zebrina) vnikly v oblasti jihovýchodní Asie bezsemenné diploidní formy s ge-
nomem AA. Některé z těchto klonů, které řadíme do podskupiny Mlali (šedé 
čárkované šipky), migrovaly na asijskou pevninu, kde mimo jiné daly vznik 
triploidnímu kultivaru Cavendish (s genomem AAA); křížením s druhem Musa 
balbisiana (s genomem BB) na indickém subkontinentu vznikly triploidní 
kultivary podskupiny Pome s genomem AAB. Zástupci podskupiny Mlali 
také migrovali na východoafrické pobřeží (čárkované šipky). Dnes se v jiho-
východní Asii nevyskytují a nacházejí se jen na východoafrickém pobřeží 
a přilehlých ostrovech (Zanzibar, Madagaskar a Komory). V jihovýchodní Asii 
vznikly rovněž triploidní klony nesoucí škrobové plody, které se však zde 
v podstatě nepěstují, a plné šipky znázorňují jejich migrace. Banánovníky 
s genomem AAB vzniky křížením diploidních forem (genom AA) s druhem 
M. balbisiana (genom BB) a migrovaly do západní Afriky (AAB Plantain) 
a opačným směrem na pacifické ostrovy (AAB Popoulou). Křížením diploidů 
s M. balbisiana jak na indickém subkontinentu, tak v jihovýchodní Asii 
vznikly rovněž triploidní klony s genomem ABB. Někteří autoři předpokládají 
migraci triploidních klonů s genomem AAA řazených do podskupiny Mutika 
na východoafrické pobřeží, kde mohly dát vznik v současnosti pěstovaným 
kultivarům východoafrické vysočiny.

Zdroj: Perrier et al.: Multidisciplinary perspectives on banana 
(Musa spp.) domestication. PnAS, July 12, 2011, vol. 108, no. 28, 11311–11318.
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v dalším čísle
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6. HáďáTkO 
Radopholus 
similis parazitující 
na kořenech 
banánovníku 
způsobuje nekrózy 
a ničí kořenový 
systém.

4. na řeZu 
nePraVým 
sTOnkem 
se bakteriální 
vadnutí projevuje 
přítomností 
žlutého slizu.

5. nOsaTeC 
Cosmopolites 
sordidus s čerstvě 
nakladenými 
vajíčky. Larvy 
vyžírají tunely ve 
stonku a poškozují 
růstový vrchol 
a cévní svazky.
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potravinové zdroje — 

Šlechtění 
banánovníků 
východoafrické 
vysočiny
Východoafrické banánovníky 
jsou citlivé vůči mnoha chorobám 
a škůdcům a nesou bezsemenné 
plody, které se vytvářejí bez 
oplodnění (jsou partenokarpické). 
Plané diploidní (2x) formy jsou 
odolné vůči mnoha chorobám 
a škůdcům a jsou fertilní s plody 
plnými semen. Tetraploidní hybrid 
(4x) se čtyřmi sadami chromozomů 
vzniká splynutím neredukované 
gamety odrůdy východoafrického 
banánovníku, která je triploidní (3x), 
a redukované gamety diploida, která 
je haploidní (x). Ve srovnání s odrůdou 
východoafrického banánovníku je 
trs plodů tetraploidního hybridu 
menší. Avšak potomek křížení tohoto 
hybridu s vybraným diploidem 
vykazuje heterózní efekt. Takto 
získaný sekundární triploid (3x) je 
větší než kterýkoliv z rodičů, má větší 
trs plodů a je odolný vůči chorobám 
a škůdcům. Pokud uspěje u farmářů 
a spotřebitelů, může být uvolněn jako 
nová odrůda.

Klasické způsoby šlechtění banánovníku jsou časově velmi 
náročné a mohly by být výrazně urychleny pomocí nových 
genomických metod pro vyhledávání perspektivních kříženců.

text Moses NyiNe, Jaroslav Doležel

3. Šlechtění banánoVníku

Banánovník 
z východoafrické 
vysočiny

Moses NyiNe, Msc., (*1978) 
a prof. ing. Jaroslav 
Doležel, Drsc., (*1954) viz Vesmír 
95, 36, 2016/1. 

1. opylováNí 
východoafrického 
banánovníku.
2. ploDy 
banánovníku 
Calcutta 4, jehož pyl 
se používá při křížení 
s východoafrickými 
banánovníky.
3. DiploiDNí 
kloN banánovníku 
vybraný pro křížení 
s tetraploidními 
hybridy.
4. ploDy tetraploidního 
hybridu získaného 
křížením triploidní 
odrůdy východoafrického 
banánovníku s diploidním 
klonem Calcutta 4.
5. Trs ploDů sekundárního 
triploida získaného v rámci 
šlechtitelského programu.

1. EAHB – 3x 2. planý diploid – 2x

5. nová odrůda – 3x

3. vylepšený diploid 4. tetraploid – 4x
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NeNí PoChyb o Tom, že nejefektiv-
nější obranou proti chorobám a škůdcům, 
která nemá negativní vliv na prostředí, 
je pěstování rezistentních odrůd. Kromě 
choroby Banana Xanthomonas Wilt (Ves-
mír 95, 36, 2016/1) lze mezi planými druhy 
banánovníků nalézt zdroje rezistence a je 
velký zájem využít je ve šlechtění. U ba-
nánovníku je však problém se sterilitou – 
pěstované odrůdy jsou bezsemenné. Přesto 
má křížení  smysl: s velmi malou frekvencí 
vznikají funkční pohlavní buňky i u steril-
ních triploidů a lze získat hybridní semena. 
Úspěšným pionýrem šlechtění byl Phil Rowe 
(1939–2001) z USA, který v Hondurasu pra-
coval pro několik společností. Jeho úspěšná 
strategie je založena na šlechtění diploid-
ních fertilních linií, které slouží jako zdroje 
pylu pro křížení se sterilními triploidními 
odrůdami. Kříženci, které takto získal, jsou 
odolní vůči mnoha chorobám a škůdcům, 
mají vysoké výnosy a patří mezi první nové 
odrůdy, které farmáři ochotně přijali. O své 
práci Rowe řekl: „křížíte rostliny, které 
netvoří semena, abyste získali lepší rostliny, 
které nemají semena“.

Na základě poznatků Phila Rowa bylo 
r. 1994 zahájeno šlechtění východoafrických 
banánovníků, na němž se podílejí Meziná-
rodní ústav tropického zemědělství a Ná-
rodní organizace pro zemědělský výzkum. 
Cílem je zlepšit odolnost místních odrůd vůči 
chorobě Black Sigatoka, broukům a háďát-
kům přenesením rezistence z planých druhů. 
Postup ukazuje rámeček na protější straně. 
Nejprve byly na základě výsledků křížení 
s diploidním klonem Calcutta 4 planého dru-
hu M. acuminata ssp. burmanicoides vybrány 
místní odrůdy s nejvyšší samičí fertilitou.  

Pak bylo jedenáct odrůd zařazeno do šlechti-
telského programu (obr. 1). Jejich křížením 
s klonem Calcutta 4 (obr. 2) se získaly tetra-
ploidní hybridy s jednou sadou chromozomů 
diploidního klonu a třemi sadami chromo-
zomů triploidních odrůd východoafrických 
banánovníků. Tetraploidní hybridy (obr. 4 
a velký snímek) se potom křížily s diploidní-
mi klony (obr. 3), které mají lepší vlastnosti 
než Calcutta 4. Výsledkem byly triploidní 
hybridy s jednou sadou chromozomů diploid-
ního rodiče a dvěma sadami chromozomů 
tetraploidního rodiče (obr. 5). 

Hybridní semena mají velmi nízkou 
klíčivost a jejich embrya jsou proto vyjmuta 
a dopěstovávána v podmínkách in vitro. Po 
postupném otužení se nové hybridy přesa-
zují na pokusné lokality a hodnotí se jejich 
odolnost vůči chorobám a škůdcům, kvalita 
plodů a výnos. Za 20 let trvání šlechtitel-
ského programu se získalo 27 nových odrůd 
zvaných Narita, z nichž farmáři již jednu 
pěstují ve velkém. I když je šlechtitelský 
program úspěšný, je náročný na ruční práci 
a čas, a je tedy drahý.

ZVyŠoVání efektiVity 
Šlechtění
Získání nové odrůdy banánovníku vy-
žaduje nejméně 10 až 15 let a její přijetí 
konzervativními farmáři a konzumenty není 
jisté (jeden cyklus hodnocení výnosu a kvality 
plodů trvá jeden až jeden a půl roku od vysa-
zení odnože na pole). Rychlé šíření nových 
chorob a škůdců však vyžaduje rychlejší reakci 
šlechtitelů. Jednou z možností, jak urychlit 
hodnocení získaných kříženců, je jejich výběr 
v raných fázích růstu pomocí markerů DNA. 
Protože klasické šlechtění spočívá v opakování 

cyklů křížení a výběru potomstev s požado-
vanými vlastnostmi, výběr pomocí markerů 
(marker assisted selection, MAS) může vhodně 
doplnit klasické postupy šlechtění. Pokud 
je určitý marker DNA v těsné vazbě na daný 
znak, může být jeho nositel identifikován 
v rané fázi růstu na základě analýzy DNA. 
Šlechtění pomocí markerů se však u baná-
novníku zatím neuplatňuje, protože důležité 
znaky jsou komplexní a pěstované odrůdy 
jsou triploidní. 

Nadějí tak mohou být genomické metody, 
jejichž uplatnění se stalo reálné díky pokroku 
v nových technologiích sekvenování a analýze 
takto získaných dat. Za relativně nízkou cenu 
je dnes možné podrobně charakterizovat ge-
nomy mnoha jedinců. Charakterizace dědičné 

informace každého jedince pomocí velmi vy-
sokého počtu markerů DNA (typicky polymor-
fismy individuálních nukleotidů v sekvenci 
DNA, tzv. SNP) umožňuje navrhnout modely 
pro tzv. genomickou selekci. Tyto modely bu-
dou používány při výběru rodičovských part-
nerů, aniž by bylo nutné identifkovat markery 
vázané na konkrétní znaky. Genomická 
selekce je variantou výběru pomocí markerů, 
v níž jsou všechny dostupné markery souhrn-
ně používány pro odhad šlechtitelské hodnoty 
jedince, a to pomocí matematického modelu. 
Správnost modelu se ověřuje v tzv. trénovací 
populaci. V případě správného modelu je pak 
možné identifikovat hybridy s požadovanými 
vlastnostmi už v raných fázích jejich růstu. 
Použití genomické selekce ve šlechtění výcho-
doafrických banánovníků se v současné době 
testuje, a pokud se tento přístup osvědčí, může 
podstatně zefektivnit šlechtění a získávání no-
vých odrůd s požadovanými vlastnostmi. l


